WorldWideScience

Sample records for enamelin undergoes conformational

  1. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation.

    Directory of Open Access Journals (Sweden)

    Jan C-C Hu

    Full Text Available Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam-/- mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam-/- mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam-/- background did not fully recover enamel formation while a medium expresser in the Enam+/- background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation.

  2. Enamelin Is Critical for Ameloblast Integrity and Enamel Ultrastructure Formation

    Science.gov (United States)

    Hu, Jan C.-C.; Hu, Yuanyuan; Lu, Yuhe; Smith, Charles E.; Lertlam, Rangsiyakorn; Wright, John Timothy; Suggs, Cynthia; McKee, Marc D.; Beniash, Elia; Kabir, M. Enamul; Simmer, James P.

    2014-01-01

    Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam−/− mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam−/− mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam−/− background did not fully recover enamel formation while a medium expresser in the Enam+/− background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation. PMID:24603688

  3. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.

    Science.gov (United States)

    Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson

    2011-02-01

      This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families.   A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included.   A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta.   Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.

  4. Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI).

    Science.gov (United States)

    Masuya, Hiroshi; Shimizu, Kunihiko; Sezutsu, Hideki; Sakuraba, Yoshiyuki; Nagano, Junko; Shimizu, Aya; Fujimoto, Naomi; Kawai, Akiko; Miura, Ikuo; Kaneda, Hideki; Kobayashi, Kimio; Ishijima, Junko; Maeda, Takahide; Gondo, Yoichi; Noda, Tetsuo; Wakana, Shigeharu; Shiroishi, Toshihiko

    2005-03-01

    Amelogenesis imperfecta (AI) is a group of commonly inherited defects of dental enamel formation, which exhibits marked genetic and clinical heterogeneity. The genetic basis of this heterogeneity is still poorly understood. Enamelin, the affected gene product in one form of AI (AIH2), is an extracellular matrix protein that is one of the components of enamel. We isolated three ENU-induced dominant mouse mutations, M100395, M100514 and M100521, which caused AI-like phenotypes in the incisors and molars of the affected individuals. Linkage analyses mapped each of the three mutations to a region of chromosome 5 that contained the genes encoding enamelin (Enam) and ameloblastin (Ambn). Sequence analysis revealed that each mutation was a single-base substitution in Enam. M100395 (Enam(Rgsc395)) and M100514 (Enam(Rgsc514)) were putative missense mutations that caused S to I and E to G substitutions at positions 55 and 57 of the translated protein, respectively. Enam(Rgsc395) and Enam(Rgsc514) heterozygotes showed severe breakage of the enamel surface, a phenotype that resembled local hypoplastic AI. The M100521 mutation (Enam(Rgsc521)) was a T to A substitution at the splicing donor site in intron 4. This mutation resulted in a frameshift that gave rise to a premature stop codon. The transcript of the Enam(Rgsc521) mutant allele was degraded, indicating that Enam(Rgsc521) is a loss-of-function mutation. Enam(Rgsc521) heterozygotes showed a hypomaturation-type AI phenotype in the incisors, possibly due to haploinsufficiency of Enam. Enam(Rgsc521) homozygotes showed complete loss of enamel on the incisors and the molars. Thus, we report here that the Enam gene is essential for amelogenesis, and that mice with different point mutations at Enam may provide good animal models to study the different clinical subtypes of AI.

  5. Clinical and molecular analysis of the enamelin gene ENAM in Colombian families with autosomal dominant amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Sandra Gutiérrez

    2012-01-01

    Full Text Available In this study, we analyzed the phenotype, clinical characteristics and presence of mutations in the enamelin gene ENAM in five Colombian families with autosomal dominant amelogenesis imperfecta (ADAI. 22 individuals (15 affected and seven unaffected belonging to five Colombian families with ADAI and eight individuals (three affected and five unaffected belonging to three Colombian families with autosomal recessive amelogenesis imperfecta (ARAI that served as controls for molecular alterations and inheritance patterns were studied. Clinical, radiographic and genetic evaluations were done in all individuals. Eight exons and three intron-exon boundaries were sequenced for mutation analysis. Two of the five families with ADAI had the hypoplasic phenotype, two had the hypocalcified phenotype and one had the hypomaturative phenotype. Anterior open bite and mandibular retrognathism were the most frequent skeletal abnormalities in the families with ADAI. No mutations were found. These findings suggest that ADAI in these Colombian families was unrelated to previously described mutations in the ENAM gene. These results also indicate that other regions not included in this investigation, such as the promoter region, introns and other genes should be considered as potential ADAI candidates.

  6. Langevin dynamics of conformational transformations induced by the charge-curvature interaction

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Gorria, C.; Christiansen, Peter Leth

    2009-01-01

    The role of thermal fluctuations in the conformational dynamics of a single closed filament is studied. It is shown that, due to the interaction between charges and bending degrees of freedom, initially circular chains may undergo transformation to polygonal shape.......The role of thermal fluctuations in the conformational dynamics of a single closed filament is studied. It is shown that, due to the interaction between charges and bending degrees of freedom, initially circular chains may undergo transformation to polygonal shape....

  7. Molecular decay of the tooth gene Enamelin (ENAM mirrors the loss of enamel in the fossil record of placental mammals.

    Directory of Open Access Journals (Sweden)

    Robert W Meredith

    2009-09-01

    Full Text Available Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of "molecular fossils" of the enamelin (ENAM gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra with toothless and/or enamelless taxa. Our results support the "molecular fossil" hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (omega to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory.

  8. Peer influence: neural mechanisms underlying in-group conformity.

    Science.gov (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  9. Exploring the relationship between the conformation and pKa

    DEFF Research Database (Denmark)

    Olsen, Jacob Ingemar; Sauer, Stephan P. A.; Pedersen, Christian Marcus

    2015-01-01

    Four substituted cis and trans-4,5-dihydroxyhexahydropyridazines that were expected to undergo pH induced conformational switching were synthesized and carefully investigated by NMR analyses and calculations. For two of the compounds a large difference in pKa existed between the two possible chair...... conformers and for one compound this resulted in conformational switching as a result of pH change. For the first time it is shown that the pKa directly reflects the conformational equilibrium of conformers....

  10. Dynamical realizations of l-conformal Newton–Hooke group

    International Nuclear Information System (INIS)

    Galajinsky, Anton; Masterov, Ivan

    2013-01-01

    The method of nonlinear realizations and the technique previously developed in [A. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, (arXiv:1208.1403)] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton–Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that the multi-dimensional Pais–Uhlenbeck oscillator enjoys the l=3/2 -conformal Newton–Hooke symmetry for a particular choice of its frequencies

  11. Monitoring conformational dynamics with solid-state R1ρ experiments

    International Nuclear Information System (INIS)

    Quinn, Caitlin M.; McDermott, Ann E.

    2009-01-01

    A new application of solid-state rotating frame (R 1ρ ) relaxation experiments to observe conformational dynamics is presented. Studies on a model compound, dimethyl sulfone (DMS), show that R 1ρ relaxation due to reorientation of a chemical shift anisotropy (CSA) tensor undergoing chemical exchange can be used to monitor slow-to-intermediate timescale conformational exchange processes. Control experiments used d 6 -DMS and alanine to confirm that the technique is monitoring reorientation of the CSA tensor rather than dipolar interactions or methyl group rotation. The application of this method to proteins could represent a new site-specific probe of conformational dynamics

  12. Conformational transformations induced by the charge-curvature interaction: Mean-field approach

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W.J.

    2006-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving ...... impetus to conformational dynamics of biopolymers. It is demonstrated that initially circular aggregates may undergo transformation to polygonal shapes and possible application to aggregates of bacteriochlorophyl a molecules is considered....

  13. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis.

    Science.gov (United States)

    Gasse, Barbara; Sire, Jean-Yves

    2015-01-01

    In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. We provide the full-length cDNA sequence of A. carolinensis AMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.

  14. Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress.

    Science.gov (United States)

    Brookes, Steven J; Barron, Martin J; Smith, Claire E L; Poulter, James A; Mighell, Alan J; Inglehearn, Chris F; Brown, Catriona J; Rodd, Helen; Kirkham, Jennifer; Dixon, Michael J

    2017-05-15

    'Amelogenesis imperfecta' (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype. © The Author 2017. Published by Oxford University Press.

  15. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2014-10-01

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N-H...O=C, type II by a strong O-H...N hydrogen bond, type III by weak N-H...O-H hydrogen bonds, and type IV by a C=O...H-C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O-H...N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N2 matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm-1, respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that PG undergoes facile photofragmentation

  16. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    International Nuclear Information System (INIS)

    Borba, Ana; Fausto, Rui; Gómez-Zavaglia, Andrea

    2014-01-01

    undergoes facile photofragmentation through two photochemical pathways that are favored for different initial conformations of the reactant: (a) decarboxylation, leading to CO 2 plus benzylamine (the dominant photofragmentation channel in PG cis-COOH conformers ICa and ICc) and (b) decarbonylation, with generation of CO plus benzonitrile, H 2 O and H 2 (prevalent in the case of the trans-COOH conformer, IITa)

  17. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    International Nuclear Information System (INIS)

    Martín-García, Fernando; Mendieta-Moreno, Jesús Ignacio; Mendieta, Jesús; Gómez-Puertas, Paulino

    2012-01-01

    Highlights: ► Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. ► HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. ► HRS domains of F protein form three single α-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from β-sheet conformation to an elongated coil and then spontaneously to an α-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  18. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  19. Conformational transformations induced by the charge-curvature interaction at finite temperature

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Gorria, Carlos; Christiansen, Peter Leth

    2008-01-01

    The role of thermal fluctuations on the conformational dynamics of a single closed filament is studied. It is shown that, due to the interaction between charges and bending degrees of freedom, initially circular aggregates may undergo transformation to polygonal shape. The transition occurs both...

  20. Reversible conformational change in herpes simplex virus glycoprotein B with fusion-from-without activity is triggered by mildly acidic pH

    Directory of Open Access Journals (Sweden)

    Nicola Anthony V

    2010-12-01

    Full Text Available Abstract Background The pre-fusion form of the herpes simplex virus (HSV fusion protein gB undergoes pH-triggered conformational change in vitro and during viral entry (Dollery et al., J. Virol. 84:3759-3766, 2010. The antigenic structure of gB from the fusion-from-without (FFWO strain of HSV-1, ANG path, resembles wild type gB that has undergone pH-triggered changes. Together, changes in the antigenic and oligomeric conformation of gB correlate with fusion activity. We tested whether the pre-fusion form of FFWO gB undergoes altered conformational change in response to low pH. Results A pH of 5.5 - 6.0 altered the conformation of Domains I and V of FFWO gB, which together comprise the functional region containing the hydrophobic fusion loops. The ANG path gB oligomer was altered at a similar pH. All changes were reversible. In wild type HSV lacking the UL45 protein, which has been implicated in gB-mediated fusion, gB still underwent pH-triggered changes. ANG path entry was inactivated by pretreatment of virions with low pH. Conclusion The pre-fusion conformation of gB with enhanced fusion activity undergoes alteration in antigenic structure and oligomeric conformation in response to acidic pH. We propose that endosomal pH triggers conformational change in mutant gB with FFWO activity in a manner similar to wild type. Differences apart from this trigger may account for the increased fusion activity of FFWO gB.

  1. Conformational inversion-topomerization mechanism of ethylcyclohexyl isomers and its role in combustion kinetics

    KAUST Repository

    Bian, Huiting

    2016-07-26

    With the "strain-free" cyclic structure, cyclohexane and alkyl cyclohexanes (and their radicals) have various conformers (e.g. chair, boat, and twist etc.) by pseudorotation of the alkyl ring. Noting that different conformers will undergo different types of H-migration reactions, the mechanism of conformational change may impact the distribution of cyclohexyl and the branched cyclohexyl radical isomers during cyclohexane and alkyl cyclohexanes combustion. Consequently, it will influence the formation of subsequent decomposition products. In this work, the conformational inversion-topomerization mechanism and H-migration reactions for six ethylcyclohexyl radical isomers were systematically studied by ab initio calculations and the transition state theory. The updated sub-mechanism of these conformational changes is incorporated into an ethylcyclohexane pyrolysis model. By comparing the simulated results of the "complete" model including the sub-mechanism of conformational changes and the simplified model ignoring these processes, the effect of inversion-topomerization mechanism on the relative concentrations of various ethylcyclohexyl radicals and the formation of subsequent decomposition products were revealed. © 2016.

  2. Squaraine rotaxanes with boat conformation macrocycles.

    Science.gov (United States)

    Fu, Na; Baumes, Jeffrey M; Arunkumar, Easwaran; Noll, Bruce C; Smith, Bradley D

    2009-09-04

    Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C(4)O(2) core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye's brightness by a factor of 6. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes.

  3. Molecular insight into conformational transmission of human P-glycoprotein

    International Nuclear Information System (INIS)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2013-01-01

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp

  4. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  5. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    Science.gov (United States)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  6. Conformational transition of κ-casein in micellar environment: Insight from the tryptophan fluorescence

    Science.gov (United States)

    Mishra, Smruti; Meher, Geetanjali; Chakraborty, Hirak

    2017-11-01

    Intrinsically disordered proteins (IDPs) are under intense analysis due to their structural flexibility and importance in biological functions. Minuscule modulation in the microenvironment induces significant conformational changes in IDPs, and these non-native conformations of the IDPs often induce aggregation and cause cell death. Changes in the membrane composition often change the microenvironment, which promote conformational change and aggregation of IDPs. κ-Casein, an important milk protein, belongs to the class of IDPs containing net negative charges. In this present work, we have studied the interaction of κ-casein with cetyltrimethyl ammonium bromide (CTAB), a positively charged surfactant, utilizing various steady state fluorescence, time-resolved fluorescence and circular dichroism spectroscopy. Our results clearly indicate that κ-casein undergoes at least two conformational transitions in presence of various concentrations of CTAB. The intrinsically disordered κ-casein assumes a partially folded conformation at lower concentration of CTAB, which adopts an unstructured conformation at higher concentration of CTAB. The partially folded conformation of κ-casein at a lower CTAB concentration might be induced by the favorable electrostatic interaction between the positively charged surfactant headgroup and net negative charges of the protein, whereas surfactant nature of CTAB is being pronounced at higher concentration of CTAB.

  7. Identification of key residues for protein conformational transition using elastic network model.

    Science.gov (United States)

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  8. A new fundamental type of conformational isomerism

    Science.gov (United States)

    Canfield, Peter J.; Blake, Iain M.; Cai, Zheng-Li; Luck, Ian J.; Krausz, Elmars; Kobayashi, Rika; Reimers, Jeffrey R.; Crossley, Maxwell J.

    2018-06-01

    Isomerism is a fundamental chemical concept, reflecting the fact that the arrangement of atoms in a molecular entity has a profound influence on its chemical and physical properties. Here we describe a previously unclassified fundamental form of conformational isomerism through four resolved stereoisomers of a transoid (BF)O(BF)-quinoxalinoporphyrin. These comprise two pairs of enantiomers that manifest structural relationships not describable within existing IUPAC nomenclature and terminology. They undergo thermal diastereomeric interconversion over a barrier of 104 ± 2 kJ mol-1, which we term `akamptisomerization'. Feasible interconversion processes between conceivable synthesis products and reaction intermediates were mapped out by density functional theory calculations, identifying bond-angle inversion (BAI) at a singly bonded atom as the reaction mechanism. We also introduce the necessary BAI stereodescriptors parvo and amplo. Based on an extended polytope formalism of molecular structure and stereoisomerization, BAI-driven akamptisomerization is shown to be the final fundamental type of conformational isomerization.

  9. Kinetics of conformational changes of fibronectin adsorbed onto model surfaces.

    Science.gov (United States)

    Baujard-Lamotte, L; Noinville, S; Goubard, F; Marque, P; Pauthe, E

    2008-05-01

    Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined. When adsorption occurs onto the hydrophilic surface, FN molecules keep their native conformation independent of the adsorption conditions, but the amount of adsorbed FN increases with time and the bulk concentration. Although the protein surface density is the same on the hydrophobic PS surface, this has a strong impact on the average conformation of the adsorbed FN layer. Indeed, interfacial hydration changes induced by adsorption onto the hydrophobic surface lead to a decrease in unhydrated beta-sheet content and cause an increase in hydrated beta-strand and hydrated random domain content of adsorbed FN. This conformational change is mainly dependent on the bulk concentration. Indeed, at low bulk concentrations, the secondary structures of adsorbed FN molecules undergo strong unfolding, allowing an extended and hydrated conformation of the protein. At high bulk concentrations, the molecular packing reduces the unfolding of the stereoregular structures of the FN molecules, preventing stronger spreading of the protein.

  10. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    Science.gov (United States)

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  11. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  12. Modulation of the Conformational Dynamics of Apo-Adenylate Kinase through a π-Cation Interaction.

    Science.gov (United States)

    Halder, Ritaban; Manna, Rabindra Nath; Chakraborty, Sandipan; Jana, Biman

    2017-06-15

    Large-scale conformational transition from open to closed state of adenylate kinase (ADK) is essential for its catalytic cycle. Apo-ADK undergoes conformational transition in a way that closely resembles an open-to-closed conformational transition. Here, equilibrium simulations, free-energy simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations in combination with several bioinformatics approaches have been used to explore the molecular origin of this conformational transition in apo-ADK. In addition to its conventional open state, Escherichia coli apo-ADK adopts conformations that resemble a closed-like intermediate, the "half-open-half-closed" (HOHC) state, and a π-cation interaction can account for the stability of this HOHC state. Energetics and the electronic properties of this π-cation interaction have been explored using QM/MM calculations. Upon rescinding the π-cation interaction, the conformational landscape of the apo-ADK changes completely. The apo-ADK population is shifted completely toward the open state. This π-cation interaction is highly conserved in bacterial ADK; the cationic guanidinium moiety of a conserved ARG interacts with the delocalized π-electron cloud of either PHE or TYR. Interestingly, this study demonstrates the modulation of a principal protein dynamics by a conserved specific π-cation interaction across different organisms.

  13. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  14. Conformational changes in DNA caused by DNA-ase I, gamma and ultraviolet radiation as revealed by differential pulse polarography

    International Nuclear Information System (INIS)

    Vorlickova, M.

    1979-01-01

    The height, potential and half width of differential pulse-polarographic peaks of DNA were investigated in dependence on degradation by DNA-ase I and gamma and UV radiation. It was found that in all cases studied growth of peak II (reflecting conformational changes in the DNA double helix) was limited, and only after it reached a certain height further degradation induced the appearance of peak III of single-stranded DNA. This course is explained as reflecting the limited extent of conformational changes in the framework of the double helix, which probably follows from a limited number of sites that can undergo certain types of conformational changes. The character of the conformational changes is dependent on the chemical nature of the damage. (author)

  15. Killing tensors and conformal Killing tensors from conformal Killing vectors

    International Nuclear Information System (INIS)

    Rani, Raffaele; Edgar, S Brian; Barnes, Alan

    2003-01-01

    Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors

  16. Conformity Index and Homogeneity Index of the Postoperative Whole Breast Radiotherapy.

    Science.gov (United States)

    Petrova, Deva; Smickovska, Snezana; Lazarevska, Emilija

    2017-10-15

    The treatment of breast cancer involves a multidisciplinary approach in which radiotherapy plays a key role. The conformity index and the homogeneity index are two analysis tools of a treatment plan using conformal radiotherapy. The purpose of this article is an analysis of these two parameters in the assessment of the treatment plans in 58 patients undergoing postoperative radiotherapy of the whole breast. All 58 patients participating in the study had a conservatively treated early-stage breast cancer. The treatment was performed using a standard regimen of fractionation in 25 fractions up to a total dose of 50 Gy. Dose-volume histograms were generated for both plans with and without segmental fields. Pair samples t-test was used. The technique with segmental fields allowed us more homogeneity distribution when compared to standard two tangential field techniques. The HI values were 1.08 ± 0.01 and 1.09 ± 0.01 for segment and technique with two tangential fields (p conformity and the homogeneity index are important tools in the analysis of the treatment plans during radiation therapy in patients with early-stage breast cancer. Adding segment fields in the administration of radiotherapy in patients with conservatively treated breast cancer can lead to improved dosage homogeneity and conformity.

  17. Replacement between conformity and counter-conformity in consumption decisions.

    Science.gov (United States)

    Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica

    2013-02-01

    This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future.

  18. Conformational changes induced by Mg2+ on the multiple forms of glutamine synthetase from Bacillus brevis Bb G1

    Directory of Open Access Journals (Sweden)

    Suja Abraham

    2013-01-01

    Full Text Available Conformational changes play an important role in the function of proteins. Glutamine synthetase, an important enzyme of nitrogen metabolism, was purified under sporulating (GSala and non-sporulating (GSpyr conditions and the effect of Mg2+ on these multiple forms was studied by fluorescence spectroscopy to detect possible conformational changes that occur in the presenceof Mg2+. The substantial changes in the fluorescence emission maximum, fluorescence intensity and lifetime that occur in the presence of different concentrations of Mg2+, indicated major changes in molecular conformations in both forms of this enzyme. The fluorescent changes produced by the effect of Mg2+ in GSala was much more prominent than in GSpyr. These observations strongly support the possibility that GSala and GSpyr undergoes a conformational change on binding with Mg2+.

  19. A nonaffine network model for elastomers undergoing finite deformations

    Science.gov (United States)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  20. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  1. Group quenching and galactic conformity at low redshift

    Science.gov (United States)

    Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.

    2018-06-01

    We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a colour-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive haloes than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of `group quenching'; at log (Mh/M⊙) ≳ 13, a cut-off that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller haloes. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star formation of blue satellites in massive haloes is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low-mass haloes, show no deviation from the colour-stellar mass relation of blue field galaxies.

  2. Group quenching and galactic conformity at low redshift

    Science.gov (United States)

    Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.

    2018-03-01

    We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly (GAMA) to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a color-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive halos than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of "group quenching"; at log (Mh/M⊙) ≳ 13, a cutoff that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller halos. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star-formation of blue satellites in massive halos is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low mass halos, show no deviation from the color-stellar mass relation of blue field galaxies.

  3. Regularities of texture formation in alloys undergoing phase transformations during heat treatment and plastic working

    International Nuclear Information System (INIS)

    Ageev, N.V.; Babarehko, A.A.

    1983-01-01

    Peculiarities of texture formation in metals undergoing phase transformations in the temperature range of heat treatment and hot working are investigated theoretically and experimentally. A low-temperature phase after hot working is shown to inherite a high-temperature phase texture due to definite orientation conformity during phase transformation. Strengthened heat and thermomechanical treatments, as a rule, do not destroy material texture but change it

  4. Quantum Conformal Algebras and Closed Conformal Field Theory

    CERN Document Server

    Anselmi, D

    1999-01-01

    We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...

  5. C-metric solution for conformal gravity with a conformally coupled scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)

    2017-02-15

    The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.

  6. Non-conformable, partial and conformable transposition

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2013-01-01

    and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...... the transposition process. We therefore conclude that a stronger focus on an effective sanctioning mechanism is warranted for safeguarding compliance with directives....

  7. Conformal Einstein spaces

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.; Tod, K.P.

    1985-01-01

    Conformal transformations in four-dimensional. In particular, a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space is presented. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishing of the Bach tensor) gives the particular subclass of C spaces which are conformally related to Einstein spaces. (author)

  8. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  9. Conformal symmetry in two-dimensional space: recursion representation of conformal block

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1988-01-01

    The four-point conformal block plays an important part in the analysis of the conformally invariant operator algebra in two-dimensional space. The behavior of the conformal block is calculated in the present paper in the limit in which the dimension Δ of the intermediate operator tends to infinity. This makes it possible to construct a recursion relation for this function that connects the conformal block at arbitrary Δ to the blocks corresponding to the dimensions of the zero vectors in the degenerate representations of the Virasoro algebra. The relation is convenient for calculating the expansion of the conformal block in powers of the uniformizing parameters q = i π tau

  10. Geometric accuracy of field alignment in fractionated stereotactic conformal radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Kortmann, Rolf D.; Becker, Gerd; Perelmouter, Jury; Buchgeister, Markus; Meisner, Christoph; Bamberg, Michael

    1999-01-01

    Purpose: To assess the accuracy of field alignment in patients undergoing three-dimensional (3D) conformal radiotherapy of brain tumors, and to evaluate the impact on the definition of planning target volume and control procedures. Methods and Materials: Geometric accuracy was analyzed in 20 patients undergoing fractionated stereotactic conformal radiotherapy for brain tumors. Rigid head fixation was achieved by using cast material. Transfer of stereotactic coordinates was performed by an external positioning device. The accuracy during treatment planning was quantitatively assessed by using repeated computed tomography (CT) examinations in treatment position (reproducibility of isocenter). Linear discrepancies were measured between treatment plan and CT examination. In addition, for each patient, a series of 20 verifications were taken in orthogonal projections. Linear discrepancies were measured between first and all subsequent verifications (accuracy during treatment delivery). Results: For the total group of patients, the distribution of deviations during treatment setup showed mean values between -0.3-1.2 mm, with standard deviations (SD) of 1.3-2.0 mm. During treatment delivery, the distribution of deviations revealed mean values between 0.7-0.8 mm, with SDs of 0.5-0.6 mm, respectively. For all patients, deviations for the transition to the treatment machine were similar to deviations during subsequent treatment delivery, with 95% of all absolute deviations between less than 2.8 and 4.6 mm. Conclusion: Random fluctuations of field displacements during treatment planning and delivery prevail. Therefore, our quantitative data should be considered when prescribing the safety margins of the planning target volume. Repeated CT examination are useful to detect operator errors and large random or systematic deviations before start of treatment. Control procedures during treatment delivery appear to be of limited importance. In addition, our findings should help to

  11. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  12. Conformal Infinity.

    Science.gov (United States)

    Frauendiener, Jörg

    2004-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  13. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  14. Conformational Complexity in the LH2 Antenna of the Purple Sulfur Bacterium Allochromatium vinosum Revealed by Hole-Burning Spectroscopy.

    Science.gov (United States)

    Kell, Adam; Jassas, Mahboobe; Acharya, Khem; Hacking, Kirsty; Cogdell, Richard J; Jankowiak, Ryszard

    2017-06-15

    This work discusses the protein conformational complexity of the B800-850 LH2 complexes from the purple sulfur bacterium Allochromatium vinosum, focusing on the spectral characteristics of the B850 chromophores. Low-temperature B850 absorption and the split B800 band shift blue and red, respectively, at elevated temperatures, revealing isosbestic points. The latter indicates the presence of two (unresolved) conformations of B850 bacteriochlorophylls (BChls), referred to as conformations 1 and 2, and two conformations of B800 BChls, denoted as B800 R and B800 B . The energy differences between average site energies of conformations 1 and 2, and B800 R and B800 B are similar (∼200 cm -1 ), suggesting weak and strong hydrogen bonds linking two major subpopulations of BChls and the protein scaffolding. Although conformations 1 and 2 of the B850 chromophores, and B800 R and B800 B , exist in the ground state, selective excitation leads to 1 → 2 and B800 R → B800 B phototransformations. Different static inhomogeneous broadening is revealed for the lowest energy exciton states of B850 (fwhm ∼195 cm -1 ) and B800 R (fwhm ∼140 cm -1 ). To describe the 5 K absorption spectrum and the above-mentioned conformations, we employ an exciton model with dichotomous protein conformation disorder. We show that both experimental data and the modeling study support a two-site model with strongly and weakly hydrogen-bonded B850 and B800 BChls, which under illumination undergo conformational changes, most likely caused by proton dynamics.

  15. Logarithmic conformal field theory through nilpotent conformal dimensions

    International Nuclear Information System (INIS)

    Moghimi-Araghi, S.; Rouhani, S.; Saadat, M.

    2001-01-01

    We study logarithmic conformal field theories (LCFTs) through the introduction of nilpotent conformal weights. Using this device, we derive the properties of LCFTs such as the transformation laws, singular vectors and the structure of correlation functions. We discuss the emergence of an extra energy momentum tensor, which is the logarithmic partner of the energy momentum tensor

  16. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  17. Pelvic Ewing sarcomas. Three-dimensional conformal vs. intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mounessi, F.S.; Lehrich, P.; Haverkamp, U.; Eich, H.T. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Willich, N. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Universitaetsklinikum Muenster (Germany). RiSK - Registry for the Evaluation of Late Side Effects after Radiotherapy in Childhood and Adolescence; Boelling, T. [Center for Radiation Oncology, Osnabrueck (Germany)

    2013-04-15

    The goal of the present work was to assess the potential advantage of intensity-modulated radiotherapy (IMRT) over three-dimensional conformal radiotherapy (3D-CRT) planning in pelvic Ewing's sarcoma. A total of 8 patients with Ewing sarcoma of the pelvis undergoing radiotherapy were analyzed. Plans for 3D-CRT and IMRT were calculated for each patient. Dose coverage of the planning target volume (PTV), conformity and homogeneity indices, as well as further parameters were evaluated. Results The average dose coverage values for PTV were comparable in 3D-CRT and IMRT plans. Both techniques had a PTV coverage of V{sub 95} > 98 % in all patients. Whereas the IMRT plans achieved a higher conformity index compared to the 3D-CRT plans (conformity index 0.79 {+-} 0.12 vs. 0.54 {+-} 0.19, p = 0.012), the dose distribution across the target volumes was less homogeneous with IMRT planning than with 3D-CRT planning. This difference was statistically significant (homogeneity index 0.11 {+-} 0.03 vs. 0.07 {+-} 0.0, p = 0.035). For the bowel, D{sub mean} and D{sub 1%}, as well as V{sub 2} to V{sub 60} were reduced in IMRT plans. For the bladder and the rectum, there was no significant difference in D{sub mean}. However, the percentages of volumes receiving at least doses of 30, 40, 45, and 50 Gy (V{sub 30} to V{sub 50}) were lower for the rectum in IMRT plans. The volume of normal tissue receiving at least 2 Gy (V{sub 2}) was significantly higher in IMRT plans compared with 3D-CRT, whereas at high dose levels (V{sub 30}) it was significantly lower. Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p = 0.012) and bowel sparing at dose levels above 30 Gy (p = 0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing's sarcoma can be more easily achieved using IMRT. (orig.)

