WorldWideScience

Sample records for enantioselective total synthesis

  1. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal...

  2. The enantioselective total synthesis of (+)-clusianone.

    Science.gov (United States)

    Horeischi, Fiene; Guttroff, Claudia; Plietker, Bernd

    2015-02-11

    (+)-Clusianone, an exo-type B PPAP with reported anti-HIV and chemoprotective activities, was synthesized in eleven steps with 97% ee starting from acetylacetone. An enantioselective decarboxylative Tsuji-Trost-allylation and a Ru-catalyzed ring-closing metathesis-decarboxylative allylation were used to control both diastereo- and enantioselectivity.

  3. A Convergent Enantioselective Total Synthesis of (-)-Perhydrohistrionicotoxin with an Intramolecular Imino Ene-type Reaction as a Key Step

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars

    1998-01-01

    A convergent enantioselective total synthesis of the neurotoxic spirocyclic alkaloid (-)-perhydrohistrionicotoxin (2) is described. A Lewis acid-mediated intramolecular imine ene-type reaction was used for the key spirocyclisation step (14 to 3, with 3 being obtained as a single diastereoisomer...

  4. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Science.gov (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  5. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    Science.gov (United States)

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B.

    Science.gov (United States)

    Panish, Robert A; Chintala, Srinivasa R; Fox, Joseph M

    2016-04-11

    A novel, mixed-ligand chiral rhodium(II) catalyst, Rh2(S-NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S-NTTL)3(dCPA) reveals a "chiral crown" conformation with a bulky dicyclohexylphenyl acetate ligand and three N-naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium-catalyzed bicyclobutanation/ copper-catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8% overall yield and 92% ee. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bicyclic Guanidine Catalyzed Asymmetric Tandem Isomerization Intramolecular-Diels-Alder Reaction: The First Catalytic Enantioselective Total Synthesis of (+)-alpha-Yohimbine.

    Science.gov (United States)

    Feng, Wei; Jiang, Danfeng; Kee, Choon-Wee; Liu, Hongjun; Tan, Choon-Hong

    2016-02-04

    Hydroisoquinoline derivatives were prepared in moderate to good enantioselectivities via a bicyclic guanidine-catalyzed tandem isomerization intramolecular-Diels-Alder (IMDA) reaction of alkynes. With this synthetic method, the first enantioselective synthesis of (+)-alpha-yohimbine was completed in 9 steps from the IMDA products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation

    Directory of Open Access Journals (Sweden)

    Yiyang Liu

    2014-10-01

    Full Text Available Pd-catalyzed enantioselective alkylation in conjunction with further synthetic elaboration enables the formal total syntheses of a number of “classic” natural product target molecules. This publication highlights recent methods for setting quaternary and tetrasubstituted tertiary carbon stereocenters to address the synthetic hurdles encountered over many decades across multiple compound classes spanning carbohydrate derivatives, terpenes, and alkaloids. These enantioselective methods will impact both academic and industrial settings, where the synthesis of stereogenic quaternary carbons is a continuing challenge.

  9. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.; Kolding, Helene; Alleva, Jennifer L.; Stoltz, Brian M.

    2011-01-01

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.

    2011-06-10

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enantioselective Synthesis of (-)-Vallesine: Late-Stage C17-Oxidation via Complex Indole Boronation.

    Science.gov (United States)

    Antropow, Alyssa H; Garcia, Nicholas R; White, Kolby L; Movassaghi, Mohammad

    2018-06-04

    The first enantioselective total synthesis of (-)-vallesine via a strategy that features a late-stage regioselective C17-oxidation followed by a highly stereoselective transannular cyclization is reported. The versatility of this approach is highlighted by the divergent synthesis of the archetypal alkaloid of this family, (+)-aspidospermidine, and an A-ring-oxygenated derivative, (+)-deacetylaspidospermine, the precursor to (-)-vallesine, from a common intermediate.

  12. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    Science.gov (United States)

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described.

  13. Total Synthesis of balanol, Part 2

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kelly, Nicholas; Tedenborg, Lars

    1997-01-01

    A convergent enantioselective total synthesis of the natural product (-)-balanol (1) is described. In addition to benzophenone fragment 8, key intermediates are chiral bicyclic aziridine 3 and the corresponding epoxide 4, both of which undergo highly regio- and stereoselective nucleophilic ring...

  14. Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents.

    Science.gov (United States)

    Nicolaou, K C; Pulukuri, Kiran Kumar; Rigol, Stephan; Buchman, Marek; Shah, Akshay A; Cen, Nicholas; McCurry, Megan D; Beabout, Kathryn; Shamoo, Yousif

    2017-11-08

    An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.

  15. Application of enantioselective radical reactions: synthesis of (+)-ricciocarpins A and B.

    Science.gov (United States)

    Sibi, Mukund P; He, Liwen

    2004-05-27

    Enantioselective synthesis of (+)-ricciocarpins A and B has been achieved in 41 and 45% overall yields, respectively, starting from a beta-substituted oxazolidinone. The key steps in the strategy are an enantioselective conjugate radical addition and the addition of a furyl organometallic to a key aldehyde intermediate. [reaction--see text

  16. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  17. Design, Synthesis and Biological Activity of Novel Reversible Peptidyl FVIIa Inhibitors Rh-Catalyzed Enantioselective Synthesis of Diaryl Amines

    DEFF Research Database (Denmark)

    Storgaard, Morten

    functional group tolerance. Unfortunately, these -aryl tetramic acids were too unreactive and ring opening toward the synthesis of the building block did not succeed. However, -aryl tetramic acids are still interesting compounds due to their potential biological activity. The building block 3.15 (P1......-catalyzed enantioselective synthesis of diaryl amines, which is an important class of compounds (Chapter 4). For example it is found in the third generation anti-histaminic agent levocetirizine. Development of efficient synthetic routes is therefore of considerably interest. The rhodium-catalyzed enantioselective synthesis...

  18. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  19. Enantioselective biotransformations of nitriles in organic synthesis.

    Science.gov (United States)

    Wang, Mei-Xiang

    2015-03-17

    The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by

  20. Efficient total synthesis of (S)-14-azacamptothecin.

    Science.gov (United States)

    Liu, Guan-Sai; Yao, Yuan-Shan; Xu, Peng; Wang, Shaozhong; Yao, Zhu-Jun

    2010-06-01

    An efficient total synthesis of (S)-14-azacamptothecin has been accomplished in 10 steps and 56% overall yield from 5H-pyrano[4,3-d]pyrimidine 8. A mild Hendrickson reagent-triggered intramolecular cascade cyclization, a highly enantioselective dihydroxylation, and an efficient palladium-catalyzed transformation of an O-allyl into N-allyl group are the key steps in the synthesis. This work provides a much higher overall yield than the previous achievement and shows sound flexibility for the further applications that will lead to new bioactive analogues.

  1. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.

    Science.gov (United States)

    Craig, Ryan; Sorrentino, Emiliano; Connon, Stephen J

    2018-03-26

    A new bifunctional phase-transfer catalyst that employs hydrogen bonding as a control element was developed to promote efficient enantioselective S N 2 reactions for the construction all-carbon quaternary stereocenters in high yield and excellent enantioselectivity (up to 97 % ee) utilizing the alkylation of a malleable oxindole substrate. The utility of the methodology was demonstrated through a concise and highly enantioselective synthesis of (-)-debromoflustramine B. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Green, Enantioselective Synthesis of Warfarin for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Wong, Terence C.; Sultana, Camille M.; Vosburg, David A.

    2010-01-01

    The enantioselective synthesis of drugs is of fundamental importance in the pharmaceutical industry. In this experiment, students synthesize either enantiomer of warfarin, a widely used anticoagulant, in a single step from inexpensive starting materials. Stereoselectivity is induced by a commercial organocatalyst, ("R","R")- or…

  4. Chiral gold(I vs chiral silver complexes as catalysts for the enantioselective synthesis of the second generation GSK-hepatitis C virus inhibitor

    Directory of Open Access Journals (Sweden)

    María Martín-Rodríguez

    2011-07-01

    Full Text Available The synthesis of a GSK 2nd generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I and gold(I catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.

  5. Catalytic Enantioselective Synthesis of 3,4-Unsubstituted Thiochromenes through Sulfa-Michael/Julia-Kocienski Olefination Cascade Reaction.

    Science.gov (United States)

    Simlandy, Amit Kumar; Mukherjee, Santanu

    2017-05-05

    A highly enantioselective cascade sulfa-Michael/Julia-Kocienski olefination reaction between 2-mercaptobenzaldehydes and β-substituted vinyl PT-sulfones has been realized for the synthesis of 3,4-unsubstituted 2H-thiochromenes. This reaction, catalyzed by diphenylprolinol TMS ether, proceeds through an aromatic iminium intermediate and furnishes a wide range of 2-substiuted 2H-thiochromenes with excellent enantioselectivities (up to 99:1 er).

  6. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger; Knop, Nils; Rueping, Magnus

    2016-01-01

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted

  7. Enantioselective synthesis of chiral 3-aryl-1-indanones through rhodium-catalyzed asymmetric intramolecular 1,4-addition.

    Science.gov (United States)

    Yu, Yue-Na; Xu, Ming-Hua

    2013-03-15

    Enantioselective synthesis of potentially useful chiral 3-aryl-1-indanones was achieved through a rhodium-catalyzed asymmetric intramolecular 1,4-addition of pinacolborane chalcone derivatives using extraordinary simple MonoPhos as chiral ligand under relatively mild conditions. This novel protocol offers an easy access to a wide variety of enantioenriched 3-aryl-1-indanone derivatives in high yields (up to 95%) with excellent enantioselectivities (up to 95% ee).

  8. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes.

    Science.gov (United States)

    Taylor, Buck L H; Swift, Elizabeth C; Waetzig, Joshua D; Jarvo, Elizabeth R

    2011-01-26

    Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols.

  9. Application of diazene-directed fragment assembly to the total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids

    OpenAIRE

    Lathrop, Stephen; Movassaghi, Mohammad

    2013-01-01

    We describe the first application of our methodology for heterodimerization via diazene fragmentation towards the total synthesis of (−)-calycanthidine, meso-chimonanthine, and (+)-desmethyl-meso-chimonanthine. Our syntheses of these alkaloids feature an improved route to C3a-aminocyclotryptamines, an enhanced method for sulfamide synthesis and oxidation, in addition to a late-stage diversification leading to the first enantioselective total synthesis of (+)-desmethyl-meso-chimonanthine and i...

  10. The asymmetric total synthesis of (+)- and (-)-trypargine via Noyori asymmetric transfer hydrogenation

    International Nuclear Information System (INIS)

    Pilli, Ronaldo A.; Rodrigues Junior, Manoel Trindade

    2009-01-01

    A concise and efficient total synthesis of (+)- and (-)-trypargine (6 steps and 38% overall yield), a 1-substituted β-carboline guanidine alkaloid isolated from the skin of the African frog K. senegalensis, was developed based on the construction of the b-carboline moiety via Bischler-Napieralski reaction and the enantioselective reduction of the dihydro-β-carboline intermediate via an asymmetric transfer hydrogenation reaction using Noyori's protocol. (author)

  11. Computer-Assisted Design and Synthetic Applications of Chiral Enol Borinates: Novel, Highly Enantioselective Aldol Reagents

    Directory of Open Access Journals (Sweden)

    Gennari Cesare

    1998-01-01

    Full Text Available We have recently described the development of a quantitative transition state model for the prediction of stereoselectivity in the boron-mediated aldol reaction. This model provides qualitative insights into the factors contributing to the stereochemical outcome of a variety of reactions of synthetic importance. The force field model was used to assist the design and preparation of new chiral boron ligands derived from menthone. The chiral boron enolates were employed in various stereoselective processes, including the addition to chiral aldehydes and the reagent-controlled total synthesis of (3S,4S-statine. The chiral enolates derived from alpha-halo and alpha-oxysubstituted thioacetates were added to aldehydes and imines. Addition to imines leads to the enantioselective synthesis of chiral aziridines, a formal total synthesis of (+-thiamphenicol, and a new highly efficient synthesis of the paclitaxel (taxol® C-13 side-chain and taxol semisynthesis from baccatin III. The stereochemical outcome of the addition to imines was rationalised with the aid of computational studies. Enantioselective addition reactions of the chiral boron enolate derived from thioacetate have successfully been applied to solid phase bound aldehydes to give aldol products in comparable yields and enantioselectivities to the usual solution conditions.

  12. Chiral amides via copper-catalysed enantioselective conjugate addition

    NARCIS (Netherlands)

    Schoonen, Anne K.; Fernández-Ibáñez, M. Ángeles; Fañanás-Mastral, Martín; Teichert, Johannes F.; Feringa, Bernard

    2014-01-01

    A highly enantioselective one pot procedure for the synthesis of beta-substituted amides was developed starting from the corresponding alpha,beta-unsaturated esters. This new methodology is based on the copper-catalysed enantioselective conjugate addition of Grignard reagents to

  13. Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst.

    Science.gov (United States)

    Vara, Brandon A; Struble, Thomas J; Wang, Weiwei; Dobish, Mark C; Johnston, Jeffrey N

    2015-06-17

    Carbon dioxide exhibits many of the qualities of an ideal reagent: it is nontoxic, plentiful, and inexpensive. Unlike other gaseous reagents, however, it has found limited use in enantioselective synthesis. Moreover, unprecedented is a tool that merges one of the simplest biological approaches to catalysis-Brønsted acid/base activation-with this abundant reagent. We describe a metal-free small molecule catalyst that achieves the three component reaction between a homoallylic alcohol, carbon dioxide, and an electrophilic source of iodine. Cyclic carbonates are formed enantioselectively.

  14. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  15. Iridium-Catalyzed Asymmetric Intramolecular Allylic Amidation : Enantioselective Synthesis of Chiral Tetrahydroisoquinolines and Saturated Nitrogen Heterocycles

    NARCIS (Netherlands)

    Teichert, Johannes F.; Fañanás-Mastral, Martín; Feringa, Bernard

    2011-01-01

    For the first time iridium catalysis has been used for the synthesis of chiral tetrahydroisoquinolines with excellent yields and high enantioselectivities (see scheme; cod=1,5-cyclooctadiene, DBU=1,8-diazabicyclo[5.4.0]undec-7-ene). These products are important chiral building blocks for the

  16. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    Science.gov (United States)

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  17. Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis

    Directory of Open Access Journals (Sweden)

    Dario Perdicchia

    2015-12-01

    Full Text Available 2-Piperidineethanol (1 and its corresponding N-protected aldehyde (2 were used for the synthesis of several natural and synthetic compounds. The existence of a stereocenter at position 2 of the piperidine skeleton and the presence of an easily-functionalized group, such as the alcohol, set 1 as a valuable starting material for enantioselective synthesis. Herein, are presented both synthetic and enzymatic methods for the resolution of the racemic 1, as well as an overview of synthesized natural products starting from the enantiopure 1.

  18. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  19. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    Science.gov (United States)

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enantioselective synthesis of the novel chiral sulfoxide derivative as a glycogen synthase kinase 3beta inhibitor.

    Science.gov (United States)

    Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Yamano, Toru; Itoh, Fumio; Kori, Masakuni

    2010-09-01

    Glycogen synthase kinase 3beta (GSK-3beta) inhibitors are expected to be attractive therapeutic agents for the treatment of Alzheimer's disease (AD). Recently we discovered sulfoxides (S)-1 as a novel GSK-3beta inhibitor having in vivo efficacy. We investigated practical asymmetric preparation methods for the scale-up synthesis of (S)-1. The highly enantioselective synthesis of (S)-1 (94% ee) was achieved by titanium-mediated oxidation with D-(-)-diethyl tartrate on gram scale.

  1. Enantioselective synthesis of no-carrier added (NCA) 6-[18F]Fluoro-L-Dopa

    International Nuclear Information System (INIS)

    Duanzhi Yin; Lan Zhang; Yongxian Wang; Ganghua Tang; First Military Medical Univ., Guangzhou; Xiaolan Tang

    2003-01-01

    6-[ 18 F]Fluoro-L-Dopa (6-FDOPA) is the analogue of L-Dopa, the biosynthesis precursor for dopamine. As a PET tracer, it was widely applied for the presynaptic dopamine function studies in human brain. The application of a chiral phase-transfer-catalyst (PTC) in enantioselective synthesis of N.C.A. 6-[ 18 F]Fluoro-L-Dopa has been developed recently. An improved procedure was described. The labeling precursor (6-Trimethylammoniumveratraldehyde Triflate) and PTC (O-Allyl-N-(9)-anthracenylcinchonidinium Bromide) were synthesized. A successful synthesis route was developed for the preparation of 6-[ 18 F]Fluoro-L-Dopa with high radiochemical yields (4-9%, decay uncorrected) and short synthesis time(80min). The radiochemical purity was over 99% and no D-isomer was detected by HPLC analysis using a chiral mobile phase. (author)

  2. Efficient and highly enantioselective formation of the all-carbon quaternary stereocentre of lyngbyatoxin A

    DEFF Research Database (Denmark)

    Vital, Paulo J.V.; Tanner, David

    2006-01-01

    Indole 25, an advanced intermediate in a projected enantioselective total synthesis of lyngbyatoxin A 1, was prepared from allylic alcohol 11 in 9 steps and >95% ee, key transformations being the enantiospecific rearrangement of vinyl epoxide 14 and the Hemetsberger-Knittel reaction of azide 24....

  3. Catalytic Asymmetric Total Synthesis of (+)- and (-)-Paeoveitol via a Hetero-Diels-Alder Reaction.

    Science.gov (United States)

    Li, Tian-Ze; Geng, Chang-An; Yin, Xiu-Juan; Yang, Tong-Hua; Chen, Xing-Long; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun

    2017-02-03

    The first catalytic asymmetric total synthesis of (+)- and (-)-paeoveitol has been accomplished in 42% overall yield via a biomimetic hetero-Diels-Alder reaction. The chiral phosphoric acid catalyzed hetero-Diels-Alder reaction showed excellent diastereo- and enantioselectivity (>99:1 dr and 90% ee); two rings and three stereocenters were constructed in a single step to produce (-)-paeoveitol on a scale of 452 mg. This strategy enabled us to selectively synthesize both paeoveitol enantiomers from the same substrates by simply changing the enantiomer of the catalyst.

  4. Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds

    International Nuclear Information System (INIS)

    Maltsev, O V; Beletskaya, Irina P; Zlotin, Sergei G

    2011-01-01

    Recent applications of organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds: natural products, pharmaceutical agents and plant protection agents are reviewed. The key mechanisms of stereoinduction, types of organocatalysts and reagents used in these reactions are considered. The material is classified according to the type of newly formed bonds incorporating the asymmetric carbon atom, and the information for the most numerous C–C coupling reactions is systematized according to the natures of the electrophile and the nucleophile. The bibliography includes 433 references.

  5. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    Science.gov (United States)

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  6. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines

    Directory of Open Access Journals (Sweden)

    Erli Sugiono

    2013-11-01

    Full Text Available A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  7. Enantioselective carbenoid insertion into C(sp3–H bonds

    Directory of Open Access Journals (Sweden)

    J. V. Santiago

    2016-05-01

    Full Text Available The enantioselective carbenoid insertion into C(sp3–H bonds is an important tool for the synthesis of complex molecules due to the high control of enantioselectivity in the formation of stereogenic centers. This paper presents a brief review of the early issues, related mechanistic studies and recent applications on this chemistry area.

  8. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    Science.gov (United States)

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  9. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  10. Enantioselective Synthesis of Aminodiols by Sequential Rhodium-Catalysed Oxyamination/Kinetic Resolution: Expanding the Substrate Scope of Amidine-Based Catalysis.

    Science.gov (United States)

    Guasch, Joan; Giménez-Nueno, Irene; Funes-Ardoiz, Ignacio; Bernús, Miguel; Matheu, M Isabel; Maseras, Feliu; Castillón, Sergio; Díaz, Yolanda

    2018-03-26

    Regio- and stereoselective oxyamination of dienes through a tandem rhodium-catalysed aziridination-nucleophilic opening affords racemic oxazolidinone derivatives, which undergo a kinetic resolution acylation process with amidine-based catalysts (ABCs) to achieve s values of up to 117. This protocol was applied to the enantioselective synthesis of sphingosine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals

    Science.gov (United States)

    Kern, Nicolas; Plesniak, Mateusz P.; McDouall, Joseph J. W.; Procter, David J.

    2017-12-01

    The rapid generation of molecular complexity from simple starting materials is a key challenge in synthesis. Enantioselective radical cyclization cascades have the potential to deliver complex, densely packed, polycyclic architectures, with control of three-dimensional shape, in one step. Unfortunately, carrying out reactions with radicals in an enantiocontrolled fashion remains challenging due to their high reactivity. This is particularly the case for reactions of radicals generated using the classical reagent, SmI2. Here, we demonstrate that enantioselective SmI2-mediated radical cyclizations and cascades that exploit a simple, recyclable chiral ligand can convert symmetrical ketoesters to complex carbocyclic products bearing multiple stereocentres with high enantio- and diastereocontrol. A computational study has been used to probe the origin of the enantioselectivity. Our studies suggest that many processes that rely on SmI2 can be rendered enantioselective by the design of suitable ligands.

  12. Hydrothermal synthesis, crystal structures, and enantioselective adsorption property of bis(L-histidinato)nickel(II) monohydrate

    Science.gov (United States)

    Ramos, Christian Paul L.; Conato, Marlon T.

    2018-05-01

    Despite the numerous researches in metal-organic frameworks (MOFs), there are only few reports on biologically important amino acids, histidine in particular, on its use as bridging ligand in the construction of open-framework architectures. In this work, hydrothermal synthesis was used to prepare a compound based on Ni2+ and histidine. The coordination assembly of imidazole side chain of histidine with divalent nickel ions in aqueous condition yielded purple prismatic solids. Single crystal X-ray diffraction (XRD) analysis of the product revealed structure for Ni(C6H8N3O2)2 • H2O that has a monoclinic (C2) structure with lattice parameters, a = 29.41, b = 8.27, c = 6.31 Å, β = 90.01 ˚. Circular dichroism - optical rotatory dispersion (CD-ORD), Powder X-ray diffraction (PXRD) and Fourier transform - infrared spectroscopy (FT-IR) analyses are conducted to further characterize the crystals. Enantioselective adsorption analysis using racemic mixture of 2-butanol confirmed bis(L-histidinato)nickel(II) monohydrate MOF crystal's enantioselective property preferentially favoring the adsorption of (S)-2-butanol isomer.

  13. Enantioselective 1,3-dipolar cycloadditions of diazoacetates with electron-deficient olefins.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Soeta, Takahiro

    2007-04-12

    [reaction: see text] A general strategy for highly enantioselective 1,3-dipolar cycloaddition of diazoesters to beta-substituted, alpha-substituted, and alpha,beta-disubstituted alpha,beta-unsaturated pyrazolidinone imides is described. Cycloadditions utilizing less reactive alpha,beta-disubstituted dipolarophiles require elevated reaction temperatures, but still provide the corresponding pyrazolines with excellent enantioselectivities. Finally, an efficient synthesis of (-)-manzacidin A employing this cycloaddition methodology as a key step is illustrated.

  14. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.; Stewart, Ian C.; Seashore-Ludlow, Brinton A.; Grubbs, Robert H.; Stoltz, Brian M.

    2010-01-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  15. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.

    2010-06-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  16. Quinine-Promoted, Enantioselective Boron-Tethered Diels-Alder Reaction by Anomeric Control of Transition State Conformation.

    Science.gov (United States)

    Scholl, Katie; Dillashaw, John; Timpy, Evan; Lam, Yu-Hong; DeRatt, Lindsey; Benton, Tyler R; Powell, Jacqueline P; Houk, Kendall N; Morgan, Jeremy B

    2018-05-01

    Diels-Alder reactions of tethered vinyl-metal species offer the opportunity to fashion highly functionalized diol intermediates for synthesis. We have developed the first enantioselective boron-tethered Diels-Alder reaction using quinine as a chiral promoter. Quinine recovery, enantioselectivity enhancement, and manipulation of the cyclohexene core are also investigated. DFT modeling calculations confirm the role of quinine as a bidentate ligand enhancing reaction rates. The enantioselectivity of the cycloaddition is proposed to originate from a boron-centered anomeric effect.

  17. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    Science.gov (United States)

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  18. Organocatalysts for enantioselective synthesis of fine chemicals: definitions, trends and developments

    Directory of Open Access Journals (Sweden)

    Chiara Palumbo

    2015-02-01

    Full Text Available Organocatalysis, that is the use of small organic molecules to catalyze organic transformations, has been included among the most successful concepts in asymmetric catalysis, and it has been used for the enantioselective construction of C–C, C–N, C–O, C–S, C–P and C–halide bonds. Since the seminal works in early 2000, the scientific community has been paying an ever-growing attention to the use of organocatalysts for the synthesis, with high yields and remarkable stereoselectivities, of optically active fine chemicals of interest for the pharmaceutical industry. A brief overview is here presented about the two main classes of substrate activation by the catalyst: covalent organocatalysis and non-covalent organocatalysis, with a more stringent focus on some recent outcomes in the field of the latter and of hydrogen bond-based catalysis. Finally, some successful examples of heterogenization of organocatalysts are also discussed, in the view of a potential industrial exploitation.

  19. Total Synthesis of Natural Products Using Hypervalent Iodine Reagents

    Directory of Open Access Journals (Sweden)

    Gaetan eMaertens

    2015-01-01

    Full Text Available We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the aromatic ring umpolung concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol, a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor, acetylaspidoalbidine (an antitumor agent, fortucine (antiviral and antitumor, erysotramidine (curare-like effect, platensimycin (an antibiotic, and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis. These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.

  20. Asymmetric total synthesis of a putative sex pheromone component from the parasitoid wasp Trichogramma turkestanica

    NARCIS (Netherlands)

    Geerdink, Danny; Buter, Jeffrey; van Beek, Teris A.; Minnaard, Adriaan J.

    2014-01-01

    Virgin females of the parasitoid wasp Trichogramma turkestanica produce minute amounts of a sex pheromone, the identity of which has not been fully established. The enantioselective synthesis of a putative component of this pheromone, (6S,8S,10S)-4,6,8,10-tetramethyltrideca-2E,4E-dien-1-ol (2), is

  1. Enantioselective Rhodium Enolate Protonations. A New Methodology for the Synthesis of β2-Amino Acids

    Science.gov (United States)

    Sibi, Mukund P.; Tatamidani, Hiroto; Patil, Kalyani

    2008-01-01

    Rhodium catalyzed conjugate addition of an aryl boronic acid to α-methylamino acrylates followed by enantioselective protonation of the oxa-π-allylrhodium intermediate provides access to aryl substituted β2-amino acids. The impact of the different variables of the reaction on the levels of enantioselectivity has been assessed. PMID:15957893

  2. Enantioselective rhodium enolate protonations. A new methodology for the synthesis of beta2-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Tatamidani, Hiroto; Patil, Kalyani

    2005-06-23

    [reaction: see text] Rhodium-catalyzed conjugate addition of an aryl boronic acid to alpha-methylamino acrylates followed by enantioselective protonation of the oxa-pi-allylrhodium intermediate provides access to aryl-substituted beta(2)-amino acids. The impact of the different variables of the reaction on the levels of enantioselectivity has been assessed.

  3. Enantioselective synthesis of alpha,beta-disubstituted-beta-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Prabagaran, Narayanasamy; Ghorpade, Sandeep G; Jasperse, Craig P

    2003-10-01

    Highly diastereoselective and enantioselective addition of N-benzylhydroxylamine to imides 17 and 20-30 produces alpha,beta-trans-disubstituted N-benzylisoxazolidinones 19 and 31-41. These reactions proceed in 60-96% ee with 93-99% de's using 5 mol % of Mg(NTf2)2 and ligand 18. The product isoxazolidinones can be hydrogenolyzed directly to provide alpha,beta-disubstituted-beta-amino acids.

  4. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  5. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.; Widger, Peter C. B.; Ahmed, Syud M.; Jeske, Ryan C.; Hirahata, Wataru; Lobkovsky, Emil B.; Coates, Geoffrey W.

    2010-01-01

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  6. An enantioselective synthesis of S-γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-14C] hydrochloride, an important metabolite of fluoxetine hydrochloride

    International Nuclear Information System (INIS)

    Wheeler, W.J.

    1992-01-01

    The S-enantiomer of γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3- 14 C] hydrochloride has been prepared in eight steps from acetophenone-[carbonyl- 14 C]. The key step in the synthesis involved the enantioselective reduction of R-2-chloroacetophenone-[1- 14 C]with (-)-diisopinocampheyl-chloroborane in an 86.5% yield. The chlorohydrin was converted to R-phenyloxirane-[1- 14 C], which was subsequently converted to the corresponding R-cyanohydrin by reaction with TMS-CN/CaO. Borane reduction and arylation, followed by salt formation yielded S-γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3- 14 C] hydrochloride. (author)

  7. Enantioselective radical addition/trapping reactions with alpha,beta-disubstituted unsaturated imides. Synthesis of anti-propionate aldols.

    Science.gov (United States)

    Sibi, Mukund P; Petrovic, Goran; Zimmerman, Jake

    2005-03-02

    This manuscript describes a highly diastereo- and enantioselective intermolecular radical addition/hydrogen atom transfer to alpha,beta-disubstituted enoates. Additionally, we show that anti-propionate aldol-like products can be easily prepared from alpha-methyl-beta-acyloxyenoates in good yields and high diastereo- and enantioselectivities.

  8. Synthesis of allocolchicinoids: a 50 year journey

    International Nuclear Information System (INIS)

    Sitnikov, N S; Fedorov, A Yu

    2013-01-01

    Published data on the stereo- and enantioselective synthesis of allocolchicinoids, which are of interest as antitumour agents, are summarized. The stereochemistry of these compounds is described. Two key approaches to their preparation are considered, namely, the synthesis from natural colchicine and total synthesis from commercially available reagents. Various total syntheses of N-acetylcolchicinol are performed using biaryl oxidative and reductive coupling, cyclopropanation–ring expansion and Nicholas reaction. The synthetic routes to allocolchicine are based on Diels–Alder cycloaddition, combination of metathesis and Diels–Alder reaction and direct catalytic CH-arylation. Analogues of the colchicine site ligands incorporating heteroaromatic rings are briefly considered; their structural features and methods of synthesis are discussed. The bibliography includes 144 references.

  9. The Brønsted Acid-Catalyzed, Enantioselective Aza-Diels-Alder Reaction for the Direct Synthesis of Chiral Piperidones.

    Science.gov (United States)

    Weilbeer, Claudia; Sickert, Marcel; Naumov, Sergei; Schneider, Christoph

    2017-01-12

    We disclose herein the first enantioselective aza-Diels-Alder reaction of β-alkyl-substituted vinylketene silyl-O,O-acetals and imines furnishing a broad range of optically highly enriched 4-alkyl-substituted 2-piperidones. As a catalyst for this one-pot reaction we employed a chiral phosphoric acid which effects a vinylogous Mannich reaction directly followed by ring-closure to the lactam. Subsequent fully diastereoselective transformations including hydrogenation, enolate alkylation, and lactam alkylation/reduction processes converted the cycloadducts into various highly substituted piperidines of great utility for the synthesis of natural products and medicinally active compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    Science.gov (United States)

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  11. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Nová k, Zoltá n; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  12. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  13. Analogues of amphibian alkaloids: total synthesis of (5R,8S,8aS-(--8-methyl-5-pentyloctahydroindolizine (8-epi-indolizidine 209B and [(1S,4R,9aS-(--4-pentyloctahydro-2H-quinolizin-1-yl]methanol

    Directory of Open Access Journals (Sweden)

    de Koning Charles B

    2008-01-01

    Full Text Available Abstract Background Prior work from these laboratories has centred on the development of enaminones as versatile intermediates for the synthesis of alkaloids and other nitrogen-containing heterocycles. In this paper we describe the enantioselective synthesis of indolizidine and quinolizidine analogues of bicyclic amphibian alkaloids via pyrrolidinylidene- and piperidinylidene-containing enaminones. Results Our previously reported synthesis of racemic 8-epi-indolizidine 209B has been extended to the laevorotatory enantiomer, (--9. Attempts to adapt the synthetic route in order to obtain quinolizidine analogues revealed that a key piperidinylidene-containing enaminone intermediate (+-28 was less tractable than its pyrrolidinylidene counterpart, thereby necessitating modifications that included timing changes and additional protection-deprotection steps. A successful synthesis of [(1S,4R,9aS-4-pentyloctahydro-2H-quinolizin-1-yl]methanol (--41 from the chiral amine tert-butyl (3R-3-{benzyl [(1R-1-phenylethyl]amino}octanoate (+-14 was achieved in 14 steps and an overall yield of 20.4%. Conclusion The methodology reported in this article was successfully applied to the enantioselective synthesis of the title compounds. It paves the way for the total synthesis of a range of cis-5,8-disubstituted indolizidines and cis-1,4-disubstituted quinolizidines, as well as the naturally occurring trans-disubstituted alkaloids.

  14. Catalytic enantioselective alkene aminohalogenation/cyclization involving atom transfer.

    Science.gov (United States)

    Bovino, Michael T; Chemler, Sherry R

    2012-04-16

    Problem solved: the title reaction was used for the synthesis of chiral 2-bromo, chloro, and iodomethyl indolines and 2-iodomethyl pyrrolidines. Stereocenter formation is believed to occur by enantioselective cis aminocupration and C-X bond formation is believed to occur by atom transfer. The ultility of the products as versatile synthetic intermediates was demonstrated, as was a radical cascade cyclization sequence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  16. Enantioselective organocatalyzed Oxa-Michael-Aldol cascade reactions: Construction of chiral 4H-chromenes with a trifluoromethylated tetrasubstituted carbon stereocenter

    KAUST Repository

    Zhang, Jing

    2015-03-13

    The first organocatalytic asymmetric synthesis of 4H-chromenes bearing a trifluoromethylated tetrasubstituted carbon center is presented. Chiral secondary amines promote the oxa-Michael-aldol cascade reaction between alkynals and 2-trifluoroacetylphenols via iminium-allenamine activation to produce pharmaceutically important heterocycles with excellent enantioselectivities. The proposed reaction can be scaled-up easily with maintenance of the excellent enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enhancing the potential of enantioselective organocatalysis with light

    Science.gov (United States)

    Silvi, Mattia; Melchiorre, Paolo

    2018-02-01

    Organocatalysis—catalysis mediated by small chiral organic molecules—is a powerful technology for enantioselective synthesis, and has extensive applications in traditional ionic, two-electron-pair reactivity domains. Recently, organocatalysis has been successfully combined with photochemical reactivity to unlock previously inaccessible reaction pathways, thereby creating new synthetic opportunities. Here we describe the historical context, scientific reasoning and landmark discoveries that were essential in expanding the functions of organocatalysis to include one-electron-mediated chemistry and excited-state reactivity.

  18. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel

    2011-03-04

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  19. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel; McDougal, Nolan T.; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  20. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products.

    Science.gov (United States)

    Ghislieri, Diego; Green, Anthony P; Pontini, Marta; Willies, Simon C; Rowles, Ian; Frank, Annika; Grogan, Gideon; Turner, Nicholas J

    2013-07-24

    The development of cost-effective and sustainable catalytic methods for the production of enantiomerically pure chiral amines is a key challenge facing the pharmaceutical and fine chemical industries. This challenge is highlighted by the estimate that 40-45% of drug candidates contain a chiral amine, fueling a demand for broadly applicable synthetic methods that deliver target structures in high yield and enantiomeric excess. Herein we describe the development and application of a "toolbox" of monoamine oxidase variants from Aspergillus niger (MAO-N) which display remarkable substrate scope and tolerance for sterically demanding motifs, including a new variant, which exhibits high activity and enantioselectivity toward substrates containing the aminodiphenylmethane (benzhydrylamine) template. By combining rational structure-guided engineering with high-throughput screening, it has been possible to expand the substrate scope of MAO-N to accommodate amine substrates containing bulky aryl substituents. These engineered MAO-N biocatalysts have been applied in deracemization reactions for the efficient asymmetric synthesis of the generic active pharmaceutical ingredients Solifenacin and Levocetirizine as well as the natural products (R)-coniine, (R)-eleagnine, and (R)-leptaflorine. We also report a novel MAO-N mediated asymmetric oxidative Pictet-Spengler approach to the synthesis of (R)-harmicine.

  1. An enantioselective synthesis of S-[gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride, an important metabolite of fluoxetine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, W.J. (Lilly (Eli) and Co., Indianapolis, IN (United States). Lilly Research Labs.)

    1992-06-01

    The S-enantiomer of [gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride has been prepared in eight steps from acetophenone-[carbonyl-[sup 14]C]. The key step in the synthesis involved the enantioselective reduction of R-2-chloroacetophenone-[1-[sup 14]C]with (-)-diisopinocampheyl-chloroborane in an 86.5% yield. The chlorohydrin was converted to R-phenyloxirane-[1-[sup 14]C], which was subsequently converted to the corresponding R-cyanohydrin by reaction with TMS-CN/CaO. Borane reduction and arylation, followed by salt formation yielded S-[gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride. (author).

