WorldWideScience

Sample records for enamel protein porcine

  1. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    Science.gov (United States)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  2. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    International Nuclear Information System (INIS)

    Lubarsky, Gennady V; Lemoine, Patrick; Meenan, Brian J; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-01-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix. (papers)

  3. Protein- mediated enamel mineralization

    Science.gov (United States)

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  4. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    Science.gov (United States)

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  5. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    Science.gov (United States)

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  6. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.

    Science.gov (United States)

    Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V

    2015-07-01

    This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Interaction between the enamel matrix proteins amelogenin and ameloblastin

    International Nuclear Information System (INIS)

    Ravindranath, Hanumanth H.; Chen, Li-Sha; Zeichner-David, Margaret; Ishima, Rieko; Ravindranath, Rajeswari M.H.

    2004-01-01

    Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [ 3 H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly

  8. Interaction between the enamel matrix proteins amelogenin and ameloblastin.

    Science.gov (United States)

    Ravindranath, Hanumanth H; Chen, Li-Sha; Zeichner-David, Margaret; Ishima, Rieko; Ravindranath, Rajeswari M H

    2004-10-22

    Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [(3)H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly.

  9. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    Science.gov (United States)

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  10. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. Qizhuang Lv Kangkang Guo Tao Wang ... Keywords. Cellular protein; FHC; ORF4 protein; porcine circovirus type 2 (PCV2); yeast two-hybrid ... Journal of Biosciences | News ...

  11. Possibilities of microscopic detection of isolated porcine proteins in model meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2016-05-01

    Full Text Available In recent years, various protein additives intended for manufacture of meat products have increasing importance in the food industry. These ingredients include both, plant-origin as well as animal-origin proteins. Among animal proteins, blood plasma, milk protein or collagen are used most commonly. Collagen is obtained from pork, beef, and poultry or fish skin. Collagen does not contain all the essential amino acids, thus it is not a full protein in terms of essential amino acids supply for one's organism. However, it is rather rich in amino acids of glycine, hydroxyproline and proline which are almost absent in other proteins and their synthesis is very energy intensive. Collagen, which is added to the soft and small meat products in the form of isolated porcine protein, significantly affects the organoleptic properties of these products. This work focused on detection of isolated porcine protein in model meat products where detection of isolated porcine protein was verified by histological staining and light microscopy. Seven model meat products from poultry meat and 7 model meat products from beef and pork in the ratio of 1:1, which contained 2.5% concentration of various commercially produced isolated porcine proteins, were examined. These model meat products were histologically processed by means of cryosections and stained with hematoxylin-eosin staining, toluidine blue staining and Calleja. For the validation phase, Calleja was utilized. To determine the sensitivity and specificity, five model meat products containing the addition of isolated porcine protein and five model meat products free of it were used. The sensitivity was determined for isolated porcine protein at 1.00 and specificity was determined at 1.00. The detection limit of the method was at the level of 0.001% addition. Repeatability of the method was carried out using products with addition as well as without addition of isolated porcine protein and detection was repeated

  12. Endocytosis and Enamel Formation

    Directory of Open Access Journals (Sweden)

    Cong-Dat Pham

    2017-07-01

    Full Text Available Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage and to reach final mineralization (maturation stage. Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.

  13. Molecular characterization of the porcine surfactant, pulmonary-associated protein C gene

    DEFF Research Database (Denmark)

    Cirera, S.; Nygård, A.B.; Jensen, H.E.

    2006-01-01

    The surfactant, pulmonary-associated protein C (SFTPC) is a peptide secreted by the alveolar type II pneumocytes of the lung. We have characterized the porcine SFTPC gene at genomic, transcriptional, and protein levels. The porcine SFTPC is a single-copy gene on pig chromosome 14. Two transcripts...

  14. Requirements for Ion and Solute Transport, and pH Regulation During Enamel Maturation

    Science.gov (United States)

    LACRUZ, RODRIGO S.; SMITH, CHARLES E.; MOFFATT, PIERRE; CHANG, EUGENE H.; BROMAGE, TIMOTHY G.; BRINGAS, PABLO; NANCI, ANTONIO; BANIWAL, SANJEEV K.; ZABNER, JOSEPH; WELSH, MICHAEL J.; KURTZ, IRA; PAINE, MICHAEL L.

    2012-01-01

    Transcellular bicarbonate transport is suspected to be an important pathway used by ameloblasts to regulate extracellular pH and support crystal growth during enamel maturation. Proteins that play a role in amelogenesis include members of the ABC transporters (SLC gene family and CFTR). A number of carbonic anhydrases (CAs) have also been identified. The defined functions of these genes are likely interlinked during enamel mineralization. The purpose of this study is to quantify relative mRNA levels of individual SLC, Cftr, and CAs in enamel cells obtained from secretory and maturation stages on rat incisors. We also present novel data on the enamel phenotypes for two animal models, amutant porcine(CFTR-ΔF508) and the NBCe1-null mouse.Our data show that two SLCs(AE2 and NBCe1),Cftr,and Car2, Car3,Car6,and Car12 are all significantly up-regulated at the onset of the maturation stage of amelogenesis when compared to the secretory stage. The remaining SLCs and CA gene transcripts showed negligible expression or no significant change in expression from secretory to maturation stages. The enamel of Cftr-ΔF508 adult pigs was hypomineralized and showed abnormal crystal growth. NBCe1-null mice enamel was structurally defective and had a marked decrease in mineral content relative to wild-type. These data demonstrate the importance of many non-matrix proteins to amelogenesis and that the expression levels of multiple genes regulating extracellular pH are modulated during enamel maturation in response to an increased need for pH buffering during hydroxyapatite crystal growth. PMID:21732355

  15. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    Science.gov (United States)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  16. Amelogenin and Enamel Biomimetics

    Science.gov (United States)

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  17. Purification, characterization and immunolocalization of porcine surfactant protein D

    DEFF Research Database (Denmark)

    Sørensen, C.M.; Nielsen, Ove Lilholm; Willis, A.

    2005-01-01

    in a dose and Ca2+-dependent manner with a saccharide specificity similar to rat and human SP-D. The purified protein was used for the production of a monoclonal anti-pSP-D antibody. The antibody reacted specifically with pSP-D in the reduced and unreduced state when analysed by Western blotting......Surfactant protein D (SP-D) is a collectin believed to play an important role in innate immunity. SP-D is characterized by having a collagen-like domain and a carbohydrate recognition domain (CRD), which has a specific Ca2+-dependent specificity for saccharides and thus the ability to bind complex...... glycoconjugates on micro-organisms. This paper describes the tissue immunolocalization of porcine SP-D (pSP-D) in normal slaughter pigs using a monoclonal antibody raised against purified pSP-D. Porcine SP-D was purified from porcine bronchoalveolar lavage (BAL) by maltose-agarose and immunoglobulin M affinity...

  18. Enamel formation and amelogenesis imperfecta.

    Science.gov (United States)

    Hu, Jan C-C; Chun, Yong-Hee P; Al Hazzazzi, Turki; Simmer, James P

    2007-01-01

    Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel. Copyright 2007 S. Karger AG, Basel.

  19. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix.

    Science.gov (United States)

    Bidlack, Felicitas B; Huynh, Chuong; Marshman, Jeffrey; Goetze, Bernhard

    2014-01-01

    An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D) organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM) was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM) in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  20. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix

    Directory of Open Access Journals (Sweden)

    Felicitas B Bidlack

    2014-10-01

    Full Text Available An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  1. The role of organic proteins on the crack growth resistance of human enamel.

    Science.gov (United States)

    Yahyazadehfar, Mobin; Arola, Dwayne

    2015-06-01

    With only 1% protein by weight, tooth enamel is the most highly mineralized tissue in mammals. The focus of this study was to evaluate contributions of the proteins on the fracture resistance of this unique structural material. Sections of enamel were obtained from the cusps of human molars and the crack growth resistance was quantified using a conventional fracture mechanics approach with complementary finite element analysis. In selected specimens the proteins were extracted using a potassium hydroxide treatment. Removal of the proteins resulted in approximately 40% decrease in the fracture toughness with respect to the fully proteinized control. The loss of organic content was most detrimental to the extrinsic toughening mechanisms, causing over 80% reduction in their contribution to the total energy to fracture. This degradation occurred by embrittlement of the unbroken bridging ligaments and consequent reduction in the crack closure stress. Although the organic content of tooth enamel is very small, it is essential to crack growth toughening by facilitating the formation of unbroken ligaments and in fortifying their potency. Replicating functions of the organic content will be critical to the successful development of bio-inspired materials that are designed for fracture resistance. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Bicarbonate Transport During Enamel Maturation.

    Science.gov (United States)

    Yin, Kaifeng; Paine, Michael L

    2017-11-01

    Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.

  3. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    Science.gov (United States)

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  4. Proteomic Mapping of Dental Enamel Matrix from Inbred Mouse Strains: Unraveling Potential New Players in Enamel.

    Science.gov (United States)

    Lima Leite, Aline; Silva Fernandes, Mileni; Charone, Senda; Whitford, Gary Milton; Everett, Eric T; Buzalaf, Marília Afonso Rabelo

    2018-01-01

    Enamel formation is a complex 2-step process by which proteins are secreted to form an extracellular matrix, followed by massive protein degradation and subsequent mineralization. Excessive systemic exposure to fluoride can disrupt this process and lead to a condition known as dental fluorosis. The genetic background influences the responses of mineralized tissues to fluoride, such as dental fluorosis, observed in A/J and 129P3/J mice. The aim of the present study was to map the protein profile of enamel matrix from A/J and 129P3/J strains. Enamel matrix samples were obtained from A/J and 129P3/J mice and analyzed by 2-dimensional electrophoresis and liquid chromatography coupled with mass spectrometry. A total of 120 proteins were identified, and 7 of them were classified as putative uncharacterized proteins and analyzed in silico for structural and functional characterization. An interesting finding was the possibility of the uncharacterized sequence Q8BIS2 being an enzyme involved in the degradation of matrix proteins. Thus, the results provide a comprehensive view of the structure and function for putative uncharacterized proteins found in the enamel matrix that could help to elucidate the mechanisms involved in enamel biomineralization and genetic susceptibility to dental fluorosis. © 2018 S. Karger AG, Basel.

  5. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete

    2008-01-01

    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...... bp in the region coding for the active protein. Northern analysis showed lung-specific expression of three different isoforms of the SFTPB transcript. The expression level for the SFTPB gene is low in 50 days-old fetus and it increases during lung development. Quantitative real-time polymerase chain...

  6. Functions of KLK4 and MMP-20 in dental enamel formation

    Science.gov (United States)

    Lu, Yuhe; Papagerakis, Petros; Yamakoshi, Yasuo; Hu, Jan C-C.; Bartlett, John D.; Simmer, James P.

    2009-01-01

    Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory stage ameloblasts. Enamel protein cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. Kallikrein 4 is secreted by transition and maturation stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins. PMID:18627287

  7. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  8. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals.

    Science.gov (United States)

    Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao; De Yoreo, James J; Moradian-Oldak, Janet

    2016-01-01

    Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The molecular basis of hereditary enamel defects in humans.

    Science.gov (United States)

    Wright, J T; Carrion, I A; Morris, C

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. © International & American Associations for

  10. The Molecular Basis of Hereditary Enamel Defects in Humans

    Science.gov (United States)

    Carrion, I.A.; Morris, C.

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. PMID:25389004

  11. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    2015-08-13

    Aug 13, 2015 ... protein is a newly identified viral protein of PCV2 and is involved in ... The porcine alveolar macrophages (PAMs) of a healthy, 2- .... firmation by restriction analysis and DNA sequencing, the ... croscope (Model LSM510 META, Zeiss). ..... circovirus-like viruses from pigs with a wasting disease in the.

  12. Enamel formation in vitro in mouse molar explants exposed to amelogenin polypeptides ATMP and LRAP on enamel development.

    Science.gov (United States)

    Ravindranath, Rajeswari M H; Devarajan, Asokan; Bringas, Pablo

    2007-12-01

    The enamel matrix contains amelogenin, leucine-rich amelogenin-polypeptide (LRAP), resulting from alternative splicing of the primary amelogenin-RNA transcript and tyrosine-rich amelogenin-polypeptide (TRAP), a proteolytic product of amelogenin. Presence of amelogenin-trityrosyl-motif peptide (ATMP) distinguishes TRAP from LRAP. The roles of these polypeptides in the formation of enamel remain to be elucidated. The mouse in vitro molar tooth-organ developed from bud stage (E16) was exposed to LRAP, ATMP, and mutated ATMP (T-ATMP, third proline replaced by threonine). The histology and morphometry of the explants on day-12 in culture was examined using Mallory's stain. Guanidine-HCl soluble protein concentrations of explants were compared. The enamel width and protein solubility indicate that the explant on day-12 is comparable to postnatal molar on day-3 in vivo. The enamel of both untreated explants as well as that in vivo is fuchinophilic (acid fuchsin, AF+). ATMP reduced the ameloblast-height, accumulated AF+ spherules at the apical end of ameloblasts, and disrupted enamel-dentin bonding. T-ATMP abrogated deposition of AF+ material on the aniline blue positive (AB+) enamel matrix. LRAP reduced ameloblast-height, increased the enamel-width without disruption (at 17.25 nmol) and increased the density of AF+ dentinal tubules. AF+ substance from the tubules is released onto the surface of the dentin. The Guanidine-HCl-soluble protein is elevated in ATMP-treated explants but decreased in LRAP-treated explants. Exogenous ATMP, T-ATMP and LRAP have divergent effects on developing enamel. Exogenous ATMP, but not LRAP, abrogates enamel-dentin bonding at 17.25 nmol. LRAP may play a role in the differentiation of ameloblasts, growth of enamel and formation of dentinal tubules.

  13. Modulation of enamel matrix proteins on the formation and nano-assembly of hydroxyapatite in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong, E-mail: tlihong@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630 (China); Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States); Huang Weiya [Department of Chemistry, Jinan University, Guangzhou, Guangdong 510630 (China); Department of Materials Science and Engineering, Taizhou, Taizhou University, Zhejiang 317000 (China); Zhang Yuanming [Department of Chemistry, Jinan University, Guangzhou, Guangdong 510630 (China); Xue Bo [Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630 (China); Wen Xuejun [Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States)

    2012-05-01

    Natural enamel has a hierarchically nanoassembled architecture that is regulated by enamel matrix proteins (EMPs) during the formation of enamel crystals. To understand the role of EMPs on enamel mineralization, calcium phosphate (CaP) growth experiments in both the presence and absence of native rat EMPs in a single diffusion system were conducted. The morphology and organization of formed CaP crystals were examined by X-Ray Diffraction (XRD), High-Resolution Transmission Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). In the system containing the EMPs, hydroxyapatite (HAP) with hierarchical lamellar nanostructure can be formed and the aligned HAP assembly tightly bundled by 3-4 rod-like nanocrystals like an enamel prism. However, in the absence of EMPs, only a sheet-like structure of octacalcium phosphate (OCP) phase was presented. EMPs promote HAP formation and inhibit the growth of OCP on the (010) plane. It is discussed that the organized Amelogenin/Amorphous Calcium Phosphate might be the precursor to the bundled HAP crystal prism. The study benefits the understanding of biomineralization of tooth enamel. - Highlights: Black-Right-Pointing-Pointer An aligned hydroxyapatite crystal bundled by rod-like nanosize crystals was obtained. Black-Right-Pointing-Pointer An organized Amel/ACP would be the precursor of the bundled hydroxyapatite crystal prism. Black-Right-Pointing-Pointer EMPs inhibit the growth of octacalcium phosphate in a defined plane.

  14. Modulation of enamel matrix proteins on the formation and nano-assembly of hydroxyapatite in vitro

    International Nuclear Information System (INIS)

    Li Hong; Huang Weiya; Zhang Yuanming; Xue Bo; Wen Xuejun

    2012-01-01

    Natural enamel has a hierarchically nanoassembled architecture that is regulated by enamel matrix proteins (EMPs) during the formation of enamel crystals. To understand the role of EMPs on enamel mineralization, calcium phosphate (CaP) growth experiments in both the presence and absence of native rat EMPs in a single diffusion system were conducted. The morphology and organization of formed CaP crystals were examined by X-Ray Diffraction (XRD), High-Resolution Transmission Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). In the system containing the EMPs, hydroxyapatite (HAP) with hierarchical lamellar nanostructure can be formed and the aligned HAP assembly tightly bundled by 3–4 rod-like nanocrystals like an enamel prism. However, in the absence of EMPs, only a sheet-like structure of octacalcium phosphate (OCP) phase was presented. EMPs promote HAP formation and inhibit the growth of OCP on the (010) plane. It is discussed that the organized Amelogenin/Amorphous Calcium Phosphate might be the precursor to the bundled HAP crystal prism. The study benefits the understanding of biomineralization of tooth enamel. - Highlights: ► An aligned hydroxyapatite crystal bundled by rod-like nanosize crystals was obtained. ► An organized Amel/ACP would be the precursor of the bundled hydroxyapatite crystal prism. ► EMPs inhibit the growth of octacalcium phosphate in a defined plane.

  15. Functional characterization of the ER stress induced X-box-binding protein-1 (Xbp-1 in the porcine system

    Directory of Open Access Journals (Sweden)

    Jin Dong-Il

    2011-05-01

    Full Text Available Abstract Background The unfolded protein response (UPR is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER stress conditions. X-box-binding protein-1 (Xbp1 is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The UPR induced by ER stress was extensively studied in diseases linked to protein misfolding and aggregations. However, in the porcine system, genes in the UPR pathway were not investigated. In this study, we isolated and characterized the porcine Xbp1 (pXbp1 gene in ER stress using porcine embryonic fibroblast (PEF cells and porcine organs. ER stress was induced by the treatment of tunicamycin and cell viability was investigated by the MTT assay. For cloning and analyzing the expression pattern of pXbp1, RT-PCR analysis and Western blot were used. Knock-down of pXbp1 was performed by the siRNA-mediated gene silencing. Results We found that the pXbp1 mRNA was the subject of the IRE1α-mediated unconventional splicing by ER stress. Knock-down of pXbp1 enhanced ER stress-mediated cell death in PEF cells. In adult organs, pXbp1 mRNA and protein were expressed and the spliced forms were detected. Conclusions It was first found that the UPR mechanisms and the function of pXbp1 in the porcine system. These results indicate that pXbp1 plays an important role during the ER stress response like other animal systems and open a new opportunity for examining the UPR pathway in the porcine model system.

  16. An in vivo characterization of colostrum protein uptake in porcine gut during early lactation

    DEFF Research Database (Denmark)

    Danielsen, Marianne; Pedersen, Lene Juul; Bendixen, Emøke

    2011-01-01

    Understanding the bioactive roles of colostrum proteins has gained much attention, and in particular, their potential use in human and veterinary medicine has been extensively studied. However, studies of bioactivity have mainly been conducted in vitro, but it has not yet been well characterized...... at the individual protein level which colostrum components are internalized by the intestinal tissue of the neonate. The aim of this study was to characterize the in vivo processing of porcine colostrum in the gastrointestinal tract, and describe which of the potential bioactive proteins can be observed...... in the small intestinal tissue, and therefore may be functionally important. Using 2D-LC-MS/MS analysis we mapped the proteins in porcine colostrum. The colostrum proteins were then traced in the stomach content, as well as in the small intestinal tissue of 5 piglets suckled for 24 h. For comparison, we also...

  17. Irradiation of porcine plasma protein powder, 1

    International Nuclear Information System (INIS)

    Hayashi, Toru; Saito, Masayoshi; Todoroki, Setsuko; Tajima, Makoto; Biagio, R.

    1987-01-01

    Recently interest in the use of animal blood protein as a food ingradient has been increasing. A study was conducted on the decontamination effect of gamma rays and electrons beam on plasma protein powder prepared from slaughtered porcine blood. Non irradiated sample was mainly contaminated with heat-resistant becterial spores (B. subtilis) and the total mocrobial count was 9.6 x 10 3 per 1 g of dried powder. The D 10 values of total microbial count for gamma rays and electrons beam were 0.82 kGy and 1.06 kGy, respectively. For B. subtilis, the D 10 values obtained under aerobic condition were 1.40 kGy for gamma rays and 1.45 kGy for electrons beam, with the survival curve for electrons beam showing a shoulder until 0.1 kGy. From these results, both types of irradiation were effective for the decotamination of plasma proteins. (author)

  18. Keratins as components of the enamel organic matrix

    Science.gov (United States)

    Duverger, Olivier; Beniash, Elia; Morasso, Maria I.

    2016-01-01

    Dental enamel is a hardest tissue in the human body, and although it starts as a tissue rich in proteins, by the time of eruption of the tooth in the oral cavity only a small fraction of the protein remains. While this organic matrix of enamel represents less than 1% by weight it plays essential roles in improving both toughness and resilience to chemical attacks. Despite the fact that the first studies of the enamel matrix began in the 19th century its exact composition and mechanisms of its function remain poorly understood. It was proposed that keratin or a keratin-like primitive epithelial component exists in mature enamel, however due to the extreme insolubility of its organic matrix the presence of keratins there was never clearly established. We have recently identified expression of a number of hair keratins in ameloblasts, the enamel secreting cells, and demonstrated their incorporation into mature enamel. Mutation in epithelial hair keratin KRT75 leads to a skin condition called pseudofollicularis barbae. Carriers of this mutation have an altered enamel structure and mechanical properties. Importantly, these individuals have a much higher prevalence of caries. To the best of our knowledge, this is the first study showing a direct link between a mutation in a protein-coding region of a gene and increased caries rates. In this paper we present an overview of the evidence of keratin-like material in enamel that has accumulated over the last 150 years. Furthermore, we propose potential mechanisms of action of KTR75 in enamel and highlight the clinical implications of the link between mutations in KRT75 and caries. Finally, we discuss the potential use of keratins for enamel repair. PMID:26709044

  19. β-TCP/HA with or without enamel matrix proteins for maxillary sinus floor augmentation

    DEFF Research Database (Denmark)

    Nery, James Carlos; Pereira, Luís Antônio Violin Dias; Guimarães, George Furtado

    2017-01-01

    BACKGROUND: It is still unclear whether enamel matrix proteins (EMD) as adjunct to bone grafting enhance bone healing. This study compared histomorphometrically maxillary sinus floor augmentation (MSFA) with β-TCP/HA in combination with or without EMD in humans. METHODS: In ten systemically healthy...

  20. New insights into the functions of enamel matrices in calcified tissues

    Directory of Open Access Journals (Sweden)

    Satoshi Fukumoto

    2014-05-01

    Full Text Available Ameloblasts secrete enamel matrix proteins, including amelogenin, ameloblastin, enamelin, amelotin, and Apin/odontogenic ameloblast-associated protein (Apin/ODAM. Amelogenin is the major protein component of the enamel matrix. Amelogenin, ameloblastin, and enamelin are expressed during the secretory stage of ameloblast, while amelotin and Apin/ODAM are expressed during the maturation. Amelogenin and ameloblastin are also expressed in osteoblasts, and they regulate bone formation. In addition, recent studies show the importance of protein–protein interactions between enamel matrix components for enamel formation. In a mouse model mimicking a mutation of the amelogenin gene in amelogenesis imperfect (AI in humans, the mutated amelogenin forms a complex with ameloblastin, which accumulates in the endoplasmic reticulum/Golgi apparatus and causes ameloblast dysfunction resulting in AI phenotypes. Ameloblastin is a cell adhesion molecule that regulates cell proliferation. It inhibits odontogenic tumor formation and regulates osteoblast differentiation through binding to CD63. Amelotin interacts with Apin/ODAM, but not ameloblastin, while Apin/ODAM binds to ameloblastin. These interactions may be important for enamel mineralization during amelogenesis. The enamel matrix genes are clustered on human chromosome 4 except for the amelogenin genes located on the sex chromosomes. Genes for these enamel matrix proteins evolved from a common ancestral gene encoding secretory calcium-binding phosphoprotein.

  1. Enamel Regeneration - Current Progress and Challenges

    Science.gov (United States)

    Baswaraj; H.K, Navin; K.B, Prasanna

    2014-01-01

    Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration. PMID:25386548

  2. Biomineralization of a Self-assembled, Soft-Matrix Precursor: Enamel

    Science.gov (United States)

    Snead, Malcolm L.

    2015-04-01

    Enamel is the bioceramic covering of teeth, a composite tissue composed of hierarchical organized hydroxyapatite crystallites fabricated by cells under physiologic pH and temperature. Enamel material properties resist wear and fracture to serve a lifetime of chewing. Understanding the cellular and molecular mechanisms for enamel formation may allow a biology-inspired approach to material fabrication based on self-assembling proteins that control form and function. A genetic understanding of human diseases exposes insight from nature's errors by exposing critical fabrication events that can be validated experimentally and duplicated in mice using genetic engineering to phenocopy the human disease so that it can be explored in detail. This approach led to an assessment of amelogenin protein self-assembly that, when altered, disrupts fabrication of the soft enamel protein matrix. A misassembled protein matrix precursor results in loss of cell-to-matrix contacts essential to fabrication and mineralization.

  3. The fracture behaviour of dental enamel.

    Science.gov (United States)

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A

    2010-01-01

    Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).

  4. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review.

    NARCIS (Netherlands)

    Sculean, A.; Schwarz, F.; Becker, J.; Brecx, M.

    2007-01-01

    Regenerative periodontal therapy aims at reconstitution of the lost periodontal structures such as new formation of root cementum, periodontal ligament and alveolar bone. Findings from basic research indicate that enamel matrix protein derivative (EMD) has a key role in periodontal wound healing.

  5. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  6. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    Full Text Available We have previously identified amelotin (AMTN as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL and ameloblastin (AMBN was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  7. Identification of karyopherin α1 and α7 interacting proteins in porcine tissue.

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    Full Text Available Specialized trafficking systems in eukaryotic cells serve a critical role in partitioning intracellular proteins between the nucleus and cytoplasm. Cytoplasmic proteins (including chromatin remodeling enzymes and transcription factors must gain access to the nucleus to exert their functions to properly program fundamental cellular events ranging from cell cycle progression to gene transcription. Knowing that nuclear import mediated by members of the karyopherin α family of transport receptors plays a critical role in regulating development and differentiation, we wanted to determine the identity of proteins that are trafficked by this karyopherin α pathway. To this end, we performed a GST pull-down assay using porcine orthologs of karyopherin α1 (KPNA1 and karyopherin α7 (KPNA7 and prey protein derived from porcine fibroblast cells and used a liquid chromatography and tandem mass spectrometry (LC-MS/MS approach to determine the identity of KPNA1 and KPNA7 interacting proteins. Our screen revealed that the proteins that interact with KPNA1 and KPNA7 are generally nuclear proteins that possess nuclear localization signals. We further validated two candidate proteins from this screen and showed that they are able to be imported into the nucleus in vivo and also interact with members of the karyopherin α family of proteins in vitro. Our results also reveal the utility of using a GST pull-down approach coupled with LC-MS/MS to screen for protein interaction partners in a non-traditional model system.

  8. Monoclonal antibodies specific to heat-treated porcine blood.

    Science.gov (United States)

    Raja Nhari, Raja Mohd Hafidz; Hamid, Muhajir; Rasli, Nurmunirah Mohamad; Omar, Abdul Rahman; El Sheikha, Aly Farag; Mustafa, Shuhaimi

    2016-05-01

    Porcine blood is potentially being utilized in food as a binder, gelling agent, emulsifier or colorant. However, for certain communities, the usage of animal blood in food is strictly prohibited owing to religious concerns and health reasons. This study reports the development of monoclonal antibodies (MAbs) against heat-treated soluble proteins (HSPs) of autoclaved porcine blood; characterization of MAbs against blood, non-blood and plasma from different animal species using qualitative indirect non-competitive enzyme-linked immunosorbent assay (ELISA); and immunoblotting of antigenic components in HSPs of porcine blood. Fifteen MAbs are specific to heat-treated and raw porcine blood and not cross-reacted with other animal blood and non-blood proteins (meat and non-meat). Twelve MAbs are specific to porcine plasma, while three MAbs specific to porcine plasma are cross-reacted with chicken plasma. Immunoblotting revealed antigenic protein bands (∼60, ∼85-100 and ∼250 kDa) in porcine blood and plasma recognized by the MAbs. Selection of MAbs that recognized 60 kDa HSPs of porcine blood and plasma as novel monoclonal antibodies would be useful for detection of porcine plasma in processed food using the immunoassay method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Enamel Defects Reflect Perinatal Exposure to Bisphenol A

    Science.gov (United States)

    Jedeon, Katia; De la Dure-Molla, Muriel; Brookes, Steven J.; Loiodice, Sophia; Marciano, Clémence; Kirkham, Jennifer; Canivenc-Lavier, Marie-Chantal; Boudalia, Sofiane; Bergès, Raymond; Harada, Hidemitsu; Berdal, Ariane; Babajko, Sylvie

    2014-01-01

    Endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), are environmental ubiquitous pollutants and associated with a growing health concern. Anecdotally, molar incisor hypomineralization (MIH) is increasing concurrently with EDC-related conditions, which has led us to investigate the effect of BPA on amelogenesis. Rats were exposed daily to BPA from conception until day 30 or 100. At day 30, BPA-affected enamel exhibited hypomineralization similar to human MIH. Scanning electron microscopy and elemental analysis revealed an abnormal accumulation of organic material in erupted enamel. BPA-affected enamel had an abnormal accumulation of exogenous albumin in the maturation stage. Quantitative real-timePCR, Western blotting, and luciferase reporter assays revealed increased expression of enamelin but decreased expression of kallikrein 4 (protease essential for removing enamel proteins) via transcriptional regulation. Data suggest that BPA exerts its effects on amelogenesis by disrupting normal protein removal from the enamel matrix. Interestingly, in 100-day-old rats, erupting incisor enamel was normal, suggesting amelogenesis is only sensitive to MIH-causing agents during a specific time window during development (as reported for human MIH). The present work documents the first experimental model that replicates MIH and presents BPA as a potential causative agent of MIH. Because human enamel defects are irreversible, MIH may provide an easily accessible marker for reporting early EDC exposure in humans. PMID:23764278

  10. Imaging the Cemento-Enamel Junction Using a 20-MHz Ultrasonic Transducer.

    Science.gov (United States)

    Nguyen, Kim-Cuong T; Le, Lawrence H; Kaipatur, Neelambar R; Major, Paul W

    2016-01-01

    The cemento-enamel junction (CEJ), which is the intersection between enamel and cementum, is an important landmark in the diagnosis of periodontal disease. Pulse-echo ultrasound was used to image the CEJs of six porcine lower central incisors with a single 20-MHz transducer. A notch was longitudinally created on the enamel as a stable marker, from which the CEJ was measured. Data were acquired along the tooth's axis at 0.4-mm intervals. Time-distance data were bandpass-filtered to enhance signal-to-noise ratio and record density was increased fourfold to 0.1-mm spacing by a frequency-distance interpolation scheme. Reflections from the CEJ were unambiguously identified along with those from enamel, dentin and cementum. The notch-CEJ distances measured by the ultrasound and micro-computed tomography methods correlated strongly (r = 0.996, p < 0.05) and were in good agreement with the 95% lines of agreement between -0.49 and 0.17 mm, as statistically determined by Bland-Altman analysis. The results indicate the potential of ultrasound to be a reliable and non-ionizing technique to image the CEJ. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Electrophoretic demonstration of glycoproteins, lipoproteins, and phosphoproteins in human and bovine enamel

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Bøg-Hansen, T C

    1990-01-01

    Enamel proteins from fully mineralized human molars and from bovine tooth germs were separated by electrophoresis. The gels were stained for detection of glycoproteins, lipoproteins, and phosphoproteins. Glycoproteins were shown by periodic acid-Schiff staining and lectin blotting. In mature human...... enamel a number of high molecular weight proteins could be demonstrated after ethylenediaminetetra-acetic acid demineralization and subsequent Triton X-100 extraction. These proteins are suggested to be lipoproteins. Phosphoproteins could only be visualized in enamel matrix from the tooth germs....

  12. Targeted p120-catenin ablation disrupts dental enamel development

    DEFF Research Database (Denmark)

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E

    2010-01-01

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide...... by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate...... attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached...

  13. Protection of enamel surfaces in the oral cavity

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo

    The two main diseases that can affect the tooth enamel are dental caries and dental erosion, which both are caused by exposure of the enamel surfaces to acids. In the case of dental caries, acids from bacterial metabolism cause chemical dissolution of the tooth surface, whereas acids from drinks...... and foodstuffs or gastric juice can cause dental erosion. During a lifetime the enamel surface is also exposed to fluids that can have protective effects against dental caries and erosion such as saliva, various foodstuffs, drinking water and many types of drinks. However, little is still known about simple...... inorganic interactions between different fluids and dental caries and little is also known about which saliva proteins are able to protect the enamel surface against dental erosion. Therefore, the overall aim of this thesis was to examine simple inorganic and protein related protective effects with dental...

  14. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes

    Czech Academy of Sciences Publication Activity Database

    Kalous, Jaroslav; Kubelka, Michal; Šolc, Petr; Šušor, Andrej; Motlík, Jan

    2009-01-01

    Roč. 138, - (2009), s. 645-654 ISSN 1470-1626 R&D Projects: GA ČR GA204/06/1297; GA ČR GA523/03/0857; GA ČR GA524/07/1087 Institutional research plan: CEZ:AV0Z50450515 Keywords : protein kinase * porcine oocyte * oocyte maturation Subject RIV: CE - Biochemistry Impact factor: 2.579, year: 2009

  15. Influence of Surfactants and Fluoride against Enamel Erosion.

    Science.gov (United States)

    Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler

    2018-06-06

    This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.

  16. The Unfolded Protein Response in Amelogenesis and Enamel Pathologies

    Directory of Open Access Journals (Sweden)

    Steven J. Brookes

    2017-09-01

    Full Text Available During the secretory phase of their life-cycle, ameloblasts are highly specialized secretory cells whose role is to elaborate an extracellular matrix that ultimately confers both form and function to dental enamel, the most highly mineralized of all mammalian tissues. In common with many other “professional” secretory cells, ameloblasts employ the unfolded protein response (UPR to help them cope with the large secretory cargo of extracellular matrix proteins transiting their ER (endoplasmic reticulum/Golgi complex and so minimize ER stress. However, the UPR is a double-edged sword, and, in cases where ER stress is severe and prolonged, the UPR switches from pro-survival to pro-apoptotic mode. The purpose of this review is to consider the role of the ameloblast UPR in the biology and pathology of amelogenesis; specifically in respect of amelogenesis imperfecta (AI and fluorosis. Some forms of AI appear to correspond to classic proteopathies, where pathological intra-cellular accumulations of protein tip the UPR toward apoptosis. Fluorosis also involves the UPR and, while not of itself a classic proteopathic disease, shares some common elements through the involvement of the UPR. The possibility of therapeutic intervention by pharmacological modulation of the UPR in AI and fluorosis is also discussed.

  17. The Unfolded Protein Response in Amelogenesis and Enamel Pathologies.

    Science.gov (United States)

    Brookes, Steven J; Barron, Martin J; Dixon, Michael J; Kirkham, Jennifer

    2017-01-01

    During the secretory phase of their life-cycle, ameloblasts are highly specialized secretory cells whose role is to elaborate an extracellular matrix that ultimately confers both form and function to dental enamel, the most highly mineralized of all mammalian tissues. In common with many other "professional" secretory cells, ameloblasts employ the unfolded protein response (UPR) to help them cope with the large secretory cargo of extracellular matrix proteins transiting their ER (endoplasmic reticulum)/Golgi complex and so minimize ER stress. However, the UPR is a double-edged sword, and, in cases where ER stress is severe and prolonged, the UPR switches from pro-survival to pro-apoptotic mode. The purpose of this review is to consider the role of the ameloblast UPR in the biology and pathology of amelogenesis; specifically in respect of amelogenesis imperfecta (AI) and fluorosis. Some forms of AI appear to correspond to classic proteopathies, where pathological intra-cellular accumulations of protein tip the UPR toward apoptosis. Fluorosis also involves the UPR and, while not of itself a classic proteopathic disease, shares some common elements through the involvement of the UPR. The possibility of therapeutic intervention by pharmacological modulation of the UPR in AI and fluorosis is also discussed.

  18. Composition of enamel pellicle from dental erosion patients.

    Science.gov (United States)

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p erosion patients (p erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  19. Accelerated enamel mineralization in Dspp mutant mice

    Science.gov (United States)

    Verdelis, Kostas; Szabo-Rogers, Heather L.; Xu, Yang; Chong, Rong; Kang, Ryan; Cusack, Brian J.; Jani, Priyam; Boskey, Adele L.; Qin, Chunlin; Beniash, Elia

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases — dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp–/– mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp–/– animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp–/– incisors compared to the Dspp+/– control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel. PMID:26780724

  20. Chymotrypsin C (Caldecrin) Is Associated with Enamel Development

    Science.gov (United States)

    Lacruz, R.S.; Smith, C.E.; Smith, S.M.; Hu, P.; Bringas, P.; Sahin-Tóth, M.; Moradian-Oldak, J.; Paine, M.L.