  18. Conformal invariance in supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.A.

    1983-01-01

    In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)

  19. Structure of Human Pancreatic Lipase-Related Protein 2 with the Lid in an Open Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Eydoux, Cecilia; Spinelli, Silvia; Davis, Tara L.; Walker, John R.; Seitova, Alma; Dhe-Paganon, Sirano; De Caro, Alain; Cambillau, Christian; Carriere, Frederic (CNRS-UMR); (Toronto)

    2008-10-02

    Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.

  20. Mechanism of adsorption and eclipse of bacteriophage phi X174. I. In vitro conformational change under conditions of eclipse.

    Science.gov (United States)

    Incardona, N L; Blonski, R; Feeney, W

    1972-01-01

    Bacteriophage phiX174 undergoes a conformational change during viral eclipse when virus-host cell complexes are incubated briefly at 37 C in a complex starvation buffer at pH 8. In this report, basically the same transition is demonstrated in vitro. Incubation of phiX alone for 2 to 3 hr at 35 C in 0.1 m CaCl(2) (pH 7.2) results in an irreversible decrease in S(20,w) because of an increase in the frictional coefficient that occurs during the change in conformation. The slower sedimenting conformation is noninfectious. These properties are remarkably similar to those of the eclipsed particles characterized by Newbold and Sinsheimer. Therefore, the key structural requirements for the molecular mechanism must reside within the architecture of the virus itself. This extremely simplified system uncovered the calcium ion requirement and pronounced dependence on pH between 6 and 7, both inherent properties of adsorption. This and the more than 10-fold greater rate of the in vivo conformational transition allude to the cooperative nature of attachment and eclipse for phiX.

  1. Covalent dye attachment influences the dynamics and conformational properties of flexible peptides.

    Directory of Open Access Journals (Sweden)

    Manuel P Luitz

    Full Text Available Fluorescence spectroscopy techniques like Förster resonance energy transfer (FRET and fluorescence correlation spectroscopy (FCS have become important tools for the in vitro and in vivo investigation of conformational dynamics in biomolecules. These methods rely on the distance-dependent quenching of the fluorescence signal of a donor fluorophore either by a fluorescent acceptor fluorophore (FRET or a non-fluorescent quencher, as used in FCS with photoinduced electron transfer (PET. The attachment of fluorophores to the molecule of interest can potentially alter the molecular properties and may affect the relevant conformational states and dynamics especially of flexible biomolecules like intrinsically disordered proteins (IDP. Using the intrinsically disordered S-peptide as a model system, we investigate the impact of terminal fluorescence labeling on the molecular properties. We perform extensive molecular dynamics simulations on the labeled and unlabeled peptide and compare the results with in vitro PET-FCS measurements. Experimental and simulated timescales of end-to-end fluctuations were found in excellent agreement. Comparison between simulations with and without labels reveal that the π-stacking interaction between the fluorophore labels traps the conformation of S-peptide in a single dominant state, while the unlabeled peptide undergoes continuous conformational rearrangements. Furthermore, we find that the open to closed transition rate of S-peptide is decreased by at least one order of magnitude by the fluorophore attachment. Our approach combining experimental and in silico methods provides a benchmark for the simulations and reveals the significant effect that fluorescence labeling can have on the conformational dynamics of small biomolecules, at least for inherently flexible short peptides. The presented protocol is not only useful for comparing PET-FCS experiments with simulation results but provides a strategy to minimize the

  2. Conformal solids and holography

    Science.gov (United States)

    Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R.

    2017-12-01

    We argue that a SO( d) magnetic monopole in an asymptotically AdS space-time is dual to a d-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration solidon. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary — the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.

  3. Cation diffusion facilitators transport initiation and regulation is mediated by cation induced conformational changes of the cytoplasmic domain.

    Directory of Open Access Journals (Sweden)

    Natalie Zeytuni

    Full Text Available Cation diffusion facilitators (CDF are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all domains of life. CDF's were shown to be involved in several human diseases, such as Type-II diabetes and neurodegenerative diseases. In this work, we employed a multi-disciplinary approach to study the activation mechanism of the CDF protein family. For this we used MamM, one of the main ion transporters of magnetosomes--bacterial organelles that enable magnetotactic bacteria to orientate along geomagnetic fields. Our results reveal that the cytosolic domain of MamM forms a stable dimer that undergoes distinct conformational changes upon divalent cation binding. MamM conformational change is associated with three metal binding sites that were identified and characterized. Altogether, our results provide a novel auto-regulation mode of action model in which the cytosolic domain's conformational changes upon ligand binding allows the priming of the CDF into its transport mode.

  4. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  5. Study of Inter- and Intra-fraction Motion in Brain Tumor Patients Undergoing VMAT Treatment

    International Nuclear Information System (INIS)

    Ascencion Ybarra, Y.; Alfonso Laguardia, R.; Yartsev, S.

    2015-01-01

    Conforming dose to the tumor and sparing normal tissue can be challenging for brain tumors with complex shapes in close proximity to critical structures. The goal of this study was to evaluate the inter- and intra-fraction motion in brain tumor patients undergoing volumetric modulated arc therapy (VMAT). The image matching software was found to be very sensitive to the choice of the region of matching. It is recommended to use the same region of interest for comparing the image sets and perform the automatic matching based on bony landmarks in brain tumor cases. (Author)

  6. Conformational analysis by intersection: CONAN.

    Science.gov (United States)

    Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve

    2003-01-15

    As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003

  7. The conformal method and the conformal thin-sandwich method are the same

    International Nuclear Information System (INIS)

    Maxwell, David

    2014-01-01

    The conformal method developed in the 1970s and the more recent Lagrangian and Hamiltonian conformal thin-sandwich methods are techniques for finding solutions of the Einstein constraint equations. We show that they are manifestations of a single conformal method: there is a straightforward way to convert back and forth between the parameters for these methods so that the corresponding solutions of the Einstein constraint equations agree. The unifying idea is the need to clearly distinguish tangent and cotangent vectors to the space of conformal classes on a manifold, and we introduce a vocabulary for working with these objects without reference to a particular representative background metric. As a consequence of these conceptual advantages, we demonstrate how to strengthen previous near-CMC (constant mean curvature) existence and non-existence theorems for the original conformal method to include metrics with scalar curvatures that change sign. (paper)

  8. Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Denis Bucher

    2011-04-01

    Full Text Available Periplasmic binding proteins (PBPs are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE experiments have shown that the maltose binding protein (MBP - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime mixture comprising an open state (approx 95%, and a minor partially closed state (approx 5%. Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175-184 is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins.

  9. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  10. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Quella, Thomas

    2013-07-01

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  11. Conformal Infinity

    OpenAIRE

    Frauendiener, J?rg

    2000-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory...

  12. Conformal superalgebras via tractor calculus

    Science.gov (United States)

    Lischewski, Andree

    2015-01-01

    We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.

  13. Conformal sequestering simplified

    International Nuclear Information System (INIS)

    Schmaltz, Martin; Sundrum, Raman

    2006-01-01

    Sequestering is important for obtaining flavor-universal soft masses in models where supersymmetry breaking is mediated at high scales. We construct a simple and robust class of hidden sector models which sequester themselves from the visible sector due to strong and conformally invariant hidden dynamics. Masses for hidden matter eventually break the conformal symmetry and lead to supersymmetry breaking by the mechanism recently discovered by Intriligator, Seiberg and Shih. We give a unified treatment of subtleties due to global symmetries of the CFT. There is enough review for the paper to constitute a self-contained account of conformal sequestering

  14. Conformity index: A review

    International Nuclear Information System (INIS)

    Feuvret, Loic; Noel, Georges; Mazeron, Jean-Jacques; Bey, Pierre

    2006-01-01

    We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear

  15. Fermion-scalar conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)

    2016-04-13

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  16. Fabrication challenges associated with conformal optics

    Science.gov (United States)

    Schaefer, John; Eichholtz, Richard A.; Sulzbach, Frank C.

    2001-09-01

    A conformal optic is typically an optical window that conforms smoothly to the external shape of a system platform to improve aerodynamics. Conformal optics can be on-axis, such as an ogive missile dome, or off-axis, such as in a free form airplane wing. A common example of conformal optics is the automotive head light window that conforms to the body of the car aerodynamics and aesthetics. The unusual shape of conformal optics creates tremendous challenges for design, manufacturing, and testing. This paper will discuss fabrication methods that have been successfully demonstrated to produce conformal missile domes and associated wavefront corrector elements. It will identify challenges foreseen with more complex free-form configurations. Work presented in this paper was directed by the Precision Conformal Optics Consortium (PCOT). PCOT is comprised of both industrial and academic members who teamed to develop and demonstrate conformal optical systems suitable for insertion into future military programs. The consortium was funded under DARPA agreement number MDA972-96-9-08000.

  17. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    Science.gov (United States)

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (E a ), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. E a , k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  18. Axiomatic conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Goddard, P.

    2000-01-01

    A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)

  19. pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization.

    Science.gov (United States)

    Pesavento, Joseph B; Crawford, Sue E; Roberts, Ed; Estes, Mary K; Prasad, B V Venkataram

    2005-07-01

    The rotavirus spike protein, VP4, is a major determinant of infectivity and neutralization. Previously, we have shown that trypsin-enhanced infectivity of rotavirus involves a transformation of the VP4 spike from a flexible to a rigid bilobed structure. Here we show that at elevated pH the spike undergoes a drastic, irreversible conformational change and becomes stunted, with a pronounced trilobed appearance. These particles with altered spikes, at a normal pH of 7.5, despite the loss of infectivity and the ability to hemagglutinate, surprisingly exhibit sialic acid (SA)-independent cell binding in contrast to the SA-dependent cell binding exhibited by native virions. Remarkably, a neutralizing monoclonal antibody that remains bound to spikes throughout the pH changes (pH 7 to 11 and back to pH 7) completely prevents this conformational change, preserving the SA-dependent cell binding and hemagglutinating functions of the virion. A hypothesis that emerges from the present study is that high-pH treatment triggers a conformational change that mimics a post-SA-attachment step to expose an epitope recognized by a downstream receptor in the rotavirus cell entry process. This process involves sequential interactions with multiple receptors, and the mechanism by which the antibody neutralizes is by preventing this conformational change.

  20. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    Science.gov (United States)

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Conformal description of spinning particles

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1986-01-01

    This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)

  2. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  3. Conformally connected universes

    International Nuclear Information System (INIS)

    Cantor, M.; Piran, T.

    1983-01-01

    A well-known difficulty associated with the conformal method for the solution of the general relativistic Hamiltonian constraint is the appearance of an aphysical ''bag of gold'' singularity at the nodal surface of the conformal factor. This happens whenever the background Ricci scalar is too large. Using a simple model, it is demonstrated that some of these singular solutions do have a physical meaning, and that these can be considered as initial data for Universe containing black holes, which are connected, in a conformally nonsingular way with each other. The relation between the ADM mass and the horizon area in this solution supports the cosmic censorship conjecture. (author)

  4. The gluonic field of a heavy quark in conformal field theories at strong coupling

    Science.gov (United States)

    Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2011-10-01

    We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in mathcal{N} = 4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator Tr[ F 2 + …] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine (Tr[ F 2 + …])when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3 + 1 dimensions with a dual gravity formulation.

  5. On Associative Conformal Algebras of Linear Growth

    OpenAIRE

    Retakh, Alexander

    2000-01-01

    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  6. Conformal algebra of Riemann surfaces

    International Nuclear Information System (INIS)

    Vafa, C.

    1988-01-01

    It has become clear over the last few years that 2-dimensional conformal field theories are a crucial ingredient of string theory. Conformal field theories correspond to vacuum solutions of strings; or more precisely we know how to compute string spectrum and scattering amplitudes by starting from a formal theory (with a proper value of central charge of the Virasoro algebra). Certain non-linear sigma models do give rise to conformal theories. A lot of progress has been made in the understanding of conformal theories. The author discusses a different view of conformal theories which was motivated by the development of operator formalism on Riemann surfaces. The author discusses an interesting recent work from this point of view

  7. Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Barry J Grant

    2009-03-01

    Full Text Available Ras mediates signaling pathways controlling cell proliferation and development by cycling between GTP- and GDP-bound active and inactive conformational states. Understanding the complete reaction path of this conformational change and its intermediary structures is critical to understanding Ras signaling. We characterize nucleotide-dependent conformational transition using multiple-barrier-crossing accelerated molecular dynamics (aMD simulations. These transitions, achieved for the first time for wild-type Ras, are impossible to observe with classical molecular dynamics (cMD simulations due to the large energetic barrier between end states. Mapping the reaction path onto a conformer plot describing the distribution of the crystallographic structures enabled identification of highly populated intermediate structures. These structures have unique switch orientations (residues 25-40 and 57-75 intermediate between GTP and GDP states, or distinct loop3 (46-49, loop7 (105-110, and alpha5 C-terminus (159-166 conformations distal from the nucleotide-binding site. In addition, these barrier-crossing trajectories predict novel nucleotide-dependent correlated motions, including correlations of alpha2 (residues 66-74 with alpha3-loop7 (93-110, loop2 (26-37 with loop10 (145-151, and loop3 (46-49 with alpha5 (152-167. The interconversion between newly identified Ras conformations revealed by this study advances our mechanistic understanding of Ras function. In addition, the pattern of correlated motions provides new evidence for a dynamic linkage between the nucleotide-binding site and the membrane interacting C-terminus critical for the signaling function of Ras. Furthermore, normal mode analysis indicates that the dominant collective motion that occurs during nucleotide-dependent conformational exchange, and captured in aMD (but absent in cMD simulations, is a low-frequency motion intrinsic to the structure.

  8. Conformality lost

    International Nuclear Information System (INIS)

    Kaplan, David B.; Lee, Jong-Wan; Son, Dam T.; Stephanov, Mikhail A.

    2009-01-01

    We consider zero-temperature transitions from conformal to nonconformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and nonrelativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, ξ∼exp(c/|T-T c | 1/2 ). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.

  9. BcL-xL Conformational Changes upon Fragment Binding Revealed by NMR

    Science.gov (United States)

    Aguirre, Clémentine; ten Brink, Tim; Walker, Olivier; Guillière, Florence; Davesne, Dany; Krimm, Isabelle

    2013-01-01

    Protein-protein interactions represent difficult but increasingly important targets for the design of therapeutic compounds able to interfere with biological processes. Recently, fragment-based strategies have been proposed as attractive approaches for the elaboration of protein-protein surface inhibitors from fragment-like molecules. One major challenge in targeting protein-protein interactions is related to the structural adaptation of the protein surface upon molecular recognition. Methods capable of identifying subtle conformational changes of proteins upon fragment binding are therefore required at the early steps of the drug design process. In this report we present a fast NMR method able to probe subtle conformational changes upon fragment binding. The approach relies on the comparison of experimental fragment-induced Chemical Shift Perturbation (CSP) of amine protons to CSP simulated for a set of docked fragment poses, considering the ring-current effect from fragment binding. We illustrate the method by the retrospective analysis of the complex between the anti-apoptotic Bcl-xL protein and the fragment 4′-fluoro-[1,1′-biphenyl]-4-carboxylic acid that was previously shown to bind one of the Bcl-xL hot spots. The CSP-based approach shows that the protein undergoes a subtle conformational rearrangement upon interaction, for residues located in helices 2, 3 and the very beginning of 5. Our observations are corroborated by residual dipolar coupling measurements performed on the free and fragment-bound forms of the Bcl-xL protein. These NMR-based results are in total agreement with previous molecular dynamic calculations that evidenced a high flexibility of Bcl-xL around the binding site. Here we show that CSP of protein amine protons are useful and reliable structural probes. Therefore, we propose to use CSP simulation to assess protein conformational changes upon ligand binding in the fragment-based drug design approach. PMID:23717610

  10. Impact of graphene-based nanomaterials (GBNMs) on the structural and functional conformations of hepcidin peptide

    Science.gov (United States)

    Singh, Krishna P.; Baweja, Lokesh; Wolkenhauer, Olaf; Rahman, Qamar; Gupta, Shailendra K.

    2018-03-01

    Graphene-based nanomaterials (GBNMs) are widely used in various industrial and biomedical applications. GBNMs of different compositions, size and shapes are being introduced without thorough toxicity evaluation due to the unavailability of regulatory guidelines. Computational toxicity prediction methods are used by regulatory bodies to quickly assess health hazards caused by newer materials. Due to increasing demand of GBNMs in various size and functional groups in industrial and consumer based applications, rapid and reliable computational toxicity assessment methods are urgently needed. In the present work, we investigate the impact of graphene and graphene oxide nanomaterials on the structural conformations of small hepcidin peptide and compare the materials for their structural and conformational changes. Our molecular dynamics simulation studies revealed conformational changes in hepcidin due to its interaction with GBMNs, which results in a loss of its functional properties. Our results indicate that hepcidin peptide undergo severe structural deformations when superimposed on the graphene sheet in comparison to graphene oxide sheet. These observations suggest that graphene is more toxic than a graphene oxide nanosheet of similar area. Overall, this study indicates that computational methods based on structural deformation, using molecular dynamics (MD) simulations, can be used for the early evaluation of toxicity potential of novel nanomaterials.

  11. 40 CFR 93.154 - Conformity analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Conformity analysis. 93.154 Section 93...) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.154 Conformity analysis. Any Federal...

  12. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  13. The logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.

    1997-01-01

    We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)

  14. Recent advancements in conformal gravity

    International Nuclear Information System (INIS)

    O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian

    2017-01-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)

  15. Benchmarking Commercial Conformer Ensemble Generators.

    Science.gov (United States)

    Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes

    2017-11-27

    We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.

  16. Conformal and Nearly Conformal Theories at Large N

    Science.gov (United States)

    Tarnoplskiy, Grigory M.

    In this thesis we present new results in conformal and nearly conformal field theories in various dimensions. In chapter two, we study different properties of the conformal Quantum Electrodynamics (QED) in continuous dimension d. At first we study conformal QED using large Nf methods, where Nf is the number of massless fermions. We compute its sphere free energy as a function of d, ignoring the terms of order 1/Nf and higher. For finite Nf we use the epsilon-expansion. Next we use a large Nf diagrammatic approach to calculate the leading corrections to CT, the coefficient of the two-point function of the stress-energy tensor, and CJ, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4 - epsilon dimensions. In chapter three, we discuss vacuum stability in 1 + 1 dimensional conformal field theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a Riemann-Hilbert decomposition for background gauge fields, and is given by its novel "functional'' version in the gravitational case. In chapter four, we explore Tensor models. Such models possess the large N limit dominated by the melon diagrams. The quantum mechanics of a real anti-commuting rank-3 tensor has a large N limit similar to the Sachdev-Ye-Kitaev (SYK) model. We also discuss the quantum mechanics of a complex 3-index anti-commuting tensor and argue that it is equivalent in the large N limit to a version of SYK model with complex fermions. Finally, we discuss models of a commuting tensor in dimension d. We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors using the Schwinger-Dyson equations. We compare some of these results with the 4 - epsilon expansion, finding perfect agreement. We

  17. Conformal radiotherapy: principles and classification

    International Nuclear Information System (INIS)

    Rosenwald, J.C.; Gaboriaud, G.; Pontvert, D.

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2. (author)

  18. S-Adenosylmethionine conformations in solution and in protein complexes: Conformational influences of the sulfonium group

    DEFF Research Database (Denmark)

    Markham, George D.; Norrby, Per-Ola; Bock, Charles W.

    2002-01-01

    S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR...... and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes...... with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo...

  19. Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating.

    Science.gov (United States)

    Vullo, Sabrina; Bonifacio, Gaetano; Roy, Sophie; Johner, Niklaus; Bernèche, Simon; Kellenberger, Stephan

    2017-04-04

    Acid-sensing ion channels (ASICs) are proton-activated Na + channels expressed in the nervous system, where they are involved in learning, fear behaviors, neurodegeneration, and pain sensation. In this work, we study the role in pH sensing of two regions of the ectodomain enriched in acidic residues: the acidic pocket, which faces the outside of the protein and is the binding site of several animal toxins, and the palm, a central channel domain. Using voltage clamp fluorometry, we find that the acidic pocket undergoes conformational changes during both activation and desensitization. Concurrently, we find that, although proton sensing in the acidic pocket is not required for channel function, it does contribute to both activation and desensitization. Furthermore, protonation-mimicking mutations of acidic residues in the palm induce a dramatic acceleration of desensitization followed by the appearance of a sustained current. In summary, this work describes the roles of potential pH sensors in two extracellular domains, and it proposes a model of acidification-induced conformational changes occurring in the acidic pocket of ASIC1a.

  20. Conformal Killing vectors in Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.d.

    1986-01-01

    It is well known that Robertson-Walker spacetimes admit a conformal Killingl vector normal to the spacelike homogeneous hypersurfaces. Because these spacetimes are conformally flat, there are a further eight conformal Killing vectors, which are neither normal nor tangent to the homogeneous hypersurfaces. The authors find these further conformal Killing vectors and the Lie algebra of the full G 15 of conformal motions. Conditions on the metric scale factor are determined which reduce some of the conformal Killing vectors to homothetic Killing vectors or Killing vectors, allowing one to regain in a unified way the known special geometries. The non-normal conformal Killing vectors provide a counter-example to show that conformal motions do not, in general, map a fluid flow conformally. These non-normal vectors are also used to find the general solution of the null geodesic equation and photon Liouville equation. (author)

  1. Conformal transformations in superspace

    International Nuclear Information System (INIS)

    Dao Vong Duc

    1977-01-01

    The spinor extension of the conformal algebra is investigated. The transformation law of superfields under the conformal coordinate inversion R defined in the superspace is derived. Using R-technique, the superconformally covariant two-point and three-point correlation functions are found

  2. Towards conformal loop quantum gravity

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2006-01-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity

  3. Mass generation within conformal invariant theories

    International Nuclear Information System (INIS)

    Flato, M.; Guenin, M.

    1981-01-01

    The massless Yang-Mills theory is strongly conformally invariant and renormalizable; however, when masses are introduced the theory becomes nonrenormalizable and weakly conformally invariant. Conditions which recover strong conformal invariance are discussed in the letter. (author)

  4. Conformal group actions and Segal's cosmology

    International Nuclear Information System (INIS)

    Werth, J.-E.

    1984-01-01

    A mathematical description of Segal's cosmological model in the framework of conformal group actions is presented. The relation between conformal and causal group actions on time-orientable Lorentzian manifolds is analysed and several examples are discussed. A criterion for the conformality of a map between Lorentzian manifolds is given. The results are applied to Segal's 'conformal compactification' of Minkowski space. Furthermore, the 'unitary formulation' of Segal's cosmology is regarded. (Author) [pt

  5. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  6. New conformations of linear polyubiquitin chains from crystallographic and solution-scattering studies expand the conformational space of polyubiquitin.

    Science.gov (United States)

    Thach, Trung Thanh; Shin, Donghyuk; Han, Seungsu; Lee, Sangho

    2016-04-01

    The conformational flexibility of linkage-specific polyubiquitin chains enables ubiquitylated proteins and their receptors to be involved in a variety of cellular processes. Linear or Met1-linked polyubiquitin chains, associated with nondegradational cellular signalling pathways, have been known to adopt multiple conformations from compact to extended conformations. However, the extent of such conformational flexibility remains open. Here, the crystal structure of linear Ub2 was determined in a more compact conformation than that of the previously known structure (PDB entry 3axc). The two structures differ significantly from each other, as shown by an r.m.s.d. between C(α) atoms of 3.1 Å. The compactness of the linear Ub2 structure in comparison with PDB entry 3axc is supported by smaller values of the radius of gyration (Rg; 18 versus 18.9 Å) and the maximum interatomic distance (Dmax; 55.5 versus 57.8 Å). Extra intramolecular hydrogen bonds formed among polar residues between the distal and proximal ubiquitin moieties seem to contribute to stabilization of the compact conformation of linear Ub2. An ensemble of three semi-extended and extended conformations of linear Ub2 was also observed by small-angle X-ray scattering (SAXS) analysis in solution. In addition, the conformational heterogeneity in linear polyubiquitin chains is clearly manifested by SAXS analyses of linear Ub3 and Ub4: at least three distinct solution conformations are observed in each chain, with the linear Ub3 conformations being compact. The results expand the extent of conformational space of linear polyubiquitin chains and suggest that changes in the conformational ensemble may be pivotal in mediating multiple signalling pathways.

  7. Ward identities for conformal models

    International Nuclear Information System (INIS)

    Lazzarini, S.; Stora, R.

    1988-01-01

    Ward identities which express the symmetry of conformal models are treated. Diffeomorphism invariance or locally holomorphic coordinate transformations are used. Diffeomorphism invariance is then understood in terms of Riemannian geometry. Two different sets of Ward identities expressing diffeomorphism invariance in a conformally invariant way are found for the free bosonic string. Using a geometrical argument, the correct invariance for a large class of conformal models is given

  8. Conformity and statistical tolerancing

    Science.gov (United States)

    Leblond, Laurent; Pillet, Maurice

    2018-02-01

    Statistical tolerancing was first proposed by Shewhart (Economic Control of Quality of Manufactured Product, (1931) reprinted 1980 by ASQC), in spite of this long history, its use remains moderate. One of the probable reasons for this low utilization is undoubtedly the difficulty for designers to anticipate the risks of this approach. The arithmetic tolerance (worst case) allows a simple interpretation: conformity is defined by the presence of the characteristic in an interval. Statistical tolerancing is more complex in its definition. An interval is not sufficient to define the conformance. To justify the statistical tolerancing formula used by designers, a tolerance interval should be interpreted as the interval where most of the parts produced should probably be located. This tolerance is justified by considering a conformity criterion of the parts guaranteeing low offsets on the latter characteristics. Unlike traditional arithmetic tolerancing, statistical tolerancing requires a sustained exchange of information between design and manufacture to be used safely. This paper proposes a formal definition of the conformity, which we apply successively to the quadratic and arithmetic tolerancing. We introduce a concept of concavity, which helps us to demonstrate the link between tolerancing approach and conformity. We use this concept to demonstrate the various acceptable propositions of statistical tolerancing (in the space decentring, dispersion).

  9. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  10. Entanglement evolution across a conformal interface

    Science.gov (United States)

    Wen, Xueda; Wang, Yuxuan; Ryu, Shinsei

    2018-05-01

    For two-dimensional conformal field theories (CFTs) in the ground state, it is known that a conformal interface along the entanglement cut can suppress the entanglement entropy from to , where L is the length of the subsystem A, and is the effective central charge which depends on the transmission property of the conformal interface. In this work, by making use of conformal mappings, we show that a conformal interface has the same effect on entanglement evolution in non-equilibrium cases, including global, local and certain inhomogeneous quantum quenches. I.e. a conformal interface suppresses the time evolution of entanglement entropy by effectively replacing the central charge c with , where is exactly the same as that in the ground state case. We confirm this conclusion by a numerical study on a critical fermion chain. Furthermore, based on the quasi-particle picture, we conjecture that this conclusion holds for an arbitrary quantum quench in CFTs, as long as the initial state can be described by a regularized conformal boundary state.

  11. Long, partial-short, and special conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2016-05-17

    In the framework of metric-like approach, totally symmetric arbitrary spin bosonic conformal fields propagating in flat space-time are studied. Depending on the values of conformal dimension, spin, and dimension of space-time, we classify all conformal field as long, partial-short, short, and special conformal fields. An ordinary-derivative (second-derivative) Lagrangian formulation for such conformal fields is obtained. The ordinary-derivative Lagrangian formulation is realized by using double-traceless gauge fields, Stueckelberg fields, and auxiliary fields. Gauge-fixed Lagrangian invariant under global BRST transformations is obtained. The gauge-fixed BRST Lagrangian is used for the computation of partition functions for all conformal fields. Using the result for the partition functions, numbers of propagating D.o.F for the conformal fields are also found.

  12. Maxwell equations in conformal invariant electrodynamics

    International Nuclear Information System (INIS)

    Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.

    1983-01-01

    We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)

  13. Conformal symmetries of FRW accelerating cosmologies

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2014-01-01

    We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage

  14. 40 CFR 52.2133 - General conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false General conformity. 52.2133 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Carolina § 52.2133 General conformity. The General Conformity regulations adopted into the South Carolina State Implementation Plan which...

  15. 40 CFR 91.106 - Certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certificate of conformity. 91.106... Provisions § 91.106 Certificate of conformity. (a) Every manufacturer of a new marine SI engine produced... obtain a certificate of conformity covering each engine family. The certificate of conformity must be...

  16. 40 CFR 52.938 - General conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false General conformity. 52.938 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.938 General conformity. The General Conformity regulations were submitted on November 10, 1995, and adopted into the Kentucky State...

  17. 40 CFR 51.854 - Conformity analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Conformity analysis. 51.854 Section 51... FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.854 Conformity analysis. Link to an...

  18. Lie algebra of conformal Killing–Yano forms

    International Nuclear Information System (INIS)

    Ertem, Ümit

    2016-01-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases. (paper)

  19. Universal hydrodynamics of non-conformal branes

    International Nuclear Information System (INIS)

    Kanitscheider, Ingmar; Skenderis, Kostas

    2009-01-01

    We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing that all such solutions can be obtained from higher dimensional asymptotically locally AdS solutions by suitable dimensional reduction and continuation in the dimension. As a consequence, many holographic results for such backgrounds follow from the corresponding results of the Asymptotically AdS case. In particular, the hydrodynamics of non-conformal branes is fully determined in terms of conformal hydrodynamics. Using previous results on the latter we predict the form of the non-conformal hydrodynamic stress tensor to second order in derivatives. Furthermore we show that the ratio between bulk and shear viscosity is fixed by the generalized conformal structure to be ζ/η = 2(1/(d-1)-c s 2 ), where c s is the speed of sound in the fluid.

  20. Operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Gabbiani, F.; Froehlich, J.

    1993-01-01

    We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)

  1. 47 CFR 2.906 - Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Declaration of Conformity. 2.906 Section 2.906... Conformity. (a) A Declaration of Conformity is a procedure where the responsible party, as defined in § 2.909... of Conformity attaches to all items subsequently marketed by the responsible party which are...