  2. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  3. Enantioselective total synthesis of (+)-brefeldin A and 7-epi-brefeldin A.

    Science.gov (United States)

    Wu, Yikang; Shen, Xin; Yang, Yong-Qing; Hu, Qi; Huang, Jia-Hui

    2004-05-28

    A convergent enantioselective route to brefeldin A (BFA) and 7-epi-BFA was developed. The key C-4/C-5 chiral centers were established by using chiral auxiliary induced intermolecular asymmetric aldolization in the presence of TiCl(4) and TMEDA. The results with the thiazolidinethione/TiCl(4) mediated intermolecular asymmetric aldolization added some new information about the scope and limitations to the existing knowledge of that type of reactions (which so far was essentially limited to the reactions with N-propionyl thiazolidinethiones). During the course a method for protecting the liable aldol hydroxyl groups by using inexpensive TBSCl in DMF with 2,6-lutidine as the base was developed to replace the otherwise unavoidable TBSOTf procedure. Due to the excessive steric hindrance, removal of the auxiliary was much more difficult than most literature cases. Cleavage of the oxazolidinone by reduction was almost impossible. The thiazolidinethione auxiliary was relatively easier to remove. However, several reactions reported for facile removal of thiazolidinethione auxiliaries in the literature still failed. Reductive removal of the thiazolidinethione auxiliary was most effectively realized with LiBH(4) in diethyl ether in the presence of 1 equiv of MeOH (a modification of a literature procedure for removal of oxazolidinone auxiliaries in less hindered substrates). Apart from the auxiliary removal, oxidation of the alcohol into aldehyde and the deprotection of the dithiolane protecting group were also rather difficult in the present context. A range of methods were screened before final solutions were found. The five-membered ring was constructed by employing an intramolecular Mukaiyama reaction after many attempts with the intramolecular aldolization under a variety of conditions failed. The rate of elimination of the alkoxyl to form the alpha,beta-double bond of the key intermediate cyclopentenone 49 with DBU was highly solvent dependent (very sluggish in CH(2)Cl(2

  4. Intramolecular Nicholas reactions in the synthesis of dibenzocycloheptanes. Synthesis of allocolchicine NSC 51046 and analogues and the formal synthesis of (-)-allocolchicine.

    Science.gov (United States)

    Djurdjevic, Sinisa; Yang, Fei; Green, James R

    2010-12-03

    The preparation of dibenzocycloheptyne-Co(2)(CO)(6) complexes by intramolecular Nicholas reactions of biaryl-2-propargyl alcohol-Co(2)(CO)(6) derivatives is described. Reductive decomplexation of the dibenzocycloheptyne-Co(2)(CO)(6) complexes affords the corresponding dibenzocycloheptenes, individual members of which have been employed in a formal total synthesis of (-)-allocolchicine, the preparation of 6,7-dihydro-3,4,9,10,11-pentamethoxy-5H-dibenzo[a,c]cyclohepten-5-one, and the enantioselective total syntheses of NSC 51046 and its 3,8,9,10-tetramethoxy regioisomer.

  5. Aziridino Alcohols as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kornø, Hanne Tøfting; Guijarro, David

    1998-01-01

    The chiral aziridino alcohols 1 -3 have been prepared either from amino acids (1a from serine; 1b - 1i and 3 from threonine; 2a - 2e from allo-threonine) or via asymmetric synthesis (1j, 1k, 1l and 2f from methyl cinnamate). These easily available ligands act as catalysts for the enantioselective...

  6. Diastereoselective and enantioselective reduction of tetralin-1,4-dione

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available BackgroundThe chemistry of tetralin-1,4-dione, the stable tautomer of 1,4-dihydroxynaphthalene, has not been explored previously. It is readily accessible and offers interesting opportunities for synthesis.ResultsThe title reactions were explored. L-Selectride reduced the diketone to give preferentially the cis-diol (d.r. 84 : 16. Red-Al gave preferentially the trans-diol (d.r. 13 : 87. NaBH4, LiAlH4, and BH3 gave lower diastereoselectivities (yields: 76–98%. Fractional crystallization allowed isolation of the cis-diol and the trans-diol (55% and 66% yield, respectively. Borane was used to cleanly give the mono-reduction product. Highly enantioselective CBS reductions afforded the trans-diol (72% yield, 99% ee and the mono-reduction product (81%, 95% ee.ConclusionDiastereoselective and enantioselective reductions of the unexplored tetralin-1,4-dione provides a very convenient entry into a number of synthetically highly attractive 1,4-tetralindiols and 4-hydroxy-1-tetralone.

  7. Diastereoselective and enantioselective reduction of tetralin-1,4-dione.

    Science.gov (United States)

    Kündig, E Peter; Enriquez-Garcia, Alvaro

    2008-01-01

    The chemistry of tetralin-1,4-dione, the stable tautomer of 1,4-dihydroxynaphthalene, has not been explored previously. It is readily accessible and offers interesting opportunities for synthesis. The title reactions were explored. L-Selectride reduced the diketone to give preferentially the cis-diol (d.r. 84 : 16). Red-Al gave preferentially the trans-diol (d.r. 13 : 87). NaBH(4), LiAlH(4), and BH(3) gave lower diastereoselectivities (yields: 76-98%). Fractional crystallization allowed isolation of the cis-diol and the trans-diol (55% and 66% yield, respectively). Borane was used to cleanly give the mono-reduction product. Highly enantioselective CBS reductions afforded the trans-diol (72% yield, 99% ee) and the mono-reduction product (81%, 95% ee). Diastereoselective and enantioselective reductions of the unexplored tetralin-1,4-dione provides a very convenient entry into a number of synthetically highly attractive 1,4-tetralindiols and 4-hydroxy-1-tetralone.

  8. Chemoenzymatic synthesis of statine side chain building blocks and application in the total synthesis of the cholesterol-lowering compound solistatin.

    Science.gov (United States)

    Rieder, Oliver; Wolberg, Michael; Foegen, Silke E; Müller, Michael

    2017-09-20

    The synthesis and enzymatic reduction of several 6-substituted dioxohexanoates are presented. Two-step syntheses of tert-butyl 6-bromo-3,5-dioxohexanoate and the corresponding 6-hydroxy compound have been achieved in 89% and 59% yield, respectively. Regio- and enantioselective reduction of these diketones and of the 6-chloro derivative with alcohol dehydrogenase from Lactobacillus brevis (LBADH) gave the (5S)-5-hydroxy-3-oxo products with enantiomeric excesses of 91%, 98.4%, and >99.5%, respectively. Chain elongation of the reduction products by one carbon via cyanide addition, and by more than one carbon by Julia-Kocienski olefination, gave access to well-established statine side-chain building blocks. Application in the synthesis of the cholesterol-lowering natural compound solistatin is given. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Organocatalytic Enantioselective Pictet-Spengler Approach to Biologically Relevant 1-Benzyl-1,2,3,4-Tetrahydroisoquinoline Alkaloids

    NARCIS (Netherlands)

    Ruiz-Olalla, A.; Würdemann, M.A.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2015-01-01

    A general procedure for the synthesis of 1-benzyl-1,2,3,4-tetrahydroisoquinolines was developed, based on organocatalytic, regio- and enantioselective Pictet-Spengler reactions (86-92% ee) of N-(o-nitrophenylsulfenyl)-2-arylethyl-amines with arylacetaldehydes. The presence of the

  10. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet-Spengler reaction

    NARCIS (Netherlands)

    Kerschgens, I. P.; Claveau, E.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2012-01-01

    The pharmacologically interesting indole alkaloids (-)-mitragynine, (+)-paynantheine and (+)-speciogynine were synthesised in nine steps from 4-methoxytryptamine by a route featuring (i) an enantioselective thiourea-catalysed Pictet-Spengler reaction, providing the tetrahydro-β-carboline ring and

  11. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  12. Enantioselective synthesis of possible diastereomers of heptadeca-1-ene-4,6-diyne-3,8,9,10-tetrol; putative structure of a conjugated diyne natural product isolated from Hydrocotyle leucocephala.

    Science.gov (United States)

    Prasad, Kavirayani R; Swain, Bandita

    2011-04-01

    Enantioselective synthesis of possible diastereomers of heptadeca-1-ene-4,6-diyne-3,8,9,10-tetrol, a structure proposed for the natural product isolated from Hydrocotyle leucocephala is accomplished. The reported spectral data of the natural product did not match those of any of the isomers that were synthesized and established that the structure proposed for the natural product is not correct and requires revision.

  13. Synthesis of l-threitol-based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions.

    Science.gov (United States)

    Rapi, Zsolt; Nemcsok, Tamás; Pálvölgyi, Ádám; Keglevich, György; Grün, Alajos; Bakó, Péter

    2017-06-01

    A few new l-threitol-based lariat ethers incorporating a monoaza-15-crown-5 unit were synthesized starting from diethyl l-tartrate. These macrocycles were used as phase transfer catalysts in asymmetric Michael addition reactions under mild conditions to afford the adducts in a few cases in good to excellent enantioselectivities. The addition of 2-nitropropane to trans-chalcone, and the reaction of diethyl acetamidomalonate with β-nitrostyrene resulted in the chiral Michael adducts in good enantioselectivities (90% and 95%, respectively). The substituents of chalcone had a significant impact on the yield and enantioselectivity in the reaction of diethyl acetoxymalonate. The highest enantiomeric excess (ee) values (99% ee) were measured in the case of 4-chloro- and 4-methoxychalcone. The phase transfer catalyzed cyclopropanation reaction of chalcone and benzylidene-malononitriles using diethyl bromomalonate as the nucleophile (MIRC reaction) was also developed. The corresponding chiral cyclopropane diesters were obtained in moderate to good (up to 99%) enantioselectivities in the presence of the threitol-based crown ethers. © 2017 Wiley Periodicals, Inc.

  14. Total synthesis of ciguatoxin.

    Science.gov (United States)

    Hamajima, Akinari; Isobe, Minoru

    2009-01-01

    Something fishy: Ciguatoxin (see structure) is one of the principal toxins involved in ciguatera poisoning and the target of a total synthesis involving the coupling of three segments. The key transformations in this synthesis feature acetylene-dicobalthexacarbonyl complexation.

  15. Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides

    Directory of Open Access Journals (Sweden)

    Ryota Miyaji

    2017-08-01

    Full Text Available Bifunctional organocatalysts bearing amino and urea functional groups in a chiral molecular skeleton were applied to the enantioselective synthesis of axially chiral benzamides via aromatic electrophilic bromination. The results demonstrate the versatility of bifunctional organocatalysts for the enantioselective construction of axially chiral compounds. Moderate to good enantioselectivities were afforded with a range of benzamide substrates. Mechanistic investigations were also carried out.

  16. Enantioselectivity in environmental risk assessment of modern chiral pesticides

    International Nuclear Information System (INIS)

    Ye Jing; Zhao Meirong; Liu Jing; Liu Weiping

    2010-01-01

    Chiral pesticides comprise a new and important class of environmental pollutants nowadays. With the development of industry, more and more chiral pesticides will be introduced into the market. But their enantioselective ecotoxicology is not clear. Currently used synthetic pyrethroids, organophosphates, acylanilides, phenoxypropanoic acids and imidazolinones often behave enantioselectively in agriculture use and they always pose unpredictable enantioselective ecological risks on non-target organisms or human. It is necessary to explore the enantioselective toxicology and ecological fate of these chiral pesticides in environmental risk assessment. The enantioselective toxicology and the fate of these currently widely used pesticides have been discussed in this review article. - Chiral pesticides could pose unpredictable enantioselective toxicity on non-target organisms.

  17. Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred

    It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2

  18. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enantioselective desymmetrization of prochiral cyclohexanones by organocatalytic intramolecular Michael additions to α,β-unsaturated esters.

    Science.gov (United States)

    Gammack Yamagata, Adam D; Datta, Swarup; Jackson, Kelvin E; Stegbauer, Linus; Paton, Robert S; Dixon, Darren J

    2015-04-13

    A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83-99% ee) and in good yields (60-90%). Calculations revealed that stepwise C-C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enantioselective pharmacokinetics of sibutramine in rat.

    Science.gov (United States)

    Noh, Keumhan; Bae, Kyoungjin; Min, Bokyoung; Kim, Eunyoung; Kwon, Kwang-il; Jeong, Taecheon; Kang, Wonku

    2010-02-01

    Racemic sibutramine is widely used to treat obesity owing to its inhibition of serotonin and noradrenaline reuptake in synapses. Although the enantioselective effects of sibutramine and its two active desmethyl-metabolites, monodesmethylsibutramine (MDS) and didesmethylsibutramine (DDS), on anorexia and energy expenditure have been elucidated, the enantioselective pharmacokinetics of sibutramine are still unclear. Therefore, we aimed to characterize the enantioselective pharmacokinetics of sibutramine and its metabolites in plasma and urine following an intravenous and a single oral administration of sibutramine in rats. The absolute bioavailability of sibutramine was only about 7%. The pharmacologically less effective S-isomer of DDS was predominant in the plasma: the C ( max ) and the AUC ( inf ) were 28 and 30 times higher than those of the R-isomer, respectively (psibutramine metabolites MDS and DDS were present at lower concentrations, owing to their rapid biotransformation to hydroxylated and/or carbamoylglucuronized forms and their faster excretion in the urine. The present study is the first to elucidate the enantioselective pharmacokinetics of sibutramine in rats.

  1. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  2. Tin-free enantioselective radical reactions using silanes.

    Science.gov (United States)

    Sibi, Mukund P; Yang, Yong-Hua; Lee, Sunggi

    2008-12-04

    Readily available hexyl silane is an excellent choice as a H-atom donor and a chain carrier in Lewis acid mediated enantioselective radical reactions. Conjugate radical additions to alpha,beta-unsaturated imides at room temperature proceed in good yields and excellent enantioselectivities.

  3. Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles.

    Science.gov (United States)

    Haydl, Alexander M; Hilpert, Lukas J; Breit, Bernhard

    2016-05-04

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with internal and terminal alkynes features an utmost chemo-, regio-, and enantioselective access to enantiopure allylic pyrazoles, readily available for incorporation in small-molecule pharmaceuticals. This methodology is distinguished by a broad substrate scope, resulting in a remarkable compatability with a variety of different functional groups. It furthermore exhibits an intriguing case of regio-, position-, and enantioselectivity in just one step, underscoring the sole synthesis of just one out of up to six possible products in a highly flexible approach to allylated pyrazoles by emanating from various internal and terminal alkynes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. First total synthesis of Boehmenan

    Indian Academy of Sciences (India)

    The first total synthesis of dilignan Boehmenan has been achieved. A biomimetic oxidative coupling of the ferulic acid methyl ester in the presence of silver oxide is the crucial step in the synthesis sequence, generating the dihydrobenzofuran skeleton. Hydroxyl group was protected with DHP and reducted with LiAlH4 to ...

  5. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity.

    Science.gov (United States)

    Thomas, John Meurig; Raja, Robert

    2008-06-01

    In the mid-1990s, it became possible to prepare high-area silicas having pore diameters controllably adjustable in the range ca. 20-200 Å. Moreover, the inner walls of these nanoporous solids could be functionalized to yield single-site, chiral, catalytically active organometallic centers, the precise structures of which could be determined using in situ X-ray absorption and FTIR and multinuclear magic angle spinning (MAS) NMR spectroscopy. This approach opened up the prospect of performing heterogeneous enantioselective conversions in a novel manner, under the spatial restrictions imposed by the nanocavities within which the reactions occur. In particular, it suggested an alternative method for preparing pharmaceutically and agrochemically useful asymmetric products by capitalizing on the notion, initially tentatively perceived, that spatial confinement of prochiral reactants (and transition states formed at the chiral active center) would provide an altogether new method of boosting the enantioselectivity of the anchored chiral catalyst. Initially, we anchored chiral single-site heterogeneous catalysts to nanopores covalently via a ligand attached to Pd(II) or Rh(I) centers. Later, we employed a more convenient and cheaper electrostatic method, relying in part on strong hydrogen bonding. This Account provides many examples of these processes, encompassing hydrogenations, oxidations, and aminations. Of particular note is the facile synthesis from methyl benzoylformate of methyl mandelate, which is a precursor in the synthesis of pemoline, a stimulant of the central nervous system; our procedure offers several viable methods for reducing ketocarboxylic acids. In addition to relying on earlier (synchrotron-based) in situ techniques for characterizing catalysts, we have constructed experimental procedures involving robotically controlled catalytic reactors that allow the kinetics of conversion and enantioselectivity to be monitored continually, and we have access to

  6. Studies towards a total synthesis of tagetitoxin

    OpenAIRE

    Mahoney, Brian

    2017-01-01

    Tagetitoxin was first isolated over thirty five years ago and a total synthesis has not been achieved to date. A vast amount of research has been carried out on the biological activity of tagetitoxin with hundreds of literature reports. However, very few papers have been published regarding the synthesis and within this thesis we will explore a number of synthetic pathways some towards tagetitoxin. The first chapter reviews previous developments regarding the total synthesis of...

  7. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin; Falivene, Laura; Drinkel, Emma E.; Grant, Sharday; Linden, Anthony; Cavallo, Luigi; Dorta, Reto

    2012-01-01

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A concise enantioselective synthesis of the guaiane sesquiterpene (−-oxyphyllol

    Directory of Open Access Journals (Sweden)

    Martin Zahel

    2013-10-01

    Full Text Available (−-Oxyphyllol was prepared in only 4 steps from an epoxy enone that already served as an intermediate for the total synthesis of the anticancer guaiane (−-englerin A. A regio- and diastereoselective Co(II-catalyzed hydration of the olefin and a transannular epoxide opening were used as the key reactions.

  10. A Readily Accessible Class of Chiral Cp Ligands and their Application in RuII -Catalyzed Enantioselective Syntheses of Dihydrobenzoindoles.

    Science.gov (United States)

    Wang, Shou-Guo; Park, Sung Hwan; Cramer, Nicolai

    2018-05-04

    Chiral cyclopentadienyl (Cp x ) ligands have a large application potential in enantioselective transition-metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two-step synthesis of a novel class of chiral Cp x ligands with tunable steric properties that can be readily used for complexation, giving Cp x Rh I , Cp x Ir I , and Cp x Ru II complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl-derived Cp x ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Total Synthesis of Cephalosporin C

    Indian Academy of Sciences (India)

    IAS Admin

    The Total Synthesis of Cephalosporin C. Edited by Setty Mallikarjuna Babu and Subramania Ranganathan. Keywords. Cephalosporin C. The Nobel Prize in Chemistry for 1965 has been awarded for contributions to the art of chemical synthesis. It gives me much pleasure to record here my gratification with the citation, ...

  12. Enantioselective copper-catalysed propargylic substitution: synthetic scope study and application in formal total syntheses of (+)-anisomycin and (-)-cytoxazone

    NARCIS (Netherlands)

    Detz, R.J.; Abiri, Z.; le Griel, R.; Hiemstra, H.; van Maarseveen, J.H.

    2011-01-01

    A copper catalyst with a chiral pyridine-2,6-bisoxazoline (pybox) ligand was used to convert a variety of propargylic esters with different side chains (R=Ar, Bn, alkyl) into their amine counterparts in very high yields and with good enantioselectivities (up to 90 % enantiomeric excess (ee)).

  13. Enantioselective addition of nitrones to activated cyclopropanes.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Jasperse, Craig P

    2005-04-27

    In this paper, we demonstrate the first examples of chiral Lewis acid catalysis in the formation of tetrahydro-1,2-oxazines with very high enantioselectivity starting with diactivated cyclopropanes and nitrones (>90% yields and ee). Reactions with racemic substituted cyclopropanes provide approximately 1:1 diastereomeric tetrahydro-1,2-oxazine products with high enantioselectivity. Mechanistic information for the formation of the tetrahydro-1,2-oxazines is also detailed.

  14. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    Science.gov (United States)

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs

  15. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption.

    Science.gov (United States)

    Kasten, Chelsea R; Blasingame, Shelby N; Boehm, Stephen L

    2015-02-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2017-01-01

    Full Text Available In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA and partitial least-squares discriminant analysis (PLS-DA directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  17. New One-Pot Methodologies for the Modification or Synthesis of Alkaloid Scaffolds

    Directory of Open Access Journals (Sweden)

    Amir E. Wahba

    2010-08-01

    Full Text Available There are several avenues by which promising bioactive natural products can be produced in sufficient quantities to enable lead optimization and medicinal chemistry studies. The total synthesis of natural products is an important, but sometimes difficult, approach and requires the development of innovative synthetic methodologies to simplify the synthesis of complex molecules. Various classes of natural product alkaloids are both common and widely distributed in plants, bacteria, fungi, insects and marine organisms. This mini-review will discuss the scope, mechanistic insights and enantioselectivity aspects of selected examples of recently developed one-pot methods that have been published in 2009 for the synthesis of substituted piperidines, quinolizidines, pyrrolidines, hexahydropyrrolizines, octahydroindolizines and g-lactams. In addition, progress on the synthesis of b-carboline (manzamine alkaloids will also be discussed.

  18. Total synthesis of (-)- and (+)-tedanalactam

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Parameswaran, P.S.; Tilve, S.G.

    : The Journal of Organic Chemistry, vol.74(16); 6378-6381 1 Total Synthesis of (-) and (+)-Tedanalactam Mahesh S. Majik, † Peruninakulath S. Parameswaran, ‡ and Santosh G. Tilve* ,† Department of Chemistry, Goa University, Taleigao Plateau, Goa 403..., displaying a wide range of biological activities. 1 Piperidones are key synthetic intermediates 2 for the synthesis of piperidine ring due to the presence of keto function which allows the introduction of other groups. Piperidones are also known...

  19. P(O)R2-Directed Enantioselective C-H Olefination toward Chiral Atropoisomeric Phosphine-Olefin Compounds.

    Science.gov (United States)

    Li, Shi-Xia; Ma, Yan-Na; Yang, Shang-Dong

    2017-04-07

    An effective synthesis of chiral atropoisomeric biaryl phosphine-olefin compounds via palladium-catalyzed enantioselective C-H olefination has been developed for the first time. The reactions are operationally simple, tolerate wide functional groups, and have a good ee value. Notably, P(O)R 2 not only acts as the directing group to direct C-H activation in order to make a useful ligand but also serves to facilitate composition of the product in a useful manner in this transformation.

  20. Graphene-based hybrid for enantioselective sensing applications.

    Science.gov (United States)

    Zor, Erhan; Morales-Narváez, Eden; Alpaydin, Sabri; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben

    2017-01-15

    Chirality is a major field of research of chemical biology and is essential in pharmacology. Accordingly, approaches for distinguishing between different chiral forms of a compound are of great interest. We report on an efficient and generic enantioselective sensor that is achieved by coupling reduced graphene oxide with γ-cyclodextrin (rGO/γ-CD). The enantioselective sensing capability of the resulting structure was operated in both electrical and optical mode for of tryptophan enantiomers (D-/L-Trp). In this sense, voltammetric and photoluminescence measurements were conducted and the experimental results were compared to molecular docking method. We gain insight into the occurring recognition mechanism with selectivity toward D- and L-Trp as shown in voltammetric, photoluminescence and molecular docking responses. As an enantioselective solid phase on an electrochemical transducer, thanks to the different dimensional interaction of enantiomers with hybrid material, a discrepancy occurs in the Gibbs free energy leading to a difference in oxidation peak potential as observed in electrochemical measurements. The optical sensing principle is based on the energy transfer phenomenon that occurs between photoexcited D-/L-Trp enantiomers and rGO/γ-CD giving rise to an enantioselective photoluminescence quenching due to the tendency of chiral enantiomers to form complexes with γ-CD in different molecular orientations as demonstrated by molecular docking studies. The approach, which is the first demonstration of applicability of molecular docking to show both enantioselective electrochemical and photoluminescence quenching capabilities of a graphene-related hybrid material, is truly new and may have broad interest in combination of experimental and computational methods for enantiosensing of chiral molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Infrared-thermographic screening of the activity and enantioselectivity of enzymes.

    Science.gov (United States)

    Reetz, M T; Hermes, M; Becker, M H

    2001-05-01

    The infrared radiation caused by the heat of reaction of an enantioselective enzyme-catalyzed transformation can be detected by modern photovoltaic infrared (IR)-thermographic cameras equipped with focal-plane array detectors. Specifically, in the lipase-catalyzed enantioselective acylation of racemic 1-phenylethanol, the (R)- and (S)-substrates are allowed to react separately in the wells of microtiter plates, the (R)-alcohol showing hot spots in the IR-thermographic images. Thus, highly enantioselective enzymes can be identified at kinetic resolution.

  2. Application of the aza-Diels-Alder reaction in the synthesis of natural products.

    Science.gov (United States)

    Cao, Min-Hui; Green, Nicholas J; Xu, Sheng-Zhen

    2017-04-11

    The Diels-Alder reaction that involves a nitrogen atom in the diene or dienophile is termed the aza-Diels-Alder reaction. As well as the powerful all-carbon Diels-Alder reaction, the aza-Diels-Alder reaction has also played an important role in the total synthesis of natural products. Herein, we review various natural products using an aza-Diels-Alder reaction as a key step to their total synthesis, and divide the syntheses into inter- and intra-molecular aza-Diels-Alder reactions and a retro-aza-Diels-Alder reaction. Inter- and intra-molecular aza-Diels-Alder reactions involve an imine as an electron deficient dienophile and an imine as an electron deficient azadiene. The significance of the aza-Diels-Alder reaction for the construction of a six-membered ring containing nitrogen is tremendous, but the development of asymmetric, in particular catalytic enantioselective intramolecular aza-Diels-Alder reaction in the total synthesis of natural products remains highly challenging, and will no doubt see enormous advances in the future.

  3. Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of beta-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2006-02-20

    We have investigated the effect of nitrogen protecting groups in radical addition trapping experiments leading to beta(2)-amino acids. Of the three N-protecting groups examined, the phthalimido group was optimal with respect to both yields and enantioselectivity. Additionally, radical additions to more complex acrylates were also investigated, which provided access to functionalized beta(2)-amino acids in modest selectivity.

  4. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes.

  5. DNA-based catalytic enantioselective intermolecular oxa-Michael addition reactions

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2012-01-01

    Using the DNA-based catalysis concept, a novel Cu(II) catalyzed enantioselective oxa-Michael addition of alcohols to enones is reported. Enantioselectivities of up to 86% were obtained. The presence of water is important for the reactivity, possibly by reverting unwanted side reactions such as

  6. Development of Environment-Friendly Insecticides Based on Enantioselectivity: Bifenthrin as a Case.

    Science.gov (United States)

    Qian, Yi; Zhou, Peixue; Zhang, Quan

    2017-01-01

    Chiral insecticides significantly contribute to the environmental pollutions recently. As the development of industry and agriculture, increasing number of chiral insecticides are to be introduced into the market. However, their enantioselective toxicology to ecosystem still remains uncertain. In this review, we embarked on a structured search of bibliographic databases for peer-reviewed articles regarding the enantioselective effects of bifenthrin, a typical chiral insecticide, on both target and non-target species. With this enantioselective property of chiral insecticides, they often exhibit adverse effects on non-target species enantioselectively. Specifically, the enantioselective effects of bifenthrin on target and non-target organisms were discussed. In target species, R-bifenthrin exerts more significant activities in deinsectization, compared with S-bifenthrin. On the other hand, Sbifenthrin is more toxic to non-target species than R-bifenthrin, which suggests that the application of sole enantiomer is more efficient and environment-friendly than that of racemate. This review confirms the choice of environment-friendly insecticides from the perspective of the enantioselectivity of chiral insecticides. To make insecticides more efficient to target species and less toxic to non-target species, further research should be done to investigated the potential effects of targetactive enantiomers on non-target organisms as well as the enantioselective fate of enantiomers in multiple environmental matrix.

  7. Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

    International Nuclear Information System (INIS)

    Kim, Cheolwoong; Seo, Seung Woo; Lee, Yona; Kim, Sunggon

    2014-01-01

    We have developed the synthetic methodology of enantioenriched benzindoloquinolizidines based on the organocatalytic enantioselective conjugate addition-cyclization cascade reaction of o-N-(3-indoleacetyl)amino-cinnamaldehydes with malonates followed by an acid-catalyzed intramolecular Pictet-Spengler type cyclization. The asymmetric reaction using diphenylprolinol TMS ether as an organocatalyst produces the desired products with good to excellent yields and high enantioselectivities (up to 98% ee). The evaluation of the applications of this synthetic methodology for generating enantioenriched benzindolo-quinolizidines and studies on the biological activity of these compounds against human prostate cancer in particular are now in progress. Results of these studies will be presented in due course. Many new types of chemical reactions have been developed to facilitate easier synthesis of complex compounds. Among the strategies, domino reactions, which have been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process, are widely used due to their high synthetic efficiency by reducing both the number of synthetic operation required and the quantities of chemicals and solvents used

  8. Collagen synthesis in CBA mouse heart after total thoracic irradiation

    International Nuclear Information System (INIS)

    Murray, J.C.; Parkins, C.S.; Institute of Cancer Research, Sutton

    1988-01-01

    CBA mice were irradiated to the whole thorax with single doses of 240 kVp X-rays in the dose range 8-16 Gy. Collagen and total protein synthesis rates in the heart were measured at 2-monthly intervals using a radio-isotope incorporation techniques. Doses of 10 Gy or greater caused a slight increase in collagen synthesis, followed by significantly reduced collagen synthesis by 16 weeks or longer after treatment. The depression in synthesis appeared correspondingly earlier with increasing dose. Total protein synthesis in heart followed similar patterns although changes were not statistically significant, indicating that the changes reflected alterations to collagen synthesis specifally, and not protein synthesis in geneal. Total hydroxyproline measurements showed no significant changes in heart collagen at any time as a result of X-irradiation. 18 refs.; 7 figs

  9. Enantioselective ProPhenol-catalyzed addition of 1,3-diynes to aldehydes to generate synthetically versatile building blocks and diyne natural products.

    Science.gov (United States)

    Trost, Barry M; Chan, Vincent S; Yamamoto, Daisuke

    2010-04-14

    A highly enantioselective method for the catalytic addition of terminal 1,3-diynes to aldehydes was developed using our dinuclear zinc ProPhenol (1) system. Furthermore, triphenylphosphine oxide was found to interact synergistically with the catalyst to substantially enhance the chiral recognition. The generality of this catalytic transformation was demonstrated with aryl, alpha,beta-unsaturated and saturated aldehydes, of which the latter were previously limited in alkynyl zinc additions. The chiral diynol products are also versatile building blocks that can be readily elaborated; this was illustrated through highly selective trans-hydrosilylations, which enabled the synthesis of a beta-hydroxyketone and enyne. Additionally, the development of this method allowed for the rapid total syntheses of several biologically important diynol-containing natural products.

  10. Enzymatic stereoselective synthesis of B-amino acids

    CSIR Research Space (South Africa)

    Chhiba, V

    2014-06-01

    Full Text Available The use of enzymes for the enantioselective synthesis of single enantiomer ß-subsituted compounds is of interest, as this structural motif occurs commonly in compounds of pharmaceutical importance, such as adrenergic agents, antidiabetics...

  11. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Influence of biochar on the enantioselective behavior of the chiral fungicide metalaxyl in soil

    Science.gov (United States)

    Gámiz, Beatriz; Pignatello, Joseph J.; Hermosín, María Carmen; Cox, Lucía; Celis, Rafael

    2015-04-01

    columns was recovered in leachates, in contrast to significantly higher percentages leachedin unamended soil, being the process more enantioselective in the latter case. Finally, total recoveries of both enantiomers were greater for BC-amended soil columns than for unamended soil columns, indicating reduced degradation in BC- amended soil. Our findings illustrated the ability of biochar to modify the enantioselectivity behavior of metalaxyl in soil by its high sorption capacity. BC could contribute to reduce the current agronomic doses used for chiral pesticides to deplete the contamination problems associated with their use, and also to act as an immobilizing amendment in soil remediation strategies. Acknowledgments: MINECO (AGL2011-23779), FACCE-JPI (Designchar4food), JA (AGR-264) and FEDER-FSE (OP 2007-2013).

  13. Copper(II)-catalyzed exo and enantioselective cycloadditions of azomethine imines.

    Science.gov (United States)

    Sibi, Mukund P; Rane, Digamber; Stanley, Levi M; Soeta, Takahiro

    2008-07-17

    A strategy for exo and enantioselective 1,3-dipolar cycloaddition of azomethine imines to 2-acryloyl-3-pyrazolidinone is described. The corresponding cycloadducts are isolated with high diastereoselectivities (up to >96:4 exo/endo) and enantioselectivities (up to 98% ee).

  14. Nickel(0)-catalyzed enantioselective annulations of alkynes and arylenoates enabled by a chiral NHC ligand: efficient access to cyclopentenones.

    Science.gov (United States)

    Ahlin, Joachim S E; Donets, Pavel A; Cramer, Nicolai

    2014-11-24

    Cyclopentenones are versatile structural motifs of natural products as well as reactive synthetic intermediates. The nickel-catalyzed reductive [3+2] cycloaddition of α,β-unsaturated aromatic esters and alkynes constitutes an efficient method for their synthesis. Here, nickel(0) catalysts comprising a chiral bulky C1-symmetric N-heterocyclic carbene ligand were shown to enable an efficient asymmetric synthesis of cyclopentenones from mesityl enoates and internal alkynes under mild conditions. The bulky NHC ligand provided the cyclopentenone products in very high enantioselectivity and led to a regioselective incorporation of unsymmetrically substituted alkynes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    Directory of Open Access Journals (Sweden)

    Katherine M. Byrd

    2015-04-01

    Full Text Available The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  16. Total synthesis of (±)-antroquinonol d.

    Science.gov (United States)

    Sulake, Rohidas S; Jiang, Yan-Feng; Lin, Hsiao-Han; Chen, Chinpiao

    2014-11-21

    Total synthesis of (±)-antroquinonol D, which is isolated from very expensive and rarely found Antrodia camphorata and which has potential anticancer properties, was achieved from 4-methoxyphenol. In addition, a Michael addition to dimethoxy cyclohexadienones was studied. The main step involved chelation and substrate-controlled diastereoselective reduction of cyclohexenone and lactonization. Lactone synthesis facilitated the diastereoselective reduction of ketone, which help control the desired stereochemistry at the crucial stereogenic center in the natural product. Other key reactions in the synthesis involved a Michael addition of dimethyl malonate on cyclohexadienone, dihydroxylation, and Wittig olefination. A sesquiterpene side chain was synthesized through coupling with geranyl phenyl sulfide and Bouveault-Blanc reduction.

  17. Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of β2-amino acids

    Science.gov (United States)

    Sibi, Mukund P.; Patil, Kalyani

    2006-01-01

    We have investigated the effect of nitrogen protecting groups in radical addition trapping experiments leading to β2-amino acids. Of the three N-protecting groups examined, the phthalimido group was optimal with respect to both yields and enantioselectivity. Additionally, radical additions to more complex acrylates were also investigated, which provided access to functionalized β2-amino acids in modest selectivity. PMID:16799704

  18. Total Synthesis of Adunctin B.

    Science.gov (United States)

    Dethe, Dattatraya H; Dherange, Balu D

    2018-03-16

    Total synthesis of (±)-adunctin B, a natural product isolated from Piper aduncum (Piperaceae), has been achieved using two different strategies, in seven and three steps. The efficient approach features highly atom economical and diastereoselective Friedel-Crafts acylation, alkylation reaction and palladium catalyzed Wacker type oxidative cyclization.

  19. Calcium(ii)-catalyzed enantioselective conjugate additions of amines.

    Science.gov (United States)

    Uno, Brice E; Dicken, Rachel D; Redfern, Louis R; Stern, Charlotte M; Krzywicki, Greg G; Scheidt, Karl A

    2018-02-14

    The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA] 2 )-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed. This mild catalytic system represents a significant advance towards the general convergent asymmetric amination of α,β-unsaturated electrophiles, providing medicinally relevant chiral aminosuccinimide products in high yields and enantioselectivities. Furthermore, the catalyst can be reused directly from a previously chromatographed reaction and still maintain both high yield and selectivity.

  20. Asymmetric total synthesis of cladosporin and isocladosporin.

    Science.gov (United States)

    Zheng, Huaiji; Zhao, Changgui; Fang, Bowen; Jing, Peng; Yang, Juan; Xie, Xingang; She, Xuegong

    2012-07-06

    The first asymmetric total syntheses of cladosporin and isocladosporin were accomplished in 8 steps with 8% overall yield and 10 steps with 26% overall yield, respectively. The relative configuration of isocladosporin was determined via this total synthesis.