    2011-01-01

    Two main proteases cleave enamel extracellular matrix proteins during amelogenesis. Matrix metalloprotease-20 (Mmp20) is the predominant enzyme expressed during the secretory stage, while kallikrein-related peptidase-4 (Klk4) is predominantly expressed during maturation. Mutations to both Mmp20 and Klk4 result in abnormal enamel phenotypes. During a recent whole-genome microarray analysis of rat incisor enamel organ cells derived from the secretory and maturation stages of amelogenesis, the serine protease chymotrypsin C (caldecrin, Ctrc) was identified as significantly up-regulated (> 11-fold) during enamel maturation. Prior reports indicate that Ctrc expression is pancreas-specific, albeit low levels were also noted in brain. We here report on the expression of Ctrc in the enamel organ. Quantitative PCR (qPCR) and Western blot analysis were used to confirm the expression of Ctrc in the developing enamel organ. The expression profile of Ctrc is similar to that of Klk4, increasing markedly during the maturation stage relative to the secretory stage, although levels of Ctrc mRNA are lower than for Klk4. The discovery of a new serine protease possibly involved in enamel development has important implications for our understanding of the factors that regulate enamel biomineralization. PMID:21828354

  1. Integrative Temporo-Spatial, Mineralogic, Spectroscopic, and Proteomic Analysis of Postnatal Enamel Development in Teeth with Limited Growth

    Directory of Open Access Journals (Sweden)

    Mirali Pandya

    2017-10-01

    Full Text Available Tooth amelogenesis is a complex process beginning with enamel organ cell differentiation and enamel matrix secretion, transitioning through changes in ameloblast polarity, cytoskeletal, and matrix organization, that affects crucial biomineralization events such as mineral nucleation, enamel crystal growth, and enamel prism organization. Here we have harvested the enamel organ including the pliable enamel matrix of postnatal first mandibular mouse molars during the first 8 days of tooth enamel development to conduct a step-wise cross-sectional analysis of the changes in the mineral and protein phase. Mineral phase diffraction pattern analysis using single-crystal, powder sample X-ray diffraction analysis indicated conversion of calcium phosphate precursors to partially fluoride substituted hydroxyapatite from postnatal day 4 (4 dpn onwards. Attenuated total reflectance spectra (ATR revealed a substantial elevation in phosphate and carbonate incorporation as well as structural reconfiguration between postnatal days 6 and 8. Nanoscale liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS demonstrated highest protein counts for ECM/cell surface proteins, stress/heat shock proteins, and alkaline phosphatase on postnatal day 2, high counts for ameloblast cytoskeletal proteins such as tubulin β5, tropomyosin, β-actin, and vimentin on postnatal day 4, and elevated levels of cofilin-1, calmodulin, and peptidyl-prolyl cis-trans isomerase on day 6. Western blot analysis of hydrophobic enamel proteins illustrated continuously increasing amelogenin levels from 1 dpn until 8 dpn, while enamelin peaked on days 1 and 2 dpn, and ameloblastin on days 1–5 dpn. In summary, these data document the substantial changes in the enamel matrix protein and mineral phase that take place during postnatal mouse molar amelogenesis from a systems biological perspective, including (i relatively high levels of matrix protein expression during the early

  2. Oral Vaccination with the Porcine Rotavirus VP4 Outer Capsid Protein Expressed by Lactococcus lactis Induces Specific Antibody Production

    Directory of Open Access Journals (Sweden)

    Yi-jing Li

    2010-01-01

    Full Text Available The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice.

  3. Regulation of Dental Enamel Shape and Hardness

    Science.gov (United States)

    Simmer, J.P.; Papagerakis, P.; Smith, C.E.; Fisher, D.C.; Rountrey, A.N.; Zheng, L.; Hu, J.C.-C.

    2010-01-01

    Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation. PMID:20675598

  4. Expression of nucleolar-related proteins in porcine preimplantation embryos produced in vivo and in vitro

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Wrenzycki, Christine; Strejcek, Frantisek

    2004-01-01

    The expression of nucleolar-related proteins was studied as an indirect marker of the ribosomal RNA (rRNA) gene activation in porcine embryos up to the blastocyst stage produced in vivo and in vitro. A group of the in vivo-developed embryos were cultured with alpha-amanitin to block the de novo...... proteins pRb and p130, which are involved in cell-cycle regulation, was assessed by semiquantitative RT-PCR up to the blastocyst stage. Toward the end of third cell cycle, the nuclei in non-alpha-amanitin-treated, in vivo-produced embryos displayed different stages of transformation of the nuclear...... was delayed in porcine embryos produced in vitro compared to the in vivo-derived counterparts with respect to mRNAs encoding PAF53 and UBF. Moreover, differences existed in the mRNA expression patterns of pRb between in vivo- and in vitro-developed embryos. These findings show, to our knowledge for the first...

  5. Analysis of enamel development using murine model systems: approaches and limitations.

    Directory of Open Access Journals (Sweden)

    Megan K Pugach

    2014-09-01

    Full Text Available A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI. Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: 1 generating transgenic, knockout and knockin mouse models, and 2 analyzing rodent enamel mineral density and functional properties (structure, mechanics of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.

  6. Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel.

    Science.gov (United States)

    White, Shane N; Paine, Michael L; Ngan, Amanda Y W; Miklus, Vetea G; Luo, Wen; Wang, HongJun; Snead, Malcolm L

    2007-02-23

    Dentin sialophosphpoprotein (Dspp) is transiently expressed in the early stage of secretory ameloblasts. The secretion of ameloblast-derived Dspp is short-lived, correlates to the establishment of the dentinoenamel junction (DEJ), and is consistent with Dspp having a role in producing the specialized first-formed harder enamel adjacent to the DEJ. Crack diffusion by branching and dissipation within this specialized first-formed enamel close to the DEJ prevents catastrophic interfacial damage and tooth failure. Once Dspp is secreted, it is subjected to proteolytic cleavage that results in two distinct proteins referred to as dentin sialoprotein (Dsp) and dentin phosphoprotein (Dpp). The purpose of this study was to investigate the biological and mechanical contribution of Dsp and Dpp to enamel formation. Transgenic mice were engineered to overexpress either Dsp or Dpp in their enamel organs. The mechanical properties (hardness and toughness) of the mature enamel of transgenic mice were compared with genetically matched and age-matched nontransgenic animals. Dsp and Dpp contributions to enamel formation greatly differed. The inclusion of Dsp in bulk enamel significantly and uniformly increased enamel hardness (20%), whereas the inclusion of Dpp weakened the bulk enamel. Thus, Dsp appears to make a unique contribution to the physical properties of the DEJ. Dsp transgenic animals have been engineered with superior enamel mechanical properties.

  7. On the critical parameters that regulate the deformation behaviour of tooth enamel.

    Science.gov (United States)

    Xie, Zonghan; Swain, Michael; Munroe, Paul; Hoffman, Mark

    2008-06-01

    Tooth enamel is the hardest tissue in the human body with a complex hierarchical structure. Enamel hypomineralisation--a developmental defect--has been reported to cause a marked reduction in the mechanical properties of enamel and loss of dental function. We discover a distinctive difference in the inelastic deformation mechanism between sound and hypomineralised enamels that is apparently controlled by microstructural variation. For sound enamel, when subjected to mechanical forces the controlling deformation mechanism was distributed shearing within nanometre thick protein layer between its constituent mineral crystals; whereas for hypomineralised enamel microcracking and subsequent crack growth were more evident in its less densely packed microstructure. We develop a mechanical model that not only identifies the critical parameters, i.e., the thickness and shear properties of enamels, that regulate the mechanical behaviour of enamel, but also explains the degradation of hypomineralised enamel as manifested by its lower resistance to deformation and propensity for catastrophic failure. With support of experimental data, we conclude that for sound enamel an optimal microstructure has been developed that endows enamel with remarkable structural integrity for durable mechanical function.

  8. Sequence conservation between porcine and human LRRK2

    DEFF Research Database (Denmark)

    Larsen, Knud; Madsen, Lone Bruhn

    2009-01-01

     Leucine-rich repeat kinase 2 (LRRK2) is a member of the ROCO protein superfamily (Ras of complex proteins (Roc) with a C-terminal Roc domain). Mutations in the LRRK2 gene lead to autosomal dominant Parkinsonism. We have cloned the porcine LRRK2 cDNA in an attempt to characterize conserved...... and expression patterns are conserved across species. The porcine LRRK2 gene was mapped to chromosome 5q25. The results obtained suggest that the LRRK2 gene might be of particular interest in our attempt to generate a transgenic porcine model for Parkinson's disease...

  9. Biomolecular Origin of The Rate-Dependent Deformation of Prismatic Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J; Hsiung, L

    2006-07-05

    Penetration deformation of columnar prismatic enamel was investigated using instrumented nanoindentation testing, carried out at three constant strain rates (0.05 s{sup -1}, 0.005 s{sup -1}, and 0.0005 s{sup -1}). Enamel demonstrated better resistance to penetration deformation and greater elastic modulus values were measured at higher strain rates. The origin of the rate-dependent deformation was rationalized to be the shear deformation of nanoscale protein matrix surrounding each hydroxyapatite crystal rods. And the shear modulus of protein matrix was shown to depend on strain rate in a format: G{sub p} = 0.213 + 0.021 ln {dot {var_epsilon}}. Most biological composites compromise reinforcement mineral components and an organic matrix. They are generally partitioned into multi-level to form hierarchical structures that have supreme resistance to crack growth [1]. The molecular mechanistic origin of toughness is associated with the 'sacrificial chains' between the individual sub-domains in a protein molecule [2]. As the protein molecule is stretched, these 'sacrificial chains' break to protect its backbone and dissipate energy [3]. Such fresh insights are providing new momentum toward updating our understanding of biological materials [4]. Prismatic enamel in teeth is one such material. Prismatic microstructure is frequently observed in the surface layers of many biological materials, as exemplified in mollusk shells [5] and teeth [6]. It is a naturally optimized microstructure to bear impact loading and penetration deformation. In teeth, the columnar prismatic enamel provides mechanical and chemical protection for the relatively soft dentin layer. Its mechanical behavior and reliability are extremely important to ensure normal tooth function and human health. Since enamel generally contains up to 95% hydroxyapatite (HAP) crystals and less than 5% protein matrix, it is commonly believed to be a weak and brittle material with little resistance to

  10. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis.

    Science.gov (United States)

    Gasse, Barbara; Sire, Jean-Yves

    2015-01-01

    In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. We provide the full-length cDNA sequence of A. carolinensis AMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.

  11. Localization of porcine seminal plasma (PSP) proteins in the boar reproductive tract and spermatozoa

    Czech Academy of Sciences Publication Activity Database

    Maňásková, Pavla; Jonáková, Věra

    2008-01-01

    Roč. 78, č. 1 (2008), s. 40-48 ISSN 0165-0378 R&D Projects: GA ČR GA303/06/0895; GA MŠk 1M06011 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : porcine seminal plasma proteins * boar reproductive tract * spermatozoa Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.778, year: 2008

  12. Intravesicular Phosphatase PHOSPHO1 Function in Enamel Mineralization and Prism Formation

    Directory of Open Access Journals (Sweden)

    Mirali Pandya

    2017-10-01

    Full Text Available The transport of mineral ions from the enamel organ-associated blood vessels to the developing enamel crystals involves complex cargo packaging and carriage mechanisms across several cell layers, including the ameloblast layer and the stratum intermedium. Previous studies have established PHOSPHO1 as a matrix vesicle membrane-associated phosphatase that interacts with matrix vesicles molecules phosphoethanolamine and phosphocholine to initiate apatite crystal formation inside of matrix vesicles in bone. In the present study, we sought to determine the function of Phospho1 during amelogenesis. PHOSPHO1 protein localization during amelogenesis was verified using immunohistochemistry, with positive signals in the enamel layer, ameloblast Tomes' processes, and in the walls of ameloblast secretory vesicles. These ameloblast secretory vesicle walls were also labeled for amelogenin and the exosomal protein marker HSP70 using immunohistochemistry. Furthermore, PHOSPHO1 presence in the enamel organ was confirmed by Western blot. Phospho1−/− mice lacked sharp incisal tips, featured a significant 25% increase in total enamel volume, and demonstrated a significant 2-fold reduction in silver grain density of von Kossa stained ground sections indicative of reduced mineralization in the enamel layer when compared to wild-type mice (p < 0.001. Scanning electron micrographs of Phospho1−/− mouse enamel revealed a loss of the prominent enamel prism “picket fence” structure, a loss of parallel crystal organization within prisms, and a 1.56-fold increase in enamel prism width (p < 0.0001. Finally, EDS elemental analysis demonstrated a significant decrease in phosphate incorporation in the enamel layer when compared to controls (p < 0.05. Together, these data establish that the matrix vesicle membrane-associated phosphatase PHOSPHO1 is essential for physiological enamel mineralization. Our findings also suggest that intracellular ameloblast secretory

  13. Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts

    Directory of Open Access Journals (Sweden)

    Oscar Villa

    2015-03-01

    Full Text Available Enamel matrix derivative is used to promote periodontal regeneration during the corrective phase of the treatment of periodontal defects. Our main goal was to analyze the bioactivity of different molecular weight fractions of enamel matrix derivative. Enamel matrix derivative, a complex mixture of proteins, was separated into 13 fractions using size-exclusion chromatography and characterized by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–electrospray ionization–tandem mass spectrometry. Human periodontal ligament fibroblasts were treated with either enamel matrix derivative or the different fractions. Proliferation and cytokine secretion to the cell culture medium were measured and compared to untreated cells. The liquid chromatography–electrospray ionization–tandem mass spectrometry analyses revealed that the most abundant peptides were amelogenin and leucine-rich amelogenin peptide related. The fractions containing proteins above 20 kDa induced an increase in vascular endothelial growth factor and interleukin-6 secretion, whereas lower molecular weight fractions enhanced proliferation and secretion of interleukin-8 and monocyte chemoattractant protein-1 and reduced interleukin-4 release. The various molecular components in the enamel matrix derivative formulation might contribute to reported effects on tissue regeneration through their influence on vascularization, the immune response, and chemotaxis.

  14. Microstructure of enamel.

    Science.gov (United States)

    Boyde, A

    1997-01-01

    Enamel is a composite material consisting of mineral and organic phases. The properties of the mineral phase are modulated dramatically by its division into microscopic crystals, cemented together by the organic matrix protein polymer. A good concept of the 3D orientations of the crystals derives from visualizing their growth perpendicular to the surface in which they develop, which is pitted by the secretory poles of the ameloblasts. The arrangement of the crystals is the cause of the discontinuities, known as the prism boundaries or junctions, in the otherwise continuous structure. These locations acquire a more concentrated organic matrix during maturation, and they are both crack stoppers and crack propagation tracks in the adult tissue. Any tendency of prisms to cleave may be reduced by their varicosities, which reflect daily variations in the rate of production; their cross-sectional shape; the non-parallelism of adjacent groups, which develops through translocation of groups of cells across the surface during development; and the support of any one microscopic tissue element by other tissue, including dentine, placed to resist an applied load. Incremental growth lines are preferential cleavage planes within the enamel. Failure patterns of enamel in normal and abnormal use can be explained by these parameters, with additional consideration of functional variation and fatigue.

  15. Targeted p120-catenin ablation disrupts dental enamel development.

    Science.gov (United States)

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E; Perez-Moreno, Mirna; Stokes, Nicole; Reynolds, Albert B; Fuchs, Elaine; Skobe, Ziedonis

    2010-09-16

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.

  16. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

    Directory of Open Access Journals (Sweden)

    Meredith Robert W

    2013-01-01

    Full Text Available Abstract Background Secondary edentulism (toothlessness has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales, birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma, providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle], Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch], and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo] for remnants of three enamel matrix protein (EMP genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results

  17. Dose response of hydrazine - Deproteinated tooth enamel under blue light stimulation

    International Nuclear Information System (INIS)

    Yuece, Ulkue Rabia; Meric, Niyazi; Atakol, Orhan; Yasar, Fusun

    2010-01-01

    The beta dose response and Optically Stimulated Luminescence (OSL) signal stability characteristics of human tooth enamel deproteinated by hydrazine reagent under blue photon stimulation are reported. Removal of the protein organic component of tooth enamel resulted in a higher OSL sensitivity and slower fading of OSL signals. The effect of chemical sample preparation on the enamel sample sensitivity is discussed and further steps to make this deproteinization treatment suitable for in vitro dose reconstruction studies are suggested.

  18. Dose response of hydrazine - Deproteinated tooth enamel under blue light stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuece, Ulkue Rabia, E-mail: ulkuyuce@hotmail.co [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Tandogan - Ankara (Turkey); Meric, Niyazi, E-mail: meric@ankara.edu.t [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Tandogan - Ankara (Turkey); Atakol, Orhan, E-mail: atakol@science.ankara.edu.t [Ankara University, Science Faculty, Department of Chemistry, 06100, Tandogan - Ankara (Turkey); Yasar, Fusun, E-mail: ab121310@adalet.gov.t [Council of Forensic Medicine, Ankara Branch, Ankara (Turkey)

    2010-08-15

    The beta dose response and Optically Stimulated Luminescence (OSL) signal stability characteristics of human tooth enamel deproteinated by hydrazine reagent under blue photon stimulation are reported. Removal of the protein organic component of tooth enamel resulted in a higher OSL sensitivity and slower fading of OSL signals. The effect of chemical sample preparation on the enamel sample sensitivity is discussed and further steps to make this deproteinization treatment suitable for in vitro dose reconstruction studies are suggested.

  19. Efficacy of enamel matrix protein applied to spontaneous periodontal disease in two dogs.

    Science.gov (United States)

    Watanabe, Kazuhiro; Kikuchi, Masahiro; Okumura, Masahiro; Kadosawa, Tsuyoshi; Fujinaga, Toru

    2003-09-01

    Enamel matrix protein (EMP) was applied for regeneration of periodontal tissue in 2 dogs with spontaneous periodontal disease. Case 1 had bony resorption around the root and root apex of the maxillary fourth premolars. Case 2 had vertical resorption of bone between the mandibular first and second molars. A flap was formed in the buccal gingiva, and EMP was applied onto the surface of the exposed root. One or 4 months postoperatively, increased bone level and clinical attachment were recognized. EMP was therefore suggested to be effective to induce regeneration of periodontal tissues in the cases with periodontal disease.

  20. Salivary a-amylase protects enamel surface against acid induced softening

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo; Moe, Dennis; Kirkeby, Svend

    Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were not iden......Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were......, and one Chinese. After collection, saliva was dialysed and lyophilised and re-dissolved at 0.5% in Type I water. Next, four polished bovine enamel specimens were immersed into each sample under gentle and constant shaking for 12 hours. Last, specimens were exposed to an erosive challenge of pH 2.3 for 4......-TOF mass fingerprinting following trypsin digestion. Each persistent peak in the HPLC chromatograms was related to the protective effect against acid-induced enamel softening obtained by the corresponding saliva sample by multiple regression analysis. Results: One peak identified as a-amylase had...

  1. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  2. An investigation on the crack growth resistance of human tooth enamel: Anisotropy, microstructure and toughening

    Science.gov (United States)

    Yahyazadehfar, Mobin

    The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. The primary objective of this dissertation is to characterize the role of enamel's microstructure and degree of decussation on the fracture behavior of human enamel. The importance of the protein content and aging on the fracture toughness of enamel were also explored. Incremental crack growth in sections of human enamel was achieved using a special inset Compact Tension (CT) specimen configuration. Crack extension was achieved in two orthogonal directions, i.e. longitudinal and transverse to the prism axes. Fracture surfaces and the path of crack growth path were evaluated using scanning electron microscopy (SEM) to understand the fundamental mechanisms of crack growth extension. Furthermore, a hybrid approach was adopted to quantify the contribution of toughening mechanisms to the overall toughness. Results of this investigations showed that human enamel exhibits rising R-curve for both directions of crack extension. Cracks extending transverse to the rods in the outer enamel achieved lower rise in toughness with crack extension, and significantly lower toughness (1.23 +/- 0.20 MPa·m 0.5) than in the inner enamel (1.96 +/- 0.28 MPa· 0.5) and in the longitudinal direction (2.01 +/- 0.21 MPa· 0.5). The crack growth resistance exhibited both anisotropy and inhomogeneity, which arise from the complex hierarchical microstructure and the decussated prism structure. Decussation causes deflection of cracks extending from the enamel surface inwards, and facilitates a continuation of transverse crack extension within the outer enamel. This process dissipates fracture energy and averts cracks from extending toward the dentin and vital pulp. This study is the first to investigate the importance of proteins and the effect of

  3. Anisotropic properties of the enamel organic extracellular matrix.

    Science.gov (United States)

    do Espírito Santo, Alexandre R; Novaes, Pedro D; Line, Sérgio R P

    2006-05-01

    Enamel biosynthesis is initiated by the secretion, processing, and self-assembly of a complex mixture of proteins. This supramolecular ensemble controls the nucleation of the crystalline mineral phase. The detection of anisotropic properties by polarizing microscopy has been extensively used to detect macromolecular organizations in ordinary histological sections. The aim of this work was to study the birefringence of enamel organic matrix during the development of rat molar and incisor teeth. Incisor and molar teeth of rats were fixed in 2% paraformaldehyde/0.5% glutaraldehyde in 0.2 M phosphate-buffered saline (PBS), pH 7.2, and decalcified in 5% nitric acid/4% formaldehyde. After paraffin embedding, 5-microm-thick sections were obtained, treated with xylene, and hydrated. Form birefringence curves were obtained after measuring optical retardations in imbibing media, with different refractive indices. Our observations showed that enamel organic matrix of rat incisor and molar teeth is strongly birefringent, presenting an ordered supramolecular structure. The birefringence starts during the early secretion phase and disappears at the maturation phase. The analysis of enamel organic matrix birefringence may be used to detect the effects of genetic and environmental factors on the supramolecular orientation of enamel matrix and their effects on the structure of mature enamel.

  4. Co-option of Hair Follicle Keratins into Amelogenesis Is Associated with the Evolution of Prismatic Enamel: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Elia Beniash

    2017-10-01

    Full Text Available Recent discovery of hair follicle keratin 75 (KRT75 in enamel raises questions about the function of this protein in enamel and the mechanisms of its secretion. It is also not clear how this protein with a very specific and narrow expression pattern, limited to the inner root sheath of the hair follicle, became associated with enamel. We propose a hypothesis that KRT75 was co-opted by ameloblasts during the evolution of Tomes' process and the prismatic enamel in synapsids.

  5. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

    OpenAIRE

    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K

    1995-01-01

    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  6. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. © 2015 Wiley Periodicals, Inc.

  7. Porcine SLITRK1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Momeni, Jamal; Farajzadeh, Leila

    2014-01-01

    The membrane protein SLITRK1 functions as a developmentally regulated stimulator of neurite outgrowth and variants in this gene have been implicated in Tourette syndrome. In the current study we have cloned and characterized the porcine SLITRK1 gene. The genomic organization of SLITRK1 lacks...

  8. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Directory of Open Access Journals (Sweden)

    Zhichun Zhang

    Full Text Available Mutation of distal-less homeobox 3 (DLX3 is responsible for human tricho-dento-osseous syndrome (TDO with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  9. Mammalian enamel maturation: Crystallographic changes prior to tooth eruption

    Czech Academy of Sciences Publication Activity Database

    Kallistová, Anna; Horáček, I.; Šlouf, Miroslav; Skála, Roman; Fridrichová, Michaela

    2017-01-01

    Roč. 12, č. 2 (2017), č. článku e0171424. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:67985831 ; RVO:61389013 Keywords : resolution electron-microscopy * atomic-force microscopy * dental enamel * vertebrate dentition * rat enamel * protein * evolution * crystals * shape * ameloblastin Subject RIV: EH - Ecology, Behaviour; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Other biological topics; Polymer science (UMCH-V) Impact factor: 2.806, year: 2016

  10. Maturation Stage Enamel Malformations in Amtn and Klk4 Null Mice

    Science.gov (United States)

    Nunez, Stephanie M.; Chun, Yong-Hee P.; Ganss, Bernhard; Hu, Yuanyuan; Richardson, Amelia S; Schmitz, James E.; Fajardo, Roberto; Yang, Jie; Hu, Jan C-C.; Simmer, James P.

    2015-01-01

    Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn−/−, Klk4−/−, Amtn+/−Klk4+/− and Amtn−/−Klk4−/− mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (µCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice, demonstrating a delay in enamel maturation in Amtn−/− incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4 gHA/cm3) in the Klk4−/− and Amtn−/−Klk4−/− mice respectively, compared with wild-type enamel (3.1 gHA/cm3). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4−/− and Amtn−/−Klk4−/− mice. Knoop hardness of Amtn−/− outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4−/− enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn−/− and Klk4−/− mice were distinctly different, while the Amtn−/−Klk4−/− outer enamel was not as hard as in the Amtn−/− and Klk4−/− mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation. PMID:26620968

  11. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein.

    Science.gov (United States)

    Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong

    2014-11-01

    Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.

  12. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel

    Directory of Open Access Journals (Sweden)

    N. Sabel

    2012-01-01

    Full Text Available Enamel structure is of importance in demineralization. Differences in porosity in enamel effect the rate of demineralization, seen between permanent and deciduous teeth. Individual differences have been shown in the mean mineral concentration values in enamel, the role of this in demineralization is not thoroughly investigated. The aim of this study was to study variations of depths of artificial lesions of demineralization and to analyze the depth in relation to variations in the chemical and mineral composition of the enamel. A demineralized lesion was created in second primary molars from 18 individuals. Depths of lesions were then related to individual chemical content of the enamel. Enamel responded to demineralization with different lesion depths and this was correlated to the chemical composition. The carbon content in sound enamel was shown to be higher where lesions developed deeper. The lesion was deeper when the degree of porosity of the enamel was higher.

  13. Role of crystal arrangement on the mechanical performance of enamel.

    Science.gov (United States)

    An, Bingbing; Wang, Raorao; Zhang, Dongsheng

    2012-10-01

    The superior mechanical properties of enamel, such as excellent penetration and crack resistance, are believed to be related to the unique microscopic structure. In this study, the effects of hydroxyapatite (HAP) crystallite orientation on the mechanical behavior of enamel have been investigated through a series of multiscale numerical simulations. A micromechanical model, which considers the HAP crystal arrangement in enamel prisms, the hierarchical structure of HAP crystals and the inelastic mechanical behavior of protein, has been developed. Numerical simulations revealed that, under compressive loading, plastic deformation progression took place in enamel prisms, which is responsible for the experimentally observed post-yield strain hardening. By comparing the mechanical responses for the uniform and non-uniform arrangement of HAP crystals within enamel prisms, it was found that the stiffness for the two cases was identical, while much greater energy dissipation was observed in the enamel with the non-uniform arrangement. Based on these results, we propose an important mechanism whereby the non-uniform arrangement of crystals in enamel rods enhances energy dissipation while maintaining sufficient stiffness to promote fracture toughness, mitigation of fracture and resistance to penetration deformation. Further simulations indicated that the non-uniform arrangement of the HAP crystals is a key factor responsible for the unique mechanical behavior of enamel, while the change in the nanostructure of nanocomposites could dictate the Young's modulus and yield strength of the biocomposite. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Surface variations affecting human dental enamel studied using nanomechanical and chemical analysis

    Science.gov (United States)

    Dickinson, Michelle Emma

    The enamel surface is the interface between the tooth and its ever changing oral environment. Cavity (caries) formation and extrinsic tooth staining are due, respectively, to degradation of the enamel structure under low pH conditions and interactions between salivary pellicle and dietary elements. Both of these occur at the enamel surface and are caused by the local environment changing the chemistry of the surface. The results can be detrimental to the enamel's mechanical integrity and aesthetics. Incipient carious lesions are the precursor to caries and form due to demineralisation of enamel. These carious lesions are a reversible structure where ions (e.g. Ca2+, F -) can diffuse in (remineralisation) to preserve the tooth's structural integrity. This investigation used controlled in vitro demineralisation and remineralisation to study artificial carious lesion formation and repair. The carious lesions were cross-sectioned and characterised using nanoindentation, electron probe micro-analysis and time of flight secondary ion mass spectrometry. Mechanical and chemical maps showed the carious lesion had a significantly reduced hardness and elastic modulus, and the calcium and phosphate content was lower than in sound enamel. Fluoride based remineralisation treatments gave a new phase (possibly fluorohydroxyapatite) within the lesion with mechanical properties higher than sound enamel. The acquired salivary pellicle is a protein-rich film formed by the physisorption of organic molecules in saliva onto the enamel surface. Its functions include lubrication during mastication and chemical protection. However, pellicle proteins react with dietary elements such as polyphenols (tannins in tea) causing a brown stain. This study has used in vitro dynamic nanoindentation and atomic force microscopy to examine normal and stained pellicles formed in vivo. The effects of polyphenols on the pellicle's mechanical properties and morphology have been studied. It was found that the

  15. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion

    Science.gov (United States)

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (pmeasurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

  16. Non-specific esterases in partly mineralized bovine enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S

    1990-01-01

    Activity for non-specific esterase was demonstrated in the matrix of developing bovine enamel with alpha-naphthyl acetate and 5-bromoindoxyl acetate as the esterase substrates. By use of high-performance liquid chromatography gel filtration, ion-exchange chromatography, and electrophoresis three...... esterases were shown to be present in the enamel matrix. The enzymes showed highest activity at pH 6.5-7.5. In sections a strong reaction was observed in the secretory ameloblasts. The esterases may be proteolytic enzymes that participate in the degradation of the matrix proteins....

  17. In vitro wear of four ceramic materials and human enamel on enamel antagonist.

    Science.gov (United States)

    Nakashima, Jun; Taira, Yohsuke; Sawase, Takashi

    2016-06-01

    The purpose of the present study was to evaluate the wear of four different ceramics and human enamel. The ceramics used were lithium disilicate glass (e.max Press), leucite-reinforced glass (GN-Ceram), yttria-stabilized zirconia (Aadva Zr), and feldspathic porcelain (Porcelain AAA). Hemispherical styli were fabricated with these ceramics and with tooth enamel. Flattened enamel was used for antagonistic specimens. After 100,000 wear cycles of a two-body wear test, the height and volume losses of the styli and enamel antagonists were determined. The mean and standard deviation for eight specimens were calculated and statistically analyzed using a non-parametric (Steel-Dwass) test (α = 0.05). GN-Ceram exhibited greater stylus height and volume losses than did Porcelain AAA. E.max Press, Porcelain AAA, and enamel styli showed no significant differences, and Aadva Zr exhibited the smallest stylus height and volume losses. The wear of the enamel antagonist was not significantly different among GN-Ceram, e.max Press, Porcelain AAA, and enamel styli. Aadva Zr resulted in significantly lower wear values of the enamel antagonist than did GN-Ceram, Porcelain AAA, and enamel styli. In conclusion, leucite-reinforced glass, lithium disilicate glass, and feldspathic porcelain showed wear values closer to those for human enamel than did yttria-stabilized zirconia. © 2016 Eur J Oral Sci.

  18. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar

    Science.gov (United States)

    Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William

    2016-01-01

    Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation. PMID:27494172

  19. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo.

    Science.gov (United States)

    Bidlack, Felicitas B; Xia, Yan; Pugach, Megan K

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes ( Tg ) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180 Tg , CTRNC Tg and LRAP Tg mice to generate M180 Tg and CTRNC Tg double transgene and M180 Tg , CTRNC Tg , LRAP Tg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene ( p structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.

  20. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo

    Directory of Open Access Journals (Sweden)

    Felicitas B. Bidlack

    2017-11-01

    Full Text Available Mice lacking amelogenin (KO have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle or homozygosity (on both alleles. Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05. The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most

  1. Specific functions of the Rep and Rep' proteins of porcine circovirus during copy-release and rolling-circle DNA replication

    Science.gov (United States)

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep', in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replica...

  2. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  3. Porcine placenta mitigates protein-energy malnutrition-induced fatigue.

    Science.gov (United States)

    Han, Na-Ra; Kim, Kyu-Yeop; Kim, Myong-Jo; Kim, Min-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2013-01-01

    Fatigue can be caused by a deficiency of nutrition or immune function. The goal of this study was to identify the effects of porcine placenta extract (PPE) and its constituents, amino acids (glutamic acid, glycine, arginine, and proline), on protein-energy malnutrition (PEM)-induced fatigue. Mice were administered a PEM diet and came to immunodeficient status. Simultaneously, the mice were administered PPE or amino acids and a forced swimming test (FST) was performed. We analyzed the levels of fatigue-related factors in serum, splenocytes, and muscles. In the FST, PPE or amino acids significantly decreased immobility times compared with the PEM diet. PPE or amino acids also significantly decreased the serum levels of fatigue-related factors after the FST. Additionally, PPE significantly decreased the levels of fatigue-related muscle parameters after the FST. In this in vitro study, PPE increased the mRNA and protein expression of Ki-67 and promoted the proliferation of splenocytes. PPE or amino acids significantly increased the levels of intracellular calcium and the translocation into the nucleus of nuclear factor of activated T-cells cytoplasmic in stimulated splenocytes. PPE or amino acids significantly decreased the production of fatigue-related inflammatory cytokines in the stimulated splenocytes. Additionally, the translocated levels of nuclear factor-κB in the nucleus and the degradation of the inhibitory protein, IκBα, in the cytosol were inhibited by PPE or amino acids. These results demonstrate that PPE and its constituents regulate PEM-induced fatigue through improving levels of immunity and decreasing fatigue-related factors. PPE may be a potential agent for a recovery from fatigue. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention.

    Directory of Open Access Journals (Sweden)

    A A Algarni

    Full Text Available To compare the effects of stannous (Sn and fluoride (F ions and their combination on acquired enamel pellicle (AEP protein composition (proteome experiment, and protection against dental erosion (functional experiment.In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10, according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2, F (225ppm/13mM, NaF, Sn and F combination (Sn+F and deionized water (DIW, negative control. The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10 were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d. Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry.Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89%, Sn (67% and F (42% compared to DIW (all significantly different, p<0.05.This study highlighted that anti-erosion rinses (e.g. Sn+F can modify quantitatively and qualitatively the AEP formed on bovine enamel. Moreover, our study demonstrated a combinatory effect that amplified the anti-erosive protection on tooth surface.

  5. The development of enamel tubules during the formation of enamel in the marsupial Monodelphis domestica.

    OpenAIRE

    Sasagawa, I; Ferguson, M W

    1991-01-01

    In Monodelphis domestica, although both processes from odontoblasts and projections from ameloblasts were found in developing enamel, the majority of the contents of enamel tubules were probably processes that originated from odontoblasts. Processes from odontoblasts penetrating into enamel touched part of the ameloblasts in the stage of enamel formation. No specialised cell junctions were seen at the adherence between the two. There were no enamel tubules in the aprismatic and pseudoprismati...

  6. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  7. Three-dimensional primate molar enamel thickness.

    Science.gov (United States)

    Olejniczak, Anthony J; Tafforeau, Paul; Feeney, Robin N M; Martin, Lawrence B

    2008-02-01

    Molar enamel thickness has played an important role in the taxonomic, phylogenetic, and dietary assessments of fossil primate teeth for nearly 90 years. Despite the frequency with which enamel thickness is discussed in paleoanthropological discourse, methods used to attain information about enamel thickness are destructive and record information from only a single plane of section. Such semidestructive planar methods limit sample sizes and ignore dimensional data that may be culled from the entire length of a tooth. In light of recently developed techniques to investigate enamel thickness in 3D and the frequent use of enamel thickness in dietary and phylogenetic interpretations of living and fossil primates, the study presented here aims to produce and make available to other researchers a database of 3D enamel thickness measurements of primate molars (n=182 molars). The 3D enamel thickness measurements reported here generally agree with 2D studies. Hominoids show a broad range of relative enamel thicknesses, and cercopithecoids have relatively thicker enamel than ceboids, which in turn have relatively thicker enamel than strepsirrhine primates, on average. Past studies performed using 2D sections appear to have accurately diagnosed the 3D relative enamel thickness condition in great apes and humans: Gorilla has the relatively thinnest enamel, Pan has relatively thinner enamel than Pongo, and Homo has the relatively thickest enamel. Although the data set presented here has some taxonomic gaps, it may serve as a useful reference for researchers investigating enamel thickness in fossil taxa and studies of primate gnathic biology.

  8. Hipoplasia Enamel Pada Penderita Penyakit Eksantema

    OpenAIRE

    Dewi saputri

    2008-01-01

    Hipoplasia enamel merupakan gangguan pada masa pemhentukan matriks organik yang menyebabkan gangguan struktur pada enamel sehingga secara klinis terlihat pada suatu bagian dari gigi tidak terbentuk enamel dan kadang-kadang sama sekali tidak terbentuk enamel, serta diikuti dengan perubahan warna pada gigi. Dikenal berbagai faktor penyebab hipoplasia enamel, salah satunya adalah penyakit eksantema yaitu menyebabkan infeksi pada bayi dan anak-anak. Gambaran histopatologis hipoplasia enamel adala...

  9. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes.

    Science.gov (United States)

    Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S

    2015-10-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs. © International & American Associations for Dental Research 2015.

  10. Deformation behavior of human enamel and dentin-enamel junction under compression.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  11. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    Science.gov (United States)

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Silicate enamel for alloyed steel

    International Nuclear Information System (INIS)

    Ket'ko, K.K.