  2. Analysis of an ATP-induced conformational transition of ABC transporter MsbA using a coarse-grained model.

    Science.gov (United States)

    Arai, Naoki; Furuta, Tadaomi; Sakurai, Minoru

    2017-01-01

    Upon the binding of ATP molecules to nucleotide binding domains (NBDs), ATP-binding cassette (ABC) exporters undergo a conformational transition from an inward-facing (IF) to an outward-facing (OF) state. This molecular event is a typical example of chemo-mechanical coupling. However, the underlying mechanism remains unclear. In this study, we analyzed the IF→OF transition of a representative ABC exporter, MsbA, by solving the equation of motion under an elastic network model (ENM). ATP was represented as a single node in ENM or replaced by external forces. When two ATP nodes were added to the ENM of the IF state protein, the two NBDs dimerized; subsequently, the two transmembrane domains opened toward the extracellular side, resulting in the formation of the OF structure. Such a conformational transition was also reproduced by applying external forces, which caused the rotational motion of the NBDs instead of the addition of ATP nodes. The process of the conformational transition was analyzed in detail using cross-correlation maps for node-node interactions. More importantly, it was revealed that the ATP binding energy is converted into distortion energy of several transmembrane helices. These results are useful for understanding the chemo-mechanical coupling in ABC transporters.

  3. Naturality in conformal field theory

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)

  4. 21 CFR 26.70 - Conformity assessment bodies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Conformity assessment bodies. 26.70 Section 26.70...Frameworkâ Provisions § 26.70 Conformity assessment bodies. Each party recognizes that the conformity... conformity in relation to its requirements as specified in subpart B of this part. The parties shall specify...

  5. Probing the Mechanism of pH-Induced Large-Scale Conformational Changes in Dengue Virus Envelope Protein Using Atomistic Simulations

    Science.gov (United States)

    Prakash, Meher K.; Barducci, Alessandro; Parrinello, Michele

    2010-01-01

    Abstract One of the key steps in the infection of the cell by dengue virus is a pH-induced conformational change of the viral envelope proteins. These envelope proteins undergo a rearrangement from a dimer to a trimer, with large conformational changes in the monomeric unit. In this article, metadynamics simulations were used to enable us to understand the mechanism of these large-scale changes in the monomer. By using all-atom, explicit solvent simulations of the monomers, the stability of the protein structure is studied under low and high pH conditions. Free energy profiles obtained along appropriate collective coordinates demonstrate that pH affects the domain interface in both the conformations of E monomer, stabilizing one and destabilizing the other. These simulations suggest a mechanism with an intermediate detached state between the two monomeric structures. Using further analysis, we comment on the key residue interactions responsible for the instability and the pH-sensing role of a histidine that could not otherwise be studied experimentally. The insights gained from this study and methodology can be extended for studying similar mechanisms in the E proteins of the other members of class II flavivirus family. PMID:20643078

  6. Conformational analysis of lignin models

    International Nuclear Information System (INIS)

    Santos, Helio F. dos

    2001-01-01

    The conformational equilibrium for two 5,5' biphenyl lignin models have been analyzed using a quantum mechanical semiempirical method. The gas phase and solution structures are discussed based on the NMR and X-ray experimental data. The results obtained showed that the observed conformations are solvent-dependent, being the geometries and the thermodynamic properties correlated with the experimental information. This study shows how a systematic theoretical conformational analysis can help to understand chemical processes at a molecular level. (author)

  7. On the linear conformal gravitation

    International Nuclear Information System (INIS)

    Pal'chik, M.Ya.; Fradkin, E.S.

    1984-01-01

    Conformal gravitation is analyzed under the assumption that its solution possesses the property of conformal symmetry. This assumption has sense in the case of small distances and only for definite types of matter fields, namely: at special choice of matter fields and their interactions, providing a lack of conformal anomalies; or at definite magnitudes of binding constants, coinciding with the zeroes of the Gell-Mann-Low function. The field equations, of the group-theoretical natura are obtained

  8. Conformal Symmetry Patterns in Baryon Spectra

    International Nuclear Information System (INIS)

    Kirchbach, Mariana; Compean, Cliffor B

    2011-01-01

    Attention is drawn to the fact that the spectra of the baryons of the lightest flavors, the nucleon and the Δ, carry quantum numbers characteristic for an unitary representation of the conformal group. We show that the above phenomenon is well explained for baryons whose internal structure is dominated by a quark-diquark configuration that resides in a conformally compactified Minkowski space time, R 1 x S 3 , and is described by means of the conformal scale equation there. The R 1 x S 3 space-time represents the boundary of the conformally compactified AdS 5 , on which one expects to encounter a conformal theory in accord with the gauge-gravity duality. Within this context, our model is congruent with AdS 5 /CFT 4 .

  9. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop.

    Science.gov (United States)

    Zhang, Xu; Wu, Jiaxi; Du, Fenghe; Xu, Hui; Sun, Lijun; Chen, Zhe; Brautigam, Chad A; Zhang, Xuewu; Chen, Zhijian J

    2014-02-13

    The presence of DNA in the cytoplasm is a danger signal that triggers immune and inflammatory responses. Cytosolic DNA binds to and activates cyclic GMP-AMP (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP binds to the adaptor protein STING and activates a signaling cascade that leads to the production of type I interferons and other cytokines. Here, we report the crystal structures of human cGAS in its apo form, representing its autoinhibited conformation as well as in its cGAMP- and sulfate-bound forms. These structures reveal switch-like conformational changes of an activation loop that result in the rearrangement of the catalytic site. The structure of DNA-bound cGAS reveals a complex composed of dimeric cGAS bound to two molecules of DNA. Functional analyses of cGAS mutants demonstrate that both the protein-protein interface and the two DNA binding surfaces are critical for cGAS activation. These results provide insights into the mechanism of DNA sensing by cGAS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The Cytosolic DNA Sensor cGAS Forms an Oligomeric Complex with DNA and Undergoes Switch-like Conformational Changes in the Activation Loop

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2014-02-01

    Full Text Available The presence of DNA in the cytoplasm is a danger signal that triggers immune and inflammatory responses. Cytosolic DNA binds to and activates cyclic GMP-AMP (cGAMP synthase (cGAS, which produces the second messenger cGAMP. cGAMP binds to the adaptor protein STING and activates a signaling cascade that leads to the production of type I interferons and other cytokines. Here, we report the crystal structures of human cGAS in its apo form, representing its autoinhibited conformation as well as in its cGAMP- and sulfate-bound forms. These structures reveal switch-like conformational changes of an activation loop that result in the rearrangement of the catalytic site. The structure of DNA-bound cGAS reveals a complex composed of dimeric cGAS bound to two molecules of DNA. Functional analyses of cGAS mutants demonstrate that both the protein-protein interface and the two DNA binding surfaces are critical for cGAS activation. These results provide insights into the mechanism of DNA sensing by cGAS.

  11. Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

    OpenAIRE

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-01-01

    Dimethyl sulfite has three conformers of low energy, GG, GT and GG0, which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG0 conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ molK1, respectively, while the barriers associated with the GG0/GT and GT/GG isomerizations are 1.90 and 9.64 kJ molK1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonst...

  12. Conformational Clusters of Phosphorylated Tyrosine.

    Science.gov (United States)

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  13. Thickenings and conformal gravity

    Science.gov (United States)

    Lebrun, Claude

    1991-07-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M].

  14. Thickenings and conformal gravity

    International Nuclear Information System (INIS)

    LeBrun, C.

    1991-01-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M]. (orig.)

  15. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies.

    Science.gov (United States)

    Botkjaer, Kenneth A; Fogh, Sarah; Bekes, Erin C; Chen, Zhuo; Blouse, Grant E; Jensen, Janni M; Mortensen, Kim K; Huang, Mingdong; Deryugina, Elena; Quigley, James P; Declerck, Paul J; Andreasen, Peter A

    2011-08-15

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active uPA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems, the antibodies inhibited tumour cell invasion and dissemination, providing evidence for the feasibility of pharmaceutical intervention with serine protease activity by targeting surface loops that undergo conformational changes during zymogen activation. © The Authors Journal compilation © 2011 Biochemical Society

  16. Conformal symmetry inheritance in null fluid spacetimes

    International Nuclear Information System (INIS)

    Tupper, B O J; Keane, A J; Hall, G S; Coley, A A; Carot, J

    2003-01-01

    We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case

  17. Conformal maps between pseudo-Finsler spaces

    Science.gov (United States)

    Voicu, Nicoleta

    The paper aims to initiate a systematic study of conformal mappings between Finsler spacetimes and, more generally, between pseudo-Finsler spaces. This is done by extending several results in pseudo-Riemannian geometry which are necessary for field-theoretical applications and by proposing a technique that reduces some problems involving pseudo-Finslerian conformal vector fields to their pseudo-Riemannian counterparts. Also, we point out, by constructing classes of examples, that conformal groups of flat (locally Minkowskian) pseudo-Finsler spaces can be much richer than both flat Finslerian and pseudo-Euclidean conformal groups.

  18. Transportation Conformity

    Science.gov (United States)

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  19. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  20. Extended conformal algebras

    International Nuclear Information System (INIS)

    Goddard, Peter

    1990-01-01

    The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

  1. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  2. Intermediate conformation between native β-sheet and non-native α-helix is a precursor of trifluoroethanol-induced aggregation of Human Carbonic Anhydrase-II

    International Nuclear Information System (INIS)

    Gupta, Preeti; Deep, Shashank

    2014-01-01

    Highlights: • HCAII forms amyloid-like aggregates at moderate concentration of trifluoroethanol. • Protein adopts a state between β-sheet and α-helix at moderate % of TFE. • Hydrophobic surface(s) of partially structured conformation forms amyloid. • High % of TFE induces stable α-helical state preventing aggregation. - Abstract: In the present work, we examined the correlation between 2,2,2-trifluoroethanol (TFE)-induced conformational transitions of human carbonic anhydrase II (HCAII) and its aggregation propensity. Circular dichroism data indicates that protein undergoes a transition from β-sheet to α-helix on addition of TFE. The protein was found to aggregate maximally at moderate concentration of TFE at which it exists somewhere between β-sheet and α-helix, probably in extended non-native β-sheet conformation. Thioflavin-T (ThT) and Congo-Red (CR) assays along with fluorescence microscopy and transmission electron microscopy (TEM) data suggest that the protein aggregates induced by TFE possess amyloid-like features. Anilino-8-naphthalene sulfonate (ANS) binding studies reveal that the exposure of hydrophobic surface(s) was maximum in intermediate conformation. Our study suggests that the exposed hydrophobic surface and/or the disruption of the structural features protecting a β-sheet protein might be the major reason(s) for the high aggregation propensity of non-native intermediate conformation of HCAII

  3. Thickenings and conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, C. (State Univ. of New York, Stony Brook, NY (USA). Dept. of Mathematics)

    1991-07-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason (B-M). (orig.).

  4. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  5. Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-09-01

    Full Text Available Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4 during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates.

  6. Conformity in Christ | Waaijman | Acta Theologica

    African Journals Online (AJOL)

    This essay investigates the notion of conformity in Christ as it is part of a comprehensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...

  7. Investigation of the molecular conformations of ethanol using electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Ning, C G; Luo, Z H; Huang, Y R; Liu, K; Zhang, S F; Deng, J K; Hajgato, B; Morini, F; Deleuze, M S

    2008-01-01

    The valence electronic structure and momentum-space electron density distributions of ethanol have been investigated with our newly constructed high-resolution electron momentum spectrometer. The measurements are compared to thermally averaged simulations based on Kohn-Sham (B3LYP) orbital densities as well as one-particle Green's function calculations of ionization spectra and Dyson orbital densities, assuming Boltzmann's statistical distribution of the molecular structure over the two energy minima defining the anti and gauche conformers. One-electron ionization energies and momentum distributions in the outer-valence region were found to be highly dependent upon the molecular conformation. Calculated momentum distributions indeed very sensitively reflect the distortions and topological changes that molecular orbitals undergo due to the internal rotation of the hydroxyl group, and thereby exhibit variations which can be traced experimentally. The B3LYP model Kohn-Sham orbital densities are overall in good agreement with the experimental distributions, and closely resemble benchmark ADC(3) Dyson orbital densities. Both approaches fail to quantitatively reproduce the experimental momentum distributions characterizing the highest occupied molecular orbital. Since electron momentum spectroscopy measurements at various electron impact energies indicate that the plane wave impulse approximation is valid, this discrepancy between theory and experiment is tentatively ascribed to thermal disorder, i.e. large-amplitude and thermally induced dynamical distortions of the molecular structure in the gas phase

  8. Gauge fixing problem in the conformal QED

    International Nuclear Information System (INIS)

    Ichinose, Shoichi

    1986-01-01

    The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)

  9. Transportation Conformity Training and Presentations

    Science.gov (United States)

    EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.

  10. Comparison of dosimetric parameters and toxicity in esophageal cancer patients undergoing 3D conformal radiotherapy or VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Muench, Stefan; Aichmeier, Sylvia; Duma, Marciana-Nona; Oechsner, Markus; Habermehl, Daniel [TU Muenchen, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Hapfelmeier, Alexander [TU Muenchen, Institute of Medical Statistics and Epidemiology (IMSE), Klinikum rechts der Isar, Muenchen (Germany); Feith, Marcus [TU Muenchen, Department of Visceral Surgery, Klinikum rechts der Isar, Muenchen (Germany); Combs, Stephanie E. [TU Muenchen, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institute of Innovative Radiotherapy (iRT), Oberschleissheim (Germany)

    2016-10-15

    Volumetric-modulated arc therapy (VMAT) achieves high conformity to the planned target volume (PTV) and good sparing of organs at risk (OAR). This study compares dosimetric parameters and toxicity in esophageal cancer (EC) patients treated with VMAT and 3D conformal radiotherapy (3D-CRT). Between 2007 and 2014, 17 SC patients received neoadjuvant chemoradiation (CRT) with VMAT. Dose-volume histograms and toxicity were compared between these patients and 20 treated with 3D-CRT. All patients were irradiated with a total dose of 45 Gy. All VMAT patients received simultaneous chemotherapy with cisplatin and 5-fluorouracil (5-FU) in treatment weeks 1 and 5. Of 20 patients treated with 3D-CRT, 13 (65 %) also received CRT with cisplatin and 5-FU, whereas 6 patients (30 %) received CRT with weekly oxaliplatin and cetuximab, and a continuous infusion of 5-FU (OE-7). There were no differences in baseline characteristics between the treatment groups. For the lungs, VMAT was associated with a higher V{sub 5} (median 90.1 % vs. 79.7 %; p = 0.013) and V{sub 10} (68.2 % vs. 56.6 %; p = 0.014), but with a lower V{sub 30} (median 6.6 % vs. 11.0 %; p = 0.030). Regarding heart parameters, VMAT was associated with a higher V{sub 5} (median 100.0 % vs. 91.0 %; p = 0.043), V{sub 10} (92.0 % vs. 79.2 %; p = 0.047), and D{sub max} (47.5 Gy vs. 46.3 Gy; p = 0.003), but with a lower median dose (18.7 Gy vs. 30.0 Gy; p = 0.026) and V{sub 30} (17.7 % vs. 50.4 %; p = 0.015). Complete resection was achieved in 16 VMAT and 19 3D-CRT patients. Due to systemic progression, 2 patients did not undergo surgery. The most frequent postoperative complication was anastomosis insufficiency, occurring in 1 VMAT (6.7 %) and 5 3D-CRT patients (27.8 %; p = 0.180). Postoperative pneumonia was seen in 2 patients of each group (p = 1.000). There was no significant difference in 3-year overall (65 % VMAT vs. 45 % 3D-CRT; p = 0.493) or 3-year progression-free survival (53 % VMAT vs. 35 % 3D-CRT; p = 0

  11. Two dimensional infinite conformal symmetry

    International Nuclear Information System (INIS)

    Mohanta, N.N.; Tripathy, K.C.

    1993-01-01

    The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs

  12. Virtual and solution conformations of oligosaccharides

    International Nuclear Information System (INIS)

    Cumming, D.A.; Carver, J.P.

    1987-01-01

    The possibility that observed nuclear Overhauser enhancements and bulk longitudinal relaxation times, parameters measured by 1 H NMR and often employed in determining the preferred solution conformation of biologically important molecules, are the result of averaging over many conformational states is quantitatively evaluated. Of particular interest was to ascertain whether certain 1 H NMR determined conformations are virtual in nature; i.e., the fraction of the population of molecules actually found at any time within the subset of conformational space defined as the solution conformation is vanishingly small. A statistical mechanics approach was utilized to calculate an ensemble average relaxation matrix from which (NOE)'s and (T 1 )'s are calculated. Model glycosidic linkages in four oligosaccharides were studied. The nature of the resultant population distributions is such that 50% of the molecular population is found within 1% of available microstates, while 99% of the molecular population occupies about 10% of the ensemble microstates, a number roughly equal to that sterically allowed. From this analysis the authors conclude that in many cases quantitative interpretation of NMR relaxation data, which attempts to define a single set of allowable torsion angle values consistent with the observed data, will lead to solution conformations that are either virtual or reflect torsion angle values possessed by a minority of the molecular population. Observed values of NMR relaxation data are the result of the complex interdependence of the population distribution and NOE (or T 1 ) surfaces in conformational space. In conformational analyses, NMR data can therefore be used to test different population distributions calculated from empirical potential energy functions

  13. Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method

    International Nuclear Information System (INIS)

    Wang Yue; Wang Jian-Guo; Chen Zai-Gao

    2015-01-01

    Based on conformal construction of physical model in a three-dimensional Cartesian grid, an integral-based conformal convolutional perfectly matched layer (CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain (ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor (PEC) waveguide. The algorithm has the same numerical stability as the ECT-CFDTD method. For the long-time propagation problems of an evanescent wave in a waveguide, several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML. Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. (paper)

  14. Noncommutative geometry and twisted conformal symmetry

    International Nuclear Information System (INIS)

    Matlock, Peter

    2005-01-01

    The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra

  15. Superintegrability of d-dimensional conformal blocks

    International Nuclear Information System (INIS)

    Isachenkov, Mikhail

    2016-02-01

    We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.

  16. Superintegrability of d-dimensional conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics and Astronomy; Schomerus, Volker [DESY Theory Group, Hamburg (Germany)

    2016-02-15

    We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.

  17. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  18. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1987-01-01

    In the present paper we show how the N = 2 superconformal group is realised in harmonic superspace and examine conformal invariance of N = 2 off-shell theories. We believe that the example of N = O self-dual Yang-Mills equations can serve as an instructive introduction to the subject of harmonic superspace and this is examined. The rigid N = 2 conformal supersymmetry and its local version, i.e. N = 2 conformal supergravity is also discussed. The paper is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. (author)

  19. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sobko, Evgeny [Stockholm Univ. (Sweden); Nordita, Stockholm (Sweden); Isachenkov, Mikhail [Weizmann Institute of Science, Rehovoth (Israel). Dept. of Particle Physics and Astrophysics

    2016-12-07

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  20. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sobko, Evgeny [Nordita and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Isachenkov, Mikhail [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel)

    2017-03-15

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  1. Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-08-01

    Dimethyl sulfite has three conformers of low energy, GG, GT and GG', which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG' conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ mol -1, respectively, while the barriers associated with the GG'→GT and GT→GG isomerizations are 1.90 and 9.64 kJ mol -1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonstrated that the GG'→GT energy barrier is low enough to allow an extensive conversion of the GG' form into the GT conformer during deposition of the matrices, the extent of the conversion increasing along the series Arconformers could be trapped in both argon and krypton matrices, but, at a given temperature, the amount of GG' form trapped in krypton is considerably smaller than in argon, while the amount of GT form increases in relation to the most stable GG form. In addition, when xenon is used, no bands due to GG' are observed in the as-deposited spectra ( Tsubstrate≥10 K, the minimum substrate temperature accessible to our experimental set up), indicating that when the best relaxant gas is used the GG'→GT conversion during deposition of the matrix is complete even at 10 K. Annealing of the argon and krypton matrices shows that the increase of the temperature of the matrix first promotes the GG'→GT isomerization, and only at higher temperatures the GT→GG conversion starts to occur, in consonance with the relative energy barriers associated with these two processes. The results also indicate that dimethyl sulfite exhibits conformation selective aggregation, with the most stable form, which has the highest dipole moment, aggregating more easily than the remaining experimentally relevant conformers (GT and GG').

  2. Conformal hyperbolicity of Lorentzian warped products

    International Nuclear Information System (INIS)

    Markowitz, M.J.

    1982-01-01

    A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model. (author)

  3. Conformal hyperbolicity of Lorentzian warped products

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.J. (Chicago Univ., IL (USA). Dept. of Mathematics)

    1982-12-01

    A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model.

  4. Non-linear realizations of conformal symmetry and effective field theory for the pseudo-conformal universe

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin

    2012-01-01

    The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. The scenario is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics. In this paper, we apply the well-known coset technique to derive the most general effective lagrangian describing the Goldstone field and matter fields, consistent with the assumed symmetries. The resulting action captures the low energy dynamics of any pseudo-conformal realization, including the U(1)-invariant quartic model and the Galilean Genesis scenario. We also derive this lagrangian using an alternative method of curvature invariants, consisting of writing down geometric scalars in terms of the conformal mode. Using this general effective action, we compute the two-point function for the Goldstone and a fiducial weight-0 field, as well as some sample three-point functions involving these fields

  5. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  6. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    Full Text Available Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A at (OvPrP-A136 infected with SSBP/1 scrapie prions propagated a relatively stable (S prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V at 136 (OvPrP-V136 infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U, diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to

  7. Conformal Dimensions via Large Charge Expansion.

    Science.gov (United States)

    Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico

    2018-02-09

    We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.

  8. Some Progress in Conformal Geometry

    Directory of Open Access Journals (Sweden)

    Sun-Yung A. Chang

    2007-12-01

    Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

  9. Algebraic conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  10. 47 CFR 68.320 - Supplier's Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Supplier's Declaration of Conformity. 68.320... Approval § 68.320 Supplier's Declaration of Conformity. (a) Supplier's Declaration of Conformity is a... Supplier's Declaration of Conformity attaches to all items subsequently marketed by the responsible party...

  11. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence

    International Nuclear Information System (INIS)

    Coleman, Bradley M.; Nisbet, Rebecca M.; Han, Sen; Cappai, Roberto; Hatters, Danny M.; Hill, Andrew F.

    2009-01-01

    Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrP C ) into a disease associated form (PrP Sc ). Recombinant PrP can be refolded into either an α-helical rich conformation (α-PrP) resembling PrP C or a β-sheet rich, protease resistant form similar to PrP Sc . Here, we generated tetracysteine tagged recombinant PrP, folded this into α- or β-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished β-PrP from α-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the α-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the β-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrP Sc from PrP C . This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's diseases.

  12. Conformational effects in photoelectron circular dichroism

    Science.gov (United States)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  13. Understanding modern magnets through conformal mapping

    International Nuclear Information System (INIS)

    Halbach, K.

    1989-10-01

    I want to show with the help of a number of examples that conformal mapping is a unique and enormously powerful tool for thinking about, and solving, problems. Usually one has to write down only a few equations, and sometimes none at all exclamation point When I started getting involved in work for which conformal mapping seemed to be a powerful tool, I did not think that I would ever be able to use that technique successfully because it seemed to require a nearly encyclopedic memory, an impression that was strengthened when I saw K. Kober's Dictionary of Conformal Representations. This attitude changed when I started to realize that beyond the basics of the theory of a function of a complex variable, I needed to know only about a handful of conformal maps and procedures. Consequently, my second goal for this talk is to show that in most cases conformal mapping functions can be obtained by formulating the underlying physics appropriately. This means particularly that encyclopedic knowledge of conformal maps is not necessary for successful use of conformal mapping techniques. To demonstrate these facts I have chosen examples from an area of physics/engineering in which I am active, namely accelerator physics. In order to do that successfully I start with a brief introduction into high energy charged particle storage ring technology, even though not all examples used in this paper to elucidate my points come directly from this particular field of accelerator technology

  14. Higher-derivative generalization of conformal mechanics

    Science.gov (United States)

    Baranovsky, Oleg

    2017-08-01

    Higher-derivative analogs of multidimensional conformal particle and many-body conformal mechanics are constructed. Their Newton-Hooke counterparts are derived by applying appropriate coordinate transformations.

  15. Gluon amplitudes as 2 d conformal correlators

    Science.gov (United States)

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-10-01

    Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  16. Multichannel conformal blocks for scattering amplitudes

    Science.gov (United States)

    Belitsky, A. V.

    2018-05-01

    By performing resummation of small fermion-antifermion pairs within the pentagon form factor program to scattering amplitudes in planar N = 4 superYang-Mills theory, we construct multichannel conformal blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial waves are determined by multivariable hypergeometric series of Lauricella-Saran type.

  17. Conformation Generation: The State of the Art.

    Science.gov (United States)

    Hawkins, Paul C D

    2017-08-28

    The generation of conformations for small molecules is a problem of continuing interest in cheminformatics and computational drug discovery. This review will present an overview of methods used to sample conformational space, focusing on those methods designed for organic molecules commonly of interest in drug discovery. Different approaches to both the sampling of conformational space and the scoring of conformational stability will be compared and contrasted, with an emphasis on those methods suitable for conformer sampling of large numbers of drug-like molecules. Particular attention will be devoted to the appropriate utilization of information from experimental solid-state structures in validating and evaluating the performance of these tools. The review will conclude with some areas worthy of further investigation.

  18. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Khoury, Justin

    2012-01-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves

  19. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Hass, Mathias A. S.; Liu, Wei-Min; Agafonov, Roman V.; Otten, Renee; Phung, Lien A.; Schilder, Jesika T.; Kern, Dorothee; Ubbink, Marcellus

    2015-01-01

    NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements

  20. Arbitrary spin conformal fields in (A)dS

    International Nuclear Information System (INIS)

    Metsaev, R.R.

    2014-01-01

    Totally symmetric arbitrary spin conformal fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. In contrast to conformal fields in flat space, the kinetic terms of conformal fields in (A)dS space turn out to be diagonal with respect to fields entering the Lagrangian. Explicit form of conformal transformation which maps conformal field in flat space to conformal field in (A)dS space is obtained. Covariant Lorentz-like and de-Donder like gauge conditions leading to simple gauge-fixed Lagrangian of conformal fields are proposed. Using such gauge-fixed Lagrangian, which is invariant under global BRST transformations, we explain how the partition function of conformal field is obtained in the framework of our approach

  1. Inversion theory and conformal mapping

    CERN Document Server

    Blair, David E

    2000-01-01

    It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Carath�odory with the remarkable result that any circle-preserving transformation is necessarily a M�bius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergr...

  2. Inverse bootstrapping conformal field theories

    Science.gov (United States)

    Li, Wenliang

    2018-01-01

    We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.

  3. On functional representations of the conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, Oliver J.

    2017-07-15

    Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-free formulations of conformal field theory. Subsequently, it is argued that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. Consistency of this construction implies Polchinski's conditions for improving the energy-momentum tensor of a conformal field theory such that it is traceless. In the Wilsonian approach, the exactly marginal, redundant field which generates lines of physically equivalent fixed points is identified as the trace of the energy-momentum tensor. (orig.)

  4. 40 CFR 89.105 - Certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certificate of conformity. 89.105... and Certification Provisions § 89.105 Certificate of conformity. Every manufacturer of a new nonroad compression-ignition engine must obtain a certificate of conformity covering the engine family, as described...

  5. A note on fashion cycles, novelty and conformity

    OpenAIRE

    Federica Alberti

    2013-01-01

    We develop a model in which novelty and conformity motivate fashion behavior. Fashion cycles occur if conformity is not too high. The duration of fashion cycles depends on individual-specific conformity, novelty, and the number of available styles. The use of individual-specific novelty and conformity allows us to also identify fashion leaders.

  6. Nonperturbative results for two-index conformal windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Georg [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Ryttov, Thomas A.; Sannino, Francesco [CP-Origins and the Danish IAS, University of Southern Denmark,5230 Odense M (Denmark)

    2015-12-10

    Via large and small N{sub c} relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N{sub c} is less than about six. Nevertheless useful nonperturbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N{sub c} two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N{sub c}) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N{sub c}) with two and four symmetric Dirac flavors.

  7. Nonperturbative results for two-index conformal windows

    International Nuclear Information System (INIS)

    Bergner, Georg; Ryttov, Thomas A.; Sannino, Francesco

    2015-01-01

    Via large and small N c relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N c is less than about six. Nevertheless useful nonperturbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N c two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N c ) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N c ) with two and four symmetric Dirac flavors.

  8. Measuring the mechanical properties of molecular conformers

    Science.gov (United States)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  9. Counselor Identity: Conformity or Distinction?

    Science.gov (United States)

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  10. 47 CFR 2.1072 - Limitation on Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Limitation on Declaration of Conformity. 2.1072... Conformity § 2.1072 Limitation on Declaration of Conformity. (a) The Declaration of Conformity signifies that...'s rules. (b) A Declaration of Conformity by the responsible party is effective until a termination...

  11. Conformity index for brain cancer patients

    International Nuclear Information System (INIS)

    Petkovska, Sonja; Tolevska, Cveta; Kraleva, Slavica; Petreska, Elena

    2010-01-01

    The purpose of this study is to present the level of conformity achieved by using 3D conformal radiotherapy for brain cancer patients. Conformity index is a helpful quantitative tool for assessing (evaluating) the quality of a treatment plan. Treatment plans made for ninety patients with brain tumor are worked on this paper. The patients are in supine position and immobilized with thermoplastic masks for the head. Computed tomography data sets with 5 mm scan thickness are used to create a 3D image. All structures of interest are contoured. In order to obtain an optimal dose distribution, treatment fields are fit around target volume with set-up margins of 7mm in each direction. The conformity index values are between 1.21 and 2.04. Value of 1.8 is exceeded in eighteen cases; nine of them are bigger than 1.9 and only three of them are above 2. The target volume for each of these extreme CI values is ideal covered (between 95% and 105% of the prescribed dose). The most acceptable conformity index value in this paper belongs to the plan with the lowest minimal dose (84.7%). It can be concluded that conformity index is necessary but not sufficient factor for assessing radiation treatment plan conformity. To be able to estimate the acceptability of some treatment plan in daily practice, additional information as minimal, maximal and mean dose into target volume, as well as health tissues coverage must be taken into account.(Author)

  12. Renormalization, conformal ward identities and the origin of a conformal anomaly pole

    Science.gov (United States)

    Corianò, Claudio; Maglio, Matteo Maria

    2018-06-01

    We investigate the emergence of a conformal anomaly pole in conformal field theories in the case of the TJJ correlator. We show how it comes to be generated in dimensional renormalization, using a basis of 13 form factors (the F-basis), where only one of them requires renormalization (F13), extending previous studies. We then combine recent results on the structure of the non-perturbative solutions of the conformal Ward identities (CWI's) for the TJJ in momentum space, expressed in terms of a minimal set of 4 form factors (A-basis), with the properties of the F-basis, and show how the singular behaviour of the corresponding form factors in both basis can be related. The result proves the centrality of such massless effective interactions induced by the anomaly, which have recently found realization in solid state, in the theory of topological insulators and of Weyl semimetals. This pattern is confirmed in massless abelian and nonabelian theories (QED and QCD) investigated at one-loop.