  1. Nickel-catalyzed regio- and enantioselective aminolysis of 3,4-epoxy alcohols.

    Science.gov (United States)

    Wang, Chuan; Yamamoto, Hisashi

    2015-04-08

    The first catalytic regio- and enantioselective aminolysis of 3,4-epoxy alcohols has been accomplished. Under the catalysis of Ni(ClO4)2·6H2O, the C4 selective ring opening of various 3,4-epoxy alcohols proceeded in a stereospecific manner with high regioselectivities. Furthermore, with the Ni-BINAM catalytic system the enantioselective ring opening of 3,4-epoxy alcohols furnished various γ-hydroxy-δ-amino alcohols as products with complete regiocontrol and high enantioselectivities (up to 94% ee).

  2. Fluxional additives: a second generation control in enantioselective catalysis.

    Science.gov (United States)

    Sibi, Mukund P; Manyem, Shankar; Palencia, Hector

    2006-10-25

    The concept of "fluxional additives", additives that can adopt enantiomeric conformations depending on the chiral information in the ligand, is demonstrated in enantioselective Diels-Alder and nitrone cycloaddition reactions. The additive design is modular, and diverse structures are accessible in three steps. Chiral Lewis acids from main group and transition metals show enhancements in enantioselectivity in the presence of these additives.

  3. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  4. The First Total Synthesis of Isoliquiritin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A first total synthesis of isoliquiritin was accomplished starting from p-hydroxy- benzaldehyde and 2,4-dihydroxyacetylphenone. The key step is condensation reaction. In synthetic process need not protect the hydroxy group of reacting substance.

  5. Total synthesis of nepetoidin B

    Science.gov (United States)

    The total synthesis of nepetoidin B (the 2-(3,4-dihydroxyphenyl)ethenyl ester of 3-(3,4-dihydroxy¬phenyl)-2-propenoic acid) has been achieved in two steps from commercially available 1,5-bis(3,4-dimethoxyphenyl)-1,4-pentadien-3-one. Tetramethylated nepetoidin B was prepared directly by Baeyer-Villig...

  6. Concise and Straightforward Asymmetric Synthesis of a Cyclic Natural Hydroxy-Amino Acid

    Directory of Open Access Journals (Sweden)

    Mario J. Simirgiotis

    2014-11-01

    Full Text Available An enantioselective total synthesis of the natural amino acid (2S,4R,5R-4,5-di-hydroxy-pipecolic acid starting from D-glucoheptono-1, 4-lactone is presented. The best sequence employed as a key step the intramolecular nucleophilic displacement by an amino function of a 6-O-p-toluene-sulphonyl derivative of a methyl D-arabino-hexonate and involved only 12 steps with an overall yield of 19%. The structures of the compounds synthesized were elucidated on the basis of comprehensive spectroscopic (NMR and MS and computational analysis.

  7. Cyclopalladated complexes in enantioselective catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dunina, Valeria V; Gorunova, Olga N; Zykov, P A; Kochetkov, Konstantin A

    2011-01-31

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  8. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Meirong [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Fang [College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Wang Cui; Zhang Quan [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Gan Jianying [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Liu Weiping, E-mail: wliu@zjut.edu.c [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2010-05-15

    The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (-)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study. - Chiral contaminants should consider multiple effects and relate directions of enantioselectivity to their interplaying processes.

  9. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids

    International Nuclear Information System (INIS)

    Zhao Meirong; Chen Fang; Wang Cui; Zhang Quan; Gan Jianying; Liu Weiping

    2010-01-01

    The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (-)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study. - Chiral contaminants should consider multiple effects and relate directions of enantioselectivity to their interplaying processes.

  10. Enantioselective [2+2+2] cycloisomerisation of alkynes in the synthesis of helicenes: the search for effective chiral ligands

    Czech Academy of Sciences Publication Activity Database

    Stará, Irena G.; Andronova, Angelina; Kollárovič, Adrian; Vyskočil, Š.; Jugé, S.; Lloyd-Jones, G. C.; Guiry, P. J.; Starý, Ivo

    2011-01-01

    Roč. 76, č. 12 (2011), s. 2005-2022 ISSN 0010-0765 R&D Projects: GA ČR GA203/09/1766; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : helicenes * enantioselectivity * cycloisomerisation Subject RIV: CC - Organic Chemistry Impact factor: 1.283, year: 2011

  11. Enantioselective Cytotoxicity Profile of o,p’-DDT in PC 12 Cells

    Science.gov (United States)

    Zhang, Chunlong; Wen, Yuezhong; Liu, Weiping

    2012-01-01

    Background The continued uses of dichlordiphenyltrichloroethane (DDT) for indoor vector control in some developing countries have recently fueled intensive debates toward the global ban of this persistent legacy contaminant. Current approaches for ecological and health risk assessment has ignored the chiral nature of DDT. In this study by employing an array of cytotoxicity related endpoints, we investigated the enantioselective cytotoxicity of o,p’-DDT. Principal Findings we demonstrated for the first time that R-(−)-o,p’-DDT caused more neuron cell death by inducing more severe oxidative stress, which selectively imbalanced the transcription of stress-related genes (SOD1, SOD2, HSP70) and enzyme (superoxide dismutase and lactate dehydrogenase) activities, and greater cellular apoptosis compared to its enantiomer S-(+)-o,p’-DDT at the level comparable to malaria area exposure (parts per million). We further elucidated enantioselective modes of action using microarray combined with enzyme-linked immunosorbent assay. The enantioselective apoptosis might involve three signaling pathways via caspase 3, tumor protein 53 (p53) and NFkB. Conclusions Based on DDT stereochemistry and results reported for other chiral pesticides, our results pointed to the same directional enantioselectivity of chiral DDT toward mammalian cells. We proposed that risk assessment on DDT should consider the enantiomer ratio and enantioselectivities. PMID:22937105

  12. Improved synthesis of (S)-N-Boc-5-oxaproline for protein synthesis with the α-ketoacid-hydroxylamine (KAHA) ligation.

    Science.gov (United States)

    Murar, Claudia E; Harmand, Thibault J; Bode, Jeffrey W

    2017-09-15

    We describe a new route for the synthesis of (S)-N-Boc-5-oxaproline. This building block is a key element for the chemical synthesis of proteins with the α-ketoacid-hydroxylamine (KAHA) ligation. The new synthetic pathway to the enantiopure oxaproline is based on a chiral amine mediated enantioselective conjugate addition of a hydroxylamine to trans-4-oxo-2-butenoate. This route is practical, scalable and economical and provides decagram amounts of material for protein synthesis and conversion to other protected forms of (S)-oxaproline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2017-06-28

    Enantioselective catalytic methods allowing the addition of both a nucleophile and an electrophile onto diazo compounds give a fast access into important building blocks. Herein, we report the highly enantioselective oxyalkynylation of diazo compounds using ethynylbenziodoxol-(on)e reagents and a simple copper bisoxazoline catalyst. The obtained α-benzoyloxy propargylic esters are useful building blocks, which are difficult to synthesize in enantiopure form using other methods. The obtained products could be efficiently transformed into vicinal diols and α-hydroxy propargylic esters without loss in enantiopurity.

  14. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  15. Evaluation of achiral templates with fluxional Brønsted basic substituents in enantioselective conjugate additions.

    Science.gov (United States)

    Adachi, Shinya; Takeda, Norihiko; Sibi, Mukund P

    2014-12-19

    Enantioselective conjugate addition of malononitrile to pyrazolidinone-derived enoates proceeds in excellent yields and high enantioselectivities. A comparison of fluxional substituents with and without a Brønsted basic site and their impact on selectivity is detailed. Molecular sieves as an additive were found to be essential to achieve high enantioselectivity.

  16. Flexible Enantioselectivity of Tryptophanase Attributable to Benzene Ring in Heterocyclic Moiety of D-Tryptophan

    Directory of Open Access Journals (Sweden)

    Akihiko Shimada

    2012-05-01

    Full Text Available The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or function as inhibitors even though they are bound to the active site, the inhibition behavior of D-tryptophan and several inhibitors involved in this process was examined in terms of kinetics to explain the reason for this flexible enantioselectivity in the presence of diammonium hydrogenphosphate. Diammonium hydrogenphosphate gave tryptophanase a small conformational change so that D-tryptophan could work as a substrate. As opposed to other D-amino acids, D-tryptophan is a very bulky amino acid with a benzene ring in its heterocyclic moiety, and so we suggest that this structural feature makes the catalysis of D-tryptophan degradation possible, consequently leading to the flexible enantioselectivity. The present results not only help to understand the mechanism of enzyme enantioselectivity, but also shed light on the origin of homochirality.

  17. Enantioselective H-atom transfer reaction: a strategy to synthesize formaldehyde aldol products.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2005-04-14

    [reaction: see text] Enantioselective radical alkylation of Baylis-Hillman adducts furnished aldol products in good yield and selectivity. The results illustrate that the selectivity in the hydrogen atom transfer is dependent on the size of the ester substituent, with smaller substituents providing better enantioselectivity.

  18. Total Synthesis of Hyperforin.

    Science.gov (United States)

    Ting, Chi P; Maimone, Thomas J

    2015-08-26

    A 10-step total synthesis of the polycyclic polyprenylated acylphloroglucinol (PPAP) natural product hyperforin from 2-methylcyclopent-2-en-1-one is reported. This route was enabled by a diketene annulation reaction and an oxidative ring expansion strategy designed to complement the presumed biosynthesis of this complex meroterpene. The described work enables the preparation of a highly substituted bicyclo[3.3.1]nonane-1,3,5-trione motif in only six steps and thus serves as a platform for the construction of easily synthesized, highly diverse PPAPs modifiable at every position.

  19. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  20. Stereocontrolled Synthesis of the C(1)-C(11) Subunit of the Iejimalides

    DEFF Research Database (Denmark)

    Mendlik, Matthew T.; Cottard, Muriel; Rein, Tobias

    1997-01-01

    An enantioselective synthesis of the C(1)-C(11) subunit of the iejimalides has been accomplished through a combination of an asymmetric Homer-Wadsworth-Emmons condensation and a chiral pool approach. (C) 1997 Elsevier Science Ltd....

  1. Catalytic Enantioselective Alkylation of β-Keto Esters with Xanthydrol in the Presence of Chiral Palladium Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Yeon; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-01-15

    Our research interest has been directed toward the development of synthetic methods for the enantioselective construction of stereogenic carbon centers. Recently, we explored the catalytic enantioselective functionalization of active methines in the presence of chiral palladium(II) complexes. In conclusion, we have accomplished the efficient catalytic enantioselective alkylation of β-keto esters 1 with xanthydrol 2 with high yields and excellent enantioselectivity (up to 98% ee). It should be noted that this alkyaltion reaction proceeds well using air- and moisture-stable chiral palladium com- plexes with low loading (1 mol%)

  2. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    Science.gov (United States)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  3. Chiral 1,3,2-oxazaborolidines in asymmetric synthesis: recent advances

    International Nuclear Information System (INIS)

    Glushkov, Vladimir A; Tolstikov, Alexander G

    2004-01-01

    The use of chiral 1,3,2-oxazaborolidines in asymmetric organic synthesis, particularly, in enantioselective reduction of ketones, imines and oxime ethers, asymmetric Diels-Alder reactions, aldol condensation and atroposelective reduction of lactones is reviewed. Reactions of immobilised 1,3,2-oxazaborolidines are also considered.

  4. Kinetic investigation on enantioselective hydrolytic resolution of ...

    African Journals Online (AJOL)

    Kinetic investigation on enantioselective hydrolytic resolution of epichlorohydrin by crude epoxide hydrolase from domestic duck liver. X Ling, D Lu, J Wang, J Chen, L Ding, J Chen, H Chai, P Ouyang ...

  5. Total synthesis of insect antifeedant drimane sesquiterpenes

    NARCIS (Netherlands)

    Jansen, B.J.M.

    1993-01-01

    The investigations described in this thesis deal with the total synthesis of sesquiterpenes of the drimane family, named for their widespread occurrence in the stem bark of South American Drimys species. These compounds contain the bicyclofarnesol nucleus

  6. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2catalyzed by cinchona alkaloids under mild conditions

    International Nuclear Information System (INIS)

    Chen, Bao-Li; Tu, Zhuo-Ying; Zhu, Hong-Wei; Sun, Wen-Wen; Wang, Huan; Lu, Jia-Xing

    2014-01-01

    Highlights: •Cinchona alkaloids catalysis achieve enantioselective electrocarboxylation of racemic aromatic ketones. •The applications of CO 2 enantioselective electrochemical fixation into optically active hydroxyl carboxylic acids have been expanded. •The applications of alkaloids have been expanded. •The applications of asymmetric synthesis by electrochemical methodology have been expanded. -- Abstract: The enantioselective electrocarboxylation of pro-chiral aromatic ketones (2-acetonaphthone, 1-(6-methoxy-2-naphthyl)ethanone, 1-(4-methoxy-1-naphthyl)ethanone) with atmospheric pressure of CO 2 catalyzed by cinchona alkaloids in the presence of phenol was investigated in an undivided cell for the first time to give optically active 2-hydroxy-2-arylpropionic acid. For the model compound 2-acetonaphthone, the influence of various reaction conditions, such as cathode material, current density, catalyst type, ratio of proton to catalyst and catalyst quantity, on the enantiomeric excesses (ee) and yield has been investigated. Under the optimized conditions of 2-acetonaphthone, all the aromatic ketones examined are converted into corresponding optically active 2-hydroxy-2-arylpropionic acids in moderate yield (32.2% - 41.3%) and ee (48.1% - 48.6%). In addition, the electrochemical behavior of 2-acetonaphthone has been studied by cyclic voltammetry (CV) in the absence and presence of CO 2 . Moreover, the probable reaction pathway was proposed accordingly

  7. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    Science.gov (United States)

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. Copyright © 2013 Wiley Periodicals, Inc.

  8. Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jing [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Ying [Department of Environmental Science, East China Normal University, Shanghai 200241 (China); Chen, Shengwen [School of Urban Development and Environment Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Liu, Chaonan; Zhu, Yongqiang [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Liu, Weiping, E-mail: wliu@zju.edu.cn [MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China)

    2014-01-15

    Highlights: •The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa. •Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer. •Lifecycle analysis of chiral pollutants needs more attention in environmental assessment. -- Abstract: Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides.

  9. The CP molecule labyrinth: a paradigm of how endeavors in total synthesis lead to discoveries and inventions in organic synthesis.

    Science.gov (United States)

    Nicolaou, K C; Baran, Phil S

    2002-08-02

    Imagine an artist carving a sculpture from a marble slab and finding gold nuggets in the process. This thought is not a far-fetched description of the work of a synthetic chemist pursuing the total synthesis of a natural product. At the end of the day, he or she will be judged by the artistry of the final work and the weight of the gold discovered in the process. However, as colorful as this description of total synthesis may be, it does not entirely capture the essence of the endeavor, for there is much more to be told, especially with regard to the contrast of frustrating failures and exhilarating moments of discovery. To fully appreciate the often Herculean nature of the task and the rewards that accompany it, one must sense the details of the enterprise behind the scenes. A more vivid description of total synthesis as a struggle against a tough opponent is perhaps appropriate to dramatize these elements of the experience. In this article we describe one such endeavor of total synthesis which, in addition to reaching the target molecule, resulted in a wealth of new synthetic strategies and technologies for chemical synthesis. The total synthesis of the CP molecules is compared to Theseus' most celebrated athlos (Greek for exploit, accomplishment): the conquest of the dreaded Minotaur, which he accomplished through brilliance, skill, and bravery having traversed the famous labyrinth with the help of Ariadne. This story from Greek mythology comes alive in modern synthetic expeditions toward natural products as exemplified by the total synthesis of the CP molecules which serve as a paradigm for modern total synthesis endeavors, where the objectives are discovery and invention in the broader sense of organic synthesis.

  10. Enantioselective synthesis of α-phenyl- and α-(dimethylphenylsilyl)alkylboronic esters by ligand mediated stereoinductive reagent-controlled homologation using configurationally labile carbenoids.

    Science.gov (United States)

    Barsamian, Adam L; Wu, Zhenhua; Blakemore, Paul R

    2015-03-28

    Chain extension of boronic esters by the action of configurationally labile racemic lithium carbenoids in the presence of scalemic bisoxazoline ligands was explored for the enantioselective synthesis of the two title product classes. Enantioenriched 2° carbinols generated by oxidative work-up (NaOOH) of initial α-phenylalkylboronate products were obtained in 35-83% yield and 70-96% ee by reaction of B-alkyl and B-aryl neopentyl glycol boronates with a combination of O-(α-lithiobenzyl)-N,N-diisopropylcarbamate and ligand 3,3-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl] pentane in toluene solvent (-78 °C to rt) with MgBr2·OEt2 additive. Enantioenriched α-(dimethylsilylphenylsilyl)alkylboronates were obtained in 35-69% yield and 9-57% ee by reaction of B-alkyl pinacol boronates with a combination of lithio(dimethylphenylsilyl)methyl 2,4,6-triisopropylbenzoate and ligand 2,2-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl]propane in cumene solvent (-45 °C to -95 °C to rt). The stereochemical outcome of the second type of reaction depended on the temperature history of the organolithium·ligand complex indicating that the stereoinduction mechanism in this case involves some aspect of dynamic thermodynamic resolution.

  11. Exo selective enantioselective nitrone cycloadditions.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Jasperse, Craig P

    2004-01-28

    We have developed a novel method for accessing exo adducts with high enantioselectivity in nitrone cycloadditions to enoates. Pyrazolidinones proved to be effective achiral templates in the cycloadditions, providing exo adducts typically in >15:1 selectivity and 90-98% ee. The use of Lewis acids that form square planar complexes, such as copper triflate, was important for obtaining high exo selectivity.

  12. Palladium-Catalyzed Enantioselective C-H Olefination of Diaryl Sulfoxides through Parallel Kinetic Resolution and Desymmetrization.

    Science.gov (United States)

    Zhu, Yu-Chao; Li, Yan; Zhang, Bo-Chao; Zhang, Feng-Xu; Yang, Yi-Nuo; Wang, Xi-Sheng

    2018-03-07

    The first example of Pd II -catalyzed enantioselective C-H olefination with non-chiral or racemic sulfoxides as directing groups was developed. A variety of chiral diaryl sulfoxides were synthesized with high enantioselectivity (up to 99 %) through both desymmetrization and parallel kinetic resolution (PKR). This is the first report of Pd II -catalyzed enantioselective C(sp 2 )-H functionalization through PKR, and it represents a novel strategy to construct sulfur chiral centers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Total Synthesis of Bryostatins. Development of Methodology for Atom-Economic and Stereoselective Synthesis of the C-ring Subunit

    Science.gov (United States)

    Trost, Barry M.; Frontier, Alison J.; Thiel, Oliver R.; Yang, Hanbiao; Dong, Guangbin

    2012-01-01

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for stereoselective assembly of the C-ring subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the C-ring subunit of bryostatins. PMID:21793057

  14. Microwave-Assisted Synthesis of Phenylpropanoids and Coumarins: Total Synthesis of Osthol

    Czech Academy of Sciences Publication Activity Database

    Konrádová, Daniela; Kozubíková, H.; Doležal, Karel; Pospíšil, Jiří

    2017-01-01

    Roč. 2017, č. 35 (2017), s. 5204-5213 ISSN 1434-193X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cyclization * Microwave chemistry * Oxygen heterocycles * Synthetic methods * Total synthesis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Organic chemistry Impact factor: 2.834, year: 2016

  15. Intestinal mucosa in diabetes: synthesis of total proteins and sucrase-isomaltase

    International Nuclear Information System (INIS)

    Olsen, W.A.; Perchellet, E.; Malinowski, R.L.

    1986-01-01

    The effects of insulin deficiency on nitrogen metabolism in muscle and liver have been extensively studied with recent in vivo demonstration of impaired protein synthesis in rats with streptozotocin-induced diabetes. Despite the significant contribution of small intestinal mucosa to overall protein metabolism, the effect of insulin deficiency on intestinal protein synthesis have not been completely defined. The authors studied the effects of streptozotocin-induced diabetes on total protein synthesis by small intestinal mucosa and on synthesis of a single enzyme protein of the enterocyte brush-border membrane sucrase-isomaltase. They used the flood-dose technique to minimize the difficulties of measuring specific radioactivity of precursor phenylalanine and determined incorporation into mucosal proteins and sucrase-isomaltase 20 min after injection of the labeled amino acid. Diabetes did not alter mucosal mass as determined by weight and content of protein and DNA during the 5 days after injection of streptozotocin. Increased rates of sucrase-isomaltase synthesis developed beginning on day 3, and those of total protein developed on day 5. Thus intestinal mucosal protein synthesis is not an insulin-sensitive process

  16. Enantioselective synthesis of 6-[18F] fluoro-L-DOPA

    International Nuclear Information System (INIS)

    Zhang Lan; Tang Ganghua; Zhou Wei; Li Junling; Yin Duanzhi; Wang Yongxian; Tang Xiaolan; Huang Zuhan

    2002-01-01

    Trimethylammonium veratraldehyde triflate was synthesized and used as a precurser for the synthesis of 6-[ 18 F] Fluoro-L-DOPA by using the chiral phase-transfer catalyst, O-Allyl-N-(9)-anthracenylcinchonidinium bromide which was also synthesized in this study. Based on these, 6-[ 18 F] Fluoro-L-DOPA was prepared with acceptable radiochemical yield (10 ± 3)% in short synthesis time (80 min), with high radiochemical purity, specific activity and chemical purity

  17. Isoindolinones as Michael Donors under Phase Transfer Catalysis: Enantioselective Synthesis of Phthalimidines Containing a Tetrasubstituted Carbon Stereocenter

    Directory of Open Access Journals (Sweden)

    Francesco Scorzelli

    2015-05-01

    Full Text Available Readily available chiral ammonium salts derived from cinchona alkaloids have proven to be effective phase transfer catalysts in the asymmetric Michael reaction of 3-substituted isoindolinones. This protocol provides a convenient method for the construction of valuable asymmetric 3,3-disubstituted isoindolinones in high yields and  moderate to good enantioselectivity. Diastereoselectivity was also investigated in the construction of contiguous tertiary and quaternary stereocenters. The use of acrolein as Michael acceptor led to an interesting tricyclic derivative, a pyrroloisoindolinone analogue, via a tandem conjugated addition/cyclization reaction.

  18. Stereoselective synthesis of a-hydroxy-b-amino acids: the chiral pool approach

    Directory of Open Access Journals (Sweden)

    RADOMIR N. SAICIC

    2004-11-01

    Full Text Available A method for the stereoselective homologation of a-amino acids into syn-a-hydroxy-b-amino acids is described, based on the conversion of stereoisomeric cyanohydrins into trans-oxazolines. The synthetic potential of the method is illustrated in the enantioselective formal synthesis of Bestatin.

  19. Total synthesis of putative 11-epi-lyngbouilloside aglycon

    Directory of Open Access Journals (Sweden)

    Amandine Kolleth

    2016-08-01

    Full Text Available We report here the total synthesis of 11-epi-lyngbouilloside aglycon. Our strategy features a Boeckman-type esterification followed by a RCM to form the 14-membered ring macrolactone and a late-stage side chain introduction via a Wittig olefination. Overall, the final product was obtained in 20 steps and 2% overall yield starting from commercially available 3-methyl-but-3-enol. Most importantly, the strategy employed is versatile enough to eventually allow us to complete the synthesis of the natural product and irrevocably confirm its structure.

  20. Total Synthesis of (+)-Cytosporolide A via a Biomimetic Hetero-Diels-Alder Reaction.

    Science.gov (United States)

    Takao, Ken-Ichi; Noguchi, Shuji; Sakamoto, Shu; Kimura, Mizuki; Yoshida, Keisuke; Tadano, Kin-Ichi

    2015-12-23

    The first total synthesis of (+)-cytosporolide A was achieved by a biomimetic hetero-Diels-Alder reaction of (-)-fuscoatrol A with o-quinone methide generated from (+)-CJ-12,373. The dienophile, highly oxygenated caryophyllene sesquiterpenoid (-)-fuscoatrol A, was synthesized from the synthetic intermediate in our previous total synthesis of (+)-pestalotiopsin A. The o-quinone methide precursor, isochroman carboxylic acid (+)-CJ-12,373, was synthesized through a Kolbe-Schmitt reaction and an oxa-Pictet-Spengler reaction. The hetero-Diels-Alder reaction of these two compounds proceeded with complete chemo-, regio-, and stereoselectivity to produce the complicated pentacyclic ring system of the cytosporolide skeleton. This total synthesis unambiguously demonstrates that natural cytosporolide A has the structure previously suggested.

  1. Synthesis of derivatives of tetronic acid and pulvinic acid. Total synthesis of norbadione A

    International Nuclear Information System (INIS)

    Mallinger, A.

    2008-11-01

    When vegetables like mushrooms are contaminated by radioactive caesium 137, this radioactive caesium is associated to norbadione A, a natural pigment present in two mushroom species and which can be used as a caesium decorporation agent or maybe as protection agent against ionizing radiations. Within this perspective, this research report describes the biosynthesis and the structure and properties of the norbadione A and of pulvinic acids (physicochemical properties, anti-oxidizing properties). Then, it presents the various tetronic acids (3-acyl-, 3-alkyl-, 3-alkoxy-, 3-aryl-tetronic acids and non 3-substituted tetronic acids), their synthesis path as they are described in the literature, and presents a new synthesis approach using a tandem reaction (with different esters or hydroxy esters) and the synthesis of tetronic acids. The author also proposes a new synthesis way for methyl pulvinates, and finally reports the work on the development of a total synthesis of the norbadione A

  2. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)2 and chiral amino alcohols

    NARCIS (Netherlands)

    Vries, André H.M. de; Feringa, Bernard

    1997-01-01

    Co(acac)2 in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved.

  3. Evolution of a practical total synthesis of ciguatoxin CTX3C.

    Science.gov (United States)

    Inoue, Masayuki; Hirama, Masahiro

    2004-12-01

    More than 20 000 people suffer annually from ciguatera seafood poisoning in subtropical and tropical regions. The extremely low content of the causative neurotoxins, designated as ciguatoxins, in fish has hampered their isolation, detailed biological study, and preparation of anti-ciguatoxin antibodies for detecting these toxins. Ciguatoxins consist of 12 trans-fused polycyclic ethers, ranging from six- to nine-membered, and include a spirally attached five-membered cyclic ether at one end. The large (3 nm in length) and complicated molecular structure of ciguatoxins has impeded chemists from completing their total synthesis. In 2001, we achieved the first total synthesis of ciguatoxin CTX3C by assembly of four structural fragments. Since then, protocols to combine the fragments have significantly improved in terms of overall stereoselectivity, efficiency, and practicality. In this Account, we describe recently evolved methodologies for the total synthesis of CTX3C.

  4. First- and second-generation total synthesis of ciguatoxin CTX3C.

    Science.gov (United States)

    Inoue, Masayuki; Miyazaki, Keisuke; Uehara, Hisatoshi; Maruyama, Megumi; Hirama, Masahiro

    2004-08-17

    More than 20,000 people suffer annually from ciguatera seafood poisoning in subtropical and tropical regions. The extremely low content of the causative neurotoxins, designated as ciguatoxins, in fish has hampered isolation, detailed biological studies, and preparation of anti-ciguatoxin antibodies for detecting these toxins. Furthermore, the large (3 nm in length) and complex molecular structure of ciguatoxins has impeded chemists from completing their total synthesis. In this article, the full details of studies leading to the total synthesis of ciguatoxin CTX3C are provided. The key elements of the first-generation approach include O,O-acetal formation from the right and left wing fragments, conversion from O,O-acetal to O,S-acetal, a radical reaction to cyclize the G ring, a ring-closing metathesis reaction to close the F ring, and final removal of the 2-naphtylmethyl protective groups. Subsequent studies provided a second-generation total synthesis, which is more concise and results in a higher yield. Second-generation synthesis was accomplished by using a direct method of constructing the key intermediate O,S-acetal from alpha-chlorosulfide and a secondary alcohol. These syntheses ensure a practical supply of ciguatoxin for biological applications.

  5. Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines

    KAUST Repository

    Zhang, Yan

    2011-01-01

    An amino-indanol derived chiral guanidine was developed as an efficient Brønsted base catalyst for the desymmetrization of meso-aziridines with both thiols and carbamodithioic acids as nucleophiles, which provided 1,2-difunctionalized ring-opened products in high yields and enantioselectivities. © The Royal Society of Chemistry.

  6. Total synthesis of the proposed structure of trichodermatide A.

    Science.gov (United States)

    Myers, Eddie; Herrero-Gómez, Elena; Albrecht, Irina; Lachs, Jennifer; Mayer, Peter; Hanni, Matti; Ochsenfeld, Christian; Trauner, Dirk

    2014-10-17

    A short total synthesis of the published structure of racemic trichodermatide A is reported. Our synthesis involves a Knoevenagel condensation/Michael addition sequence, followed by the formation of tricyclic hexahydroxanthene-dione and a diastereoselective bis-hydroxylation. The final product, the structure of which was confirmed by X-ray crystallography, has NMR spectra that are very similar, but not identical, to those of the isolated natural product. Quantum chemically computed (13)C shifts agree well with the present NMR measurements.

  7. Total Synthesis and Absolute Configuration of the Marine Norditerpenoid Xestenone

    Directory of Open Access Journals (Sweden)

    Hiroaki Miyaoka

    2009-11-01

    Full Text Available Xestenone is a marine norditerpenoid found in the northeastern Pacific sponge Xestospongia vanilla. The relative configuration of C-3 and C-7 in xestenone was determined by NOESY spectral analysis. However the relative configuration of C-12 and the absolute configuration of this compound were not determined. The authors have now achieved the total synthesis of xestenone using their developed one-pot synthesis of cyclopentane derivatives employing allyl phenyl sulfone and an epoxy iodide as a key step. The relative and absolute configurations of xestenone were thus successfully determined by this synthesis.

  8. Combining Organometallic Catalysis and Organocatalysis for the Synthesis of Heterocyclic Scaffolds

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke

    The main work presented in this thesis describes the development of efficient and novel methodologies for the synthesis of pharmaceutically interesting indolecontaining alkaloids, i.e., the 1,2,3,4-tetrahydro-β-carboline and the 1,2,3,4-tetrahydrocarbazole scaffolds. The synthesis of 1...... to the nitrogen in the allylic system proved to be highly important for the enantioselectivity. Enantiomeric excesses up to 57% was obtained. The synthesis of 1,2,3,4-tetrahydrocarbazole relied on novel Brønsted acidcatalyzed Friedel-Crafts-type reactions. Three different kinds of 1,2,3,4-tetrahydrocarbazole...

  9. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)(2) and chiral amino alcohols

    NARCIS (Netherlands)

    de Vries, A.H.M.; Feringa, B.L.

    1997-01-01

    Co(acac)(2) in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved. (C) 1997 Elsevier Science Ltd.

  10. First total synthesis of (-)-AL-2.

    Science.gov (United States)

    Miyakoshi, Naoki; Mukai, Chisato

    2003-06-26

    Treatment of the 3,4-dioxygenated-9-hydroxy-1-nonyn-5-one derivative, derived from diethyl l-tartrate, with a palladium catalyst in methanol under a CO atmosphere effected an intramolecular acetalization and a stereoselective construction of the (E)-methoxycarbonylmethylidene functionality resulting in formation of the core framework of the diacetylenic spiroacetal enol ether natural products. Chemical transformations of the 1,6-dioxaspiro[4.5]decane derivative thus formed led to the first total synthesis of (-)-AL-2. [reaction: see text

  11. 天然产物Brosimacutins H和I的对映选择性全合成%First Enantioselective Synthesis of Brosimacutins H and I

    Institute of Scientific and Technical Information of China (English)

    叶子平; 杨金会; 冯尧; 马涛; 牛明杰

    2016-01-01

    Brosimacutins H和I是从巴西的Brosimum acutifolium Huber树皮中分离出的两个具有相似结构的黄酮类化合物.此树皮被巴西当地居民作为抗发炎和抗风湿的药物,并且这两种化合物具有一定的细胞活性.以廉价的羟苯乙酮和羟苯甲醛为原料完成了黄酮化合物Brosimacutins H和I的对映选择性合成.所有新化合物的结构都经过NMR,HRMS确认.%Brosimacutins H and I,isolated from the bark of brosimum acutifolium huber,are flavanoid compounds with similar structures.The bark of this plant is used in Brazilian folk medicine as an anti-inflammatory and anti-rheumatic agent,and cellular activities were reported for these two compounds.Herein the first enantio-selective synthesis of brosimacutins H and I from cheap starting material hydroxyl-acetophenone and hydroxyl benzene formaldehyde was reported.All new compounds in this study were confirmed by NMR and HRMS.

  12. The First Total Synthesis of Triprenylquinone and Hydroquinones

    Institute of Scientific and Technical Information of China (English)

    Chun Hong LI; Xue Song CHEN; Guang Lian ZHOU; Zhi Xiang XIE; Ying LI

    2005-01-01

    First total synthesis of triprenylquinone and hydroquinones, three naturally occurring compound 1, 2 and (±) 3, have been achieved from readily available 2-bromo-5-methyl-1,4-dimethoxybenzene 4 and geranyl bromide. The triprenylquinone and hydroquinones precursor were readily prepared with use of a Julia reaction.

  13. The total synthesis of 3Beta-hydroxynagilactone F

    NARCIS (Netherlands)

    Reuvers, J.T.A.

    1985-01-01

    The investigations described in this thesis deal with the total synthesis of physiologically active nor- and bisnorditerpenoid dilactones (fig.1).

    The goal was to design a synthetic route for this class of natural products and

  14. Total Synthesis of (-)-Salvinorin A.

    Science.gov (United States)

    Line, Nathan J; Burns, Aaron C; Butler, Sean C; Casbohm, Jerry; Forsyth, Craig J

    2016-12-12

    Salvinorin A (1) is natural hallucinogen that binds the human κ-opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l-(+)-tartaric acid into that of (-)-1 via an unprecedented allylic dithiane intramolecular Diels-Alder reaction to obtain the trans-decalin scaffold. Tsuji allylation set the C9 quaternary center and a late-stage stereoselective chiral ligand-assisted addition of a 3-titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto-acetate. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of reversible interconversion in comprehensive two-dimensional gas chromatography using enantioselective columns in first and second dimensions.

    Science.gov (United States)

    Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J

    2015-07-24

    The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers

  16. Total synthesis of (+)-antroquinonol and (+)-antroquinonol D.

    Science.gov (United States)

    Sulake, Rohidas S; Chen, Chinpiao

    2015-03-06

    The first total synthesis of (+)-antroquinonol and (+)-antroquinonol D, two structurally unique quinonols with a sesquiterpene side chain, is described. The route features an iridium-catalyzed olefin isomerization-Claisen rearrangement reaction (ICR), lactonization, and Grubbs olefin metathesis. The requisite α,β-unsaturation was achieved via the selenylation/oxidation protocol and elimination of β-methoxy group to provide two natural products from a common intermediate.

  17. Enantioselective properties of induced lipases from Geotrichum

    Czech Academy of Sciences Publication Activity Database

    Zarevúcka, Marie; Kejík, Z.; Šaman, David; Wimmer, Zdeněk; Demnerová, K.

    2005-01-01

    Roč. 37, - (2005), s. 481-486 ISSN 0141-0229 R&D Projects: GA MŠk(CZ) OC D30.001; GA MŠk(CZ) OC D13.10 Institutional research plan: CEZ:AV0Z40550506 Keywords : Geotrichum * lipase * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 1.705, year: 2005

  18. Lanthanide Lewis acid-mediated enantioselective conjugate radical additions.

    Science.gov (United States)

    Sibi, Mukund P; Manyem, Shankar

    2002-08-22

    [reaction: see text] Lanthanide triflates along with proline-derived ligands have been found to be efficient catalysts for enantioselective conjugate addition of nucleophilic radicals to enoates. N-Acyl oxazolidinones, when used as achiral additives, gave meaningful enhancements in the ees for the product.

  19. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.

    Science.gov (United States)

    Wu, Yubo; Guo, Huimin; James, Tony D; Zhao, Jianzhang

    2011-07-15

    We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of

  20. Lithium Enolates in the Enantioselective Construction of Tetrasubstituted Carbon Centers with Chiral Lithium Amides as Noncovalent Stereodirecting Auxiliaries.