    1976-01-01

    The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru

  13. A Fourth KLK4 Mutation Is Associated with Enamel Hypomineralisation and Structural Abnormalities

    Directory of Open Access Journals (Sweden)

    Claire E. L. Smith

    2017-05-01

    Full Text Available “Amelogenesis imperfecta” (AI describes a group of genetic conditions that result in defects in tooth enamel formation. Mutations in many genes are known to cause AI, including the gene encoding the serine protease, kallikrein related peptidase 4 (KLK4, expressed during the maturation stage of amelogenesis. In this study we report the fourth KLK4 mutation to be identified in autosomal recessively-inherited hypomaturation type AI, c.632delT, p.(L211Rfs*37 (NM_004917.4, NP_004908.4. This homozygous variant was identified in five Pakistani AI families and is predicted to result in a transcript with a premature stop codon that escapes nonsense mediated decay. However, the protein may misfold, as three of six disulphide bonds would be disrupted, and may be degraded or non-functional as a result. Primary teeth were obtained from one affected individual. The enamel phenotype was characterized using high-resolution computerized X-ray tomography (CT, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX, and microhardness testing (MH. Enamel from the affected individual (referred to as KLK4 enamel was hypomineralised in comparison with matched control enamel. Furthermore, KLK4 inner enamel was hypomineralised compared with KLK4 outer enamel. SEM showed a clear structural demarcation between KLK4 inner and outer enamel, although enamel structure was similar to control tissue overall. EDX showed that KLK4 inner enamel contained less calcium and phosphorus and more nitrogen than control inner enamel and KLK4 outer enamel. MH testing showed that KLK4 inner enamel was significantly softer than KLK4 outer enamel (p < 0.001. However, the hardness of control inner enamel was not significantly different to that of control outer enamel. Overall, these findings suggest that the KLK4 c.632delT mutation may be a common cause of autosomal recessive AI in the Pakistani population. The phenotype data obtained mirror findings in the Klk4

  14. Ameloblasts require active RhoA to generate normal dental enamel.

    Science.gov (United States)

    Xue, Hui; Li, Yong; Everett, Eric T; Ryan, Kathleen; Peng, Li; Porecha, Rakhee; Yan, Yan; Lucchese, Anna M; Kuehl, Melissa A; Pugach, Megan K; Bouchard, Jessica; Gibson, Carolyn W

    2013-08-01

    RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited. © 2013 Eur J Oral Sci.

  15. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    International Nuclear Information System (INIS)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2016-01-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.

  16. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Cui, Xiang-Shun; Kim, Nam-Hyung [Department of Animal Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Sun, Shao-Chen, E-mail: sunsc@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-06-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.

  17. Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells.

    Science.gov (United States)

    Ji, Chun-Miao; Wang, Bin; Zhou, Jiyong; Huang, Yao-Wei

    2018-04-01

    A monkey cell line Vero (ATCC CCL-81) is commonly used for porcine epidemic diarrhea virus (PEDV) propagation in vitro. However, it is still controversial whether the porcine aminopeptidase N (pAPN) counterpart on Vero cells (Vero-APN) confers PEDV entry. We found that endogenous expression of Vero-APN was undetectable in the mRNA and the protein levels in Vero cells. We cloned the partial Vero-APN gene (3340-bp) containing exons 1 to 9 from cellular DNA and subsequently generated two APN-knockout Vero cell lines by CRISPR/Cas9 approach. PEDV infection of two APN-knockout Vero cells had the same efficiency as the Vero cells with or without neuraminidase treatment. A Vero cells stably expressing pAPN did not increase PEDV production. SiRNA-knockdown of pAPN in porcine jejunum epithelial cells had no effects on PEDV infection. The results suggest that there exists an additional cellular receptor on Vero or porcine jejunal cells independent of APN for PEDV entry. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity

    Directory of Open Access Journals (Sweden)

    MICHEL eGOLDBERG

    2014-09-01

    Full Text Available In the field of dentistry, the murine incisor has long been considered as an outstanding model to study amelogenesis. However, it clearly appears that enamel from wild type mouse incisors and molars presents several structural differences. In incisor, exclusively radial enamel is observed. In molars, enamel displays a high level of complexity since the inner part is lamellar whereas the outer enamel shows radial and tangential structures. Recently, the serotonin 2B receptor (5-HT2BR was shown to be involved in ameloblast function and enamel mineralization. The incisors from 5HT2BR knockout (KO mice exhibit mineralization defects mostly in the outer maturation zone and porous matrix network in the inner zone. In the molars, the mutation affects both secretory and maturation stages of amelogenesis since pronounced alterations concern overall enamel structures. Molars from 5HT2BR KO mice display reduction in enamel thickness, alterations of inner enamel architecture including defects in Hunter-Schreger Bands arrangements, and altered maturation of the outer radial enamel. Differences of enamel structure were also observed between incisor and molar from other KO mice depleted for genes encoding enamel extracellular matrix proteins.

  19. Structural, mechanical and chemical evaluation of molar-incisor hypomineralization-affected enamel: A systematic review.

    Science.gov (United States)

    Elhennawy, Karim; Manton, David John; Crombie, Felicity; Zaslansky, Paul; Radlanski, Ralf J; Jost-Brinkmann, Paul-Georg; Schwendicke, Falk

    2017-11-01

    To systematically assess and contrast reported differences in microstructure, mineral density, mechanical and chemical properties between molar-incisor-hypomineralization-affected (MIH) enamel and unaffected enamel. Studies on extracted human teeth, clinically diagnosed with MIH, reporting on the microstructure, mechanical properties or the chemical composition and comparing them to unaffected enamel were reviewed. Electronic databases (PubMed, Embase and Google Scholar) were screened; hand searches and cross-referencing were also performed. Twenty-two studies were included. Fifteen studies on a total of 201 teeth investigated the structural properties, including ten (141 teeth) on microstructure and seven (60 teeth) on mineral density; six (29 teeth) investigated the mechanical properties and eleven (87 teeth) investigated the chemical properties of MIH-affected enamel and compared them to unaffected enamel. Studies unambiguously found a reduction in mineral quantity and quality (reduced Ca and P content), reduction of hardness and modulus of elasticity (also in the clinically sound-appearing enamel bordering the MIH-lesion), an increase in porosity, carbon/carbonate concentrations and protein content compared to unaffected enamel. were ambiguous with regard to the extent of the lesion through the enamel to the enamel-dentin junction, the Ca/P ratio and the association between clinical appearance and defect severity. There is an understanding of the changes related to MIH-affected enamel. The association of these changes with the clinical appearance and resulting implications for clinical management are unclear. MIH-affected enamel is greatly different from unaffected enamel. This has implications for management strategies. The possibility of correlating the clinical appearance of MIH-affected enamel with the severity of enamel changes and deducing clinical concepts (risk stratification etc.) is limited. Crown Copyright © 2017. Published by Elsevier Ltd. All

  20. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    Science.gov (United States)

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  1. Effect of bacterial or porcine lipase with low- or high-fat diets on nutrient absorption in pancreatic-insufficient dogs.

    Science.gov (United States)

    Suzuki, A; Mizumoto, A; Rerknimitr, R; Sarr, M G; DiMango, E P

    1999-02-01

    Treatment of human exocrine pancreatic insufficiency is suboptimal. This study assessed the effects of bacterial lipase, porcine lipase, and diets on carbohydrate, fat, and protein absorption in pancreatic-insufficient dogs. Dogs were given bacterial or porcine lipase and 3 diets: a 48% carbohydrate, 27% fat, and 25% protein standard diet; a high-carbohydrate, low-fat, and low-protein diet; or a low-carbohydrate, high-fat, and high-protein diet (66%/18%/16% and 21%/43%/36% calories). With the standard diet, coefficient of fat absorption increased dose-dependently with both lipases (P vs. low-fat and -protein diet). There were no interactions among carbohydrate, fat, and protein absorption. Correcting steatorrhea requires 75 times more porcine than bacterial lipase (18 vs. 240 mg). High-fat and high-protein diets optimize fat absorption with both enzymes. High-fat diets with bacterial or porcine lipase should be evaluated in humans with pancreatic steatorrhea.

  2. A post-classical theory of enamel biomineralization… and why we need one.

    Science.gov (United States)

    Simmer, James P; Richardson, Amelia S; Hu, Yuan-Yuan; Smith, Charles E; Ching-Chun Hu, Jan

    2012-09-01

    Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.

  3. MMP20 Promotes a Smooth Enamel Surface, a Strong DEJ, and a Decussating Enamel Rod Pattern

    Science.gov (United States)

    Bartlett, John D.; Skobe, Ziedonis; Nanci, Antonio; Smith, Charles E.

    2012-01-01

    Mutations of the Matrix metalloproteinase-20 (MMP20, enamelysin) gene cause autosomal recessive amelogenesis imperfecta and Mmp20 ablated mice also have malformed dental enamel. Here we show that Mmp20 null mouse secretory stage ameloblasts maintained a columnar shape and were present as a single layer of cells. However, the null maturation stage ameloblasts covered extraneous nodules of ectopic calcified material formed at the enamel surface. Remarkably, nodule formation occurs in null mouse enamel when MMP20 is normally no longer expressed. The malformed enamel in Mmp20 null teeth was loosely attached to the dentin and the entire enamel layer tended to separate from the dentin indicative of a faulty DEJ. The enamel rod pattern was also altered in Mmp20 null mice. Each enamel rod is formed by a single ameloblast and is a mineralized record of the migration path of the ameloblast that formed it. The Mmp20 null mouse enamel rods were grossly malformed or were absent indicating that the ameloblasts do not migrate properly when backing away from the DEJ. Thus, MMP20 is required for ameloblast cell movement necessary to form the decussating enamel rod patterns, for the prevention of ectopic mineral formation, and to maintain a functional DEJ. PMID:22243247

  4. A comparative study on component volumes from outer to inner dental enamel in relation to enamel tufts.

    Science.gov (United States)

    Setally Azevedo Macena, Marcus; de Alencar e Silva Leite, Maria Luísa; de Lima Gouveia, Cíntia; de Lima, Tamires Alcoforado Sena; Athayde, Priscilla Alves Aguiar; de Sousa, Frederico Barbosa

    2014-06-01

    Dental enamel presents marked mechanical properties gradients from outer to inner enamel, a region lacking component volumes profiles. Tufts, structures of inner enamel, have been shown to play a role in enamel resilience. We aimed at comparing component volumes from inner to outer enamel in relation to enamel tufts. Transversal ground sections from the cervical half of unerupted human third molars (n=10) were prepared and histological points were selected along transversal lines (extending from innermost to outer enamel) traced across tufts and adjacent control areas without tufts. Component volumes were measured at each histological point. Component volumes ranges were: 70.6-98.5% (mineral), 0.02-20.78% (organic), 3.8-9.8% (total water), 3-9% (firmly bound water), and 0.02-3.3% (loosely bound water). Inner enamel presented the lowest mineral volumes and the highest non-mineral volumes. Mineral, water and organic contents differed as a function of the distance from innermost enamel but not between the tuft and control lines. Tufts presented opaqueness in polarizing microscopy (feature of fracture lines). Organic volume gradient correlated with a relatively flat profile of loosely bound water. Inner, but not outer enamel, rehydrated after air-dried enamel was heated to 50°C and re-exposed to room conditions, as predicted by the organic/water gradient profiles. Component volumes vary markedly from outer to inner enamel, but not between areas with or without tufts (that behave like fracture lines under polarizing microscopy). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse

    NARCIS (Netherlands)

    Jalali, R.; Guo, J.; Zandieh-Doulabi, B.; Bervoets, T.J.M.; Paine, M.L.; Boron, W.F.; Parker, M.D.; Bijvelds, M.J.C.; Medina, J.F.; DenBesten, P.K.; Bronckers, A.L.J.J.

    2014-01-01

    During the formation of dental enamel, maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by cotransporting HCO3 − with Na+. Mutation in SLC4A4 (coding for the sodium-bicarbonate

  6. Morphology and fracture of enamel.

    Science.gov (United States)

    Myoung, Sangwon; Lee, James; Constantino, Paul; Lucas, Peter; Chai, Herzl; Lawn, Brian

    2009-08-25

    This study examines the inter-relation between enamel morphology and crack resistance by sectioning extracted human molars after loading to fracture. Cracks appear to initiate from tufts, hypocalcified defects at the enamel-dentin junction, and grow longitudinally around the enamel coat to produce failure. Microindentation corner cracks placed next to the tufts in the sections deflect along the tuft interfaces and occasionally penetrate into the adjacent enamel. Although they constitute weak interfaces, the tufts are nevertheless filled with organic matter, and appear to be stabilized against easy extension by self-healing, as well as by mutual stress-shielding and decussation, accounting at least in part for the capacity of tooth enamel to survive high functional forces.

  7. Spatial Distribution of Transgenic Protein After Gene Electrotransfer to Porcine Muscle

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Corydon, Thomas; Hojman, Pernille

    2012-01-01

    Abstract Gene electrotransfer is an effective nonviral technique for delivery of plasmid DNA into tissues. From a clinical perspective, muscle is an attractive target tissue as long-term, high-level transgenic expression can be achieved. Spatial distribution of the transgenic protein following gene...... electrotransfer to muscle in a large animal model has not yet been investigated. In this study, 17 different doses of plasmid DNA (1-1500 μg firefly luciferase pCMV-Luc) were delivered in vivo to porcine gluteal muscle using electroporation. Forty-eight hours post treatment several biopsies were obtained from...... each transfection site in order to examine the spatial distribution of the transgenic product. We found a significantly higher luciferase activity in biopsies from the center of the transfection site compared to biopsies taken adjacent to the center, 1 and 2 cm along muscle fiber orientation (p...

  8. Hen's teeth with enamel cap: from dream to impossibility

    Directory of Open Access Journals (Sweden)

    Girondot Marc

    2008-09-01

    Full Text Available Abstract Background The ability to form teeth was lost in an ancestor of all modern birds, approximately 100-80 million years ago. However, experiments in chicken have revealed that the oral epithelium can respond to inductive signals from mouse mesenchyme, leading to reactivation of the odontogenic pathway. Recently, tooth germs similar to crocodile rudimentary teeth were found in a chicken mutant. These "chicken teeth" did not develop further, but the question remains whether functional teeth with enamel cap would have been obtained if the experiments had been carried out over a longer time period or if the chicken mutants had survived. The next odontogenetic step would have been tooth differentiation, involving deposition of dental proteins. Results Using bioinformatics, we assessed the fate of the four dental proteins thought to be specific to enamel (amelogenin, AMEL; ameloblastin, AMBN; enamelin, ENAM and to dentin (dentin sialophosphoprotein, DSPP in the chicken genome. Conservation of gene synteny in amniotes allowed definition of target DNA regions in which we searched for sequence similarity. We found the full-length chicken AMEL and the only N-terminal region of DSPP, and both are invalidated genes. AMBN and ENAM disappeared after chromosomal rearrangements occurred in the candidate region in a bird ancestor. Conclusion These findings not only imply that functional teeth with enamel covering, as present in ancestral Aves, will never be obtained in birds, but they also indicate that these four protein genes were dental specific, at least in the last toothed ancestor of modern birds, a specificity which has been questioned in recent years.

  9. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    International Nuclear Information System (INIS)

    Lee, Changhee; Yoo, Dongwan

    2006-01-01

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-ΔE-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-ΔE virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-ΔE virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm

  10. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Palmisano, Giuseppe

    2014-01-01

    in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy. In total 305 unique proteins were identified, including 160...... phosphorylation levels in muscle within 24 h PM. The high phosphorylation level of heat shock proteins (HSPs) in early PM may be an adaptive response to slaughter stress and protect muscle cell from apoptosis, as observed in the serine 84 of HSP27. This work indicated that PM muscle proteins underwent significant...... and rigor mortis development in PM muscle. BIOLOGICAL SIGNIFICANCE: The manuscript describes the characterization of postmortem (PM) porcine muscle within 24 h postmortem from the perspective of protein phosphorylation using advanced phosphoproteomic techniques. In the study, the authors employed...

  11. Porcine cluster of differentiation (CD) markers 2018 update.

    Science.gov (United States)

    Dawson, Harry D; Lunney, Joan K

    2018-06-01

    Pigs are a major source of food worldwide; preventing and treating their infectious diseases is essential, requiring a thorough understanding of porcine immunity. The use of pigs as models for human physiology is a growing area; progress in this area has been limited because the immune toolkit is not robust. The international community has established cluster of differentiation (CD) markers for assessing cells involved in immunity as well as characterizing numerous other cells like stem cells. Overall, for humans 419 proteins have been designated as CD markers, each reacting with a defined set of antibodies (Abs). This paper summarizes current knowledge of swine CD markers and identifies 359 corresponding CD proteins in pigs. A broad-based literature and vendor search was conducted to identify defined sets of monoclonal (mAbs) and polyclonal Abs (pAbs) reacting with porcine CD markers along with other reagents (fusion proteins, ELISAs, PCR assays, and gene edited cell and pig models). This process identified over 800 reagents that are reportedly reactive with 266 pig CD markers. Despite this number, there is a great need to develop and characterize additional CD marker reagents, particularly mAbs, for pig research. There are numerous high priority targets: reagents for the characterization of porcine innate lymphoid cells, polarized macrophages and T regulatory cells and for the detection of porcine CD45 isoforms. Overall, improved technologies and genomics have contributed to dramatic increases in our knowledge of the pig, its immune system, disease and vaccine responses, and utility as a biomedical model. The development of more CD reagents will clearly advance these initiatives. Published by Elsevier Ltd.

  12. Molecular characterization, sequence analysis and tissue expression of a porcine gene – MOSPD2

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2017-01-01

    Full Text Available The full-length cDNA sequence of a porcine gene, MOSPD2, was amplified using the rapid amplification of cDNA ends method based on a pig expressed sequence tag sequence which was highly homologous to the coding sequence of the human MOSPD2 gene. Sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 491 amino acids that has high homology with the motile sperm domain-containing protein 2 (MOSPD2 of five species: horse (89%, human (90%, chimpanzee (89%, rhesus monkey (89% and mouse (85%; thus, it could be defined as a porcine MOSPD2 gene. This novel porcine gene was assigned GeneID: 100153601. This gene is structured in 15 exons and 14 introns as revealed by computer-assisted analysis. The phylogenetic analysis revealed that the porcine MOSPD2 gene has a closer genetic relationship with the MOSPD2 gene of horse. Tissue expression analysis indicated that the porcine MOSPD2 gene is generally and differentially expressed in the spleen, muscle, skin, kidney, lung, liver, fat and heart. Our experiment is the first to establish the primary foundation for further research on the porcine MOSPD2 gene.

  13. Prediction and characterization of protein-protein interaction networks in swine

    Directory of Open Access Journals (Sweden)

    Wang Fen

    2012-01-01

    Full Text Available Abstract Background Studying the large-scale protein-protein interaction (PPI network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes. Results We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into 567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks. Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and 863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods. The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively. Conclusion The results reveal that the predicted PPI networks are considerably reliable. The present research is an important pioneering work on protein function research. The porcine PPI data set, the confidence score of each interaction and a list of related data are available at (http://pppid.biositemap.com/.

  14. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel

    OpenAIRE

    Sabel, N.; Robertson, A.; Nietzsche, S.; Norén, J. G.

    2012-01-01

    Enamel structure is of importance in demineralization. Differences in porosity in enamel effect the rate of demineralization, seen between permanent and deciduous teeth. Individual differences have been shown in the mean mineral concentration values in enamel, the role of this in demineralization is not thoroughly investigated. The aim of this study was to study variations of depths of artificial lesions of demineralization and to analyze the depth in relation to variations in the chemical an...

  15. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Cai Xuepeng

    2010-07-01

    Full Text Available Abstract Background Porcine circovirus 2 (PCV2 is a serious problem to the swine industry and can lead to significant negative impacts on profitability of pork production. Syndrome associated with PCV2 is known as porcine circovirus closely associated with post-weaning multisystemic wasting syndrome (PMWS. The capsid (Cap protein of PCV2 is a major candidate antigen for development of recombinant vaccine and serological diagnostic method. The recombinant Cap protein has the ability to self-assemble into virus-like particles (VLPs in vitro, it is particularly opportunity to develop the PV2 VLPs vaccine in Escherichia coli,(E.coli , because where the cost of the vaccine must be weighed against the value of the vaccinated pig, when it was to extend use the VLPs vaccine of PCV2. Results In this report, a highly soluble Cap-tag protein expressed in E.coli was constructed with a p-SMK expression vector with a fusion tag of small ubiquitin-like modifiers (SUMO. The recombinant Cap was purified using Ni2+ affinity resins, whereas the tag was used to remove the SUMO protease. Simultaneously, the whole native Cap protein was able to self-assemble into VLPs in vitro when viewed under an electron microscope. The Cap-like particles had a size and shape that resembled the authentic Cap. The result could also be applied in the large-scale production of VLPs of PCV2 and could be used as a diagnostic antigen or a potential VLP vaccine against PCV2 infection in pigs. Conclusion we have, for the first time, utilized the SUMO fusion motif to successfully express the entire authentic Cap protein of PCV2 in E. coli. After the cleavage of the fusion motif, the nCap protein has the ability to self-assemble into VLPs, which can be used as as a potential vaccine to protect pigs from PCV2-infection.

  16. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli

    Science.gov (United States)

    2010-01-01

    Background Porcine circovirus 2 (PCV2) is a serious problem to the swine industry and can lead to significant negative impacts on profitability of pork production. Syndrome associated with PCV2 is known as porcine circovirus closely associated with post-weaning multisystemic wasting syndrome (PMWS). The capsid (Cap) protein of PCV2 is a major candidate antigen for development of recombinant vaccine and serological diagnostic method. The recombinant Cap protein has the ability to self-assemble into virus-like particles (VLPs) in vitro, it is particularly opportunity to develop the PV2 VLPs vaccine in Escherichia coli,(E.coli ), because where the cost of the vaccine must be weighed against the value of the vaccinated pig, when it was to extend use the VLPs vaccine of PCV2. Results In this report, a highly soluble Cap-tag protein expressed in E.coli was constructed with a p-SMK expression vector with a fusion tag of small ubiquitin-like modifiers (SUMO). The recombinant Cap was purified using Ni2+ affinity resins, whereas the tag was used to remove the SUMO protease. Simultaneously, the whole native Cap protein was able to self-assemble into VLPs in vitro when viewed under an electron microscope. The Cap-like particles had a size and shape that resembled the authentic Cap. The result could also be applied in the large-scale production of VLPs of PCV2 and could be used as a diagnostic antigen or a potential VLP vaccine against PCV2 infection in pigs. Conclusion we have, for the first time, utilized the SUMO fusion motif to successfully express the entire authentic Cap protein of PCV2 in E. coli. After the cleavage of the fusion motif, the nCap protein has the ability to self-assemble into VLPs, which can be used as as a potential vaccine to protect pigs from PCV2-infection. PMID:20646322

  17. Mechanical characterization of enamel coated steel bars.

    Science.gov (United States)

    2012-12-01

    In this study, the corrosion process of enamel-coated deformed rebar completely immersed in 3.5 wt.% NaCl solution was evaluated : over a period of 84 days by EIS testing. Three types of enamel coating were investigated: pure enamel, 50/50 enamel coa...

  18. An association of external and internal enamel pearls.

    OpenAIRE

    Mahajan S; Charan C

    2005-01-01

    We report a rare case of an association of external enamel pearl with internal enamel pearl on the root of a molar. To the best of our knowledge, association of external and internal enamel pearls has not been previously reported. We discussed the histogenesis of enamel pearls and proposed that internal enamel pearl formation may be a continuation of formation of external enamel pearl.

  19. Detection of antibodies against porcine parvovirus nonstructural protein NS1 may distinguish between vaccinated and infected pigs

    DEFF Research Database (Denmark)

    Madsen, Eva Smedegaard; Madsen, Knud Gert; Nielsen, Jens

    1997-01-01

    The humoral antibody response against the nonstructural protein NS1 and the structural protein VP2 of porcine parvovirus (PPV) was evaluated by immuno-peroxidase test (IPT) and enzyme linked immune sorbent assay (ELISA) using recombinant PPV antigens. The coding sequence for NS1 and VP2...... was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) genome resulting in two recombinant baculoviruses AcNPV-NS1 and AcNPV-VP2, respectively. Sf9 cells (Spodoptora frugidiperda) inoculated with AcNPV-NS1 producing recombinant nonstructural protein (rNS1) and AcNPV-VP2...... producing recombinant virion protein (rVP2) were used in IPT and ELISA to analyse serum antibodies. Pigs vaccinated with an inactivated whole virus vaccine and experimentally infected pigs were studied. Significant titers against rVP2 were obtained in both vaccinated and infected pigs. Specific antibodies...

  20. Properties of hot rolled steels for enamelling

    International Nuclear Information System (INIS)

    Gavrilovski, Dragica; Gavrilovski, Milorad

    2003-01-01

    The results of an investigation of the structure and properties of experimental produced hot rolled steels suitable for enamelling are presented in the paper. Hot rolled steels for enamelling represent a special group of the steels for conventional enamelling. Their quality has to be adapted to the method and conditions of enamelling. Therefore, these steels should meet some specific requirements. In addition to usual investigation of the chemical composition and mechanical properties, microstructure and quality of the steel surface also were investigated. The basic aim was to examine steels capability for enamelling, i. e. steels resistance to the fish scales phenomena, by trial enamelling, as well as quality of the steel - enamel contact surface, to evaluate the binding. Also, the changes of the mechanical properties, especially the yield point, during thermal treatment, as a very specific requirement, were investigated, by simplified method. Good results were obtained confirming the steels capability for enamelling. (Original)

  1. The fracture behaviour of dental enamel

    OpenAIRE

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A.

    2009-01-01

    Abstract Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterised in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge...

  2. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    Science.gov (United States)

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  3. Type VII collagen is enriched in the enamel organic matrix associated with the dentin-enamel junction of mature human teeth.

    Science.gov (United States)

    McGuire, Jacob D; Walker, Mary P; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P

    2014-06-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of the enamel organic matrix at the dentin-enamel junction (DEJ) of mature human teeth. Immunofluorescent confocal microscopy of demineralized tooth sections localized type VII collagen to the organic matrix surrounding individual enamel rods near the DEJ. Morphologically, immunoreactive type VII collagen helical-bundles resembled the gnarled-pattern of enamel rods detected by Coomassie Blue staining. Western blotting of whole crown or enamel matrix extracts also identified characteristic Mr=280 and 230 kDa type VII dimeric forms, which resolved into 75 and 25 kDa bands upon reduction. As expected, the collagenous domain of type VII collagen was resistant to pepsin digestion, but was susceptible to purified bacterial collagenase. These results demonstrate the inner enamel organic matrix in mature teeth contains macromolecular type VII collagen. Based on its physical association with the DEJ and its well-appreciated capacity to complex with other collagens, we hypothesize that enamel embedded type VII collagen fibrils may contribute not only to the structural resilience of enamel, but may also play a role in bonding enamel to dentin. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Comparison of shear bond strength between unfilled resin to dry enamel and dentin bonding to moist and dry enamel

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-05-01

    Full Text Available Statement of Problem: The use of dentine bondings on enamel and dentin in total etch protocols has recently become popular. Unfilled resin is hydrophobic and dentin bonding is hydrophilic in nature. This chemical difference could be effective in enamel bonding process. Purpose: The aim of this study was to compare the shear bond strength of unfilled resin to dry enamel and dentin bonding to dry and moist enamel. Materials and Methods: In this experimental study, a total of 30 incisor teeth were used. The specimens were randomly assigned to three groups of 10. 37% phosphoric acid etchant was applied to the enamel surfaces in each group for 15 seconds, rinsed with water for 20 seconds and dried for 20 seconds with compressed air in groups one and two. After conditioning, group 1 received unfilled resin (Margin Bond, Colten and group 2 received dentin bonding (Single Bond, 3M and in group 3 after conditioning and rinsing with water, a layer of dentin bonding (Single Bond was applied on wet enamel. The enamel and dentin bonding were light cured for 20 seconds. A ring mold 3.5 mm in diameter and 2 mm height was placed over the specimens to receive the composite filling material (Z100, 3M. The composite was cured for 40 seconds. The specimens were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. The findings were analyzed by ANOVA One-Way and Tukey HSD tests. Results: Shear bond strength of dentin bonding to dry enamel was significantly less than unfilled resin to dry enamel (P<0.05. There was no significant difference between the bond strength of dentin bonding to moist and dry enamel. In addition bond strength of dentin bonding to wet enamel was not significantly different from unfilled resin to dry enamel. Conclusion: Based on the findings of this study, it is suggested that enamel surface should remain slightly moist after etching before bonding with single bond but when using unfilled resin, the

  5. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    Science.gov (United States)

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  6. A New Sugarcane Cystatin Strongly Binds to Dental Enamel and Reduces Erosion.

    Science.gov (United States)

    Santiago, A C; Khan, Z N; Miguel, M C; Gironda, C C; Soares-Costa, A; Pelá, V T; Leite, A L; Edwardson, J M; Buzalaf, M A R; Henrique-Silva, F

    2017-08-01

    Cystatin B was recently identified as an acid-resistant protein in acquired enamel pellicle; it could therefore be included in oral products to protect against caries and erosion. However, human recombinant cystatin is very expensive, and alternatives to its use are necessary. Phytocystatins are reversible inhibitors of cysteine peptidases that are found naturally in plants. In plants, they have several biological and physiological functions, such as the regulation of endogenous processes, defense against pathogens, and response to abiotic stress. Previous studies performed by our research group have reported high inhibitory activity and potential agricultural and medical applications of several sugarcane cystatins, including CaneCPI-1, CaneCPI-2, CaneCPI-3, and CaneCPI-4. In the present study, we report the characterization of a novel sugarcane cystatin, named CaneCPI-5. This cystatin was efficiently expressed in Escherichia coli, and inhibitory assays demonstrated that it was a potent inhibitor of human cathepsins B, K, and L ( K i = 6.87, 0.49, and 0.34 nM, respectively). The ability of CaneCPI-5 to bind to dental enamel was evaluated using atomic force microscopy. Its capacity to protect against initial enamel erosion was also tested in vitro via changes in surface hardness. CaneCPI-5 showed a very large force of interaction with enamel (e.g., compared with mucin and casein) and significantly reduced initial enamel erosion. These results suggest that the inclusion of CaneCPIs in dental products might confer protection against enamel erosion.

  7. Alteration of dentin-enamel mechanical properties due to dental whitening treatments.

    Science.gov (United States)

    Zimmerman, B; Datko, L; Cupelli, M; Alapati, S; Dean, D; Kennedy, M

    2010-05-01

    The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0 GPa versus 113.4 GPa), while smaller increases were observed in the dentin (17.9 GPa versus 27.9 GPa). Likewise, there was an increase in the hardness of enamel (2.0 GPa versus 4.3 GPa) and dentin (0.5 GPa versus 0.7 GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in the literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips, Opalescence or UltraEtch caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips showed a reduction in the elastic modulus of enamel (55.3 GPa to 32.7 GPa) and increase in the elastic modulus of dentin (17.2 GPa to 24.3 GPa). Opalescence treatments did not significantly affect the enamel properties, but did result in a decrease in the modulus of dentin (18.5 GPa to 15.1 GPa). Additionally, as expected, UltraEtch treatment decreased the modulus and hardness of enamel (48.7 GPa to 38.0 GPa and 1.9 GPa to 1.5 GPa, respectively) and dentin (21.4 GPa to 15.0 GPa and 1.9 GPa to 1.5 GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. Published by Elsevier Ltd.

  8. Molecular cloning, characterization and developmental expression of porcine β-synuclein

    DEFF Research Database (Denmark)

    Larsen, Knud; Frandsen, Pernille Munk; Madsen, Lone Bruhn

    2010-01-01

    The synuclein family includes three known proteins: alpha-synuclein, beta-synuclein and gamma-synuclein. beta-Synuclein inhibits the aggregation of alpha-synuclein, a protein involved in Parkinson's disease. We have cloned and characterized the cDNA sequence for porcine beta-synuclein (SNCB) from...

  9. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    Science.gov (United States)

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  10. Effect of colchicine on the transport of precursor enamel protein in secretory ameloblasts studied by 3H-proline radioautography in vitro

    International Nuclear Information System (INIS)

    Matsuo, S.; Takano, Y.; Wakisaka, S.; Ichikawa, H.; Nishikawa, S.; Akai, M.

    1988-01-01

    The incorporation of 3H-proline into the secretory ameloblasts of rat molar tooth germs cultured with or without colchicine was studied by light and electron microscope radioautography to determine the function of microtubules in the transport of precursor enamel protein from the rough-surfaced endoplasmic reticulum (rER) to the Golgi cisternae. The grain counts over the transitional vesicles, which accumulated in various cellular regions with colchicine treatment, continued to increase with chase time, unlike in controls. At 30 and 90 min chase, these counts were significantly higher than in controls. Moreover, the total grain count over the organelles (rER, pale granules, and transitional vesicles), which are positioned before the Golgi cisternae in the synthetic pathway, maintained a significantly higher level at 90 min chase in colchicine-treated tooth germs than in controls. The transport of synthesized protein to the Golgi cisternae via transitional vesicles was suppressed in colchicine-treated tooth germs. Some grains appeared with time over pale granular materials that appeared in the intercellular spaces of secretory ameloblasts with colchicine treatment. However, at each chase period, the grain count over pale granular materials was not so high as the count over the enamel in control. The present results indicate that colchicine affects the transport of newly synthesized protein from the rER to the Golgi cisterna via transitional vesicles, probably by interfering with the oriented transport related to microtubular function. It is suggested that the microtubular system may be concerned with the movement of the transitional vesicles

  11. Measurement of opalescence of tooth enamel.

    Science.gov (United States)

    Lee, Yong-Keun; Yu, Bin

    2007-08-01

    Opalescent dental esthetic restoratives look natural and esthetic in any light, react to light in the same manner as the natural tooth and show improved masking effect. The objective of this study was to determine the opalescence of tooth enamel with reflection spectrophotometers. Color of intact bovine and human enamel was measured in the reflectance and transmittance modes. Two kinds of spectrophotometers were used for bovine and one kind was used for human enamel. The opalescence parameter (OP) was calculated as the difference in yellow-blue color coordinate (CIE Deltab(*)) and red-green color coordinate (CIE Deltaa(*)) between the reflected and transmitted colors. Mean OP value of bovine enamel was 10.6 (+/-1.4) to 19.0 (+/-2.1), and varied by the configuration of spectrophotometers. Mean OP value of human enamel was 22.9 (+/-1.9). Opalescence varied by the configuration of measuring spectrophotometer and the species of enamel. These values could be used in the development of esthetic restorative materials.

  12. Cloning and prokaryotic expression of the porcine lipasin gene.

    Science.gov (United States)

    Li, M M; Geng, J; Guo, Y J; Jiao, X Q; Lu, W F; Zhu, H S; Wang, Y Y; Yang, G Y

    2015-11-23

    Lipasin has recently been demonstrated to be involved in lipid metabolism. In this study, two specific primers were used to amplify the lipasin open reading frame from porcine liver tissue. The polymerase chain reaction product was cloned to a pGEM®-T Easy Vector, digested by SalI and NotI, and sequenced. The lipasin fragment was then cloned to a pET21(b) vector and digested by the same restriction enzyme. The recombinant plasmid was transferred to Escherichia coli (BL21), and the lipasin protein was induced with isopropyl-β-D-thiogalactopyranoside. The protein obtained was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting. A pET-lipasin prokaryotic recombinant expression vector was successfully constructed, and a 25.2-kDa protein was obtained. This study provides a basis for further research on the biological function of porcine lipasin.

  13. In vitro study of hydroxy apatite and enamel powder fused in human enamel by Nd:YAG laser

    International Nuclear Information System (INIS)

    Ferrreira, Marcus Vinicius Lucas

    2000-01-01

    The aim of this study was to evaluate the effects of pulsed Nd:YAG (1064 nm) laser irradiation on hydroxyapatite and enamel powder fusion. This laser beam is not well absorbed by this two compounds for this reason they were mixed with vegetal coal to increase the absorption of the laser beam. Fifteen enamel flat surfaces and six occlusal enamel surfaces were prepared with three different substances: hydroxyapatite mixed with vegetal coal (3:1 in weigh); enamel powder mixed with vegetal coal (3:1 in weigh); vegetal coal. The occlusal surfaces were utilized to determine if the compounds could seal pits and fissures. Flat surfaces were utilized to determine fusion of hydroxyapatite and enamel powder. All samples were irradiated with Nd:YAG laser with the parameters: 80 mJ, 15 Hz, 1,2 W, 100 μs pulse-width, 131,1 J/cm 2 . Laser beam was delivered to the samples with a 300 μm diameter fiber optic. Morphology of the irradiated surfaces were examined by scanning electron microscopy (SEM). The compounds with hydroxyapatite and enamel powder were fused to enamel surfaces. Only partial pits and fissures sealing could be observed. (author)

  14. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    Science.gov (United States)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  15. Characterization of porcine cytokine inducible SH2-containing protein gene and its association with piglet diarrhea traits.