  13. Conformable variational iteration method

    Directory of Open Access Journals (Sweden)

    Omer Acan

    2017-02-01

    Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.

  14. 40 CFR 90.106 - Certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certificate of conformity. 90.106... Standards and Certification Provisions § 90.106 Certificate of conformity. (a)(1) Except as provided in § 90... certificate of conformity covering such engines; however, engines manufactured during an annual production...

  15. SCit: web tools for protein side chain conformation analysis

    OpenAIRE

    Gautier, R.; Camproux, A.-C.; Tufféry, P.

    2004-01-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each...

  16. SCit: web tools for protein side chain conformation analysis.

    Science.gov (United States)

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.

  17. Conformal Killing horizons and their thermodynamics

    Science.gov (United States)

    Nielsen, Alex B.; Shoom, Andrey A.

    2018-05-01

    Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric transformations. This mapping provides a physical link between the conformal Killing horizon of the dynamical black hole and the Killing horizon of the static spacetime. Using the Vaidya spacetime as an example, we show how this conformal relation can be used to derive thermodynamic properties of such dynamical black holes. Although these horizons are defined quasi-locally and can be located by local experiments, they are distinct from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is null by construction, is the natural horizon to describe the black hole.

  18. Molecular dynamics studies of the conformation of sorbitol

    Science.gov (United States)

    Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.

    2009-01-01

    Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646

  19. Lattice models and conformal field theories

    International Nuclear Information System (INIS)

    Saleur, H.

    1988-01-01

    Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied

  20. Chlamydomonas outer arm dynein alters conformation in response to Ca2+.

    Science.gov (United States)

    Sakato, Miho; Sakakibara, Hitoshi; King, Stephen M

    2007-09-01

    We have previously shown that Ca(2+) directly activates ATP-sensitive microtubule binding by a Chlamydomonas outer arm dynein subparticle containing the beta and gamma heavy chains (HCs). The gamma HC-associated LC4 light chain is a member of the calmodulin family and binds 1-2 Ca(2+) with K(Ca) = 3 x 10(-5) M in vitro, suggesting it may act as a Ca(2+) sensor for outer arm dynein. Here we investigate interactions between the LC4 light chain and gamma HC. Two IQ consensus motifs for binding calmodulin-like proteins are located within the stem domain of the gamma heavy chain. In vitro experiments indicate that LC4 undergoes a Ca(2+)-dependent interaction with the IQ motif domain while remaining tethered to the HC. LC4 also moves into close proximity of the intermediate chain IC1 in the presence of Ca(2+). The sedimentation profile of the gamma HC subunit changed subtly upon Ca(2+) addition, suggesting that the entire complex had become more compact, and electron microscopy of the isolated gamma subunit revealed a distinct alteration in conformation of the N-terminal stem in response to Ca(2+) addition. We propose that Ca(2+)-dependent conformational change of LC4 has a direct effect on the stem domain of the gamma HC, which eventually leads to alterations in mechanochemical interactions between microtubules and the motor domain(s) of the outer dynein arm.

  1. A novel germ cell protein, SPIF (sperm PKA interacting factor), is essential for the formation of a PKA/TCP11 complex that undergoes conformational and phosphorylation changes upon capacitation.

    Science.gov (United States)

    Stanger, Simone J; Law, Estelle A; Jamsai, Duangporn; O'Bryan, Moira K; Nixon, Brett; McLaughlin, Eileen A; Aitken, R John; Roman, Shaun D

    2016-08-01

    Spermatozoa require the process of capacitation to enable them to fertilize an egg. PKA is crucial to capacitation and the development of hyperactivated motility. Sperm PKA is activated by cAMP generated by the germ cell-enriched adenylyl cyclase encoded by Adcy10 Male mice lacking Adcy10 are sterile, because their spermatozoa are immotile. The current study was designed to identify binding partners of the sperm-specific (Cα2) catalytic subunit of PKA (PRKACA) by using it as the "bait" in a yeast 2-hybrid system. This approach was used to identify a novel germ cell-enriched protein, sperm PKA interacting factor (SPIF), in 25% of the positive clones. Homozygous Spif-null mice were embryonically lethal. SPIF was coexpressed and coregulated with PRKACA and with t-complex protein (TCP)-11, a protein associated with PKA signaling. We established that these 3 proteins form part of a novel complex in mouse spermatozoa. Upon capacitation, the SPIF protein becomes tyrosine phosphorylated in >95% of sperm. An apparent molecular rearrangement in the complex occurs, bringing PRKACA and TCP11 into proximity. Taken together, these results suggest a role for the novel complex of SPIF, PRKACA, and TCP11 during sperm capacitation, fertilization, and embryogenesis.-Stanger, S. J., Law, E. A., Jamsai, D., O'Bryan, M. K., Nixon, B., McLaughlin, E. A., Aitken, R. J., Roman, S. D. A novel germ cell protein, SPIF (sperm PKA interacting factor), is essential for the formation of a PKA/TCP11 complex that undergoes conformational and phosphorylation changes upon capacitation. © FASEB.

  2. 14 CFR 21.130 - Statement of conformity.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Statement of conformity. 21.130 Section 21... conformity. Each holder or licensee of a type certificate only, for a product manufactured in the United... Administrator a statement of conformity (FAA Form 317). This statement must be signed by an authorized person...

  3. 14 CFR 21.53 - Statement of conformity.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Statement of conformity. 21.53 Section 21... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.53 Statement of conformity. Link to an... conformity (FAA Form 317) to the Administrator for each aircraft engine and propeller presented to the...

  4. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  5. Rapid roll inflation with conformal coupling

    International Nuclear Information System (INIS)

    Kofman, Lev; Mukohyama, Shinji

    2008-01-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1-100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S 3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities

  6. Rapid roll inflation with conformal coupling

    Science.gov (United States)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  7. Conformal collineations and anisotropic fluids in general relativity

    International Nuclear Information System (INIS)

    Duggal, K.L.; Sharma, R.

    1986-01-01

    Recently, Herrera et al. [L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galino, J. Math. Phys. 25, 3274 (1984)] studied the consequences of the existence of a one-parameter group of conformal motions for anisotropic matter. They concluded that for special conformal motions, the stiff equation of state (p = μ) is singled out in a unique way, provided the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same problem is studied by using conformal collineations (which include conformal motions as subgroups). It is shown that, for a special conformal collineation, the stiff equation of state is not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the fluid matter

  8. Bioactive focus in conformational ensembles: a pluralistic approach

    Science.gov (United States)

    Habgood, Matthew

    2017-12-01

    Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.

  9. CONFORMITY IN CHRIST 1. THE TRANSFORMATION PROCESS

    African Journals Online (AJOL)

    This essay investigates the notion of conformity in Christ as it is part of a compre- hensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...

  10. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    N=2 conformal supersymmetry is realized in harmonic superspace, its peculiarities are analyzed. The coordinate group and analytical prepotentials for N=2 conformal supergravity are found. A new version of the N=2 Einstein supergravity with infinite number of auxiliary fields is suggested. A hypermultiplet without central charges and constraints is used as a compensator

  11. New open conformation of SMYD3 implicates conformational selection and allostery

    Directory of Open Access Journals (Sweden)

    Nicholas Spellmon

    2016-12-01

    Full Text Available SMYD3 plays a key role in cancer cell viability, adhesion, migration and invasion. SMYD3 promotes formation of inducible regulatory T cells and is involved in reducing autoimmunity. However, the nearly “closed” substrate-binding site and poor in vitro H3K4 methyltransferase activity have obscured further understanding of this oncogenically related protein. Here we reveal that SMYD3 can adopt an “open” conformation using molecular dynamics simulation and small-angle X-ray scattering. This ligand-binding-capable open state is related to the crystal structure-like closed state by a striking clamshell-like inter-lobe dynamics. The two states are characterized by many distinct structural and dynamical differences and the conformational transition pathway is mediated by a reversible twisting motion of the C-terminal domain (CTD. The spontaneous transition from the closed to open states suggests two possible, mutually non-exclusive models for SMYD3 functional regulation and the conformational selection mechanism and allostery may regulate the catalytic or ligand binding competence of SMYD3. This study provides an immediate clue to the puzzling role of SMYD3 in epigenetic gene regulation.

  12. Reciprocity Outperforms Conformity to Promote Cooperation.

    Science.gov (United States)

    Romano, Angelo; Balliet, Daniel

    2017-10-01

    Evolutionary psychologists have proposed two processes that could give rise to the pervasiveness of human cooperation observed among individuals who are not genetically related: reciprocity and conformity. We tested whether reciprocity outperformed conformity in promoting cooperation, especially when these psychological processes would promote a different cooperative or noncooperative response. To do so, across three studies, we observed participants' cooperation with a partner after learning (a) that their partner had behaved cooperatively (or not) on several previous trials and (b) that their group members had behaved cooperatively (or not) on several previous trials with that same partner. Although we found that people both reciprocate and conform, reciprocity has a stronger influence on cooperation. Moreover, we found that conformity can be partly explained by a concern about one's reputation-a finding that supports a reciprocity framework.

  13. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex

    International Nuclear Information System (INIS)

    Yang, Kui; Wills, Elizabeth G.; Baines, Joel D.

    2012-01-01

    We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU L 26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU L 26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU L 26 is required for this conformational change.

  14. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kui; Wills, Elizabeth G. [Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (United States); Baines, Joel D., E-mail: jdb11@cornell.edu [Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-20

    We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU{sub L}26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU{sub L}26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU{sub L}26 is required for this conformational change.

  15. Irreversibility and higher-spin conformal field theory

    Science.gov (United States)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  16. Catalysis by Glomerella cingulata cutinase requires conformational cycling between the active and inactive states of its catalytic triad.

    Science.gov (United States)

    Nyon, Mun Peak; Rice, David W; Berrisford, John M; Hounslow, Andrea M; Moir, Arthur J G; Huang, Huazhang; Nathan, Sheila; Mahadi, Nor Muhammad; Bakar, Farah Diba Abu; Craven, C Jeremy

    2009-01-09

    Cutinase belongs to a group of enzymes that catalyze the hydrolysis of esters and triglycerides. Structural studies on the enzyme from Fusarium solani have revealed the presence of a classic catalytic triad that has been implicated in the enzyme's mechanism. We have solved the crystal structure of Glomerella cingulata cutinase in the absence and in the presence of the inhibitors E600 (diethyl p-nitrophenyl phosphate) and PETFP (3-phenethylthio-1,1,1-trifluoropropan-2-one) to resolutions between 2.6 and 1.9 A. Analysis of these structures reveals that the catalytic triad (Ser136, Asp191, and His204) adopts an unusual configuration with the putative essential histidine His204 swung out of the active site into a position where it is unable to participate in catalysis, with the imidazole ring 11 A away from its expected position. Solution-state NMR experiments are consistent with the disrupted configuration of the triad observed crystallographically. H204N, a site-directed mutant, was shown to be catalytically inactive, confirming the importance of this residue in the enzyme mechanism. These findings suggest that, during its catalytic cycle, cutinase undergoes a significant conformational rearrangement converting the loop bearing the histidine from an inactive conformation, in which the histidine of the triad is solvent exposed, to an active conformation, in which the triad assumes a classic configuration.

  17. Essential role of conformational selection in ligand binding.

    Science.gov (United States)

    Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico

    2014-02-01

    Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and

  18. Rotational Spectroscopy Unveils Eleven Conformers of Adrenaline

    Science.gov (United States)

    Cabezas, C.; Cortijo, V.; Mata, S.; Lopez, J. C.; Alonso, J. L.

    2013-06-01

    Recent improvements in our LA-MB-FTMW instrumentation have allowed the characterization of eleven and eight conformers for the neurotransmitters adrenaline and noradrenaline respectively. The observation of this rich conformational behavior is in accordance with the recent observation of seven conformers for dopamine and in sharp contrast with the conformational reduction proposed for catecholamines. C. Cabezas, I. Peña, J. C. López, J. L. Alonso J. Phys. Chem. Lett. 2013, 4, 486. H. Mitsuda, M. Miyazaki, I. B. Nielsen, P. Carcabal,C. Dedonder, C. Jouvet, S. Ishiuchi, M. Fujii J. Phys. Chem. Lett. 2010, 1, 1130.

  19. Dilogarithm identities in conformal field theory

    International Nuclear Information System (INIS)

    Nahm, W.; Recknagel, A.; Terhoeven, M.

    1992-11-01

    Dilogarithm identities for the central charges and conformal dimensions exist for at least large classes of rational conformally invariant quantum field theories in two dimensions. In many cases, proofs are not yet known but the numerical and structural evidence is convincing. In particular, close relations exist to fusion rules and partition identities. We describe some examples and ideas, and present conjectures useful for the classification of conformal theories. The mathematical structures seem to be dual to Thurston's program for the classification of 3-manifolds. (orig.)

  20. Conformational dynamics data bank: a database for conformational dynamics of proteins and supramolecular protein assemblies.

    Science.gov (United States)

    Kim, Do-Nyun; Altschuler, Josiah; Strong, Campbell; McGill, Gaël; Bathe, Mark

    2011-01-01

    The conformational dynamics data bank (CDDB, http://www.cdyn.org) is a database that aims to provide comprehensive results on the conformational dynamics of high molecular weight proteins and protein assemblies. Analysis is performed using a recently introduced coarse-grained computational approach that is applied to the majority of structures present in the electron microscopy data bank (EMDB). Results include equilibrium thermal fluctuations and elastic strain energy distributions that identify rigid versus flexible protein domains generally, as well as those associated with specific functional transitions, and correlations in molecular motions that identify molecular regions that are highly coupled dynamically, with implications for allosteric mechanisms. A practical web-based search interface enables users to easily collect conformational dynamics data in various formats. The data bank is maintained and updated automatically to include conformational dynamics results for new structural entries as they become available in the EMDB. The CDDB complements static structural information to facilitate the investigation and interpretation of the biological function of proteins and protein assemblies essential to cell function.

  1. Conformational Analysis of Contrast Media for X-Ray Diagnostic Radiology

    International Nuclear Information System (INIS)

    Solieman, A.H.M.

    2010-01-01

    The conformational analysis of iodinated non-ionic contrast agent, Iobitridol, was carried out using theoretical calculations to explore its conformational space, and to study different aspects connected with application of different search techniques. Monte Carlo (MC), random search (RS) and molecular dynamics (MD) based conformational search techniques were used to extract a reasonable-size sample that adequately represents and has an average behavior of the entire conformational ensemble.While MC is good for quick search for lowest energy conformer, RS is better in obtaining conformational sample that cover the whole conformational space and MD is the best for investigation of isomeric preferences inside the conformational ensemble at thermal equilibrium. Conformational analysis of the produced gas phase samples reveals that RS and MD methods could sufficiently present the 18 distinct isomeric classes that constitute the total conformational space of the Iobitridol. S samples of conformational space of Iobitridol are extensively studied, as it hypothetically cover the total conformational space. They are used to test the suitability of different methods (charge distribution methods, energy calculation methods) for Iobitridol molecular computations and internal structure forces (steric hindrance, resonance interaction), as well as dependences among the internal coordinates (dihedral angles correlations and coincidences). The atomic partial charge distribution is found to greatly affect the energy calculation for the molecular mechanics based conformational energy distributions. Further energy minimization of conformational sample by the quantum molecular orbital methods is crucial to obtain charge independent as well as energy balanced conformational sample.

  2. Static validation of licence conformance policies

    DEFF Research Database (Denmark)

    Hansen, Rene Rydhof; Nielson, Flemming; Nielson, Hanne Riis

    2008-01-01

    Policy conformance is a security property gaining importance due to commercial interest like Digital Rights Management. It is well known that static analysis can be used to validate a number of more classical security policies, such as discretionary and mandatory access control policies, as well...... as communication protocols using symmetric and asymmetric cryptography. In this work we show how to develop a Flow Logic for validating the conformance of client software with respect to a licence conformance policy. Our approach is sufficiently flexible that it extends to fully open systems that can admit new...

  3. The decomposition of global conformal invariants

    CERN Document Server

    Alexakis, Spyros

    2012-01-01

    This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese

  4. 77 FR 14979 - Transportation Conformity Rule Restructuring Amendments

    Science.gov (United States)

    2012-03-14

    ... Transportation Conformity Rule Restructuring Amendments AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is amending the transportation conformity rule to finalize provisions that were proposed on August 13, 2010. These amendments restructure several sections of the transportation conformity...

  5. Solid state conformational classification of eight-membered rings

    DEFF Research Database (Denmark)

    Pérez, J.; García, L.; Kessler, M.

    2005-01-01

    A statistical classification of the solid state conformation in the title complexes using data retrieved from the Cambridge Structural Database (CSD) has been made. Phosphate and phosphinate complexes show a chair conformation preferably. In phosphonate complexes, the most frequent conformations...

  6. Unveiling the water-associated conformational mobility in the active site of ascorbate peroxidase.

    Science.gov (United States)

    Chao, Wei-Chih; Lin, Li-Ju; Lu, Jyh-Feng; Wang, Jinn-Shyan; Lin, Tzu-Chieh; Chen, Yi-Han; Chen, Yi-Ting; Yang, Hsiao-Ching; Chou, Pi-Tai

    2018-03-01

    We carried out comprehensive spectroscopic studies of wild type and mutants of ascorbate peroxidase (APX) to gain understanding of the conformational mobility of the active site. In this approach, three unnatural tryptophans were applied to replace the distal tryptophan (W41) in an aim to probe polarity/water environment near the edge of the heme-containing active site. 7-azatryptophan ((7-aza)Trp) is sensitive to environment polarity, while 2,7-azatryptophan ((2,7-aza)Trp) and 2,6-diazatryptophan ((2,6-aza)Trp) undergo excited-state water-catalyzed double and triple proton transfer, respectively, and are sensitive to the water network. The combination of their absorption, emission bands and the associated relaxation dynamics of these fluorescence probes, together with the Soret-band difference absorption and resonance Raman spectroscopy, lead us to unveil the water associated conformational mobility in the active site of APX. The results are suggestive of the existence of equilibrium between two different environments surrounding W41 in APX, i.e., the water-rich and water-scant forms with distinct fluorescence relaxation. Our results thus demonstrate for the first time the power of integrating multiple sensors (7-aza)Trp, (2,7-aza)Trp and (2,6-aza)Trp in probing the water environment of a specifically targeted Trp in proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Conformational analysis of 9β,19-cyclopropyl sterols: Detection of the pseudoplanar conformer by nuclear Overhauser effects and its functional implications

    International Nuclear Information System (INIS)

    Nes, W.D.; Benson, M.; Lundin, R.E.; Le, P.H.

    1988-01-01

    Nuclear Overhauser difference spectroscopy and variable temperature studies of the 9β,19-cyclopropyl sterols 24,25-dehydropollinastanol (4,4-desmethyl-5α-cycloart-24-en-3β-ol) and cyclolaudenol [(24S)-24-methyl-5α-cycloart-25(27)-en-3β-ol] have shown the solution conformation of the B/C rings to be twist-chair/twist-boat rather than boat/chair as suggested in the literature. This is very similar to the known crystal structure conformation of 9β,19-cyclopropyl sterols. The effect of these conformations on the molecular shape is highly significant; the first conformation orients into a pseudoplanar or flat shape analogous to lanosterol, whereas the latter conformation exhibits a bent shape. The results are interpreted to imply that, for conformational reasons, cyclopropyl sterols can be expected to maintain the pseudoplanar shape in membrane bilayers

  8. Application of Conformational Space Search in Drug Action | Adikwu ...

    African Journals Online (AJOL)

    The role of conformational space in drug action is presented. Two examples of molecules in different therapeutic groups are presented. Conformational space search will lead to isolating the exact conformation with the desired medicinal properties. Many conformations of a plant isolate may exist which are active, weakly ...

  9. Defects in conformal field theory

    International Nuclear Information System (INIS)

    Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco

    2016-01-01

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  10. Defects in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)

    2016-04-15

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  11. UV conformal window for asymptotic safety

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom

    2018-02-01

    Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.

  12. Irregular conformal block, spectral curve and flow equations

    International Nuclear Information System (INIS)

    Choi, Sang Kwan; Rim, Chaiho; Zhang, Hong

    2016-01-01

    Irregular conformal block is motivated by the Argyres-Douglas type of N=2 super conformal gauge theory. We investigate the classical/NS limit of irregular conformal block using the spectral curve on a Riemann surface with irregular punctures, which is equivalent to the loop equation of irregular matrix model. The spectral curve is reduced to the second order (Virasoro symmetry, SU(2) for the gauge theory) and third order (W_3 symmetry, SU(3)) differential equations of a polynomial with finite degree. The conformal and W symmetry generate the flow equations in the spectral curve and determine the irregular conformal block, hence the partition function of the Argyres-Douglas theory ala AGT conjecture.

  13. Scalar perturbations and conformal transformation

    International Nuclear Information System (INIS)

    Fabris, J.C.; Tossa, J.

    1995-11-01

    The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs

  14. 49 CFR 577.9 - Conformity to statutory requirements.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Conformity to statutory requirements. 577.9 Section 577.9 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY... NOTIFICATION § 577.9 Conformity to statutory requirements. A notification that does not conform to the...

  15. 20 CFR 604.6 - Conformity and substantial compliance.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Conformity and substantial compliance. 604.6... FOR ELIGIBILITY FOR UNEMPLOYMENT COMPENSATION § 604.6 Conformity and substantial compliance. (a) In... for the administration of its UC program. (b) Resolving Issues of Conformity and Substantial...

  16. Vertex operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Huang, Y.Z.

    1992-01-01

    This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics

  17. The butane condensed matter conformational problem

    NARCIS (Netherlands)

    Weber, A.C.J.; de Lange, C.A.; Meerts, W.L.; Burnell, E.E.

    2010-01-01

    From the dipolar couplings of orientationally ordered n-butane obtained by NMR spectroscopy we have calculated conformer probabilities using the modified Chord (Cd) and Size-and-Shape (CI) models to estimate the conformational dependence of the order matrix. All calculation methods make use of

  18. Conformal invariance and two-dimensional physics

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1993-01-01

    Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness

  19. Geometrical formulation of the conformal Ward identity

    International Nuclear Information System (INIS)

    Kachkachi, M.

    2002-08-01

    In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)

  20. Riemann monodromy problem and conformal field theories

    International Nuclear Information System (INIS)

    Blok, B.

    1989-01-01

    A systematic analysis of the use of the Riemann monodromy problem for determining correlators (conformal blocks) on the sphere is presented. The monodromy data is constructed in terms of the braid matrices and gives a constraint on the noninteger part of the conformal dimensions of the primary fields. To determine the conformal blocks we need to know the order of singularities. We establish a criterion which tells us when the knowledge of the conformal dimensions of primary fields suffice to determine the blocks. When zero modes of the extended algebra are present the analysis is more difficult. In this case we give a conjecture that works for the SU(2) WZW case. (orig.)

  1. Prospective Evaluation to Establish a Dose Response for Clinical Oral Mucositis in Patients Undergoing Head-and-Neck Conformal Radiotherapy

    International Nuclear Information System (INIS)

    Narayan, Samir; Lehmann, Joerg; Coleman, Matthew A.; Vaughan, Andrew; Yang, Claus Chunli; Enepekides, Danny; Farwell, Gregory; Purdy, James A.; Laredo, Grace; Nolan, Kerry A.S.; Pearson, Francesca S.; Vijayakumar, Srinivasan

    2008-01-01

    Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade ≤ 1) and short duration (≤1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction

  2. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  3. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  4. Conformal anomaly actions for dilaton interactions

    Directory of Open Access Journals (Sweden)

    Rose Luigi Delle

    2014-01-01

    Full Text Available We discuss, in conformally invariant field theories such as QCD with massless fermions, a possible link between the perturbative signature of the conformal anomaly, in the form of anomaly poles of the 1-particle irreducible effective action, and its descrip- tion in terms of Wess-Zumino actions with a dilaton. The two descriptions are expected to capture the UV and IR behaviour of the conformal anomaly, in terms of fundamental and effective degrees of freedom respectively, with the dilaton effective state appearing in a nonlinear realization. As in the chiral case, conformal anomalies seem to be related to the appearance of these effective interactions in the 1PI action in all the gauge-invariant sectors of the Standard Model. We show that, as a consequence of the underlying anomalous symmetry, the infinite hierarchy of recurrence relations involving self-interactions of the dilaton is entirely determined only by the first four of them. This relation can be generalized to any even space-time dimension.

  5. Invariants for minimal conformal supergravity in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph; Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany)

    2016-12-15

    We develop a new off-shell formulation for six-dimensional conformal supergravity obtained by gauging the 6D N=(1,0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D N=(1,0) conformal supergravity, which contain C{sup 3} and C◻C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F◻F invariant in curved superspace.

  6. A Mediated Moderation Model of Conformative Peer Bullying

    Science.gov (United States)

    Cho, Yoonju; Chung, Ock-Boon

    2012-01-01

    We investigated the relationship between conformative peer bullying and issues of peer conformity among adolescents. This relationship is examined through the establishment of a mediated moderation model for conformative peer bullying using structural equation modeling in a sample of 391 second-year middle school students in Seoul, South Korea. We…

  7. {kappa}-deformed realization of D=4 conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M. [Technical Univ. of Czestochowa, Inst. of Mathematics and Computer Science, Czestochowa (Poland); Lukierski, J. [Universite de Geneve, Department de Physique Theorique, Geneve (Switzerland)

    1995-07-01

    We describe the generators of {kappa}-conformal transformations, leaving invariant the {kappa}-deformed d`Alembert equation. In such a way one obtains the conformal extension of-shell spin spin zero realization of {kappa}-deformed Poincare algebra. Finally the algebraic structure of {kappa}-deformed conformal algebra is discussed. (author). 23 refs.

  8. Selective stimulation of conformational conversions in free molecules

    International Nuclear Information System (INIS)

    Ismailzade, G.I.; Movsumov, I.Z.; Menzeleev, M.R.; Kazymova, S.B.

    2014-01-01

    Application of double-resonance (RF-MW, IR-MW, MW-MW) methods to enhance studies of unstable isomeric structures was discussed. The use of infrared pump radiation to excite conformational energy levels in order to stimulate selectively conformational conversions and to correct spectral line intensities of separate conformations was substantiated. (authors)

  9. Sonographic Assessment of Parotid and Submandibular Glands in Patients Undergoing 3D Conformal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Johari M

    2016-06-01

    Full Text Available The aim of this study was to evaluate sonographic changes in parotid and submandibular salivary glands in patients undergoing radiotherapy for head and neck malignancies. In addition, salivary changes subsequent to radiotherapy were evaluated objectively and subjectively. Twenty patients(13males and 7females with head and neck malignancies, who had been referred to the Radiotherapy/Oncology Department of the Shahid Madani Hospital in Tabriz, Iran, were included in the study. Length, width, echotexture, echogenicity and margins of parotid and submandibular glands were evaluated before and after radiotherapy using sonography. Peak-systolic velocity(PSV,end-diastolic velocity(EDV and resistive index(RI were also assessed by Doppler sonography. Xerostomia subsequent to radiotherapy was evaluated with the use of two techniques: patients’ self-reported scoring and objective measurement of resting saliva. There was a significant decrease in the width of the parotid gland after radiotherapy compared to baseline(P=0.005.Although the length of the parotid gland and the dimensions of submandibular gland decrease, the differences were not significant. In addition, the echogenicity, echotexture and the margin of the glands change to hypoechoic, heterogenic and irregular, respectively, subsequent to radiotherapy. The Doppler technique showed decrease in PSV and RI and an increase in EDV; however, only the decrease in RI in the submandibular gland was statistically significant(P=0.002.The results showed a significant decrease in salivary flow after radiotherapy(P<0.001.In addition, based on the patients reports, the severity of xerostomia increased significantly after radiotherapy(P<0.001. Songraphic changes of parotid and submandibular glands after radiotherapy should be considered in ultrasound examinations. The damages to the parotid and submandibular glands had significant influence in patient post 3D-CRT.

  10. Elementary introduction to conformal invariance

    International Nuclear Information System (INIS)

    Grandati, Y.

    1992-01-01

    These notes constitute an elementary introduction to the concept of conformal invariance and its applications to the study of bidimensional critical phenomena. The aim is to give an access as pedestrian as possible to this vast subject. After a brief account of the general properties of conformal transformation in D dimensions, we study more specifically the case D = 2. The center of the discussion is then the consequences of the action of this symmetry group on bidimensional field theories, and in particular the links between the representations of the Virasoro algebra and the structure of the correlation functions of conformal field theories. Finally after showing how the Ising model reduces to a Majorana fermionic field theory, we see how the general formalism previously discussed can be applied to the Ising case at the critical point. (orig.)

  11. Conformational changes in glycine tri- and hexapeptide

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2006-01-01

    conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of the characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods...... also investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids....

  12. Conformal invariance in the quantum field theory

    International Nuclear Information System (INIS)

    Kurak, V.

    1975-09-01

    Basic features concerning the present knowledge of conformal symmetry are illustrated in a simple model. Composite field dimensions of this model are computed and related to the conformal group. (author) [pt

  13. Non-local Effects of Conformal Anomaly

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2018-03-01

    It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.

  14. Seed conformal blocks in 4D CFT

    Energy Technology Data Exchange (ETDEWEB)

    Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); Serone, Marco [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); ICTP,Strada Costiera 11, I-34151 Trieste (Italy)

    2016-02-29

    We compute in closed analytical form the minimal set of “seed' conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation (ℓ,ℓ̄) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0,|ℓ−ℓ̄|) and one (|ℓ−ℓ̄|,0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any (ℓ,ℓ̄), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p=|ℓ−ℓ̄| and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.