    Science.gov (United States)

    Yu, Kai; Lu, Ping; Jackson, Jeffrey J; Nguyen, Thuy-Ai D; Alvarado, Joseph; Stivala, Craig E; Ma, Yun; Mack, Kyle A; Hayton, Trevor W; Collum, David B; Zakarian, Armen

    2017-01-11

    Lithium enolates derived from carboxylic acids are ubiquitous intermediates in organic synthesis. Asymmetric transformations with these intermediates, a central goal of organic synthesis, are typically carried out with covalently attached chiral auxiliaries. An alternative approach is to utilize chiral reagents that form discrete, well-defined aggregates with lithium enolates, providing a chiral environment conducive of asymmetric bond formation. These reagents effectively act as noncovalent, or traceless, chiral auxiliaries. Lithium amides are an obvious choice for such reagents as they are known to form mixed aggregates with lithium enolates. We demonstrate here that mixed aggregates can effect highly enantioselective transformations of lithium enolates in several classes of reactions, most notably in transformations forming tetrasubstituted and quaternary carbon centers. Easy recovery of the chiral reagent by aqueous extraction is another practical advantage of this one-step protocol. Crystallographic, spectroscopic, and computational studies of the central reactive aggregate, which provide insight into the origins of selectivity, are also reported.

  1. Alilação e crotilação catalítica e enantiosseletiva de aldeídos

    Directory of Open Access Journals (Sweden)

    Ângelo de Fátima

    2006-10-01

    Full Text Available The field of chiral catalysis has experienced explosive growth over the last two decades. By now, many of the classical reactions in organic synthesis can be carried out efficiently in asymmetric manner. As one of the fundamental and powerful C-C bond-forming reactions, enantioselective catalytic allylation (ECA and crotylation (ECC of aldehydes has attracted considerable attention. In this article, we present an overview about the importance of chiral Lewis acids and bases in catalytic enantioselective addition of allyl- and crotyl metals to aldehydes and the application of this methodology in the total synthesis of natural and non-natural products.

  2. Alilação e crotilação catalítica e enantiosseletiva de aldeídos

    Directory of Open Access Journals (Sweden)

    Fátima Ângelo de

    2006-01-01

    Full Text Available The field of chiral catalysis has experienced explosive growth over the last two decades. By now, many of the classical reactions in organic synthesis can be carried out efficiently in asymmetric manner. As one of the fundamental and powerful C-C bond-forming reactions, enantioselective catalytic allylation (ECA and crotylation (ECC of aldehydes has attracted considerable attention. In this article, we present an overview about the importance of chiral Lewis acids and bases in catalytic enantioselective addition of allyl- and crotyl metals to aldehydes and the application of this methodology in the total synthesis of natural and non-natural products.

  3. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo; Zhang, Wen; Lee, Richmond; Han, Zhiqiang; Yang, Wenguo; Tan, Davin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3

  4. A New Mn–Salen Micellar Nanoreactor for Enantioselective Epoxidation of Alkenes in Water

    Directory of Open Access Journals (Sweden)

    Francesco P. Ballistreri

    2018-03-01

    Full Text Available A new chiral Mn–salen catalyst, functionalized with a long aliphatic chain and a choline group, able to act as surfactant catalyst for green epoxidation in water, is here described. This catalyst was employed with a commercial surfactant (CTABr leading to a nanoreactor for the enantioselective epoxidation of some selected alkenes in water, using NaClO as oxidant. This is the first example of a nanoreactor for enantioselective epoxidation of non-functionalized alkenes in water.

  5. An investigation of nitrile transforming enzymes in the chemo-enzymatic synthesis of the taxol sidechain

    Czech Academy of Sciences Publication Activity Database

    Wilding, B.; Veselá, Alicja Barbara; Perry, J.B.J.; Black, W.G.; Zhang, M.; Martínková, Ludmila; Klempier, N.

    2015-01-01

    Roč. 13, č. 28 (2015), s. 7803-7812 ISSN 1477-0520 R&D Projects: GA ČR(CZ) GAP504/11/0394 Institutional support: RVO:61388971 Keywords : LIPASE -CATALYZED TRANSESTERIFICATION * HIGHLY ENANTIOSELECTIVE SYNTHESIS * BIOLOGICAL EVALUATION Subject RIV: CC - Organic Chemistry Impact factor: 3.559, year: 2015

  6. The First Total Synthesis of Dragmacidin D

    OpenAIRE

    Garg, Neil K.; Sarpong, Richmond; Stoltz, Brian M.

    2002-01-01

    The first total synthesis of the biologically significant bis-indole alkaloid dragmacidin D (5) has been achieved. Thermal and electronic modulation provides the key for a series of palladium-catalyzed Suzuki cross-coupling reactions that furnished the core structure of the complex guanidine- and aminoimidazole-containing dragmacidins. Following this crucial sequence, a succession of meticulously controlled final events was developed leading to the completion of the natural product.

  7. Total synthesis of mycalamide A.

    Science.gov (United States)

    Sohn, Jeong-Hun; Waizumi, Nobuaki; Zhong, H Marlon; Rawal, Viresh H

    2005-05-25

    This communication describes a concise and efficient total synthesis of mycalamide A by the convergent coupling of pederic acid unit with the mycalamine unit. The left-half, (+)-7-benzoylpederic acid, was synthesized from (2R,3R)-3-methylpent-4-en-2-ol in seven steps and 34.6% overall yield through a route that features a one-step Pd(II)-catalyzed tandem Wacker/Heck cyclization reaction to prepare the tetrahydropyran ring system. The right-half, the mycalamine unit, was synthesized in 21 steps and 10.5% overall yield from diethyl d-tartrate. Effective, stereoselective methods were developed for the assembly of the two parts to yield either mycalamide A or C(10)-epi-mycalamide A.

  8. Total synthesis of bryostatins: the development of methodology for the atom-economic and stereoselective synthesis of the ring C subunit.

    Science.gov (United States)

    Trost, Barry M; Frontier, Alison J; Thiel, Oliver R; Yang, Hanbiao; Dong, Guangbin

    2011-08-22

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for the stereoselective assembly of the ring C subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the ring C subunit of bryostatins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin; Wang, Fei; Lee, Richmond; Lv, Yunbo; Huang, Kuo-Wei; Zhong, Guofu

    2014-01-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study

  10. Enantioselective Organocatalysis in Microreactors: Continuous Flow Synthesis of a (S-Pregabalin Precursor and (S-Warfarin

    Directory of Open Access Journals (Sweden)

    Riccardo Porta

    2015-08-01

    Full Text Available Continuous flow processes have recently emerged as a powerful technology for performing chemical transformations since they ensure some advantages over traditional batch procedures. In this work, the use of commercially available and affordable PEEK (Polyetheretherketone and PTFE (Polytetrafluoroethylene HPLC (High Performance Liquid Chromatography tubing as microreactors was exploited to perform organic reactions under continuous flow conditions, as an alternative to the commercial traditional glass microreactors. The wide availability of tubing with different sizes allowed quickly running small-scale preliminary screenings, in order to optimize the reaction parameters, and then to realize under the best experimental conditions a reaction scale up for preparative purposes. The gram production of some Active Pharmaceutical Ingredients (APIs such as (S-Pregabalin and (S-Warfarin was accomplished in short reaction time with high enantioselectivity, in an experimentally very simple procedure.

  11. Enantioselective cycloadditions with alpha,beta-disubstituted acrylimides.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Itoh, Kennosuke; Prabagaran, Narayanasamy; Jasperse, Craig P

    2005-06-09

    [reaction: see text] The use of N-H imide templates provides a solution to the problem of rotamer control in Lewis acid catalyzed reactions of alpha,beta-disubstituted acryloyl imides. Reactions proceed through the s-cis rotamer and with improved reactivity because A(1,3) strain is avoided. Enantioselective nitrone, nitrile oxide, and Diels-Alder cycloadditions demonstrate the principle.

  12. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  13. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  14. Multigram Synthesis of a Chiral Substituted Indoline Via Copper-Catalyzed Alkene Aminooxygenation.

    Science.gov (United States)

    Sequeira, Fatima C; Bovino, Michael T; Chipre, Anthony J; Chemler, Sherry R

    2012-05-01

    (S)-5-Fluoro-2-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-1-tosylindoline, a 2-methyleneoxy-substituted chiral indoline, was synthesized on multigram scale using an efficient copper-catalyzed enantioselective intramolecular alkene aminooxygenation. The synthesis is accomplished in four steps and the indoline is obtained in 89% ee (>98% after one recrystallization). Other highlights include efficient gram-scale synthesis of the (4R,5S)-di-Ph-box ligand and efficient separation of a monoallylaniline from its bis(allyl)aniline by-product by distillation under reduced pressure.

  15. Total synthesis of broussonetine F: the orthoamide Overman rearrangement of an allylic diol.

    Science.gov (United States)

    Hama, Naoto; Aoki, Toshihiro; Miwa, Shohei; Yamazaki, Miki; Sato, Takaaki; Chida, Noritaka

    2011-02-18

    A first total synthesis of broussonetine F from diethyl L-tartrate was achieved. The cornerstone of our synthesis was an orthoamide Overman rearrangement, which provided an allylic amino alcohol with complete diastereoselectivity.

  16. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    Science.gov (United States)

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  17. Enzymatic routes for the synthesis of ursodeoxycholic acid.

    Science.gov (United States)

    Eggert, Thorsten; Bakonyi, Daniel; Hummel, Werner

    2014-12-10

    Ursodeoxycholic acid, a secondary bile acid, is used as a drug for the treatment of various liver diseases, the optimal dose comprises the range of 8-10mg/kg/day. For industrial syntheses, the structural complexity of this bile acid requires the use of an appropriate starting material as well as the application of regio- and enantio-selective enzymes for its derivatization. Most strategies for the synthesis start from cholic acid or chenodeoxycholic acid. The latter requires the conversion of the hydroxyl group at C-7 from α- into β-position in order to obtain ursodeoxycholic acid. Cholic acid on the other hand does not only require the same epimerization reaction at C-7 but the removal of the hydroxyl group at C-12 as well. There are several bacterial regio- and enantio-selective hydroxysteroid dehydrogenases (HSDHs) to carry out the desired reactions, for example 7α-HSDHs from strains of Clostridium, Bacteroides or Xanthomonas, 7β-HSDHs from Clostridium, Collinsella, or Ruminococcus, or 12α-HSDH from Clostridium or from Eggerthella. However, all these bioconversion reactions need additional steps for the regeneration of the coenzymes. Selected multi-step reaction systems for the synthesis of ursodeoxycholic acid are presented in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel

    2004-01-01

    Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.

  19. Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot.

    Science.gov (United States)

    Wechsler, Cindy; Meyer, Danilo; Loschonsky, Sabrina; Funk, Lisa-Marie; Neumann, Piotr; Ficner, Ralf; Brodhun, Florian; Müller, Michael; Tittmann, Kai

    2015-12-01

    Enantioselective bond making and breaking is a hallmark of enzyme action, yet switching the enantioselectivity of the reaction is a difficult undertaking, and typically requires extensive screening of mutant libraries and multiple mutations. Here, we demonstrate that mutational diversification of a single catalytic hot spot in the enzyme pyruvate decarboxylase gives access to both enantiomers of acyloins acetoin and phenylacetylcarbinol, important pharmaceutical precursors, in the case of acetoin even starting from the unselective wild-type protein. Protein crystallography was used to rationalize these findings and to propose a mechanistic model of how enantioselectivity is controlled. In a broader context, our studies highlight the efficiency of mechanism-inspired and structure-guided rational protein design for enhancing and switching enantioselectivity of enzymatic reactions, by systematically exploring the biocatalytic potential of a single hot spot. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  1. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  2. Enantioselective Degradation and Chiral Stability of Metalaxyl-M in Tomato Fruits.

    Science.gov (United States)

    Jing, Xu; Yao, Guojun; Wang, Peng; Liu, Donghui; Qi, Yanli; Zhou, Zhiqiang

    2016-05-01

    Metalaxyl is an important chiral acetanilide fungicide, and the activity almost entirely originates from the R-enantiomer. Racemic metalaxyl has been gradually replaced by the enantiopure R-enantiomer (metalaxyl-M). In this study a chiral residue analysis method for metalaxyl and the metabolite metalaxyl acid was set up based on high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS). The enantioselective degradation and chiral stability of metalaxyl-M in tomato fruits in two geographically distinct regions of China (Heilongjiang and Hunan Province) were evaluated and the enantioselectivity of metalaxyl acid was also investigated. Tomato plants grew under field conditions with a one-time spray application of metalaxyl-M wettable powder. It was found that R-metalaxyl was not chirally stable and the inactive S-metalaxyl was detected in tomato fruits. At day 40, S-metalaxyl derived from R-metalaxyl accounted for 32% and 26% of the total amount of metalaxyl, respectively. The metabolites R-metalaxyl acid and S-metalaxyl acid were both observed in tomato, and the ratio of S-metalaxyl acid to the sum of S- and R-metalaxyl acid was 36% and 28% at day 40, respectively. For both metalaxyl and metalaxyl acid, the half-life of the S-enantiomer was longer than the R-enantiomer. The results indicated that the enantiomeric conversion should be considered in the bioactivity evaluation and environmental pollution assessment. Chirality 28:382-386, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Insight into the stereospecificity of short-chain thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A

    2010-04-01

    The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.

  4. Effects of metals on enantioselective toxicity and biotransformation of cis-bifenthrin in zebrafish.

    Science.gov (United States)

    Yang, Ye; Ji, Dapeng; Huang, Xin; Zhang, Jianyun; Liu, Jing

    2017-08-01

    Co-occurrence of pyrethroids and metals in watersheds previously has been reported to pose great risk to aquatic species. Pyrethroids are a class of chiral insecticides that have been shown to have enantioselective toxicity and biotransformation. However, the influence of metals on enantioselectivity of pyrethroids has not yet been evaluated. In the present study, the effects of cadmium (Cd), copper (Cu), and lead (Pb) on the enantioselective toxicity and metabolism of cis-bifenthrin (cis-BF) were investigated in zebrafish at environmentally relevant concentrations. The addition of Cd, Cu, or Pb significantly increased the mortality of zebrafish in racemate and R-enantiomer of cis-BF-treated groups. In rac-cis-BF- or 1R-cis-BF-treated groups, the addition of Cd, Cu, or Pb caused a decrease in enantiomeric fraction (EF) and an increased ratio of R-enantiomer residues in zebrafish. In 1S-cis-BF-treated groups, coexposure to Cd led to a lower EF and decreased residue levels of S-enantiomer. In addition, coexposure to the 3 metals resulted in different biodegradation characteristics of each enantiomer accompanied with differential changes in the expression of cytochrome P450 (CYP)1, CYP2, and CYP3 genes, which might be responsible for the enantioselective biodegradation of cis-BF in zebrafish. These results suggest that the influence of coexistent metals should be considered in the ecological risk assessment of chiral pyrethroids in aquatic environments. Environ Toxicol Chem 2017;36:2139-2146. © 2017 SETAC. © 2017 SETAC.

  5. Asymmetric Hydrogenation of Seven-Membered C=N-containing Heterocycles and Rationalization of the Enantioselectivity.

    Science.gov (United States)

    Balakrishna, Bugga; Bauzá, Antonio; Frontera, Antonio; Vidal-Ferran, Anton

    2016-07-18

    Iridium(I) complexes with phosphine-phosphite ligands efficiently catalyze the enantioselective hydrogenation of diverse seven-membered C=N-containing heterocyclic compounds (eleven examples; up to 97 % ee). The P-OP ligand L3, which incorporates an ortho-diphenyl substituted octahydrobinol phosphite fragment, provided the highest enantioselectivities in the hydrogenation of most of the heterocyclic compounds studied. The observed stereoselection was rationalized by means of DFT calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enantioselective Construction of 3-Hydroxypiperidine Scaffolds by Sequential Action of Light and Rhodium upon N-Allylglyoxylamides.

    Science.gov (United States)

    Ishida, Naoki; Nečas, David; Masuda, Yusuke; Murakami, Masahiro

    2015-06-15

    3-Hydroxypiperidine scaffolds were enantioselectively constructed in an atom-economical way by sequential action of light and rhodium upon N-allylglyoxylamides. In a formal sense, the allylic C-H bond was selectively cleaved and enantioselectively added across the ketonic carbonyl group with migration of the double bond (carbonyl-ene-type reaction). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Copper-Catalyzed Asymmetric Allylic Alkylation of Halocrotonates : Efficient Synthesis of Versatile Chiral Multifunctional Building Blocks

    NARCIS (Netherlands)

    Hartog, Tim den; Maciá, Beatriz; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    The highly enantioselective synthesis of α-methyl-substituted esters is reported in up to 90% yield and up to 99% ee using copper-TaniaPhos as chiral catalyst. The transformation proved scalable to at least 6.6 mmol (1.7 g scale). The products of this transformation have been further elaborated to

  8. Cyclic aldimines as superior electrophiles for Cu-catalyzed decarboxylative Mannich reaction of β-ketoacids with a broad scope and high enantioselectivity.

    Science.gov (United States)

    Zhang, Heng-Xia; Nie, Jing; Cai, Hua; Ma, Jun-An

    2014-05-02

    A novel Cu-catalyzed enantioselective decarboxylative Mannich reaction of cyclic aldimines with β-ketoacids is described. The cyclic structure of these aldimines, in which the C═N bond is constrained in the Z geometry, appears to be important, allowing Mannich condensation to proceed in high yields with excellent enantioselectivities. A chiral chroman-4-amine was synthesized from the decarboxylative Mannich product in several steps without loss of enantioselectivity.

  9. Enantioselective degradation and enantiomerization of indoxacarb in soil.

    Science.gov (United States)

    Sun, Dali; Pang, Junxiao; Qiu, Jing; Li, Li; Liu, Chenglan; Jiao, Bining

    2013-11-27

    In this study, the enantioselective degradation and enantiomerizaton of indoxacarb were investigated in two soils under nonsterilized and sterilized conditions using a chiral OD-RH column on a reversed-phase HPLC. Under nonsterilized conditions, the degradation of indoxacarb in two soils was enantioselective. In acidic soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 10.43 and 14.00 days, respectively. Acidic soil was preferential to the degradation of R-(-)-indoxacarb. In alkaline soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 12.14 and 4.88 days, respectively. S-(+)-Indoxacarb was preferentially degraded. Under sterilized conditions, approximately 5-10% of the initial concentration degraded after 75 days of incubation in acidic soil, whereas in alkaline soil, approximately half of the initial concentration degraded due to chemical hydrolysis under alkaline conditions. Enantiomerization was also discovered in acidic and alkaline soils. The results showed that mutual transformation existed between two enantiomers and that S-(+)-indoxacarb had a significantly higher inversion rate to R-(-)-indoxacarb than its antipode.

  10. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α-Diazo Pyrazoleamides.

    Science.gov (United States)

    Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2018-03-07

    Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.

  11. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter

    NARCIS (Netherlands)

    Tang, Lixia; Lutje Spelberg, Jeffrey H.; Fraaije, Marco W.; Janssen, DB

    2003-01-01

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic

  12. Total synthesis of (3S, 5R, 3'S, 5'R)-capsorubin

    International Nuclear Information System (INIS)

    Frederico, Daniel; Constantino, Mauricio G.; Donate, Paulo M.

    2009-01-01

    The total synthesis of enantiomerically enriched (3S, 5R, 3'S, 5'R)-capsorubin (1) by aldol condensation of (1R, 4S)-1-(4-hydroxy-1,2,2-trimethyl-cyclopentyl)ethanone (2a) and crocetindial (3) is described. An alternative, short eight-step synthesis of the optically active compound 2a (ee 89%) is also reported. (author)

  13. Enantioselective conjugate radical addition to alpha'-hydroxy enones.

    Science.gov (United States)

    Lee, Sunggi; Lim, Chae Jo; Kim, Sunggak; Subramaniam, Rajesh; Zimmerman, Jake; Sibi, Mukund P

    2006-09-14

    Enantioselective conjugate radical addition to alpha'-hydroxy alpha,beta-unsaturated ketones, compounds containing bidentate donors, has been investigated. It has been found that radical additions to alpha'-hydroxy alpha,beta-unsaturated ketones in the presence of Mg(NTf2)2 and bisoxazoline ligand 5a proceeded cleanly, yielding the addition products in high chemical yields and good enantiomeric excesses.

  14. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui; Guo, Donghui; Munkerup, Kristin; Huang, Kuo-Wei; Li, Fangyi; Wang, Jian

    2018-01-01

    on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a

  15. Cu(I)-Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with 2-Aryl-N-sulfonylaziridines as Alkylating Agents.

    Science.gov (United States)

    Ge, Chen; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-07-01

    A highly enantioselective Friedel-Crafts alkylation of indoles with N-sulfonylaziridines as alkylating agents has been developed by utilizing the complex of Cu(CH3CN)4BF4/(S)-Segphos as a catalyst. A range of optically active tryptamine derivatives are obtained in good to excellent yields and enantioselectivities (up to >99% ee) via a kinetic resolution process.

  16. Enantioselective Addition of Allyltin Reagents to Amino Aldehydes Catalyzed with Bis(oxazolinylphenylrhodium(III Aqua Complexes

    Directory of Open Access Journals (Sweden)

    Hisao Nishiyama

    2011-06-01

    Full Text Available Bis(oxazolinylphenylrhodium(III aqua complexes, (PheboxRhX2(H2O [X = Cl, Br], were found to be efficient Lewis acid catalysts for the enantioselective addition of allyl- and methallyltributyltin reagents to amino aldehydes. The reactions proceed smoothly in the presence of 5–10 mol % of (PheboxRhX2(H2O complex at ambient temperature to give the corresponding amino alcohols with modest to good enantioselectivity (up to 94% ee.

  17. Total Synthesis of Marine Cyclic Enol-Phosphotriester Salinipostin Compounds

    Science.gov (United States)

    Zhao, Mingliang; Wei, Xianfeng; Liu, Xuemeng; Dong, Xueyang; Yu, Rilei; Wan, Shengbiao; Jiang, Tao

    2018-06-01

    Due to their structural diversity and variety of biological activities, marine natural products have been the subject of extensive study. These compounds, especially phospholipid polycyclic aromatic hydrocarbons, have a wide range of pharmacological applications, including embedded DNA and central nervous system, anti-tumor, anti-virus, anti-parasite, anti-bacterial, and antithrombotic effects. Unfortunately, the insufficient drug sources have limited the development of these compounds. In this study, we isolated salinpostin compounds from a fermentation solution of marine-derived Salinospora sp., which has a common bicyclic enol-phosphotriester core framework, as well as potent and selective antimalarial activities against P. falciparum with EC50 = 50 nmol L-1. The chemical synthesis of these compounds in greater quantities is necessary for their use in bioactivity studies. Thus we explored a short route with high yields and mild reaction conditions, which can generate combinatorial libraries for drug discovery and lead optimization. We developed a new total synthesis method for six cyclic enol-phosphotriester salinipotin compounds and their diastereomers. For the total synthesis of cyclipostin P, we prepared cyclic enol-phosphotriester salinipostin compounds in 10 steps from a readily accessible starting material, 1,3-dihydroxyacetone, and obtained an overall yield of 1.29%. We fully characterized these compounds by proton nuclear magnetic resonance (1H-NMR), carbon-13 NMR (13C-NMR), and high-resolution mass spectrometry (HRMS) analyses, and found they coincide absolutely with the same compounds reported previously.

  18. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    International Nuclear Information System (INIS)

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko; Takeshita, Daijiro; Kumashiro, Shoko; Uzura, Atsuko; Urano, Nobuyuki; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity

  19. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  20. Palladium-catalyzed asymmetric alkylation in the synthesis of cyclopentanoid and cycloheptanoid core structures bearing all-carbon quaternary stereocenters

    KAUST Repository

    Hong, Allen Y.

    2011-12-01

    General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems.

  1. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  2. Ultrasound-Assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-Like Nanobioreactor

    Directory of Open Access Journals (Sweden)

    Baiyi An

    2016-04-01

    Full Text Available A flower-like nanobioreactor was prepared for resolution of ibuprofen in organic solvents. Ultrasound irradiation has been used to improve the enzyme performance of APE1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1 in the enantioselective esterification. Under optimum reaction conditions (ultrasound power, 225 W; temperature, 45 °C; water activity, 0.21, the immobilized APE1547 showed an excellent catalytic performance (enzyme activity, 13.26 μmol/h/mg; E value, 147.1. After ten repeated reaction batches, the nanobioreactor retained almost 100% of its initial enzyme activity and enantioselectivity. These results indicated that the combination of the immobilization method and ultrasound irradiation can enhance the enzyme performance dramatically.

  3. Enantioselective γ-Alkylation of α,β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement

    OpenAIRE

    Liu, Wen-Bo; Okamoto, Noriko; Alexy, Eric J.; Hong, Allen Y.; Tran, Kristy; Stoltz, Brian M.

    2016-01-01

    A catalytic, enantioselective ? -alkylation of ?,?-unsaturated malonates and ketoesters is reported. This strategy entails a highly regio- and enantioselective iridium-catalyzed ?-alkylation of an extended enolate, and a subsequent translocation of chirality to the ?-position via a Cope rearrangement.

  4. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Shulin, E-mail: shulin@zju.edu.cn [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Zhang, Zhisheng [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Wenjing; Bao, Lingling [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Zhang, Hu [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 210021 (China)

    2015-02-15

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  5. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zhuang, Shulin; Zhang, Zhisheng; Zhang, Wenjing; Bao, Lingling; Xu, Chao; Zhang, Hu

    2015-01-01

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  6. Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant

    Science.gov (United States)

    Sharpe, Robert J.; Karr, Laurel J.; Paley, Mark S.

    2010-01-01

    For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued study

  7. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  8. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  9. Total synthesis of solanoeclepin A

    Science.gov (United States)

    Tanino, Keiji; Takahashi, Motomasa; Tomata, Yoshihide; Tokura, Hiroshi; Uehara, Taketo; Narabu, Takashi; Miyashita, Masaaki

    2011-06-01

    Cyst nematodes are troublesome parasites that live on, and destroy, a range of important host vegetable plants. Damage caused by the potato cyst nematode has now been reported in over 50 countries. One approach to eliminating the problem is to stimulate early hatching of the nematodes, but key hatching stimuli are not naturally available in sufficient quantities to do so. Here, we report the first chemical synthesis of solanoeclepin A, the key hatch-stimulating substance for potato cyst nematode. The crucial steps in our synthesis are an intramolecular cyclization reaction for construction of the highly strained tricyclo[5.2.1.01,6]decane skeleton (DEF ring system) and an intramolecular Diels-Alder reaction of a furan derivative for the synthesis of the ABC carbon framework. The present synthesis has the potential to contribute to addressing one of the critical food issues of the twenty-first century.

  10. Pyrones to pyrans: enantioselective radical additions to acyloxy pyrones.

    Science.gov (United States)

    Sibi, Mukund P; Zimmerman, Jake

    2006-10-18

    This paper describes a highly site-, diastereo-, and enantioselective intermolecular radical addition/hydrogen atom transfer to hydroxypyrone pyromeconic and kojic acids. The methodology can be extended to the formation of chiral quaternary centers. The products obtained are densely functionalized pyran moieties. The products contain structural features amenable for the introduction of additional substituents.

  11. Pd(II)-Catalyzed Enantioselective C-H Olefination of Diphenylacetic Acids

    Science.gov (United States)

    Shi, Bing-Feng; Zhang, Yang-Hui; Lam, Jonathan K.; Wang, Dong-Hui; Yu, Jin-Quan

    2009-01-01

    Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acid substrates has been achieved through the use of mono-protected chiral amino acid ligands. The absolute configuration of the resulting olefinated products is consistent with that of a proposed C-H insertion intermediate. PMID:20017549

  12. α-Haloaldehydes: versatile building blocks for natural product synthesis.

    Science.gov (United States)

    Britton, Robert; Kang, Baldip

    2013-02-01

    The diastereoselective addition of organometallic reagents to α-chloroaldehydes was first reported in 1959 and occupies a historically significant role as the prototypical reaction for Cornforth's model of stereoinduction. Despite clear synthetic potential for these reagents, difficulties associated with producing enantiomerically enriched α-haloaldehydes limited their use in natural product synthesis through the latter half of the 20th century. In recent years, however, a variety of robust, organocatalytic processes have been reported that now provide direct access to optically enriched α-haloaldehydes and have motivated renewed interest in their use as building blocks for natural product synthesis. This Highlight summarizes the methods available for the enantioselective preparation of α-haloaldehydes and their stereoselective conversion into natural products.

  13. Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line

    International Nuclear Information System (INIS)

    Liu Huigang; Zhao Meirong; Zhang Cong; Ma Yun; Liu Weiping

    2008-01-01

    Synthetic pyrethroids (SPs) are used in preference to organochlorines and organophosphates due to their high efficiency, low toxicity to mammals, and ready biodegradability. Previous studies reported that enantioselective toxicity of SPs occurs in aquatic toxicity. Several studies have indicated that SPs could lead to oxidative damage in humans or animals which was associated with their toxic effects. Little is known about the differences in the effects of chronic toxicity induced by individual stereoisomers of chiral SPs. The present study was therefore undertaken to evaluate the enantioselectivity in cytotoxicity, genotoxicity caused by bifenthrin (BF) on human amnion epithelial (FL) cell lines and pesticidal activity on target organism. The cell proliferation and cytoflow analysis indicated that 1S-cis-BF presented more toxic effects than 1R-cis-BF above the concentration of 7.5 mg L -1 (p > 0.05). FL cells incubated with 1S-cis-BF exhibited a dose-dependent accumulation of intracellular reactive oxygen species (ROS). In the comet assay, the number of cells with damaged DNA incubated with 1S-cis-BF was more than that with 1R-cis-BF (p 50 values of enantiomer to the target pest on Pieris rapae L. show that 1R-cis-BF was 300 times more active than 1S-cis-BF. These results indicate that the enantioselective toxicity and activity of BF between non-target organism and target organism was reversal. These implications together suggest that assessment of the environmental safety and new pesticides development with chiral centers should consider enantioselectivity

  14. Total synthesis and biological investigation of (-)-promysalin.

    Science.gov (United States)

    Steele, Andrew D; Knouse, Kyle W; Keohane, Colleen E; Wuest, William M

    2015-06-17

    Compounds that specifically target pathogenic bacteria are greatly needed, and identifying the method by which they act would provide new avenues of treatment. Herein we report the concise, high-yielding total synthesis (eight steps, 35% yield) of promysalin, a natural product that displays antivirulence phenotypes against pathogenic bacteria. Guided by bioinformatics, four diastereomers were synthesized, and the relative and absolute stereochemistries were confirmed by spectral and biological analysis. Finally, we show for the first time that promysalin displays two antivirulence phenotypes: the dispersion of mature biofilms and the inhibition of pyoverdine production, hinting at a unique pathogenic-specific mechanism of action.

  15. Highly Efficient Catalytic Synthesis of α-Amino Acids under Phase-Transfer Conditions with a Novel Catalyst/Substrate Pair

    NARCIS (Netherlands)

    Belokon, Yuri N.; Kochetkov, Konstantin A.; Churkina, Tatiana D.; Ikonnikov, Nikolai S.; Larionov, Oleg V.; Harutyunyan, Syuzanna R.; Vyskočil, Štepán; North, Michael; Kagan, Henri B.

    2001-01-01

    A facile and fast enantioselective synthesis of α-amino acids with high ee values was achieved by the asymmetric alkylation of the glycine derivative under phase-transfer conditions with (R)- or (S)-2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN). The ee value of the catalyst can be as little as 40 %

  16. Chemistry of Renieramycins. Part 14: Total Synthesis of Renieramycin I and Practical Synthesis of Cribrostatin 4 (Renieramycin H

    Directory of Open Access Journals (Sweden)

    Masashi Yokoya

    2015-08-01

    Full Text Available The first total synthesis of (±-renieramycin I, which was isolated from the Indian bright blue sponge Haliclona cribricutis, is described. The key step is the selenium oxide oxidation of pentacyclic bis-p-quinone derivative (3 stereo- and regioselectively. We also report a large-scale synthesis of cribrostatin 4 (renieramycin H via the C3-C4 double bond formation in an early stage based on the Avendaño’s protocol, from readily available 1-acetyl-3-(3-methyl-2,4,5-trimethylphenylmethyl-piperazine-2,5-dione (8 in 18 steps (8.3% overall yield. The synthesis provides unambiguous evidence supporting the original structure of renieramycin I.

  17. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  18. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-01-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  19. BIOACCUMULATION AND ENANTIOSELECTIVE BIOTRANSFORMATION OF FIPRONIL BY RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Dietary accumulation and enantioselective biotransformation was determined for rainbow trout (Oncorhynchus mykiss) exposed to fipronil, a widely used chiral pesticide. Measurement of the fish carcass tissue (whole fish minus GI tract and liver) showed a rapid accumulation of fip...

  20. Total synthesis of 1-hydroxydehydroherbarin and ascomycones A, B, naphthoquinone antibiotics

    International Nuclear Information System (INIS)

    Dong, Wen-Kai; Huang, Xiong; Xu, Dong-Cheng; Li, Xin-Shengi; Xie, Jian-Wu

    2012-01-01

    The first total synthesis of 1-hydroxydehydroherbarin and ascomycones A and B is reported. The biologically interesting ascomycones A and B were obtained in 18% overall yield starting from 3-chloro-2,5-dimethoxybenzaldehyde as building block. (author)

  1. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    Science.gov (United States)

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  2. Dual Enantioselective Control using D-phenylglycine-L-proline-derived Catalysts for the Enantioselective Addition of Diethylzinc to Aldehyde

    International Nuclear Information System (INIS)

    Kang, Seock Yong; Park, Yong Sun

    2016-01-01

    Dipeptide-derived catalysts are of great interest in various asymmetric transformations because of their short and simple preparation and easy modification of their modular structure by using different α-amino acids. We recently reported the first example of dipeptide-catalyzed enantioselective addition of dialkylzinc to aldehydes. We have developed a novel D-Phg-L-Pro dipeptide-derived catalyst for the addition of diethylzinc to aromatic aldehydes. We also disclosed an effective chiral switching by simply modifying nonchiral part of D-Phg-L-Pro dipeptide.

  3. Enantioselective Evans-Tishchenko Reduction of b-Hydroxyketone Catalyzed by Lithium Binaphtholate

    Directory of Open Access Journals (Sweden)

    Makoto Nakajima

    2011-06-01

    Full Text Available Lithium diphenylbinaphtholate catalyzed the enantioselective Evans-Tishchenko reduction of achiral b-hydroxyketones to afford monoacyl-protected 1,3-diols with high stereoselectivities. In the reaction of racemic b-hydroxyketones, kinetic optical resolution occurred in a highly stereoselective manner.

  4. Total synthesis of all stereoisomers of eudesm-II-en-4-ol

    NARCIS (Netherlands)

    Kesselmans, R.P.W.

    1992-01-01

    In this thesis the total synthesis of all stereoisomers of eudesm-11-en-4-ol e.g. selin-11-en-4α-ol I , intermedeol II , neointermedeol III , paradisiol IV , amiteol

  5. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  6. Stereoselective, nitro-Mannich/lactamisation cascades for the direct synthesis of heavily decorated 5-nitropiperidin-2-ones and related heterocycles

    Directory of Open Access Journals (Sweden)

    Pavol Jakubec

    2012-04-01

    Full Text Available A versatile nitro-Mannich/lactamisation cascade for the direct stereoselective synthesis of heavily decorated 5-nitropiperidin-2-ones and related heterocycles has been developed. A highly enantioenriched substituted 5-nitropiperidin-2-one was synthesised in a four component one-pot reaction combining an enantioselective organocatalytic Michael addition with the diastereoselective nitro-Mannich/lactamisation cascade. Protodenitration and chemoselective reductive manipulation of the heterocycles was used to install contiguous and fully substituted stereocentres in the synthesis of substituted piperidines.

  7. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  8. Synthesis and optical resolution of the neurotoxin 2-amino-3-([15N]-methylamino)propanoic acid (BMAA)

    International Nuclear Information System (INIS)

    Yulin Hu; Ziffer, H.

    1990-01-01

    The synthesis of 2-amino-3-([ 15 N]-methylamino)propanoic acid (synonyms, BMAA, β-N-mehylamino-alanine) from α-acetamidoacrylic acid and [ 15 N]-methylamine is described. Enantioselective hydrolysis of the acetamide group, mediated by the enzyme Acylase 1 (EC 3.5.1.14), yielded (R)-BMAA and the (S)-α-acetamido derivative. Acid hydrolysis of the latter compound yielded (S)-BMAA. (author)

  9. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio

    2010-10-01

    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  10. First total synthesis of (-)-ichthyothereol and its acetate.

    Science.gov (United States)

    Mukai, C; Miyakoshi, N; Hanaoka, M

    2001-08-24

    The first and stereoselective total syntheses of (-)-ichthyothereol (1) and its acetate ((+)-2) were achieved by incorporation of the two chiral centers of diethyl L-tartrate. The starting diethyl L-tartrate was converted into trans-2-ethynyl-3-hydroxytetrahydropyran 14 in a stereoselective manner via the endo mode cyclization of the epoxy-alkyne derivative 12. The alcohol 12 was then transformed into (E)-iodoolefin derivative 15, which was exposed to a coupling reaction with 1-tributylstannyl-1,3,5-heptyne (19), derived from the corresponding 1-trimethylsilyl-1,3,5-heptyne (18), under Stille conditions to produce the all-carbon framework of the target natural products. Chemical modification of the coupled product 20 under conventional conditions completed the first total synthesis of (-)-ichthyothereol (1) and its acetate ((+)-2).