    Science.gov (United States)

    Niu, Buyue; Guo, Dongchun; Liu, Zhiran; Han, Xiaofei; Wang, Xibiao

    2017-12-01

    The cytokine inducible SH2-containing protein (CISH), which might play a role in porcine intestine immune responses, was one of the promising candidate genes for piglet anti-disease traits. An experiment was conducted to characterize the porcine CISH (pCISH) gene and to evaluate its genetic effects on pig anti-disease breeding. Both reverse transcription polymerase chain reaction (RT-PCR) and PCR were performed to obtain the sequence of pCISH gene. A pEGFP-C1-CISH vector was constructed and transfected into PK-15 cells to analysis the distribution of pCISH. The sequences of individuals were compared with each other to find the polymorphisms in pCISH gene. The association analysis was performed in Min pigs and Landrace pigs to evaluate the genetic effects on piglet diarrhea traits. In the present research, the coding sequence and genomic sequence of pCISH gene was obtained. Porcine CISH was mainly localized in cytoplasm. TaqI and HaeIII PCR restriction fragment length polymorphism (RFLP) assays were established to detect single nucleotide polymorphisms (SNPs); A-1575G in promoter region and A2497C in Intron1, respectively. Association studies indicated that SNP A-1575G was significantly associated with diarrhea index of Min piglets (p<0.05) and SNP A2497C was significantly associated with the diarrhea trait of both Min pig and Landrace piglets (p<0.05). This study suggested that the pCISH gene might be a novel candidate gene for pig anti-disease traits, and further studies are needed to confirm the results of this preliminary research.

  16. Heterologous expression of full-length capsid protein of porcine circovirus 2 in Escherichia coli and its potential use for detection of antibodies

    Czech Academy of Sciences Publication Activity Database

    Marčeková, Zuzana; Psikal, P.; Kosinová, E.; Benada, Oldřich; Šebo, Peter; Bumba, Ladislav

    2009-01-01

    Roč. 162, 1-2 (2009), s. 133-141 ISSN 0166-0934 R&D Projects: GA ČR GP310/07/P115; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : PCV 2 * Porcine circovirus * Capsid protein Subject RIV: EE - Microbiology, Virology Impact factor: 2.133, year: 2009

  17. A review of the effect of vital teeth bleaching on the mechanical properties of tooth enamel.

    Science.gov (United States)

    Elfallah, Hunida M; Swain, Michael V

    2013-09-01

    Tooth whitening is considered the easiest and most cost-effective procedure for treating tooth discoloration. Contemporary bleaching agents contain hydrogen peroxide as the active ingredient. It is either applied directly or produced from its precursor, carbamide peroxide. A review of the published literature was undertaken to investigate the potential adverse effects of whitening products on dental enamel, with a focus on its mechanical properties and the influence of various parameters on study outcomes. There appear to be considerable differences in opinion as to whether changes in mechanical properties occur as a result of tooth whitening. However, the mechanical property findings of those studies appear to be related to the load applied during the indentation tests. Most studies which used loads higher than 500mN to determine enamel hardness showed no effect of bleaching, whereas those using lower loads were able to detect hardness reduction in the surface layer of enamel. In conclusion, bleaching reduces the hardness of the enamel surface of enamel, and that is more readily detected with instrumented low load testing systems. This hardness reduction may arise due to degradation or denaturation of enamel matrix proteins by the peroxide oxidation.

  18. Comparison of Two Mouse Ameloblast-like Cell Lines for Enamel-specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Juni eSarkar

    2014-07-01

    Full Text Available Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam and Mmp20, while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4. Western blot analyses show that Amelx, Ambn and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.

  19. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    Science.gov (United States)

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  20. Transcription analysis of the porcine alveolar macrophage response to Mycoplasma hyopneumoniae.

    Directory of Open Access Journals (Sweden)

    Li Bin

    Full Text Available Mycoplasma hyopneumoniae is considered the major causative agent of porcine respiratory disease complex, occurs worldwide and causes major economic losses to the pig industry. To gain more insights into the pathogenesis of this organism, the high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages to M. hyopneumoniae infection. A total of 1033 and 1235 differentially expressed genes were identified in porcine alveolar macrophages in responses to exposure to M. hyopneumoniae at 6 and 15 hours post infection, respectively. The differentially expressed genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, cell adhesion, defense response, signal transduction, protein folding, protein ubiquitination and so on. The pathway analysis demonstrated that the most significant pathways were the chemokine signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, nucleotide-binding oligomerization domains (Nod-like receptor signaling pathway and apoptosis signaling pathway. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR. The expression kinetics of chemokines was further analyzed. The present study is the first to document the response of porcine alveolar macrophages to M. hyopneumoniae infection. The data further developed our understanding of the molecular pathogenesis of M. hyopneumoniae.

  1. Transcription analysis of the porcine alveolar macrophage response to Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Bin, Li; Luping, Du; Bing, Sun; Zhengyu, Yu; Maojun, Liu; Zhixin, Feng; Yanna, Wei; Haiyan, Wang; Guoqing, Shao; Kongwang, He

    2014-01-01

    Mycoplasma hyopneumoniae is considered the major causative agent of porcine respiratory disease complex, occurs worldwide and causes major economic losses to the pig industry. To gain more insights into the pathogenesis of this organism, the high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages to M. hyopneumoniae infection. A total of 1033 and 1235 differentially expressed genes were identified in porcine alveolar macrophages in responses to exposure to M. hyopneumoniae at 6 and 15 hours post infection, respectively. The differentially expressed genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, cell adhesion, defense response, signal transduction, protein folding, protein ubiquitination and so on. The pathway analysis demonstrated that the most significant pathways were the chemokine signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, nucleotide-binding oligomerization domains (Nod)-like receptor signaling pathway and apoptosis signaling pathway. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR. The expression kinetics of chemokines was further analyzed. The present study is the first to document the response of porcine alveolar macrophages to M. hyopneumoniae infection. The data further developed our understanding of the molecular pathogenesis of M. hyopneumoniae.

  2. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  3. Specific functions of the Rep and Rep׳ proteins of porcine circovirus during copy-release and rolling-circle DNA replication.

    Science.gov (United States)

    Cheung, Andrew K

    2015-07-01

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep׳, in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replication) and generates the single-stranded circular (ssc) genome from the displaced DNA strand. In the process, a minus-genome primer (MGP) necessary for complementary-strand synthesis, from ssc to ccc, is synthesized. Rep׳ cleaves the growing nascent-strand to regenerate the parent ccc molecule. In the process, a Rep׳-DNA hybrid containing the right palindromic sequence (at the origin of DNA replication) is generated. Analysis of the virus particle showed that it is composed of four components: ssc, MGP, capsid protein and a novel Rep-related protein (designated Protein-3). Copyright © 2015. Published by Elsevier Inc.

  4. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6

    International Nuclear Information System (INIS)

    Fang, Puxian; Fang, Liurong; Liu, Xiaorong; Hong, Yingying; Wang, Yongle; Dong, Nan; Ma, Panpan; Bi, Jing; Wang, Dang; Xiao, Shaobo

    2016-01-01

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfected with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells. -- Highlights: •The leader-body fusion site of NS6 sgRNA is identified. •NS6 sgRNA uses a non-canonical transcription regulatory sequence (TRS). •NS6 can be expressed in PDCoV-infected cell. •NS6 predominantly localize to the ER complex and ER-Golgi intermediate compartment.

  5. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Puxian; Fang, Liurong; Liu, Xiaorong; Hong, Yingying; Wang, Yongle; Dong, Nan; Ma, Panpan [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Bi, Jing [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); Department of Immunology and Aetology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065 (China); Wang, Dang [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Xiao, Shaobo, E-mail: vet@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China)

    2016-12-15

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfected with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells. -- Highlights: •The leader-body fusion site of NS6 sgRNA is identified. •NS6 sgRNA uses a non-canonical transcription regulatory sequence (TRS). •NS6 can be expressed in PDCoV-infected cell. •NS6 predominantly localize to the ER complex and ER-Golgi intermediate compartment.

  6. Mapping the antigenic structure of porcine parvovirus at the level of peptides

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Langeveld, Jan; Bøtner, Anette

    1998-01-01

    The antigenic structure of the capsid proteins of porcine parvovirus (PPV) was investigated. A total of nine linear epitopes were identified by Pepscan using porcine or rabbit anti-PPV antisera. No sites were identified with a panel of neutralising monoclonal antibodies (MAbs). All epitopes were...... located in the region corresponding to the major capsid protein VP2. Based on this information, and on analogy to other autonomous parvoviruses, 24 different peptides were synthesised, coupled to keyhole limpet haemocyanin (KLH) and used to immunise rabbits. Most antisera were able to bind viral protein....... It is concluded that in PPV, the VP2 N-terminus is involved in virus neutralisation (VN) and peptides from this region are therefore primary targets for developing peptide-based vaccines against this virus....

  7. The Role of Na:K:2Cl Cotransporter 1 (NKCC1/SLC12A2) in Dental Epithelium during Enamel Formation in Mice

    Science.gov (United States)

    Jalali, Rozita; Lodder, Johannes C.; Zandieh-Doulabi, Behrouz; Micha, Dimitra; Melvin, James E.; Catalan, Marcelo A.; Mansvelder, Huibert D.; DenBesten, Pamela; Bronckers, Antonius

    2017-01-01

    Na+:K+:2Cl− cotransporters (NKCCs) belong to the SLC12A family of cation-coupled Cl− transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for Nkcc1 were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer. In incisors of Nkcc1-null mice late maturation ameloblasts were disorganized, shorter and the mineral density of the enamel was reduced by 10% compared to wild-type controls. Protein levels of gap junction protein connexin 43, Na+-dependent bicarbonate cotransporter e1 (NBCe1), and the Cl−-dependent bicarbonate exchangers SLC26A3 and SLC26A6 were upregulated in Nkcc1-null enamel organs while the level of NCKX4/SLC24A4, the major K+, Na+ dependent Ca2+ transporter in maturation ameloblasts, was slightly downregulated. Whole-cell voltage clamp studies on rat ameloblast-like HAT-7 cells indicated that bumetanide increased ion-channel activity conducting outward currents. Bumetanide also reduced cell volume of HAT-7 cells. We concluded that non-ameloblast dental epithelium expresses NKCC1 to regulate cell volume in enamel organ and provide ameloblasts with Na+, K+ and Cl− ions required for the transport of mineral- and bicarbonate-ions into enamel. Absence of functional Nkcc1 likely is compensated by other types of ion channels and ion transporters. The increased amount of Cx43 in enamel organ cells in Nkcc1-null mice suggests that these cells display a higher number of gap junctions to increase intercellular communication. PMID:29209227

  8. Morphology of the cemento-enamel junction in premolar teeth.

    Science.gov (United States)

    Arambawatta, Kapila; Peiris, Roshan; Nanayakkara, Deepthi

    2009-12-01

    The present study attempted to describe the distribution of the mineralized tissues that compose the cemento-enamel junction, with respect to both the different types of permanent premolars of males and females and the various surfaces of individual teeth. The cervical region of ground sections of 67 premolars that had been extracted for orthodontic reasons were analyzed using transmitted light microscopy to identify which of the following tissue interrelationships was present at the cemento-enamel junction: cementum overlapping enamel; enamel overlapping cementum; edge-to-edge relationship between cementum and enamel; or the presence of gaps between the enamel and cementum with exposed dentin. An edge-to-edge interrelation between root cementum and enamel was predominant (55.1%). In approximately one-third of the sample, gaps between cementum and enamel with exposed dentin were observed. Cementum overlapping enamel was less prevalent than previously reported, and enamel overlapping cementum was seen in a very small proportion of the sample. In any one tooth, the distribution of mineralized tissues at the cemento-enamel junction was irregular and unpredictable. The frequency of gaps between enamel and cementum with exposure of dentin was higher than previously reported, which suggests that this region is fragile and strongly predisposed to pathological changes. Hence, this region should be protected and carefully managed during routine clinical procedures such as dental bleaching, orthodontic treatment, and placement of restorative materials.

  9. Studies of direct electroinsulating enamels

    International Nuclear Information System (INIS)

    Siwulski, S.; Gruszka, B.; Nocun, M.

    1998-01-01

    The results of studies on the influence of chemical composition of direct electroinsulating enamel on its properties were presented. The influence of alkaline Li 2 O, Na 2 O, K 2 O and adhesion promoting oxides CoO, NiO, CuO, MoO 3 on the frits properties were estimated. The characteristic temperature T g and T m as well as flowability were measured. The dielectric properties of frits and prepared enamels were also measured. Enamel substrates were prepared and tested for application in thick hybrid circuit technology. (author)

  10. Enamel subsurface damage due to tooth preparation with diamonds.

    Science.gov (United States)

    Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D

    1997-10-01

    In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.

  11. Distribution of Cathepsin K in Late Stage of Tooth Germ Development and Its Function in Degrading Enamel Matrix Proteins in Mouse.

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    Full Text Available Cathepsin K (CTSK is a member of cysteine proteinase family, and is predominantly expressed in osteoclastsfor degradationof bone matrix proteins. Given the similarity in physical properties of bone and dental mineralized tissues, including enamel, dentin and cementum, CTSK is likely to take part in mineralization process during odontogenesis. On the other hand, patients with pycnodysostosis caused by mutations of the CTSK gene displayedmultipledental abnormalities, such as hypoplasia of the enamel, obliterated pulp chambers, hypercementosis and periodontal disease. Thereforeitis necessary to study the metabolic role of CTSK in tooth matrix proteins. In this study, BALB/c mice at embryonic day 18 (E18, post-natal day 1 (P1, P5, P10 and P20 were used (5 mice at each time pointfor systematic analyses of CTSK expression in the late stage of tooth germ development. We found that CTSK was abundantly expressed in the ameloblasts during secretory and maturation stages (P5 and P10 by immunohistochemistry stainings.During dentinogenesis, the staining was also intense in the mineralization stage (P5 and P10,but not detectable in the early stage of dentin formation (P1 and after tooth eruption (P20.Furthermore, through zymography and digestion test in vitro, CTSK was proved to be capable of hydrolyzing Emdogain and also cleaving Amelogenininto multiple products. Our resultsshed lights on revealing new functions of CTSK and pathogenesis of pycnodysostosis in oral tissues.

  12. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles.

    Science.gov (United States)

    Zhang, Mingcheng; Li, Fangfei; Diao, Xinping; Kong, Baohua; Xia, Xiufang

    2017-11-01

    This study investigated the effects of multiple freeze-thaw (F-T) cycles on water mobility, microstructure damage and protein structure changes in porcine longissimus muscle. The transverse relaxation time T 2 increased significantly when muscles were subjected to multiple F-T cycles (Pcycles caused sarcomere shortening, Z line fractures, and I band weakening and also led to microstructural destruction of muscle tissue. The decreased free amino group content and increased dityrosine in myofibrillar protein (MP) revealed that multiple F-T cycles caused protein cross-linking and oxidation. In addition, the results of size exclusion chromatography, circular dichroism spectra, UV absorption spectra, and intrinsic fluorescence spectroscopy indirectly proved that multiple F-T cycles could cause protein aggregation and degradation, α-helix structure disruption, hydrophobic domain exposure, and conformational changes of MP. Overall, repeated F-T cycles changed the protein structure and water distribution within meat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    Science.gov (United States)

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  14. Characterization of porcine cytokine inducible SH2-containing protein gene and its association with piglet diarrhea traits

    Directory of Open Access Journals (Sweden)

    Buyue Niu

    2017-12-01

    Full Text Available Objective The cytokine inducible SH2-containing protein (CISH, which might play a role in porcine intestine immune responses, was one of the promising candidate genes for piglet anti-disease traits. An experiment was conducted to characterize the porcine CISH (pCISH gene and to evaluate its genetic effects on pig anti-disease breeding. Methods Both reverse transcription polymerase chain reaction (RT-PCR and PCR were performed to obtain the sequence of pCISH gene. A pEGFP-C1-CISH vector was constructed and transfected into PK-15 cells to analysis the distribution of pCISH. The sequences of individuals were compared with each other to find the polymorphisms in pCISH gene. The association analysis was performed in Min pigs and Landrace pigs to evaluate the genetic effects on piglet diarrhea traits. Results In the present research, the coding sequence and genomic sequence of pCISH gene was obtained. Porcine CISH was mainly localized in cytoplasm. TaqI and HaeIII PCR restriction fragment length polymorphism (RFLP assays were established to detect single nucleotide polymorphisms (SNPs; A-1575G in promoter region and A2497C in Intron1, respectively. Association studies indicated that SNP A-1575G was significantly associated with diarrhea index of Min piglets (p<0.05 and SNP A2497C was significantly associated with the diarrhea trait of both Min pig and Landrace piglets (p<0.05. Conclusion This study suggested that the pCISH gene might be a novel candidate gene for pig anti-disease traits, and further studies are needed to confirm the results of this preliminary research.

  15. Ceramic-like wear behaviour of human dental enamel.

    Science.gov (United States)

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Retrospective individual dosimetry using EPR of tooth enamel

    International Nuclear Information System (INIS)

    Skvortzo, V.; Ivannikov, A.; Stepanenko, V.; Wieser, A.; Bougai, A.; Brick, A.; Chumak, V.; Radchuk, V.; Repin, V.; Kirilov, V.

    1996-01-01

    The results of joint investigations (in the framework of ECP-10 program) aimed on the improvement of the sensitivity and accuracy of the procedure of dose measurement using tooth enamel EPR spectroscopy are presented. It is shown, what the sensitivity of method may be increased using special physical-chemical procedure of the enamel samples treatment, which leads to the reducing of EPR signal of organic components in enamel. Tooth diseases may have an effect on radiation sensitivity of enamel. On the basis of statistical analysis of the results of more then 2000 tooth enamel samples measurements it was shown, what tooth enamel EPR spectroscopy gives opportunity to register contribution into total dose, which is caused by natural environmental radiation and by radioactive contamination. EPR response of enamel to ultraviolet exposure is investigated and possible influences to EPR dosimetry is discussed. The correction factors for EPR dosimetry in real radiation fields are estimated

  17. Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1

    International Nuclear Information System (INIS)

    Finsterbusch, T.; Steinfeldt, T.; Caliskan, R.; Mankertz, A.

    2005-01-01

    Porcine circovirus type 1 (PCV1) encodes two major ORFs. The cap gene comprises the major structural protein of PCV, the rep gene specifies Rep and Rep', which are both essential for initiating the replication of the viral DNA. Rep corresponds to the full-length protein, whereas Rep' is a truncated splice product that is frame-shifted in its C-terminal sequence. In this study, the cellular localization of PCV1-encoded proteins was investigated by immune fluorescence techniques using antibodies against Rep, Rep' and Cap and by expression of viral proteins fused to green and red fluorescence proteins. Rep and Rep' protein co-localized in the nucleus of infected cells as well as in cells transfected with plasmids expressing Rep and Rep' fused to fluorescence proteins, but no signal was seen in the nucleoli. Rep and Rep' carry three potential nuclear localization signals in their identical N-termini, and the contribution of these motifs to nuclear import was experimentally dissected. In contrast to the rep gene products, the localization of the Cap protein varied. While the Cap protein was restricted to the nucleoli in plasmid-transfected cells and was also localized in the nucleoli at an early stage of PCV1 infection, it was seen in the nucleoplasm and the cytoplasm later in infection, suggesting that a shuttling between distinct cellular compartments occurs

  18. Transcription factor FoxO1 is essential for enamel biomineralization.

    Directory of Open Access Journals (Sweden)

    Ross A Poché

    Full Text Available The Transforming growth factor β (Tgf-β pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.

  19. Further morphological evidence on South African earliest Homo lower postcanine dentition: Enamel thickness and enamel dentine junction.

    Science.gov (United States)

    Pan, Lei; Dumoncel, Jean; de Beer, Frikkie; Hoffman, Jakobus; Thackeray, John Francis; Duployer, Benjamin; Tenailleau, Christophe; Braga, José

    2016-07-01

    The appearance of the earliest members of the genus Homo in South Africa represents a key event in human evolution. Although enamel thickness and enamel dentine junction (EDJ) morphology preserve important information about hominin systematics and dietary adaptation, these features have not been sufficiently studied with regard to early Homo. We used micro-CT to compare enamel thickness and EDJ morphology among the mandibular postcanine dentitions of South African early hominins (N = 30) and extant Homo sapiens (N = 26), with special reference to early members of the genus Homo. We found that South African early Homo shows a similar enamel thickness distribution pattern to modern humans, although three-dimensional average and relative enamel thicknesses do not distinguish australopiths, early Homo, and modern humans particularly well. Based on enamel thickness distributions, our study suggests that a dietary shift occurred between australopiths and the origin of the Homo lineage. We also observed that South African early Homo postcanine EDJ combined primitive traits seen in australopith molars with derived features observed in modern human premolars. Our results confirm that some dental morphological patterns in later Homo actually occurred early in the Homo lineage, and highlight the taxonomic value of premolar EDJ morphology in hominin species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds

    Directory of Open Access Journals (Sweden)

    Helen Pullisaar

    2015-03-01

    Full Text Available The purpose of bone tissue engineering is to employ scaffolds, cells, and growth factors to facilitate healing of bone defects. The aim of this study was to assess the viability and osteogenic differentiation of primary human osteoblasts and adipose tissue–derived mesenchymal stem cells from various donors on titanium dioxide (TiO2 scaffolds coated with an alginate hydrogel enriched with enamel matrix derivative. Cells were harvested for quantitative reverse transcription polymerase chain reaction on days 14 and 21, and medium was collected on days 2, 14, and 21 for protein analyses. Neither coating with alginate hydrogel nor alginate hydrogel enriched with enamel matrix derivative induced a cytotoxic response. Enamel matrix derivative–enriched alginate hydrogel significantly increased the expression of osteoblast markers COL1A1, TNFRSF11B, and BGLAP and secretion of osteopontin in human osteoblasts, whereas osteogenic differentiation of human adipose tissue–derived mesenchymal stem cells seemed unaffected by enamel matrix derivative. The alginate hydrogel coating procedure may have potential for local delivery of enamel matrix derivative and other stimulatory factors for use in bone tissue engineering.

  1. Type VII Collagen is Enriched in the Enamel Organic Matrix Associated with the Dentin-Enamel Junction of Mature Human Teeth

    OpenAIRE

    McGuire, Jacob D.; Walker, Mary P.; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P.

    2014-01-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of...

  2. Near-UV laser treatment of extrinsic dental enamel stains.

    Science.gov (United States)

    Schoenly, J E; Seka, W; Featherstone, J D B; Rechmann, P

    2012-04-01

    The selective ablation of extrinsic dental enamel stains using a 400-nm laser is evaluated at several fluences for completely removing stains with minimal damage to the underlying enamel. A frequency-doubled Ti:sapphire laser (400-nm wavelength, 60-nanosecond pulse duration, 10-Hz repetition rate) was used to treat 10 extracted human teeth with extrinsic enamel staining. Each tooth was irradiated perpendicular to the surface in a back-and-forth motion over a 1-mm length using an ∼300-µm-diam 10th-order super-Gaussian beam with fluences ranging from 0.8 to 6.4 J/cm(2) . Laser triangulation determined stain depth and volume removed by measuring 3D surface images before and after irradiation. Scanning electron microscopy evaluated the surface roughness of enamel following stain removal. Fluorescence spectroscopy measured spectra of unbleached and photobleached stains in the spectral range of 600-800 nm. Extrinsic enamel stains are removed with laser fluences between 0.8 and 6.4 J/cm(2) . Stains removed on sound enamel leave behind a smooth enamel surface. Stain removal in areas with signs of earlier cariogenic acid attacks resulted in isolated and randomly located laser-induced, 50-µm-diam enamel pits. These pits contain 0.5-µm diam, smooth craters indicative of heat transfer from the stain to the enamel and subsequent melting and water droplet ejection. Ablation stalling of enamel stains is typically observed at low fluences (Laser ablation of extrinsic enamel stains at 400 nm is observed to be most efficient above 3 J/cm(2) with minimal damage to the underlying enamel. Unsound underlying enamel is also observed to be selectively removed after irradiation. Copyright © 2012 Wiley Periodicals, Inc.

  3. On the mechanical properties of tooth enamel under spherical indentation.

    Science.gov (United States)

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Fluoride varnishes and enamel caries

    NARCIS (Netherlands)

    Bruyn, Hugo de

    1987-01-01

    Topical fluoride applications have the aim of increasing the fluoride uptake in enamel and consequently reducing caries. In the early ‘60s fluoride varnishes were introduced because they had a long contact period with the enamel which resulted in a higher fluoride uptake than from other topical

  5. A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier.

    Science.gov (United States)

    Jeliazkova-Mecheva, Valentina V; Bobilya, Dennis J

    2003-10-01

    A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.

  6. Fluoride uptake from restorative dental materials by human enamel

    International Nuclear Information System (INIS)

    Forsten, L.; Rytoemaa, I.; Anttila, A.; Keinonen, J.

    1976-01-01

    The purpose of the study was to determine the uptake in vitro of fluoride from restorative materials by tooth enamel and whether prior etching of the enamel causes a change of uptake. The outermost layer of the labial surface of extracted canines was removed by grinding and the enamel was covered with five different fluoride-containing materials ; a silicate, a composite resin, an amalgam, a silicophosphate, and a polycarboxylate luting cement. The material was either removed immediately or after storing the tooth in distilled water. The fluoride content was determined using a sensitive physical method based on the 19 F (p, αγ) 16 O reaction. In addition, the fluoride content of enamel after etching for different periods of time and of etched enamel which had been in contact with silicate cement was determined. The mean fluoride content of uncovered interior enamel was 226 parts 10 6 . All materials, except the composite, increased clearly the fluoride content of the underlying enamel. Etching of interior enamel also increased the fluoride values. No difference could be shown in fluoride uptake from silicate and composite resin between etched and unetched enamel. (author)

  7. ON THE R-CURVE BEHAVIOR OF HUMAN TOOTH ENAMEL

    OpenAIRE

    Bajaj, Devendra; Arola, Dwayne

    2009-01-01

    In this study the crack growth resistance behavior and fracture toughness of human tooth enamel were quantified using incremental crack growth measures and conventional fracture mechanics. Results showed that enamel undergoes an increase in crack growth resistance (i.e. rising R-curve) with crack extension from the outer to the inner enamel, and that the rise in toughness is function of distance from the Dentin Enamel Junction (DEJ). The outer enamel exhibited the lowest apparent toughness (0...

  8. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    Science.gov (United States)

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  9. The N-terminus of porcine circovirus type 2 replication protein is required for nuclear localization and ori binding activities

    International Nuclear Information System (INIS)

    Lin, W.-L.; Chien, M.-S.; Du, Y.-W.; Wu, P.-C.; Huang Chienjin

    2009-01-01

    Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.

  10. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    International Nuclear Information System (INIS)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming

    2016-01-01

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  11. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming, E-mail: zengshenming@gmail.com

    2016-04-22

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  12. Dental Enamel Defects and Celiac Disease

    Science.gov (United States)

    ... Digestive System & How it Works Zollinger-Ellison Syndrome Dental Enamel Defects and Celiac Disease Celiac disease manifestations ... affecting any organ or body system. One manifestation—dental enamel defects—can help dentists and other health ...

  13. Enamel renal syndrome: A rare case report

    Directory of Open Access Journals (Sweden)

    S V Kala Vani

    2012-01-01

    Full Text Available Enamel renal syndrome is a very rare disorder associating amelogenesis imperfecta with nephrocalcinosis. It is known by various synonyms such as amelogenesis imperfecta nephrocalcinosis syndrome, MacGibbon syndrome, Lubinsky syndrome, and Lubinsky-MacGibbon syndrome. It is characterized by enamel agenesis and medullary nephrocalcinosis. This paper describes enamel renal syndrome in a female patient born in a consanguineous family.

  14. Finite element analysis of the cyclic indentation of bilayer enamel

    International Nuclear Information System (INIS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  15. Finite element analysis of the cyclic indentation of bilayer enamel

    Science.gov (United States)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  16. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines.

    Directory of Open Access Journals (Sweden)

    Akos Gellért

    Full Text Available Potential porcine circovirus type 2 (PCV2 capsid protein epitopes, suitable for expression on the surface of cucumber mosaic virus (CMV particles were determined by a thorough analysis of the predicted PCV capsid protein structure. The ab initio protein structure prediction was carried out with fold recognition and threading methods. The putative PCV epitopes were selected on the basis of PCV virion models and integrated into the plant virus coat protein, after amino acid position 131. The recombinants were tested for infectivity and stability on different Nicotiana species and stable recombinant virus particles were purified. The particles were tested for their ability to bind to PCV induced porcine antibodies and used for specific antibody induction in mice and pigs. The results showed that PCV epitopes expressed on the CMV surface were recognized by the porcine antibodies and they were also able to induce PCV specific antibody response. Challenge experiment with PCV2 carried out in immunized pigs showed partial protection against the infection. Based on these results it was concluded that specific antiviral vaccine production for the given pathogen was feasible, offering an inexpensive way for the mass production of such vaccines.

  18. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines.

    Science.gov (United States)

    Gellért, Akos; Salánki, Katalin; Tombácz, Kata; Tuboly, Tamás; Balázs, Ervin

    2012-01-01

    Potential porcine circovirus type 2 (PCV2) capsid protein epitopes, suitable for expression on the surface of cucumber mosaic virus (CMV) particles were determined by a thorough analysis of the predicted PCV capsid protein structure. The ab initio protein structure prediction was carried out with fold recognition and threading methods. The putative PCV epitopes were selected on the basis of PCV virion models and integrated into the plant virus coat protein, after amino acid position 131. The recombinants were tested for infectivity and stability on different Nicotiana species and stable recombinant virus particles were purified. The particles were tested for their ability to bind to PCV induced porcine antibodies and used for specific antibody induction in mice and pigs. The results showed that PCV epitopes expressed on the CMV surface were recognized by the porcine antibodies and they were also able to induce PCV specific antibody response. Challenge experiment with PCV2 carried out in immunized pigs showed partial protection against the infection. Based on these results it was concluded that specific antiviral vaccine production for the given pathogen was feasible, offering an inexpensive way for the mass production of such vaccines.

  19. Special Frits for Direct-On Enamelling of Pipelines

    International Nuclear Information System (INIS)

    Berdzenishvili, I.; Siradze, M.; Erokhin, V.; Kldiashvili, R.

    2010-01-01

    The compositions of low-melting zirconium-strontium frits have been developed for direct-on enamelling of pipes. Owing to the given combination of active cations, toxic fluorine and expensive nickel and lithium were eliminated from glass frit compositions. The enamels were subjected to firing by the induction method. In the synthesized enamels, the optimal complex of properties combining high corrosion-resistant and thermo-mechanic indices, adhesive strength and required specifications was realized. These enamels are recommended for testing on pipelines. (author)

  20. Diffusion of fluoride in bovine enamel

    International Nuclear Information System (INIS)

    Flim, G.J.; Arends, J.; Kolar, Z.

    1976-01-01

    The uptake of 18 F and the penetration of both F and 18 F in bovine enamel was investigated. Sodium fluoride solutions buffered at pH 7 were employed. The uptake of 18 F was measured by a method described by R. Duckworth and M. Braden, Archs. Oral. Biol., 12(1967), pp. 217-230. The penetration concentration profiles of fluoride (F, 18 F) in the enamel were measured by a sectioning technique. The 18 F uptake in enamel was proportional to approximately tsup(3/4); t being the uptake time. The 18 F concentration as a function of the position in the enamel can be described by: c*(x,t) = c 0 *(t)exp[-α*(t)x]. After correction for the initial fluoride concentration in enamel, for unlabelled fluoride the same dependency is obtained. A model based on simultaneous diffusion and chemical reaction in the pores and diffusion into the hydroxyapatite crystallites will be presented. The results show that diffusion coefficients of the pores are approximately equal to 10 -10 cm 2 s -1 and in the apatite crystallites approximately equal to 10 -17 cm 2 s -1 . The limitations and the approximations of the model are discussed

  1. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta.

    Science.gov (United States)

    Santos, Maria C L G; Hart, P Suzanne; Ramaswami, Mukundhan; Kanno, Cláudia M; Hart, Thomas C; Line, Sergio R P

    2007-01-31

    Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  2. An in vitro investigation of human enamel wear by restorative dental materials

    International Nuclear Information System (INIS)

    Adachi, L.K.; Saiki, M.; De Campos, T.N.

    2001-01-01

    A radiometric method was applied to asses enamel wear by another enamel and by restorative materials. The radioactive enamel was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with the radioactive enamel. The enamel wear was evaluated by measuring the beta-activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another natural enamel or by resin materials. Resin materials caused less enamel wear than another natural enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. (author)

  3. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  4. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties

    International Nuclear Information System (INIS)

    Farhat, Walid A; Chen Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Yeger, Herman; Sherman, Christopher; Derwin, Kathleen

    2008-01-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization

  5. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    Science.gov (United States)

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  6. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Farhat, Walid A [Department of Surgery, Division of Urology, University of Toronto and Hospital for Sick Children, Toronto, ON M5G 1X8 (Canada); Chen Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Yeger, Herman [Department of Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8 (Canada); Sherman, Christopher [Department of Anatomic Pathology, Sunnybrook and Women' s College Health Sciences Centre, Toronto, ON (Canada); Derwin, Kathleen [Department of Biomedical Engineering, Lerner Research Institute and Orthopaedic Research Center, Cleveland Clinic Foundation, Cleveland, OH (United States)], E-mail: walid.farhat@sickkids.ca

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  7. Brief communication: Enamel thickness and durophagy in mangabeys revisited.

    Science.gov (United States)

    McGraw, W Scott; Pampush, James D; Daegling, David J

    2012-02-01

    The documentation of enamel thickness variation across primates is important because enamel thickness has both taxonomic and functional relevance. The Old World monkeys commonly referred to as mangabeys have figured prominently in investigations of feeding ecology and enamel thickness. In this article, we report enamel thickness values for four mangabey taxa (Cercocebus atys, Cercocebus torquatus, Lophocebus aterrimus, and Lophocebus albigena), offer revised interpretation of the significance of thick enamel in papionin evolution, and place our new data in a broader comparative framework. Our data indicate that all mangabeys have thick enamel and that the values obtained for Cercocebus and Lophocebus equal or exceed those published for most extant non-human primates. In addition, new field data combined with a current reading of the dietary literature indicate that hard foods make up a portion of the diet of every mangabey species sampled to date. Clarification on the relationship between diet and enamel thickness among mangabeys is important not only because of recognition that mangabeys are not a natural group but also because of recent arguments that explain thick enamel as an evolved response to the seasonal consumption of hard foods. Copyright © 2011 Wiley Periodicals, Inc.

  8. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  9. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation.

    Directory of Open Access Journals (Sweden)

    Jan C-C Hu

    Full Text Available Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam-/- mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam-/- mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam-/- background did not fully recover enamel formation while a medium expresser in the Enam+/- background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation.

  10. Enamelin Is Critical for Ameloblast Integrity and Enamel Ultrastructure Formation

    Science.gov (United States)

    Hu, Jan C.-C.; Hu, Yuanyuan; Lu, Yuhe; Smith, Charles E.; Lertlam, Rangsiyakorn; Wright, John Timothy; Suggs, Cynthia; McKee, Marc D.; Beniash, Elia; Kabir, M. Enamul; Simmer, James P.

    2014-01-01

    Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam−/− mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam−/− mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam−/− background did not fully recover enamel formation while a medium expresser in the Enam+/− background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation. PMID:24603688

  11. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    Science.gov (United States)

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The SAT Protein of Porcine Parvovirus Accelerates Viral Spreading through Induction of Irreversible Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Mészáros, István; Tóth, Renáta; Olasz, Ferenc; Tijssen, Peter; Zádori, Zoltán

    2017-08-15

    The SAT protein (SATp) of porcine parvovirus (PPV) accumulates in the endoplasmic reticulum (ER), and SAT deletion induces the slow-spreading phenotype. The in vitro comparison of the wild-type Kresse strain and its SAT knockout (SAT - ) mutant revealed that prolonged cell integrity and late viral release are responsible for the slower spreading of the SAT - virus. During PPV infection, regardless of the presence or absence of SATp, the expression of downstream ER stress response proteins (Xbp1 and CHOP) was induced. However, in the absence of SATp, significant differences in the quantity and the localization of CHOP were detected, suggesting a role of SATp in the induction of irreversible ER stress in infected cells. The involvement of the induction of irreversible ER stress in porcine testis (PT) cell necrosis and viral egress was confirmed by treatment of infected cells by ER stress-inducing chemicals (MG132, dithiothreitol, and thapsigargin), which accelerated the egress and spreading of both the wild-type and the SAT - viruses. UV stress induction had no beneficial effect on PPV infection, underscoring the specificity of ER stress pathways in the process. However, induction of CHOP and its nuclear translocation cannot alone be responsible for the biological effect of SAT, since nuclear CHOP could not complement the lack of SAT in a coexpression experiment. IMPORTANCE SATp is encoded by an alternative open reading frame of the PPV genome. Earlier we showed that SATp of the attenuated PPV NADL-2 strain accumulates in the ER and accelerates virus release and spreading. Our present work revealed that slow spreading is a general feature of SAT - PPVs and is the consequence of prolonged cell integrity. PPV infection induced ER stress in infected cells regardless of the presence of SATp, as demonstrated by the morphological changes of the ER and expression of the stress response proteins Xbp1 and CHOP. However, the presence of SATp made the ER stress more severe and

  13. Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica

    Science.gov (United States)

    Gasse, Barbara; Liu, Xi; Corre, Erwan; Sire, Jean-Yves

    2015-01-01

    Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i) AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii) AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2%) exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at the onset of

  14. Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica.