  15. Conformal invariance in the long-range Ising model

    Directory of Open Access Journals (Sweden)

    Miguel F. Paulos

    2016-01-01

    Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  16. Conformal Invariance in the Long-Range Ising Model

    CERN Document Server

    Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo

    2016-01-01

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  17. Conformal invariance in the long-range Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)

    2016-01-15

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  18. Conformational stability and self-association equilibrium in biologics.

    Science.gov (United States)

    Clarkson, Benjamin R; Schön, Arne; Freire, Ernesto

    2016-02-01

    Biologics exist in equilibrium between native, partially denatured, and denatured conformational states. The population of any of these states is dictated by their Gibbs energy and can be altered by changes in physical and solution conditions. Some conformations have a tendency to self-associate and aggregate, an undesirable phenomenon in protein therapeutics. Conformational equilibrium and self-association are linked thermodynamic functions. Given that any associative reaction is concentration dependent, conformational stability studies performed at different protein concentrations can provide early clues to future aggregation problems. This analysis can be applied to the selection of protein variants or the identification of better formulation solutions. In this review, we discuss three different aggregation situations and their manifestation in the observed conformational equilibrium of a protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Conformal Cosmology and Supernova Data

    OpenAIRE

    Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis

    2000-01-01

    We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.

  20. Conformal Symmetry as a Template for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2004-08-04

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.

  1. Conformal Symmetry as a Template for QCD

    International Nuclear Information System (INIS)

    Brodsky, S

    2004-01-01

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero β function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as τ decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized

  2. Z/NZ conformal field theories

    International Nuclear Information System (INIS)

    Degiovanni, P.

    1990-01-01

    We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)

  3. Structural alphabets derived from attractors in conformational space

    Directory of Open Access Journals (Sweden)

    Kleinjung Jens

    2010-02-01

    Full Text Available Abstract Background The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis. Results A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness. Conclusions The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics.

  4. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    Science.gov (United States)

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  5. Towards an Approximate Conformance Relation for Hybrid I/O Automata

    Directory of Open Access Journals (Sweden)

    Morteza Mohaqeqi

    2016-12-01

    Full Text Available Several notions of conformance have been proposed for checking the behavior of cyber-physical systems against their hybrid systems models. In this paper, we explore the initial idea of a notion of approximate conformance that allows for comparison of both observable discrete actions and (sampled continuous trajectories. As such, this notion will consolidate two earlier notions, namely the notion of Hybrid Input-Output Conformance (HIOCO by M. van Osch and the notion of Hybrid Conformance by H. Abbas and G.E. Fainekos. We prove that our proposed notion of conformance satisfies a semi-transitivity property, which makes it suitable for a step-wise proof of conformance or refinement.

  6. Multiresolution Computation of Conformal Structures of Surfaces

    Directory of Open Access Journals (Sweden)

    Xianfeng Gu

    2003-10-01

    Full Text Available An efficient multiresolution method to compute global conformal structures of nonzero genus triangle meshes is introduced. The homology, cohomology groups of meshes are computed explicitly, then a basis of harmonic one forms and a basis of holomorphic one forms are constructed. A progressive mesh is generated to represent the original surface at different resolutions. The conformal structure is computed for the coarse level first, then used as the estimation for that of the finer level, by using conjugate gradient method it can be refined to the conformal structure of the finer level.

  7. Determinants of conformal wave operators in four dimensions

    International Nuclear Information System (INIS)

    Blau, S.K.; Visser, M.; Wipf, A.

    1988-01-01

    We consider conformally coupled wave operators in four dimensions. Such operators are associated with conformally coupled massless scalars, massless spin 1/2 particles, and abelian gauge bosons. We explicitly calculate the change in the determinant of these wave operators as a function of conformal deformations of the background metric. This variation is given in terms of a geometrical object, the second Seeley-de Witt coefficient. (orig.)

  8. Conformal dimension theory and application

    CERN Document Server

    Mackay, John M

    2010-01-01

    Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed ...

  9. Conformal geometry and quasiregular mappings

    CERN Document Server

    Vuorinen, Matti

    1988-01-01

    This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...

  10. Renyi entropy and conformal defects

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lorenzo [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Meineri, Marco [Scuola Normale Superiore, Pisa (Italy); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Myers, Robert C. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Smolkin, Michael [California Univ., Berkely, CA (United States). Center for Theoretical Physics and Department of Physics

    2016-04-18

    We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  11. Renyi entropy and conformal defects

    International Nuclear Information System (INIS)

    Bianchi, Lorenzo; Myers, Robert C.; Smolkin, Michael

    2016-01-01

    We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  12. Evidence for weak or linear conformity but not for hyper-conformity in an everyday social learning context.

    Science.gov (United States)

    Claidière, Nicolas; Bowler, Mark; Whiten, Andrew

    2012-01-01

    Conformity is thought to be an important force in cultural evolution because it has the potential to stabilize cooperation in large groups, potentiate group selection and thus explain uniquely human behaviors. However, the effects of such conformity on cultural and biological evolution will depend much on the way individuals are influenced by the frequency of alternative behavioral options witnessed. Theoretical modeling has suggested that only what we refer to as 'hyper-conformity', an exaggerated tendency to perform the most frequent behavior witnessed in other individuals, is able to increase within-group homogeneity and between-group diversity, for instance. Empirically however, few experiments have addressed how the frequency of behavior witnessed affects behavior. Accordingly we performed an experiment to test for the presence of conformity in a natural situation with humans. Visitors to a Zoo exhibit were invited to write or draw answers to questions on A5 cards and potentially win a small prize. We manipulated the proportion of existing writings versus drawings visible to visitors and measured the proportion of written cards submitted. We found a strong and significant effect of the proportion of text displayed on the proportion of text in the answers, thus demonstrating social learning. We show that this effect is approximately linear, with potentially a small, weak-conformist component but no hyper-conformist one. The present experiment therefore provides evidence for linear conformity in humans in a very natural context.

  13. Fusion rules in conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.

    1993-06-01

    Several aspects of fusion rings and fusion rule algebras, and of their manifestations in two-dimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme. (orig.)

  14. Investigating ion channel conformational changes using voltage clamp fluorometry.

    Science.gov (United States)

    Talwar, Sahil; Lynch, Joseph W

    2015-11-01

    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Double-trace deformations of conformal correlations

    Science.gov (United States)

    Giombi, Simone; Kirilin, Vladimir; Perlmutter, Eric

    2018-02-01

    Large N conformal field theories often admit unitary renormalization group flows triggered by double-trace deformations. We compute the change in scalar four-point functions under double-trace flow, to leading order in 1/ N. This has a simple dual in AdS, where the flow is implemented by a change of boundary conditions, and provides a physical interpretation of single-valued conformal partial waves. We extract the change in the conformal dimensions and three-point coefficients of infinite families of double-trace composite operators. Some of these quantities are found to be sign-definite under double-trace flow. As an application, we derive anomalous dimensions of spinning double-trace operators comprised of non-singlet constituents in the O( N) vector model.

  16. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.

    Science.gov (United States)

    Tsukamoto, Hisao; Farrens, David L

    2013-09-27

    G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.

  17. The conformally invariant Laplace-Beltrami operator and factor ordering

    International Nuclear Information System (INIS)

    Ryan, Michael P.; Turbiner, Alexander V.

    2004-01-01

    In quantum mechanics the kinetic energy term for a single particle is usually written in the form of the Laplace-Beltrami operator. This operator is a factor ordering of the classical kinetic energy. We investigate other relatively simple factor orderings and show that the only other solution for a conformally flat metric is the conformally invariant Laplace-Beltrami operator. For non-conformally-flat metrics this type of factor ordering fails, by just one term, to give the conformally invariant Laplace-Beltrami operator

  18. Reassessing the role of book-tax conformity

    NARCIS (Netherlands)

    Goncharov, I.; Werner, J.R.

    2009-01-01

    Book-tax conformity refers to the legal link between financial and tax accounts, and is an institutional feature of many continental European countries and countries like Japan that follow continental European traditions. Many studies argue that book-tax conformity impedes earnings informativeness.

  19. SUSY Unparticle and Conformal Sequestering

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu; Nakayama, Yu

    2007-07-17

    We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.

  20. Open conformal systems and perturbations of transfer operators

    CERN Document Server

    Pollicott, Mark

    2017-01-01

    The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, meromorphic maps and rational functions. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite t...

  1. Confab - Systematic generation of diverse low-energy conformers

    Directory of Open Access Journals (Sweden)

    O'Boyle Noel M

    2011-03-01

    Full Text Available Abstract Background Many computational chemistry analyses require the generation of conformers, either on-the-fly, or in advance. We present Confab, an open source command-line application for the systematic generation of low-energy conformers according to a diversity criterion. Results Confab generates conformations using the 'torsion driving approach' which involves iterating systematically through a set of allowed torsion angles for each rotatable bond. Energy is assessed using the MMFF94 forcefield. Diversity is measured using the heavy-atom root-mean-square deviation (RMSD relative to conformers already stored. We investigated the recovery of crystal structures for a dataset of 1000 ligands from the Protein Data Bank with fewer than 1 million conformations. Confab can recover 97% of the molecules to within 1.5 Å at a diversity level of 1.5 Å and an energy cutoff of 50 kcal/mol. Conclusions Confab is available from http://confab.googlecode.com.

  2. THz time domain spectroscopy of biomolecular conformational modes

    International Nuclear Information System (INIS)

    Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert

    2002-01-01

    We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm -1 range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules

  3. From conformal Haag-Kastler nets to Wightman functions

    International Nuclear Information System (INIS)

    Joerss, M.

    1996-08-01

    Starting from a chiral conformal Haag-Kastler net on 2 dimensional Minkowski space we present a canonical construction that leads to a complete set of conformally covariant N-point-functions fulfilling the Wightman axioms. Our method consists of an explicit use of the representation theory of the universal covering group of SL(2,R) combined with a generalization of the conformal cluster theorem to N-point-functions. (orig.)

  4. Theoretical investigation of the conformational space of baicalin.

    Science.gov (United States)

    Martínez Medina, Juan J; Ferrer, Evelina G; Williams, Patricia A M; Okulik, Nora B

    2017-09-01

    Flavonoids are a large group of polyphenolic compounds ubiquitously present in plants. They are important components of human diet. They are recognized as potential drug candidates to be used in the treatment and prevention of a lot of pathological disorders, due to their protective effects. Baicalin (7-glucuronic acid 5, 6-dihydroxyflavone) is one of the main single active constituents isolated from the dried roots of Scutellaria baicalensis Georgi. The great interest on this flavonoid is due to its various pharmacological properties, such as antioxidant, antimicrobial, anti-inflammatory, anticancer and so on, and its high accumulation in the roots of S. baicalensis. The aim of our work was to analyze the geometric and electronic properties of baicalin conformers (BCL), thus performing a complete search on the conformational space of this flavonoid in gas phase and in aqueous solution. The results indicate that the conformational space of baicalin is formed by eight conformers in gas phase and five conformers in aqueous solution optimized at B3LYP/6-311++G** theory level. BCLa2 TT and BCLa1 TT conformers have low stability in gas phase and very high stability in aqueous solution. This variation is related to a modification in the τ 1 angle that represents the relative position of the glucuronide unit respect to the central rings of the flavan nucleus (A and C). This modification was successfully explained by examining the changes in the hydrogen bond (HB) interactions that occur in the region around the hydroxyl group located in position 6 of ring A. Besides, the molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analyses indicate that BCLa2 TT and BCLa1 TT conformers are the most favorable conformers for interacting with positively charged species (such as metal ions) in aqueous media (such as biological fluids). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hidden conformal symmetry of extremal black holes

    International Nuclear Information System (INIS)

    Chen Bin; Long Jiang; Zhang Jiaju

    2010-01-01

    We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.

  6. Surface Design Based on Discrete Conformal Transformations

    Science.gov (United States)

    Duque, Carlos; Santangelo, Christian; Vouga, Etienne

    Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.

  7. Social conformity despite individual preferences for distinctiveness.

    Science.gov (United States)

    Smaldino, Paul E; Epstein, Joshua M

    2015-03-01

    We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.

  8. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac-conformality versus efficiency of dose delivery

    International Nuclear Information System (INIS)

    Webb, Steve

    2000-01-01

    Intensity-modulated radiotherapy (IMRT) may be delivered with a high-energy-photon linac mounted on a robotic gantry and executing a complex trajectory. In a previous paper an inverse-planning technique was developed for such an application. Here the work is extended to demonstrate the dependence of conformality on the size of the elemental pencil beam, on the complexity of the trajectory and on the sampling of azimuth and elevation of the collimated source. The improved conformality of complex trajectories is demonstrated and benchmarked relative to simpler trajectories, more representative of existing non-robotic IMRT techniques. Specifically, by choosing a very fine pencil beam, exquisitely conformal dose distributions have been obtained. Important sampling considerations have been determined. Expressions have been derived for the dosimetry and monitor-unit efficiency of robotic IMRT. Equivalent trajectories were computed for executing the complex robotic trajectories instead by using a conventional linac. The work benchmarks an ideal in IMRT against which more practical and more common techniques may be measured. (author)

  9. Conformity of LINAC-Based Stereotactic Radiosurgery Using Dynamic Conformal Arcs and Micro-Multileaf Collimator

    International Nuclear Information System (INIS)

    Hazard, Lisa J.; Wang, Brian; Skidmore, Thomas B.; Chern, Shyh-Shi; Salter, Bill J.; Jensen, Randy L.; Shrieve, Dennis C.

    2009-01-01

    Purpose: To assess the conformity of dynamic conformal arc linear accelerator-based stereotactic radiosurgery and to describe a standardized method of isodose surface (IDS) selection. Methods and Materials: In 174 targets, the conformity index (CI) at the prescription IDS used for treatment was calculated as CI = (PIV/PVTV)/(PVTV/TV), where TV is the target volume, PIV (prescription isodose volume) is the total volume encompassed by the prescription IDS, and PVTV is the TV encompassed by the IDS. In addition, a 'standardized' prescription IDS (sIDS) was chosen according to the following criteria: 95% of the TV was encompassed by the PIV and 99% of TV was covered by 95% of the prescription dose. The CIs at the sIDS were also calculated. Results: The median CI at the prescription IDS and sIDS was 1.63 and 1.47, respectively (p < 0.001). In 132 of 174 cases, the volume of normal tissue in the PIV was reduced by the prescription to the sIDS compared with the prescription IDS, in 20 cases it remained unchanged, and in 22 cases it was increased. Conclusion: The CIs obtained with linear accelerator-based stereotactic radiosurgery are comparable to those previously reported for gamma knife stereotactic radiosurgery. Using a uniform method to select the sIDS, adequate target coverage was usually achievable with prescription to an IDS greater than that chosen by the treating physician (prescription IDS), providing sparing of normal tissue. Thus, the sIDS might aid physicians in identifying a prescription IDS that balances coverage and conformity

  10. Conformal consistency relations for single-field inflation

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko

    2012-01-01

    We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit — going as 1/q 3 , where q is the small wavevector — but also the subleading one, going as 1/q 2 . This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q 3 term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q 2 . We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of ζ are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by ζ. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta

  11. Exploring perturbative conformal field theory in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  12. Conformational Study of Taurine in the Gas Phase

    Science.gov (United States)

    Cortijo, Vanessa; Sanz, M. Eugenia; López, Juan C.; Alonso, José L.

    2009-08-01

    The conformational preferences of the amino sulfonic acid taurine (NH2-CH2-CH2-SO3H) have been investigated in the gas phase by laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) in the 6-14 GHz frequency range. One conformer has been observed, and its rotational, centrifugal distortion, and hyperfine quadrupole coupling constants have been determined from the analysis of its rotational spectrum. Comparison of the experimental constants with those calculated theoretically identifies the detected conformer unambiguously. The observed conformer of taurine is stabilized by an intramolecular hydrogen bond O-H···N between the hydrogen of the sulfonic acid group and the nitrogen atom of the amino group.

  13. 40 CFR 86.407-78 - Certificate of conformity required.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Certificate of conformity required. 86... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.407-78 Certificate of conformity... conformity issued pursuant to this subpart, except as specified in paragraph (b) of this section, or...

  14. Synthesis of conformationally restricted beta-turn mimics

    NARCIS (Netherlands)

    IJsselstijn, M.

    2006-01-01

    This thesis aims at developing methods for introducing conformational restriction in Beta-turns, the turn elements present in Beta-sheets. A conformationally restricted peptide might either be formed via incorporation of a bridging diamino acids in a growing peptide chain, or via covalent bond

  15. Conformal anomaly of super Wilson loop

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2012-09-11

    Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.

  16. Willmore energy estimates in conformal Berger spheres

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel

    2011-01-01

    Highlights: → The Willmore energy is computed in a wide class of surfaces. → Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. → The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.

  17. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  18. Conformation sensitive charge transport in conjugated polymers

    International Nuclear Information System (INIS)

    Mattias Andersson, L.; Hedström, Svante; Persson, Petter

    2013-01-01

    Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole- and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highest occupied molecular orbital is consistent with a conventional hole mobility behavior and also proposed to be one of the reasons for why the material works well as a hole transporter in amorphous bulk heterojunction solar cells

  19. Potential clinical efficacy of intensity-modulated conformal therapy

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.; Zlotecki, Robert A.

    1998-01-01

    Purpose: The purpose of this study was to examine the potential benefit of using intensity-modulated conformal therapy for a variety of lesions currently treated with stereotactic radiosurgery or conventional radiotherapy. Methods and Materials: Intensity-modulated conformal treatment plans were generated for small intracranial lesions, as well as head and neck, lung, breast, and prostate cases, using the Peacock Plan[reg] treatment-planning system (Nomos Corporation). For small intracranial lesions, intensity-modulated conformal treatment plans were compared with stereotactic radiosurgery treatment plans generated for patient treatment at the University of Florida Shands Cancer Center. For other sites (head and neck, lung, breast, and prostate), plans generated using the Peacock Plan[reg] were compared with conventional treatment plans, as well as beam's-eye-view conformal treatment plans. Plan comparisons were accomplished through conventional qualitative review of two-dimensional (2D) dose distributions in conjunction with quantitative techniques, such as dose-volume histograms, dosimetric statistics, normal tissue complication probabilities, tumor control probabilities, and objective numerical scoring. Results: For small intracranial lesions, there is little difference between intensity-modulated conformal treatment planning and radiosurgery treatment planning in the conformation of high isodose lines with the target volume. However, stereotactic treatment planning provides a steeper dose gradient outside the target volume and, hence, a lower normal tissue toxicity index. For extracranial sites, objective numerical scores for beam's-eye-view and intensity-modulated conformal planning techniques are superior to scores for conventional treatment plans. The beam's-eye-view planning technique prevents geographic target misses and better excludes healthy tissues from the treatment portal. Compared with scores for the beam's-eye-view planning technique, scores for

  20. Flat connection, conformal field theory and quantum group

    International Nuclear Information System (INIS)

    Kato, Mitsuhiro.

    1989-07-01

    General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL 2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs

  1. Standing in the Hallway Improves Students' Understanding of Conformity

    Science.gov (United States)

    Lawson, Timothy J.; Haubner, Richard R.; Bodle, James H.

    2013-01-01

    To help beginning psychology students understand how they are influenced by social pressures to conform, we developed a demonstration designed to elicit their conformity to a small group of students standing in the hallway before class. Results showed the demonstration increased students' recognition of their own tendency to conform, knowledge of…

  2. Molecular dynamics of conformation-specific dopamine transporter-inhibitor complexes.

    Science.gov (United States)

    Jean, Bernandie; Surratt, Christopher K; Madura, Jeffry D

    2017-09-01

    The recreational psychostimulant cocaine inhibits dopamine reuptake from the synapse, resulting in excessive stimulation of postsynaptic dopamine receptors in brain areas associated with reward and addiction. Cocaine binds to and stabilizes the outward- (extracellular-) facing conformation of the dopamine transporter (DAT) protein, while the low abuse potential DAT inhibitor benztropine prefers the inward- (cytoplasmic-) facing conformation. A correlation has been previously postulated between psychostimulant abuse potential and preference for the outward-facing DAT conformation. The 3β-aryltropane cocaine analogs LX10 and LX11, however, differ only in stereochemistry and share a preference for the outward-facing DAT, yet are reported to vary widely in abuse potential in an animal model. In search of the molecular basis for DAT conformation preference, complexes of cocaine, benztropine, LX10 or LX11 bound to each DAT conformation were subjected to 100ns of all-atom molecular dynamics simulation. Results were consistent with previous findings from cysteine accessibility assays used to assess an inhibitor's DAT conformation preference. The respective 2β- and 2α-substituted phenyltropanes of LX10 and LX11 interacted with hydrophobic regions of the DAT S1 binding site that were inaccessible to cocaine. Solvent accessibility measurements also revealed subtle differences in inhibitor positioning within a given DAT conformation. This work serves to advance our understanding of the conformational selectivity of DAT inhibitors and suggests that MD may be useful in antipsychostimulant therapeutic design. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The intercomparison of the dose distributions between conformation techniques with pions and photons

    International Nuclear Information System (INIS)

    Karasawa, K.; Nakagawa, K.; Akanuma, A.

    1990-01-01

    To compare conformation radiation treatment with pions vs photons, dose volume histograms (DVH) to the critical organs, including the spinal cord, kidney, and intestine, were examined in a patient with retroperitoneal soft tissue sarcoma. For photon conformation treatment, the following techniques were used: 360 degree rotation conformation technique (photon conformation), 4 fixed field technique (photon 4-field), and 2-axis conformation technique (photon 2-axial conformation). According to the DVH reduction method, complication probability was estimated. The concave portion of the target was conformed by pion conformation treatment, but not by photon conformation treatment. Pion conformation for the intestine showed the best DVH, whereas photon 4-field technique showed the worst DVH. For the kidney, pion conformation showed better DVH as compared with any other photon conformation treatment technique. In the spinal cord, photon 2-axial conformation was far superior, followed by pion conformation and then photon conformation and 4-field technique. A 2-axial technique showed a bigger inhomogeneity inside the target volume which is critical in curative treatment. TD 50 was 72 Gy for pion conformation, 53 Gy for photon conformation, 51 Gy for photon 4-field, and 68 Gy for photon 2-axial conformation. Complication probabilities for these conformation techniques at 60 Gy were 3%, 85%, 97%, and 9%. In view of tumor control probabilities, pion seems to have the biggest therapeutic ratio among these techniques. (N.K.)

  4. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Fitzwilliam College, Cambridge

    2000-01-01

    A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories. (author)

  5. 20 CFR 640.4 - Standard for conformity.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Standard for conformity. 640.4 Section 640.4 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR STANDARD FOR BENEFIT PAYMENT PROMPTNESS-UNEMPLOYMENT COMPENSATION § 640.4 Standard for conformity. A State law will satisfy the...

  6. Irreversibility and higher-spin conformal field theory

    CERN Document Server

    Anselmi, D

    2000-01-01

    I discuss the idea that quantum irreversibility is a general principle of nature and a related "conformal hypothesis", stating that all fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points. In particular, the Newton constant should be viewed as a low-energy effect of the RG scale. This approach leads naturally to consider higher-spin conformal field theories, which are here classified, as candidate high-energy theories. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. The central charges c and a are well defined and positive. I calculate their values and study the operator-product structure. Fermionic theories have no gauge invariance and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a...

  7. Comments on conformal masses, asymptotic backgrounds and conservation laws

    International Nuclear Information System (INIS)

    Deruelle, Nathalie; Katz, Joseph

    2006-01-01

    The 'conformal mass prescriptions' were used recently to calculate the mass of spacetimes in higher dimensional and higher curvature theories of gravity. These definitions are closely related to Komar integrals for spacetimes that are conformally flat at great distances from the sources. We derive these relations without using the conformal infinity formalism

  8. Conformal correlation functions in the Brownian loop soup

    Science.gov (United States)

    Camia, Federico; Gandolfi, Alberto; Kleban, Matthew

    2016-01-01

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  9. Conformal correlation functions in the Brownian loop soup

    Energy Technology Data Exchange (ETDEWEB)

    Camia, Federico, E-mail: federico.camia@nyu.edu [New York University Abu Dhabi (United Arab Emirates); VU University, Amsterdam (Netherlands); Gandolfi, Alberto, E-mail: albertogandolfi@nyu.edu [New York University Abu Dhabi (United Arab Emirates); Università di Firenze (Italy); Kleban, Matthew, E-mail: kleban@nyu.edu [New York University Abu Dhabi (United Arab Emirates); Center for Cosmology and Particle Physics, Department of Physics, New York University (United States)

    2016-01-15

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  10. Conformal correlation functions in the Brownian loop soup

    Directory of Open Access Journals (Sweden)

    Federico Camia

    2016-01-01

    Full Text Available We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  11. Increased conformity offers diminishing returns for reducing total knee replacement wear.

    Science.gov (United States)

    Fregly, Benjamin J; Marquez-Barrientos, Carlos; Banks, Scott A; DesJardins, John D

    2010-02-01

    Wear remains a significant problem limiting the lifespan of total knee replacements (TKRs). Though increased conformity between TKR components has the potential to decrease wear, the optimal amount and planes of conformity have not been investigated. Furthermore, differing conformities in the medial and lateral compartments may provide designers the opportunity to address both wear and kinematic design goals simultaneously. This study used a computational model of a Stanmore knee simulator machine and a previously validated wear model to investigate this issue for simulated gait. TKR geometries with different amounts and planes of conformity on the medial and lateral sides were created and tested in two phases. The first phase utilized a wide range of sagittal and coronal conformity combinations to blanket a physically realistic design space. The second phase performed a focused investigation of the conformity conditions from the first phase to which predicted wear volume was sensitive. For the first phase, sagittal but not coronal conformity was found to have a significant effect on predicted wear volume. For the second phase, increased sagittal conformity was found to decrease predicted wear volume in a nonlinear fashion, with reductions gradually diminishing as conformity increased. These results suggest that TKR geometric design efforts aimed at minimizing wear should focus on sagittal rather than coronal conformity and that at least moderate sagittal conformity is desirable in both compartments.

  12. 18 CFR 153.21 - Conformity with requirements.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Conformity with requirements. 153.21 Section 153.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Requirements § 153.21 Conformity with requirements. (a) General Rule. Applications under subparts B and C of...

  13. Conformal (WEYL) invariance and Higgs mechanism

    International Nuclear Information System (INIS)

    Zhao Shucheng.

    1991-10-01

    A massive Yang-Mills field theory with conformal invariance and gauge invariance is proposed. It involves gravitational and various gauge interactions, in which all the mass terms appear as a uniform form of interaction m(x) KΦ(x). When the conformal symmetry is broken spontaneously and gravitation is ignored, the Higgs field emerges naturally, where the imaginary mass μ can be described as a background curvature. (author). 7 refs

  14. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    Chao Jingyi; Schäfer, Thomas

    2012-01-01

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E 0 =2/3 P, where E 0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  15. Homothetic and conformal symmetries of solutions to Einstein's equations

    International Nuclear Information System (INIS)

    Eardley, D.; Isenberg, J.; Marsden, J.; Moncrief, V.; Yale Univ., New Haven, CT

    1986-01-01

    We present several results about the nonexistence of solutions of Einstein's equations with homoethetic or conformal symmetry. We show that the only spatially compact, globally hyperbolic spacetimes admitting a hypersurface of constant mean extrinsic curvature, and also admitting an infinitesimal proper homothetic symmetry, are everywhere locally flat; this assumes that the matter fields either obey certain energy conditions, or are the Yang-Mills or massless Klein-Gordon fields. We find that the only vacuum solutions admitting an infinitesimal proper conformal symmetry are everywhere locally flat spacetimes and certain plane wave solutions. We show that if the dominant energy condition is assumed, then Minkowski spacetime is the only asymptotically flat solution which has an infinitesimal conformal symmetry that is asymptotic to a dilation. In other words, with the exceptions cited, homothetic or conformal Killing fields are in fact Killing in spatially compact or asymptotically flat spacetimes. In the conformal procedure for solving the initial value problem, we show that data with infinitesimal conformal symmetry evolves to a spacetime with full isometry. (orig.)

  16. Selection of candidate wells and optimization of conformance treatment design in the Barrancas Field using a 3D conformance simulator

    Energy Technology Data Exchange (ETDEWEB)

    Crosta, Dante; Elitseche, Luis [Repsol YPF (Argentina); Gutierrez, Mauricio; Ansah, Joe; Everett, Don [Halliburton Argentina S.A., Buenos Aires (Argentina)

    2004-07-01

    Minimizing the amount of unwanted water production is an important goal at the Barrancas field. This paper describes a selection process for candidate injection wells that is part of a pilot conformance project aimed at improving vertical injection profiles, reducing water cut in producing wells, and improving ultimate oil recovery from this field. The well selection process is based on a review of limited reservoir information available for this field to determine inter-well communications. The methodology focuses on the best use of available information, such as production and injection history, well intervention files, open hole logs and injectivity surveys. After the candidate wells were selected and potential water injection channels were identified, conformance treatment design and future performance of wells in the selected pilot area were evaluated using a new 3 -D conformance simulator, developed specifically for optimization of the design and placement of unwanted fluid shut-off treatments. Thus, when acceptable history match ing of the pilot area production was obtained, the 3 -D simulator was used to: evaluate the required volume of selected conformance treatment fluid; review expected pressures and rates during placement;. model temperature behavior; evaluate placement techniques, and forecast water cut reduction and incremental oil recovery from the producers in this simulated section of the pilot area. This paper outlines a methodology for selecting candidate wells for conformance treatments. The method involves application of several engineering tools, an integral component of which is a user-friendly conformance simulator. The use of the simulator has minimized data preparation time and allows the running of sensitivity cases quickly to explore different possible scenarios that best represent the reservoir. The proposed methodology provides an efficient means of identifying conformance problems and designing optimized solutions for these individual

  17. Conformational impact of structural modifications in 2-fluorocyclohexanone

    Directory of Open Access Journals (Sweden)

    Francisco A. Martins

    2017-08-01

    Full Text Available 2-Haloketones are building blocks that combine physical, chemical and biological features of materials and bioactive compounds, while organic fluorine plays a fundamental role in the design of performance organic molecules. Since these features are dependent on the three-dimensional chemical structure of a molecule, simple structural modifications can affect its conformational stability and, consequently, the corresponding physicochemical/biological property of interest. In this work, structural changes in 2-fluorocyclohexanone were theoretically studied with the aim at finding intramolecular interactions that induce the conformational equilibrium towards the axial or equatorial conformer. The interactions evaluated were hydrogen bonding, hyperconjugation, electrostatic and steric effects. While the gauche effect, originated from hyperconjugative interactions, does not appear to cause some preferences for the axial conformation of organofluorine heterocycles, more classical effects indeed rule the conformational equilibrium of the compounds. Spectroscopic parameters (NMR chemical shifts and coupling constants, which can be useful to determine the stereochemistry and the interactions operating in the series of 2-fluorocyclohexanone derivatives, were also calculated.