  11. Enantioselective Allylation of Thiophene-2-carbaldehyde: Formal Total Synthesis of Duloxetine

    Czech Academy of Sciences Publication Activity Database

    Motloch, P.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 356, č. 1 (2014), s. 199-204 ISSN 1615-4150 Grant - others:GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : aldehydes * allylation * Lewis bases * organocatalysis * synthetic methods Subject RIV: CC - Organic Chemistry Impact factor: 5.663, year: 2014

  12. Total synthesis and stereochemical assignment of the salicylate antitumor macrolide lobatamide C(1).

    Science.gov (United States)

    Shen, Ruichao; Lin, Cheng Ting; Porco, John A

    2002-05-22

    The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C is reported. The synthesis involves Cu(I)-mediated enamide formation and Na(2)CO(3)-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Macrolactonization was accomplished using a Mitsunobu protocol. The stereochemical assignment of lobatamide C was achieved by Mosher ester analysis and comparison with prepared stereoisomers.

  13. Total synthesis of ciguatoxin CTX3C: a venture into the problems of ciguatera seafood poisoning.

    Science.gov (United States)

    Hirama, Masahiro

    2005-01-01

    After a twelve-year struggle, the total synthesis of ciguatoxin CTX3C has been achieved. Annually, more than 20,000 people worldwide suffer from ciguatera seafood poisoning. The extremely small amounts of the causative neurotoxin, ciguatoxin, in fish hampered the isolation, structural elucidation, detailed biological study, and preparation of anti-ciguatoxin antibodies for detecting these toxins. The large (3 nanometers long) and complicated molecular structure of ciguatoxins hindered chemists from completing a total synthesis. The chemical synthesis of CTX3C, determination of the absolute configuration, and synthesis-based preparation of the monoclonal antibodies as well as the effect of synthetic CTX3C on voltage-sensitive sodium channels are outlined. (c) 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  14. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.

    2011-02-24

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  15. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.; Krout, Michael R.; Jensen, Thomas; Bennett, Nathan B.; Harned, Andrew M.; Stoltz, Brian M.

    2011-01-01

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  16. Rhodium-catalyzed enantioselective intramolecular C-H silylation for the syntheses of planar-chiral metallocene siloles.

    Science.gov (United States)

    Zhang, Qing-Wei; An, Kun; Liu, Li-Chuan; Yue, Yuan; He, Wei

    2015-06-01

    Reported herein is the rhodium-catalyzed enantioselective C-H bond silylation of the cyclopentadiene rings in Fe and Ru metallocenes. Thus, in the presence of (S)-TMS-Segphos, the reactions took place under very mild conditions to afford metallocene-fused siloles in good to excellent yields and with ee values of up to 97%. During this study it was observed that the steric hindrance of chiral ligands had a profound influence on the reactivity and enantioselectivity of the reaction, and might hold the key to accomplishing conventionally challenging asymmetric C-H silylations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An enantioselective approach toward 3,4-dihydroisocoumarin through the bromocyclization of styrene-type carboxylic acids.

    Science.gov (United States)

    Chen, Jie; Zhou, Ling; Tan, Chong Kiat; Yeung, Ying-Yeung

    2012-01-20

    A facile and enantioselective approach toward 3,4-dihydroisocoumarin was developed. The method involved an amino-thiocarbamate catalyzed enantioselective bromocyclization of styrene-type carboxylic acids, yielding 3-bromo-3,4-dihydroisocoumarins with good yields and ee's. 3-Bromo-3,4-dihydroisocoumarins are versatile building blocks for various dihydroisocoumarin derivatives in which the Br group can readily be modified to achieve biologically important 4-O-type and 4-N-type 3,4-dihydroisocoumarin systems. In addition, studies indicated that, by refining some parameters, the synthetically useful 5-exo phthalide products could be achieved with good yields and ee's.

  18. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles

    Science.gov (United States)

    Chuprakov, Stepan; Kwok, Sen Wai; Zhang, Li; Lercher, Lukas; Fokin, Valery V.

    2009-01-01

    N-Sulfonyl 1,2,3-triazoles readily form rhodium(II) azavinyl carbenes, which react with olefins to produce cyclopropanes with excellent diastereo- and enantioselectivity and in high yield. PMID:19928917

  19. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  20. Optimisation of stabilised carboxylesterase NP for enantioselective hydrolysis of naproxen methyl ester

    CSIR Research Space (South Africa)

    Steenkamp, Lucia H

    2008-12-01

    Full Text Available Although the enantioselective kinetic resolution of ester racemates of the non-steroidal antiinflammatory drug naproxen ([2-(6-methoxy-2-naphthyl) propionic acid]) is a common demonstration for biocatalysis, the enantiomeric excess of the reactions...

  1. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent.

    Science.gov (United States)

    Wikmark, Ylva; Svedendahl Humble, Maria; Bäckvall, Jan-E

    2015-03-27

    A method for determining lipase enantioselectivity in the transacylation of sec-alcohols in organic solvent was developed. The method was applied to a model library of Candida antarctica lipase A (CalA) variants for improved enantioselectivity (E values) in the kinetic resolution of 1-phenylethanol in isooctane. A focused combinatorial gene library simultaneously targeting seven positions in the enzyme active site was designed. Enzyme variants were immobilized on nickel-coated 96-well microtiter plates through a histidine tag (His6-tag), screened for transacylation of 1-phenylethanol in isooctane, and analyzed by GC. The highest enantioselectivity was shown by the double mutant Y93L/L367I. This enzyme variant gave an E value of 100 (R), which is a dramatic improvement on the wild-type CalA (E=3). This variant also showed high to excellent enantioselectivity for other secondary alcohols tested. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  2. DNA-based asymmetric catalysis : Sequence-dependent rate acceleration and enantioselectivity

    NARCIS (Netherlands)

    Boersma, Arnold J.; Klijn, Jaap E.; Feringa, Ben L.; Roelfes, Gerard

    2008-01-01

    This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to

  3. Stereoselective total synthesis of the potent anti-asthmatic compound CMI-977 (LDP-977)

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luiz Carlos; Farina, Lui Strambi; Ferreira, Marco Antonio Barbosa, E-mail: ldias@iqm.unicamp.br [Universidade de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2013-02-15

    A short and efficient stereoselective total synthesis of CMI-977 (LDP-977), a potent and orally active anti-asthmatic compound, was developed. The key steps involve a highly diastereoselective Mukaiyama oxidative cyclization, which provides the trans-THF (tetrahydrofuran) unit and a Seyferth-Gilbert homologation to construct the triple bond in the target molecule. The synthesis of the key chiral building block was performed using Jacobsen hydrolytic kinetic resolution. (author)

  4. Stereoselective total synthesis of the potent anti-asthmatic compound CMI-977 (LDP-977)

    International Nuclear Information System (INIS)

    Dias, Luiz Carlos; Farina, Lui Strambi; Ferreira, Marco Antonio Barbosa

    2013-01-01

    A short and efficient stereoselective total synthesis of CMI-977 (LDP-977), a potent and orally active anti-asthmatic compound, was developed. The key steps involve a highly diastereoselective Mukaiyama oxidative cyclization, which provides the trans-THF (tetrahydrofuran) unit and a Seyferth-Gilbert homologation to construct the triple bond in the target molecule. The synthesis of the key chiral building block was performed using Jacobsen hydrolytic kinetic resolution. (author)

  5. Enantioselective Characteristics and Montmorillonite-Mediated Removal Effects of α-Hexachlorocyclohexane in Laying Hens.

    Science.gov (United States)

    Liu, Xueke; Shen, Zhigang; Wang, Peng; Liu, Chang; Yao, Guojun; Zhou, Zhiqiang; Liu, Donghui

    2016-06-07

    α-Hexachlorocyclohexane (α-HCH) is a chiral organochlorine pesticide that is often ubiquitously detected in various environmental matrices and may be absorbed by the human body via food consumption, with serious detriments to human health. In this study, enantioselective degradation kinetics and residues of α-HCH in laying hens were investigated after a single dose of exposure to the pesticide, whereas enantioselectivity and residues of α-HCH in eggs, droppings, and various tissues were investigated after long-term exposure. Meanwhile, montmorillonite (MMT), a feed additive with high capacity of adsorption, was investigated for its ability to remove α-HCH from laying hens. Most non-brain tissues enantioselectively accumulated (-)-α-HCH, while (+)-α-HCH was preferentially accumulated in the brain. The enantiomer fractions (EFs) in most tissues gradually decreased, implying continuous depletion of (+)-α-HCH in laying hens. After 30 days of exposure and 31 days of elimination, the concentration of α-HCH in eggs and tissues of laying hens with MMT-containing feed was lower than that with MMT-free feed, indicating the removal effects of MMT for α-HCH in laying hens. The findings presented herein suggest that modified MMT may potentially be useful in reducing the enrichment of α-HCH in laying hens and eggs, thus lowering the risk of human intake of α-HCH.

  6. Synthesis of chirals regioisomers from D-mannitol: obtainment of a acetylenic alcohols mixture

    International Nuclear Information System (INIS)

    Cito, Antonia Maria das Gracas Lopes; Araujo, Bruno Quirino; Lopes, Jose Arimateia Dantas; Magalhes, Aderbal Farias; Magalhes, Eva Goncalves

    2009-01-01

    The synthesis of chiral acetylenic regioisomers was described by using an appropriate intermediate such as isopropylidene glycerol, a synthon widely used in the enantioselective syntheses. This intermediate was prepared from D-mannitol. The nine obtained compounds have been characterized by their respective spectral data. The mixture of chiral acetylenic alcohols showed activity against Escherichia coli when tested through the monitoring of CO 2 released during microbial respiration by using a conductimetric system. (author)

  7. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were

  8. The Total Synthesis Problem of linear multivariable control. II - Unity feedback and the design morphism

    Science.gov (United States)

    Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.

    1981-01-01

    Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.

  9. The Enantioselectivity of Odor Sensation: Some Examples for Undergraduate Chemistry Courses

    Science.gov (United States)

    Kraft, Philip; Mannschreck, Albrecht

    2010-01-01

    This article discusses seven chiral odorants that demonstrate the enantioselectivity of odor sensation: carvone, Celery Ketone, camphor, Florhydral, 3-methyl-3-sulfanylhexan-1-ol, muscone, and methyl jasmonate. After a general introduction of the odorant-receptor interaction and the combinatorial code of olfaction, the olfactory properties of the…

  10. The role of the achiral template in enantioselective transformations. Radical conjugate additions to alpha-methacrylates followed by hydrogen atom transfer.

    Science.gov (United States)

    Sibi, Mukund P; Sausker, Justin B

    2002-02-13

    We have evaluated various achiral templates (1a-g, 10, and 16) in conjunction with chiral Lewis acids in the conjugate addition of nucleophilic radicals to alpha-methacrylates followed by enantioselective H-atom transfer. Of these, a novel naphthosultam template (10) gave high enantioselectivity in the H-atom-transfer reactions with ee's up to 90%. A chiral Lewis acid derived from MgBr(2) and bisoxazoline (2) gave the highest selectivity in the enantioselective hydrogen-atom-transfer reactions. Non-C(2) symmetric oxazolines (20-25) have also been examined as ligands, and of these, compound 25 gave optimal results (87% yield and 80% ee). Insights into rotamer control in alpha-substituted acrylates and the critical role of the tetrahedral sulfone moiety in realizing high selectivity are discussed.

  11. Metal-free, mild, nonepimerizing, chemo- and enantio- or diastereoselective N-alkylation of amines by alcohols via oxidation/imine-iminium formation/reductive amination: a pragmatic synthesis of octahydropyrazinopyridoindoles and higher ring analogues.

    Science.gov (United States)

    Khan, Imran A; Saxena, Anil K

    2013-12-06

    A mild step and atom-economical nonepimerizing chemo- and enantioselective N-alkylating procedure has been developed via oxidation/imine-iminium formation/reduction cascade using TEMPO-BAIB-HEH-Brønsted acid catalysis in DMPU as solvent and a stoichiometric amount of amine. The optimized conditions were further extended for the nonenzymatic kinetic resolution of the chiral amine thus formed under nonenzymatic in situ hydrogen-transfer conditions using VAPOL-derived phosphoric acid (VAPOL-PA) as the Brønsted acid catalyst. The enantioselective cascade of the presented reaction was successfully utilized in the synthesis of octahydropyrazinopyridoindole and its higher ring analogues.

  12. Regio-, Diastereo-, and Enantioselective Nitroso-Diels-Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids.

    Science.gov (United States)

    Pous, Jonathan; Courant, Thibaut; Bernadat, Guillaume; Iorga, Bogdan I; Blanchard, Florent; Masson, Géraldine

    2015-09-23

    Chiral phosphoric acid-catalyzed asymmetric nitroso-Diels-Alder reaction of nitrosoarenes with carbamate-dienes afforded cis-3,6-disubstituted dihydro-1,2-oxazines in high yields with excellent regio-, diastereo-, and enantioselectivities. Interestingly, we observed that the catalyst is able not only to control the enantioselectivity but also to reverse the regioselectivity of the noncatalyzed nitroso-Diels-Alder reaction. The regiochemistry reversal and asynchronous concerted mechanism were confirmed by DFT calculations.

  13. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M200

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Kyslík, Pavel

    2006-01-01

    Roč. 1760, - (2006), s. 245-252 ISSN 0006-3002 Institutional research plan: CEZ:AV0Z50200510 Keywords : epoxide hydrolase * enantioselectivity * aspergillus niger Subject RIV: EE - Microbiology, Virology

  14. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system.

    Science.gov (United States)

    Huang, Xiaoqiang; Luo, Shipeng; Burghaus, Olaf; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2017-10-01

    We report an unusual reaction design in which a chiral bis-cyclometalated rhodium(iii) complex enables the stereocontrolled chemistry of photo-generated carbon-centered radicals and at the same time catalyzes an enantioselective sulfonyl radical addition to an alkene. Specifically, employing inexpensive and readily available Hantzsch esters as the photoredox mediator, Rh-coordinated prochiral radicals generated by a selective photoinduced single electron reduction are trapped by allyl sulfones in a highly stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed fragmented sulfonyl radicals are utilized via an enantioselective radical addition to form chiral sulfones, which minimizes waste generation.

  15. Enantioselective synthesis of both (-)-(R)-and (+)-(S)-angustureine controlled by enzymatic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Gaspar, E-mail: gaspardm@qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Qumica; Diaz, Marisa A.N. [Universidade Federal de Vicosa, MG (Brazil). Dept. de Bioquimica e Biologia Molecular; Reis, Marco A. [Centro Federal de Educacao Tecnologica (CEFET), Belo Horizonte, MG (Brazil). Dept. de Quimica

    2013-09-15

    The present study describes a new synthesis of (-)-(R)- and (+)-(S)-angustureine enantiomers, as well as of racemate ({+-})-angustureine, from a racemic {beta}-amino ester controlled by kinetic enzymatic resolution. This strategy allowed to incorporate the basic skeleton, as well as to control the single stereocenter at carbon 2 in both enantiomers. The sequence of five steps starting from the chiral {beta}-amino ester and sodium carboxylate for the synthesis of both alkaloids achieved overall yields of 80 and 44%, respectively, and produced excellent enantiomeric excesses (95 and 96%, respectively) with no protection of functional groups in any of the steps. (author)

  16. Enantioselective synthesis of both (-)-(R)-and (+)-(S)-angustureine controlled by enzymatic resolution

    International Nuclear Information System (INIS)

    Diaz, Gaspar; Diaz, Marisa A.N.; Reis, Marco A.

    2013-01-01

    The present study describes a new synthesis of (-)-(R)- and (+)-(S)-angustureine enantiomers, as well as of racemate (±)-angustureine, from a racemic β-amino ester controlled by kinetic enzymatic resolution. This strategy allowed to incorporate the basic skeleton, as well as to control the single stereocenter at carbon 2 in both enantiomers. The sequence of five steps starting from the chiral β-amino ester and sodium carboxylate for the synthesis of both alkaloids achieved overall yields of 80 and 44%, respectively, and produced excellent enantiomeric excesses (95 and 96%, respectively) with no protection of functional groups in any of the steps. (author)

  17. Total synthesis, structure, and oral absorption of a thiazole cyclic peptide, sanguinamide A

    DEFF Research Database (Denmark)

    Nielsen, Daniel S; Hoang, Huy N; Lohman, Rink-Jan

    2012-01-01

    The first total synthesis and three-dimensional solution structure are reported for sanguinamide A, a thiazole-containing cyclic peptide from the sea slug H. sanguineus. Solution phase fragment synthesis, solid phase fragment assembly, and solution macrocyclization were combined to give (1) in 10......% yield. Spectral properties were identical for the natural product, requiring revision of its structure from (2) to (1). Intramolecular transannular hydrogen bonds help to bury polar atoms, which enables oral absorption from the gut....

  18. Development of the Vinylogous Pictet-Spengler Cyclization and Total Synthesis of (±)-Lundurine A.

    Science.gov (United States)

    Nash, Aaron; Qi, Xiangbing; Maity, Pradip; Owens, Kyle; Tambar, Uttam K

    2018-04-16

    A novel vinylogous Pictet-Spengler cyclization has been developed for the generation of indole-annulated medium-sized rings. The method enables the synthesis of tetrahydroazocinoindoles with a fully substituted carbon center, a prevalent structural motif in many biologically active alkaloids. The strategy has been applied to the total synthesis of (±)-lundurine A. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enantioselective skin permeation of ibuprofen enantiomers: mechanistic insights from ATR-FTIR and CLSM studies based on synthetic enantiomers as naphthalimide fluorescent probes.

    Science.gov (United States)

    Che, Qi-en; Quan, Peng; Mu, Mao; Zhang, Xinfu; Zhao, Hanqing; Zhang, Yu; You, Song; Xiao, Yi; Fang, Liang

    2014-10-01

    The aim of this study was to investigate the mechanisms of different skin permeability of ibuprofen racemate and enantiomers. The percutaneous permeation of ibuprofen racemate and enantiomers through rabbit normal skin and damaged skin (without stratum corneum [SC]) was investigated in vitro using side-by-side diffusion cells. With the melting temperature-membrane transport model, the flux ratio of enantiomer/racemate was calculated from their thermodynamic properties obtained by differential scanning calorimetry. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) study was performed to evaluate the interaction between the enantiomers and the SC. New fluorescent probes were designed and utilized in confocal laser scanning microscopy (CLSM) study for visualization of the enantioselective permeation of the enantiomers through the intact rabbit skin. The flux of (S)-ibuprofen through normal skin was significantly higher than that of (RS)-ibuprofen and (R)-ibuprofen (p skin, there was no significant difference (p > 0.05). The predicted flux ratio of (S)-ibuprofen/(RS)-ibuprofen (2.50) was in close agreement with the experimentally determined ratio (2.48). These results were supported by ATR-FTIR and CLSM studies that indicated that a chiral environment of the skin led to the enantioselective permeation of enantiomers. The chiral nature of the SC and the different physicochemical properties of the enantiomers should be taken into account in the assessment of different skin permeability of the racemate and enantiomers. The synthetic fluorescent probes used in this study could visualize the enantioselective permeation of the chiral compounds across the skin.

  20. A DFT exploration of the enantioselective rearrangement of cyclohexene oxide to cyclohexenol

    DEFF Research Database (Denmark)

    Brandt, Peter; Norrby, Per-Ola; Andersson, Pher G.

    2003-01-01

    In this paper, we present computational results for the (1S,3R,4R)-3-(pyrrolidinyl)-methyl-2-azabicyclo[2.2.1]heptane mediated rearrangement of cyclohexene oxide. The results nicely explain the differences in enantioselectivities between catalytic and stoichiometric mode between different ligands...

  1. Nazarov cyclization initiated by peracid oxidation: the total synthesis of (+/-)-rocaglamide.

    Science.gov (United States)

    Malona, John A; Cariou, Kevin; Frontier, Alison J

    2009-06-10

    The total syntheses of aglafolin, rocagloic acid, and rocaglamide using Nazarov cyclization are described. Generation of the necessary oxyallyl cation intermediate was accomplished via peracid oxidation of an allenol ether to generate an unusual oxycarbenium ion species that undergoes cyclization. The synthesis is efficient, highly diastereoselective, and strategically distinct from previous syntheses of rocaglamide.

  2. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  3. Enantioselective apoptosis induced by individual isomers of bifenthrin in Hep G2 cells.

    Science.gov (United States)

    Liu, Huigang; Li, Juan

    2015-03-01

    Bifenthrin (BF) has been used in racemate for agricultural purposes against soil insects, leading to increased inputs into soil environments. However, most of the studies about the toxicology research on BF were performed in its racemic form. The aim of the present study was to evaluate the enantiomer-specific cis-BF-induced apoptosis and intracellular reactive oxygen species (ROS) generation on human hepatocarcinoma cells (Hep G2). The results of cell viability assay and cytoflow assay indicated an obvious enantioselective hepatocyte toxicity of 1S-cis-BF in Hep G2 cells. 1S-cis-BF also induced ROS production, up-regulated Bax protein expression and down-regulated Bcl-2 expression levels. The present study suggested that enantioselective toxicity should be evaluated on currently used chiral pesticides, such as synthetic pyrethroids. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    Science.gov (United States)

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  5. A catalytic reactor for the organocatalyzed enantioselective continuous flow alkylation of aldehydes.

    Science.gov (United States)

    Porta, Riccardo; Benaglia, Maurizio; Puglisi, Alessandra; Mandoli, Alessandro; Gualandi, Andrea; Cozzi, Pier Giorgio

    2014-12-01

    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95% ee at 25 °C), and high productivity (more than 3800 h(-1) ) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enantioselective effect of bifenthrin on antioxidant enzyme gene expression and stress protein response in PC12 cells.

    Science.gov (United States)

    Lu, Xianting

    2013-07-01

    Enantioselectivity in toxicology and the health risk of chiral xenobiotics have become frontier topics interfacing chemistry and toxicology. Our previous results showed that cis-bifenthrin (cis-BF) induced cytotoxicity and apoptosis in vitro in an enantioselective manner. However, the exact molecular mechanisms of synthetic pyrethroid-induced enantioselective apoptosis and cytotoxicity have so far received limited research attention. In the present study, the expression patterns of different genes encoding heat shock protein and antioxidant enzymes were investigated by real-time quantitative PCR in rat adrenal pheochromocytoma (PC12) cells after exposure to cis-BF and its enantiomers. The results showed that exposure to 1S-cis-BF resulted in increased transcription of HSP90, HSP70, HSP60, Cu-Zn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione-s-transferase at a concentration of 5 µm and above, while exposure to 1R-cis-BF and rac-cis-BF exhibited these effects to lesser degrees. In addition, induction of antioxidant enzyme gene expression produced by 1S-cis-BF might occur, at least in part, through activation of p38 mitogen-activated protein kinases (MAPK) and extracellular regulated kinases, while increase in stress protein response produced by 1S-cis-BF might occur through the p38 MAPK signaling pathway. The results not only suggest that enantioselectivity should be considered in evaluating the ecotoxicological effects and health risk of chiral contaminants, but also will improve the understanding of molecular mechanism for chiral chemical-induced cytotoxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Total synthesis of 4-F3t-neuroprostane and its 4-epimer

    Czech Academy of Sciences Publication Activity Database

    Auvinet, A. L.; Eignerová, Barbara; Guy, A.; Kotora, Martin; Durand, T.

    2009-01-01

    Roč. 50, č. 13 (2009), s. 1498-1500 ISSN 0040-4039 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : DPA * oxidative stress * neuroprostane * total synthesis Subject RIV: CC - Organic Chemistry Impact factor: 2.660, year: 2009

  8. Total Synthesis of Ustiloxin D Utilizing an Ammonia-Ugi Reaction.

    Science.gov (United States)

    Brown, Aaron L; Churches, Quentin I; Hutton, Craig A

    2015-10-16

    Total synthesis of the highly functionalized cyclic peptide natural product, ustiloxin D, has been achieved in a convergent manner. Our strategy incorporates an asymmetric allylic alkylation to construct the tert-alkyl aryl ether linkage between the dopa and isoleucine residues. The elaborated β-hydroxydopa derivative is rapidly converted to a linear tripeptide through an ammonia-Ugi reaction. Subsequent cyclization and global deprotection affords ustiloxin D in six steps from a known β-hydroxydopa derivative.

  9. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    Science.gov (United States)

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  10. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    Directory of Open Access Journals (Sweden)

    Yuta Isoda

    2017-05-01

    Full Text Available The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  11. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.; Ahmed, Syud M.; Coates, Geoffrey W.

    2011-01-01

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  12. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  13. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei

    2016-10-13

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  15. Total synthesis of Ivorenolide A following a base-induced elimination protocol.

    Science.gov (United States)

    Mohapatra, Debendra K; Umamaheshwar, Gonela; Rao, R Nageshwar; Rao, T Srinivasa; R, Sudheer Kumar; Yadav, Jhillu S

    2015-02-20

    A concise and stereocontrolled first total synthesis of Ivorenolide A (1) is reported in 16 longest linear steps with a 13.4% overall yield starting from (+)-diethyl tartrate (DET). Key features are base-induced elimination protocol for the construction of chiral propargyl alcohols in both fragments, Pd-catalyzed cross-coupling of terminal acetylenes, and Shiina's 2-methyl-6-nitrobezoic anhydride (MNBA) mediated macrolactonization.

  16. Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.

    Science.gov (United States)

    Borkar, Santosh Ramdas; Aidhen, Indrapal Singh

    2017-04-18

    Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.

  17. Studies of a Diazo Cyclopropanation Strategy for the Total Synthesis of (-)-Lundurine A.

    Science.gov (United States)

    Huang, Hong-Xiu; Jin, Shuai-Jiang; Gong, Jin; Zhang, Dan; Song, Hao; Qin, Yong

    2015-09-14

    The bioactive Kopsia alkaloids lundurines A-D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (-)-lundurine A has previously been achieved through a Simmons-Smith cyclopropanation strategy. Here, the total synthesis of (-)-lundurine A was carried out using a metal-catalyzed diazo cyclopropanation strategy. In order to avoid a carbene CH insertion side reaction during cyclopropanation of α-diazo- carboxylates or cyanides, a one-pot, copper-catalyzed Bamford-Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.

    Science.gov (United States)

    Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A; Schomaker, Jennifer M

    2017-08-07

    Asymmetric nitrene-transfer reactions are a powerful tool for the preparation of enantioenriched amine building blocks. Reported herein are chemo- and enantioselective silver-catalyzed aminations which transform di- and trisubstituted homoallylic carbamates into [4.1.0]-carbamate-tethered aziridines in good yields and with ee values of up to 92 %. The effects of the substrate, silver counteranion, ligand, solvent, and temperature on both the chemoselectivity and ee value were explored. Stereochemical models were proposed to rationalize the observed absolute stereochemistry of the aziridines, which undergo nucleophilic ring opening to yield enantioenriched amines with no erosion in stereochemical integrity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chiral separation and enantioselective degradation of vinclozolin in soils.

    Science.gov (United States)

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  20. Combining silver- and organocatalysis: an enantioselective sequential catalytic approach towards pyrano-annulated pyrazoles.

    Science.gov (United States)

    Hack, Daniel; Chauhan, Pankaj; Deckers, Kristina; Mizutani, Yusuke; Raabe, Gerhard; Enders, Dieter

    2015-02-11

    A one-pot asymmetric Michael addition/hydroalkoxylation sequence, catalyzed by a sequential catalytic system consisting of a squaramide and a silver salt, provides a new series of chiral pyrano-annulated pyrazole derivatives in excellent yields (up to 95%) and high enantioselectivities (up to 97% ee).

  1. A new enantioselective CE method for determination of oxcarbazepine and licarbazepine after fungal biotransformation.

    Science.gov (United States)

    Bocato, Mariana Zuccherato; Bortoleto, Marcela Armelim; Pupo, Mônica Tallarico; de Oliveira, Anderson Rodrigo Moraes

    2014-10-01

    The present work describes, for the first time, the simultaneous separation of oxcarbazepine (OXC) and its active metabolite 10-hydroxy-10,11-dihydrocarbamazepine (licarbazepine, Lic) by chiral CE. The developed method was employed to monitor the enantioselective biotransformation of OXC into its active metabolite by fungi. The electrophoretic separations were performed using 10 mmol/L of a Tris-phosphate buffer solution (pH 2.5) containing 1% w/v of β-CD phosphate sodium salt (P-β-CD) as running electrolyte, -20 kV of applied voltage and a 15°C capillary temperature. The method was linear over the concentration range of 1000-30 000 ng/mL for OXC and 75-900 ng/mL for each Lic enantiomer (r ≥ 0.9952). Within-day precision and accuracy evaluated by RSD and relative errors, respectively, were lower than 15% for all analytes. The validated method was used to evaluate the enantioselective biotransformation of OXC, mediated by fungi, into its active metabolite Lic. This study showed that the fungi Glomerella cingulata (VA1) and Beuveria bassiana were able to enantioselectively metabolize the OXC into Lic after 360 h of incubation. Biotransformation by the fungus Beuveria bassiana showed 79% enantiomeric excess for (S)-(+)-Lic, while VA1 gave an enantiomeric excess of 100% for (S)-(+)-Lic. This study opens a new route to the drug (S)-(+)-licarbazepine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Uncovering Key Structural Features of an Enantioselective Peptide-Catalyzed Acylation Utilizing Advanced NMR Techniques

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Kolmer, A.; Ilgen, J.; Schwab, M.; Kaltschnee, L.; Fredersdorf, M.; Schmidts, V.; Wende, R. C.; Schreiner, P. R.; Thiele, C. M.

    2016-01-01

    Roč. 55, č. 51 (2016), s. 15754-15759 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : conformational analysis * enantioselective acylations * NMR spectroscopy * pure shift NMR * RDCs Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  3. Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR

    CSIR Research Space (South Africa)

    Brady, D

    2004-03-04

    Full Text Available In a biocatalytic reaction the immobilized lipase ChiroCLEC-CR enantioselectively hydrolysed a naproxen ethyl ester racemate, yielding (S)-naproxen with an enantiomeric excess of more than 98%, an enantiomeric ratio (E) of more than 100...

  4. Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Jonathan D Bohbot

    2009-09-01

    Full Text Available Enantiomers differ only in the left or right handedness (chirality of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8 acts as a chiral selective receptor for the (R-(--enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs.

  5. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    Science.gov (United States)

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. First- and second-generation total synthesis of ciguatoxin CTX3C

    OpenAIRE

    Inoue, Masayuki; Miyazaki, Keisuke; Uehara, Hisatoshi; Maruyama, Megumi; Hirama, Masahiro

    2004-01-01

    More than 20,000 people suffer annually from ciguatera seafood poisoning in subtropical and tropical regions. The extremely low content of the causative neurotoxins, designated as ciguatoxins, in fish has hampered isolation, detailed biological studies, and preparation of anti-ciguatoxin antibodies for detecting these toxins. Furthermore, the large (3 nm in length) and complex molecular structure of ciguatoxins has impeded chemists from completing their total synthesis. In this article, the f...

  7. A dual Lewis base activation strategy for enantioselective carbene-catalyzed annulations.

    Science.gov (United States)

    Izquierdo, Javier; Orue, Ane; Scheidt, Karl A

    2013-07-24

    A dual activation strategy integrating N-heterocyclic carbene (NHC) catalysis and a second Lewis base has been developed. NHC-bound homoenolate equivalents derived from α,β-unsaturated aldehydes combine with transient reactive o-quinone methides in an enantioselective formal [4 + 3] fashion to access 2-benzoxopinones. The overall approach provides a general blueprint for the integration of carbene catalysis with additional Lewis base activation modes.

  8. Different effects of clopidogrel and clarithromycin on the enantioselective pharmacokinetics of sibutramine and its active metabolites in healthy subjects.

    Science.gov (United States)

    Shinde, Dhananjay D; Kim, Ho-Sook; Choi, Jae-Seok; Pan, Wei; Bae, Soo Kyung; Yeo, Chang-Woo; Shon, Ji-Hong; Kim, Dong-Hyun; Shin, Jae Gook

    2013-05-01

    In this study, we assessed the effects of clopidogrel and clarithromycin, known CYP2B6 and CYP3A inhibitors, respectively, on the enantioselective disposition of racemic sibutramine in conjunction with CYP2B6 polymorphisms in humans. Sibutramine showed enantioselective plasma profiles with consistently higher concentrations of R-enantiomers. Clopidogrel and clarithromycin significantly increased the sibutramine plasma concentration, but their effects differed between enantiomers; a 2.2-fold versus 4.1-fold increase in the AUC in S-enantiomer and 1.8-fold versus 2.0-fold for the R-enantiomer, respectively. The AUCs of S- and R-desmethyl metabolites changed significantly during the clopidogrel phase (P sibutramine was higher in subjects with the CYP2B6*6/*6 genotype, but no statistical difference was observed among the CYP2B6 genotypes. These results suggest that the enantioselective disposition of sibutramine and its active metabolites are influenced by the altered genetic and environmental factors of CYP2B6 and CYP3A activity in vivo. © The Author(s) 2013.

  9. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated l-Alanine Peptides

    Science.gov (United States)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2017-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of l-alanine peptides ( l-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+( d-Trp)( l-Ala n ) and homochiral H+( l-Trp)( l-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+( l-Trp)( l-Ala3), indicating that the proton is attached to the l-alanine peptide, and H2O loss occurs from H+( l-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+( d-Trp)( l-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+( d-Trp)( l-Ala3), the protonation site is the amino group of d-Trp, and NH3 loss and (H2O + CO) loss occur from H+( d-Trp). l-Ala peptides recognize d-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+( d-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+( d-Trp)( l-Ala3) at room temperature, whereas l-Trp dissociation was not observed in homochiral H+( l-Trp)( l-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of l-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  10. Enantioanalysis of S-deprenyl using enantioselective, potentiometric membrane electrodes based on C60 derivatives

    International Nuclear Information System (INIS)

    Stefan-van Staden, Raluca-Ioana

    2010-01-01

    Enantioselective, potentiometric membrane electrodes based on (1,2-methanofullerene C 60 )-61-carboxylic acid, diethyl (1,2-methanofullerene C 60 )-61-61-dicarboxylate and tert-butyl (1,2-methanofullerene C 60 )-61-carboxylic acid were proposed for the enantioanalysis of S-deprenyl in pharmaceutical compounds. Molecular modeling calculations were performed to prove the reliability of the proposed electrodes. The different characteristics involved in this analysis were explained, namely (i) the stability of each molecule using total energy, hardness and dipole moment, and (ii) the explanation of the mechanism of interaction using intermolecular forces (moderate hydrogen bond interactions), atomic charges and electrostatic potential. Electronic structures as well as molecular interaction have been investigated using Hartree-Fock theory, 3-21G(*) basis set. Stability and feasibility of all the generated structures were supported by their respective energy minima and fundamental frequencies.

  11. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  12. Synthesis of total protein (TP) and myosin heavy chain (HC) isozymes in pressure overloaded rabbit hearts

    International Nuclear Information System (INIS)

    Nagai, R.; Martin, B.J.; Pritzl, N.; Zak, R.; Low, R.B.; Stirewalt, W.S.; Alpert, N.R.; Litten, R.Z.

    1986-01-01

    Pulmonary artery banding (PO) leads to a rapid increase in right ventricular (RV) weight as well as a shift toward β myosin isozyme. They determined: (1) the contributions of changes in the capacity (RNA content) and efficiency of total protein synthesis to the increase in RV weight; and (2) the relative contributions of translational and pretranslational mechanisms to the shift in myosin HC isotypes. The rates of synthesis in vivo of TP, α- and β-HC were measured by a constant infusion technique using 3 H-leucine. TP synthesis was 7 +/- 2(SD) mg/day in control (RV:367 +/- 70 mg) and was increased by 2.6 fold at day 2 and 2.9 fold at day 4 following PO (p < 0.01). RV RNA content was increased by 83% at day 2 and 103% at day 4 PO (p < 0.05). The efficiency of synthesis (rate/RNA) was also significantly higher at these time points (1.4- and 1.3-fold). β-HC synthesis was 0.6 +/- 0.2 mg/day in control and increased by 2.6 fold at day 2 and 3.5 fold at day 4 following PO. In contrast, the rate of synthesis of α-HC was unchanged. The relative rates of β-HC to total HC synthesis was correlated linearly with the relative levels of β-myosin mRNA as measured by S1 nuclease mapping. They conclude that increases in the proportion of β-HC myosin following PO is due to increases in the relative amount of β-myosin mRNA and therefore involves modulation of a pretranslational mechanism

  13. Simple Aziridino Alcohols as Chiral Ligands. Enantioselective Additions of Diethylzinc to N-Diphenylphosphinoylimines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Andersson, Pher G.; Guijarro, David

    1996-01-01

    Simple chiral aziridino alcohols 2-5, easily available from L-serine, L-threonine or L-allo-threonine, have been used as ligands to promote the addition of Et(2)Zn to the diphenylphosphinoylimine 1 (Ar=Ph). Enantioselectivities of up to 94% could be obtained by proper choice of the substituents...