    Directory of Open Access Journals (Sweden)

    Barbara Gasse

    Full Text Available Amelotin (AMTN is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2% exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at

  15. Trace Elements in Human Tooth Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, G. S. [Turner Dental School, University Of Manchester, Manchester (United Kingdom); Smith, H.; Livingston, H. D. [Department of Forensic Medicine, University Of Glasgow, Glasgow (United Kingdom)

    1967-10-15

    The trace elements are considered to play a role in the resistance of teeth to dental caries. The exact mechanism by which they act has not yet been fully established. Estimations of trace elements have been undertaken in sound human teeth. By means of activation analysis it has been possible to determine trace element concentrations in different layers of enamel in the same tooth. The concentrations of the following elements have been determined: arsenic, antimony, copper, zinc, manganese, mercury, molybdenum and vanadium. The distribution of trace elements in enamel varies from those with a narrow range, such as manganese, to those with a broad range, such as antimony. The elements present in the broad range are considered to be non-essential and their presence is thought to result from a chance incorporation into the enamel. Those in the narrow range appear to be essential trace elements and are present in amounts which do not vary unduly from other body tissues. Only manganese and zinc were found in higher concentrations in the surface layer of enamel compared with the inner layers. The importance of the concentration of trace elements on this surface layer of enamel is emphasized as this layer is the site of the first attack by the carious process. (author)

  16. Developmental Defects of Enamel : an increasing reality in the everyday practice

    Directory of Open Access Journals (Sweden)

    Fabrizio Guerra

    2014-09-01

    Full Text Available Developmental defects of enamel (DDE are daily encountered in clinical practice. DDE are alteration in quality and quantity of the enamel, caused by disruption and/or damage to the enamel organ during the amelogenesis process. Several clinical indices have been developed to categorize enamel defects based on their nature, appearance, microscopic features or their cause. The aetiology of DDE is not completely clear. Enamel fluorosis is a hypo-mineralization of enamel characterised by subsurface porosity as a result of excess fluoride intake during the period of enamel formation. Several types of treatment have been reported, related to the degree of enamel defect. Correct diagnosis according to lesion depth and prognosis of the technique are fundamental factors in the treatment decision-making process.

  17. Effect of various tooth-whitening products on enamel microhardness.

    Science.gov (United States)

    Grobler, S R; Majeed, A; Moola, M H

    2009-11-01

    The purpose of this in vitro study was to evaluate the effect of various tooth-whitening products containing carbamide peroxide (CP) or hydrogen peroxide (HP), on enamel microhardness. Enamel blocks were exposed to: Nite White ACP 10% CP (Group 2, n=10); Yotuel Patient 10% CP (Group 3, n=10); Opalescence PF 10% CP (Group 4, n=10); Opalescence PF 20% CP (Group 5, n=10); Opalescence Treswhite Supreme 10% HP (Group 6, n=10); Yotuel 10 Minutes 30% CP (Group 7, n=10); Opalescence Quick 45% CP (Group 8, n=10), Yotuel Special 35% HP (Group 9, n=10), Opalescence Boost 38% HP (Group 10, n=10) according to the instructions of the manufacturers. The control (Group 1, n=10) was enamel blocks kept in artificial saliva at 37 degrees C without any treatment. The microhardness values were obtained before exposure and after a 14-day treatment period. Specimens were kept in artificial saliva at 37 degrees C between treatments. Data were analysed using Kruskal-Wallis one-way ANOVA and Tukey-Kramer Multiple Comparison Test. Indent marks on the enamel blocks were also examined under the Scanning Electron Microscope. All whitening products decreased enamel microhardness except group 10 but only Groups 2, 3, 4, 5 and 7 showed significant decrease in enamel microhardness as compared to the control group (p enamel. All products tested in this study decreased enamel microhardness except Opalescence Boost 38% HP. The products containing carbamide peroxide were more damaging to enamel because of the longer application times. Nite White ACP 10% CP showed the highest reduction in enamel microhardness as compared to other products tested.

  18. On the R-curve behavior of human tooth enamel.

    Science.gov (United States)

    Bajaj, Devendra; Arola, Dwayne D

    2009-08-01

    In this study the crack growth resistance behavior and fracture toughness of human tooth enamel were quantified using incremental crack growth measures and conventional fracture mechanics. Results showed that enamel undergoes an increase in crack growth resistance (i.e. rising R-curve) with crack extension from the outer to the inner enamel, and that the rise in toughness is a function of distance from the dentin enamel junction (DEJ). The outer enamel exhibited the lowest apparent toughness (0.67+/-0.12 MPam(0.5)), and the inner enamel exhibited a rise in the growth toughness from 1.13 MPam(0.5)/mm to 3.93 MPam(0.5)/mm. The maximum crack growth resistance at fracture (i.e. fracture toughness (K(c))) ranged from 1.79 to 2.37 MPam(0.5). Crack growth in the inner enamel was accompanied by a host of mechanisms operating from the micro- to the nano-scale. Decussation in the inner enamel promoted crack deflection and twist, resulting in a reduction of the local stress intensity at the crack tip. In addition, extrinsic mechanisms such as bridging by unbroken ligaments of the tissue and the organic matrix promoted crack closure. Microcracking due to loosening of prisms was also identified as an active source of energy dissipation. In summary, the unique microstructure of enamel in the decussated region promotes crack growth toughness that is approximately three times that of dentin and over ten times that of bone.

  19. Enamel: From brittle to ductile like tribological response.

    Science.gov (United States)

    Guidoni, G; Swain, M; Jäger, I

    2008-10-01

    To identify the intrinsic nano-scale wear mechanisms of enamel by comparing it with that of highly brittle glass, and highly ductile copper and silver monocrystals. A sharp cube corner indenter tip (20-50 nm radius) was used to abrade glass, enamel as well as copper and silver monocrystals. Square abraded areas (5 microm x 5 microm, 10 microm x 10 microm) were generated with loads of 50 microN for enamel and 100 microN for the remaining materials (2D abrasion). The normal load and displacement data were utilized in a complementary manner to support the comparison. In addition normal and lateral forces were simultaneously measured along 10 microm single scratched lines (1D abrasion). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used to characterise the worn areas and debris. The sharp tip cuts into and ploughs the specimens creating a wedge or ridge of material ahead of itself which eventually detaches, for the ductile materials and at high loads in enamel. For glass and enamel at low loads, the indenter tip ploughs into the material and the removed material is redistributed and pressed back into the abraded area. The wear behaviour of enamel at the nano-level resembles that obtained with glass at low loads (50 microN) and that obtained with metal mono-crystals at high load (100 microN). The role of the microstructural heterogeneity in the wear behaviour of enamel is considered in the discussion. The relevance to clinical wear of enamel is also considered.

  20. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation.

    Science.gov (United States)

    Lin, Zi-Li; Kim, Nam-Hyung

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes. © 2015 International Federation for Cell Biology.

  1. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies.

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L; Hacia, Joseph G; Paine, Michael L

    2017-03-13

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.

  2. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways–Novel Insight into the Origins of Enamel Pathologies

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L.; Hacia, Joseph G.; Paine, Michael L.

    2017-01-01

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3′-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI. PMID:28287144

  3. Tooth enamel hypoplasia in PHACE syndrome.

    Science.gov (United States)

    Chiu, Yvonne E; Siegel, Dawn H; Drolet, Beth A; Hodgson, Brian D

    2014-01-01

    Individuals with PHACE syndrome (posterior fossa malformations, hemangiomas, arterial anomalies, cardiac defects, eye abnormalities, sternal cleft, and supraumbilical raphe syndrome) have reported dental abnormalities to their healthcare providers and in online forums, but dental involvement has not been comprehensively studied. A study was conducted at the third PHACE Family Conference, held in Milwaukee, Wisconsin, in July 2012. A pediatric dentist examined subjects at enrollment. Eighteen subjects were enrolled. The median age was 4.2 years (range 9 mos-9 yrs; 14 girls, 4 boys). Eleven of 18 patients had intraoral hemangiomas and five of these (50%) had hypomature enamel hypoplasia. None of the seven patients without intraoral hemangiomas had enamel hypoplasia. No other dental abnormalities were seen. Enamel hypoplasia may be a feature of PHACE syndrome when an intraoral hemangioma is present. Enamel hypoplasia increases the risk of caries, and clinicians should refer children with PHACE syndrome to a pediatric dentist by 1 year of age. © 2014 Wiley Periodicals, Inc.

  4. Effect of ethanol-wet-bonding technique on resin–enamel bonds

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar

    2014-03-01

    Conclusion: The ethanol-wet-bonding technique may increase the bond strength of commercial adhesives to enamel. The chemical composition of the adhesives can affect the bond strength of adhesives when bonding to acid-etched enamel, using the ethanol-wet-bonding technique. Some adhesive systems used in the present study may simultaneously be applied to enamel and dentin using ethanol-wet-bonding. Furthermore, deploying ethanol-wet-bonding for the tested commercial adhesives to enamel can increase the adhesion abilities of these adhesives to enamel.

  5. Adaptor Protein Complex 2 (AP-2) Mediated, Clathrin Dependent Endocytosis, And Related Gene Activities, Are A Prominent Feature During Maturation Stage Amelogenesis

    Science.gov (United States)

    LACRUZ, Rodrigo S.; BROOKES, Steven J.; WEN, Xin; JIMENEZ, Jaime M.; VIKMAN, Susanna; HU, Ping; WHITE, Shane N.; LYNGSTADAAS, S. Petter; OKAMOTO, Curtis T.; SMITH, Charles E.; PAINE, Michael L.

    2012-01-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real time PCR, we show that the expression of clathrin and adaptor protein subunits are up-regulated in maturation stage rodent enamel organ cells. AP-2 is the most up-regulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin dependent endocytosis, thus implying the likelihood of a specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also up-regulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1), cluster of differentiation 63 and 68 (Cd63 and Cd68), ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2), ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2), chloride channel, voltage-sensitive 7 (Clcn7) and cathepsin K (Ctsk). Immunohistological data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain® showed up-regulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor regulated pathway for the endocytosis of enamel matrix proteins. These data together

  6. Tissue Sampling Guides for Porcine Biomedical Models.

    Science.gov (United States)

    Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas

    2016-04-01

    This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results. © The Author(s) 2016.

  7. Improved cell line IPEC-J2, characterized as a model for porcine jejunal epithelium.

    Directory of Open Access Journals (Sweden)

    Silke S Zakrzewski

    Full Text Available Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances (TER and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of barrier-relevant tight junction (TJ proteins, adequate TER and transport function, and reaction to secretagogues. For this, IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS or species-specific (porcine serum, PS conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under PS conditions (IPEC-J2/PS, compared to conventional FBS culture (IPEC-J2/FBS, the cell height increased 6-fold while the cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig jejunocytes than ever reported since the cell line's initial establishment in 1989. In conclusion, IPEC-J2, if cultured under defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function.

  8. Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs.

    Science.gov (United States)

    Palinski, Rachel M; Mitra, Namita; Hause, Ben M

    2016-08-01

    Parvoviruses are a diverse group of viruses containing some of the smallest known species that are capable of infecting a wide range of animals. Metagenomic sequencing of pooled rectal swabs from adult pigs identified a 4103-bp contig consisting of two major open reading frames encoding proteins of 672 and 469 amino acids (aa) in length. BLASTP analysis of the 672-aa protein found 42.4 % identity to fruit bat (Eidolon helvum) parvovirus 2 (EhPV2) and 37.9 % to turkey parvovirus (TuPV) TP1-2012/HUN NS1 proteins. The 469-aa protein had no significant similarity to known proteins. Genetic and phylogenetic analyses suggest that PPV7, EhPV2, and TuPV represent a novel genus in the family Parvoviridae. Quantitative PCR screening of 182 porcine diagnostic samples found a total of 16 positives (8.6 %). Together, these data suggest that PPV7 is a highly divergent novel parvovirus prevalent within the US swine.

  9. Efficacy of transgene expression in porcine skin as a function of electrode choice

    DEFF Research Database (Denmark)

    Gothelf, A; Mahmood, Faisal; Dagnaes-Hansen, Frederik

    2011-01-01

    , have mainly been performed in rodents and the body of evidence on electrode choice and optimal pulsing conditions is limited. We therefore tested plate and needle electrodes in vivo in porcine skin, which resembles human skin in structure. The luciferase (pCMV-Luc) gene was injected intradermally...... and subsequently electroporated. Simultaneously, studies with gene electrotransfer to porcine skin using plasmids coding for green fluorescent protein (GFP) and betagalactosidase were performed. Interestingly, we found needle electrodes to be more efficient than plate electrodes (p...

  10. Aquaporin expression in the fetal porcine urinary tract changes during gestation

    DEFF Research Database (Denmark)

    Jakobsen, L K; Trelborg, K; Kingo, P S

    2018-01-01

    The expression of aquaporins (AQPs) in the fetal porcine urinary tract and its relation to gestational age has not been established. Tissue samples from the renal pelvis, ureter, bladder and urethra were obtained from porcine fetuses. Samples were examined by RT-PCR (AQPs 1-11), QPCR (AQPs positive....... Immunohistochemistry showed AQP1 staining in sub-urothelial vessels at all locations. Western blotting analysis confirmed increased AQP1 protein levels in bladder samples during gestation. Expression levels of AQP1, 3, 5, 9 and 11 in the urinary tract change during gestation, and further studies are needed to provide...

  11. Pb enamel biomarker: Deposition of pre- and postnatal Pb isotope injection in reconstructed time points along rat enamel transect

    International Nuclear Information System (INIS)

    Rinderknecht, A.L.; Kleinman, M.T.; Ericson, J.E.

    2005-01-01

    Exposure to lead (Pb) as well as other heavy metals in the environment is still a matter of public health concern. The development of the enamel biomarker for heavy metal exposure assessment is designed to improve studies of dose-effect relationships to developmental anomalies, particularly embryonic dysfunctions, and to provide a time-specific recount of past exposures. The work presented in this paper demonstrates maternal transfer across the placental barrier of the enriched isotope 206 Pb tracer to the enamel of the rat pup. Likewise, injections of 204 Pb-enriched tracer in the neonate rat resulted in deposition of the tracer in the enamel histology as measured by secondary ion microprobe spectrometry. Through enamel, we were able to observe biological removal and assimilation of prenatal and postnatal tracers, respectively. This research demonstrates that enamel can be used as a biomarker of exposure to Pb and may illustrate the toxicokinetics of incorporating Pb into fetal and neonatal steady-state system processes. The biomarker technique, when completely developed, may be applied to cross-sectional and longitudinal epidemiological research

  12. Effect of enamel organic matrix on the potential of Galla chinensis to promote the remineralization of initial enamel carious lesions in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linglin; Zou Ling; Li Jiyao; Hao Yuqing; Xiao Liying; Zhou Xuedong; Li Wei, E-mail: leewei2000@sina.co, E-mail: zhll_sc@yahoo.c [State Key Laboratory of Oral Diseases, West China College of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu (China)

    2009-06-15

    Galla chinensis, a natural traditional Chinese medicine with main composition of tannic acid and gallic acid, is formed when the Chinese sumac aphid Baker (Melaphis chinensis bell) parasitizes the levels of Rhus chinensis Mill. Galla chinensis has shown the potential to enhance the remineralization of initial enamel carious lesion, but the mechanism is still unknown. This study was to investigate whether the enamel organic matrix plays a significant role in the potential of Galla chinensis to promote the remineralization of initial enamel caries. Bovine sound enamel blocks and non-organic enamel blocks were demineralized and exposed to a 12 day pH cycling. During the pH cycling, 30 specimens with the enamel organic matrix were randomly divided into three groups, and treated with 1 g L{sup -1} NaF (group A), 4 g L{sup -1} Galla chinensis extract (group B1) or double deionized water (group C1). Twenty specimens without the enamel organic matrix were randomly divided into two groups, and treated with 4 g L{sup -1} Galla chinensis extract (group B2) or double deionized water (group C2). The integrated mineral loss and lesion depth of all the specimens were analysed by transverse microradiography. The integrated mineral loss and lesion depth of group B1 were less than those of groups B2, C1 and C2, and there were no statistical differences among groups B2, C1 and C2. In conclusion, Galla chinensis can enhance the remineralization of initial enamel carious lesion, and the enamel organic matrix plays a significant role in this potential of Galla chinensis.

  13. Elemental and chemical characterization of dolphin enamel and dentine using X-ray and Raman microanalyzes (Cetacea: Delphinoidea and Inioidea).

    Science.gov (United States)

    Loch, Carolina; Swain, Michael V; Fraser, Sara J; Gordon, Keith C; Kieser, Jules A; Fordyce, R Ewan

    2014-01-01

    Dolphins show increased tooth number and simplified tooth shape compared to most mammals, together with a simpler ultrastructural organization and less demanding biomechanical function. However, it is unknown if these factors are also reflected in the chemical composition of their teeth. Here, the bulk chemical composition and elemental distribution in enamel and dentine of extant dolphins were characterized and interpreted using X-ray and spectroscopy techniques. Teeth of 10 species of Delphinida were analyzed by WDX, EDX and Raman spectroscopy. For most of the species sampled, the mineral content was higher in enamel than in dentine, increasing from inner towards outer enamel. The transition from dentine to enamel was marked by an increase in concentration of the major components Ca and P, but also in Na and Cl. Mg decreased from dentine to enamel. Concentrations of Sr and F were often low and below detection limits, but F peaked at the outer enamel region for some species. Raman spectroscopy analyzes showed characteristics similar to carbonated hydroxyapatite, with the strongest peak for the phosphate PO4(3-) stretching mode at 960-961cm(-1). Dentine samples revealed a higher diversity of peaks representative of organic components and proteins than enamel. The similar distribution pattern and small variation in average concentration of major and minor elements in dentine and enamel of dolphins suggest that they are subject to strong physiological control. A clear trend of the elemental variations for all dolphin species sampled suggests that the general pattern of tooth chemistry is conserved among the Mammalia. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Immunization of mice by Hollow Mesoporous Silica Nanoparticles as carriers of Porcine Circovirus Type 2 ORF2 Protein

    Directory of Open Access Journals (Sweden)

    Guo Hui-Chen

    2012-06-01

    Full Text Available Abstract Backgroud Porcine circovirus type 2 (PCV2 is a primary etiological agent of post-weaning multi-systemic wasting syndrome (PMWS, which is a disease of increasing importance to the pig industry worldwide. Hollow mesoporous silica nanoparticles (HMSNs have gained increasing interest for use in vaccines. Methods To study the potential of HMSNs for use as a protein delivery system or vaccine carriers. HMSNs were synthesized by a sol–gel/emulsion(oil-in-water/ethanol method, purified PCV2 GST-ORF2-E protein was loaded into HMSNs, and the resulting HMSN/protein mixture was injected into mice. The uptake and release profiles of protein by HMSNs in vitro were investigated. PCV2 GST-ORF2-E specific antibodies and secretion of IFN-γ were detected by enzyme-linked immunosorbent assays, spleen lymphocyte proliferation was measured by the MTS method, and the percentage of CD4+ and CD8+ were determined by flow cytometry. Results HMSNs were found to yield better binding capacities and delivery profiles of proteins; the specific immune response induced by PCV2 GST-ORF2-E was maintained for a relatively long period of time after immunization with the HMSN/protein complex. Conclusion The findings suggest that HMSNs are good protein carriers and have high potential for use in future applications in therapeutic drug delivery.

  15. Shear bond strength of porcelain laminate veneers to enamel, dentine and enamel-dentine complex bonded with different adhesive luting systems.

    Science.gov (United States)

    Öztürk, Elif; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta

    2013-02-01

    The aim of this study was to evaluate the shear bond strength of porcelain laminate veneers to 3 different surfaces by means of enamel, dentine, and enamel-dentine complex. One hundred thirty-five extracted human maxillary central teeth were used, and the teeth were randomly divided into 9 groups (n=15). The teeth were prepared with 3 different levels for bonding surfaces of enamel (E), dentine (D), and enamel-dentine complex (E-D). Porcelain discs (IPS e.max Press, Ivoclar Vivadent) of 2mm in thickness and 4mm in diameter were luted to the tooth surfaces by using 2 light-curing (RelyX Veneer [RV], 3M ESPE; Variolink Veneer [VV], Ivoclar Vivadent) and a dual-curing (Variolink II [V2], Ivoclar Vivadent) adhesive systems according to the manufacturers' instructions. Shear bond strength test was performed in a universal testing machine at 0.5mm/min until bonding failure. Failure modes were determined under a stereomicroscope, and fracture surfaces were evaluated with a scanning electron microscope. The data were statistically analysed (SPSS 17.0) (p=0.05). Group RV-D exhibited the lowest bond strength value (5.42±6.6MPa). There was statistically no difference among RV-D, V2-D (13.78±8.8MPa) and VV-D (13.84±6.2MPa) groups (p>0.05). Group VV-E exhibited the highest bond strength value (24.76±8.8MPa). The type of tooth structure affected the shear bond strength of the porcelain laminate veneers to the 3 different types of tooth structures (enamel, dentine, and enamel-dentine complex). When dentine exposure is necessary during preparation, enough sound enamel must be protected as much as possible to maintain a good bonding; to obtain maximum bond strength, preparation margins should be on sound enamel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Weaker dental enamel explains dental decay.

    Science.gov (United States)

    Vieira, Alexandre R; Gibson, Carolyn W; Deeley, Kathleen; Xue, Hui; Li, Yong

    2015-01-01

    Dental caries continues to be the most prevalent bacteria-mediated non-contagious disease of humankind. Dental professionals assert the disease can be explained by poor oral hygiene and a diet rich in sugars but this does not account for caries free individuals exposed to the same risk factors. In order to test the hypothesis that amount of amelogenin during enamel development can influence caries susceptibility, we generated multiple strains of mice with varying levels of available amelogenin during dental development. Mechanical tests showed that dental enamel developed with less amelogenin is "weaker" while the dental enamel of animals over-expressing amelogenin appears to be more resistant to acid dissolution.

  17. Camel molar tooth enamel response to gamma rays using EPR spectroscopy.

    Science.gov (United States)

    El-Faramawy, N A; El-Somany, I; Mansour, A; Maghraby, A M; Eissa, H; Wieser, A

    2018-03-01

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp ) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.

  18. Camel molar tooth enamel response to gamma rays using EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El-Faramawy, N.A.; El-Somany, I. [Ain Shams University, Physics Department, Faculty of Science, Cairo (Egypt); Mansour, A. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Maghraby, A.M.; Eissa, H. [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Giza (Egypt); Wieser, A. [Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Department of Radiation Sciences, Institute of Radiation Protection, Neuherberg (Germany)

    2018-03-15

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH{sub pp}) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry. (orig.)

  19. Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis.

    Science.gov (United States)

    Somogyi-Ganss, Eszter; Nakayama, Yohei; Iwasaki, Kengo; Nakano, Yukiko; Stolf, Daiana; McKee, Marc D; Ganss, Bernhard

    2012-01-01

    Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define the spatiotemporal expression profile of AMTN during tooth development in comparison with other known enamel proteins. A peptide antibody against AMTN was raised in rabbits, affinity purified and used for immunohistochemical analyses on sagittal and transverse paraffin sections of decalcified mouse hemimandibles. The localization of AMTN was compared to that of known enamel proteins amelogenin, ameloblastin, enamelin, odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4. Three-dimensional images of AMTN localization in molars at selected ages were reconstructed from serial stained sections, and transmission electron microscopy was used for ultrastructural localization of AMTN. AMTN was detected in ameloblasts of molars in a transient fashion, declining at the time of tooth eruption. Prominent expression in maturation stage ameloblasts of the continuously erupting incisor persisted into adulthood. In contrast, amelogenin, ameloblastin and enamelin were predominantly found during the early secretory stage, while odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4 expression in maturation stage ameloblasts paralleled that of AMTN. Secreted AMTN was detected at the interface between ameloblasts and the mineralized enamel. Recombinant AMTN protein did not mediate cell attachment in vitro. These results suggest a primary role for AMTN in the late stages of enamel mineralization. Copyright © 2011 S. Karger AG, Basel.

  20. Theobromine Effects on Enamel Surface Microhardness: In Vitro

    Directory of Open Access Journals (Sweden)

    Grace Syafira

    2013-07-01

    Full Text Available Dental caries is still a dental health problem in Indonesia. Fluoride, one of the dental caries prevention material, but its safety and the danger of fluorosis is still debated. Theobromine is an alkaloid compound contained in cocoa beans. Theobromine is believed to increase enamel microhardness with mineral changes in the enamel superficial layer. Objectives: To determine the influence of theobromine on the enamel surface microhardness. Methods: This study used 40 premolar tooth crown pieces that were embedded in epoxy resin. Furthermore specimens were randomly divided into 4 groups, which were control (distilled water, theobromine 100 mg/L (T100, theobromine 500 mg/L (T500 and theobromine 1000 mg/L (T1000. Specimens were immersed for 15 minutes and microhardness test was performed using Knoop microhardness tester. Results: Increasing enamel microhardness was observed after treatment with four different theobromine concentrations. The highest icreased of enamel microhardness was shown in T1000 group and difference compared to other groups were statistically significant (p<0.05. Conclusion: theobromine is a potential dental caries prevention material due to its effect in improving the microhardness of tooth enamel.

  1. Characterization of polyclonal antibodies against nonstructural protein 9 from the porcine reproductive and respiratory syndrome virus

    Directory of Open Access Journals (Sweden)

    Mengmeng ZHAO,Juanjuan QIAN,Jiexiong XIE,Tiantian CUI,Songling FENG,Guoqiang WANG,Ruining WANG,Guihong ZHANG

    2016-06-01

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS is considered to be one of the most important infectious diseases impacting the swine industry and is characterized by reproductive failure in late term gestation in sows and respiratory disease in pigs of all ages. The nonstructural protein 9 gene, Nsp9, encoding the RNA-dependent RNA polymerase, is generally regarded as fairly conserved when compared to other viral proteins. Antibodies against Nsp9 will be of great importance for the diagnosis and treatment of the causal agent, PRRS virus. A study was undertaken to generate polyclonal antibodies against the immunodominant Nsp9. For this purpose, the Nsp9 was expressed in Escherichia coli and subsequently used as an antigen to immunize New Zealand rabbits. Antiserum was identified via an indirect ELISA, and then verified based on the ability to react with both naturally and artificially expressed Nsp9. Results of virus neutralization test showed that this antiserum could not neutralize the PRRSV. Nevertheless, this antiserum as a diagnostic core reagent should prove invaluable for further investigations into the mechanism of PRRS pathogenesis.

  2. Photomechanical model of tooth enamel ablation by Er-laser radiation

    Science.gov (United States)

    Belikov, A. V.; Shatilova, K. V.; Skrypnik, A. V.; Vostryakov, R. G.; Maykapar, N. O.

    2012-03-01

    The photomechanical model of ablation of human tooth enamel is described in this work. It takes into account the structural peculiarities of enamel: free water in the enamel pores or cracks. We consider the photomechanical destruction of the enamel rods of hydroxyapatite by the pressure of water contained in the enamel pores and heated by laser radiation. This model takes into account attenuation by the Lambert-Beer law when radiation passes through the tissue and the fact that the tissue removal occurs when a unit volume of water was heated to the critical temperature. Decreasing logarithmic dependence of the enamel removal efficiency on the energy density was obtained as a result of the calculations. The shape of this function follows the shape of the experimental curve.

  3. DESIGN AND APPLICATION OF TRANSPARENT AND TRANSLUCENT ENAMELS ON ALUMINUM

    Directory of Open Access Journals (Sweden)

    H. AHMADI MOGHADDAM

    2012-09-01

    Full Text Available Transparent and opaque glass enamels for aluminum plates were designed with a minimum or with no heavy atom oxides such as lead and bismuth oxides. The thermal properties of the enamels were studied by DTA and their stability as measured by the difference of glass transition and crystallization onset temperatures was determined. Bending and rapid deformation (impact tests indicated the interfacial adhesion. The enamel/aluminum interfacial qualities were viewed and examined by scanning electron microscopy (SEM. A large amount of NaF and P2O5 in their formulation created opaque enamels. The three methods of melt dipping, pouring, and sintering were used to apply layers of enamels on aluminum plates. The novelty of the pouring and spreading method and its advantages over other methods, were in the use of lower stability and higher melting point enamels, without thermally/mechanically damaging the aluminum. Observations suggested that the interfacial contact and adhesion properties were good, particularly with the transparent or glassy state enamels.

  4. Size dependent elastic modulus and mechanical resilience of dental enamel.

    Science.gov (United States)

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Regulated fracture in tooth enamel: a nanotechnological strategy from nature.

    Science.gov (United States)

    Ghadimi, Elnaz; Eimar, Hazem; Song, Jun; Marelli, Benedetto; Ciobanu, Ovidiu; Abdallah, Mohamed-Nur; Stähli, Christoph; Nazhat, Showan N; Vali, Hojatollah; Tamimi, Faleh

    2014-07-18

    Tooth enamel is a very brittle material; however it has the ability to sustain cracks without suffering catastrophic failure throughout the lifetime of mechanical function. We propose that the nanostructure of enamel can play a significant role in defining its unique mechanical properties. Accordingly we analyzed the nanostructure and chemical composition of a group of teeth, and correlated it with the crack resistance of the same teeth. Here we show how the dimensions of apatite nanocrystals in enamel can affect its resistance to crack propagation. We conclude that the aspect ratio of apatite nanocrystals in enamel determines its resistance to crack propagation. According to this finding, we proposed a new model based on the Hall-Petch theory that accurately predicts crack propagation in enamel. Our new biomechanical model of enamel is the first model that can successfully explain the observed variations in the behavior of crack propagation of tooth enamel among different humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    Fattibene, Paola; Callens, Freddy

    2010-01-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  7. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  8. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Directory of Open Access Journals (Sweden)

    Louiza Bohn Thomsen

    Full Text Available In vitro blood-brain barrier (BBB models based on primary brain endothelial cells (BECs cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP and breast cancer related protein (BCRP, and the transferrin receptor.

  9. Enamel surface remineralization: Using synthetic nanohydroxyapatite

    Directory of Open Access Journals (Sweden)

    J Shanti Swarup

    2012-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the effects of synthetically processed hydroxyapatite particles in remineralization of the early enamel lesions in comparison with 2% sodium fluoride. Materials and Methods: Thirty sound human premolars were divided into nanohydroxyapatite group (n0 = 15 and the sodium fluoride group (n = 15. The specimens were subjected to demineralization before being coated with 10% aqueous slurry of 20 nm nanohydroxyapatite or 2% sodium fluoride. The remineralizing efficacy of the materials was evaluated using surface microhardness (SMH measurements, scanning microscopic analysis and analysis of the Ca/P ratio of the surface enamel. Data analysis was carried out using paired t-test and independent t-test. Results: The results showed that the nanohydroxyapatite group produced a surface morphology close to the biologic enamel, the increase in mineral content (Ca/P ratio was more significant in the nanohydroxyapatite group ( P 0.05. Conclusion: The use of biomimetic nanohydroxyapatite as a remineralizing agent holds promise as a new synthetic enamel biocompatible material to repair early carious lesions.

  10. Nanoindentation creep behavior of human enamel.

    Science.gov (United States)

    He, Li-Hong; Swain, Michael V

    2009-11-01

    In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.

  11. Solubility and diffusivity of hydrogen in enameling steel

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, P.; Valentini, R.; Solina, A.; Gastaldo, F. (Centro Sviluppo Materiali, Rome (Italy) Pisa Univ. (Italy). Dip. di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali)

    1991-06-01

    In recent years, continuous casting has almost expelled conventional ingot casting from the steel-making process by its much higher productivity. However, enameling steel sheets doesn't give the steel sufficient resistance to fishscale, as that which is achieved by the inclusions in case of ingot capped steel. Fishscales are caused by hydrogen gas building up pressure at the interface between enamel and steel, resulting in the rupture of enamel. Object of this study, was not only to correlate fishscale susceptibility with metallurgical parameters, but to define the effect of reversible and irreversible traps on hydrogen solubility and diffusivity in enameling steel. Hydrogen permeation was studied, in low carbon enameling steel, with an electrochemical technique developed by Devanathan and co-workers. This method was used to calculate concentrations of irreversibly adsorbed hydrogen and evaluate hydrogen diffusion coefficients. The results on reversible traps correlated with micro-voids formations around the carbide precipitate, while the irreversible traps correlated with inclusions and precipitate content.

  12. Indentation Damage and Crack Repair in Human Enamel*

    Science.gov (United States)

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701

  13. Porcine endogenous retroviral nucleic acid in peripheral tissues is associated with migration of porcine cells post islet transplant.

    Science.gov (United States)

    Binette, Tanya M; Seeberger, Karen L; Lyon, James G; Rajotte, Ray V; Korbutt, Gregory S

    2004-07-01

    Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.

  14. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  15. Enamel microstructure and microstrain in the fracture of human and pig molar cusps.

    Science.gov (United States)

    Popowics, T E; Rensberger, J M; Herring, S W

    2004-08-01

    The role of microstructure in enamel strain and breakage was investigated in human molar cusps and those of the pig, Sus scrofa. Rosette strain gauges were affixed to cusp surfaces (buccal human M3, n=15, and lingual pig M1, n=13), and a compressive load was applied to individual cusps using an MTS materials testing machine. Load and strain data were recorded simultaneously until cusp fracture, and these data were used to estimate enamel stresses, principal strains, and stiffness. Fractured and polished enamel fragments were examined in multiple planes using scanning electron microscopy (SEM). Human cusp enamel showed greater stiffness than pig enamel (P=0.02), and tensile stress at yield was higher (17.9 N/mm2 in humans versus 8.9 N/mm2 in pigs, P=0.06). SEM revealed enamel rod decussation in both human and pig enamel; however, only pig enamel showed a decussation plane between rod and inter-rod crystallites. Human inter-rod enamel was densely packed between rods, whereas in pig enamel, inter-rod enamel formed partitions between rows of enamel rods. Overall, human enamel structure enabled molar cusps to withstand horizontal tensile stress during both elastic and plastic phases of compressive loading. In contrast, pig cusp enamel was less resistant to horizontal tensile stresses, but appeared to fortify the enamel against crack propagation in multiple directions. These structural and biomechanical differences in cusp enamel are likely to reflect species-level differences in occlusal function.

  16. Development of fluorapatite cement for dental enamel defects repair.

    Science.gov (United States)

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  17. Wear of human enamel: a quantitative in vitro assessment.

    Science.gov (United States)

    Kaidonis, J A; Richards, L C; Townsend, G C; Tansley, G D

    1998-12-01

    Many factors influence the extent and rate at which enamel wears. Clinical studies in humans are limited by difficulties in the accurate quantification of intra-oral wear and by a lack of control over the oral environment. The purpose of this study was to determine the wear characteristics of human dental enamel under controlled experimental conditions. An electro-mechanical tooth wear machine, in which opposing enamel surfaces of sectioned, extracted teeth were worn under various conditions, was used to simulate tooth grinding or bruxism. Enamel surface wear was quantified by weight to an accuracy of 0.1 mg, with water uptake and loss controlled. The variables considered included the structure and hardness of enamel, facet area, duration of tooth contact, relative speed of opposing surfaces, temperature, load, pH, and the nature of the lubricant. Enamel wear under non-lubricated conditions increased with increasing load over the range of 1.7 to 16.2 kg. The addition of a liquid lubricant (pH = 7) reduced enamel wear up to 6.7 kg, but when the load increased above this threshold, the rate of wear increased dramatically. With the viscosity of the lubricant constant and pH = 3, the rate of wear was further reduced to less than 10% of the non-lubricated rate at 9.95 kg, after which the rate again increased substantially. Under more extreme conditions (pH = 1.2, simulating gastric acids), the wear was excessive under all experimental loads. When saliva was used as a lubricant, the amount of wear was relatively low at 9.95 kg, but rapid wear occurred at 14.2 kg and above. These results indicate that under non-lubricated conditions, enamel wear remains low at high loads due to the dry-lubricating capabilities of fine enamel powder. Under lubricated conditions, low loads with an acidic lubricant lead to little enamel wear, whereas very low pH results in a high rate of wear under all loads.