  18. Conformational kinetics of aliphatic tails

    Science.gov (United States)

    Ferrarini, Alberta; Moro, Giorgio; Nordio, Pier Luigi

    The master equation describing the random walk between sites identified with the stable conformers of a chain molecule, represents the extension to the time domain of the Rotational Isomeric State model. The asymptotic analysis of the multidimensional diffusion equation in the continuous torsional variables subjected to the configurational potential, provides a rigorous justification for the discrete models, and it supplies, without resorting to phenomenological parameters, molecular definitions of the kinetic rates for the conformational transitions occurring at each segment of the chain. The coupling between the torsional variables is fully taken into account, giving rise to cooperative effects. A complete calculation of the specific correlation functions which describe the time evolution of the angular functions probed by N.M.R. and dielectric relaxation measurements, has been performed for alkyl chains attached to a massive core. The resulting behaviour has been compared with the decay of trans and gauche populations of specific bonds, expressed in terms of suitable correlation functions whose time integrals lead quite naturally to the definition of effective kinetic constants for the conformational transitions.

  19. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR.

    Science.gov (United States)

    Pliotas, Christos

    2017-01-01

    Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail. © 2017 Elsevier Inc. All rights reserved.

  20. Probing Conformational Changes of Human DNA Polymerase λ Using Mass Spectrometry-Based Protein Footprinting

    Science.gov (United States)

    Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai

    2009-01-01

    SUMMARY Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPolλ versus the binary complex of enzyme•gapped DNA and the ternary complex of enzyme•gapped DNA•dNTP. These experiments suggested that fPolλ does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide dNTP. Site-directed mutagenesis and pre-steady state kinetic studies confirmed the importance of R386 for the enzyme activity, and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases. PMID:19467241

  1. Bodyweight Assessment of Enamelin Null Mice

    Directory of Open Access Journals (Sweden)

    Albert H.-L. Chan

    2013-01-01

    Full Text Available The Enam null mice appear to be smaller than wild-type mice, which prompted the hypothesis that enamel defects negatively influence nutritional intake and bodyweight gain (BWG. We compared the BWG of Enam−/− and wild-type mice from birth (D0 to Day 42 (D42. Wild-type (WT and Enam−/− (N mice were given either hard chow (HC or soft chow (SC. Four experimental groups were studied: WTHC, WTSC, NHC, and NSC. The mother’s bodyweight (DBW and the average litter bodyweight (ALBW were obtained from D0 to D21. After D21, the pups were separated from the mother and provided the same type of food. Litter bodyweights were measured until D42. ALBW was compared at 7-day intervals using one-way ANOVA, while the influence of DBW on ALBW was analyzed by mixed-model analyses. The ALBW of Enam−/− mice maintained on hard chow (NHC was significantly lower than the two WT groups at D21 and the differences persisted into young adulthood. The ALBW of Enam−/− mice maintained on soft chow (NSC trended lower, but was not significantly different than that of the WT groups. We conclude that genotype, which affects enamel integrity, and food hardness influence bodyweight gain in postnatal and young adult mice.

  2. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    Energy Technology Data Exchange (ETDEWEB)

    De Wagter, C [ed.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions.

  3. Truncated conformal space approach to scaling Lee-Yang model

    International Nuclear Information System (INIS)

    Yurov, V.P.; Zamolodchikov, Al.B.

    1989-01-01

    A numerical approach to 2D relativstic field theories is suggested. Considering a field theory model as an ultraviolet conformal field theory perturbed by suitable relevant scalar operator one studies it in finite volume (on a circle). The perturbed Hamiltonian acts in the conformal field theory space of states and its matrix elements can be extracted from the conformal field theory. Truncation of the space at reasonable level results in a finite dimensional problem for numerical analyses. The nonunitary field theory with the ultraviolet region controlled by the minimal conformal theory μ(2/5) is studied in detail. 9 refs.; 17 figs

  4. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    International Nuclear Information System (INIS)

    De Wagter, C.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions

  5. Quaternion analyticity and conformally Kaehlerian structure in Euclidean gravity

    International Nuclear Information System (INIS)

    Guersey, F.; Chia-Hsiung Tze

    1984-01-01

    Starting from the fact that the d = 4 Euclidean flat spacetime is conformally related to the Kaehler manifold H 2 xS 2 , we show the Euclidean Schwarzschild metric to be conformally related to another Kaehler manifold M 2 xS 2 with M 2 being conformal to H 2 in two dimensions. Both metrics which are conformally Kaehlerian, are form-invariant under the infinite parameter Fueter group, the Euclidean counterpart of Milne's group of clock regraduation. The associated Einstein's equations translate into Fueter's quaternionic analyticity. The latter leads to an infinite number of local continuity equations. (orig.)

  6. Note on Weyl versus conformal invariance in field theory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)

    2017-12-15

    It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)

  7. Conformal symmetry and string theories

    International Nuclear Information System (INIS)

    Kumar, A.

    1987-01-01

    This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories

  8. Mixed global anomalies and boundary conformal field theories

    OpenAIRE

    Numasawa, Tokiro; Yamaguchi, Satoshi

    2017-01-01

    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal...

  9. 40 CFR 90.711 - Suspension and revocation of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificates of conformity. 90.711 Section 90.711 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... conformity. (a) The certificate of conformity is suspended with respect to any engine failing pursuant to... suspend the certificate of conformity for an engine family which is determined to be in noncompliance...

  10. 40 CFR 92.512 - Suspension and revocation of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificates of conformity. 92.512 Section 92.512 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of certificates of conformity. (a)(1) The certificate of conformity is suspended with respect to any... conformity is suspended with respect to any locomotive or locomotive engine that fails an audit pursuant to...

  11. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    Science.gov (United States)

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  12. Conformal and Lie superalgebras motivated from free fermionic fields

    International Nuclear Information System (INIS)

    Ma, Shukchuen

    2003-01-01

    In this paper, we construct six families of conformal superalgebras of infinite type, motivated from free quadratic fermonic fields with derivatives, and we prove their simplicity. The Lie superalgebras generated by these conformal superalgebras are proven to be simple except for a few special cases in the general linear superalgebras and the type-Q lie superalgebras, in which these Lie superalgebras have a one-dimensional centre and the quotient Lie superalgebras modulo the centre are simple. Certain natural central extensions of these families of conformal superalgebras are also given. Moreover, we prove that these conformal superalgebras are generated by their finite-dimensional subspaces of minimal weight in a certain sense. It is shown that a conformal superalgebra is simple if and only if its generated Lie superalgebra does not contain a proper nontrivial ideal with a one-variable structure

  13. Spatial and null infinity via advanced and retarded conformal factors

    International Nuclear Information System (INIS)

    Hayward, Sean A.

    2003-01-01

    A new approach to space-time asymptotics is presented, refining Penrose's idea of conformal transformations with infinity represented by the conformal boundary of space-time. It is proposed that the Penrose conformal factor be a product of advanced and retarded conformal factors, which asymptotically relate physical and conformal null coordinates and vanish at future and past null infinity respectively. A refined definition of asymptotic flatness at both spatial and null infinity is given, including that the conformal boundary is locally a light cone, with spatial infinity as the vertex. It is shown how to choose the conformal factors so that this asymptotic light cone is locally a metric light cone. The theory is implemented in the spin-coefficient (or null-tetrad) formalism by a joint transformation of the spin-metric and spin-basis (or metric and tetrad). Asymptotic regularity conditions are proposed, based on the conformal boundary locally being a smoothly embedded metric light cone. These conditions ensure that the Bondi-Sachs energy-flux integrals of ingoing and outgoing gravitational radiation decay at spatial infinity such that the total radiated energy is finite, and that the Bondi-Sachs energy-momentum has a unique limit at spatial infinity, coinciding with the uniquely rendered ADM energy-momentum

  14. On the Conformable Fractional Quantum Mechanics

    Science.gov (United States)

    Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.

    2018-05-01

    In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.

  15. Closed forms for conformally flat Green's functions

    International Nuclear Information System (INIS)

    Brown, M.R.; Grove, P.G.; Ottewill, A.C.

    1981-01-01

    A closed form is obtained for the massless scalar Green's function on Rindler space. This is related by conformal transformation to the Green's function for a massless, conformally coupled scalar field on the open Einstein universe. A closed form is also obtained for the corresponding Green's function on the Einstein static universe. (author)

  16. Crystal Structure of Perakine Reductase, Founding Member of a Novel Aldo-Keto Reductase (AKR) Subfamily That Undergoes Unique Conformational Changes during NADPH Binding*

    Science.gov (United States)

    Sun, Lianli; Chen, Yixin; Rajendran, Chitra; Mueller, Uwe; Panjikar, Santosh; Wang, Meitian; Mindnich, Rebekka; Rosenthal, Cindy; Penning, Trevor M.; Stöckigt, Joachim

    2012-01-01

    Perakine reductase (PR) catalyzes the NADPH-dependent reduction of the aldehyde perakine to yield the alcohol raucaffrinoline in the biosynthetic pathway of ajmaline in Rauvolfia, a key step in indole alkaloid biosynthesis. Sequence alignment shows that PR is the founder of the new AKR13D subfamily and is designated AKR13D1. The x-ray structure of methylated His6-PR was solved to 2.31 Å. However, the active site of PR was blocked by the connected parts of the neighbor symmetric molecule in the crystal. To break the interactions and obtain the enzyme-ligand complexes, the A213W mutant was generated. The atomic structure of His6-PR-A213W complex with NADPH was determined at 1.77 Å. Overall, PR folds in an unusual α8/β6 barrel that has not been observed in any other AKR protein to date. NADPH binds in an extended pocket, but the nicotinamide riboside moiety is disordered. Upon NADPH binding, dramatic conformational changes and movements were observed: two additional β-strands in the C terminus become ordered to form one α-helix, and a movement of up to 24 Å occurs. This conformational change creates a large space that allows the binding of substrates of variable size for PR and enhances the enzyme activity; as a result cooperative kinetics are observed as NADPH is varied. As the founding member of the new AKR13D subfamily, PR also provides a structural template and model of cofactor binding for the AKR13 family. PMID:22334702

  17. Topics in conformal field theory

    International Nuclear Information System (INIS)

    Kiritsis, E.B.

    1988-01-01

    In this work two major topics in Conformal Field Theory are discussed. First a detailed investigation of N = 2 Superconformal theories is presented. The structure of the representations of the N = 2 superconformal algebras is investigated and the character formulae are calculated. The general structure of N = 2 superconformal theories is elucidated and the operator algebra of the minimal models is derived. The first minimal system is discussed in more detail. Second, applications of the conformal techniques are studied in the Ashkin-Teller model. The c = 1 as well as the c = 1/2 critical lines are discussed in detail

  18. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    Science.gov (United States)

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  19. Conformal special relativity

    International Nuclear Information System (INIS)

    Maia, M.D.

    2006-01-01

    It is shown that the information loss/recovery theorem based on the ADS/CFT correspondence is not consistent with the stability of the Schwarzschild or Reissner-Nordstrom black holes. Nonetheless, the conformal invariance of Yang-Mills theory points to new relativity principle compatible with quantum unitarity near those black holes

  20. On conformal invariance in gauge theories. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1983-01-01

    In the present paper another nontrivial model of the conformal quantum electrodynamics is proposed. The main hypothesis is that the electromagnetic potential together with an additional zero scale, dimensional scalar field is transformed by a nonbasic and, consequently, nondecomposable representation of the conformal group. There are found nontrivial conformal covariant two-point functions and an invariant action from which equations of motion are derived. There is considered the covariant procedure of quantization and it is shown that the norm of one-particle physical states is positive definite

  1. 47 CFR 68.350 - Revocation of Supplier's Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... Conformity. 68.350 Section 68.350 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... Terminal Equipment Approval § 68.350 Revocation of Supplier's Declaration of Conformity. (a) The Commission may revoke any Supplier's Declaration of Conformity for cause in accordance with the provisions of...

  2. Conformal field theories near a boundary in general dimensions

    International Nuclear Information System (INIS)

    McAvity, D.M.

    1995-01-01

    The implications of restricted conformal invariance under conformal transformations preserving a plane boundary are discussed for general dimensions d. Calculations of the universal function of a conformal invariant ξ which appears in the two-point function of scalar operators in conformally invariant theories with a plane boundary are undertaken to first order in the ε=4-d expansion for the operator φ 2 in φ 4 theory. The form for the associated functions of ξ for the two-point functions for the basic field φ α and the auxiliary field λ in the N→∞ limit of the O(N) non-linear sigma model for any d in the range 2 α φ β and λλ. Using this method the form of the two-point function for the energy-momentum tensor in the conformal O(N) model with a plane boundary is also found. General results for the sum of the contributions of all derivative operators appearing in the operator product expansion, and also in a corresponding boundary operator expansion, to the two-point functions are also derived making essential use of conformal invariance. (orig.)

  3. Hidden symmetries of integrable conformal mechanical systems

    International Nuclear Information System (INIS)

    Hakobyan, Tigran; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen

    2010-01-01

    We split the generic conformal mechanical system into a 'radial' and an 'angular' part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4 supersymmetric 'angular' Hamiltonian system one may construct a new system with full N=4 superconformal D(1,2;α) symmetry.

  4. Isomonodromic tau-functions from Liouville conformal blocks

    International Nuclear Information System (INIS)

    Iorgov, N.; Lisovyy, O.

    2014-01-01

    The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic functions with SL(2,C)-valued monodromy on Riemann surfaces of genus zero with n punctures can be solved by taking suitable linear combinations of the conformal blocks of Liouville theory at c=1. This implies a similar representation for the isomonodromic tau-function. In the case n=4 we thereby get a proof of the relation between tau-functions and conformal blocks discovered in O. Gamayun, N. Iorgov, and O. Lisovyy (2012). We briefly discuss a possible application of our results to the study of relations between certain N=2 supersymmetric gauge theories and conformal field theory.

  5. From global to heavy-light: 5-point conformal blocks

    International Nuclear Information System (INIS)

    Alkalaev, Konstantin; Belavin, Vladimir

    2016-01-01

    We consider Virasoro conformal blocks in the large central charge limit. There are different regimes depending on the behavior of the conformal dimensions. The most simple regime is reduced to the global sl(2,ℂ) conformal blocks while the most complicated one is known as the classical conformal blocks. Recently, Fitzpatrick, Kaplan, and Walters showed that the two regimes are related through the intermediate stage of the so-called heavy-light semiclassical limit. We study this idea in the particular case of the 5-point conformal block. To find the 5-point global block we use the projector technique and the Casimir operator approach. Furthermore, we discuss the relation between the global and the heavy-light limits and construct the heavy-light block from the global block. In this way we reproduce our previous results for the 5-point perturbative classical block obtained by means of the monodromy method.

  6. Conformational flexibility of aspartame.

    Science.gov (United States)

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. © 2016 Wiley Periodicals, Inc.

  7. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  8. Crystal structures and conformers of CyMe4-BTBP

    Directory of Open Access Journals (Sweden)

    Lyczko Krzysztof

    2015-12-01

    Full Text Available The crystal structure of new conformation of the CyMe4-BTBP ligand (ttc has been presented. The ttt conformer of this compound in a form of THF solvate has been also crystallized. The geometries of six possible conformations (ttt, ttc, tct, tcc, ctc and ccc of the CyMe4-BTBP ligand have been modeled in the gas phase and in solutions (MeOH and H2O by DFT calculations using B3LYP/6-31G(d,p method. According to the calculations, in the three different media the conformers with trans orientation of the N atoms in the bipyridyl moiety are the most stable.

  9. An Efficient Null Model for Conformational Fluctuations in Proteins

    DEFF Research Database (Denmark)

    Harder, Tim Philipp; Borg, Mikael; Bottaro, Sandro

    2012-01-01

    Protein dynamics play a crucial role in function, catalytic activity, and pathogenesis. Consequently, there is great interest in computational methods that probe the conformational fluctuations of a protein. However, molecular dynamics simulations are computationally costly and therefore are often...... limited to comparatively short timescales. TYPHON is a probabilistic method to explore the conformational space of proteins under the guidance of a sophisticated probabilistic model of local structure and a given set of restraints that represent nonlocal interactions, such as hydrogen bonds or disulfide...... on conformational fluctuations that is in correspondence with experimental measurements. TYPHON provides a flexible, yet computationally efficient, method to explore possible conformational fluctuations in proteins....

  10. Hypotrochoids in conformal restriction systems and Virasoro descendants

    International Nuclear Information System (INIS)

    Doyon, Benjamin

    2013-01-01

    A conformal restriction system is a commutative, associative, unital algebra equipped with a representation of the groupoid of univalent conformal maps on connected open sets of the Riemann sphere, along with a family of linear functionals on subalgebras, satisfying a set of properties including conformal invariance and a type of restriction. This embodies some expected properties of expectation values in conformal loop ensembles CLE κ (at least for 8/3 iθ and w. We find that it has an expansion in positive powers of u and u-bar , and that the coefficients of pure u ( u-bar ) powers are holomorphic in w ( w-bar ). We identify these coefficients (the ‘hypotrochoid fields’) with certain Virasoro descendants of the identity field in conformal field theory, thereby showing that they form part of a vertex operator algebraic structure. This largely generalizes works by the author (in CLE), and the author with his collaborators Riva and Cardy (in SLE 8/3 and other restriction measures), where the case of the ellipse, at the order u 2 , led to the stress–energy tensor of CFT. The derivation uses in an essential way the Virasoro vertex operator algebra structure of conformal derivatives established recently by the author. The results suggest in particular the exact evaluation of CLE expectations of products of hypotrochoid fields as well as nontrivial relations amongst them through the vertex operator algebra, and further shed light onto the relationship between CLE and CFT. (paper)

  11. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  12. The conforming brain and deontological resolve.

    Science.gov (United States)

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  13. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  14. Structure of the cystic fibrosis transmembrane conductance regulator in the inward-facing conformation revealed by single particle electron microscopy

    Directory of Open Access Journals (Sweden)

    Ateeq Al-Zahrani

    2015-05-01

    Full Text Available The most common inherited disease in European populations is cystic fibrosis. Mutations in the gene lead to loss of function of the cystic fibrosis transmembrane conductance regulator protein (CFTR. CFTR is a member of the ATP-binding cassette family of membrane proteins that mostly act as active transporters using ATP to move substances across membranes. These proteins undergo large conformational changes during the transport cycle, consistent with an inward-facing to outward-facing translocation mechanism that was originally proposed by Jardetzky. CFTR is the only member of this family of proteins that functions as an ion channel, and in this case ATP and phosphorylation of a regulatory domain controls the opening of the channel. In this article we describe the inward-facing conformation of the protein and show it can be modulated by the presence of a purified recombinant NHERF1-PDZ1 domain that binds with high affinity to the CFTR C-terminal PDZ motif (-QDTRL. ATP hydrolysis activity of CFTR can also be modulated by glutathione, which we postulate may bind to the inward-facing conformation of the protein. A homology model for CFTR, based on a mitochondrial ABC transporter of glutathione in the inward-facing configuration has been generated. The map and the model are discussed with respect to the biology of the channel and the specific relationship between glutathione levels in the cell and CFTR. Finally, disease-causing mutations are mapped within the model and discussed in terms of their likely physiological effects.

  15. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation.

    Directory of Open Access Journals (Sweden)

    Matteo eLambrughi

    2012-11-01

    Full Text Available Cyclin-dependent kinase inhibitors (CKIs are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs, which lack a well-defined and organized three-dimensional structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs and collapsed conformations. These structural features can be relevant to protein function in vivo.The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models of the compact conformations of the Sic1 kinase-inhibitory domain (KID by all-atom molecular-dynamics simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of hub residues and electrostatic interactions which are likely to be involved in the stabilization of globular states.

  16. Conformity to Peer Pressure in Preschool Children

    Science.gov (United States)

    Haun, Daniel B. M.; Tomasello, Michael

    2011-01-01

    Both adults and adolescents often conform their behavior and opinions to peer groups, even when they themselves know better. The current study investigated this phenomenon in 24 groups of 4 children between 4;2 and 4;9 years of age. Children often made their judgments conform to those of 3 peers, who had made obviously erroneous but unanimous…

  17. Conformal deformation of Riemann space and torsion

    International Nuclear Information System (INIS)

    Pyzh, V.M.

    1981-01-01

    Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru

  18. A viewpoint on nearly conformally symmetric manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1990-06-01

    Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs

  19. Study of polymer molecules and conformations with a nanopore

    Science.gov (United States)

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  20. Conformal higher spin scattering amplitudes from twistor space

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim [Blackett Laboratory, Imperial College, London, SW7 2AZ (United Kingdom); Hähnel, Philipp; McLoughlin, Tristan [School of Mathematics, Trinity College Dublin, College Green, Dublin 2 (Ireland)

    2017-04-04

    We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point (MHV)-bar amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.

  1. ANCA: Anharmonic Conformational Analysis of Biomolecular Simulations.

    Science.gov (United States)

    Parvatikar, Akash; Vacaliuc, Gabriel S; Ramanathan, Arvind; Chennubhotla, S Chakra

    2018-05-08

    Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Conformal higher spin scattering amplitudes from twistor space

    International Nuclear Information System (INIS)

    Adamo, Tim; Hähnel, Philipp; McLoughlin, Tristan

    2017-01-01

    We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point (MHV)-bar amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.

  3. 40 CFR 89.126 - Denial, revocation of certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... conformity. 89.126 Section 89.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Standards and Certification Provisions § 89.126 Denial, revocation of certificate of conformity. (a) If... issued certificate of conformity if the Administrator finds any one of the following infractions to be...

  4. 40 CFR 1033.205 - Applying for a certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... conformity. 1033.205 Section 1033.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Applying for a certificate of conformity. (a) Send the Designated Compliance Officer a complete application for each engine family for which you are requesting a certificate of conformity. (b) [Reserved] (c...

  5. 40 CFR 90.123 - Denial, revocation of certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... conformity. 90.123 Section 90.123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Standards and Certification Provisions § 90.123 Denial, revocation of certificate of conformity... conformity if the Administrator finds any one of the following infractions to be substantial: (1) The engine...

  6. Rigid supersymmetry from conformal supergravity in five dimensions

    International Nuclear Information System (INIS)

    Pini, Alessandro; Rodriguez-Gomez, Diego; Schmude, Johannes

    2015-01-01

    We study the rigid limit of 5d conformal supergravity with minimal supersymmetry on Riemannian manifolds. The necessary and sufficient condition for the existence of a solution is the existence of a conformal Killing vector. Whenever a certain SU(2) curvature becomes abelian the backgrounds define a transversally holomorphic foliation. Subsequently we turn to the question under which circumstances these backgrounds admit a kinetic Yang-Mills term in the action of a vector multiplet. Here we find that the conformal Killing vector has to be Killing. We supplement the discussion with various appendices.

  7. Diagonal Limit for Conformal Blocks in d Dimensions

    CERN Document Server

    Hogervorst, Matthijs; Rychkov, Slava

    2013-01-01

    Conformal blocks in any number of dimensions depend on two variables z, zbar. Here we study their restrictions to the special "diagonal" kinematics z = zbar, previously found useful as a starting point for the conformal bootstrap analysis. We show that conformal blocks on the diagonal satisfy ordinary differential equations, third-order for spin zero and fourth-order for the general case. These ODEs determine the blocks uniquely and lead to an efficient numerical evaluation algorithm. For equal external operator dimensions, we find closed-form solutions in terms of finite sums of 3F2 functions.

  8. Explicit mentalizing mechanisms and their adaptive role in memory conformity.

    Science.gov (United States)

    Wheeler, Rebecca; Allan, Kevin; Tsivilis, Dimitris; Martin, Douglas; Gabbert, Fiona

    2013-01-01

    Memory conformity occurs when an individual endorses what other individuals remember about past events. Research on memory conformity is currently dominated by a 'forensic' perspective, which views the phenomenon as inherently undesirable. This is because conformity not only distorts the accuracy of an individual's memory, but also produces false corroboration between individuals, effects that act to undermine criminal justice systems. There is growing awareness, however, that memory conformity may be interpreted more generally as an adaptive social behavior regulated by explicit mentalizing mechanisms. Here, we provide novel evidence in support of this emerging alternative theoretical perspective. We carried out a memory conformity experiment which revealed that explicit belief-simulation (i.e. using one's own beliefs to model what other people believe) systematically biases conformity towards like-minded individuals, even when there is no objective evidence that they have a more accurate memory than dissimilar individuals. We suggest that this bias is functional, i.e. adaptive, to the extent that it fosters trust, and hence cooperation, between in-group versus out-group individuals. We conclude that memory conformity is, in more fundamental terms, a highly desirable product of explicit mentalizing mechanisms that promote adaptive forms of social learning and cooperation.

  9. Conformational elasticity can facilitate TALE-DNA recognition.

    Science.gov (United States)

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong

    2014-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.

  10. A national survey of supportive practices for patients undergoing radiotherapy for oral cancers

    International Nuclear Information System (INIS)

    Osborn, Joanne; Doolan, Caroline

    2013-01-01

    Purpose: Xerostomia and mucositis are two of the main radiation induced toxicities experienced by patients undergoing radiotherapy to the oral cavity. These toxicities can lead to significant weight loss with the potential to cause complications with radiotherapy treatment. Literature has shown that nutritional intervention can help to minimise these side effects. The aim of the survey was to explore current practice across the UK in nutritional intervention for these patients. Method: Postal questionnaires were sent to all 63 radiotherapy departments in the UK in November 2009. Results: 29 responses (43%) were received. 90% (n = 26) of the departments used 3D-Conformal radiotherapy (3D-CRT) as the main technique for treatment of these patients, with 48% (n = 14) of departments having implemented Intensity modulated radiotherapy (IMRT). All departments referred their patients to a dietician. 93% (n = 27) of departments placed percutaneous endoscopic gastrostomy or radiologically-inserted gastrostomy tubes. 55% (n = 16) departments administered nasogastric tubes. Conclusion: This survey verified many common practices regarding dietary care and advice, some variation was evident in the use of feeding tubes. All responding centres referred patients to a dietician with the aim to maintain nutritional status and prevent weight loss that could contribute to uncertainty in treatment setup. This survey also demonstrated that since Macknelly and Day's (2009) study, a greater number of centres have implemented IMRT for patients undergoing radiotherapy to the head and neck. Although IMRT has been shown to reduce xerostomia, this audit found no changes in the dietary care and advice given to these patients

  11. 40 CFR 52.2237 - NOX RACT and NOX conformity exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false NOX RACT and NOX conformity exemption... RACT and NOX conformity exemption. Approval. EPA is approving the section 182(f) oxides of nitrogen (NOX) reasonably available control technology (RACT) and NOX conformity exemption request submitted by...

  12. Electrophysiological precursors of social conformity

    Science.gov (United States)

    Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-01-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment. PMID:22683703

  13. Astrophysical Tests of Kinematical Conformal Cosmology in Fourth-Order Conformal Weyl Gravity

    Directory of Open Access Journals (Sweden)

    Gabriele U. Varieschi

    2014-12-01

    Full Text Available In this work we analyze kinematical conformal cosmology (KCC, an alternative cosmological model based on conformal Weyl gravity (CG, and test it against current type Ia supernova (SNIa luminosity data and other astrophysical observations. Expanding upon previous work on the subject, we revise the analysis of SNIa data, confirming that KCC can explain the evidence for an accelerating expansion of the Universe without using dark energy or other exotic components. We obtain an independent evaluation of the Hubble constant, H0 = 67:53 kms-1 Mpc-1, very close to the current best estimates. The main KCC and CG parameters are re-evaluated and their revised values are found to be close to previous estimates. We also show that available data for the Hubble parameter as a function of redshift can be fitted using KCC and that this model does not suffer from any apparent age problem. Overall,

  14. Geometric decomposition of the conformation tensor in viscoelastic turbulence

    Science.gov (United States)

    Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.

    2018-05-01

    This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.

  15. From spinning conformal blocks to matrix Calogero-Sutherland models

    Science.gov (United States)

    Schomerus, Volker; Sobko, Evgeny

    2018-04-01

    In this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of [1] is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schrödinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.

  16. Very special conformal field theories and their holographic duals

    Science.gov (United States)

    Nakayama, Yu

    2018-03-01

    Cohen and Glashow introduced the notion of very special relativity as viable space-time symmetry of elementary particle physics. As a natural generalization of their idea, we study the subgroup of the conformal group, dubbed very special conformal symmetry, which is an extension of the very special relativity. We classify all of them and construct field theory examples as well as holographic realization of the very special conformal field theories.

  17. Theories of inflation and conformal transformations

    International Nuclear Information System (INIS)

    Kalara, S.; Kaloper, N.; Olive, K.A.

    1990-01-01

    We show that several different theories of inflation including R 2 , Brans-Dicke, and induced-gravity inflation are all related to generalized or power-law inflation by means of conformal transformations. These theories all involve non-standard gravity, and the use of conformal transformations allows one to obtain standard inflationary predictions such as the expansion time-scale, reheating and density perturbations in each case very simply. We also discuss the possibilities of this method to be applied to string theory. (orig.)

  18. A Framework for Online Conformance Checking

    DEFF Research Database (Denmark)

    Burattin, Andrea; Carmona, Josep

    2017-01-01

    is quantified after the completion of the process instance. In this paper we propose a framework for online conformance checking: not only do we quantify (non-)conformant behavior as the execution is running, we also restrict the computation to constant time complexity per event analyzed, thus enabling...... the online analysis of a stream of events. The framework is instantiated with ideas coming from the theory of regions, and state similarity. An implementation is available in ProM and promising results have been obtained....