  14. In-silico driven engineering of enantioselectivity of a penicillin G acylase towards active pharmaceutical ingredients

    Czech Academy of Sciences Publication Activity Database

    Grulich, Michal; Brezovský, J.; Štěpánek, Václav; Palyzová, Andrea; Marešová, Helena; Zahradník, Jiří; Kyslíková, Eva; Kyslík, Pavel

    2016-01-01

    Roč. 133, Supplement 1 (2016), s. 53-59 ISSN 1381-1177 Institutional support: RVO:61388971 Keywords : Docking experiments * Enantioselectivity * Penicillin G acylase Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.269, year: 2016

  15. Total synthesis of the putative structure of the novel triquinane natural product isocapnellenone

    OpenAIRE

    Mehta, Goverdhan; Murthy, Sai Krishna A; Umarye, Jayant D

    2002-01-01

    A total synthesis of the ‘putative structure’ 7, attributed to the novel triquinane sesquiterpene isolated recently from two Buddelia species has been accomplished. The spectral data for 7 is a complete mismatch with those reported for the natural product and warrants a revision of the assigned structure.

  16. Stereoselective reactions. XXXII. Enantioselective deprotonation of 4-tert-butylcyclohexanone by fluorine-containing chiral lithium amides derived from 1-phenylethylamine and 1-(1-naphthyl)ethylamine.

    Science.gov (United States)

    Aoki, K; Koga, K

    2000-04-01

    Enantioselective deprotonation of 4-tert-butylcyclohexanone was examined using 1-phenylethylamine- and 1-(1-naphthyl)ethylamine-derived chiral lithium amides having an alkyl or a fluoroalkyl substituent at the amide nitrogen. The lithium amides having a 2,2,2-trifluoroethyl group on the amide nitrogen are easily accessible in both enantiomeric forms, and were found to induce good enantioselectivity in the present reaction.

  17. Quinones as dienophiles in the Diels-Alder reaction: history and applications in total synthesis.

    Science.gov (United States)

    Nawrat, Christopher C; Moody, Christopher J

    2014-02-17

    In the canon of reactions available to the organic chemist engaged in total synthesis, the Diels-Alder reaction is among the most powerful and well understood. Its ability to rapidly generate molecular complexity through the simultaneous formation of two carbon-carbon bonds is almost unrivalled, and this is reflected in the great number of reported applications of this reaction. Historically, the use of quinones as dienophiles is highly significant, being the very first example investigated by Diels and Alder. Herein, we review the application of the Diels-Alder reaction of quinones in the total synthesis of natural products. The highlighted examples span some 60 years from the landmark syntheses of morphine (1952) and reserpine (1956) by Gates and Woodward, respectively, through to the present day examples, such as the tetracyclines. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enantioselective analysis of proteinogenic amino acids in cerebrospinal fluid by capillary electrophoresis–mass spectrometry

    NARCIS (Netherlands)

    Prior, Amir; Sánchez-Hernández, Laura; Sastre-Toraño, Javier; Marina, Maria Luisa; de Jong, Gerhardus J.; Somsen, Govert W.

    2016-01-01

    d-Amino acids (AAs) are increasingly being recognized as essential molecules in biological systems. Enantioselective analysis of proteinogenic AAs in biological samples was accomplished by CE–MS employing β-CD as chiral selector and ESI via sheath-liquid (SL) interfacing. Prior to analysis, AAs were

  19. Total Synthesis and Stereochemical Assignment of Nostosin B

    Directory of Open Access Journals (Sweden)

    Xiaoji Wang

    2017-02-01

    Full Text Available Nostosins A and B were isolated from a hydrophilic extract of Nostoc sp. strain from Iran, which exhibits excellent tryps inhibitory activity. Nostosin A was the most potent natural tripeptide aldehyde as trypsin inhibitor up to now. Both R‐ and S‐2‐hydroxy‐4‐(4‐hydroxy‐phenyl butanoic acid (Hhpba were prepared and incorporated into the total synthesis of nostosin B, respectively. Careful comparison of the NMR spectra and optical rotation data of synthetic nostosin B (1a and 1b with the natural product led to the unambiguous identification of the R‐configuration of the Hhpba fragment, which was further confirmed by co‐injection with the authentic sample on HPLC using both reversed phase column and the chiral AD‐RH column.

  20. Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae.

    Science.gov (United States)

    Liu, Chen; LV, Xiao Tian; Zhu, Wen Xue; QU, Hao Yang; Gao, Yong Xin; Guo, Bao Yuan; Wang, Hui Li

    2013-12-01

    The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer. © 2013 Wiley Periodicals, Inc.

  1. Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qing; Shi, Haiyan; Gao, Beibei; Tian, Mingming; Hua, Xiude; Wang, Minghua, E-mail: wangmha@njau.edu.cn

    2016-01-15

    An effective method for the enantioselective determination of ethiprole enantiomers in agricultural and environmental samples was developed. The effects of solvent extraction, mobile phase and thermodynamic parameters for chiral recognition were fully investigated. Complete enantioseparation of the ethiprole enantiomers was achieved on a Lux Cellulose-2 column. The stereochemical structures of ethiprole enantiomers were also determined, and (R)-(+)-ethiprole was first eluted. The average recoveries were 82.7–104.9% with intra-day RSD of 1.7–8.2% in soil, cucumber, spinach, tomato, apple and peach under optimal conditions. Good linearity (R{sup 2} ≥ 0.9991) was obtained for all the matrix calibration curves within a range of 0.1 to 10 mg L{sup −1}. The limits of detection for both enantiomers were estimated to be 0.008 mg kg{sup −1} in soil, cucumber, spinach and tomato and 0.012 mg kg{sup −1} in apple and peach, which were lower than the maximum residue levels established in Japan. The results indicate that the proposed method is convenient and reliable for the enantioselective detection of ethiprole in agricultural and environmental samples. The behavior of ethiprole in soil was studied under field conditions and the enantioselective degradation was observed with enantiomer fraction values varying from 0.494 to 0.884 during the experiment. The (R)-(+)-ethiprole (t{sub 1/2} = 11.6 d) degraded faster than (S)-(−)-ethiprole (t{sub 1/2} = 34.7 d). This report is the first describe a chiral analytical method and enantioselective behavior of ethiprole, and these results should be extremely useful for the risk evaluation of ethiprole in food and environmental safety. - Highlights: • The ethiprole enantiomers were completely separated. • A novel method for enantioselective determination of ethiprole was developed. • The absolute configurations of ethiprole enantiomers were firstly determined. • The (R)-(+)-ethiprole was preferentially degraded in

  2. Resolution of alpha/beta-amino acids by enantioselective penicillin G acylase from Achromobacter sp

    Czech Academy of Sciences Publication Activity Database

    Grulich, Michal; Brezovský, J.; Štěpánek, Václav; Palyzová, Andrea; Kyslíková, Eva; Kyslík, Pavel

    2015-01-01

    Roč. 122, DEC 2015 (2015), s. 240-247 ISSN 1381-1177 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Penicillin G acylase * Enantioselectivity * Homologous model Subject RIV: CE - Biochemistry Impact factor: 2.189, year: 2015

  3. DNA-Accelerated Copper Catalysis of Friedel-Crafts Conjugate Addition/Enantioselective Protonation Reactions in Water

    NARCIS (Netherlands)

    García-Fernández, Almudena; Megens, Rik P.; Villarino, Lara; Roelfes, Gerard

    2016-01-01

    DNA-induced rate acceleration has been identified as one of the key elements for the success of the DNA-based catalysis concept. Here we report on a novel DNA-based catalytic Friedel-Crafts conjugate addition/enantioselective protonation reaction in water, which represents the first example of a

  4. An ylide transformation of rhodium(I) carbene: enantioselective three-component reaction through trapping of rhodium(I)-associated ammonium ylides by β-nitroacrylates.

    Science.gov (United States)

    Ma, Xiaochu; Jiang, Jun; Lv, Siying; Yao, Wenfeng; Yang, Yang; Liu, Shunying; Xia, Fei; Hu, Wenhao

    2014-11-24

    The chiral Rh(I)-diene-catalyzed asymmetric three-component reaction of aryldiazoacetates, aromatic amines, and β-nitroacrylates was achieved to obtain γ-nitro-α-amino-succinates in good yields and with high diastereo- and enantioselectivity. This reaction is proposed to proceed through the enantioselective trapping of Rh(I)-associated ammonium ylides by nitroacrylates. This new transformation represents the first example of Rh(I)-carbene-induced ylide transformation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enantioselective organo-photocatalysis mediated by atropisomeric thiourea derivatives.

    Science.gov (United States)

    Vallavoju, Nandini; Selvakumar, Sermadurai; Jockusch, Steffen; Sibi, Mukund P; Sivaguru, Jayaraman

    2014-05-26

    Can photocatalysis be performed without electron or energy transfer? To address this, organo-photocatalysts that are based on atropisomeric thioureas and display lower excited-state energies than the reactive substrates have been developed. These photocatalysts were found to be efficient in promoting the [2+2] photocycloaddition of 4-alkenyl-substituted coumarins, which led to the corresponding products with high enantioselectivity (77-96% ee) at low catalyst loading (1-10 mol%). The photocatalytic cycle proceeds by energy sharing via the formation of both static and dynamic complexes (exciplex formation), which is aided by hydrogen bonding. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium-catalyzed intermolecular Heck coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Norrby, Per-Ola; Kaukoranta, Päivi

    2008-01-01

    . The steric interactions in this transition state fully account for the enantioselectivity observed with the ligands studied. The calculations also predict relative reactivity and nonlinear mixing effects for the investigated ligands; these predictions are fully validated by experimental testing. Finally......The asymmetric Heck reaction using P,N-ligands has been studied by a combination of theoretical and experimental methods. The reaction follows Halpern-style selectivity; that is, the major isomer is produced from the least favored form of the pre-insertion intermediate. The initially formed Ph......, the low conversion observed with some catalysts was found to be caused by inactivation due to weak binding of the ligand to Pd(0). Adding monodentate PPh3 alleviated the precipitation problem without deteriorating the enantioselectivity and led to one of the most effective catalytic systems to date....

  7. Enantioselective N-Heterocyclic Carbene Catalysis via the Dienyl Acyl Azolium.

    Science.gov (United States)

    Gillard, Rachel M; Fernando, Jared E M; Lupton, David W

    2018-04-16

    Herein we report the enantioselective N-heterocyclic carbene catalyzed (4+2) annulation of the dienyl acyl azolium with enolates. The reaction exploits readily accessible acyl fluorides and TMS enol ethers to give a range of highly enantio- and diastereo-enriched cyclohexenes (most >97:3 er and >20:1 dr). The reaction was found to require high nucleophilicity NHC catalysts with mechanistic studies supporting a stepwise 1,6-addition/β-lactonization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Total Synthesis, Proof of Absolute Configuration, and Biosynthetic Origin of Stylopsal, the First Isolated Sex Pheromone of Strepsiptera

    Czech Academy of Sciences Publication Activity Database

    Lagoutte, Roman; Šebesta, Petr; Jiroš, Pavel; Kalinová, Blanka; Jirošová, Anna; Straka, J.; Černá, K.; Šobotník, Jan; Cvačka, Josef; Jahn, Ullrich

    2013-01-01

    Roč. 19, č. 26 (2013), s. 8515-8524 ISSN 0947-6539 R&D Projects: GA ČR GAP506/10/1466 Institutional support: RVO:61388963 Keywords : asymmetric synthesis * configuration determination * pheromones * total synthesis * Wittig reactions Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  9. Metabolism of styrene in the human liver in vitro: interindividual variation and enantioselectivity

    NARCIS (Netherlands)

    Wenker, M. A.; Kezić, S.; Monster, A. C.; de Wolff, F. A.

    2001-01-01

    1. The interindividual variation and enantioselectivity of the in vitro styrene oxidation by cytochrome P450 have been investigated in 20 human microsomal liver samples. Liver samples were genotyped for the CYP2E1*6 and CYP2E1*5B alleles. 2. Kinetic analysis indicated the presence of at least two

  10. One pot 'click' reactions : tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Szymanski, Wiktor; Postema, Christiaan P.; Dierckx, Rudi A.; Elsinga, Philip H.; Janssen, Dick B.; Feringa, Ben L.

    2010-01-01

    Halohydrin dehalogenase (HheC) can perform enantioselective azidolysis of aromatic epoxides to 1,2-azido alcohols which are subsequently ligated to alkynes producing chiral hydroxy triazoles in a one-pot procedure with excellent enantiomeric excess.

  11. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    Science.gov (United States)

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enantioselective analysis of citalopram and escitalopram in postmortem blood together with genotyping for CYP2D6 and CYP2C19.

    Science.gov (United States)

    Carlsson, Björn; Holmgren, Anita; Ahlner, Johan; Bengtsson, Finn

    2009-03-01

    Citalopram is marketed as a racemate (50:50) mixture of the S(+)-enantiomer and R(-)-enantiomer and the active S(+)-enantiomer (escitalopram) that possess inhibitory effects. Citalopram was introduced in Sweden in 1992 and is the most frequently used antidepressant to date in Sweden. In 2002, escitalopram was introduced onto the Swedish market for treatment of depression and anxiety disorders. The main objective of this study was to investigate S(+)-citalopram [i.e., the racemic drug (citalopram) or the enantiomer (escitalopram)] present in forensic autopsy cases positive for the presence of citalopram in routine screening using a non-enantioselective bioanalytical method. Fifty out of the 270 samples found positive by gas chromatography-nitrogen-phosphorus detection were further analyzed using enantioselective high-performance liquid chromatography. The 50 cases were genotyped for CYP2D6 and CYP2C19, as these isoenzymes are implicated in the metabolism of citalopram and escitalopram. In samples positive for racemic citalopram using the screening method for forensic autopsy cases, up to 20% would have been misinterpreted in the absence of an enantioselective method. An enantioselective method is thus necessary for correct interpretation of autopsy cases, after the enantiomer has been introduced onto the market. The percentage of poor metabolizers was 6% for CYP2D6 and 8% for CYP2C19.

  13. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  14. Cu-Mediated Stille Reactions of Sterically Congested Fragments: Towards the Total Synthesis of Zoanthamine

    DEFF Research Database (Denmark)

    Nielsen, Thomas E.; Le Quement, Sebastian; Juhl, Martin

    2005-01-01

    A study on the Stille reaction of alkenyl iodides and starmanes with structural resemblance to retrosynthetic fragments of a projected total synthesis of the marine alkaloid zoanthamine was carried out. A range of reaction conditions was examined, and a protocol developed by Corey utilizing excess...

  15. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    Science.gov (United States)

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Asymmetric Total Synthesis of Four Stereoisomers of the Sex Pheromone of the Western Corn Rootworm

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Sun

    2018-03-01

    Full Text Available A convergent synthesis of four stereoisomers of the sex pheromone of the western corn rootworm (8-methyldecan-2-yl propionate, 1 from commercially available chiral starting materials is reported. The key step was Julia–Kocienski olefination between chiral BT-sulfone and chiral aldehyde. This synthetic route provided the four stereoisomers of 1 in 24–29% total yield via a six-step sequence. The simple scale-up strategy provides a new way to achieve the asymmetric synthesis of the sex pheromone.

  17. Dissipation and enantioselective degradation of plant growth retardants paclobutrazol and uniconazole in open field, greenhouse, and laboratory soils.

    Science.gov (United States)

    Wu, Chengwang; Sun, Jianqiang; Zhang, Anping; Liu, Weiping

    2013-01-15

    Greenhouses are increasingly important in human food supply. Pesticides used in greenhouses play important roles in horticulture; however, little is known about their behavior in greenhouse environments. This work investigates the dissipation and enantioselctive degradation of plant growth retardants including paclobutrazol and uniconazole in soils under three conditions (i.e., open field, greenhouse, and laboratory). The dissipation and enantioselective degradation of paclobutrazol and uniconazole in greenhouse were different from those in open field; they were more persistent in greenhouse than in open field soil. Leaching produced by rainfall is responsible for the difference in dissipation. Thus, local environmental impacts may occur more easily inside greenhouses, while groundwater may be more contaminated in open field. Spike concentrations of 5, 10, and 20 times the concentrations of native residues were tested for the enantioselective dissipation of the two pesticides; the most potent enantioselective degradation of paclobutrazol and uniconazole occurred at the 10 times that of the native residues in the greenhouse environments and at 20 times native residues in open field environments. The higher soil activity in greenhouses than in open fields was thought to be responsible for such a difference. The environmental risk and regulation of paclobutrazol and uniconazole should be considered at the enantiomeric level.

  18. ‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis

    Science.gov (United States)

    Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.

    2010-01-01

    The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205

  19. An entry to a chiral dihydropyrazole scaffold: enantioselective [3 + 2] cycloaddition of nitrile imines.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Jasperse, Craig P

    2005-06-15

    We have developed a versatile strategy to access dihydropyrazoles in highly enantioenriched form. Dipolar cycloaddition of electron-deficient acceptors and in situ-generated nitrile imines proceeds with high regio- and enantioselectivity using 10 mol % chiral Lewis acid catalyst. A variety of dihydropyrazoles that incorporate functionality for further manipulation have been prepared.

  20. Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography.

    Science.gov (United States)

    Pentelute, Brad L; Mandal, Kalyaneswar; Gates, Zachary P; Sawaya, Michael R; Yeates, Todd O; Kent, Stephen B H

    2010-11-21

    Here we report the total synthesis of kaliotoxin by 'one pot' native chemical ligation of three synthetic peptides. A racemic mixture of D- and L-kaliotoxin synthetic protein molecules gave crystals in the centrosymmetric space group P1 that diffracted to atomic-resolution (0.95 Å), enabling the X-ray structure of kaliotoxin to be determined by direct methods.

  1. Studies toward the unique pederin family member psymberin: full structure elucidation, two alternative total syntheses, and analogs.

    Science.gov (United States)

    Feng, Yu; Jiang, Xin; De Brabander, Jef K

    2012-10-17

    Two synthetic approaches to psymberin have been accomplished. A highly convergent first generation synthesis led to the complete stereochemical assignment and demonstrated that psymberin and irciniastatin A are identical compounds. This synthesis featured a diastereoselective aldol coupling between the aryl fragment and a central tetrahydropyran core and a novel one-pot procedure to convert an amide, via intermediacy of a sensitive methyl imidate, to the N-acyl aminal reminiscent of psymberin. The highlights of the second generation synthesis include an efficient iridium-catalyzed enantioselective bisallylation of neopentyl glycol and a stepwise Sonogashira coupling/cycloisomerization/reduction sequence to construct the dihydroisocoumarin unit. The two synthetic avenues were achieved in 17-18 steps (longest linear sequence, ~14-15 isolations) from 3 fragments prepared in 7-8 (first generation) and 3-8 (second generation) steps each. This convergent approach allowed for the preparation of sufficient amounts of psymberin (~ 0.5 g) for follow-up biological studies. Meanwhile, our highly flexible strategy enabled the design and synthesis of multiple analogs, including a psymberin-pederin hybrid, termed psympederin, that proved crucial to a comprehensive understanding of the chemical biology of psymberin and related compounds that will be described in a subsequent manuscript.

  2. Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1

    NARCIS (Netherlands)

    Jong, René M. de; Rozeboom, Henriëtte J.; Kalk, Kor H.; Tang, Lixia; Janssen, Dick B.; Dijkstra, Bauke W.

    2002-01-01

    Halohydrin dehalogenases are key enzymes in the bacterial degradation of vicinal halopropanols and structurally related nematocides. Crystals of the enantioselective halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1 have been obtained at room temperature from hanging-drop

  3. Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1

    NARCIS (Netherlands)

    de Jong, RM; Rozeboom, HJ; Kalk, KH; Tang, Lixia; Janssen, DB; Dijkstra, BW

    Halohydrin dehalogenases are key enzymes in the bacterial degradation of vicinal halopropanols and structurally related nematocides. Crystals of the enantioselective halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1 have been obtained at room temperature from hanging-drop

  4. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo

    2013-05-03

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3-hydroxy-2-oxindole derivatives (e.g., CPC-1). Computational studies indicated that the observed stereoselectivity is a result of favorable secondary π-π* and H-bonding interactions in the transition state. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Total synthesis of cytochrome b562 by native chemical ligation using a removable auxiliary

    Science.gov (United States)

    Low, Donald W.; Hill, Michael G.; Carrasco, Michael R.; Kent, Stephen B. H.; Botti, Paolo

    2001-01-01

    We have completed the total chemical synthesis of cytochrome b562 and an axial ligand analogue, [SeMet7]cyt b562, by thioester-mediated chemical ligation of unprotected peptide segments. A novel auxiliary-mediated native chemical ligation that enables peptide ligation to be applied to protein sequences lacking cysteine was used. A cleavable thiol-containing auxiliary group, 1-phenyl-2-mercaptoethyl, was added to the α-amino group of one peptide segment to facilitate amide bond-forming ligation. The amine-linked 1-phenyl-2-mercaptoethyl auxiliary was stable to anhydrous hydrogen fluoride used to cleave and deprotect peptides after solid-phase peptide synthesis. Following native chemical ligation with a thioester-containing segment, the auxiliary group was cleanly removed from the newly formed amide bond by treatment with anhydrous hydrogen fluoride, yielding a full-length unmodified polypeptide product. The resulting polypeptide was reconstituted with heme and folded to form the functional protein molecule. Synthetic wild-type cyt b562 exhibited spectroscopic and electrochemical properties identical to the recombinant protein, whereas the engineered [SeMet7]cyt b562 analogue protein was spectroscopically and functionally distinct, with a reduction potential shifted by ≈45 mV. The use of the 1-phenyl-2-mercaptoethyl removable auxiliary reported here will greatly expand the applicability of total protein synthesis by native chemical ligation of unprotected peptide segments. PMID:11390992

  6. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    Science.gov (United States)

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  7. Application of 7-azaisatins in enantioselective Morita–Baylis–Hillman reaction

    Directory of Open Access Journals (Sweden)

    Qing He

    2016-02-01

    Full Text Available 7-Azaisatin and 7-azaoxindole skeletons are valuable building blocks in diverse biologically active substances. Here 7-azaisatins turned out to be more efficient electrophiles than the analogous isatins in the enantioselective Morita–Baylis–Hillman (MBH reactions with maleimides using a bifunctional tertiary amine, β-isocupreidine (β-ICD, as the catalyst. This route allows a convenient approach to access multifunctional 3-hydroxy-7-aza-2-oxindoles with high enantiopurity (up to 94% ee. Other types of activated alkenes, such as acrylates and acrolein, could also be efficiently utilized.

  8. [Development of boomerang-type intramolecular cascade reactions and application to natural product synthesis].

    Science.gov (United States)

    Takasu, K

    2001-12-01

    Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.

  9. Rhodium/chiral diene-catalyzed asymmetric 1,4-addition of arylboronic acids to chromones: a highly enantioselective pathway for accessing chiral flavanones.

    Science.gov (United States)

    He, Qijie; So, Chau Ming; Bian, Zhaoxiang; Hayashi, Tamio; Wang, Jun

    2015-03-01

    Chromone has been noted to be one of the most challenging substrates in the asymmetric 1,4-addition of α,β-unsaturated carbonyl compounds. By employing the rhodium complex associated with a chiral diene ligand, (R,R)-Ph-bod*, the 1,4-addition of a variety of arylboronic acids was realized to give high yields of the corresponding flavanones with excellent enantioselectivities (≥97% ee, 99% ee for most substrates). Ring-opening side products, which would lead to erosion of product enantioselectivity, were not observed under the stated reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.

    2012-11-13

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  11. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.; Vagin, Sergei; Anderson, Carly E.; Rieger, Bernhard

    2012-01-01

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  12. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  13. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions.

    Science.gov (United States)

    Denmark, Scott E; Kalyani, Dipannita; Collins, William R

    2010-11-10

    A systematic investigation into the Lewis base catalyzed, asymmetric, intramolecular selenoetherification of olefins is described. A critical challenge for the development of this process was the identification and suppression of racemization pathways available to arylseleniranium ion intermediates. This report details a thorough study of the influences of the steric and electronic modulation of the arylselenenyl group on the configurational stability of enantioenriched seleniranium ions. These studies show that the 2-nitrophenyl group attached to the selenium atom significantly attenuates the racemization of seleniranium ions. A variety of achiral Lewis bases catalyze the intramolecular selenoetherification of alkenes using N-(2-nitrophenylselenenyl)succinimide as the electrophile along with a Brønsted acid. Preliminary mechanistic studies suggest the intermediacy of ionic Lewis base-selenium(II) adducts. Most importantly, a broad survey of chiral Lewis bases revealed that 1,1'-binaphthalene-2,2'-diamine (BINAM)-derived thiophosphoramides catalyze the cyclization of unsaturated alcohols in the presence of N-(2-nitrophenylselenenyl)succinimide and methanesulfonic acid. A variety of cyclic seleno ethers were produced in good chemical yields and in moderate to good enantioselectivities, which constitutes the first catalytic, enantioselective selenofunctionalization of unactivated olefins.

  14. Enantioselective Intramolecular CH-Insertions upon Cu-Catalyzed Decomposition of Phenyliodonium Ylides

    Directory of Open Access Journals (Sweden)

    Christelle Boléa

    2001-02-01

    Full Text Available The Cu-catalyzed intramolecular CH insertion of phenyliodonium ylide 5b has been investigated at 0° C in the presence of several chiral ligands. Enantioselectivities vary in the range of 38–72 %, and are higher than those resulting from reaction of the diazo compound 5c at 65° C. The results are consistent with a carbenoid mechanism for Cu-catalyzed decomposition of phenyliodonium ylides.

  15. Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes.

    Science.gov (United States)

    Haydl, Alexander M; Xu, Kun; Breit, Bernhard

    2015-06-08

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with terminal allenes gives access to enantioenriched secondary and tertiary allylic pyrazoles, which can be employed for the synthesis of medicinally important targets. The reaction tolerates a large variety of functional groups and labelling experiments gave insights into the reaction mechanism. This new methodology was further applied in a highly efficient synthesis of JAK 1/2 inhibitor (R)-ruxolitinib. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Equilibrium Studies on Enantioselective Liquid-Liquid Amino Acid Extraction Using a Cinchona Alkaloid Extractant

    NARCIS (Netherlands)

    Schuur, Boelo; Winkelman, Jozef G. M.; Heeres, Hero J.

    2008-01-01

    The enantioselective extraction of aqueous 3,5-dinitrobenzoyl-R,S-leucine (A(R,S)) by a cinchona alkaloid extractant (C) in 1,2-dichloroethane was studied at room temperature (294 K) in a batch system for a range of intake concentrations (10(-4)-10(-3) mol/L) and pH values (3.8-6.6). The

  17. Enantioselective analysis of drugs: contributions of high-performance liquid chromatography and capillary electrophoresis

    OpenAIRE

    Bonato, Pierina Sueli; Jabor, Valquíria Aparecida Polisel; Gaitani, Cristiane Masetto de

    2005-01-01

    The demand for analytical methods suitable for accurate and reproducible determination of drug enantiomers has increased significantly in the last years. High-performance liquid chromatography (HPLC) using chiral stationary phases and capillary electrophoresis (CE) are the most important techniques used for this purpose. In this paper, the fundamental aspects of chiral separations using both techniques are presented. Some important aspects for the development of enantioselective methods, part...

  18. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  19. Total synthesis of (±)-divanillyltetrahydrofuran ferulate

    Indian Academy of Sciences (India)

    Administrator

    College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China ... Synthesis; sesquilignan; stobbe reaction; divanillyltetrahydrofuran ferulate. 1. .... 500 MHz) δ: 2⋅44−2⋅50 (m, 4H, 2 × ArCH2CH),.

  20. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    Science.gov (United States)

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  1. Application of a Heterogeneous Chiral Titanium Catalyst Derived from Silica-Supported 3-Aryl H8-BINOL to Enantioselective Alkylation and Arylation of Aldehydes.

    Science.gov (United States)

    Akai, Junichiro; Watanabe, Satoshi; Michikawa, Kumiko; Harada, Toshiro

    2017-07-07

    A 3-aryl H 8 -BINOL was grafted on the surface of silica gel using a hydrosilane derivative as a precursor, and the resulting silica-supported ligand (6 mol %) was employed in the enantioselective alkylation and arylation of aldehydes in the presence of Ti(O i Pr) 4 . The reactions using Et 2 Zn, Et 3 B, and aryl Grignard reagents all afforded the corresponding adducts in high enantioselectivities and yields. The silica-immobilized titanium catalyst could be reused up to 14 times without appreciable deterioration of the activity.

  2. Sustainable and Continuous Synthesis of Enantiopure l-Amino Acids by Using a Versatile Immobilised Multienzyme System.

    Science.gov (United States)

    Velasco-Lozano, Susana; da Silva, Eunice S; Llop, Jordi; López-Gallego, Fernando

    2018-02-16

    The enzymatic synthesis of α-amino acids is a sustainable and efficient alternative to chemical processes, through which achieving enantiopure products is difficult. To more address this synthesis efficiently, a hierarchical architecture that irreversibly co-immobilises an amino acid dehydrogenase with polyethyleneimine on porous agarose beads has been designed and fabricated. The cationic polymer acts as an irreversible anchoring layer for the formate dehydrogenase. In this architecture, the two enzymes and polymer colocalise across the whole microstructure of the porous carrier. This multifunctional heterogeneous biocatalyst was kinetically characterised and applied to the enantioselective synthesis of a variety of canonical and noncanonical α-amino acids in both discontinuous (batch) and continuous modes. The co-immobilised bienzymatic system conserves more than 50 % of its initial effectiveness after five batch cycles and 8 days of continuous operation. Additionally, the environmental impact of this process has been semiquantitatively calculated and compared with the state of the art. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase.

    Science.gov (United States)

    Siódmiak, Tomasz; Mangelings, Debby; Vander Heyden, Yvan; Ziegler-Borowska, Marta; Marszałł, Michał Piotr

    2015-03-01

    Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.

  4. The limits to biocatalysis: pushing the envelope.

    Science.gov (United States)

    Sheldon, Roger A; Brady, Dean

    2018-06-12

    In the period 1985 to 1995 applications of biocatalysis, driven by the need for more sustainable manufacture of chemicals and catalytic, (enantio)selective methods for the synthesis of pharmaceutical intermediates, largely involved the available hydrolases. This was followed, in the next two decades, by revolutionary developments in protein engineering and directed evolution for the optimisation of enzyme function and performance that totally changed the biocatalysis landscape. In the same period, metabolic engineering and synthetic biology revolutionised the use of whole cell biocatalysis in the synthesis of commodity chemicals by fermentation. In particular, developments in the enzymatic enantioselective synthesis of chiral alcohols and amines are highlighted. Progress in enzyme immobilisation facilitated applications under harsh industrial conditions, such as in organic solvents. The emergence of biocatalytic or chemoenzymatic cascade processes, often with co-immobilised enzymes, has enabled telescoping of multi-step processes. Discovering and inventing new biocatalytic processes, based on (meta)genomic sequencing, evolving enzyme promiscuity, chemomimetic biocatalysis, artificial metalloenzymes, and the introduction of non-canonical amino acids into proteins, are pushing back the limits of biocatalysis function. Finally, the integral role of biocatalysis in developing a biobased carbon-neutral economy is discussed.

  5. Rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes.

    Science.gov (United States)

    Li, Changkun; Kähny, Matthias; Breit, Bernhard

    2014-12-08

    A rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes to give branched N-allyl 2-pyridones is reported. Preliminary mechanistic studies support the hypothesis that the reaction was initiated from the more acidic 2-hydroxypyridine form, and the initial kinetic O-allylation product was finally converted into the thermodynamically more stable N-allyl 2-pyridones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis

    NARCIS (Netherlands)

    Droge, MJ; Bos, R; Quax, WJ

    Carboxylesterase NP of Bacillus subtilis Thai 1-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene

  7. Influence of gasoline inhalation on the enantioselective pharmacokinetics of fluoxetine in rats.

    Science.gov (United States)

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; Lepera, José Salvador

    2013-03-01

    Fluoxetine is used clinically as a racemic mixture of (+)-(S) and (-)-(R) enantiomers for the treatment of depression. CYP2D6 catalyzes the metabolism of both fluoxetine enantiomers. We aimed to evaluate whether exposure to gasoline results in CYP2D inhibition. Male Wistar rats exposed to filtered air (n = 36; control group) or to 600 ppm of gasoline (n = 36) in a nose-only inhalation exposure chamber for 6 weeks (6 h/day, 5 days/week) received a single oral 10-mg/kg dose of racemic fluoxetine. Fluoxetine enantiomers in plasma samples were analyzed by a validated analytical method using LC-MS/MS. The separation of fluoxetine enantiomers was performed in a Chirobiotic V column using as the mobile phase a mixture of ethanol:ammonium acetate 15 mM. Higher plasma concentrations of the (+)-(S)-fluoxetine enantiomer were found in the control group (enantiomeric ratio AUC((+)-(S)/(-)-(R)) = 1.68). In animals exposed to gasoline, we observed an increase in AUC(0-∞) for both enantiomers, with a sharper increase seen for the (-)-(R)-fluoxetine enantiomer (enantiomeric ratio AUC((+)-(S)/(-)-(R)) = 1.07), resulting in a loss of enantioselectivity. Exposure to gasoline was found to result in the loss of enantioselectivity of fluoxetine, with the predominant reduction occurring in the clearance of the (-)-(R)-fluoxetine enantiomer (55% vs. 30%). Copyright © 2013 Wiley Periodicals, Inc.

  8. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  9. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    Science.gov (United States)

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  10. Stereo-controlled synthesis of polyheterocycles via the diene-transmissive hetero-Diels-Alder reaction of β,γ-unsaturated α-keto esters.

    Science.gov (United States)

    Otani, Takashi; Tamai, Yumiko; Seki, Kazunori; Kikuchi, Tomohiro; Miyazawa, Taiichiro; Saito, Takao

    2015-06-07

    We describe the stereoselective synthesis of polyring-fused heterocyclic compounds based on diene-transmissive hetero-Diels-Alder reactions utilizing β,γ-unsaturated α-keto esters. This protocol involves the initial endo- or exo-selective Diels-Alder (DA) reactions with electron-rich dienophiles, methylenation of the ester carbonyl groups with the Tebbe reagent, and a stereoselective second DA reaction with electron-deficient dienophiles. The use of enantioselective DA reactions in the initial reaction enables access to chiral polyring-fused heterocyclic compounds with multiple chiral centres.

  11. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The methodol...... the Suzuki cross-coupling reaction to the isomerization/N-acyliminium cyclization sequence. Finally, diastereo- and enantioselective versions of the title reaction have been examined using substrate control (with dr >15: 1) and asymmetric catalysis (ee up to 57%), respectively...

  12. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  13. Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide

    Directory of Open Access Journals (Sweden)

    Peter H. Seeberger

    2017-01-01

    Full Text Available The Gram-positive bacterium Streptococcus pneumoniae causes severe disease globally. Vaccines that prevent S. pneumoniae infections induce antibodies against epitopes within the bacterial capsular polysaccharide (CPS. A better immunological understanding of the epitopes that protect from bacterial infection requires defined oligosaccharides obtained by total synthesis. The key to the synthesis of the S. pneumoniae serotype 12F CPS hexasaccharide repeating unit that is not contained in currently used glycoconjugate vaccines is the assembly of the trisaccharide β-D-GalpNAc-(1→4-[α-D-Glcp-(1→3]-β-D-ManpNAcA, in which the branching points are equipped with orthogonal protecting groups. A linear approach relying on the sequential assembly of monosaccharide building blocks proved superior to a convergent [3 + 3] strategy that was not successful due to steric constraints. The synthetic hexasaccharide is the starting point for further immunological investigations.

  14. Separation of racemic mixture by ultrafiltration of enantioselective micelles. 1 Effect of pH on separation and regeneration

    NARCIS (Netherlands)

    Overdevest, P.E.M.; Bruin, de T.J.M.; Riet, van 't K.; Keurentjes, J.T.F.; Padt, van der A.

    2001-01-01

    Many enantiomer separation systems are studied to meet the increasing demand for enantiopure compounds. One way to obtain pure enantiomers is to apply enantioselective micelles in ultrafiltration systems. We have studied the separation of phenylalanine (Phe) enantiomers by the ultrafiltration of

  15. An Approach to Preparation of trans-DHQs via Ring-Opening of meso-N-Sulfonylaziridines

    DEFF Research Database (Denmark)

    Nolsøe, Jens Mortansson Jelstrup; Riegert, David; Müller, Paul

    2011-01-01

    As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13 was obtai......As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13...