  18. Ca2+ transport and signalling in enamel cells

    Science.gov (United States)

    Nurbaeva, Meerim K.; Eckstein, Miriam; Feske, Stefan

    2016-01-01

    Abstract Dental enamel is one of the most remarkable examples of matrix‐mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage‐dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up‐dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ. PMID:27510811

  19. In vitro demineralization of tooth enamel subjected to two whitening regimens.

    Science.gov (United States)

    Ogura, Kayoko; Tanaka, Reina; Shibata, Yo; Miyazaki, Takashi; Hisamitsu, Hisashi

    2013-07-01

    The resistance of bleached enamel to demineralization has not been elucidated fully. In this study, the authors aimed to examine the level of in vitro demineralization of human tooth enamel after bleaching by using two common bleaching regimens: home bleaching (HB) and office bleaching (OB) with photoirradiation. The authors bleached teeth to equivalent levels by means of the two bleaching regimens. They used fluorescence spectroscopy to measure the reduction in enamel density and the release of calcium into solution after storing the treated teeth in a demineralizing solution for two weeks. They also visualized and quantified mineral distribution in demineralized bleached enamel over time by using a desktop microcomputed-tomographic analyzer. Enamel subjected to HB or to photoirradiation without bleaching showed increased demineralization. In contrast, enamel treated with OB was more resistant to demineralization. This resistance to demineralization in teeth treated with OB presumably is due to peroxide's permeating to deeper layers of enamel before being activated by photoirradiation, which enhances mineralization. The mineral distribution pattern of enamel after treatment plays a critical role in providing resistance to demineralization in whitened teeth. OB confers to enamel significant resistance to in vitro demineralization. Dentists should supervise the nightguard HB process.

  20. Fluoride reactions with dental enamel following different forms of fluoride supply

    International Nuclear Information System (INIS)

    Hellstroem, I.; Ericsson, Y.

    1976-01-01

    The reactions with dental enamel of NaF as tablets dissolved in different beverages or supplied with NaCl, simulating domestic salt fluoridation, were studied in tests with enamel surfaces and enamel powder. It was confirmed that powdered enamel can react quite differently from enamel surfaces under certain conditions. Enamel surfaces took up much more fluoride (F) from orange juice than from water or milk, and neither the low pH nor the citrate content of the juice increased the formation of unstable CaF 2 in the enamel, as judged from a KOH leaching test. The F uptake by enamel surfaces from 0.25 mM NaF in 175 mM NaCl, corresponding to a dish prepared with salt containing 500 parts/10 6 F, was about 80 percent greater than from the same NaF concentration in water. This NaCl concentration did not increase the formation of CaF 2 in the enamel, as judged from the KOH test, while 350 mM NaCl caused a moderate increase. The investigations support the administration of NaF tablets with orange juice and the plans for domestic salt fluoridation. (author)

  1. Theobromine Effects on Enamel Surface Microhardness: In Vitro

    OpenAIRE

    Grace Syafira; Rina Permatasari; Nina Wardani

    2013-01-01

    Dental caries is still a dental health problem in Indonesia. Fluoride, one of the dental caries prevention material, but its safety and the danger of fluorosis is still debated. Theobromine is an alkaloid compound contained in cocoa beans. Theobromine is believed to increase enamel microhardness with mineral changes in the enamel superficial layer. Objectives: To determine the influence of theobromine on the enamel surface microhardness. Methods: This study used 40 premolar tooth crown pieces...

  2. Indentation damage and mechanical properties of human enamel and dentin.

    Science.gov (United States)

    Xu, H H; Smith, D T; Jahanmir, S; Romberg, E; Kelly, J R; Thompson, V P; Rekow, E D

    1998-03-01

    Understanding the mechanical properties of human teeth is important to clinical tooth preparation and to the development of "tooth-like" restorative materials. Previous studies have focused on the macroscopic fracture behavior of enamel and dentin. In the present study, we performed indentation studies to understand the microfracture and deformation and the microcrack-microstructure interactions of teeth. It was hypothesized that crack propagation would be influenced by enamel rods and the dentino-enamel junction (DEJ), and the mechanical properties would be influenced by enamel rod orientation and tooth-to-tooth variation. Twenty-eight human third molars were used for the measurement of hardness, fracture toughness, elastic modulus, and energy absorbed during indentation. We examined the effect of enamel rod orientation by propagating cracks in the occlusal surface, and in the axial section in directions parallel and perpendicular to the occlusal surface. The results showed that the cracks in the enamel axial section were significantly longer in the direction perpendicular to the occlusal surface than parallel. The cracks propagating toward the DEJ were always arrested and unable to penetrate dentin. The fracture toughness of enamel was not single-valued but varied by a factor of three as a function of enamel rod orientation. The elastic modulus of enamel showed a significant difference between the occlusal surface and the axial section. It is concluded that the cracks strongly interact with the DEJ and the enamel rods, and that the mechanical properties of teeth are functions of microstructural orientations; hence, single values of properties (e.g., a single toughness value or a single modulus value) should not be used without information on microstructural orientation.

  3. Optical coherence tomography use in the diagnosis of enamel defects

    Science.gov (United States)

    Al-Azri, Khalifa; Melita, Lucia N.; Strange, Adam P.; Festy, Frederic; Al-Jawad, Maisoon; Cook, Richard; Parekh, Susan; Bozec, Laurent

    2016-03-01

    Molar incisor hypomineralization (MIH) affects the permanent incisors and molars, whose undermineralized matrix is evidenced by lesions ranging from white to yellow/brown opacities to crumbling enamel lesions incapable of withstanding normal occlusal forces and function. Diagnosing the condition involves clinical and radiographic examination of these teeth, with known limitations in determining the depth extent of the enamel defects in particular. Optical coherence tomography (OCT) is an emerging hard and soft tissue imaging technique, which was investigated as a new potential diagnostic method in dentistry. A comparison between the diagnostic potential of the conventional methods and OCT was conducted. Compared to conventional imaging methods, OCT gave more information on the structure of the enamel defects as well as the depth extent of the defects into the enamel structure. Different types of enamel defects were compared, each type presenting a unique identifiable pattern when imaged using OCT. Additionally, advanced methods of OCT image analysis including backscattered light intensity profile analysis and enface reconstruction were performed. Both methods confirmed the potential of OCT in enamel defects diagnosis. In conclusion, OCT imaging enabled the identification of the type of enamel defect and the determination of the extent of the enamel defects in MIH with the advantage of being a radiation free diagnostic technique.

  4. Refining enamel thickness measurements from B-mode ultrasound images.

    Science.gov (United States)

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  5. Molecular investigations of BK(Ca) channels and the modulatory beta-subunits in porcine basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    arteries using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Western blotting was used to detect immunoreactivity for the porcine BK(Ca) channel alpha-subunit and beta-subunit proteins. The BK(Ca) channel alpha-subunit RNA and protein distribution patterns were......Large conductance calcium-activated potassium (BK(Ca)) channels are fundamental in the regulation of cerebral vascular basal tone. We investigated the expression of the mRNA transcripts for the BK(Ca) channel and its modulatory beta-subunits (beta1-beta4) in porcine basilar and middle cerebral...... visualized using in situ hybridization and immunofluorescence studies, respectively. The study verified that the BK(Ca) channel alpha-subunit is located to smooth muscle cells of porcine basilar and middle cerebral arteries. The mRNA transcript for beta1-, beta2- and beta4-subunit were shown by RT...

  6. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Science.gov (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  7. Indirect veneer treatment of anterior maxillary teeth with enamel hypoplasia

    Directory of Open Access Journals (Sweden)

    Devi Eka Juniarti

    2010-09-01

    Full Text Available Background: Nowadays, aesthetic rehabilitation becomes a necessity. It is affected by patient’s background, especially career, social and economic status. The aesthetic abnormality of anterior teeth i.e discoloration, malposition and malformation can affect patient’s appearance, especially during smile. These dental abnormalities, as a result, can decrease patient’s performance. Dental malformation, for instance, can be caused by developmental tooth defect, such as enamel hypoplasia. Enamel hypoplasia is a developmental defect caused by the lack of matrix amount which leads to thin and porous enamel. Enamel hypoplasia can also be caused by matrix calcification disturbance starting from the formation and development of enamel matrix causing defect and permanent changes which can occur on one or more tooth. Purpose: The aim of the study is to improve dental discoloration and tooth surface texture on anterior maxillary teeth with enamel hypoplasia by using indirect veneer with porcelain material. Case: A 20 years-old woman with enamel hypoplasia came to the Dental Hospital, Faculty of Dentistry Airlangga University. The patient wanted to improve her anterior maxillary teeth. It is clinically known that there were some opaque white spots (chalky spotted and porous on anterior teeth’s surface. Case management: Indirect veneer with porcelain material had been chosen as a restoration treatment which has excellent aesthetics and strength, and did not cause gingival irritation. As a result, the treatment could improve the confidence of the patient, and could also make their function normal. Conclusion: Indirect veneer is an effective treatment, which can improve patient’s appearance and self confidence.Latar belakang: Saat ini perbaikan estetik menjadi suatu kebutuhan. Kebutuhan akan estetik dipengaruhi latar belakang penderita, terutama karir, status sosial dan ekonomi. Hal ini disebabkan, kelainan estetik seperti diskolorasi, malposisi

  8. Effect of four different opalescence tooth-whitening products on enamel microhardness.

    Science.gov (United States)

    Majeed, A; Grobler, S R; Moola, M H; Rossouw, R J; van Kotze, T J W

    2008-06-01

    The purpose was to evaluate the effect of various Opalescence tooth-whitening products on enamel. Enamel blocks were exposed to Opalescence PF 10% Carbamide Peroxide (n = 10), Opalescence PF 20% Carbamide Peroxide (n = 10), Opalescence Trèswhite Supreme 10% Hydrogen Peroxide (n = 10) and Opalescence Quick PF 45% Carbamide Peroxide (n = 10) according to the manufacturer's instructions. The control group was enamel blocks (n = 10) kept in artificial saliva. The values were obtained before exposure and after the 14-days treatment period. Enamel blocks were kept in saliva between treatments. Indent marks on enamel blocks were examined using the scanning electron microscope for treatment effects. All four different Opalescence products damaged enamel. The most damage was done when treated for a long period (112 hours). SEM images also showed damage to enamel by all 4 products. Opalescence with 10% and with 20% Carbamide Peroxide showed the highest damage, which also differed significantly (p enamel. Higher damage was done by the 10% carbamide peroxide and 20% carbamide peroxide products because of the much longer exposure period (112 hours in comparison to 7 hours).

  9. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    International Nuclear Information System (INIS)

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.; Osorio, Fernando A.; Hiscox, Julian A.

    2008-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus

  10. Smile restoration through use of enamel microabrasion associated with tooth bleaching.

    Science.gov (United States)

    Sundfeld, Renato Herman; Rahal, Vanessa; de Alexandre, Rodrigo Sversut; Briso, André Luiz Fraga; Sundfeld Neto, Daniel

    2011-01-01

    Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes. Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986, and by other investigators who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure. It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface, and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann

  11. Indentation damage and crack repair in human enamel.

    Science.gov (United States)

    Rivera, C; Arola, D; Ossa, A

    2013-05-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 h. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Enamel microabrasion: An overview of clinical and scientific considerations

    Science.gov (United States)

    Pini, Núbia Inocencya Pavesi; Sundfeld-Neto, Daniel; Aguiar, Flavio Henrique Baggio; Sundfeld, Renato Herman; Martins, Luis Roberto Marcondes; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2015-01-01

    Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface with mechanical pressure from a rubber cup coupled to a rotatory mandrel of a low-rotation micromotor. If necessary, this treatment can be safely combined with bleaching for better esthetic results. Recent studies show that microabrasion is a conservative treatment when the enamel wear is minimal and clinically imperceptible. The most important factor contributing to the success of enamel microabrasion is the depth of the defect, as deeper, opaque stains, such as those resulting from hypoplasia, cannot be resolved with microabrasion, and require a restorative approach. Surface enamel alterations that result from microabrasion, such as roughness and microhardness, are easily restored by saliva. Clinical studies support the efficacy and longevity of this safe and minimally invasive treatment. The present article presents the clinical and scientific aspects concerning the microabrasion technique, and discusses the indications for and effects of the treatment, including recent works describing microscopic and clinical evaluations. PMID:25610848

  13. Chemical composition and biological value of spray dried porcine blood by-products and bone protein hydrolysate for young chickens.

    Science.gov (United States)

    Jamroz, D; Wiliczkiewicz, A; Orda, J; Skorupińska, J; Słupczyńska, M; Kuryszko, J

    2011-10-01

    The chemical composition of spray dried porcine blood by-products is characterised by wide variation in crude protein contents. In spray dried porcine blood plasma (SDBP) it varied between 670-780 g/kg, in spray dried blood cells (SDBC) between 830-930 g/kg, and in bone protein hydrolysate (BPH) in a range of 740-780 g/kg. Compared with fish meal, these feeds are poor in Met and Lys. Moreover, in BPH deep deficits of Met, Cys, Thr and other amino acids were found. The experiment comprised 7 dietary treatments: SDBP, SDBC, and BPH, each at an inclusion rate of 20 or 40 g/kg diet, plus a control. The addition of 20 or 40 g/kg of the analysed meals into feeds for very young chickens (1-28 d post hatch) significantly decreased the body weight (BW) of birds. Only the treatments with 40 g/kg of SDBP and SDBC showed no significant difference in BW as compared with the control. There were no significant differences between treatments and type of meal for feed intake, haematocrit and haemoglobin concentrations in blood. Addition of bone protein and blood cell meals to feed decreased the IgG concentration in blood and caused shortening of the femur and tibia bones. However, changes in the mineral composition of bones were not significantly affected by the type of meal used. The blood by-products, which are rich in microelements, improved retention of Ca and Cu only. In comparison to control chickens, significantly better accretion of these minerals was found in treatments containing 20 g/kg of SDBP or 40 g/kg of SDBC. Great variability in apparent ileal amino acid digestibility in chickens was determined. In this respect, some significant differences related to the type of meal fed were confirmed for Asp, Pro, Val, Tyr and His. In general, the apparent ileal digestibility of amino acids was about 2-3 percentage units better in chickens fed on diets containing the animal by products than in control birds.

  14. Molecular characterization and analysis of the porcine NURR1 gene

    Directory of Open Access Journals (Sweden)

    Knud Larsen

    2016-12-01

    Here we report the isolation and characterization of porcine NURR1 cDNA. The NURR1 cDNA was RT-PCR cloned using NURR1-specific oligonucleotide primers derived from in silico sequences. The porcine NURR1 cDNA encodes a polypeptide of 598 amino acids, displaying a very high similarity with bovine, human and mouse (99% NURR1 protein. Expression analysis revealed a differential NURR1 mRNA expression in various organs and tissues. NURR1 transcripts could be detected as early as at 60 days of embryo development in different brain tissues. A significant increase in NURR1 transcript in the cerebellum and a decrease in NURR1 transcript in the basal ganglia was observed during embryo development. The porcine NURR1 gene was mapped to chromosome 15. Two missense mutations were found in exon 3, the first coding exon of NURR1. Methylation analysis of the porcine NURR1 gene body revealed a high methylation degree in brain tissue, whereas methylation of the promoter was very low. A decrease in DNA methylation in a discrete region of the NURR1 promoter was observed in pig frontal cortex during pig embryo development. This observation correlated with an increase in NURR1 transcripts. Therefore, methylation might be a determinant of NURR1 expression at certain time points in embryo development.

  15. Novel Dental Cement to Combat Biofilms and Reduce Acids for Orthodontic Applications to Avoid Enamel Demineralization

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-05-01

    Full Text Available Orthodontic treatments often lead to biofilm buildup and white spot lesions due to enamel demineralization. The objectives of this study were to develop a novel bioactive orthodontic cement to prevent white spot lesions, and to determine the effects of cement compositions on biofilm growth and acid production. 2-methacryloyloxyethyl phosphorylcholine (MPC, nanoparticles of silver (NAg, and dimethylaminohexadecyl methacrylate (DMAHDM were incorporated into a resin-modified glass ionomer cement (RMGI. Enamel shear bond strength (SBS was determined. Protein adsorption was determined using a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU and lactic acid production. Incorporating 3% of MPC, 1.5% of DMAHDM, and 0.1% of NAg into RMGI, and immersing in distilled water at 37 °C for 30 days, did not decrease the SBS, compared to control (p > 0.1. RMGI with 3% MPC + 1.5% DMAHDM + 0.1% NAg had protein amount that was 1/10 that of control. RMGI with triple agents (MPC + DMAHDM + NAg had much stronger antibacterial property than using a single agent or double agents (p < 0.05. Biofilm CFU on RMGI with triple agents was reduced by more than 3 orders of magnitude, compared to commercial control. Biofilm metabolic activity and acid production were also greatly reduced. In conclusion, adding MPC + DMAHDM + NAg in RMGI substantially inhibited biofilm viability and acid production, without compromising the orthodontic bracket bond strength to enamel. The novel bioactive cement is promising for orthodontic applications to hinder biofilms and plaque buildup and enamel demineralization.

  16. Indentation Damage and Crack Repair in Human Enamel*

    OpenAIRE

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced ...

  17. Modelling of micromachining of human tooth enamel by erbium laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belikov, A V; Skrypnik, A V; Shatilova, K V [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  18. Modelling of micromachining of human tooth enamel by erbium laser radiation

    International Nuclear Information System (INIS)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    2014-01-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  19. ONLINE TECHNOLOGICAL MONITORING OF INSULATION DEFECTS IN ENAMELED WIRES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2017-08-01

    Full Text Available In this paper the authors used non-destructive technological monitoring of defects insulation enameled wire with poliimid polymer. The paper is devoted to the statistical method for processing, comparison and analysis of results of measurements of parameters of insulation of enameled wire because of mathematical model of trend for application in active technological monitoring is developed; the recommendations for parameters of such monitoring are used. It is theoretically justified and the possibility of determination of dependence of the error on the velocity of movement of a wire for want of quantifying of defects in enameled insulation by non-destructive tests by high voltage. The dependence of average value of amount of defects for enameled wire with two-sheeted poliimid insulation in a range of nominal diameter 0.56 mm is experimentally determined. The technological monitoring purpose is to reduce the quantifying defects of enameled insulation.

  20. 7 CFR 1230.611 - Porcine animal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold to...

  1. Malnutrition-related early childhood exposures and enamel defects in the permanent dentition: A longitudinal study from the Bolivian Amazon.

    Science.gov (United States)

    Masterson, Erin E; Fitzpatrick, Annette L; Enquobahrie, Daniel A; Mancl, Lloyd A; Conde, Esther; Hujoel, Philippe P

    2017-10-01

    We investigated the relationship between early childhood malnutrition-related measures and subsequent enamel defects in the permanent dentition. This cohort study included 349 Amerindian adolescents (10-17 years, 52% male) from the Bolivian Amazon. Exposures included: stunted growth (height-for-age z-scores), underweight (weight-for-age z-scores), anemia (hemoglobin), acute inflammation (C-reactive protein) and parasitic infection (hookworm). We measured the occurrence (no/yes) and extent (2/3) of enamel defects. We estimated associations between childhood exposures and enamel defect measures using log-binomial and multinomial logistic regression. The prevalence of an enamel defect characterized by an orange peel texture on a large central depression on the labial surface of the central maxillary incisors was 92.3%. During childhood (1-4 years), participants had a high prevalence of stunted growth (75.2%), anemia (56.9%), acute inflammation (39.1%), and hookworm infection (49.6%). We observed associations between childhood height-for-age (OR = 0.65; P = 0.028 for >2/3 extent vs. no EH) and gastrointestinal hookworm infection (OR = 3.43; P = 0.035 for >2/3 extent vs. no defects or malnutrition-related measures in early childhood, including stunted growth and parasitic helminth infection, with the observed enamel defects. © 2017 Wiley Periodicals, Inc.

  2. Bonding strategies for MIH-affected enamel and dentin.

    Science.gov (United States)

    Krämer, Norbert; Bui Khac, Ngoc-Han Nana; Lücker, Susanne; Stachniss, Vitus; Frankenberger, Roland

    2018-02-01

    Aim of the present study was to evaluate resin composite adhesion to dental hard tissues affected by molar incisor hypomineralisation (MIH). 94 freshly extracted human molars and incisors (53 suffering MIH) were used. 68 teeth (35 with MIH) were used for μ-TBS tests in enamel and dentin, 26 (18 with MIH) for qualitative evaluation. Specimens were bonded with Clearfil SE Bond, Scotchbond Universal, and OptiBond FL. For MIH affected enamel, additional OptiBond FL groups with NaOCl and NaOCl+Icon were investigated. Beside fractographic analysis, also qualitative evaluations were performed using SEM at different magnifications as well as histological sectioning. Highest μ-TBS values were recorded with dentin specimens (ANOVA, mod. LSD, p0.05). Pre-test failures did not occur in dentin specimens. Sound enamel specimens exhibited significantly higher μ-TBS values than MIH enamel (p0.05), however, it caused less pre-test failures (pMIH enamel is the limiting factor in adhesion to MIH teeth. MIH-affected dentin may be bonded conventionally. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Nanomaterial–protein interactions: the case of pristine and functionalized carbon nanotubes and porcine gastric mucin

    International Nuclear Information System (INIS)

    Barbero, Nadia; Marenchino, Marco; Campos-Olivas, Ramón; Oliaro-Bosso, Simonetta; Bonandini, Luca; Boskovic, Jasminka; Viscardi, Guido; Visentin, Sonja

    2016-01-01

    Mucus represents a serious obstacle that prevents the penetration of drug carrier's transport across the mucus barrier. This study highlights the interaction between mucin glycoprotein, mucin from porcine stomach Type III (PGM) and different pristine and functionalized single-wall and multi-wall carbon nanotubes (CNTs), under physiological conditions, in order to investigate the affinity of different CNTs to mucin. This aspect could be of the utmost importance for the use of CNTs for biomedical purposes. The interaction between CNTs and PGM was investigated by using different techniques like fluorescence steady-state spectroscopy, thermogravimetric analysis (TGA), dynamic light scattering (DLS), circular dichroism (CD), electrophoresis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We demonstrated that mucin has impressive capabilities for binding CNTs in physiological solutions. Moreover, we proved that the nanomaterial–protein interaction is influenced by the different natures of the tubes (SW and MW) and by their different functionalizations (pristine and oxidized CNTs).Graphical Abstract

  4. ANTIOXIDANT STATUS AND EXPRESSION OF HEAT SHOCK PROTEIN OF COBALT-TREATED PORCINE OVARIAN GRANULOSA CELLS

    Directory of Open Access Journals (Sweden)

    Marcela Capcarová

    2013-02-01

    Full Text Available The aim of this study was to determine the activity of superoxide dismutase (SOD, total antioxidant status (TAS and expression of heat shock protein 70 (Hsp70 of porcine ovarian granulosa cells cultured in vitro after cobalt (Co administrations. Ovarian granulosa cells were incubated with cobalt sulphate administrations as follows: group E1 (0.09 mg.ml-1, group E2 (0.13 mg.ml-1, group E3 (0.17 mg.ml-1, group E4 (0.33 mg.ml-1, group E5 (0.5 mg.ml-1 and the control group without any additions for 18 h. Co administration developed stress reaction and promoted accumulation of Hsp70 what resulted in increasing activity of SOD. TAS of granulosa cells increased with higher doses of Co whereas low doses had no effect on this parameter. Trace elements can adversely affect animal female reproductive system and its functions, through either direct or indirect effects on oxidative stress induction.

  5. Nanomaterial–protein interactions: the case of pristine and functionalized carbon nanotubes and porcine gastric mucin

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Nadia [University of Torino, Department of Chemistry and NIS Interdepartmental Centre (Italy); Marenchino, Marco; Campos-Olivas, Ramón [Spanish National Cancer Research Centre (CNIO), Structural Biology and Biocomputing Programme, NMR Unit (Spain); Oliaro-Bosso, Simonetta [University of Torino, Department of Drug Science and Technology (Italy); Bonandini, Luca [University of Torino, Department of Chemistry and NIS Interdepartmental Centre (Italy); Boskovic, Jasminka [Spanish National Cancer Research Centre (CNIO), Structural Biology and Biocomputing Programme, NMR Unit (Spain); Viscardi, Guido [University of Torino, Department of Chemistry and NIS Interdepartmental Centre (Italy); Visentin, Sonja, E-mail: sonja.visentin@unito.it [University of Torino, Molecular Biotechnology and Health Sciences Department (Italy)

    2016-04-15

    Mucus represents a serious obstacle that prevents the penetration of drug carrier's transport across the mucus barrier. This study highlights the interaction between mucin glycoprotein, mucin from porcine stomach Type III (PGM) and different pristine and functionalized single-wall and multi-wall carbon nanotubes (CNTs), under physiological conditions, in order to investigate the affinity of different CNTs to mucin. This aspect could be of the utmost importance for the use of CNTs for biomedical purposes. The interaction between CNTs and PGM was investigated by using different techniques like fluorescence steady-state spectroscopy, thermogravimetric analysis (TGA), dynamic light scattering (DLS), circular dichroism (CD), electrophoresis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We demonstrated that mucin has impressive capabilities for binding CNTs in physiological solutions. Moreover, we proved that the nanomaterial–protein interaction is influenced by the different natures of the tubes (SW and MW) and by their different functionalizations (pristine and oxidized CNTs).Graphical Abstract.

  6. Spatial distribution of the human enamel fracture toughness with aging.

    Science.gov (United States)

    Zheng, Qinghua; Xu, Haiping; Song, Fan; Zhang, Lan; Zhou, Xuedong; Shao, Yingfeng; Huang, Dingming

    2013-10-01

    A better understanding of the fracture toughness (KIC) of human enamel and the changes induced by aging is important for the clinical treatment of teeth cracks and fractures. We conducted microindentation tests and chemical content measurements on molar teeth from "young" (18 ≤ age ≤ 25) and "old" (55 ≤ age) patients. The KIC and the mineral contents (calcium and phosphorus) in the outer, the middle, and the inner enamel layers within the cuspal and the intercuspal regions of the crown were measured through the Vickers toughness test and Energy Dispersive X-Ray Spectroscopy (EDS), respectively. The elastic modulus used for the KIC calculation was measured through atomic force microscope (AFM)-based nanoindentation tests. In the outer enamel layer, two direction-specific values of the KIC were calculated separately (direction I, crack running parallel to the occlusal surface; direction II, perpendicular to direction I). The mean KIC of the outer enamel layer was lower than that of the internal layers (penamel layer, old enamel has a lower KIC, II and higher mineral contents than young enamel (penamel surface becomes more prone to cracks with aging partly due to the reduction in the interprismatic organic matrix observed with the maturation of enamel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4.......4. Three enzyme peaks were eluted using low pressure chromatography with a Bio-gel column. With a HPLC gel filtration column the separation of the enamel extract resulted in only one peak with AP activity. The fractions of this peak were used to produce an antibody against bovine AP....

  8. Abrasive wear of enamel by bioactive glass-based toothpastes.

    Science.gov (United States)

    Mahmood, Asad; Mneimne, Mohammed; Zou, Li Fong; Hill, Robert G; Gillam, David G

    2014-10-01

    To determine the abrasivity of a 45S5 bioactive glass based toothpaste on enamel as a function of the particle size and shape of the glass. 45S5 glass was synthesized ground and sieved to give various particle sized fractions toothpastes and their tooth brush abrasivity measured according to BS EN ISO11609 methodology. Enamel loss increased with increasing particle size. The percussion milled powder exhibited particles that had sharp edges and the pastes were significantly more abrasive than the pastes made with round ball milled powders. One interesting observation made during the present study was that there was preferential wear of the enamel at the dentin-enamel junction (DEJ), particularly with the coarse particle sized pastes.

  9. Heat Transfer Behavior across the Dentino-Enamel Junction in the Human Tooth.

    Directory of Open Access Journals (Sweden)

    Lin Niu

    Full Text Available During eating, the teeth usually endure the sharply temperature changes because of different foods. It is of importance to investigate the heat transfer and heat dissipation behavior of the dentino-enamel junction (DEJ of human tooth since dentine and enamel have different thermophysical properties. The spatial and temporal temperature distributions on the enamel, dentine, and pulpal chamber of both the human tooth and its discontinuous boundaries, were measured using infrared thermography using a stepped temperature increase on the outer boundary of enamel crowns. The thermal diffusivities for enamel and dentine were deduced from the time dependent temperature change at the enamel and dentine layers. The thermal conductivities for enamel and dentine were calculated to be 0.81 Wm-1K-1 and 0.48 Wm-1K-1 respectively. The observed temperature discontinuities across the interfaces between enamel, dentine and pulp-chamber layers were due to the difference of thermal conductivities at interfaces rather than to the phase transformation. The temperature gradient distributes continuously across the enamel and dentine layers and their junction below a temperature of 42°C, whilst a negative thermal resistance is observed at interfaces above 42°C. These results suggest that the microstructure of the dentin-enamel junction (DEJ junction play an important role in tooth heat transfer and protects the pulp from heat damage.

  10. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Science.gov (United States)

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  11. Enamel alteration following tooth bleaching and remineralization.

    Science.gov (United States)

    Coceska, Emilija; Gjorgievska, Elizabeta; Coleman, Nichola J; Gabric, Dragana; Slipper, Ian J; Stevanovic, Marija; Nicholson, John W

    2016-06-01

    The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence(®) Boost and Mirawhite(®) Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive(®) hap+, Mirawhite(®) Gelleѐ, GC Tooth Mousse™ and Mirafluor(®) C. The samples were analysed by SEM/3D-SEM-micrographs, SEM/EDX-qualitative analysis and SEM/EDX-semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line-scans of the sample remineralized with GC Tooth Mousse™. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth-bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Retrospective radiation dosimetry using electron paramagnetic resonance in canine dental enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.; Pekar, J.; Rink, W.J.; Boreham, D.R.

    2005-01-01

    Electron paramagnetic resonance (EPR) biodosimetry of human tooth enamel has been widely used for measuring radiation doses in various scenarios. We have now developed EPR dosimetry in tooth enamel extracted from canines. Molars and incisors from canines were cleaned by processing in supersaturated aqueous potassium hydroxide solution. The dosimetric signal in canine tooth enamel was found to increase linearly as a function of laboratory added dose from 0.44±0.02 to 4.42±0.22 Gy. The gamma radiation sensitivity of the canine molar enamel was found to be comparable to that of human tooth enamel. The dosimetric signal in canine enamel has been found to be stable up to at least 6 weeks after in vitro irradiation. A dosimetric signal variation of 10-25% was observed for canines ranging from in age 3 years to 16 year old

  13. Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants.

    Science.gov (United States)

    Andrade Neto, D M; Carvalho, E V; Rodrigues, E A; Feitosa, V P; Sauro, S; Mele, G; Carbone, L; Mazzetto, S E; Rodrigues, L K; Fechine, P B A

    2016-06-01

    Enamel resin infiltrants are biomaterials able to treat enamel caries at early stages. Nevertheless, they cannot prevent further demineralization of mineral-depleted enamel. Therefore, the aim of this work was to synthesize and incorporate specific hydroxyapatite nanoparticles (HAps) into the resin infiltrant to overcome this issue. HAps were prepared using a hydrothermal method (0h, 2h and 5h). The crystallinity, crystallite size and morphology of the nanoparticles were characterized through XRD, FT-IR and TEM. HAps were then incorporated (10wt%) into a light-curing co-monomer resin blend (control) to create different resin-based enamel infiltrants (HAp-0h, HAp-2h and HAp-5h), whose degree of conversion (DC) was assessed by FT-IR. Enamel caries lesions were first artificially created in extracted human molars and infiltrated using the tested resin infiltrants. Specimens were submitted to pH-cycling to simulate recurrent caries. Knoop microhardness of resin-infiltrated underlying and surrounding enamel was analyzed before and after pH challenge. Whilst HAp-0h resulted amorphous, HAp-2h and HAp-5h presented nanorod morphology and higher crystallinity. Resin infiltration doped with HAp-2h and HAp-5h caused higher enamel resistance against demineralization compared to control HAp-free and HAp-0h infiltration. The inclusion of more crystalline HAp nanorods (HAp-2h and HAp-5h) increased significantly (p<0.05) the DC. Incorporation of more crystalline HAp nanorods into enamel resin infiltrants may be a feasible method to improve the overall performance in the prevention of recurrent demineralization (e.g. caries lesion) in resin-infiltrated enamel. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Enamel micromorphology of the tribosphenic molar

    OpenAIRE

    Hanousková, Pavla

    2014-01-01

    The tribosphenic molar is an ancestral type of mammalian teeth and a phy- lotypic stage of the mammalian dental evolution. Yet, in contrast to derived teeth types, its enamel microarchitecture attracted only little attention and the information on that subject is often restricted to statements suggesting a simple homogenous arrangement of a primitive radial prismatic enamel. The present paper tests this prediction with aid of comparative study of eight model species representing the orders Ch...

  15. Sea otter dental enamel is highly resistant to chipping due to its microstructure.

    Science.gov (United States)

    Ziscovici, Charles; Lucas, Peter W; Constantino, Paul J; Bromage, Timothy G; van Casteren, Adam

    2014-10-01

    Dental enamel is prone to damage by chipping with large hard objects at forces that depend on chip size and enamel toughness. Experiments on modern human teeth have suggested that some ante-mortem chips on fossil hominin enamel were produced by bite forces near physiological maxima. Here, we show that equivalent chips in sea otter enamel require even higher forces than human enamel. Increased fracture resistance correlates with more intense enamel prism decussation, often seen also in some fossil hominins. It is possible therefore that enamel chips in such hominins may have formed at even greater forces than currently envisaged. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Hardness of enamel exposed to Coca-Cola and artificial saliva.

    Science.gov (United States)

    Devlin, H; Bassiouny, M A; Boston, D

    2006-01-01

    The purpose of this study was to determine the rate of change in indentation hardness of enamel in permanent teeth exposed to Coca-Cola. In a further experiment, the ability of a commercially available artificial saliva to remineralize enamel treated with Coca-Cola was tested. Ten enamel specimens were randomly chosen to be treated with Coca-Cola (experimental groups) and seven with water (control group). The fluids were applied for 1, 2, 3 h and overnight (15 h), washed off with a few drops of water and the moist enamel indentation hardness tested after each interval. With Coca-Cola treatment, the mean enamel hardness was 92.6% (s.d. = 7.9) of the original baseline hardness after 1 h, 93.25% (s.d. = 10.15) after 2 h, 85.7% (s.d. = 12.03) after 3 h and 80.3% after 15 h. The mean indentation hardness of control specimens treated with water was 108.7% (s.d. = 16.09) of the original hardness after 1 h, 99.09% (s.d. = 18.98) after 2 h, 98.97% (s.d. =11.24) after 3 h and 98.42% (s.d. = 22.78) after 15 h. In a separate experiment, the hardness of 9 enamel specimens was tested, as previously described, before and after treatment with Coca-Cola overnight and again after application of artificial saliva for 3 min. Coca-Cola reduced the mean indentation hardness of enamel in the teeth, but the hardness was partially restored with artificial saliva (Salivart) and increased by 18% from the demineralized enamel hardness.

  17. Identification of bovine material in porcine spray-dried blood derivatives using the Polymerase Chain Reaction technique

    Directory of Open Access Journals (Sweden)

    Sánchez A.

    2004-01-01

    Full Text Available Due to the widely supported theory of bovine spongiform encephalopathy (BSE spread in cattle by contaminated animal feeds, screening of feed products has become essential. For many years, manufacturers have used blood and plasma proteins as high quality ingredients of foods for both pets and farm animals. However, in Europe, the Commission Regulation 1234/2003/EC temporally bans the use of processed animal proteins, including blood-derivative products, in feedstuffs for all farm animals which are fattened or bred for the production of food. This regulation has some exceptions, such as the use of non ruminant blood products into the feed of farm fish. Authorization of the re-introduction of these proteins into animal feed formulations, especially non ruminant proteins into the feed for non ruminant farm animals, is expected when adequate control methods to discriminate ruminant proteins exist. Currently, the number of validated methods to differentiate the species of origin for most of the animal by-products is limited. Here we report the development of a rapid and sensitive polymerase chain reaction (PCR-based assay, which allows detection of bovine or porcine specific mitochondrial DNAfrom spray-dried blood derivate products (plasma, whole blood and red cells, as a marker for bovine contamination in porcine products. Sample extracts, suitable for PCR, were easily and quickly obtained with the commercial PrepManTM Ultra reagent (Applied Biosystems. To confirm the porcine origin of the samples, primers targeting a specific region of 134 bp of the porcine cytochrome b coding sequence were designed (cytbporc1-F and cytbporc2-R. Previously published PCR primers (L8129 and H8357, specific for a 271 bp fragment of the bovine mitochondrial ATPase 8-ATPase 6 genes, were chosen to accomplish amplification of bovine DNA. The limit of detection (LOD of the bovine PCR assay was at least of 0.05% (v/v of bovine inclusion in spray-dried porcine plasma or red

  18. Mineral composition of enamel from two South African population groups

    Energy Technology Data Exchange (ETDEWEB)

    Retief, D H [University of the Witwatersrand, Johannesburg (South Africa). Dental Research Unit; Turkstra, J [University of Fort Hare, Alice (South Africa). Department of Chemistry; Cleaton-Jones, P E; Biddlecombe, F [Atomic Energy Board, Pelindaba, Pretoria (South Africa). Chemistry Div.

    1979-10-01

    The mineral composition of pooled bulk enamel from Black and White South Africans respectively, resident in the Johannesburg area, was determined by neutron activation analysis and high resolution gamma spectromety. The differences between the concentrations of Ca, Cl, Mg, Na, Br and Co in the enamel of the two population groups were apparently not significant. There was a trend for the concentrations of Al, Ag, Au, Fe, Sb, and Zn to be higher in the enamel from the White subjects and for the concentrations of Mn, Se and Sr to be higher in the enamel from the Black subjects.