  19. 40 CFR 91.123 - Denial, revocation of certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... conformity. 91.123 Section 91.123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Certification Provisions § 91.123 Denial, revocation of certificate of conformity. (a) If, after review of the... conformity if the Administrator finds any one of the following infractions to be substantial: (1) The engine...

  20. Conformational plasticity of the Ebola virus matrix protein.

    Science.gov (United States)

    Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried

    2014-11-01

    Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.

  1. Rényi entropy and conformal defects

    International Nuclear Information System (INIS)

    Bianchi, Lorenzo; Meineri, Marco; Myers, Robert C.; Smolkin, Michael

    2016-01-01

    We propose a field theoretic framework for calculating the dependence of Rényi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Rényi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Rényi entropy arising from small deformations of a spherical entangling surface, extending Mezei’s results for the entanglement entropy.

  2. Coadjoint orbits and conformal field theory

    International Nuclear Information System (INIS)

    Taylor, W. IV.

    1993-08-01

    This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription

  3. Rényi entropy and conformal defects

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lorenzo [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Meineri, Marco [Scuola Normale Superiore and Istituto Nazionale di Fisica Nucleare - Sezione di Pisa,Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Smolkin, Michael [Center for Theoretical Physics, Department of Physics, University of California,Berkeley, CA 94720 (United States)

    2016-07-14

    We propose a field theoretic framework for calculating the dependence of Rényi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Rényi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Rényi entropy arising from small deformations of a spherical entangling surface, extending Mezei’s results for the entanglement entropy.

  4. Causality Constraints in Conformal Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...

  5. Causality constraints in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  6. Investigating the conformational stability of prion strains through a kinetic replication model.

    Directory of Open Access Journals (Sweden)

    Mattia Zampieri

    2009-07-01

    Full Text Available Prion proteins are known to misfold into a range of different aggregated forms, showing different phenotypic and pathological states. Understanding strain specificities is an important problem in the field of prion disease. Little is known about which PrP(Sc structural properties and molecular mechanisms determine prion replication, disease progression and strain phenotype. The aim of this work is to investigate, through a mathematical model, how the structural stability of different aggregated forms can influence the kinetics of prion replication. The model-based results suggest that prion strains with different conformational stability undergoing in vivo replication are characterizable in primis by means of different rates of breakage. A further role seems to be played by the aggregation rate (i.e. the rate at which a prion fibril grows. The kinetic variability introduced in the model by these two parameters allows us to reproduce the different characteristic features of the various strains (e.g., fibrils' mean length and is coherent with all experimental observations concerning strain-specific behavior.

  7. Relational motivation for conformal operator ordering in quantum cosmology

    International Nuclear Information System (INIS)

    Anderson, Edward

    2010-01-01

    Operator ordering in quantum cosmology is a major as-yet unsettled ambiguity with not only formal but also physical consequences. We determine the Lagrangian origin of the conformal invariance that underlies the conformal operator-ordering choice in quantum cosmology. This arises particularly naturally and simply from relationalist product-type actions (such as the Jacobi action for mechanics or Baierlein-Sharp-Wheeler-type actions for general relativity), for which all that is required is for the kinetic and potential factors to rescale in compensation to each other. These actions themselves mathematically sharply implement philosophical principles relevant to whole-universe modelling, so that the motivation for conformal operator ordering in quantum cosmology is thereby substantially strengthened. Relationalist product-type actions also give emergent times which amount to recovering Newtonian, proper and cosmic time in various contexts. The conformal scaling of these actions directly tells us how emergent time scales; if one follows suit with the Newtonian time or the lapse in the more commonly used difference-type Euler-Lagrange or Arnowitt-Deser-Misner-type actions, one sees how these too obey a more complicated conformal invariance. Moreover, our discovery of the conformal scaling of the emergent time permits relating how this simplifies equations of motion with how affine parametrization simplifies geodesics.

  8. Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods

    Science.gov (United States)

    Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.

    1997-08-01

    We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.

  9. Nanomechanics of the substrate binding domain of Hsp70 determine its allosteric ATP-induced conformational change.

    Science.gov (United States)

    Mandal, Soumit Sankar; Merz, Dale R; Buchsteiner, Maximilian; Dima, Ruxandra I; Rief, Matthias; Žoldák, Gabriel

    2017-06-06

    Owing to the cooperativity of protein structures, it is often almost impossible to identify independent subunits, flexible regions, or hinges simply by visual inspection of static snapshots. Here, we use single-molecule force experiments and simulations to apply tension across the substrate binding domain (SBD) of heat shock protein 70 (Hsp70) to pinpoint mechanical units and flexible hinges. The SBD consists of two nanomechanical units matching 3D structural parts, called the α- and β-subdomain. We identified a flexible region within the rigid β-subdomain that gives way under load, thus opening up the α/β interface. In exactly this region, structural changes occur in the ATP-induced opening of Hsp70 to allow substrate exchange. Our results show that the SBD's ability to undergo large conformational changes is already encoded by passive mechanics of the individual elements.

  10. Preschoolers' conformity (and its motivation) is linked to own and parents' personalities.

    Science.gov (United States)

    Hellmer, Kahl; Stenberg, Gunilla; Fawcett, Christine

    2018-03-31

    Previous studies on conformity have primarily focused on factors that moderate conformity rates overall and paid little attention to explaining the individual differences. In this study, we investigate five-factor model personality traits of both parents and children and experimentally elicited conformity in 3.5-year-olds (N = 59) using an Asch-like paradigm with which we measure both overt conformity (public responses) and covert opinions (private beliefs after conformist responses): A correct covert opinion after an incorrect conformist response results from a socially normative motivation, whereas an incorrect covert opinion results from an informational motivation. Our data show (1) low parental extroversion is associated with participants' overall rate of conformity, (2) and low participant extroversion and high openness are associated with an informational instead of a normative motivation to conform. This suggests that sensitivity to the social context or social engagement level, as manifested through extroversion, could be an important factor in conformist behaviour. Statement of contribution What is already known on this subject? We all conform, from early in life - and even when we should know better We can conform for normative and informational motivations Some are more prone to conform than others What does this study add? This is the first study to take an individual differences approach to developmental conformity Social engagement (extroversion) is an important factor in conformity. © 2018 The British Psychological Society.

  11. Popularity, likeability, and peer conformity: Four field experiments

    NARCIS (Netherlands)

    Gommans, R.; Sandstrom, M.J.; Stevens, G.W.J.M.; Bogt, T.F.M. ter; Cillessen, A.H.N.

    2017-01-01

    Adolescents tend to alter their attitudes and behaviors to match those of others; a peer influence process named peer conformity. This study investigated to what extent peer conformity depended on the status (popularity and likeability) of the influencer and the influencee. The study consisted of

  12. Conformal array design on arbitrary polygon surface with transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng; Peng, Biao; Li, Shufang [Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China); Wu, Yongle, E-mail: wuyongle138@gmail.com [Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China)

    2016-06-15

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  13. Conformal array design on arbitrary polygon surface with transformation optics

    International Nuclear Information System (INIS)

    Deng, Li; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang; Wu, Yongle

    2016-01-01

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  14. Parafermionic conformal field theory

    International Nuclear Information System (INIS)

    Kurak, V.

    1989-09-01

    Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt

  15. Prescribed curvature tensor in locally conformally flat manifolds

    Science.gov (United States)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  16. Dual conformal transformations of smooth holographic Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Dekel, Amit [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2017-01-19

    We study dual conformal transformations of minimal area surfaces in AdS{sub 5}×S{sup 5} corresponding to holographic smooth Wilson loops and some other related observables. To act with dual conformal transformations we map the string solutions to the dual space by means of T-duality, then we apply a conformal transformation and finally T-dualize back to the original space. The transformation maps between string solutions with different boundary contours. The boundary contours of the minimal surfaces are not mapped back to the AdS boundary, and the regularized area of the surface changes.

  17. MUFASA: the strength and evolution of galaxy conformity in various tracers

    Science.gov (United States)

    Rafieferantsoa, Mika; Davé, Romeel

    2018-03-01

    We investigate galaxy conformity using the MUFASA cosmological hydrodynamical simulation. We show a bimodal distribution in galaxy colour with radius, albeit with too many low-mass quenched satellite galaxies compared to observations. MUFASA produces conformity in observed properties such as colour, specific star formation rate (sSFR), and H I content, i.e. neighbouring galaxies have similar properties. We see analogous trends in other properties such as in environment, stellar age, H2 content, and metallicity. We introduce quantifying conformity using S(R), measuring the relative difference in upper and lower quartile properties of the neighbours. We show that low-mass and non-quenched haloes have weak conformity (S(R)≲ 0.5) extending to large projected radii R in all properties, while high-mass and quenched haloes have strong conformity (S(R)˜ 1) that diminishes rapidly with R and disappears at R ≳ 1 Mpc. S(R) is strongest for environment in low-mass haloes, and sSFR (or colour) in high-mass haloes, and is dominated by one-halo conformity with the exception of H I in small haloes. Metallicity shows a curious anticonformity in massive haloes. Tracking the evolution of conformity for z = 0 galaxies back in time shows that conformity broadly emerges as a late-time (z ≲ 1) phenomenon. However, for fixed halo mass bins, conformity is fairly constant with redshift out to z ≳ 2. These trends are consistent with the idea that strong conformity only emerges once haloes grow above MUFASA's quenching mass scale of ˜1012 M⊙. A quantitative measure of conformity in various properties, along with its evolution, thus represents a new and stringent test of the impact of quenching on environment within current galaxy formation models.

  18. Improvements to robotics-inspired conformational sampling in rosetta.

    Directory of Open Access Journals (Sweden)

    Amelie Stein

    Full Text Available To accurately predict protein conformations in atomic detail, a computational method must be capable of sampling models sufficiently close to the native structure. All-atom sampling is difficult because of the vast number of possible conformations and extremely rugged energy landscapes. Here, we test three sampling strategies to address these difficulties: conformational diversification, intensification of torsion and omega-angle sampling and parameter annealing. We evaluate these strategies in the context of the robotics-based kinematic closure (KIC method for local conformational sampling in Rosetta on an established benchmark set of 45 12-residue protein segments without regular secondary structure. We quantify performance as the fraction of sub-Angstrom models generated. While improvements with individual strategies are only modest, the combination of intensification and annealing strategies into a new "next-generation KIC" method yields a four-fold increase over standard KIC in the median percentage of sub-Angstrom models across the dataset. Such improvements enable progress on more difficult problems, as demonstrated on longer segments, several of which could not be accurately remodeled with previous methods. Given its improved sampling capability, next-generation KIC should allow advances in other applications such as local conformational remodeling of multiple segments simultaneously, flexible backbone sequence design, and development of more accurate energy functions.

  19. Explicit mentalizing mechanisms and their adaptive role in memory conformity.

    Directory of Open Access Journals (Sweden)

    Rebecca Wheeler

    Full Text Available Memory conformity occurs when an individual endorses what other individuals remember about past events. Research on memory conformity is currently dominated by a 'forensic' perspective, which views the phenomenon as inherently undesirable. This is because conformity not only distorts the accuracy of an individual's memory, but also produces false corroboration between individuals, effects that act to undermine criminal justice systems. There is growing awareness, however, that memory conformity may be interpreted more generally as an adaptive social behavior regulated by explicit mentalizing mechanisms. Here, we provide novel evidence in support of this emerging alternative theoretical perspective. We carried out a memory conformity experiment which revealed that explicit belief-simulation (i.e. using one's own beliefs to model what other people believe systematically biases conformity towards like-minded individuals, even when there is no objective evidence that they have a more accurate memory than dissimilar individuals. We suggest that this bias is functional, i.e. adaptive, to the extent that it fosters trust, and hence cooperation, between in-group versus out-group individuals. We conclude that memory conformity is, in more fundamental terms, a highly desirable product of explicit mentalizing mechanisms that promote adaptive forms of social learning and cooperation.

  20. Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de; Figueroa-O’Farrill, José [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2016-03-14

    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.

  1. A combined variable temperature 600 MHz NMR/MD study of the calcium release agent cyclic adenosine diphosphate ribose (cADPR): Structure, conformational analysis, and thermodynamics of the conformational equilibria.

    Science.gov (United States)

    Javornik, Uroš; Plavec, Janez; Wang, Baifan; Graham, Steven M

    2018-01-02

    A combined variable temperature 600 MHz NMR/molecular dynamics study of the Ca 2+ -release agent cyclic adenosine 5'-diphosphate ribose (cADPR) was conducted. In addition to elucidating the major and minor orientations of the conformationally flexible furanose rings, γ- (C4'-C5'), and β- (C5'-O5') bonds, the thermodynamics (ΔH o , ΔS o ) associated with each of these conformational equilibria were determined. Both furanose rings were biased towards a south conformation (64-74%) and both β-bonds heavily favored trans conformations. The R-ring γ-bond was found to exist almost exclusively as the γ + conformer, whereas the A-ring γ-bond was a mixture of the γ + and γ t conformers, with the trans conformer being slightly favored. Enthalpic factors accounted for most of the observed conformational preferences, although the R-ring furanose exists as its major conformation based solely on entropic factors. There was excellent agreement between the NMR and MD results, particularly with regard to the conformer identities, but the MD showed a bias towards γ + conformers. The MD results showed that both N-glycosidic χ-bonds are exclusively syn. Collectively the data allowed for the construction of a model for cADPR in which many of the conformationally flexible units in fact effectively adopt single orientations and where most of the conformational diversity resides in its A-ring furanose and γ-bond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 94: Treatment plan optimization for conformal therapy

    International Nuclear Information System (INIS)

    Rosen, I.I.; Lane, R.G.

    1987-01-01

    Computer-controlled conformal radiation therapy techniques can deliver complex treatments utilizing large numbers of beams, gantry angles and beam shapes. Linear programming is well-suited for planning conformal treatments. Given a list of available treatment beams, linear programming calculates the relative weights of the beams such that the objective function is optimized and doses to constraint points are within the prescribed limits. 5 refs.; 3 figs

  3. Preference of small molecules for local minimum conformations when binding to proteins.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2007-09-01

    Full Text Available It is well known that small molecules (ligands do not necessarily adopt their lowest potential energy conformations when binding to proteins. Analyses of protein-bound ligand crystal structures have reportedly shown that many of them do not even adopt the conformations at local minima of their potential energy surfaces (local minimum conformations. The results of these analyses raise a concern regarding the validity of virtual screening methods that use ligands in local minimum conformations. Here we report a normal-mode-analysis (NMA study of 100 crystal structures of protein-bound ligands. Our data show that the energy minimization of a ligand alone does not automatically stop at a local minimum conformation if the minimum of the potential energy surface is shallow, thus leading to the folding of the ligand. Furthermore, our data show that all 100 ligand conformations in their protein-bound ligand crystal structures are nearly identical to their local minimum conformations obtained from NMA-monitored energy minimization, suggesting that ligands prefer to adopt local minimum conformations when binding to proteins. These results both support virtual screening methods that use ligands in local minimum conformations and caution about possible adverse effect of excessive energy minimization when generating a database of ligand conformations for virtual screening.

  4. Twelve massless flavors and three colors below the conformal window

    International Nuclear Information System (INIS)

    Fodor, Zoltan; Holland, Kieran; Kuti, Julius; Nogradi, Daniel; Schroeder, Chris

    2011-01-01

    We report new results for a frequently discussed gauge theory with twelve fermion flavors in the fundamental representation of the SU(3) color gauge group. The model, controversial with respect to its conformality, is important in non-perturbative studies searching for a viable composite Higgs mechanism beyond the Standard Model (BSM). In comparison with earlier work, our new simulations apply larger volumes and probe deeper in fermion and pion masses toward the chiral limit. Investigating the controversy, we subject the model to opposite hypotheses with respect to the conformal window. In the first hypothesis, below the conformal window, we test chiral symmetry breaking (χSB) with its Goldstone spectrum, F π , the χSB condensate, and several composite hadron states as analytic functions of the fermion mass when varied in a limited range with our best effort to control finite volume effects. In the second test, for the alternate hypothesis inside the conformal window, we probe conformal behavior driven by a single anomalous mass dimension under the assumption of unbroken chiral symmetry at vanishing fermion mass. Our results at fixed gauge coupling, based on the assumptions of the two hypotheses we define, show low level of confidence in the conformal scenario with leading order scaling analysis. Relaxing the important assumption of leading mass-deformed conformality with its conformal finite size scaling would require added theoretical understanding of the scaling violation terms in the conformal analysis and a comprehensive test of its effects on the confidence level of the fits. Results for the running coupling, based on the force between static sources, and preliminary indications for the finite temperature transition are also presented. Staggered lattice fermions with stout-suppressed taste breaking are used throughout the simulations.

  5. Integrability of conformal fishnet theory

    Science.gov (United States)

    Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory; Negro, Stefano; Sizov, Grigory

    2018-01-01

    We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer matrix "building" the fishnet graphs emerges from the R-matrix of non-compact conformal SU(2 , 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q-functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr( ϕ 1 J ) where ϕ 1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2 , 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.

  6. Conformation of poly(γ-glutamic acid) in aqueous solution.

    Science.gov (United States)

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε acidic media. © 2015 Wiley Periodicals, Inc.

  7. From integrability to conformal symmetry: Bosonic superconformal Toda theories

    International Nuclear Information System (INIS)

    Bo-Yu Hou; Liu Chao

    1993-01-01

    In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result shows that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability

  8. Conformal Invariance, Dark Energy, and CMB Non-Gaussianity

    CERN Document Server

    Antoniadis, Ignatios; Mottola, Emil

    2012-01-01

    We show that in addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R^3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S^2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the sym...

  9. 40 CFR 86.1114-87 - Suspension and voiding of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... of conformity. 86.1114-87 Section 86.1114-87 Protection of Environment ENVIRONMENTAL PROTECTION... conformity. (a) The certificate of conformity is suspended with respect to any engine or vehicle failing... certificate of conformity if the manufacturer, after electing to conduct a PCA, fails to adhere to the...

  10. pp waves of conformal gravity with self-interacting source

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaine, Mokhtar

    2005-01-01

    Recently, Deser, Jackiw and Pi have shown that three-dimensional conformal gravity with a source given by a conformally coupled scalar field admits pp wave solutions. In this paper, we consider this model with a self-interacting potential preserving the conformal structure. A pp wave geometry is also supported by this system and, we show that this model is equivalent to topologically massive gravity with a cosmological constant whose value is given in terms of the potential strength

  11. Boundary states in c=-2 logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Bredthauer, Andreas; Flohr, Michael

    2002-01-01

    Starting from first principles, a constructive method is presented to obtain boundary states in conformal field theory. It is demonstrated that this method is well suited to compute the boundary states of logarithmic conformal field theories. By studying the logarithmic conformal field theory with central charge c=-2 in detail, we show that our method leads to consistent results. In particular, it allows to define boundary states corresponding to both, indecomposable representations as well as their irreducible subrepresentations

  12. Asymptotic mass degeneracies in conformal field theories

    International Nuclear Information System (INIS)

    Kani, I.; Vafa, C.

    1990-01-01

    By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)

  13. Conformal invariance from nonconformal gravity

    International Nuclear Information System (INIS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2009-01-01

    We discuss the conditions under which classically conformally invariant models in four dimensions can arise out of nonconformal (Einstein) gravity. As an 'existence proof' that this is indeed possible we show how to derive N=4 super Yang-Mills theory with any compact gauge group G from nonconformal gauged N=4 supergravity as a special flat space limit. We stress the role that the anticipated UV finiteness of the (so far unknown) underlying theory of quantum gravity would have to play in such a scheme, as well as the fact that the masses of elementary particles would have to arise via quantum gravitational effects which mimic the conformal anomalies of standard (flat space) UV divergent quantum field theory.

  14. 75 FR 49435 - Transportation Conformity Rule Restructuring Amendments

    Science.gov (United States)

    2010-08-13

    ... hours of operation, and special arrangements should be made for deliveries of boxed information... the need to update the rule each time a NAAQS is promulgated. The same hierarchy of conformity tests... hierarchy of regional conformity tests described below in B. of this section. Therefore, there is redundancy...

  15. Twistor space, Minkowski space and the conformal group

    NARCIS (Netherlands)

    van den Broek, P.M.

    1983-01-01

    It is shown that the conformal group of compactified Minkowski space is isomorphic to a group of rays of semilinear transformations of twistor space. The action of the conformal group on twistor space is given by an explicit realisation of this isomorphism. In this way we determine the

  16. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    in second-line treatment of non-small cell lung cancer ... receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell ... were divided into two groups: 106 patients were treated with conformal ... Conformal radiotherapy, Targeted therapy, Survival rate .... regression model was used for survival.

  17. Broadband illusion optical devices based on conformal mappings

    Science.gov (United States)

    Xiong, Zhan; Xu, Lin; Xu, Ya-Dong; Chen, Huan-Yang

    2017-10-01

    In this paper, we propose a simple method of illusion optics based on conformal mappings. By carefully developing designs with specific conformal mappings, one can make an object look like another with a significantly different shape. In addition, the illusion optical devices can work in a broadband of frequencies.

  18. 40 CFR 59.621 - Who may apply for a certificate of conformity?

    Science.gov (United States)

    2010-07-01

    ... conformity? 59.621 Section 59.621 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Families § 59.621 Who may apply for a certificate of conformity? A certificate of conformity may be issued... certificate of conformity. However, in order to hold the certificate, the manufacturer must demonstrate day-to...

  19. 40 CFR 1042.201 - General requirements for obtaining a certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 1042.201 Section 1042.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of conformity. (a) You must send us a separate application for a certificate of conformity for each engine family. A certificate of conformity is valid starting with the indicated effective date, but it is...

  20. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation.

    Science.gov (United States)

    Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang

    2009-03-31

    Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of

  1. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms

  2. Nilpotent weights in conformal field theory

    Directory of Open Access Journals (Sweden)

    S. Rouhani

    2001-12-01

    Full Text Available   Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.

  3. Taming the conformal zoo

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    All known rational conformal field theories may be obtained from (2+1)-dimensional Chern-Simons gauge theories by appropriate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+1)-dimensional Chern-Simons gauge theories. (orig.)

  4. Field theories on conformally related space-times: Some global considerations

    International Nuclear Information System (INIS)

    Candelas, P.; Dowker, J.S.

    1979-01-01

    The nature of the vacua appearing in the relation between the vacuum expectation value of stress tensors in conformally flat spaces is clarified. The simple but essential point is that the relevant spaces should have conformally related global Cauchy surfaces. Some commonly occurring conformally flat space-times are divided into two families according to whether they are conformally equivalent to Minkowski space or to the Rindler wedge. Expressions, some new, are obtained for the vacuum expectation value of the stress tensor for a number of illustrative cases. It is noted that thermalization relates the Green's functions of these two families

  5. Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity

    Science.gov (United States)

    Veraguth, Olivier J.; Wang, Charles H.-T.

    2017-10-01

    Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.

  6. Conformational composition of neutral leucine. Matrix isolation infrared and ab initio study

    International Nuclear Information System (INIS)

    Stepanian, Stepan G.; Ivanov, Alexander Yu.; Adamowicz, Ludwik

    2013-01-01

    Highlights: • FTIR spectra of leucine isolated in argon, neon and xenon matrices are obtained. • UV irradiation is used to separate bands of the leucine conformers. • Populations of the leucine conformers is determined. - Abstract: Low-temperature matrix-isolation FTIR spectroscopy and ab initio calculations are employed to determine conformational composition of neutral leucine. The presence of three leucine conformers in the matrices is revealed. This is in agreement with the results of a detailed study of the potential energy surface of leucine which demonstrates that only five out of 105 possible conformers should have populations in the matrices larger than 2% and only three conformers, which are the ones detected in the experiment, should have populations larger than 10%. UV irradiation of the matrix samples are used to separate bands of the different conformers. We also show that the populations of the leucine conformers in the gas phase at 440 K are significantly different from the ones in matrices. The population of the lowest energy conformer in the gas phase being approximately 23% in the gas phase increases to over 64% in matrices

  7. Anomalies, conformal manifolds, and spheres

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  8. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...

  9. Fast, clash-free RNA conformational morphing using molecular junctions.

    Science.gov (United States)

    Héliou, Amélie; Budday, Dominik; Fonseca, Rasmus; van den Bedem, Henry

    2017-07-15

    Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. Despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groups of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation. The source code, binaries and data are available at https://simtk.org/home/kgs . amelie.heliou@polytechnique.edu or vdbedem@stanford.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Testing conformal mapping with kitchen aluminum foil

    OpenAIRE

    Haas, S.; Cooke, D. A.; Crivelli, P.

    2016-01-01

    We report an experimental verification of conformal mapping with kitchen aluminum foil. This experiment can be reproduced in any laboratory by undergraduate students and it is therefore an ideal experiment to introduce the concept of conformal mapping. The original problem was the distribution of the electric potential in a very long plate. The correct theoretical prediction was recently derived by A. Czarnecki (Can. J. Phys. 92, 1297 (2014)).

  11. Conformal operator product expansion in the Yukawa model

    International Nuclear Information System (INIS)

    Prati, M.C.

    1983-01-01

    Conformal techniques are applied to the Yukawa model, as an example of a theory with spinor fields. It is written the partial-wave analysis of the 4-point function of two scalars and two spinors in the channel phi psi → phi psi in terms of spinor tensor representations of the conformal group. Using this conformal expansion, it is diagonalized the Bethe-Salpeter equation, which is reduced to algebraic relations among the partial waves. It is shown that in the γ 5 -invariant model, but not in the general case, it is possible to derive dynamically from the expansions of the 4-point function the vacuum operator product phi psi>

  12. Difference between standard and quasi-conformal BFKL kernels

    International Nuclear Information System (INIS)

    Fadin, V.S.; Fiore, R.; Papa, A.

    2012-01-01

    As it was recently shown, the colour singlet BFKL kernel, taken in Möbius representation in the space of impact parameters, can be written in quasi-conformal shape, which is unbelievably simple compared with the conventional form of the BFKL kernel in momentum space. It was also proved that the total kernel is completely defined by its Möbius representation. In this paper we calculated the difference between standard and quasi-conformal BFKL kernels in momentum space and discovered that it is rather simple. Therefore we come to the conclusion that the simplicity of the quasi-conformal kernel is caused mainly by using the impact parameter space.

  13. Conformal field theory between supersymmetry and indecomposable structures

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, H.

    2006-07-15

    This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z{sub 2} and Z{sub 4} orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z{sub 2} and Z{sub 4} orbifold model as well as the Gepner model (2){sup 4}. We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c{sub p,q} minimal models which generalise the well-known (augmented) c{sub p,1} model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c{sub p,q} models, the augmented c{sub 2,3}=0 model as well as the augmented Yang-Lee model at c{sub 2,5}=-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic

  14. Conformal field theory between supersymmetry and indecomposable structures

    International Nuclear Information System (INIS)

    Eberle, H.

    2006-07-01

    This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z 2 and Z 4 orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z 2 and Z 4 orbifold model as well as the Gepner model (2) 4 . We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c p,q minimal models which generalise the well-known (augmented) c p,1 model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c p,q models, the augmented c 2,3 =0 model as well as the augmented Yang-Lee model at c 2,5 =-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic examples to give the representation content and

  15. On the conformal transformations in the massless Thirring model

    International Nuclear Information System (INIS)

    Hadjiivanov, L.K.; Mikhov, S.G.; Stoyanov, D.T.

    1977-01-01

    On the basis of solutions for the massless scalar field in the two dimensional space-time the fields satisfying the renormalized Thirring equation are constructed. Both infinitesimal and global transformations with respect to the two-dimensional conformal group for these fields are obtained. The latter do not coincide with the standard ones. The renormalized Thirring equation is proved to be covariant under infinitesimal conformal group transformations as well as under the global transformations belonging to the universal covering of the conformal group

  16. Massless fields in curved space-time: The conformal formalism

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Sztrajman, J.B.

    1986-01-01

    A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome

  17. Conformational analysis of oxa-thio-azolydines through NMR

    International Nuclear Information System (INIS)

    Val, Amelia Maria Gomes do; Guimaraes, Afonso Celso

    1997-01-01

    This work presents the conformational analysis of some selected oxa-thio-azolidines. As the chemical properties of such compounds do not depend only upon the chemical structure, but also upon the conformational state which they may present, special emphasis is given to this phenomenon, which can elucidate the compounds properties

  18. 15 CFR 265.34 - Conformity with posted signs.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Conformity with posted signs. 265.34 Section 265.34 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.34 Conformity with...

  19. Bootstrap bound for conformal multi-flavor QCD on lattice

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2016-07-08

    The recent work by Iha et al. shows an upper bound on mass anomalous dimension γ{sub m} of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in SU(N{sub F}){sub V} symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in SU(N{sub f}){sub L}×SU(N{sub f}){sub R} symmetric conformal field theories. For N{sub f}=8, our bound implies γ{sub m}<1.31 to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.

  20. Conformal anomaly and elimination of infrared divergences in curved spacetime

    International Nuclear Information System (INIS)

    Grib, A.A.; Nesteruk, A.V.; Pritomanov, S.A.

    1984-01-01

    The relation between the problem of eliminating the infrared divergences and the conformal anomaly of the regularized energy-momentum tensor is studied in homogeneous isotropic and anisotropic spacetime. It is shown that elimination of the infrared divergence by means of a cutoff or the introduction of a conformally invariant mass of the field leads to the absence of the conformal anomaly

  1. D=2 and D=4 realization of κ-conformal algebra

    International Nuclear Information System (INIS)

    Klimek, M.

    1996-01-01

    The generators of κ-conformal transformations leaving the κ-deformed d'Alembert equation invariant are described. The algebraic structure of the conformal extension of the off-shell spin zero realization of κ-Poincare algebra is discussed for D=4. The D=2 off-shell realization of κ-conformal algebra for an arbitrary spin and its commutation relations were studied. 14 refs

  2. Src kinase conformational activation: thermodynamics, pathways, and mechanisms.

    Directory of Open Access Journals (Sweden)

    Sichun Yang

    2008-03-01

    Full Text Available Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the alphaC helix, the activation-loop, and the beta strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the alphaC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.

  3. Conformal invariant quantum field theory and composite field operators

    International Nuclear Information System (INIS)

    Kurak, V.