  16. Biosynthesis and Total Synthesis of Pyrronazol B: a Secondary Metabolite from Nannocystis pusilla.

    Science.gov (United States)

    Witte, Swjatoslaw N R; Hug, Joachim J; Géraldy, Magalie N E; Müller, Rolf; Kalesse, Markus

    2017-11-13

    The first stereoselective total synthesis of the natural product pyrronazol B, which contains a chlorinated pyrrole-oxazole-pyrone framework, has been achieved. Genome sequencing of the myxobacterial producer strain Nannocystis pusilla Ari7 led to the identification of the putative biosynthetic gene cluster. The proposed biosynthetic pathway was supported by feeding experiments with stable isotopes of three biosynthetic building blocks, namely l-proline, l-serine, and l-methionine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enantioselective behaviour of tetraconazole during strawberry wine-making process.

    Science.gov (United States)

    Liu, Na; Pan, Xinglu; Zhang, Shuang; Ji, Mingshan; Zhang, Zhihong

    2018-05-01

    The fate of tetraconazole enantiomers in strawberries during wine-making process was studied. The residues were determined by ultra-performance convergence chromatography tandem triple quadrupole mass spectrometry after each process steps. Results indicated that there was significant enantioselective dissipation of tetraconazole enantiomers during the fermentation process. And (-)-tetraconazole degraded faster than (+)-tetraconazole. The half-lives of (-)-tetraconazole and (+)-tetraconazole were 3.12, 3.76 days with washing procedure and 3.18, 4.05 days without washing procedure. The processing factors of strawberry wine samples after each step were generally less than 1. In particular, the processing factors of the fermentation process were the lowest. The results could help facilitate more accurate risk assessments of tetraconazole during wine-making process. © 2018 Wiley Periodicals, Inc.

  18. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Directory of Open Access Journals (Sweden)

    Patrícia de O. Carvalho

    2005-08-01

    Full Text Available Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S-active acid (ee = 6.1% and conversion value (c = 20% in the esterification of (R,S-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2 and commercial lipase from Candida antarctica (E = 20 were employed.

  19. Total synthesis of crocacins A, C and D: new antibiotics isolated from Chondromyces crocatus and Chondromyces pediculatus

    International Nuclear Information System (INIS)

    Oliveira, Luciana G. de; Dias, Luiz C.; Rosso, Giovanni B.

    2008-01-01

    This review describes the endeavors that led to the total synthesis of a novel class of antibiotic compounds: the crocacins A-D. Other aspects such as isolation, structural elucidation as well as the biological activities are also presented. (author)

  20. Total synthesis of ciguatoxin and 51-hydroxyCTX3C.

    Science.gov (United States)

    Inoue, Masayuki; Miyazaki, Keisuke; Ishihara, Yuuki; Tatami, Atsushi; Ohnuma, Yuyu; Kawada, Yuuya; Komano, Kazuo; Yamashita, Shuji; Lee, Nayoung; Hirama, Masahiro

    2006-07-26

    Ciguatoxins, the principal causative toxins of ciguatera seafood poisoning, are large ladder-like polycyclic ethers with the 13 ether rings ranging from five- to nine-membered. In this paper, we describe the total synthesis of the two most toxic members of the ciguatoxin family, ciguatoxin 1 and 51-hydroxyCTX3C 2, based on a unified synthetic strategy. The key features in our syntheses were (i) direct construction of the O,S-acetal from the corresponding left and right wing fragments (3, 4, 14); (ii) stereo- and chemoselective radical reaction of the alpha-oxyradical with pentafluorophenyl acrylate to achieve cyclization of the seven-membered G-ring; (iii) ring-closing metathesis reaction to build the nine-membered F-ring; and (iv) an efficient protective group strategy using the oxidatively removable 2-naphthylmethyl groups.

  1. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    Science.gov (United States)

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  2. The total synthesis of calcium atorvastatin.

    Science.gov (United States)

    Dias, Luiz C; Vieira, Adriano S; Barreiro, Eliezer J

    2016-02-21

    A practical and convergent asymmetric route to calcium atorvastatin (1) is reported. The synthesis of calcium atorvastatin (1) was performed using the remote 1,5-anti asymmetric induction in the boron-mediated aldol reaction of β-alkoxy methylketone (4) with pyrrolic aldehyde (3) as a key step. Calcium atorvastatin was obtained from aldehyde (3) after 6 steps, with a 41% overall yield.

  3. Asymmetric Synthesis of Potential Precursors of the HIV Drug MC1220 and Its Analogues by Hydrogenation of (1-Arylvinyl)pyrimidines

    DEFF Research Database (Denmark)

    Loksha, Yasser M.; Pedersen, Erik B.

    2018-01-01

    Because MC1220 is a promising microbicide with anti-HIV-1 activity, the possibility for asymmetric synthesis of its potential precursors is explored. Here, we investigate asymmetric reduction of the vinyl double bond of 6-(1-arylvinyl)pyrimidine derivatives to their corresponding ethylidene analo...... analogues. Catalysts with ligands bearing trivalent phosphorus ligating the soft metals rhodium(I), ruthenium(II), or iridium(I) are used for asymmetric reduction of the vinyl derivatives 5a-e. The enantioselective reduction reaches 92% ee and about 71% conversion for reduction of the 6...

  4. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography.

    Science.gov (United States)

    Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock

    2016-11-10

    Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  5. Total synthesis of complestatin: development of a Pd(0)-mediated indole annulation for macrocyclization.

    Science.gov (United States)

    Shimamura, Hiroyuki; Breazzano, Steven P; Garfunkle, Joie; Kimball, F Scott; Trzupek, John D; Boger, Dale L

    2010-06-09

    Full details of the initial development and continued examination of a powerful intramolecular palladium(0)-mediated indole annulation for macrocyclization closure of the strained 16-membered biaryl ring system found in complestatin (1, chloropeptin II) and the definition of factors impacting its intrinsic atropodiastereoselectivity are described. Its examination and use in an alternative, second-generation total synthesis of complestatin are detailed in which the order of the macrocyclization reactions was reversed from our first-generation total synthesis. In this approach and with the ABCD biaryl ether ring system in place, the key Larock cyclization was conducted with substrate 36 (containing four phenols, five secondary amides, one carbamate, and four labile aryl chlorides) and provided the product 37 (56%) exclusively as a single atropisomer (>20:1, detection limits) possessing the natural (R)-configuration. In this instance, the complexity of the substrate and the reverse macrocyclization order did not diminish the atropodiastereoselectivity; rather, it provided an improvement over the 4:1 selectivity that was observed with the analogous substrate used to provide the isolated DEF ring system in our first-generation approach. Just as significant, the atroposelectivity represents a complete reversal of the diasteroselectivity observed with analogous macrocyclizations conducted using a Suzuki biaryl coupling.

  6. Highly Convergent Total Synthesis of (+)-Lithospermic Acid via a Late-Stage Intermolecular C–H Olefination

    Science.gov (United States)

    Wang, Dong-Hui; Yu, Jin-Quan

    2011-01-01

    The total synthesis of (+)-lithospermic acid is reported, which exploits two successive C–H activation reactions as the key steps. Rh-catalyzed carbene C–H insertion reaction using Davies’ catalyst built the dihydrobenzofuran core, and a late-stage intermolecular C–H olefination coupled the olefin unit with the dihydrobenzofuran core to construct the molecule in a highly convergent manner. PMID:21443224

  7. Total synthesis of (-)-basiliskamide A and NMR studies on the conversion of basiliskamide A to basiliskamide B

    International Nuclear Information System (INIS)

    Dias, Luiz C.; Goncalves, Caroline C.S.

    2010-01-01

    We describe herein our approach to the total synthesis of the antifungal polyketide (-)-basiliskamide A, as well as 1 H NMR studies on the migration of the cinnamoyl side chain of basiliskamide A to form basiliskamide B in CDCl 3 solution. (author)

  8. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    Science.gov (United States)

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. © 2013 Wiley Periodicals, Inc.

  9. Activation of lipase from .I.Geotrichum candidum./I. and its enantioselectivity towards xenobiotic substrates

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Zarevúcka, Marie; Demnerová, K.

    2003-01-01

    Roč. 97, č. 5 (2003), s. 293-294 ISSN 0009-2770. [Sigma-Aldrich konference mladých chemiků, biochemiků a molekulárních biologů /3./. 04.06.2003-07.06.2003, Devět skal - Žďárské vrchy] R&D Projects: GA MŠk OC D13.10 Institutional research plan: CEZ:AV0Z4055905 Keywords : lipase * enantioselectivity Subject RIV: CC - Organic Chemistry

  10. Total synthesis of sannanine and analogues thereof

    Indian Academy of Sciences (India)

    BADHER NAVEEN

    2018-03-02

    Mar 2, 2018 ... further characterized HRMS and IR spectral analysis. For all the newly synthesized by solid ..... Burst in a Model of Gouty Arthritis J. Nat. Prod. 70. 936. 3. ... Synthesis, Spectroscopic Characterisation, X-ray Struc- ture and DFT ...

  11. Divergent solid-phase synthesis of natural product-inspired bipartite cyclodepsipeptides : total synthesis of seragamide A

    NARCIS (Netherlands)

    Arndt, H.-D.; Rizzo, S.; Nöcker, Chr.; Wackchaure, V.N.; Milroy, L.G.; Bieker, V.; Calderon, A.; Tran, T.T.N.; Brand, S.; Dehmelt, L.; Waldmann, H.

    2015-01-01

    Macrocyclic natural products (NPs) and analogues thereof often show high affinity, selectivity, and metabolic stability, and methods for the synthesis of NP-like macrocycle collections are of major current interest. We report an efficient solid-phase/cyclorelease method for the synthesis of a

  12. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is Enantioselectively Oxidized to Hydroxylated Metabolites by Rat Liver Microsomes

    Science.gov (United States)

    Wu, Xianai; Pramanik, Ananya; Duffel, Michael W.; Hrycay, Eugene G.; Bandiera, Stelvio M.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela

    2011-01-01

    Developmental exposure to multiple-ortho substituted polychlorinated biphenyls (PCBs) causes adverse neurodevelopmental outcomes in laboratory animals and humans by mechanisms involving the sensitization of Ryanodine receptors (RyRs). In the case of PCB 136, the sensitization of RyR is enantiospecific, with only (-)-PCB 136 being active. However, the role of enantioselective metabolism in the developmental neurotoxicity of PCB 136 is poorly understood. The present study employed hepatic microsomes from phenobarbital (PB-), dexamethasone (DEX-) and corn oil (VEH-)treated male Sprague-Dawley rats to investigate the hypothesis that PCB 136 atropisomers are enantioselectively metabolized by P450 enzymes to potentially neurotoxic, hydroxylated PCB 136 metabolites. The results demonstrated the time- and isoform-dependent formation of three metabolites, with 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) being the major metabolite. The formation of 5-OH-PCB 136 increased with the activity of P450 2B enzymes in the microsomal preparation, which is consistent with PCB 136 metabolism by rat P450 2B1. The minor metabolite 4-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol) was produced by a currently unidentified P450 enzymes. An enantiomeric enrichment of (-)-PCB 136 was observed in microsomal incubations due to the preferential metabolism of (+)-PCB 136 to the corresponding 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) atropisomer. 4-OH-PCB 136 displayed an enrichment of the atropisomer formed from (-)-PCB 136; however, the enrichment of this metabolite atropisomer didn't affect the enantiomeric enrichment of the parent PCB because 4-OH-PCB 136 is only a minor metabolite. Although the formation of 5- and 4-OH-PCB 136 atropisomers increased with time, the enantioselective formation of the OH-PCB metabolites resulted in constant enantiomeric enrichment, especially at later incubation times. These observations not only demonstrate that the chiral signatures of

  13. Total synthesis of fully tritiated Leu-enkephalin by enzymatic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hellio, F.; Lecocq, G.; Morgat, J.L.; Gueguen, P. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Biochimie)

    1990-09-01

    This paper describes the total enzymatic synthesis of Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) in which all residues were labelled with tritium. Carboxypeptidase Y from Saccharomyces cerevisiae was the coupling enzyme. ({sup 3}H)-Tyr-NH{sub 2}, ({sup 3}H)-Gly-Oet, ({sup 3}H)-Phe-NH{sub 2} and ({sup 3}H)-Leu-NH{sub 2} were prepared with specific radioactivities ranging between 20 and 60 Ci/mmol (740 to 2220 GBq/mmol). Using a microscale procedure, we obtained a fully tritiated hormone having a specific radioactivity equal to 139 Ci/mmol (5143 GBq/mmol), in agreement with the summation of the specific radioactivities of constituting residue. The radioactive hormone had antigenic properties identical to those of native Leu-enkephalin. It also bound to rat brain opiate receptors like the parental hormone. (author).

  14. Nucleophilic Tetrafluoroethylation Employing in Situ Formed Organomagnesium Reagents

    Czech Academy of Sciences Publication Activity Database

    Budinská, A.; Václavík, Jiří; Matoušek, V.; Beier, P.

    2016-01-01

    Roč. 18, č. 22 (2016), s. 5844-5847 ISSN 1523-7060 Institutional support: RVO:61388971 Keywords : ENANTIOSELECTIVE SYNTHESIS * FLUORINATED SULFONES * ORGANIC-SYNTHESIS Subject RIV: EE - Microbiology, Virology Impact factor: 6.579, year: 2016

  15. Nucleophilic Tetrafluoroethylation Employing in Situ Formed Organomagnesium Reagents

    Czech Academy of Sciences Publication Activity Database

    Budinská, Alena; Václavík, Jiří; Matoušek, V.; Beier, Petr

    2016-01-01

    Roč. 18, č. 22 (2016), s. 5844-5847 ISSN 1523-7060 Institutional support: RVO:61388963 Keywords : enantioselective synthesis * fluorinated sulfones * organic synthesis Subject RIV: CC - Organic Chemistry Impact factor: 6.579, year: 2016

  16. Combining the [2,3] Sigmatropic Rearrangement and Ring-Closing Metathesis Strategies for the Synthesis of Spirocyclic Alkaloids. A Short and Efficient Route to (+/-)-Perhydrohistrionicotoxin

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars; Poulsen, Anders

    1999-01-01

    This paper describes the use of selenium-based [2,3] sigmatropic rearrangement in combination with ruthenium-catalyzed ring-closing metathesis (RCM) for the synthesis of azaspiro ring systems, as exemplified by the reactions of model substrates 5 and 6. The methodology has been applied to a short...... is potentially enantioselective, and key steps were the [2,3] sigmatropic rearrangement of 11 to 12 via the corresponding allylic selenide (86% yield) and ruthenium-catalyzed RCM of 13 to 14 (80%). (C) 1999 Elsevier Science Ltd. All rights reserved....

  17. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    Science.gov (United States)

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.

  18. Total synthesis of [7-14C]-(+-)-colchicine

    International Nuclear Information System (INIS)

    Pontikis, Renee; Nguyenhoang Nam; Hoellinger, Henri

    1989-01-01

    The synthesis of (±)-colchicine labelled with carbon-14 at the 7-position of the B ring was achieved by a sixteen step sequence with an overall radiochemical yield of 2.5% from [Ba 14 CO 3 ] (Specific activity: 55 mCi-mmol -1 ). (author)

  19. Total synthesis of five lipoteichoic acids of Clostridium difficile

    DEFF Research Database (Denmark)

    Hogendorf, Wouter Frederik Johan; Gisch, Nicolas; Schwudke, Dominik

    2014-01-01

    The emergence of hypervirulent resistant strains have made Clostridium difficile a notorious nosocomial pathogen and has resulted in a renewed interest in preventive strategies, such as vaccines based on (synthetic) cell wall antigens. Recently, the structure of the lipoteichoic acid (LTA......) of this species has been elucidated. Additionally, this LTA was found to induce the formation of protective antibodies against C. difficile in rabbits and mice. The LTA from C. difficile is isolated as a microheterogenous mixture, differing in size and composition, impeding any structure-activity relationship...... studies. To ensure reliable biological results, pure and well-defined synthetic samples are required. In this work the total synthesis of LTAs from C. difficile with defined chain length is described and the initial biological results are presented....

  20. Proof of concept for continuous enantioselective liquid-liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent

    NARCIS (Netherlands)

    Susanti, S.; Meinds, Tim G.; Pinxterhuis, Erik B.; Schuur, Boelo; De Vries, Johannes G.; Feringa, Ben L.; Winkelman, Jozef G.M.; Yue, Jun; Heeres, Hero J.

    2017-01-01

    The use of capillary microreactors for enantioselective liquid-liquid extraction (ELLE) was successfully demonstrated using a model system consisting of a buffered aqueous amino acid derivative (3,5-dinitrobenzoyl-(R,S)-leucine) solution (phosphate buffer, pH 6.58) and a chiral cinchona alkaloid

  1. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  2. Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary.

    Science.gov (United States)

    Yao, Qi-Jun; Zhang, Shuo; Zhan, Bei-Bei; Shi, Bing-Feng

    2017-06-01

    Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed C-H olefination, using tert-leucine as an inexpensive, catalytic, and transient chiral auxiliary, has been realized. This strategy provides a highly efficient and straightforward access to a broad range of enantioenriched biaryls in good yields (up to 98 %) with excellent enantioselectivities (95 to >99 % ee). Kinetic resolution of trisubstituted biaryls bearing sterically more demanding substituents is also operative, thus furnishing the optically active olefinated products with excellent selectivity (95 to >99 % ee, s-factor up to 600). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly Enantioselective Production of Chiral Secondary Alcohols Using Lactobacillus paracasei BD101 as a New Whole Cell Biocatalyst and Evaluation of Their Antimicrobial Effects.

    Science.gov (United States)

    Yılmaz, Durmuşhan; Şahin, Engin; Dertli, Enes

    2017-11-01

    Chiral secondary alcohols are valuable intermediates for many important enantiopure pharmaceuticals and biologically active molecules. In this work, we studied asymmetric reduction of aromatic ketones to produce the corresponding chiral secondary alcohols using lactic acid bacteria (LAB) as new biocatalysts. Seven LAB strains were screened for their ability to reduce acetophenones to their corresponding alcohols. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful at reducing the ketones to the corresponding alcohols. The reaction conditions were further systematically optimized for this strain and high enantioselectivity (99%) and very good yields were obtained. These secondary alcohols were further tested for their antimicrobial activities against important pathogens and significant levels of antimicrobial activities were observed although these activities were altered depending on the secondary alcohols as well as their enantiomeric properties. The current methodology demonstrates a promising and alternative green approach for the synthesis of chiral secondary alcohols of biological importance in a cheap, mild, and environmentally useful process. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  4. A Concise Total Synthesis of S-(+)-Tylophorine

    Institute of Scientific and Technical Information of China (English)

    JIN,Zhong; WANG,Qing-Min; LI,Hao; LIU,Yu-Xiu; LI,Shi-Pu; HUANG,Run-Qiu

    2004-01-01

    @@ Phenanthroindolizidine alkaloids, which exhibit extensively biological properties, are widely present at various plants of the Asclepiadaceae family.[1] The significantly biological importance of these natural products has attracted considerable synthetic efforts.[2] We herein report an efficiently asyinmetric synthesis of S-(+)-tylophorine (1), as a typically representative alkaloids.

  5. Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm.

    Science.gov (United States)

    Chang, Jing; Wang, Yinghuan; Wang, Huili; Li, Jianzhong; Xu, Peng

    2016-02-01

    In this study, the bioavailability and enantioselectivity differences between bifenthrin (BF, typeⅠpyrethroid) and lambad-cyhalothrin (LCT, type Ⅱ pyrethroid) in earthworm (Eisenia fetida) were investigated. The bio-soil accumulation factors (BSAFs) of BF was about 4 times greater than that of LCT. LCT was degraded faster than BF in soil while eliminated lower in earthworm samples. Compound sorption plays an important role on bioavailability in earthworm, and the soil-adsorption coefficient (K(oc)) of BF and LCT were 22 442 and 42 578, respectively. Metabolic capacity of earthworm to LCT was further studied as no significant difference in the accumulation of LCT between the high and low dose experiment was found. 3-phenoxybenzoic acid (PBCOOH), a metabolite of LCT produced by earthworm was detected in soil. The concentration of PBCOOH at high dose exposure was about 4.7 times greater than that of in low dose level at the fifth day. The bioaccumulation of BF and LCT were both enantioselective in earthworm. The enantiomer factors of BF and LCT in earthworm were approximately 0.12 and 0.65, respectively. The more toxic enantiomers ((+)-BF and (-)-LCT) had a preferential degradation in earthworm and leaded to less toxicity on earthworm for racemate exposure. In combination with other studies, a liner relationship between Log BSAF(S) and Log K(ow) was observed, and the Log BSAF(S) decreased with the increase of Log K(ow). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography

    Directory of Open Access Journals (Sweden)

    Nicole Riddell

    2016-11-01

    Full Text Available Hexabromocyclododecane (HBCDD is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+ and (− enantiomers of α-, β-, and γ-HBCDD were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD, was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  7. Recyclable enantioselective catalysts based on copper(II) complexes of 2-(pyridine-2-yl)imidazolidine-4-thione: their application in asymmetric Henry reactions

    Czech Academy of Sciences Publication Activity Database

    Nováková, G.; Drabina, P.; Frumarová, Božena; Sedlák, M.

    2016-01-01

    Roč. 358, č. 15 (2016), s. 2541-2552 ISSN 1615-4150 Institutional support: RVO:61389013 Keywords : asymmetric catalysis * enantioselectivity * heterogeneous catalysis Subject RIV: CC - Organic Chemistry Impact factor: 5.646, year: 2016

  8. Enantioselective copper catalysed intramolecular C-H insertion reactions of α-diazo-β-keto sulfones, α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones; the influence of the carbene substituent.

    Science.gov (United States)

    Shiely, Amy E; Slattery, Catherine N; Ford, Alan; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R

    2017-03-22

    Enantioselectivities in C-H insertion reactions, employing the copper-bis(oxazoline)-NaBARF catalyst system, leading to cyclopentanones are highest with sulfonyl substituents on the carbene carbon, and furthermore, the impact is enhanced by increased steric demand on the sulfonyl substituent (up to 91%ee). Enantioselective intramolecular C-H insertion reactions of α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones are reported for the first time.

  9. A Simple Primary Amine Catalyst for Enantioselective α-Hydroxylations and α-Fluorinations of Branched Aldehydes

    OpenAIRE

    Witten, Michael R.; Jacobsen, Eric N.

    2015-01-01

    A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields and with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in the results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mec...

  10. Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of (-)-11β-Hydroxycurvularin.

    Science.gov (United States)

    Choe, Hyeonjeong; Pham, Thuy Trang; Lee, Joo Yun; Latif, Muhammad; Park, Haeil; Kang, Young Kee; Lee, Jongkook

    2016-03-18

    The first total synthesis and structure revision of (-)-11β-hydroxycurvularin (1b), a macrolide possessing a β-hydroxyketone moiety, were accomplished. The β-hydroxyketone moiety in this natural product was introduced by cleavage of the N-O bond in an isoxazoline ring that was formed diastereoselectively in a 1,5-remote stereocontrolled fashion by employing intramolecular nitrile oxide cycloaddition.

  11. Enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7.

    Science.gov (United States)

    Fang, Zhong-Ze; Wang, Haina; Cao, Yun-Feng; Sun, Dong-Xue; Wang, Li-Xuan; Hong, Mo; Huang, Ting; Chen, Jian-Xing; Zeng, Jia

    2015-03-01

    UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 μM and 31.1 μM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 μM and 3.1 μM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism. © 2014 Wiley Periodicals, Inc.

  12. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples.

    Science.gov (United States)

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Havránek, Emil; Mikuš, Peter

    2015-12-01

    A new multidimensional analytical approach for the ultra-trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on-line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean-up) in a large injection volume (1-10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP - chiral CZE-QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues.

    Science.gov (United States)

    Nicolaou, K C; Chen, Pengxi; Zhu, Shugao; Cai, Quan; Erande, Rohan D; Li, Ruofan; Sun, Hongbao; Pulukuri, Kiran Kumar; Rigol, Stephan; Aujay, Monette; Sandoval, Joseph; Gavrilyuk, Julia

    2017-11-01

    A streamlined total synthesis of the naturally occurring antitumor agents trioxacarcins is described, along with its application to the construction of a series of designed analogues of these complex natural products. Biological evaluation of the synthesized compounds revealed a number of highly potent, and yet structurally simpler, compounds that are effective against certain cancer cell lines, including a drug-resistant line. A novel one-step synthesis of anthraquinones and chloro anthraquinones from simple ketone precursors and phenylselenyl chloride is also described. The reported work, featuring novel chemistry and cascade reactions, has potential applications in cancer therapy, including targeted approaches as in antibody-drug conjugates.

  14. Interspecies differences in the enantioselectivity of epoxide hydrolases in Cryptococcus laurentii (Kufferath) C.E. Skinner and Cryptococcus podzolicus (Bab'jeva & Reshetova) Golubev

    CSIR Research Space (South Africa)

    Botes, AL

    2005-01-01

    Full Text Available Isolates representing Cryptococcus laurentii and Cryptococcus podzolicus, originating from soil of a heath land indigenous to South Africa, were screened for the presence of enantioselective epoxide hydrolases for 2, 2-disubstituted epoxides...

  15. Total synthesis of leopolic acid A, a natural 2,3-pyrrolidinedione with antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Atul A. Dhavan

    2016-07-01

    Full Text Available The first total synthesis of leopolic acid A, a fungal metabolite with a rare 2,3-pyrrolidinedione nucleus linked to an ureido dipeptide, was designed and carried out. Crucial steps for the strategy include a Dieckmann cyclization to obtain the 2,3-pyrrolidinedione ring and a Wittig olefination to install the polymethylene chain. An oxazolidinone-containing leopolic acid A analogue was also synthesized. The antibacterial activity showed by both compounds suggests that they could be considered as promising candidates for future developments.

  16. Lobatamide C: total synthesis, stereochemical assignment, preparation of simplified analogues, and V-ATPase inhibition studies.

    Science.gov (United States)

    Shen, Ruichao; Lin, Cheng Ting; Bowman, Emma Jean; Bowman, Barry J; Porco, John A

    2003-07-02

    The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C, as well as synthesis of simplified lobatamide analogues, is reported. Cu(I)-mediated enamide formation methodology has been developed to prepare the highly unsaturated enamide side chain of the natural product and analogues. A key fragment coupling employs base-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Three additional stereoisomers of lobatamide C have been prepared using related synthetic routes. The stereochemistry at C8, C11, and C15 of lobatamide C was assigned by comparison of stereoisomers and X-ray analysis of a crystalline derivative. Synthetic lobatamide C, stereoisomers, and simplified analogues have been evaluated for inhibition of bovine chromaffin granule membrane V-ATPase. The salicylate phenol, enamide NH, and ortho-substitution of the salicylate ester have been shown to be important for V-ATPase inhibitory activity.

  17. Enantioselective accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte Lemna minor.

    Science.gov (United States)

    Wang, Fang; Yi, Xiaotong; Qu, Han; Chen, Li; Liu, Donghui; Wang, Peng; Zhou, Zhiqiang

    2017-09-01

    Pesticides are frequently detected in water bodies due to the agricultural application, which may pose impacts on aquatic organisms. The enantioselective bioaccumulation and metabolism of the herbicide lactofen in aquatic floating macrophyte Lemna minor (L. minor) were studied and the potential L. minor phytoremediation was investigated. Ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS-MS) analysis for lactofen and its two known metabolites in L. minor was performed. The initial concentrations of racemic lactofen, R-lactofen and S-lactofen were all 30μgL -1 in the growth solution. The distribution of lactofen and its metabolites in growth solution and L. minor was determined throughout a 5-d laboratory trial. It was observed that S-lactofen was preferentially taken up and metabolized in L. minor. After rac-lactofen exposure, the accumulation amount of S-lactofen was approximately 3-fold more than that of R-lactofen in L. minor and the metabolism rate of S-lactofen (T 1/2 =0.92 d) was significantly faster than R-lactofen (T 1/2 =1.55 d). L. minor could only slightly accelerate the metabolism and removal of lactofen in the growth solution. As for the metabolites, desethyl lactofen was found to be the major metabolite in L. minor and the growth solution, whereas the metabolite acifluorfene was undetectable. No interconversion of the two enantiomers was observed after individual enantiomer exposure, indicating they were configurationally stable. The findings of this work represented that the accumulation and metabolism of lactofen in L. minor were enantioselective, and L. minor had limited capacity for the removal of lactofen and its metabolite in water. Copyright © 2017. Published by Elsevier Inc.

  18. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    Science.gov (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  19. Enantioselective Crystallization of Sodium Chlorate in the Presence of Racemic Hydrophobic Amino Acids and Static Magnetic Fields

    Directory of Open Access Journals (Sweden)

    María-Paz Zorzano

    2014-06-01

    Full Text Available We study the bias induced by a weak (200 mT external magnetic field on the preferred handedness of sodium chlorate crystals obtained by slow evaporation at ambient conditions of its saturated saline solution with 20 ppm of added racemic (dl hydrophobic amino acids. By applying the Fisher test to pairs of experiments with opposing magnetic field orientation we conclude, with a confidence level of 99.7%, that at the water-air interface of this saline solution there is an enantioselective magnetic interaction that acts upon racemic mixtures of hydrophobic chiral amino acids. This interaction has been observed with the three tested racemic hydrophobic amino acids: dl-Phe, dl-Try and dl-Trp, at ambient conditions and in spite of the ubiquitous chiral organic contamination. This enantioselective magnetic dependence is not observed when there is only one handedness of added chiral amino-acid, if the added amino acid is not chiral or if there is no additive. This effect has been confirmed with a double blind test. This novel experimental observation may have implications for our view of plausible initial prebiotic scenarios and of the roles of the geomagnetic field in homochirality in the biosphere.

  20. Reductive decarboxylation of bicyclic prolinic systems: a new approach to the enantioselective synthesis of the Geissman-Waiss lactone. X-ray structure determination of a key lactone intermediate

    Directory of Open Access Journals (Sweden)

    Ambrósio João Carlos L.

    2003-01-01

    Full Text Available Two concise and enantioselective syntheses of the necine base precursors (1R,5R-N-Cbz and N-Boc-2-oxa-6-azabicyclo[3.3.0]octan-3-ones (Geissman-Waiss lactones were carried out from two enantiomerically pure endocyclic five-membered enecarbamates with overall yields of 23% and 26%, respectively. The synthetic strategy made use of a highly effective and stereoselective [2+2]cycloaddition of enantiomerically pure endocyclic enecarbamates with dichloroketene, as well as an efficient decarboxylation step of a bicyclic alpha-amino acid employing Boger's acyl selenide protocol employing tributyltin hydride. Interesting aspects concerning the regiochemical outcome of Baeyer-Villiger oxidations of bicyclic cyclobutanones are also reported, in which the usual stereoelectronic bias of Baeyer-Villiger oxidation seems to be counterbalanced by steric effects on the putative Criegee intermediate.

  1. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols.

    Science.gov (United States)

    Ma, Jiajia; Harms, Klaus; Meggers, Eric

    2016-08-09

    A rhodium-based chiral Lewis acid catalyst combined with [Ru(bpy)3](PF6)2 as a photoredox sensitizer allows for the visible-light-activated redox coupling of α-silylamines with 2-acyl imidazoles to afford, after desilylation, 1,2-amino-alcohols in yields of 69-88% and with high enantioselectivity (54-99% ee). The reaction is proposed to proceed via an electron exchange between the α-silylamine (electron donor) and the rhodium-chelated 2-acyl imidazole (electron acceptor), followed by a stereocontrolled radical-radical reaction. Substrate scope and control experiments reveal that the trimethylsilyl group plays a crucial role in this reductive umpolung of the carbonyl group.

  2. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    OpenAIRE

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...

  3. Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

    International Nuclear Information System (INIS)

    Shafioul, Azam Sharif Mohammed; Cheong, Chan Seong

    2012-01-01

    Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = 80 ± 3) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = 27 ± 1) for R-(+)-2-(3- methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/ n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one

  4. Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

    Energy Technology Data Exchange (ETDEWEB)

    Shafioul, Azam Sharif Mohammed [University of Science and Technology, Daejeon (Korea, Republic of); Cheong, Chan Seong [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-02-15

    Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = 80 ± 3) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = 27 ± 1) for R-(+)-2-(3- methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/ n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one.

  5. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    Science.gov (United States)

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  6. Enantioselective N-demethylation and hydroxylation of sibutramine in human liver microsomes and recombinant cytochrome p-450 isoforms.

    Science.gov (United States)

    Shinde, Dhananjay D; Kim, Min-Jung; Jeong, Eun-Sook; Kim, Yang-Weon; Lee, Ji-Woo; Shin, Jae-Gook; Kim, Dong-Hyun

    2014-01-01

    The enantioselective metabolism of sibutramine was examined using human liver microsomes (HLM) and recombinant cytochrome P-450 (CYP) isoforms. This drug is metabolized to N-mono-desmethyl- (M1) and N,N-di-desmethylsibutramine (M2), and subsequent hydroxylation results in hydroxyl M1 (HM1) and hydroxyl M2 (HM2). No significant difference was noted in formation of M1from sibutramine between R- and S-sibutramine in HLM. However, S-enantiomers of M1 and M2 were preferentially metabolized to M2, HM1, and HM2compared to R-enantiomers in HLM, and intrinsic clearance (Clint) ratios of S-enantiomers/R-enantiomers were 1.97, 4.83, and 9.94 for M2, HM1, and HM2, respectively. CYP3A4 and CYP3A5 were only involved in the formation of M1, whereas CYP2B6 and CYP2C19 were responsible for all metabolic reactions of sibutramine. CYP2C19 and CYP3A5 displayed catalytic preference for S-sibutramine to S-M1, whereas CYP2B6 and CYP3A4 showed little or no stereoselectivity in metabolism of sibutramine to M1. In the case of M2 formation, CYP2B6 metabolized S-M1 more rapidly than R-M1 with a Clint ratio of 2.14. However, CYP2C19 catalyzed less S-M1 than R-M1 and the Clint ratio of S-M1 to R-M1 was 0.65. The most significant enantioselectivity was observed in formation of HM1 from M1, and HM2 from M2. CYP2B6 and CYP2C19 exhibited preferential catalysis of formation of hydroxyl metabolites from S-enantiomers rather than R-enantiomers. These results indicate that S-sibutramine was more rapidly metabolized by CYP isoforms than R-sibutramine, and that enantioselective metabolism needs to be considered in drug interactions involving sibutramine and co-administered drugs.

  7. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond; Zhong, Fangrui; Zheng, Bin; Meng, Yuezhong; Lu, Yixin; Huang, Kuo-Wei

    2013-01-01

    in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  8. Enantioselective Access to Spirocyclic Sultams by Chiral Cp(x) -Rhodium(III)-Catalyzed Annulations.

    Science.gov (United States)

    Pham, Manh V; Cramer, Nicolai

    2016-02-12

    Chiral spirocyclic sultams are a valuable compound class in organic and medicinal chemistry. A rapid entry to this structural motif involves a [3+2] annulation of an N-sulfonyl ketimine and an alkyne. Although the directing-group properties of the imino group for C-H activation have been exploited, the developments of related asymmetric variants have remained very challenging. The use of rhodium(III) complexes equipped with a suitable atropchiral cyclopentadienyl ligand, in conjunction with a carboxylic acid additive, enables an enantioselective and high yielding access to such spirocyclic sultams. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sequential rhodium/palladium catalysis: enantioselective formation of dihydroquinolinones in the presence of achiral and chiral ligands.

    Science.gov (United States)

    Zhang, Lei; Qureshi, Zafar; Sonaglia, Lorenzo; Lautens, Mark

    2014-12-08

    Compatible combinations of achiral and chiral ligands can be used in rhodium/palladium catalysis to achieve highly enantioselective domino reactions. The difference in rates of catalysis and minimal effects of ligand interference confer control in the domino sequence. The "all-in-one" 1,4-conjugate arylation and C-N cross-coupling through sequential Rh/Pd catalysis provides access to enantioenriched dihydroquinolinone building blocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A 11-Steps Total Synthesis of Magellanine through a Gold(I)-Catalyzed Dehydro Diels-Alder Reaction.

    Science.gov (United States)

    McGee, Philippe; Bétournay, Geneviève; Barabé, Francis; Barriault, Louis

    2017-05-22

    We have developed an innovative strategy for the formation of angular carbocycles via a gold(I)-catalyzed dehydro Diels-Alder reaction. This transformation provides rapid access to a variety of complex angular cores in excellent diastereoselectivities and high yields. The usefulness of this Au I -catalyzed cycloaddition was further demonstrated by accomplishing a 11-steps total synthesis of (±)-magellanine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exploring asymmetric catalytic transformations

    NARCIS (Netherlands)

    Guduguntla, Sureshbabu

    2017-01-01

    In Chapter 2, we report a highly enantioselective synthesis of β-alkyl-substituted alcohols through a one-pot Cu- catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of γ-alkyl-substituted alcohols was also achieved through Cu-catalyzed

  12. Development of tartaric acid derived chiral guanidines and their application to catalytic enantioselective α-hydroxylation of β-dicarbonyl compounds.