  19. Kekerasan mikro enamel gigi permanen muda setelah aplikasi bahan pemutih gigi dan pasta remineralisasi (Enamel micro hardness of young permanent tooth after bleaching and remineralization paste application

    Directory of Open Access Journals (Sweden)

    Budianto Liwang

    2014-12-01

    Full Text Available Background: Studies showed that bleaching agent had demineralization effect to enamel, and encourage use of remineralization paste after bleaching treatment especially in young permanent tooth which in post-eruptive enamel maturation. Purpose: The study ere aimed to determine the bleaching agent effect on enamel surface micro hardness, and to determine the effect of remineralization paste application on enamel surface micro hardness of young permanent tooth after bleaching treatment. Methods: Fourteen young permanent teeth were placed in a block of resin with a window on the buccal surface enamel. The initial enamel surface hardness was measured using Microvickers Hardness Tester. Then the application of hydrogen peroxide bleaching materials 30% was done three times for 15 minutes and followed by surface hardness of enamel measurement. Samples were divided into 2 groups; the first group was applied paste of Hydroxy apatite + NaF 1450ppm , and the second group was applied paste of CPP–ACP + NaF 900ppm. Each paste was applied for 30 minutes for 7 days, then the enamel surface hardness of samples were measured. Results: The enamel surface micro hardness decreased after bleaching from 333.09 ± 10.49 VHN to 299.15±5.70 VHN. Micro hardness after application of Hidroxy apatite + NaF 1450ppm was 316.61±5.87 VHN and after application of CPP-ACP + NaF 900ppm was 319.94±3.25 VHN, however the micro hardness still lower than initial micro hardness. Conclusion: Tooth bleaching agent caused a decrease of enamel surface micro hardness in young permanent tooth. The use of remineralization paste enabled to increase the enamel surface micro hardness young permanent tooth.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa produk pemutih gigi memiliki efek demineralisasi enamel gigi, dan mendorong penggunaan pasta remineralisasi setelah pemutihan gigi terutama di gigi muda permanen yang enamelnya masih dalam proses maturasi pasca-erupsi. Tujuan

  20. Nanoindentation mapping of the mechanical properties of human molar tooth enamel.

    Science.gov (United States)

    Cuy, J L; Mann, A B; Livi, K J; Teaford, M F; Weihs, T P

    2002-04-01

    The mechanical behavior of dental enamel has been the subject of many investigations. Initial studies assumed that it was a more or less homogeneous material with uniform mechanical properties. Now it is generally recognized that the mechanical response of enamel depends upon location, chemical composition, and prism orientation. This study used nanoindentation to map out the properties of dental enamel over the axial cross-section of a maxillary second molar (M(2)). Local variations in mechanical characteristics were correlated with changes in chemical content and microstructure across the entire depth and span of a sample. Microprobe techniques were used to examine changes in chemical composition and scanning electron microscopy was used to examine the microstructure. The range of hardness (H) and Young's modulus (E) observed over an individual tooth was found to be far greater than previously reported. At the enamel surface H>6GPa and E>115GPa, while at the enamel-dentine junction H<3GPa and E<70GPa. These variations corresponded to the changes in chemistry, microstructure, and prism alignment but showed the strongest correlations with changes in the average chemistry of enamel. For example, the concentrations of the constituents of hydroxyapatite (P(2)O(5) and CaO) were highest at the hard occlusal surface and decreased on moving toward the softer enamel-dentine junction. Na(2)O and MgO showed the opposite trend. The mechanical properties of the enamel were also found to differ from the lingual to the buccal side of the molar. At the occlusal surface the enamel was harder and stiffer on the lingual side than on the buccal side. The interior enamel, however, was softer and more compliant on the lingual than on the buccal side, a variation that also correlated with differences in average chemistry and might be related to differences in function.

  1. Dental enamel defects in children with coeliac disease

    NARCIS (Netherlands)

    Werink, Claar D.; van Diermen, Denise E.; Aartman, Irene H. A.; Heymans, Hugo S. A.

    2007-01-01

    OBJECTIVE: The aim of this study was to investigate whether Dutch children with proven coeliac disease show specific dental enamel defects, and to asses whether children with the same gastrointestinal complaints, but proved no-coeliac disease, lack these specific dental enamel defects. MATERIALS AND

  2. Enamel-based mark performance for marking Chinese mystery snail Bellamya chinensis

    Science.gov (United States)

    Wong, Alec; Allen, Craig R.; Hart, Noelle M.; Haak, Danielle M.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.

    2013-01-01

    The exoskeleton of gastropods provides a convenient surface for carrying marks, and i the interest of improving future marking methods our laboratory assessed the performance of an enamel paint. The endurance of the paint was also compared to other marking methods assessed in the past. We marked the shells of 30 adult Chinese mystery snails Bellamya chinensis and held them in an aquarium for 181 days. We observed no complete degradation of any enamel-paint mark during the 181 days. The enamel-paint mark was superior to a nai;-polish mark, which lasted a median of 100 days. Enamel-paint marks also have a lower rate of loss (0.00 month-1 181 days) than plastic bee tags (0.01 month-1, 57 days), gouache paint (0.07 month-1, 18.5 days), or car body paint from studies found in scientific literature. Legibility of enamel-paint marks had a median lifetime of 102 days. The use of enamel paint on the shells of gastropods is a viable option for studies lasting up to 6 months. Furthermore, visits to capture-mark-recapture site 1 year after application of enamel-paint marks on B. chinesnis shells produced several individuals on which the enamel paint was still visible, although further testing is required to clarify durability over longer periods.

  3. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Differential diagnosis of dental enamel focal demineralization and fluorosis by means of spectrophotometry].

    Science.gov (United States)

    Makarova, N E; Vinnichenko, Yu A

    2018-01-01

    The article presents the results of spectrophotometric tooth enamel scanning for differential diagnosis of focal enamel demineralization and fluorosis. Research was conducted in vivo on teeth affected by these diseases. VITA EasyShade spectrophotometer measurements were made on the affected area and on the visually healthy part of enamel. The lightness appeared as the only one differential significant optical characteristics of tooth enamel. Lightness metrics were higher in the case of initial caries than on the healthy part of enamel when these metrics were lower in the case of fluorosis than on the healthy part of enamel.

  5. Enamel lesions in development, classification in Costa Rican families

    International Nuclear Information System (INIS)

    Murillo Knudsen, Gina; Berrocal Salazar, Cristina

    2013-01-01

    Enamel lesions in development were identified and classified in patients of Llano Grande de Cartago, examined at the Facultad de Odontologia of the Universidad de Costa Rica. A guide is provided over the topic. 15 children and 2 Costa Rican adults were selected. Clinical examinations, radiographs and clinical photographs were used as data collection method. Dental defects of the enamel were classified according to the possible genetic causes and without genetic causes. Imperfect Amelogenesis (IA) was diagnosed in 10 of patients. Hypoplastic IA was determined in 3 siblings with autosomal recessive inheritance, for 16% of the total sample. Hypomineralized IA was identified in an adult and two of his sons, with autosomal dominant inheritance. The remaining 4 cases of IA have been sporadic. Lesions of dental fluorosis were determined in the Horowitz index in 4 individuals, from 2 unrelated families. Other defects unspecified of the enamel or hypoplasias were found in 3 individuals. Enamel lesions in development should be classified with precision, for the purpose to inform to patients affected about their condition, origin, prognosis and appropriate treatment. The basis are established to implement reliability in the construction of family genealogy, identification and classification of enamel lesions, as well as the probabilities of future generations to express the lesions in the enamel of temporary or permanent dentition [es

  6. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-β- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    International Nuclear Information System (INIS)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R.

    2005-01-01

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-β superfamily members myostatin and TGF-β 1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-β 1 or myostatin significantly (P 1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P 1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-β 1 or myostatin treatment (P 1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-β and myostatin to suppress proliferation of PEMC

  7. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE.

    Science.gov (United States)

    Lacruz, Rodrigo S; Habelitz, Stefan; Wright, J Timothy; Paine, Michael L

    2017-07-01

    Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function. Copyright © 2017 the American Physiological Society.

  8. Separate whitening effects on enamel and dentin after fourteen days.

    Science.gov (United States)

    Kugel, Gerard; Petkevis, Jason; Gurgan, Sevil; Doherty, Eileen

    2007-01-01

    The purpose of this study was to investigate the mechanism of action of a bleaching agent, as it relates to enamel and dentin. Twenty-six extracted human molar teeth were sectioned at the cemento-enamel junction and were randomly assigned to two groups. L*a*b* readings were taken with a spectrophotometer: on buccal surfaces of the crown, at enamel and dentin. The teeth were exposed to carbamide peroxide or placebo gel and L*a*b* scores were again recorded to determine color changes. Treatments were compared using ancova test with baseline color as the covariate. Relative to placebo, buccal surfaces exhibited the greatest Deltab* and DeltaL* color change. On buccal surfaces, the adjusted mean (SE) treatment differences were -7.8 (1.00) for Deltab* and 5.7 (0.97) for DeltaL, with groups differing significantly (p enamel surfaces, treatment differences were -3.6 (0.61) for Deltab* and 4.6 (0.80) for DeltaL* (p tooth crowns exposed to carbamide peroxide 15% was because of the color change in enamel. As compared to enamel, dentin was less affected after 14 days.

  9. Tooth enamel sample preparation using alkaline treatment in ESR dosimetry

    International Nuclear Information System (INIS)

    Yongzeng, Zhou; Jiadong, Wang; Xiaomei, Jia; Ke, Wu; Jianbo, Cong

    2002-01-01

    Tooth enamel sample preparation using alkaline treatment was studied and compared with traditional mechanical method in this paper. 20 adult teeth were used. Samples were placed into NaOH solution. This method requires 4-5 weeks and the enamel was separated from dentin. Experimental results show that 8M NaOH was appropriate for separating enamel from dentin and that there is no difference in background signal relative intensity between samples prepared by mechanical and by chemical methods. There is also no difference in radiosensitivity between samples prepared by two methods mentioned above. Dose response curve for tooth enamel samples isolated by 8M NaOH solution was obtained

  10. Glass enamel and glass-ceramic coatings for chemical apparatus

    International Nuclear Information System (INIS)

    Es'kov, A.S.; Oleinik, M.I.; Shabrova, E.A.

    1984-01-01

    Among the known anticorrosion coatings used in chemical engineering, glass enamel base coatings are distinguished by such advantages as a high degree of continuity and chemical resistance. The paper describes basic principles for the creation of acid and alkali resistant glass enamel and ceramic coatings for chemical apparatus. As the result of investgations, glass enamel coatings with increased electrical conductivity and also experimental production compositions of chemical, temperature and radiation resistant coatings for protection of chemical equipment of 12Kh18N10T stainless steel have been developed. The coatings have successfully passed testing under service conditions. A new type of coating is short-term glass enamel, which may be recommended for use in chemical machinery manufacturing and other branches of industry in oxidation-free heating and forming of stainless steels

  11. Enhanced porcine circovirus Cap protein production by Pichia pastoris with a fuzzy logic DO control based methanol/sorbitol co-feeding induction strategy.

    Science.gov (United States)

    Ding, Jian; Zhang, Chunling; Gao, Minjie; Hou, Guoli; Liang, Kexue; Li, Chunhua; Ni, Jianping; Li, Zhen; Shi, Zhongping

    2014-05-10

    Porcine circovirus Cap protein production by P. pastoris with strong AOX promoter suffered with the problems with traditional pure methanol induction: (1) inefficient methanol metabolism; (2) extensive oxygen supply load; (3) difficulty in stable DO control; (4) low protein titer. In this study, based on the difference of DO change patterns in response to methanol and sorbitol additions, a novel fuzzy control system was proposed to automatically regulate the co-feeding rates of methanol and sorbitol for efficient Cap protein induction. With aid of the proposed control system when setting DO control level at 10%, overall fermentation performance was significantly improved: (1) DO could be stably controlled under mild aeration condition; (2) methanol consumption rate could be restricted at moderate level and the major enzymes involved with methanol metabolism were largely activated; (3) Cap protein concentration reached a highest level of 198mg/L, which was about 64% increase over the best one using the pure methanol induction strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Triad 'Metal – Enamel – Glass'

    International Nuclear Information System (INIS)

    Mukhina, T; Petrova, S; Toporova, V; Fedyaeva, T

    2014-01-01

    This article shows how to change the color of metal and glass. Both these materials are self–sufficient, but sometimes used together. For example, enameling. In this case, the adhesion between metal substrate and stekloobraznae enamel layer, which was conducted on a stretching and a bend, was tested

  13. Role of Prism Decussation on Fatigue Crack Growth and Fracture of Human Enamel

    OpenAIRE

    Bajaj, Devendra; Arola, Dwayne

    2009-01-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset Compact Tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Re...

  14. Efficacy of transgene expression in porcine skin as a function of electrode choice

    DEFF Research Database (Denmark)

    Gotholf, Anita; Mahmood, Faisad; Dagnæs-Hansen, Frederik

    2011-01-01

    , have mainly been performed in rodents and the body of evidence on electrode choice and optimal pulsing conditions is limited. We therefore tested plate and needle electrodes in vivo in porcine skin, which resembles human skin in structure. The luciferase (pCMV-Luc) gene was injected intradermally...... and subsequently electroporated. Simultaneously, studies with gene electrotransfer to porcine skin using plasmids coding for green fluorescent protein (GFP) and betagalactosidase were performed. Interestingly, we found needle electrodes to be more efficient than plate electrodes (p..., our data support that needle electrodes should be used in human clinical studies of gene electrotransfer to skin for improved expression....

  15. Recovery of crystallographic texture in remineralized dental enamel.

    Science.gov (United States)

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  16. Quantitative analysis of enamel on debonded orthodontic brackets.

    Science.gov (United States)

    Cochrane, Nathan J; Lo, Thomas W G; Adams, Geoffrey G; Schneider, Paul M

    2017-09-01

    Iatrogenic damage to the tooth surface in the form of enamel tearouts can occur during removal of fixed orthodontic appliances. The aim of this study was to assess debonded metal and ceramic brackets attached with a variety of bonding materials to determine how frequently this type of damage occurs. Eighty-one patients close to finishing fixed orthodontic treatment were recruited. They had metal brackets bonded with composite resin and a 2-step etch-and-bond technique or ceramic brackets bonded with composite resin and a 2-step etch-and- bond technique, and composite resin with a self-etching primer or resin-modified glass ionomer cement. Debonded brackets were examined by backscattered scanning electron microscopy with energy dispersive x-ray spectroscopy to determine the presence and area of enamel on the base pad. Of the 486 brackets collected, 26.1% exhibited enamel on the bonding material on the bracket base pad. The incidences of enamel tearouts for each group were metal brackets, 13.3%; ceramic brackets, 30.2%; composite resin with self-etching primer, 38.2%; and resin-modified glass ionomer cement, 21.2%. The percentage of the bracket base pad covered in enamel was highly variable, ranging from 0% to 46.1%. Enamel damage regularly occurred during the debonding process with the degree of damage being highly variable. Damage occurred more frequently when ceramic brackets were used (31.9%) compared with metal brackets (13.3%). Removal of ceramic brackets bonded with resin-modified glass ionomer cement resulted in less damage compared with the resin bonding systems. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Enamel microhardness and bond strengths of self-etching primer adhesives.

    Science.gov (United States)

    Adebayo, Olabisi A; Burrow, Michael F; Tyas, Martin J; Adams, Geoffrey G; Collins, Marnie L

    2010-04-01

    The aim of this study was to determine the relationship between enamel surface microhardness and microshear bond strength (microSBS). Buccal and lingual mid-coronal enamel sections were prepared from 22 permanent human molars and divided into two groups, each comprising the buccal and lingual enamel from 11 teeth, to analyze two self-etching primer adhesives (Clearfil SE Bond and Tokuyama Bond Force). One-half of each enamel surface was tested using the Vickers hardness test with 10 indentations at 1 N and a 15-s dwell time. A hybrid resin composite was bonded to the other half of the enamel surface with the adhesive system assigned to the group. After 24 h of water storage of specimens at 37 degrees C, the microSBS test was carried out on a universal testing machine at a crosshead speed of 1 mm min(-1) until bond failure occurred. The mean microSBS was regressed on the mean Vickers hardness number (VHN) using a weighted regression analysis in order to explore the relationship between enamel hardness and microSBS. The weights used were the inverse of the variance of the microSBS means. Neither separate correlation analyses for each adhesive nor combined regression analyses showed a significant correlation between the VHN and the microSBS. These results suggest that the microSBS of the self-etch adhesive systems are not influenced by enamel surface microhardness.

  18. Bleaching Gels Containing Calcium and Fluoride: Effect on Enamel Erosion Susceptibility

    Directory of Open Access Journals (Sweden)

    Alessandra B. Borges

    2012-01-01

    Full Text Available This in vitro study evaluated the effect of 35% hydrogen peroxide (HP bleaching gel modified or not by the addition of calcium and fluoride on enamel susceptibility to erosion. Bovine enamel samples (3 mm in diameter were divided into four groups (n=15 according to the bleaching agent: control—without bleaching (C; 35% hydrogen peroxide (HP; 35% HP with the addition of 2% calcium gluconate (HP + Ca; 35% HP with the addition of 0.6% sodium fluoride (HP + F. The bleaching gels were applied on the enamel surface for 40 min, and the specimens were subjected to erosive challenge with Sprite Zero and remineralization with artificial saliva for 5 days. Enamel wear was assessed using profilometry. The data were analyzed by ANOVA/ Tukey’s test (P<0.05. There were significant differences among the groups (P=0.009. The most enamel wear was seen for C (3.37±0.80 μm, followed by HP (2.89 ± 0.98 μm and HP + F (2.72 ± 0.64 μm. HP + Ca (2.31 ± 0.92 μm was the only group able to significantly reduce enamel erosion compared to C. The application of HP bleaching agent did not increase the enamel susceptibility to erosion. However, the addition of calcium gluconate to the HP gel resulted in reduced susceptibility of the enamel to erosion.

  19. Self-etching adhesive on intact enamel, with and without pre-etching.

    Science.gov (United States)

    Devarasa, G M; Subba Reddy, V V; Chaitra, N L; Swarna, Y M

    2012-05-01

    Bond strengths of composite resin to enamel using self-etch adhesive (SEA) Clearfil SE bond system on intact enamel and enamel pre-etched with phosphoric acid were compared. The objective was to determine if the pre-etching would increase the bond strengths of the SEA systems to intact enamel and to evaluate the effect of pre-etching on bond formation of self-etch adhesives on intact enamel. Labial surfaces of 40 caries free permanent upper central and lateral incisors were cleaned, sectioned of their roots. All specimens were mounted on acrylic block and divided randomly into four groups. In two groups the application of self-etch adhesive, Clearfil SE bond was carried as per manufacturer's instructions, composite cylinders were built, whereas in the other two groups, 37% phosphoric acid etching was done before the application of self-etching adhesives. Then the resin tags were analyzed using scanning electron microscope and shear bond strength was measured using Instron universal testing machine. When phosphoric acid was used, there was significant increase in the depth of penetration of resin tags and in the Shear Bond Strength of composite to enamel. The results indicate that out of both treatment groups, pre-etching the intact enamel with 37% phosphoric acid resulted in formation of longer resin tags and higher depth of penetration of resin tags of the Clearfil SE bond, and attaining higher bond strength of the Clearfil SE bond to intact enamel. Copyright © 2011 Wiley Periodicals, Inc.

  20. TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos.

    Science.gov (United States)

    Cao, Zubing; Hong, Renyun; Ding, Biao; Zuo, Xiaoyuan; Li, Hui; Ding, Jianping; Li, Yunsheng; Huang, Weiping; Zhang, Yunhai

    2017-01-01

    The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells' chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 μM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression.

  1. Interlaboratory testing of porcine sera for antibodies to porcine circovirus type 2

    DEFF Research Database (Denmark)

    McNair, I.; Marshall, M.; McNeilly, F.

    2004-01-01

    A panel of 20 porcine sera was distributed to 5 laboratories across Europe and Canada. Each center was requested to test the sera for the presence of porcine circovirus type 2 antibodies using the routine assays, indirect immunofluorescence assay (IFA) and indirect immunoperoxidase monolayer assa...... than did IFA, and paraformaldehyde gave higher titers than did acetone or ethyl alcohol. This report highlights the need for standardized procedures and biologicals for this virus....

  2. Quantitative assessment of the enamel machinability in tooth preparation with dental diamond burs.

    Science.gov (United States)

    Song, Xiao-Fei; Jin, Chen-Xin; Yin, Ling

    2015-01-01

    Enamel cutting using dental handpieces is a critical process in tooth preparation for dental restorations and treatment but the machinability of enamel is poorly understood. This paper reports on the first quantitative assessment of the enamel machinability using computer-assisted numerical control, high-speed data acquisition, and force sensing systems. The enamel machinability in terms of cutting forces, force ratio, cutting torque, cutting speed and specific cutting energy were characterized in relation to enamel surface orientation, specific material removal rate and diamond bur grit size. The results show that enamel surface orientation, specific material removal rate and diamond bur grit size critically affected the enamel cutting capability. Cutting buccal/lingual surfaces resulted in significantly higher tangential and normal forces, torques and specific energy (pmachinability for clinical dental practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus

    International Nuclear Information System (INIS)

    Rowland, Raymond R.R.; Schneider, Paula; Fang Ying; Wootton, Sarah; Yoo, Dongwan; Benfield, David A.

    2003-01-01

    The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is the principal component of the viral nucleocapsid and localizes to the nucleolus. Peptide sequence analysis of the N protein of several North American isolates identified two potential nuclear localization signal (NLS) sequences located at amino acids 10-13 and 41-42, which were labeled NLS-1 and NLS-2, respectively. Peptides containing NLS-1 or NLS-2 were sufficient to accumulate enhanced green fluorescent protein (EGFP) in the nucleus. The inactivation of NLS-1 by site-directed mutagenesis or the deletion of the first 14 amino acids did not affect N protein localization to the nucleolus. The substitution of key lysine residues with uncharged amino acids in NLS-2 blocked nuclear/nucleolar localization. Site-directed mutagenesis within NLS-2 identified the sequence, KKNKK, as forming the core localization domain within NLS-2. Using an in vitro pull-down assay, the N protein was able to bind importin-α, importin-β nuclear transport proteins. The localization pattern of N-EGFP fusion peptides represented by a series of deletions from the C- and N-terminal ends of the N protein identified a region covering amino acids 41-72, which contained a nucleolar localization signal (NoLS) sequence. The 41-72 N peptide when fused to EGFP mimicked the nucleolar-cytoplasmic distribution of native N. These results identify a single NLS involved in the transport of N from the cytoplasm and into nucleus. An additional peptide sequence, overlapping NLS-2, is involved in the further targeting of N to the nucleolus

  4. The effect of three whitening oral rinses on enamel micro-hardness.

    Science.gov (United States)

    Potgieter, E; Osman, Y; Grobler, S R

    2014-05-01

    The purpose of this study was to determine the effect on human enamel micro-hardness of three over-the-counter whitening oral rinses available in South Africa. Enamel fragments were gathered into three groups of 15 each. One group was exposed to Colgate Plax Whitening Blancheur, the second group to White Glo 2 in 1 and the third to Plus White, in each case for periods recommended by the respective manufacturers. Surface micro-hardness of all groups was measured before and after a 14 day treatment period. pH levels of the oral rinses were also determined with a combination pH electrode. Pre- and post- treatment data were analysed by the Wilcoxon Signed Rank Sum Test. According to the micro-hardness values no significant (p > 0.05) enamel damage was found as a result of treatment. However, it was observed that Colgate Pax and White Glo decreased the enamel hardness, an early sign of enamel damage, while Plus White showed a small increase in hardness. The three whitening oral rinses on the South African market do not damage the tooth enamel significantly when used as recommended by the manufacturers. However, extending the contact period and increasing the frequency of application might lead to damage of enamel.

  5. Methodic of the gamma-rays absorbed dose measurements on tooth enamel

    International Nuclear Information System (INIS)

    Linev, S.V.; Muravskij, V.A.; Mashevskij, A.A.; Ugolev, I.I.

    1997-01-01

    The analysis of the metrological aspects of the tooth enamel ESR dosimetry has been done. The sample preparation and measurement methods have been elaborated. The methods have passed metrological certification. The methods include tabletting of the mixture of tooth enamel powder and MnO paramagnetic centres concentration additional standard, two loops of additional irradiation of samples by 1 Gy dose and ESR-spectra measurements, calculation of absorbed dose by maximum likelihood algorithm. The algorithm of dose calculation uses enamel spectrum model with axial anisotropic spin-Hamiltonian based on 126 spectra of enamel samples. The algorithm takes into account spectra of the empty cavity, the tube for a sample, the glue and MnO standard. Certificated ESR-station is based on the ESR-analyser PS-100X. ESR-station provides tooth enamel absorbed dose measurements from 0.05 to 0.25 Gy with error 35%, and from 0.25 to 3 Gy with error 20%. The set of tooth enamel absorbed dose standard samples has been created and certificated for the purposes of ESR-station testing and certification. The set consists of 12 tabletted samples of tooth enamel irradiated by doses from 0.05 to 4 Gy. (authors). 7 refs., 1 tab., 2 figs

  6. Dental enamel defects in Italian children with cystic fibrosis: an observational study.

    Science.gov (United States)

    Ferrazzano, G F; Sangianantoni, G; Cantile, T; Amato, I; Orlando, S; Ingenito, A

    2012-03-01

    The relationship between cystic fibrosis (CF) and caries experience has already been explored, but relatively little information is available on dental enamel defects prevalence among children affected by cystic fibrosis. The aim of this study was to investigate this issue in deciduous and permanent teeth of children with CF resident in southern Italy. This cross sectional observational study was undertaken between October 2009 and March 2010. 88 CF patients and 101 healthy age-matched participated in this study. The prevalence of dental enamel defects was calculated using a modified Developmental Defects of Enamel (DDE) index. The comparison of dental enamel defects prevalence among groups was carried out using regression binary logistic analysis. In the CF subjects there was a higher prevalence (56%) of enamel defects in comparison to the healthy group (22%). The most prevalent enamel defect was hypoplasia with loss of enamel (23% of CF patients vs 1 1/2% of control group) in permanent teeth. This study confirms that children with cystic fibrosis are at increased risk of developing hypoplastic defects on their permanent teeth.

  7. Effect of four over-the-counter tooth-whitening products on enamel microhardness.

    Science.gov (United States)

    Majeed, A; Grobler, S R; Moola, M H; Oberholzer, T G

    2011-10-01

    This in vitro study evaluated the effect of four over-the-counter tooth-whitening products on enamel microhardness. Fifty enamel blocks were prepared from extracted human molar teeth. The enamel surfaces were polished up to 1200 grit fineness and the specimens randomly divided into five groups. Enamel blocks were exposed to: Rapid White (n=10); Absolute White (n=10); Speed White (n=10) and White Glo (n=10) whitening products, according to the manufacturers' instructions. As control, ten enamel blocks were kept in artificial saliva at 37 degrees C without any treatment. Microhardness values were obtained before exposure (baseline) and after 1, 7 and 14-day treatment periods using a digital hardness tester with a Vickers diamond indenter. Data were analysed using Wilcoxon Signed Rank Sum Test, one-way ANOVA and Tukey-Kramer Multiple Comparison Test (penamel microhardness. Speed White increased the microhardness of enamel, while White Glo and artificial saliva had no effect on hardness. Over-the-counter tooth-whitening products might decrease enamel microhardness depending on the type of product.

  8. Enamel and dentin bond strength following gaseous ozone application.

    Science.gov (United States)

    Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo

    2009-08-01

    To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p enamel and dentin bond strength.

  9. Analysis of the enamel hypoplasia using micro-CT scanner versus classical method.

    Science.gov (United States)

    Marchewka, Justyna; Skrzat, Janusz; Wróbel, Andrzej

    2014-01-01

    This article demonstrates the use of micro-CT scanning of the teeth surface for recognizing and evaluating severity of the enamel hypoplasia. To test capabilities of the microtomography versus classical method of evaluation hypoplastic defects of the enamel we selected two human teeth (C, M(2)) showing different types of enamel hypoplasia: linear, pits, and groove. Examined samples derive from archeological material dated on XVII-XVIII AD and excavated in Poland. In the current study we proved that micro-CT scanning is a powerful technique not only for imaging all kinds of the enamel hypoplasia but also allows to perform accurate measurements of the enamel defects. We figure out that contrary to the classical method of scoring enamel defects, the micro-computed tomography yields adequate data which serve for estimating the length of stress episode and length of interval between them.

  10. Amelogenesis Imperfect, Enamel Hypoplasia and Fluorosis Dental - Literature Review

    Directory of Open Access Journals (Sweden)

    Flávia Magnani Bevilacqua

    2015-12-01

    Full Text Available The developmental disorders of enamel are abnormalities of structure which can affect both dentitions. These abnormalities include amelogenesis imperfecta, enamel hypoplasia and dental fluorosis. The amelogenesis imperfecta is a hereditary change and enamel hypoplasia is a quantitative defect of enamel that occurs as a result of systemic problems, local and also inherited factors, or even the combination of them. Dental fluorosis is a hypoplasia caused by the chronic ingestion of fluoride during odontogenesis. All these anomalies have similar clinical characteristics, and it is necessary to be careful in their assessment. It is extremely important to know these abnormalities to establish a differential diagnosis and, consequently, a treatment plan, which can be set for each situation. Therefore, the purpose of this study was to review the literature regarding these three anomalies: amelogenesis imperfecta, enamel hypoplasia and dental fluorosis. It was concluded that to establish the differential diagnosis of these abnormalities as well as a proper treatment plan, it is indispensable the professional knowledge associated with the clinical examination. The examination has to consist of medical history and physical examination, and in some cases, x-ray examination.

  11. Enamel softening with Coca-Cola and rehardening with milk or saliva.

    Science.gov (United States)

    Gedalia, I; Dakuar, A; Shapira, L; Lewinstein, I; Goultschin, J; Rahamim, E

    1991-06-01

    Rehardening effects by cow's milk and by secreted saliva were investigated, in situ, following softening of human enamel with an acidic beverage (Coca-Cola). Volunteers wearing orthodontic removable appliances participated in the study. The intra-oral test was chosen for measuring microhardness of enamel slabs inserted into the dental appliance. The softening and the rehardening degrees were defined as the alterations between initial- and experimental-microhardness value at the enamel surface. In addition, SEM photos were prepared from the initial and experimental stages. Exposure of enamel slabs to the acidic beverage during 1 hour had a softening effect as expressed by the hardness decrease and visualized by the SEM photo. Rehardening effects following milk or saliva exposures respectively were evident, presumably due to deposited organic and mineral material on the enamel surface.

  12. In phantom dosimetric response of tooth enamel to neutrons

    International Nuclear Information System (INIS)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2004-01-01

    Electron Paramagnetic Resonance dosimetry based on tooth enamel has one important application in dose reconstruction of nuclear plant workers, where the contribution of neutrons to individual dose is often important. Evaluation of tooth enamel response to neutrons is thus an important goal. A few experimental data at thermal and fast neutron energies are available. A first evaluation of the tooth enamel relative response to 60 Co in monoenergetic neutron flux of 2.8 and of 14 MeV, published elsewhere, has provided results apparently non-consistent with the results obtained at lower and higher energies. A comparison of those results in the 2.8 and 14 MeV beams with those available in the literature for other beams is reported and possible reasons for incongruities are discussed. Dose conversion factors of enamel to the water and air are also calculated and reported. (authors)

  13. Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid)

    International Nuclear Information System (INIS)

    Cai Ning; Gong Yingxue; Chan, Vincent; Liao Kin; Chian, Kerm Sin

    2008-01-01

    Effective attachment of esophageal cells on biomaterials is one important requirement in designing engineered esophagus substitute for esophageal cancer treatment. In this study, poly(lactic acid) (PLA) was subjected to surface modification by coupling extracellular matrix (ECM) proteins on its surface to promote cell adhesion. Two typical ECM proteins, collagen type I (COL) and fibronectin (FN), were immobilized on the PLA surface with the aid of glutaraldehyde as a cross linker between aminolyzed PLA and ECM proteins. By using confocal reflectance interference contrast microscopy (C-RICM) integrating with phase contrast microscopy, the long-term adhesion dynamics of porcine esophageal fibroblasts (PEFs) on four types of surfaces (unmodified PLA, PLA-COOH, PLA-COL and PLA-FN) was investigated during 24 h of culture. It is demonstrated by C-RICM results that PEFs form strong adhesion contact on all four types of surfaces at different stages of cell seeding. Among the four surfaces, PEFs on the PLA-FN surface reach the maximum adhesion energy (9.5 x 10 -7 J m -2 ) in the shortest time (20 min) during the initial stage of cell seeding. After adhesion energy reaches the maximum value, PEFs maintain their highly deformed geometries till they reached a steady state after 20 h of culture. F-actin immunostaining results show that the evolvement of spatial organization of F-actin is tightly correlated with the formation of adhesion contact and cell spreading. Furthermore, the cell attachment ratio of PEFs on PLA in 2 h is only 26% compared with 88% on PLA-FN, 73% on PLA-COL and 36% on PLA-COOH. All the results demonstrate the effect of surface functionalization on the biophysical responses of PEFs in cell adhesion. Fibronectin-immobilized PLA demonstrates promising potential for application as an engineered esophagus substitute

  14. Molecular Basis of Human Enamel Defects

    Directory of Open Access Journals (Sweden)

    Chatzopoulos Georgios

    2014-03-01

    Full Text Available During eruption of teeth in the oral cavity, the effect of gene variations and environmental factors can result in morphological and structural changes in teeth. Amelogenesis imperfecta is a failure which is detected on the enamel of the teeth and clinical picture varies by the severity and type of the disease. Classification of the types of amelogenesis imperfecta is determined by histological, genetic, clinical and radiographic criteria. Specifically, there are 4 types of amelogenesis imperfecta (according to Witkop: hypoplastic form, hypo-maturation form, hypo-calcified form, and hypo-maturation/hypoplasia form with taurodontism and 14 subcategories. The diagnosis and classification of amelogenesis imperfecta has traditionally been based on clinical presentation or phenotype and the inheritance pattern. Several genes can be mutated and cause the disease. Millions of genes, possibly more than 10,000 genes produce proteins that regulate synthesis of enamel. Some of the genes and gene products that are likely associated with amelogenesis imperfecta are: amelogenin (AMELX, AMELY genes, ameloblastin (AMBN gene, enamelin (ENAM gene, enamelysin (MMP20 gene, kalikryn 4 (KLK 4 gene, tuftelins (Tuftelin gene, FAM83H (FAM83H gene and WDR72 (WDR72 gene. Particular attention should be given by the dentist in recognition and correlation of phenotypes with genotypes, in order to diagnose quickly and accurately such a possible disease and to prevent or treat it easily and quickly. Modern dentistry should restore these lesions in order to guarantee aesthetics and functionality, usually in collaboration with a group of dentists.

  15. Application of micro-PIXE analysis to investigate trace elements in deciduous teeth enamel

    International Nuclear Information System (INIS)

    Igari, K.; Takahashi, A.; Ando, H.

    2010-01-01

    The early life environment has widespread consequences for later health and disease. To prevent the disease in later life, the assessment of fetal environment is very important. In Japan, birthweight has fallen rapidly during recent two decades. The reduction of birthweight represents reduced fetal nutrition. Deciduous tooth enamel contains pre- and postnatal enamel and its chemical composition reflects the status of metabolism of trace elements during formation period. Deciduous tooth enamel is considered to be a suitable indicator of trace elements exposure in utero. We applied micro-PIXE analysis to investigate the trace elemental content in deciduous tooth enamel. Two deciduous canines from one healthy Japanese boy were used for this study. The enamel section including pre- and postnatal enamel was prepared for micro-PIXE analysis. Five trace elements (Na, Mg, Cl, Zn, and Sr) were detected in the scanning area of tooth. The distribution profiles of 5 elements were obtained as X-ray maps. The distribution profiles of zinc and chlorine were specific, and showed higher concentration in surface enamel. No elements showed different profiles of X-ray maps between pre- and postnatal enamel in this sample. The results of this study suggested that micro-PIXE analysis would be able to estimate the trace elements in prenatal and postnatal enamel, respectively. (author)

  16. An in vitro study of dental enamel wear by restorative materials using radiometric method

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa

    2000-01-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  17. Error in assessing the absorbed dose from the EPR signal from dental enamel

    International Nuclear Information System (INIS)

    Kleshchenko, E.D.; Kushnereva, K.K.

    1997-01-01

    Dose measurements from EPR signals from dental enamel were analyzed in a random sampling of 100 teeth extracted in liquidators of the Chernobyl accident aftermath and the EPR spectra of dental enamel of 80 intact teeth from children studied. The mean square deviation of enamel sensitivity to ionizing radiation in some teeth is approximately 0.3 of the mean sensitivity value. The variability of the nature EPR spectrum of dental enamel limits in principle the lower threshold of EPR-measured 60 mGy doses. When assessing the individual absorbed doses from the EPR signal from dental enamel without additional exposure it is necessary to bear in mind the extra error of approximately 6-% at a confidence probability P=0.95 caused by the variability of enamel sensitivity to radiation in some teeth. This additional error may be ruled out by graduated additional exposure of the examined enamel samples

  18. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells.