    1976-01-01

    The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry

  4. Advanced Small Animal Conformal Radiation Therapy Device.

    Science.gov (United States)

    Sharma, Sunil; Narayanasamy, Ganesh; Przybyla, Beata; Webber, Jessica; Boerma, Marjan; Clarkson, Richard; Moros, Eduardo G; Corry, Peter M; Griffin, Robert J

    2017-02-01

    We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made "gantry" and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

  5. Conformal quantum field theory: From Haag-Kastler nets to Wightman fields

    International Nuclear Information System (INIS)

    Joerss, M.

    1996-07-01

    Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski space-time, we construct associated pointlike localizable charged fields which intertwine between the superselection sectors with finite statistics of the theory. This amounts to a proof of the spin-statistics theorem, the PCT theorem, the Bisognano-Wichmann identification of modular operators, Haag duality in the vacuum sector, and the existence of operator product expansions. Our method consists of the explicit use of the representation theory of the universal covering group of SL(2,R). A central role is played by a ''conformal cluster theorem'' for conformal two-point functions in algebraic quantum field theory. Generalizing this ''conformal cluster theorem'' to the n-point functions of Haag-Kastler theories, we can finally construct from a chiral conformal net of algebras a compelte set of conformal n-point functions fulfilling the Wightman axioms. (orig.)

  6. Smart Conformists: Children and Adolescents Associate Conformity With Intelligence Across Cultures.

    Science.gov (United States)

    Wen, Nicole J; Clegg, Jennifer M; Legare, Cristine H

    2017-08-24

    The current study used a novel methodology based on multivocal ethnography to assess the relations between conformity and evaluations of intelligence and good behavior among Western (U.S.) and non-Western (Ni-Vanuatu) children (6- to 11-year-olds) and adolescents (13- to 17-year-olds; N = 256). Previous research has shown that U.S. adults were less likely to endorse high-conformity children as intelligent than Ni-Vanuatu adults. The current data demonstrate that in contrast to prior studies documenting cultural differences between adults' evaluations of conformity, children and adolescents in the United States and Vanuatu have a conformity bias when evaluating peers' intelligence and behavior. Conformity bias for good behavior increases with age. The results have implications for understanding the interplay of conformity bias and trait psychology across cultures and development. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  7. Conformation radiotherapy with eccentric multi-leaves, (1)

    International Nuclear Information System (INIS)

    Obata, Yasunori; Sakuma, Sadayuki.

    1986-01-01

    In order to extend the application of the conformation radiotherapy, the eccentric multi-leaves are equipped with the linear accelerator. The information of the position of the collimators and the dose distribution of the eccentric conformation radiotherapy are calculated by the improved algorism of the treatment planning system. In simple cases, the dose distributions for the distant region from the rotational center are measured and compared with the calculated values. Both distributions are well coincided with the error of about 5 % in the high dose region and 10 % in the low dose region. In eccentric conformation radiotherapy, it is difficult to deliver the planned dose to the lesion. The dose increases with the distance of the target area from the rotational center. And the measured value and the calculated value are well coincided with 1 % error. So after getting the dose ratio of the rotational center to the target area, the calculated dose can be delivered to the rotational center. The advantages of the eccentric conformation radiotherapy are a good coincidence of target area and treated area, a partial shielding and a hollow out technique without absorber. The limitation of the movement of the collimator from center is 5 cm at 1 m SCD. (author)

  8. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  9. Deep Inelastic Scattering in Conformal QCD

    CERN Document Server

    Cornalba, Lorenzo; Penedones, Joao

    2010-01-01

    We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation. We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor a...

  10. An event-based account of conformity.

    Science.gov (United States)

    Kim, Diana; Hommel, Bernhard

    2015-04-01

    People often change their behavior and beliefs when confronted with deviating behavior and beliefs of others, but the mechanisms underlying such phenomena of conformity are not well understood. Here we suggest that people cognitively represent their own actions and others' actions in comparable ways (theory of event coding), so that they may fail to distinguish these two categories of actions. If so, other people's actions that have no social meaning should induce conformity effects, especially if those actions are similar to one's own actions. We found that female participants adjusted their manual judgments of the beauty of female faces in the direction consistent with distracting information without any social meaning (numbers falling within the range of the judgment scale) and that this effect was enhanced when the distracting information was presented in movies showing the actual manual decision-making acts. These results confirm that similarity between an observed action and one's own action matters. We also found that the magnitude of the standard conformity effect was statistically equivalent to the movie-induced effect. © The Author(s) 2015.

  11. The Asch Conformity Effect: A Study in Kuwait.

    Science.gov (United States)

    Amir, Taha

    1984-01-01

    Investigated whether conformity in the experimental setting suggested by Asch was related to American culture and less likely to be replicable elsewhere. Kuwaiti subjects (N=200) were used in replicating the original experiment. Obtained an 'Asch effect' of a comparable magnitude to that of Asch. Individual differences in conformity were evident.…

  12. Rotational Spectroscopy and Conformational Studies of 4-PENTYNENITRILE, 4-PENTENENITRILE, and Glutaronitrile

    Science.gov (United States)

    Hays, Brian M.; Mehta-Hurt, Deepali; Jawad, Khadija M.; Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Zhang, Di; Zwier, Timothy S.

    2017-06-01

    The pure rotational spectra of 4-pentynenitrile, 4-pentenenitrile, and glutaronitrile were acquired using chirped pulse Fouirer transform microwave spectroscopy. 4-pentynenitrile and 4-pentenenitrile are the recombination products of two resonance stabilized radicals, propargyl + cyanomethyl or allyl + cyanomethyl, respectively, and are thus anticipated to be significant among the more complex nitriles in Titan's atmosphere. Indeed, these partially unsaturated alkyl cyanides have been found in laboratory analogs of tholins and are also expected to have interesting photochemistry. The optimized structures of all conformers below predicted energies of 500 \\wn were calculated for each molecule. Both of the conformers, trans and gauche, for 4-pentynenitrile have been identified and assigned. Five conformers were assigned in 4-pentenenitrile. The eclipsed conformers, with respect to the vinyl group, dominate the spectrum but some population was found in the syn conformers including the syn-gauche conformer, calculated to be 324 \\wn above the global minimum. The glutaronitrile spectrum contained only the two conformers below 500 \\wn, with reduced amount of the gauche trans conformer. The assigned spectra and structural assignments will be presented.

  13. CD2 probe infrared method for determining polymethylene chain conformation

    International Nuclear Information System (INIS)

    Maroncelli, M.; Strauss, H.L.; Snyder, R.G.

    1985-01-01

    The rocking mode frequency of a CD 2 group substituted in a polymethylene chain is sensitive to conformation in the immediate vicinity of the CD 2 group. This sensitivity forms the basis of a commonly used infrared method for determining site-specific conformation in polymethylene systems. In the present work, the CD 2 probe method has been extended and quantified with the use of infrared data on model CD 2 -substituted n-alkanes. The frequency of the CD 2 rocking band is determined primarily by the conformation of adjoining CC bonds, i.e., by tt, gt, and gg pairs. However, we have found that there are significant frequency shifts associated with other factors. These include the conformation of the next nearest CC bonds, both with the CD 2 positioned at the end and in the interior of the chain, and chain length. In addition, the ratio of the absorptivities of the tt to gt bands has been established. These results enable the method to provide new details about the conformation of the chains in polymethylene systems and reliable estimates of the concentrations of specific kinds of short conformational sequences. 14 references, 6 figures, 2 tables

  14. The new proposal for harmonised rules for the online sales of tangible goods: conformity, lack of conformity and remedies: in-depth analysis

    NARCIS (Netherlands)

    Smits, Jan

    2016-01-01

    Upon request by the JURI Committee, this paper evaluates the European Commission proposal of 9 December 2015 harmonizing certain civil law contractual rules for Online Shopping. The directive's approach concerning conformity, lack of conformity and remedies is analized. It also examines the question

  15. Lagrangian model of conformal invariant interacting quantum field theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1976-01-01

    A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3

  16. 40 CFR 92.210 - Amending the application and certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 92.210 Section 92.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Certification Provisions § 92.210 Amending the application and certificate of conformity. (a) The manufacturer... covered by a certificate of conformity. This notification must include a request to amend the application...

  17. 40 CFR 94.512 - Suspension and revocation of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificates of conformity. 94.512 Section 94.512 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Manufacturer Production Line Testing Programs § 94.512 Suspension and revocation of certificates of conformity. (a) The certificate of conformity is suspended with respect to any engine that fails a production...

  18. 40 CFR 89.123 - Amending the application and certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 89.123 Section 89.123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of conformity. (a) The manufacturer of nonroad compression-ignition engines must notify the... be made to a product line covered by a certificate of conformity. This notification must include a...

  19. 40 CFR 91.511 - Suspension and revocation of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificates of conformity. 91.511 Section 91.511 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Production Line Testing Program § 91.511 Suspension and revocation of certificates of conformity. (a) The certificate of conformity is automatically suspended with respect to any engine failing pursuant to paragraph...

  20. National Automated Conformity Inspection Process -

    Data.gov (United States)

    Department of Transportation — The National Automated Conformity Inspection Process (NACIP) Application is intended to expedite the workflow process as it pertains to the FAA Form 81 0-10 Request...

  1. Conformation analysis - ConfC | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us ConfC Conformation analysis Data detail Data name Conformation analysis DOI 10.18908/lsdba.n...bdc00400-005 Description of data contents Results of conformation analysis for PDB files (raw data) Each res...ile size: 63.9 MB Simple search URL - Data acquisition method - Data analysis method - Number of data entrie...s 352 entries - About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Conformation analysis - ConfC | LSDB Archive ...

  2. Animal culture: chimpanzee conformity?

    Science.gov (United States)

    van Schaik, Carel P

    2012-05-22

    Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Conformal supergravity in five dimensions: new approach and applications

    Science.gov (United States)

    Butter, Daniel; Kuzenko, Sergei M.; Novak, Joseph; Tartaglino-Mazzucchelli, Gabriele

    2015-02-01

    We develop a new off-shell formulation for five-dimensional (5D) conformal supergravity obtained by gauging the 5D superconformal algebra in superspace. An important property of the conformal superspace introduced is that it reduces to the super-conformal tensor calculus (formulated in the early 2000's) upon gauging away a number of superfluous fields. On the other hand, a different gauge fixing reduces our formulation to the SU(2) superspace of arXiv:0802.3953, which is suitable to describe the most general off-shell supergravity-matter couplings. Using the conformal superspace approach, we show how to reproduce practically all off-shell constructions derived so far, including he supersymmetric extensions of R 2 terms, thus demonstrating the power of our formulation. Furthermore, we construct for the first time a supersymmetric completion of the Ricci tensor squared term using the standard Weyl multiplet coupled to an off-shell vector multiplet. In addition, we present several procedures to generate higher-order off-shell invariants in supergravity, including higher-derivative ones. The covariant projective multiplets proposed in arXiv:0802.3953 are lifted to conformal superspace, and a manifestly superconformal action principle is given. We also introduce unconstrained prepotentials for the vector multiplet, the multiplet (i.e., the linear multiplet without central charge) and multiplets, with n = 0 , 1 , . . . Superform formulations are given for the BF action and the non-abelian Chern-Simons action. Finally, we describe locally supersymmetric theories with gauged central charge in conformal superspace.

  4. Conformity enhances network reciprocity in evolutionary social dilemmas.

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2015-02-06

    The pursuit of highest payoffs in evolutionary social dilemmas is risky and sometimes inferior to conformity. Choosing the most common strategy within the interaction range is safer because it ensures that the payoff of an individual will not be much lower than average. Herding instincts and crowd behaviour in humans and social animals also compel to conformity in their own right. Motivated by these facts, we here study the impact of conformity on the evolution of cooperation in social dilemmas. We show that an appropriate fraction of conformists within the population introduces an effective surface tension around cooperative clusters and ensures smooth interfaces between different strategy domains. Payoff-driven players brake the symmetry in favour of cooperation and enable an expansion of clusters past the boundaries imposed by traditional network reciprocity. This mechanism works even under the most testing conditions, and it is robust against variations of the interaction network as long as degree-normalized payoffs are applied. Conformity may thus be beneficial for the resolution of social dilemmas. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. 40 CFR 1033.340 - Suspension and revocation of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificates of conformity. 1033.340 Section 1033.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Production Line Testing and Audit Programs § 1033.340 Suspension and revocation of certificates of conformity... conformity is automatically suspended for any locomotive that fails a production line test pursuant to § 1033...

  6. 40 CFR 94.210 - Amending the application and certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 94.210 Section 94.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Certification Provisions § 94.210 Amending the application and certificate of conformity. (a) The manufacturer... for certification are to be made to a product line covered by a certificate of conformity. This...

  7. Conformally symmetric traversable wormholes

    International Nuclear Information System (INIS)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-01-01

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced

  8. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.

    Science.gov (United States)

    Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R

    2007-04-01

    The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.

  9. Conformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter

    DEFF Research Database (Denmark)

    Våbenø, Jon; Nielsen, Carsten Uhd; Steffansen, Bente

    2005-01-01

    The aim of the present study was to develop a computational method aiding the design of dipeptidomimetic pro-moieties targeting the human intestinal di-/tripeptide transporter hPEPT1. First, the conformation in which substrates bind to hPEPT1 (the bioactive conformation) was identified...... to change the peptide backbone conformation (DeltaE(bbone)) from the global energy minimum conformation to the identified bioactive conformation was calculated for 20 hPEPT1 targeted model prodrugs with known K(i) values. Quantitatively, an inverse linear relationship (r(2)=0.81, q(2)=0.80) was obtained...

  10. Conformational Effects of UV Light on DNA Origami.

    Science.gov (United States)

    Chen, Haorong; Li, Ruixin; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2017-02-01

    The responses of DNA origami conformation to UV radiation of different wavelengths and doses are investigated. Short- and medium-wavelength UV light can cause photo-lesions in DNA origami. At moderate doses, the lesions do not cause any visible defects in the origami, nor do they significantly affect the hybridization capability. Instead, they help relieve the internal stress in the origami structure and restore it to the designed conformation. At high doses, staple dissociation increases which causes structural disintegration. Long-wavelength UV does not show any effect on origami conformation by itself. We show that this UV range can be used in conjunction with photoactive molecules for photo-reconfiguration, while avoiding any damage to the DNA structures.

  11. Exotic Galilean conformal symmetry and its dynamical realisations

    International Nuclear Information System (INIS)

    Lukierski, J.; Stichel, P.C.; Zakrzewski, W.J.

    2006-01-01

    The six-dimensional exotic Galilean algebra in (2+1) dimensions with two central charges m and θ, is extended when m=0, to a ten-dimensional Galilean conformal algebra with dilatation, expansion, two acceleration generators and the central charge θ. A realisation of such a symmetry is provided by a model with higher derivatives recently discussed in [P.C. Stichel, W.J. Zakrzewski, Ann. Phys. 310 (2004) 158]. We consider also a realisation of the Galilean conformal symmetry for the motion with a Coulomb potential and a magnetic vortex interaction. Finally, we study the restriction, as well as the modification, of the Galilean conformal algebra obtained after the introduction of the minimally coupled constant electric and magnetic fields

  12. 40 CFR 93.157 - Frequency of conformity determinations.

    Science.gov (United States)

    2010-07-01

    ... convenience of the user, the revised text is set forth as follows: § 93.157 Reevaluation of conformity. (a... were below the limits in § 93.153(b) and changes to the action would result in the total emissions from the action being above the limits in § 93.153(b), then the Federal agency must make a conformity...

  13. Revisit the carpet cloak from optical conformal mapping

    OpenAIRE

    Li, Hui; Xu, Yadong; Wu, Qiannan; Chen, Huanyang

    2013-01-01

    The original carpet cloak [Phys. Rev. Lett. 101, 203901 (2008)] was designed by a numerical method, the quasi-conformal mapping. Therefore its refractive index profile was obtained numerically. In this letter, we propose a new carpet cloak based on the optical conformal mapping, with an analytical form of a refractive index profile, thereby facilitating future experimental designs.

  14. Twistor space, Minkowski space and the conformal group

    International Nuclear Information System (INIS)

    Broek, P.M. van den

    1983-01-01

    It is shown that the conformal group of compactified Minkowski space is isomorphic to a group of rays of semilinear transformations of twistor space. The action of the conformal group on twistor space is given by an explicit realisation of this isomorphism. In this way we determine the transformation of twistor space under space inversion and time inversion. (orig.)

  15. 40 CFR 91.122 - Amending the application and certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 91.122 Section 91.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Standards and Certification Provisions § 91.122 Amending the application and certificate of conformity. (a... to a certificate of conformity or changes are to be made to a product line covered by a certificate...

  16. 40 CFR 85.2305 - Duration and applicability of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificates of conformity. 85.2305 Section 85.2305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Clean Air Act § 85.2305 Duration and applicability of certificates of conformity. (a) Except as provided in paragraph (b) of this section, a certificate of conformity is deemed to be effective and cover the...

  17. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    Science.gov (United States)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  18. Conformal geometry computational algorithms and engineering applications

    CERN Document Server

    Jin, Miao; He, Ying; Wang, Yalin

    2018-01-01

    This book offers an essential overview of computational conformal geometry applied to fundamental problems in specific engineering fields. It introduces readers to conformal geometry theory and discusses implementation issues from an engineering perspective.  The respective chapters explore fundamental problems in specific fields of application, and detail how computational conformal geometric methods can be used to solve them in a theoretically elegant and computationally efficient way. The fields covered include computer graphics, computer vision, geometric modeling, medical imaging, and wireless sensor networks. Each chapter concludes with a summary of the material covered and suggestions for further reading, and numerous illustrations and computational algorithms complement the text.  The book draws on courses given by the authors at the University of Louisiana at Lafayette, the State University of New York at Stony Brook, and Tsinghua University, and will be of interest to senior undergraduates, gradua...

  19. Conformational Fluctuations in G-Protein-Coupled Receptors

    Science.gov (United States)

    Brown, Michael F.

    2014-03-01

    G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual

  20. Enhanced conformational sampling using enveloping distribution sampling.

    Science.gov (United States)

    Lin, Zhixiong; van Gunsteren, Wilfred F

    2013-10-14

    To lessen the problem of insufficient conformational sampling in biomolecular simulations is still a major challenge in computational biochemistry. In this article, an application of the method of enveloping distribution sampling (EDS) is proposed that addresses this challenge and its sampling efficiency is demonstrated in simulations of a hexa-β-peptide whose conformational equilibrium encompasses two different helical folds, i.e., a right-handed 2.7(10∕12)-helix and a left-handed 3(14)-helix, separated by a high energy barrier. Standard MD simulations of this peptide using the GROMOS 53A6 force field did not reach convergence of the free enthalpy difference between the two helices even after 500 ns of simulation time. The use of soft-core non-bonded interactions in the centre of the peptide did enhance the number of transitions between the helices, but at the same time led to neglect of relevant helical configurations. In the simulations of a two-state EDS reference Hamiltonian that envelops both the physical peptide and the soft-core peptide, sampling of the conformational space of the physical peptide ensures that physically relevant conformations can be visited, and sampling of the conformational space of the soft-core peptide helps to enhance the transitions between the two helices. The EDS simulations sampled many more transitions between the two helices and showed much faster convergence of the relative free enthalpy of the two helices compared with the standard MD simulations with only a slightly larger computational effort to determine optimized EDS parameters. Combined with various methods to smoothen the potential energy surface, the proposed EDS application will be a powerful technique to enhance the sampling efficiency in biomolecular simulations.

  1. Analysis of calcium-induced effects on the conformation of fengycin.

    Science.gov (United States)

    Nasir, Mehmet Nail; Laurent, Pascal; Flore, Christelle; Lins, Laurence; Ongena, Marc; Deleu, Magali

    2013-06-01

    Fengycin is a natural lipopeptide with antifungal and eliciting properties and able to inhibit the activity of phospholipase A2. A combination of CD, FT-IR, NMR and fluorescence spectroscopic techniques was applied to elucidate its conformation in a membrane-mimicking environment and to investigate the effect of calcium ions on it. We mainly observed that fengycin adopts a turn conformation. Our results showed that calcium ions are bound by the two charged glutamates. The calcium binding has an influence on the fengycin conformation and more particularly, on the environment of the tyrosine residues. The modulation of the fengycin conformation by the environmental conditions may influence its biological properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Conformity of documents and unloading... REGULATIONS EXPORT CLEARANCE REQUIREMENTS § 758.5 Conformity of documents and unloading of items. (a) Purpose... country other than that of the ultimate consignee as stated on the export license. (b) Conformity of...

  3. 40 CFR 90.122 - Amending the application and certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 90.122 Section 90.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of conformity. (a) The engine manufacturer must notify the Administrator when either an engine is to be added to a certificate of conformity, an FEL is to be changed, or changes are to be made to a...

  4. On possibility of the conformal infrared asymptotics in nonabelian Yang-Mills theories

    International Nuclear Information System (INIS)

    Vasil'ev, A.N.; Perekalin, M.M.; Pis'mak, Yu.M.

    1983-01-01

    A possibility of the conformal-invariant infrared asymptotics in nonabelian Yang-Mills theories is discussed. In the framework of the conformal bootstrap method it is shown that the hypothesis about the exact conformal invariance contradicts the transversality of the polarization operator i.e. the Ward identities. However, it is still possible to use the conformal theory as an approximate solution to the bootstrap equations

  5. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    Science.gov (United States)

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  6. Ligand-induced conformational changes: Improved predictions of ligand binding conformations and affinities

    DEFF Research Database (Denmark)

    Frimurer, T.M.; Peters, Günther H.J.; Iversen, L.F.

    2003-01-01

    tyrosine phosphatase 1 B (PTP1B) are known. To obtain a quantitative measure of the impact of conformational changes induced by the inhibitors, these were docked to the active site region of various structures of PTP1B using the docking program FlexX. Firstly, the inhibitors were docked to a PTP1B crystal...

  7. Conformal symmetry in two dimensions: An explicit recurrence formula for the conformal partial wave amplitude

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1984-01-01

    An explicit recurrence relation for the conformal block functions is presented. This relation permits one to evaluate the X-expansion of these functions order-by-order and appropriate for numerical calculations. (orig.)

  8. Conformal symmetry breaking operators for differential forms on spheres

    CERN Document Server

    Kobayashi, Toshiyuki; Pevzner, Michael

    2016-01-01

    This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1). The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulæ in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin–Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established. The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between C∞-induced representations or to find singular vecto...

  9. Conformation of antifreeze glycoproteins as determined from conformational energy calculations and fully assigned proton NMR spectra

    International Nuclear Information System (INIS)

    Bush, C.A.; Rao, B.N.N.

    1986-01-01

    The 1 H NMR spectra of AFGP's ranging in molecular weight from 2600 to 30,000 Daltons isolated from several different species of polar fish have been measured. The spectrum of AFGP 1-4 from Pagothenia borchgrevinki with an average of 30 repeating subunits has a single resonance for each proton of the glycotripeptide repeating unit, (ala-[gal-(β-1→3) galNAc-(α--O-]thr-ala)/sub n/. Its 1 H NMR spectrum including resonances of the amide protons has been completely assigned. Coupling constants and nuclear Overhauser enhancements (n.O.e.) between protons on distant residues imply conformational order. The 2600 dalton molecular weight glycopeptides (AFGP-8) have pro in place of ala at certain specific points in the sequence and AFGP-8R of Eleginus gracilis has arg in place of one thr. The resonances of pro and arg were assigned by decoupling. The resonances of the carboxy and amino terminals have distinct chemical shifts and were assigned in AFGP-8 of Boreogadus saida by titration. n.O.e. between α--protons and amide protons of the adjacent residue (sequential n.O.e.) were used in assignments of additional resonances and to assign the distinctive resonances of thr followed by pro. Conformational energy calculations on the repeating glycotripeptide subunit of AFGP show that the α--glucosidic linkage has a fixed conformation while the β--linkage is less rigid. A conformational model for AFGP 1-4, which is based on the calculations has the peptide in an extended left-handed helix with three residues per turn similar to polyproline II. The model is consistent with CD data, amide proton coupling constants, temperature dependence of amide proton chemical shifts

  10. Conformal methods in general relativity

    CERN Document Server

    Valiente Kroon, Juan A

    2016-01-01

    This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this the perfect reference companion on the topic.

  11. The Conformational Behaviour of Glucosamine

    Science.gov (United States)

    Peña, Isabel; Kolesniková, Lucie; Cabezas, Carlos; Bermúdez, Celina; Berdakin, Matías; Simao, Alcides; Alonso, José L.

    2014-06-01

    A laser ablation method has been successfully used to vaporize the bioactive amino monosaccharide D-glucosamine. Three cyclic α-4C1 pyranose forms have been identified using a combination of CP-FTMW and LA-MB-FTMW spectroscopy. Stereoelectronic hyperconjugative factors, like those associated with anomeric or gauche effects, as well as the cooperative OH\\cdotsO, OH\\cdotsN and NH\\cdotsO chains, extended along the entire molecule, are the main factors driving the conformational behavior. All observed conformers exhibit a counter-clockwise arrangement (cc) of the network of intramolecular hydrogen bonds. The results are compared with those recently obtained for D-glucose. J. L. Alonso, M. A. Lozoya, I. Peña, J. C. López, C. Cabezas, S. Mata, S. Blanco, Chem. Sci. 2014, 5, 515.

  12. Gel dosimetry for conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G [Department of Physics of the University and INFN, Milan (Italy)

    2005-07-01

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  13. On Comparison Theorems for Conformable Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Mehmet Zeki Sarikaya

    2016-10-01

    Full Text Available In this paper the more general comparison theorems for conformable fractional differential equations is proposed and tested. Thus we prove some inequalities for conformable integrals by using the generalization of Sturm's separation and Sturm's comparison theorems. The results presented here would provide generalizations of those given in earlier works. The numerical example is also presented to verify the proposed theorem.

  14. Local differential geometry of null curves in conformally flat space-time

    International Nuclear Information System (INIS)

    Urbantke, H.

    1989-01-01

    The conformally invariant differential geometry of null curves in conformally flat space-times is given, using the six-vector formalism which has generalizations to higher dimensions. This is then paralleled by a twistor description, with a twofold merit: firstly, sometimes the description is easier in twistor terms, sometimes in six-vector terms, which leads to a mutual enlightenment of both; and secondly, the case of null curves in timelike pseudospheres or 2+1 Minkowski space we were only able to treat twistorially, making use of an invariant differential found by Fubini and Cech. The result is the expected one: apart from stated exceptional cases there is a conformally invariant parameter and two conformally invariant curvatures which, when specified in terms of this parameter, serve to characterize the curve up to conformal transformations. 12 refs. (Author)

  15. Analytic aspects of rational conformal field theories

    International Nuclear Information System (INIS)

    Kiritsis, E.B.; Lawrence Berkeley Lab., CA

    1990-01-01

    The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)

  16. Effective Conformal Descriptions of Black Hole Entropy

    Directory of Open Access Journals (Sweden)

    Steven Carlip

    2011-07-01

    Full Text Available It is no longer considered surprising that black holes have temperatures and entropies. What remains surprising, though, is the universality of these thermodynamic properties: their exceptionally simple and general form, and the fact that they can be derived from many very different descriptions of the underlying microscopic degrees of freedom. I review the proposal that this universality arises from an approximate conformal symmetry, which permits an effective “conformal dual” description that is largely independent of the microscopic details.

  17. Magic identities for conformal four-point integrals

    International Nuclear Information System (INIS)

    Drummond, James M.; Henn, Johannes; Smirnov, Vladimir A.; Sokatchev, Emery

    2007-01-01

    We propose an iterative procedure for constructing classes of off-shell four-point conformal integrals which are identical. The proof of the identity is based on the conformal properties of a subintegral common for the whole class. The simplest example are the so-called 'triple scalar box' and 'tennis court' integrals. In this case we also give an independent proof using the method of Mellin-Barnes representation which can be applied in a similar way for general off-shell Feynman integrals

  18. Graded associative conformal algebras of finite type

    OpenAIRE

    Kolesnikov, Pavel

    2011-01-01

    In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...

  19. Vecteurs Singuliers des Theories des Champs Conformes Minimales

    Science.gov (United States)

    Benoit, Louis

    En 1984 Belavin, Polyakov et Zamolodchikov revolutionnent la theorie des champs en explicitant une nouvelle gamme de theories, les theories quantiques des champs bidimensionnelles invariantes sous les transformations conformes. L'algebre des transformations conformes de l'espace-temps presente une caracteristique remarquable: en deux dimensions elle possede un nombre infini de generateurs. Cette propriete impose de telles conditions aux fonctions de correlations qu'il est possible de les evaluer sans aucune approximation. Les champs des theories conformes appartiennent a des representations de plus haut poids de l'algebre de Virasoro, une extension centrale de l'algebre conforme du plan. Ces representations sont etiquetees par h, le poids conforme de leur vecteur de plus haut poids, et par la charge centrale c, le facteur de l'extension centrale, commune a toutes les representations d'une meme theorie. Les theories conformes minimales sont constituees d'un nombre fini de representations. Parmi celles-ci se trouvent des theories unitaires dont les representation forment la serie discrete de l'algebre de Virasoro; leur poids h a la forme h_{p,q}(m)=[ (p(m+1) -qm)^2-1] (4m(m+1)), ou p,q et m sont des entiers positifs et p+q= 2. Ces representations possedent un sous-espace invariant engendre par deux sous-representations avec h_1=h_{p,q} + pq et h_2=h_{p,q} + (m-p)(m+1-q) dont chacun des vecteurs de plus haut poids portent le nom de vecteur singulier et sont notes respectivement |Psi _{p,q}> et |Psi_{m-p,m+1-q}>. . Les theories super-conformes sont une version super-symetrique des theories conformes. Leurs champs appartiennent a des representation de plus haut poids de l'algebre de Neveu-Schwarz, une des deux extensions super -symetriques de l'algebre de Virasoro. Les theories super -conformes minimales possedent la meme structure que les theories conformes minimales. Les representations sont elements de la serie h_{p,q}= [ (p(m+2)-qm)^2-4] /(8m(m+2)) ou p,q et m sont

  20. Conformity Adequacy Review: Region 5

    Science.gov (United States)

    Resources are for air quality and transportation government and community leaders. Information on the conformity SIP adequacy/inadequacy of state implementation plans (SIPs) in EPA Region 5 (IL, IN, MI, OH, WI) is provided here.