    Science.gov (United States)

    Zou, Liwei; Wang, Baomin; Mu, Hongfang; Zhang, Huanrui; Song, Yuming; Qu, Jingping

    2013-06-21

    A novel library of chiral guanidines featuring a tartaric acid skeleton was developed from diethyl l-tartrate. These guanidines are easily accessed with tunable steric and electronic properties. The utilities of the guanidines were highlighted by their ability to catalyze the α-hydroxylation of β-ketoesters and β-diketones with remarkable efficiency and excellent enantioselectivity.

  13. A Tunable and Enantioselective Hetero-Diels-Alder Reaction Provides Access to Distinct Piperidinoyl Spirooxindoles.

    Science.gov (United States)

    Jayakumar, Samydurai; Louven, Kathrin; Strohmann, Carsten; Kumar, Kamal

    2017-12-11

    The active complexes of chiral N,N'-dioxide ligands with dysprosium and magnesium salts catalyze the hetero-Diels-Alder reaction between 2-aza-3-silyloxy-butadienes and alkylidene oxindoles to selectively form 3,3'- and 3,4'-piperidinoyl spirooxindoles, respectively, in very high yields and with excellent enantioselectivities. The exo-selective asymmetric cycloaddition successfully regaled the construction of sp 3 -rich and highly substituted natural-product-based spirooxindoles supporting many chiral centers, including contiguous all-carbon quaternary centers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Total syntheses of hyperforin and papuaforins A-C, and formal synthesis of nemorosone through a gold(I)-catalyzed carbocyclization.

    Science.gov (United States)

    Bellavance, Gabriel; Barriault, Louis

    2014-06-23

    The remarkable biological activities of polyprenylated polycyclic acylphloroglucinols (PPAPs) combined with their highly decorated bicyclo[3.3.1]nonane-2,4,9-trione frameworks have inspired synthetic organic chemists over the last decade. The concise total syntheses of four natural products PPAPs; hyperforin and papuaforins A-C, and the formal synthesis of nemorosone are reported. Key to the realization of this strategy is the short and scalable synthesis of densely substituted PPAP scaffolds through a gold(I)-catalyzed 6-endo-dig carbocyclization of cyclic enol ethers for late-stage functionalization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Assessing the stereoselectivity of Serratia marcescens CECT 977 2,3-butanediol dehydrogenase

    NARCIS (Netherlands)

    Medici, R.; Stammes, J.K.; Otten, L.G.; Hanefeld, U.; Kwakernaak, Stender

    2017-01-01

    α-Hydroxy ketones and vicinal diols constitute well-known building blocks in organic synthesis. Here we describe one enzyme that enables the enantioselective synthesis of both building blocks starting from diketones. The enzyme 2,3-butanediol dehydrogenase (BudC) from S. marcescens CECT 977 belongs

  16. Direct, enantioselective α-alkylation of aldehydes using simple olefins.

    Science.gov (United States)

    Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  17. Enantioselective Effect of Flurbiprofen on Lithium Disposition in Rats.

    Science.gov (United States)

    Uwai, Yuichi; Matsumoto, Masashi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2017-01-01

    Lithium is administered for treating bipolar disorders and is mainly excreted into urine. Nonsteroidal anti-inflammatory drugs inhibit this process. In this study, we examined the enantioselective effect of flurbiprofen on the disposition of lithium in rats. Pharmacokinetic experiments with lithium were performed. Until 60 min after the intravenous administration of lithium chloride at 30 mg/kg as a bolus, 17.8% of lithium injected was recovered into the urine. Its renal clearance was calculated to be 1.62 mL/min/kg. Neither creatinine clearance (Ccr) nor pharmacokinetics of lithium was affected by the simultaneous injection of (R)-flurbiprofen at 20 mg/kg. (S)-flurbiprofen impaired the renal function and interfered with the urinary excretion of lithium. The ratio of renal clearance of lithium to Ccr was decreased by the (S)-enantiomer. This study clarified that the (S)-flurbiprofen but not (R)-flurbiprofen inhibited the renal excretion of lithium in rats. © 2017 S. Karger AG, Basel.

  18. Total synthesis of (7- sup 14 C)-(+-)-colchicine

    Energy Technology Data Exchange (ETDEWEB)

    Pontikis, Renee; Nguyenhoang Nam; Hoellinger, Henri (Paris-5 Univ., 75 (France). Lab. de Chimie et Biochimie Pharmacologiques et Toxicologiques)

    1989-08-01

    The synthesis of ({plus minus})-colchicine labelled with carbon-14 at the 7-position of the B ring was achieved by a sixteen step sequence with an overall radiochemical yield of 2.5% from (Ba{sup 14}CO{sub 3}) (Specific activity: 55 mCi-mmol{sup -1}). (author).

  19. The role of achiral pyrazolidinone templates in enantioselective Diels-Alder reactions: scope, limitations, and conformational insights.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Nie, Xiaoping; Venkatraman, Lakshmanan; Liu, Mei; Jasperse, Craig P

    2007-01-17

    We have evaluated the role of achiral pyrazolidinone templates in conjunction with chiral Lewis acids in room temperature, enantioselective Diels-Alder cycloadditions. The role of the fluxional N(1) substituent was examined, with the bulky 1-naphthylmethyl group providing enantioselectivities up to 99% ee, while templates with smaller fluxional groups gave lower selectivities. High selectivities were also observed in reactions of 7d with chiral Lewis acids derived from relatively small chiral ligands, suggesting the pyrazolidinone templates are capable of relaying stereochemical information from the ligand to the reaction center. Lewis acids capable of adapting square planar geometries, such as Cu(OTf)2, Cu(ClO4)2, and Pd(ClO4)2, were found to be particularly effective at providing high selectivities. Additionally, substitution at the C-5 position of the pyrazolidinone templates has been shown to be critical for optimal selectivity. Reactions of the optimal pyrazolidinone appended with a number of common dienophiles and various dienes demonstrate the utility of this achiral template. Furthermore, catalytic loadings could be lowered to 2.5 mol % with essentially no loss in selectivity. Pi-Pi interactions were evaluated as a means to explain the unusually high selectivity observed at room temperature. Finally, non-C2-symmetric ligands were employed as a test to determine if chiral relay was operative.

  20. Enantioselective biotransformation of propranolol to the active metabolite 4-hydroxypropranolol by endophytic fungi

    Directory of Open Access Journals (Sweden)

    Keyller Bastos Borges

    2011-01-01

    Full Text Available The enantioselective biotransformation of propranolol (Prop by the endophytic fungi Phomopsis sp., Glomerella cingulata, Penicillium crustosum, Chaetomium globosum and Aspergillus fumigatus was investigated by studying the kinetics of the aromatic hydroxylation reaction with the formation of 4-hydroxypropranolol (4-OH-Prop. Both Prop enantiomers were consumed by the fungi in the biotransformation process, but the 4-hydroxylation reaction yielded preferentially (--(S-4-OH-Prop. The quantity of metabolites biosynthesized varied slightly among the evaluated endophytic fungi. These results show that all investigated endophytic fungi could be used as biosynthetic tools in biotransformation processes to obtain the enantiomers of 4-OH-Prop.

  1. Evaluation of (+)-sparteine-like diamines for asymmetric synthesis.

    Science.gov (United States)

    Dearden, Michael J; McGrath, Matthew J; O'Brien, Peter

    2004-08-20

    Three new (+)-sparteine-like diamines were prepared from (-)-cytisine and evaluated as sparteine surrogates in the alpha-lithiation rearrangement of cyclooctene oxide and the palladium(II)/diamine catalyzed oxidative kinetic resolution of 1-indanol. The new diamines exhibited opposite enantioselectivity to that observed with (-)-sparteine but increasing the steric hindrance of the N-alkyl group beyond N-Et had a detrimental effect on enantioselectivity. The optimal N-Me diamine was evaluated with much success in five other (-)-sparteine-mediated processes involving different metals (lithium, magnesium, and copper) and different types of reaction mechanisms. Copyright 2004 American Chemical Society

  2. Total Synthesis and Antimicrobial Activity of (±-Laurelliptinhexadecan-1-one and (±-Laurelliptinoctadecan-1-one

    Directory of Open Access Journals (Sweden)

    Surachai Nimgirawath

    2008-11-01

    Full Text Available The structures previously assigned to (+-laurelliptinhexadecan-1-one (1a and (+-laurelliptinoctadecan-1-one (1b from Cocculus orbiculatus (L. DC. (Menispermaceae have been confirmed by total synthesis of the racemic alkaloids. The key step of the synthesis involved formation of ring C of the aporphines by a radical-intiated cyclisation. Both (±-laurelliptinhexadecan-1-one (1a and (±-laurelliptinoctadecan-1-one (1b were inactive against Staphylococcus aureus ATCC25932, Escherichia coli ATCC10536 and Candida albicans ATCC90028.

  3. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols.

    Science.gov (United States)

    Nacsa, Eric D; MacMillan, David W C

    2018-03-07

    Nature routinely engages alcohols as leaving groups, as DNA biosynthesis relies on the removal of water from ribonucleoside diphosphates by a radical-mediated "spin-center shift" (SCS) mechanism. Alcohols, however, remain underused as alkylating agents in synthetic chemistry due to their low reactivity in two-electron pathways. We report herein an enantioselective α-benzylation of aldehydes using alcohols as alkylating agents based on the mechanistic principle of spin-center shift. This strategy harnesses the dual activation modes of photoredox and organocatalysis, engaging the alcohol by SCS and capturing the resulting benzylic radical with a catalytically generated enamine. Mechanistic studies provide evidence for SCS as a key elementary step, identify the origins of competing reactions, and enable improvements in chemoselectivity by rational photocatalyst design.

  4. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    Science.gov (United States)

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  5. A stereodivergent strategy to both product enantiomers from the same enantiomer of a stereoinducing catalyst: agelastatin A.

    Science.gov (United States)

    Trost, Barry M; Dong, Guangbin

    2009-07-13

    In this article, we report a full account of our recent development of pyrroles and N-alkoxyamides as new classes of nucleophiles for palladium-catalyzed AAA reactions, along with application of these methodologies in the total synthesis of agelastatin A, a marine natural product with exceptional anticancer activity and other biological properties. Our method allows for access to either regioisomer of the pyrrolopiperazinones (6 and 19) with high efficiency and enantioselectivity. Note that isomer 19 was obtained via a cascade reaction through a double allylic alkylation pathway. From regioisomer 6, the total synthesis of (+)-agelastatin A was completed in a very short fashion (four steps from 6), during the course of which we developed a new copper catalyst for aziridination and an In(OTf)(3)/DMSO system to oxidatively open an N-tosyl aziridine. Starting with the other pyrrolopiperazinone 19, a five-step sequence has been developed to furnish a formal total synthesis of (-)-agelastatin A. A unique feature of our syntheses is the use of two rather different strategies for the total syntheses of both enantiomers of agelastatin A using the same enantiomer of a chiral palladium catalyst.

  6. Chiral Pyridinium Phosphoramide as a Dual Brønsted Acid Catalyst for Enantioselective Diels-Alder Reaction.

    Science.gov (United States)

    Nishikawa, Yasuhiro; Nakano, Saki; Tahira, Yuu; Terazawa, Kanako; Yamazaki, Ken; Kitamura, Chitoshi; Hara, Osamu

    2016-05-06

    Chiral pyridinium phosphoramide 1·HX was designed to be a new class of chiral Brønsted acid catalyst in which both the pyridinium proton and the adjacent imide-like proton activated by the electron-withdrawing pyridinium moiety could work cooperatively as strong dual proton donors. The potential of 1·HX was shown in the enantioselective Diels-Alder reactions of 1-amino dienes with various dienophiles including N-unsubstituted maleimide, which has yet to be successfully used in an asymmetric Diels-Alder reaction.

  7. Enantioselective silver nanoclusters: Preparation, characterization and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farrag, Mostafa, E-mail: mostafafarrag@aun.edu.eg

    2016-09-01

    Herein, we report a new wet-synthesis method to separate some water-soluble chiral silver nanoclusters with high yield. The cluster material was obtained by the reduction of silver nitrate with NaBH{sub 4} in the presence of three ligands L-penicillamine (L-pen), D-penicillamine (D-pen) and racemic mixture of penicillamine (rac-pen), functioning as capping ligand. For characterizing all silver cluster samples, the particle size was assessed by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) and their average chemical formula was determined from thermogravimetric analysis (TGA) and elemental analysis (EA). The particles sizes of all three clusters are 2.1 ± 0.2 nm. The optical properties of the samples were studied by four different methods: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL) and circular dichroism (CD) spectroscopy. The spectra are dominated by the typical and intense plasmon peak at 486 nm accompanied by a small shoulder at 540 nm. Infrared spectroscopy was measured for the free ligand and protected silver nanoclusters, where the disappearance of the S-H vibrational band (2535–2570 cm{sup −1}) in the silver nanoclusters confirmed anchoring of ligand to the cluster surface through the sulfur atom. PL studies yielded the fluorescent properties of the samples. The main focus of this work, however, lies in the chirality of the particles. For all silver clusters CD spectra were recorded. While for clusters capped with one of the two enantiomers (D- or L-form) typical CD spectra were observed, no significant signals were detected for a racemic ligand mixture. Furthermore, silver clusters show quite large asymmetry factors (up to 3 × 10{sup −4}) in comparison to most other ligand protected clusters. These large factors and bands in the visible range of the spectrum suggest a strong chiral induction from the ligand to the metal core. Textural features of the

  8. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.

    Science.gov (United States)

    Sayin, Serkan; Akoz, Enise; Yilmaz, Mustafa

    2014-09-14

    In this study, two types of nanoparticles have been used as additives for the encapsulation of Candida rugosa lipase via the sol-gel method. In one case, the nanoparticles were covalently linked with a new synthesized calix[8]arene octa valeric acid derivative (C[8]-C4-COOH) to produce new calix[8]arene-adorned magnetite nanoparticles (NP-C[8]-C4-COOH), and then NP-C[8]-C4-COOH was used as an additive in the sol-gel encapsulation process. In the other case, iron oxide nanoparticles were directly added into the sol-gel encapsulation process in order to interact electrostatically with both C[8]-C4-COOH and Candida rugosa lipase. The catalytic activities and enantioselectivities of two novel encapsulated lipases (Enc-NP-C[8]-C4-COOH and Enc-C[8]-C4-COOH@Fe3O4) in the hydrolysis reaction of racemic naproxen methyl ester were evaluated. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives. Indeed, the encapsulated lipases have an excellent rate of enantioselectivity, with E = 371 and 265, respectively, as compared to the free enzyme (E = 137). The lipases encapsulated with C[8]-C4-COOH and iron oxide nanoparticles (Enc-C[8]-C4-COOH@Fe3O4) retained more than 86% of their initial activities after 5 repeated uses and 92% with NP-C[8]-C4-COOH.

  9. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Five-, Six-, and Seven-Membered β-Substituted Cyclic Enones: Enantioselective Construction of All-Carbon Quaternary Stereocenters

    KAUST Repository

    Kikushima, Kotaro; Holder, Jeffrey C.; Gatti, Michele; Stoltz, Brian M.

    2011-01-01

    The first enantioselective Pd-catalyzed construction of all-carbon quaternary stereocenters via 1,4-addition of arylboronic acids to β-substituted cyclic enones is reported. Reaction of a wide range of arylboronic acids and cyclic enones using a

  10. 3,3'-Diaryl-BINOL phosphoric acids as enantioselective extractants of benzylic primary amines.

    Science.gov (United States)

    Verkuijl, Bastiaan J V; de Vries, Johannes G; Feringa, Ben L

    2011-01-01

    We report that 3,3'-diaryl-BINOL phosphoric acids are effective enantioselective extractants in chiral separation methods based on reactive liquid-liquid extraction. These new extractants are capable of separating racemic benzylic primary amine substrates. The effect of the nature of the substituents at the 3,3'-positions of the host were examined as well as the structure of the substrate, together with important parameters such as the organic solvent, the pH of the aqueous phase, and the host stoichiometry. Titration of the substrate with the host was monitored by FTIR, NMR, UV-Vis, and CD spectroscopy, which provided insight into the structure of the host-guest complex involved in extraction. Copyright © 2010 Wiley-Liss, Inc.

  11. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    Science.gov (United States)

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid

    International Nuclear Information System (INIS)

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-01-01

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98–532.72 ng mL −1 , with the minimum detection limit of 1.73–1.79 ng mL −1 (S/N = 3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL −1 ) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Highlights: • We have adopted surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. • This approach takes advantage of the nanostructured ultrathin imprinted film. • Successful enantioselective sensing and ultratrace analysis of D- and L-aspartic acid. • Stringent detection limit without any non-specific false-positive contribution

  13. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-15

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98–532.72 ng mL{sup −1}, with the minimum detection limit of 1.73–1.79 ng mL{sup −1} (S/N = 3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL{sup −1}) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Highlights: • We have adopted surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. • This approach takes advantage of the nanostructured ultrathin imprinted film. • Successful enantioselective sensing and ultratrace analysis of D- and L-aspartic acid. • Stringent detection limit without any non-specific false-positive contribution.

  14. Recent approaches to the total synthesis of phytoprostanes, isoprostanes and neuroprostanes as important products of lipid oxidative stress and biomarkers of disease

    Czech Academy of Sciences Publication Activity Database

    Jahn, Emanuela; Durand, T.; Galano, J. M.; Jahn, Ullrich

    2014-01-01

    Roč. 108, č. 4 (2014), s. 301-319 ISSN 0009-2770 Institutional support: RVO:61388963 Keywords : lipids * oxidative stress * phytoprostanes * isoprostanes * neuroprostanes * total synthesis Subject RIV: CC - Organic Chemistry Impact factor: 0.272, year: 2014

  15. A Concise Synthesis of Forskolin

    Czech Academy of Sciences Publication Activity Database

    Hylse, O.; Maier, L.; Kučera, R.; Perečko, Tomáš; Svobodová, Aneta; Kubala, Lukáš; Paruch, K.; Svenda, J.

    2017-01-01

    Roč. 56, č. 41 (2017), s. 12586-12589 ISSN 1433-7851 Institutional support: RVO:68081707 Keywords : adenylyl-cyclase isoforms * key intermediate * enantioselective route Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 11.994, year: 2016

  16. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  17. Super Hydrides.

    Science.gov (United States)

    1988-03-01

    enantioselective synthesis Of the clinically important anti-depressants, (-)Tomoxetine, Fluoxetine (Prozac, Eli Lilly), and Nisoxetine (Scheme 1). Schem I a I...decade or so asymmetric synthesis has emerged from the cold to vie quite successfully with enzymes as a means of incorporating chirality in...with Chiral Alkoxyborohydrides. We have extended our synthesis of potassium dialkoxyborohydrides, K+IRB(OR’) 21- , conveniently prepared by the addition

  18. Total Synthesis of Zoanthamine Alkaloids, Part 2. Construction of the C1-C5, C6-C10 and C11-C24 Fragments of Zoanthamine

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Tedenborg, Lars; Somfai, Peter

    1997-01-01

    This paper describes the construction of three key intermediates for a projected total synthesis of the marine alkaloid zoanthamine. These building blocks, corresponding to the C1-C5, C6-C10 and C11-C24 fragments of the target molecule, are synthesised efficiently form (R)-hydroxymethyl-butyrolac......This paper describes the construction of three key intermediates for a projected total synthesis of the marine alkaloid zoanthamine. These building blocks, corresponding to the C1-C5, C6-C10 and C11-C24 fragments of the target molecule, are synthesised efficiently form (R...

  19. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  20. Simultaneous enantioselective determination of triadimefon and its metabolite triadimenol in edible vegetable oil by gel permeation chromatography and ultraperformance convergence chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Yao, Zhoulin; Li, Xiaoge; Miao, Yelong; Lin, Mei; Xu, Mingfei; Wang, Qiang; Zhang, Hu

    2015-11-01

    A novel, sensitive, and efficient enantioselective method for the determination of triadimefon and its metabolite triadimenol in edible vegetable oil, was developed by gel permeation chromatography and ultraperformance convergence chromatography/tandem triple quadrupole mass spectrometry. After the vegetable oil samples were prepared using gel permeation chromatography, the eluent was collected, evaporated, and dried with nitrogen gas. The residue was redissolved by adding methanol up to a final volume of 1 mL. The analytes of six enantiomers were analyzed on Chiralpak IA-3 column (150 × 4.6 mm) using compressed liquid CO2-mixed 14 % co-solvents, comprising methanol/acetonitrile/isopropanol = 20/20/60 (v/v/v) in the mobile phase at 30 °C, and the total separation time was less than 4 min at a flow rate of 2 mL/min. Quantification was achieved using matrix-matched standard calibration curves. The overall mean recoveries for six enantiomers from vegetable oil were 90.1-97.3 %, with relative standard deviations of 0.8-5.4 % intra-day and 2.3-5.0 % inter-day at 0.5, 5, and 50 μg/kg levels. The limits of quantification were 0.5 μg/kg for all enantiomers based on five replicate extractions at the lowest fortified level in vegetable oil. Moreover, the absolute configuration of six enantiomers had been determined based on comparisons of the vibrational circular dichroism experimental spectra with the theoretical curve obtained by density functional theory calculations. Application of the proposed method to the 40 authentic vegetable oil samples from local markets suggests its potential use in enantioselective determination of triadimefon and triadimenol enantiomers. Graphical Abstract Chemical structures and UPC(2)-MS/MS separation chromatograms of triadimefon and triadimenol.

  1. New chiral phosphinephosphinite ligands: Application to stereoselective synthesis of a key intermediate of 1{beta}-methyl carbapenems by Rh(I)-catalyzed asymmetric hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takao; Yoshida, Akifumi; Matsumura, Kazuhiko [Takasago International Corp., Kanagawa (Japan)] [and others

    1995-12-31

    Transition metal catalyzed asymmetric hydroformylation is an attractive and highly useful homologation process for organic synthesis. Recently, the authors reported that the Rh(I) complexes of phosphinephosphite BINAPHOS are highly efficient catalysts for enantioselective hydroformylation of a variety of olefins. This time, the authors have designed and synthesized new chiral phosphinephosphinite ligands having binaphthyl backbone, (R)-2-diarylphosphino-2{prime}-diarylphosphinoxy-1,1{prime}-binaphthy1 (hereafter abbreviated (R)-BIPNITE). The Rh(I) complexes of these ligands are effective catalysts for the asymmetric hydroformylation of 4-vinylazetidin-2-one to give the corresponding oxo-aldehyde 3{beta} as the major product in very high diastereoselectivities and in good regioselectivities. Interestingly, modifications of the aryl substituents in phosphine and phosphinite moieties afforded higher selectivities. Aldehyde 3{beta} was easily oxidized with NaClO{sub 2} to 4, a key intermediate of 1{beta}-methyl carbapenems. Thus, the present method provides a new practical route to a versatile key intermediate for the synthesis of carbapenem antibiotics.

  2. Determination of the human cytochrome P450 monooxygenase catalyzing the enantioselective oxidation of 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183).

    Science.gov (United States)

    Nagayoshi, Haruna; Kakimoto, Kensaku; Konishi, Yoshimasa; Kajimura, Keiji; Nakano, Takeshi

    2017-10-17

    2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183) possess axial chirality and form the aS and aR enantiomers. The enantiomers of these congeners have been reported to accumulate in the human body enantioselectively via unknown mechanisms. In this study, we determined the cytochrome P450 (CYP) monooxygenase responsible for the enantioselective oxidization of PCB 95 and PCB 183, using a recombinant human CYP monooxygenase. We evaluated 13 CYP monooxygenases, namely CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, and aromatase (CYP19), and revealed that CYP2A6 preferably oxidizes aS-PCB 95 enantioselectively; however, it did not oxidize PCB 183. The enantiomer composition was elevated from 0.5 (racemate) to 0.54. In addition, following incubation with CYP2A6, the enantiomer fraction (EF) of PCB 95 demonstrated a time-dependent increase.

  3. Total Synthesis of Natural Products of Microbial Origins(Recent Topics of the Agricultunal Biological Science in Tohoku University)

    OpenAIRE

    Hiromasa, KIYOTA; Shigefumi, KUWAHARA; Laboratory of Applied Bioorganic Chemistry, Division of Bioscience & Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University; Laboratory of Applied Bioorganic Chemistry, Division of Bioscience & Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University

    2008-01-01

    Microorganisms are an important rich source of secondary metabolites, which could be useful leads to valuable agrochemicals and/or medicinal drugs. This mini-review describes our recent achievements on the total synthesis of biologically active natural products of microbial origins: pteridic acids A and B (strong plant growth promoters), epoxyquinols A and B (anti-angiogenic compounds), communiols A-F, G, and H, and macrotetrolide α (antibiotics), pyricuol and tabtoxinine-β-lactam (phytotoxin...

  4. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth

    Science.gov (United States)

    Konstantinov, Konstantin K.; Konstantinova, Alisa F.

    2018-03-01

    Chiral symmetry breaking in complex chemical systems with a large number of amino acids and a large number of similar reactions was considered. It was shown that effective averaging over similar reaction channels may result in very weak effective enantioselectivity of forward reactions, which does not allow most of the known models to result in chiral symmetry breaking during formation of life on Earth. Models with simple and catalytic synthesis of a single amino acid, formation of peptides up to length five, and sedimentation of insoluble pair of substances were considered. It was shown that depending on the model and the values of the parameters, chiral symmetry breaking may occur in up to about 10% out of all possible unique insoluble pair combinations even in the absence of any catalytic synthesis and that minimum total number of amino acids in the pair is 5. If weak enantioselective forward catalytic synthesis of amino acids is present, then the number of possible variants, in which chiral symmetry breaking may occur, increases substantially. It was shown that that the most interesting catalysts have zero or one amino acid of "incorrect" chirality. If the parameters of the model are adjusted in such a way to result in an increase of concentration of longer peptides, then catalysts with two amino acids of incorrect chirality start to appear at peptides of length five. Models of chiral symmetry breaking in the presence of epimerization were considered for peptides up to length three. It was shown that the range of parameters in which chiral symmetry breaking could occur significantly shrinks in comparison to previously considered models with peptides up to length two. An experiment of chiral symmetry breaking was proposed. The experiment consists of a three-step cycle: reversible catalytic synthesis of amino acids, reversible synthesis of peptides, and irreversible sedimentation of insoluble substances.

  5. Enantioselective analysis of propranolol and 4-hydroxypropranolol by CE with application to biotransformation studies employing endophytic fungi.

    Science.gov (United States)

    Borges, Keyller Bastos; Pupo, Mônica Tallarico; Bonato, Pierina Sueli

    2009-11-01

    A CE method is described for the enantioselective analysis of propranolol (Prop) and 4-hydroxypropranolol (4-OH-Prop) in liquid Czapek medium with application in the study of the enantioselective biotransformation of Prop by endophytic fungi. The electrophoretic conditions previously optimized were as follows: an uncoated fused-silica capillary, 4% w/v carboxymethyl-beta-CD in 25 mmol/L triethylamine/phosphoric acid (H(3)PO(4)) buffer at pH 9 as running electrolyte and 17 kV of voltage. UV detection was carried out at 208 nm. Liquid-liquid extraction using diethyl ether: ethyl acetate (1:1 v/v) as extractor solvent was employed for sample preparation. The calibration curves were linear over the concentration range of 0.25-10.0 microg/mL for each 4-OH-Prop enantiomer and 0.10-10.0 microg/mL for each Prop enantiomer (r>or=0.995). Within-day and between-day relative standard deviations and relative errors for precision and accuracy were lower than 15% for all the enantiomers. Finally, the validated method was used to evaluate Prop biotransformation in its mammalian metabolite 4-OH-Prop by some selected endophytic fungi. The screening of five strains of endophytic fungi was performed and all of them could biotransform Prop to some extent. Specifically, Glomerella cingulata (VA1) biotransformed 47.8% of (-)-(S)-Prop to (-)-(S)-4-OH-Prop with no formation of (+)-(R)-4-OH-Prop in 72 h of incubation.

  6. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    Science.gov (United States)

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enantioselective analysis of ibuprofen and its biotransformation products in water/sediment systems,

    DEFF Research Database (Denmark)

    Sundström, Maria; Escola, Monica; Radke, Michael

    2015-01-01

    of the sediments in the aquatic systems has neither been taken in account previously. In this study, four water-sediment systems were chosen according to anthropogenic exposure and sediment conditions. A low anthropogenic impact lake (Largen), a river receiving wastewater (Fyrisån) and two sediments (anoxic......As ibuprofen degrades enantioselectively in activated sludge, the same process is assumed to occur in surface lake-water and in river-water based biofilms. Yet, the effects of the wastewater inflow, containing non-racemic ibuprofen, into natural systems have never been studied. The role......-7 days in Tvären and B1 respectively. Largen sediments, not impacted by wastewater, degraded ibuprofen faster than Fyrisån sediments did. Yet, these two sediments sediments showed no significant difference with respect to the degradation rates of the ibuprofen enantiomers. A connection between wastewater...

  8. Cytotoxic 1,3-Thiazole and 1,2,4-Thiadiazole Alkaloids from Penicillium oxalicum: Structural Elucidation and Total Synthesis

    Directory of Open Access Journals (Sweden)

    Zheng Yang

    2016-02-01

    Full Text Available Two new thiazole and thiadiazole alkaloids, penicilliumthiamine A and B (2 and 3, were isolated from the culture broth of Penicillium oxalicum, a fungus found in Acrida cinerea. Their structures were elucidated mainly by spectroscopic analysis, total synthesis and X-ray crystallographic analysis. Biological evaluations indicated that compound 1, 3a and 3 exhibit potent cytotoxicity against different cancer cell lines through inhibiting the phosphorylation of AKT/PKB (Ser 473, one of important cancer drugs target.

  9. Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal beta-N-acetylglucosaminidases.

    Science.gov (United States)

    Yang, You; Li, Yao; Yu, Biao

    2009-09-02

    TMG-chitotriomycin, a potent and selective inhibitor of the beta-N-acetylglucosaminidases that possesses an unique N,N,N-trimethyl-d-glucosamine (TMG) residue, is revised to be the TMG-beta-(1-->4)-chitotriose instead of the originally proposed alpha-anomer via its total synthesis, for which a highly convergent approach was developed in which the sterically demanding (1-->4)-glycosidic linkages are efficiently constructed by the Au(I)-catalyzed glycosylation protocol with glycosyl o-hexynylbenzoates as donors.

  10. Study of magnetization switching for MRAM based memory technologies

    Science.gov (United States)

    Pham, Huy

    Amphibian alkaloids are attractive targets for synthesis due to their biological activity. An important class of amphibian alkaloids is the 2,5-disubstituted pyrrolidine-based family of compounds. There are many synthetic approaches for the preparation of the trans-2,5-disubstituted pyrrolidines, but methods for the construction of the cis-2,5-pyrrolidines are limited. Therefore, it was desired to develop an enantioselective approach for the preparation of cis-2,5-disubsituted pyrrolidines. (+)-Tropin-2-one derived from cocaine was used as starting material to exploit the inherent stereochemistry for construction of the cis-pyrrolidine ring. This permitted the unequivocal assignment of the absolute configuration of the target pyrrolidine. The structurally simple pyrrolidine alkaloid, 225H, was selected as a target to develop a general synthetic approach. The enantioselective synthesis of 225H was achieved in nine steps and good overall yield. The search for potent cannabinoid receptor partial agonist ligands as potential marijuana addiction therapeutic agents has led to an investigation of the synthesis of diaryl ether hybrid analogues of BAY 59-3074. A series of 2-(3-alkyl-5-hydroxyphenoxy)-6-(trifluoromethyl)benzonitriles, 3-(2-cyano-3-(trifluoromethyl)phenoxy)phenylalkanoates, and (3-(benzyloxy)phenoxy)-6-(trifluoromethyl)benzonitriles were synthesized and evaluated in vitro for CB1 affinity. The olivetol diaryl ether analogue was the most potent ligand of the alkyl series, but the diaryl ester analogues exhibited modest affinity for CB1 receptors. The most potent compound of the series was the 2-(3-(benzyloxy)phenoxy)-6-(trifluoromethyl)benzonitrile. Keywords. amphibian alkaloids, enantioselective synthesis, pyrrolidine, cannabinoid receptor, marijuana.

  11. Highly enantioselective rhodium(I)-catalyzed carbonyl carboacylations initiated by C-C bond activation.

    Science.gov (United States)

    Souillart, Laetitia; Cramer, Nicolai

    2014-09-01

    The lactone motif is ubiquitous in natural products and pharmaceuticals. The Tishchenko disproportionation of two aldehydes, a carbonyl hydroacylation, is an efficient and atom-economic access to lactones. However, these reaction types are limited to the transfer of a hydride to the accepting carbonyl group. The transfer of alkyl groups enabling the formation of CC bonds during the ester formation would be of significant interest. Reported herein is such asymmetric carbonyl carboacylation of aldehydes and ketones, thus affording complex bicyclic lactones in excellent enantioselectivities. The rhodium(I)-catalyzed transformation is induced by an enantiotopic CC bond activation of a cyclobutanone and the formed rhodacyclic intermediate reacts with aldehyde or ketone groups to give highly functionalized lactones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular-level Design of Heterogeneous Chiral Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside

    2013-04-28

    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111

  13. Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    International Nuclear Information System (INIS)

    Yatom, Shurik; Selinsky, Rachel S.

    2017-01-01

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, were characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.

  14. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    Science.gov (United States)

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solid-Phase Synthesis for the Construction of Biologically Interesting Molecules and the Total Synthesis of Trioxacarcin DC-45-A2

    DEFF Research Database (Denmark)

    Mikkelsen, Remi Jacob Thomsen

    . Furthermore a route to another key building block was developed featuring a Stille cross-coupling.Synthesis of Poly-fused Heterocycles. In the search for new biologically active compounds a methodology for the synthesis of polyfused heterocycles was investigated. This led to the development and optimization...

  16. Asymmetric Brønsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers

    KAUST Repository

    Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Mader, Steffen; Sako, Makoto; Sasai, Hiroaki; Atodiresei, Iuliana; Rueping, Magnus

    2016-01-01

    An enantioselective addition of thiols and alcohols to aza-ortho-quinone methides, starting from diaryl methanols, was developed. The asymmetric additions occur under mild reaction conditions in the presence of chiral phosphoric acids and furnish the corresponding adducts with excellent yields and enantioselectivities.

  17. Asymmetric Brønsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers

    KAUST Repository

    Chatupheeraphat, Adisak

    2016-03-08

    An enantioselective addition of thiols and alcohols to aza-ortho-quinone methides, starting from diaryl methanols, was developed. The asymmetric additions occur under mild reaction conditions in the presence of chiral phosphoric acids and furnish the corresponding adducts with excellent yields and enantioselectivities.

  18. Total Radiosynthesis: Thinking outside "the box".

    Science.gov (United States)

    Liang, Steven H; Vasdev, Neil

    2015-09-01

    The logic of total synthesis transformed a stagnant state of medicinal and synthetic organic chemistry when there was a paucity of methods and reagents to synthesize drug molecules and/or natural products. Molecular imaging by positron emission tomography (PET) is now experiencing a renaissance in the way radiopharmaceuticals for molecular imaging are synthesized, however, a paradigm shift is desperately needed in the discovery pipeline to accelerate in vivo imaging studies. A significant challenge in radiochemistry is the limited choice of labeled reagents (or building blocks) available for the synthesis of novel radiopharmaceuticals with the most commonly used short-lived radionuclides carbon-11 ( 11 C; half-life ~20 minutes) and fluorine-18 ( 18 F; half-life ~2 hours). In fact, most drugs cannot be labeled with 11 C or 18 F due to a lack of efficient and diverse radiosynthetic methods. In general, routine radiopharmaceutical production relies on the incorporation of the isotope at the last or penultimate step of synthesis, ideally within one half-life of the radionuclide, to maximize radiochemical yields and specific activities thereby reducing losses due to radioactive decay. Reliance on radiochemistry conducted within the constraints of an automated synthesis unit ("box") has stifled the exploration of multi-step reactions with short-lived radionuclides. Radiopharmaceutical synthesis can be transformed by considering logic of total synthesis to develop novel approaches for 11 C- and 18 F-radiolabeling complex molecules via retrosynthetic analysis and multi-step reactions. As a result of such exploration, new methods, reagents and radiopharmaceuticals for in vivo imaging studies are discovered. A new avenue to develop radiotracers that were previously unattainable due to the lack of efficient radiosynthetic methods is necessary to work towards our ultimate, albeit impossible goal - the concept we term total radiosynthesis - to radiolabel virtually any molecule

  19. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli

    2015-06-02

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.

  20. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli; Yu, Zhaoyuan; Hoon, Ding Long; Huang, Kuo-Wei; Lan, Yu; Lu, Yixin

    2015-01-01

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.