    Science.gov (United States)

    Ren, Lipeng; Yang, Hong; Cui, Yanhua; Xu, Shuanshuan; Sun, Fen; Tian, Na; Hua, Jinlian; Peng, Sha

    2017-07-01

    Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active β-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Recovery of crystallographic texture in remineralized dental enamel.

    Directory of Open Access Journals (Sweden)

    Samera Siddiqui

    Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected

  20. Enamel and dentin bond strengths of a new self-etch adhesive system.

    Science.gov (United States)

    Walter, Ricardo; Swift, Edward J; Boushell, Lee W; Braswell, Krista

    2011-12-01

    statement of problem:  Self-etch adhesives typically are mildly acidic and therefore less effective than etch-and-rinse adhesives for bonding to enamel.   The purpose of this study was to evaluate the enamel and dentin shear bond strengths of a new two-step self-etch adhesive system, OptiBond XTR (Kerr Corporation, Orange, CA, USA).   The labial surfaces of 80 bovine teeth were ground to create flat, 600-grit enamel or dentin surfaces. Composite was bonded to enamel or dentin using the new two-step self-etch system or a three-step etch-and-rinse (OptiBond FL, Kerr), two-step self-etch (Clearfil SE Bond, Kuraray America, Houston, TX, USA), or one-step self-etch adhesive (Xeno IV, Dentsply Caulk, Milford, DE, USA). Following storage in water for 24 hours, shear bond strengths were determined using a universal testing machine. The enamel and dentin data sets were subjected to separate analysis of variance and Tukey's tests. Scanning electron microscopy was used to evaluate the effects of each system on enamel.   Mean shear bond strengths to enamel ranged from 18.1 MPa for Xeno IV to 41.0 MPa for OptiBond FL. On dentin, the means ranged from 33.3 MPa for OptiBond FL to 47.1 MPa for Clearfil SE Bond. OptiBond XTR performed as well as Clearfil SE Bond on dentin and as well as OptiBond FL on enamel. Field emission scanning electron microscope revealed that OptiBond XTR produced an enamel etch pattern that was less defined than that of OptiBond FL (37.5% phosphoric acid) but more defined than that of Clearfil SE Bond or Xeno IV.   The new two-step self-etch adhesive system formed excellent bonds to enamel and dentin in vitro. OptiBond XTR, a new two-step self-etch adhesive system, is a promising material for bonding to enamel as well as to dentin. © 2011 Wiley Periodicals, Inc.

  1. Amelogenesis Imperfecta; Genes, Proteins, and Pathways

    Directory of Open Access Journals (Sweden)

    Claire E. L. Smith

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/ containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and

  2. Amelogenesis Imperfecta; Genes, Proteins, and Pathways.

    Science.gov (United States)

    Smith, Claire E L; Poulter, James A; Antanaviciute, Agne; Kirkham, Jennifer; Brookes, Steven J; Inglehearn, Chris F; Mighell, Alan J

    2017-01-01

    Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX , encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the

  3. Micro-indentation fracture behavior of human enamel.

    Science.gov (United States)

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  4. Characterization, expression profiles, intracellular distribution and association analysis of porcine PNAS-4 gene with production traits

    Directory of Open Access Journals (Sweden)

    Wang Heng

    2008-06-01

    Full Text Available Abstract Background In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and production efficiency, we determined how porcine PNAS-4 gene regulates meat production. Therefore, this gene has been sequenced, expression analyzed and associated with meat production traits. Results We cloned the full-length cDNA of porcine PNAS-4 gene encoding a protein of 194 amino acids which was expressed in the Golgi complex. This gene was mapped to chromosome 10, q11–16, in a region of conserved synteny with human chromosome 1 where the human homologous gene was localized. Real-time PCR revealed that PNAS-4 mRNA was widely expressed with highest expression levels in skeletal muscle followed by lymph, liver and other tissues, and showed a down-regulated expression pattern during prenatal development while a up-regulated expression pattern after weaning. Association analysis revealed that allele C of SNP A1813C was prevalent in Chinese indigenous breeds whereas A was dominant allele in Landrace and Large White, and the pigs with homozygous CC had a higher fat content than those of the pigs with other genotypes (P Conclusion Porcine PNAS-4 protein tagged with green fluorescent protein accumulated in the Golgi complex, and its mRNA showed a widespread expression across many tissues and organs in pigs. It may be an important factor affecting the meat production efficiency, because its down-regulated expression pattern during early embryogenesis suggests involvement in increase of muscle fiber number. In addition, the SNP A1813C associated with fat traits might be a genetic marker for molecular-assisted selection in animal breeding.

  5. Relationship between human tooth enamel free radical concentration and radiation dose

    International Nuclear Information System (INIS)

    Zhou Yongzeng; Wang Jiadong; Jia Xiaomei; Wu Ke; Cong Jianbo; Sun Cunpu

    1999-01-01

    Free radical concentrations of 25 adult tooth enamel samples were measured by electron spin resonance (ESR) technique in this paper, and the relationship between free radical concentration of tooth enamel and radiation dose was also investigated. In the 25 adult enamel samples they are 16 male samples and 9 female samples, Ages of tooth donors range from 18-41 years. Difference in background ESR signal intensity between male and female samples was no observed; free radical concentration (or increment of radiation-induced free radical concentration) in tooth enamel increases linearly with increasing of radiation dose. In the case of radiation accident, the study results of this paper could be applied to dose estimation when conditions of ESR measurement of exposed individual tooth enamel are similar to measurement conditions of dose-effect calibration curve in this paper

  6. Metabolism in tooth enamel and reliability of retrospective EPR dosimetry connected with Chernobyl accident

    International Nuclear Information System (INIS)

    Brik, A.; Radchuk, V.; Scherbina, O.; Matyash, M.; Gaver, O.

    1996-01-01

    It is shown that the results of retrospective EPR dosimetry by tooth enamel are essentially determined by the fact that tooth enamel is the mineral of biological origin. The structure of tooth enamel, properties of radiation defects and the role of metabolism in tooth enamel are discussed. It is shown that at deep metamorphic modifications tooth enamel don't save information about its radiation history. The reliability and accuracy of retrospective EPR dosimetry are discussed. Because after Chernobyl accident have passed 10 years the application of tooth enamel for reconstruction of doses which are connected with Chernobyl accident need care and additional investigations

  7. The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis

    NARCIS (Netherlands)

    Bronckers, A.L.J.J.; Lyaruu, D.M.; Denbesten, P.K.

    2009-01-01

    Intake of excess amounts of fluoride during tooth development cause enamel fluorosis, a developmental disturbance that makes enamel more porous. In mild fluorosis, there are white opaque striations across the enamel surface, whereas in more severe cases, the porous regions increase in size, with

  8. Femtosecond laser etching of dental enamel for bracket bonding.

    Science.gov (United States)

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  9. Prevention of the disrupted enamel phenotype in Slc4a4-null mice using explant organ culture maintained in a living host kidney capsule.

    Directory of Open Access Journals (Sweden)

    Xin Wen

    Full Text Available Slc4a4-null mice are a model of proximal renal tubular acidosis (pRTA. Slc4a4 encodes the electrogenic sodium base transporter NBCe1 that is involved in transcellular base transport and pH regulation during amelogenesis. Patients with mutations in the SLC4A4 gene and Slc4a4-null mice present with dysplastic enamel, amongst other pathologies. Loss of NBCe1 function leads to local abnormalities in enamel matrix pH regulation. Loss of NBCe1 function also results in systemic acidemic blood pH. Whether local changes in enamel pH and/or a decrease in systemic pH are the cause of the abnormal enamel phenotype is currently unknown. In the present study we addressed this question by explanting fetal wild-type and Slc4a4-null mandibles into healthy host kidney capsules to study enamel formation in the absence of systemic acidemia. Mandibular E11.5 explants from NBCe1-/- mice, maintained in host kidney capsules for 70 days, resulted in teeth with enamel and dentin with morphological and mineralization properties similar to cultured NBCe1+/+ mandibles grown under identical conditions. Ameloblasts express a number of proteins involved in dynamic changes in H+/base transport during amelogenesis. Despite the capacity of ameloblasts to dynamically modulate the local pH of the enamel matrix, at least in the NBCe1-/- mice, the systemic pH also appears to contribute to the enamel phenotype. Extrapolating these data to humans, our findings suggest that in patients with NBCe1 mutations, correction of the systemic metabolic acidosis at a sufficiently early time point may lead to amelioration of enamel abnormalities.

  10. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    Science.gov (United States)

    Koprowski, Robert; Safranow, Krzysztof; Woźniak, Krzysztof

    2017-01-01

    Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant. PMID:28243604

  11. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Julia Seeliger

    2017-01-01

    Full Text Available Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant.

  12. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    Science.gov (United States)

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  13. Systemic release of cytokines and heat shock proteins in porcine models of polytrauma and hemorrhage

    Science.gov (United States)

    Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias

    2011-01-01

    Objective To define systemic release kinetics of a panel of cytokines and heat shock proteins (HSP) in porcine polytrauma/hemorrhage models and to evaluate whether they could be useful as early trauma biomarkers. Design and Setting Prospective study in a research laboratory. Subjects Twenty-one Yorkshire pigs. Measurements and Main Results Pigs underwent polytrauma (femur fractures/lung contusion, P), hemorrhage (mean arterial pressure 25-30mmHg, H), polytrauma plus hemorrhage (P/H) or sham procedure (S). Plasma was obtained at baseline, in 5-15min intervals during a 60min shock period without intervention and in 60-120min intervals during fluid resuscitation for up to 300min. Plasma was assayed for IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12/IL-23p40, IL-13, IL-17, IL-18, IFNγ, TGFβ, TNFα, HSP40, HSP70 and HSP90 by ELISA. All animals after S, P and H survived (n=5/group). Three of six animals after P/H died. IL-10 increased during shock after P and this increase was attenuated after H. TNFα increased during the shock period after P, H and also after S. P/H abolished the systemic IL-10 and TNFα release and resulted in 20-30% increased levels of IL-6 during shock. As fluid resuscitation was initiated TNFα and IL-10 levels decreased after P, H and P/H, HSP 70 increased after P, IL-6 levels remained elevated after P/H and also increased after P and S. Conclusions Differential regulation of the systemic cytokine release after polytrauma and/or hemorrhage, in combination with the effects of resuscitation, can explain the variability and inconsistent association of systemic cytokine/HSP levels with clinical variables in trauma patients. Insults of major severity (P/H) partially suppress the systemic inflammatory response. The plasma concentrations of the measured cytokines/HSPs do not reflect injury severity or physiological changes in porcine trauma models and are unlikely to be able to serve as useful trauma biomarkers in patients. PMID:21983369

  14. An exploratory study of human teeth enamel by using Ft-Raman spectroscopy

    International Nuclear Information System (INIS)

    Afishah Alias; Siti Rahayu Mohd Hashim; Mihaly, Judith; Julyannie Wajir; Fauziah Abdul Aziz

    2009-01-01

    Unaffected , affected and heavily affected teeth enamel were studied by using FT-Raman spectroscopy. The 14 permanent teeths enamel surface were measured randomly, resulting in total n = 43 FT-Raman spectra. The results obtained from FT-Raman spectra of heavily affected, affected and unaffected tooths enamel surfaces did not show any significant difference. In this study, Kruskal-Wallis and Wilcoxon rank sum tests were used to compare the intensity between the categories of enamel as well as the surfaces of teeth samples. (author)

  15. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome.

    Science.gov (United States)

    Dawson, Harry D; Smith, Allen D; Chen, Celine; Urban, Joseph F

    2017-04-01

    Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been published. Herein we provide an expanded in silico analysis using an improved assembly of the porcine transcriptome that provides an in depth analysis of genes that are related to inflammasomes, responses to Toll-like receptor ligands, and M1 macrophage polarization and Escherichia coli as a model organism. Comparisons of the expansion or contraction of orthologous gene families indicated more similar rates and classes of genes in humans and pigs than in mice; however several novel porcine or artiodactyl-specific paralogs or pseudogenes were identified. Conservation of homology and structural motifs of orthologs revealed that the overall similarity to human proteins was significantly higher for pigs compared to mouse. Despite these similarities, two out of four canonical inflammasome pathways, Absent in melanoma 2 (AIM2) and NLR family and CARD domain containing 4 (NLRC4), were found to be missing in pigs. Pig M1 Mφ polarization in response to interferon-γ (IFN-γ) and lipopolysaccharide (LPS) was assessed, via the transcriptome, using next generation sequencing. Our analysis revealed predominantly human-like responses however some, mouse-like responses were observed, as well as induction of numerous pig or artiodactyl-specific genes. This work supports using swine to model both human immunological and inflammatory responses to infection. However, caution must be exercised as pigs differ from humans in several fundamental pathways. Published by Elsevier B.V.

  16. A model for predicting wear rates in tooth enamel.

    Science.gov (United States)

    Borrero-Lopez, Oscar; Pajares, Antonia; Constantino, Paul J; Lawn, Brian R

    2014-09-01

    It is hypothesized that wear of enamel is sensitive to the presence of sharp particulates in oral fluids and masticated foods. To this end, a generic model for predicting wear rates in brittle materials is developed, with specific application to tooth enamel. Wear is assumed to result from an accumulation of elastic-plastic micro-asperity events. Integration over all such events leads to a wear rate relation analogous to Archard׳s law, but with allowance for variation in asperity angle and compliance. The coefficient K in this relation quantifies the wear severity, with an arbitrary distinction between 'mild' wear (low K) and 'severe' wear (high K). Data from the literature and in-house wear-test experiments on enamel specimens in lubricant media (water, oil) with and without sharp third-body particulates (silica, diamond) are used to validate the model. Measured wear rates can vary over several orders of magnitude, depending on contact asperity conditions, accounting for the occurrence of severe enamel removal in some human patients (bruxing). Expressions for the depth removal rate and number of cycles to wear down occlusal enamel in the low-crowned tooth forms of some mammals are derived, with tooth size and enamel thickness as key variables. The role of 'hard' versus 'soft' food diets in determining evolutionary paths in different hominin species is briefly considered. A feature of the model is that it does not require recourse to specific material removal mechanisms, although processes involving microplastic extrusion and microcrack coalescence are indicated. Published by Elsevier Ltd.

  17. Enzyme replacement prevents enamel defects in hypophosphatasia mice

    Science.gov (United States)

    Yadav, Manisha C.; de Oliveira, Rodrigo Cardoso; Foster, Brian L.; Fong, Hanson; Cory, Esther; Narisawa, Sonoko; Sah, Robert L.; Somerman, Martha; Whyte, Michael P.; Millán, José Luis

    2012-01-01

    Hypophosphatasia (HPP) is the inborn error of metabolism characterized by deficiency of alkaline phosphatase activity leading to rickets or osteomalacia and to dental defects. HPP occurs from loss-of-function mutations within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNAP). TNAP knockout (Alpl−/−, a.k.a. Akp2−/−) mice closely phenocopy infantile HPP, including the rickets, vitamin B6-responsive seizures, improper dentin mineralization, and lack of acellular cementum. Here, we report that lack of TNAP in Alpl−/− mice also causes severe enamel defects, which are preventable by enzyme replacement with mineral-targeted TNAP (ENB-0040). Immunohistochemistry was used to map the spatiotemporal expression of TNAP in the tissues of the developing enamel organ of healthy mouse molars and incisors. We found strong, stage-specific expression of TNAP in ameloblasts. In the Alpl−/− mice, histological, μCT, and scanning electron microscopy analysis showed reduced mineralization and disrupted organization of the rods and inter-rod structures in enamel of both the molars and incisors. All of these abnormalities were prevented in mice receiving from birth daily subcutaneous injections of mineral-targeting, human TNAP (sALP-FcD10, a.k.a. ENB-0040) at 8.2 mg/kg/day for up to 44 days. These data reveal an important role for TNAP in enamel mineralization, and demonstrate the efficacy of mineral-targeted TNAP to prevent enamel defects in HPP. PMID:22461224

  18. Enamel formation and growth in non-mammalian cynodonts

    Science.gov (United States)

    Dirks, Wendy; Martinelli, Agustín G.

    2018-01-01

    The early evolution of mammals is associated with the linked evolutionary origin of diphyodont tooth replacement, rapid juvenile growth and determinate adult growth. However, specific relationships among these characters during non-mammalian cynodont evolution require further exploration. Here, polarized light microscopy revealed incremental lines, resembling daily laminations of extant mammals, in histological sections of enamel in eight non-mammalian cynodont species. In the more basal non-probainognathian group, enamel extends extremely rapidly from cusp to cervix. By contrast, the enamel of mammaliamorphs is gradually accreted, with slow rates of crown extension, more typical of the majority of non-hypsodont crown mammals. These results are consistent with the reduction in dental replacement rate across the non-mammalian cynodont lineage, with greater rates of crown extension required in most non-probainognathians, and slower crown extension rates permitted in mammaliamorphs, which have reduced patterns of dental replacement in comparison with many non-probainognathians. The evolution of mammal-like growth patterns, with faster juvenile growth and more abruptly terminating adult growth, is linked with this reduction in dental replacement rates and may provide an additional explanation for the observed pattern in enamel growth rates. It is possible that the reduction in enamel extension rates in mammaliamorphs reflects an underlying reduction in skeletal growth rates at the time of postcanine formation, due to a more abruptly terminating pattern of adult growth in these more mammal-like, crownward species. PMID:29892415

  19. Year of birth determination using radiocarbon dating of dental enamel.

    Science.gov (United States)

    Buchholz, B A; Spalding, K L

    2010-05-01

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ((14)C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, (14)C levels in the enamel represent (14)C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  20. Year of Birth Determination Using Radiocarbon Dating of Dental Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Spalding, K L

    2009-03-10

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ({sup 14}C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, {sup 14}C levels in the enamel represent {sup 14}C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  1. The dentin-enamel junction and the fracture of human teeth

    Science.gov (United States)

    Imbeni, V.; Kruzic, J. J.; Marshall, G. W.; Marshall, S. J.; Ritchie, R. O.

    2005-03-01

    The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness (~5 to 10 times higher than enamel but ~75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.

  2. VIP receptors from porcine liver: High yield solubilization in a GTP-insensitive form

    International Nuclear Information System (INIS)

    Voisin, T.; Couvineau, A.; Guijarro, L.; Laburthe, M.

    1990-01-01

    Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membranes using CHAPS. The binding of 125 I-VIP to solubilized receptors was reversible, saturable and specific. Scatchard analysis indicated the presence of one binding site with a Kd of 6.5 ± 0.3 nM and a Bmax of 1.20 ± 0.15 pmol/mg protein. Solubilized and membrane-bound receptors displayed the same pharmacological profile since VIP and VIP-related peptides inhibited 125 I-VIP binding to both receptor preparations with the same rank order of potency e.g. VIP>helodermin>rat GRF>rat PHI>secretin>human GRF. GTP inhibited 125 I-VIP binding to membrane-bound receptors but not to solubilized receptors supporting functional uncoupling of VIP receptor and G protein during solubilization. Affinity labeling of solubilized and membrane-bound VIP receptors with 125 I-VIP revealed the presence of a single molecular component with Mr 55,000 in both cases. It is concluded that VIP receptors from porcine liver can be solubilized with a good yield, in a GTP-insensitive, G protein-free form. This represents a major advance towards the purification of VIP receptors

  3. Development and application of an indirect enzyme-linked immunosorbent assay using recombinant truncated Cap protein for the diagnosis of porcine circovirus-like virus P1.

    Science.gov (United States)

    Wen, Li-bin; Wen, Shi-fu; He, Kong-wang

    2016-01-19

    Porcine circovirus-like virus P1 is a newly discovered virus. To date, there has been no specific serological assay for use in the diagnosis of P1 infection. Because P1 has high homology to porcine circovirus type 2 (PCV2) at the nucleotide level, the C-terminal portion of the capsid protein (amino acids 73-114), a discriminative antigen, was expressed in a prokaryotic expression system. The recombinant product (rctCap), composed of three identical repeated domains, was shown to be strongly immunoreactive to P1-specific serum. This assay was validated by comparison with an indirect immunofluorescence assay (IFA). The diagnostic sensitivity and specificity of the rctCap enzyme-linked immunosorbent assay (ELISA) developed in this study are 93.6% and 98.3%, respectively, compared with the results from IFAs on 450 sera samples from pigs. The indirect ELISA that we developed with rctCap, the recombinant capsid fragment containing the 217-342 nt repeat domain, was sensitive, specific, and suitable for the large-scale detection of P1 infections in swine.

  4. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    International Nuclear Information System (INIS)

    Dumpala, Pradeep R.; Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A.; Parker, Thomas S.; Levine, Daniel M.; Smith, Barry H.; Gazda, Lawrence S.

    2016-01-01

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  5. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    Energy Technology Data Exchange (ETDEWEB)

    Dumpala, Pradeep R., E-mail: pdumpala@rixd.org [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Parker, Thomas S.; Levine, Daniel M. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); Smith, Barry H. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); NewYork-Presbyterian Hospital, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021 (United States); Gazda, Lawrence S. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States)

    2016-08-05

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  6. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  7. A laser-abrasive method for the cutting of enamel and dentin.

    Science.gov (United States)

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  8. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  9. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization.

    Science.gov (United States)

    Jeremias, Fabiano; Koruyucu, Mine; Küchler, Erika C; Bayram, Merve; Tuna, Elif B; Deeley, Kathleen; Pierri, Ricardo A; Souza, Juliana F; Fragelli, Camila M B; Paschoal, Marco A B; Gencay, Koray; Seymen, Figen; Caminaga, Raquel M S; dos Santos-Pinto, Lourdes; Vieira, Alexandre R

    2013-10-01

    Genetic disturbances during dental development influence variation of number and shape of the dentition. In this study, we tested if genetic variation in enamel formation genes is associated with molar-incisor hypomineralization (MIH), also taking into consideration caries experience. DNA samples from 163 cases with MIH and 82 unaffected controls from Turkey, and 71 cases with MIH and 89 unaffected controls from Brazil were studied. Eleven markers in five genes [ameloblastin (AMBN), amelogenin (AMELX), enamelin (ENAM), tuftelin (TUFT1), and tuftelin-interacting protein 11 (TFIP11)] were genotyped by the TaqMan method. Chi-square was used to compare allele and genotype frequencies between cases with MIH and controls. In the Brazilian data, distinct caries experience within the MIH group was also tested for association with genetic variation in enamel formation genes. The ENAM rs3796704 marker was associated with MIH in both populations (Brazil: p=0.03; OR=0.28; 95% C.I.=0.06-1.0; Turkey: p=1.22e-012; OR=17.36; 95% C.I.=5.98-56.78). Associations between TFIP11 (p=0.02), ENAM (p=0.00001), and AMELX (p=0.01) could be seen with caries independent of having MIH or genomic DNA copies of Streptococcus mutans detected by real time PCR in the Brazilian sample. Several genes involved in enamel formation appear to contribute to MIH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Geographic Variations in the EPR Spectrum of Tooth Enamel

    International Nuclear Information System (INIS)

    Romanyukha, A.A.; Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1999-01-01

    The presence of stable radiation-induced radicals in the mineral component of tooth enamel allows use of this material as a biological dosemeter. Estimation of the dose absorbed in tooth enamel can be done by EPR. Generally, for the purpose of dose reconstruction, the EPR spectrum of tooth enamel is interpreted in terms of two main components. The first is a broad background signal often called the native signal centered at a g value of 2.0045. The origin of this signal is not precisely known. The second main component in the tooth enamel spectrum is purely radiation induced and can be used for retrospective dosimetry. Internal structure of the native signal and variations of its amplitude and linewidth were investigated for the samples prepared from modern teeth obtained from different geographic locations (USA and Russia). Possible reasons for the variations observed are discussed as are the potential effects of the variations on the reliability of dose estimation. (author)

  11. Morphology and structure of polymer layers protecting dental enamel against erosion.

    Science.gov (United States)

    Beyer, Markus; Reichert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2012-10-01

    Human dental erosion caused by acids is a major factor for tooth decay. Adding polymers to acidic soft drinks is one important approach to reduce human dental erosion caused by acids. The aim of this study was to investigate the thickness and the structure of polymer layers adsorbed in vitro on human dental enamel from polymer modified citric acid solutions. The polymers propylene glycol alginate (PGA), highly esterified pectin (HP) and gum arabic (GA) were used to prepare polymer modified citric acids solutions (PMCAS, pH 3.3). With these PMCAS, enamel samples were treated for 30, 60 and 120s respectively to deposit polymer layers on the enamel surface. Profilometer scratches on the enamel surface were used to estimate the thickness of the polymer layers via atomic force microscopy (AFM). The composition of the deposited polymer layers was investigated with X-ray photoelectron spectroscopy (XPS). In addition the polymer-enamel interaction was investigated with zeta-potential measurements and scanning electron microscopy (SEM). It has been shown that the profilometer scratch depth on the enamel with deposited polymers was in the range of 10nm (30s treatment time) up to 25nm (120s treatment time). Compared to this, the unmodified CAS-treated surface showed a greater scratch depth: from nearly 30nm (30s treatment time) up to 60nm (120s treatment time). Based on XPS measurements, scanning electron microscopy (SEM) and zeta-potential measurements, a model was hypothesized which describes the layer deposited on the enamel surface as consisting of two opposing gradients of polymer molecules and hydroxyapatite (HA) particles. In this study, the structure and composition of polymer layers deposited on in vitro dental enamel during treatment with polymer modified citric acid solutions were investigated. Observations are consistent with a layer consisting of two opposing gradients of hydroxyapatite particles and polymer molecules. This leads to reduced erosive effects of

  12. Mediator 1 contributes to enamel mineralization as a coactivator for Notch1 signaling and stimulates transcription of the alkaline phosphatase gene.

    Science.gov (United States)

    Yoshizaki, Keigo; Hu, Lizhi; Nguyen, Thai; Sakai, Kiyoshi; Ishikawa, Masaki; Takahashi, Ichiro; Fukumoto, Satoshi; DenBesten, Pamela K; Bikle, Daniel D; Oda, Yuko; Yamada, Yoshihiko

    2017-08-18

    Tooth enamel is mineralized through the differentiation of multiple dental epithelia including ameloblasts and the stratum intermedium (SI), and this differentiation is controlled by several signaling pathways. Previously, we demonstrated that the transcriptional coactivator Mediator 1 (MED1) plays a critical role in enamel formation. For instance, conditional ablation of Med1 in dental epithelia causes functional changes in incisor-specific dental epithelial stem cells, resulting in mineralization defects in the adult incisors. However, the molecular mechanism by which Med1 deficiency causes these abnormalities is not clear. Here, we demonstrated that Med1 ablation causes early SI differentiation defects resulting in enamel hypoplasia of the Med1 -deficient molars. Med1 deletion prevented Notch1-mediated differentiation of the SI cells resulting in decreased alkaline phosphatase (ALPL), which is essential for mineralization. However, it does not affect the ability of ameloblasts to produce enamel matrix proteins. Using the dental epithelial SF2 cell line, we demonstrated that MED1 directly activates transcription of the Alpl gene through the stimulation of Notch1 signaling by forming a complex with cleaved Notch1-RBP-Jk on the Alpl promoter. These results suggest that MED1 may be essential for enamel matrix mineralization by serving as a coactivator for Notch1 signaling regulating transcription of the Alpl gene.

  13. Effects of blue light irradiation on dental enamel remineralization in vitro

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2009-01-01

    This study aimed to investigate the effects of blue radiation on dental enamel remineralization. In addition, a methodology of analysis was developed to evaluate alterations of enamel mineral content by optical coherence tomography. Artificial lesions were formed in bovine dental enamel slabs by immersing the samples in under saturated acetate buffer (2 mL/mm 2 e 6.25 mL/mm 2 ). The lesions were irradiated with blue LED (l=455±20nm), with radiant power of 110 mW, irradiance of 1.4 W/cm 2 , radiant exposure of 13.8 J/ c m2 and exposure time of 10 s. Remineralization was induced by pH-cycling model during 8 days. Cross-sectional hardness and optical coherence tomography (OCT) were used to assess mineral changes after remineralization. Hardness data showed that non-irradiated enamel lesions presented higher mineral content than irradiated ones and this difference was more evident in lesions formed in higher solution volume. The analysis of OCT signal also demonstrated that the mineral content of non-irradiated group was higher than in irradiated one; however, no significant difference was observed. Furthermore, significant differences in OCT sign were detected between sound and demineralized enamel. Based on the results obtained in the present study it can be concluded that blue radiation caused an inhibition of enamel remineralization. The methodology adopted for OCT analysis allowed the quantification of enamel mineral loss; however, the remineralization process could not be evaluated by this technique. (author)

  14. A comparison of fatigue crack growth in human enamel and hydroxyapatite.

    Science.gov (United States)

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne D

    2008-12-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m=7.7+/-1.0) was similar to that for HAp (m=7.9+/-1.4), whereas the crack growth coefficient (C) for enamel (C=8.7 E-04 (mm/cycle)x(MPa m(0.5))(-m)) was significantly lower (pcrack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth.

  15. Graded changes in enamel component volumes resulted from a short tooth bleaching procedure.

    Science.gov (United States)

    Ferreira, Artemisa Fernanda Moura; Perez, Flávia Maria de Moraes Ramos; Limeira Júnior, Francisco de Assis; de Moura, Mirella de Fátima Liberato; de Sousa, Frederico Barbosa

    2016-05-01

    To test the hypothesis that changes in enamel component volumes (mineral, organic, and water volumes, and permeability) are graded from outer to inner enamel after a short bleaching procedure. Extracted unerupted human third molars had half of their crowns bleached (single bleaching session, 3 × 15 min), and tooth shade changes in bleached parts were analyzed with a spectrophotometer. Ground sections were prepared, component volumes and permeability were quantified at histological points located at varying distances from the enamel surface (n=10 points/location), representing conditions before and after bleaching. Tooth shade changes were significant (pbleaching, except at the outer layers. Multiple analysis of covariances revealed that most of the variance of the change in enamel composition after bleaching was explained by the combination of the set of types of component volume (in decreasing order of relevance: mineral loss, organic gain, water gain, and decrease in permeability) with the set of distances from the enamel surface (graded from the enamel surface inward) (canonical R(2)=0.97; p99%). Changes in enamel composition after a short bleaching procedure followed a gradient within component volumes (mineral loss>organic gain>water gain>decrease in permeability) and decreased from the enamel surface inward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthetic tooth enamel: SEM characterization of a fluoride hydroxyapatite coating for dentistry applications

    Directory of Open Access Journals (Sweden)

    Marise Oliveira

    2007-06-01

    Full Text Available An alternative to etching enamel for retention of an adhesive is to grow crystals on the enamel surface. The potential advantages of crystal growth include easy procedure and less damage to the enamel. These crystals retain the adhesive or are the actual dental restoration. In this work, a paste of synthetic enamel was used to grow crystals of fluoride hydroxyapatite (F-HA onto the human tooth surface. This technique can be used for several dentistry applications like enamel whitening, strengthening and restoration of early carie lesions. The low cost of reagents and simplicity of the technique along with the biocompatibility of the paste render possible the utilization on the market. The samples were prepared through the application of the paste by the incremental technique. The results obtained by scanning electron microscope (SEM/EDX have indicated the deposition of a homogeneous layer of calcium phosphate that was grown onto the enamel substrate. The average thickness of the deposited film was in the range of 50-100 µm and with a similar density from the natural enamel observed by radiographic images.

  17. A comparison of sports and energy drinks--Physiochemical properties and enamel dissolution.

    Science.gov (United States)

    Jain, Poonam; Hall-May, Emily; Golabek, Kristi; Agustin, Ma Zenia

    2012-01-01

    The consumption of sports and energy drinks by children and adolescents has increased at an alarming rate in recent years. It is essential for dental professionals to be informed about the physiochemical properties of these drinks and their effects on enamel. The present study measured the fluoride levels, pH, and titratable acidity of multiple popular, commercially available brands of sports and energy drinks. Enamel dissolution was measured as weight loss using an in vitro multiple exposure model consisting of repeated short exposures to these drinks, alternating with exposure to artificial saliva. The relationship between enamel dissolution and fluoride levels, pH, and titratable acidity was also examined. There was a statistically significant difference between the fluoride levels (p = 0.034) and pH (p = 0.04) of the sports and energy drinks studied. The titratable acidity of energy drinks (11.78) was found to be significantly higher than that of sports drinks (3.58) (p energy drinks (Red Bull Sugar Free, Monster Assault, Von Dutch, Rockstar, and 5-Hour Energy) were found to have the highest titratable acidity values among the brands studied. Enamel weight loss after exposure to energy drinks was significantly higher than it was after exposure to sports drinks. The effect of titratable acidity on enamel weight loss was found to vary inversely with the pH of the drinks. The findings indicated that energy drinks have significantly higher titratable acidity and enamel dissolution associated with them than sports drinks. Enamel weight loss after exposure to energy drinks was more than two times higher than it was after exposure to sports drinks. Titratable acidity is a significant predictor of enamel dissolution, and its effect on enamel weight loss varies inversely with the pH of the drink. The data from the current study can be used to educate patients about the differences between sports and energy drinks and the effects of these drinks on tooth enamel.

  18. The porcine lymphotropic herpesvirus 1 encodes functional regulators of gene expression

    International Nuclear Information System (INIS)

    Lindner, I.; Ehlers, B.; Noack, S.; Dural, G.; Yasmum, N.; Bauer, C.; Goltz, M.

    2007-01-01

    The porcine lymphotropic herpesviruses (PLHV) are discussed as possible risk factors in xenotransplantation because of the high prevalence of PLHV-1, PLHV-2 and PLHV-3 in pig populations world-wide and the fact that PLHV-1 has been found to be associated with porcine post-transplant lymphoproliferative disease. To provide structural and functional knowledge on the PLHV immediate-early (IE) transactivator genes, the central regions of the PLHV genomes were characterized by genome walking, sequence and splicing analysis. Three spliced genes were identified (ORF50, ORFA6/BZLF1 h , ORF57) encoding putative IE transactivators, homologous to (i) ORF50 and BRLF1/Rta (ii) K8/K-bZIP and BZLF1/Zta and (iii) ORF57 and BMLF1 of HHV-8 and EBV, respectively. Expressed as myc-tag or HA-tag fusion proteins, they were located to the cellular nucleus. In reporter gene assays, several PLHV-promoters were mainly activated by PLHV-1 ORF50, to a lower level by PLHV-1 ORFA6/BZLF1 h and not by PLHV-1 ORF57. However, the ORF57-encoded protein acted synergistically on ORF50-mediated activation

  19. A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis.

    Science.gov (United States)

    Cortina, María E; Balzano, Rodrigo E; Rey Serantes, Diego A; Caillava, Ana J; Elena, Sebastián; Ferreira, A C; Nicola, Ana M; Ugalde, Juan E; Comerci, Diego J; Ciocchini, Andrés E

    2016-06-01

    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Quantitative study of fluoride transport during subsurface dissolution of dental enamel

    International Nuclear Information System (INIS)

    Chu, J.S.; Fox, J.L.; Higuchi, W.I.

    1989-01-01

    Previous studies using bovine dental enamel as a model have shown that surface and subsurface dissolution of enamel may be governed by micro-environmental solution conditions. We have now investigated the demineralization phenomenon more rigorously with the primary objective of developing a method for deducing solution species concentration profiles as a function of time from appropriate experimental data. More specifically, in this report, a model-independent method is described for determination of the pore solution fluoride gradients in bovine enamel during subsurface demineralization. Microradiography was used to determine the mineral density profiles, and an electron microprobe technique to determine total fluoride (F) profiles associated with the enamel. In each case, matched sections of bovine enamel were exposed to partially saturated acetate buffers at pH = 4.5 containing 0.5 ppm F for various periods of time (from six to 24 hours). The treated enamel was found to have an intact surface layer and subsurface demineralization. The extent of the demineralization and the depths of the lesions increased with time in all cases. The data were first used to calculate (a) the total F gradients in the enamel at various times, and (b) the local uptake rate of F as a function of time and position. Then, by manipulation of the equations describing the uptake and transport of F, we calculated the pore diffusion rate of F and the micro-environmental solution F concentration in the aqueous pores as a function of time and of distance from the enamel surface. It was also possible to calculate an intrinsic F diffusion coefficient in the pores, which was about 1.0 X 10(-5) cm2/sec, in good agreement with reported values

  1. Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.

    Science.gov (United States)

    Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P

    2008-05-01

    To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.

  2. Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.

    Science.gov (United States)

    Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi

    2010-04-01

    Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.

  3. Evaluation of the Esthetic Properties of Developmental Defects of Enamel: A Spectrophotometric Clinical Study

    Directory of Open Access Journals (Sweden)

    Fabrizio Guerra

    2015-01-01

    Full Text Available Objectives. Detailed clinical quantification of optical properties of developmental defect of enamel is possible with spectrophotometric evaluation. Developmental defects of enamel (DDE are daily encountered in clinical practice. DDE are an alteration in quality and quantity of the enamel, caused by disruption and/or damage to the enamel organ during amelogenesis. Methods. Several clinical indices have been developed to categorize enamel defects based on their nature, appearance, microscopic features, or cause. A sample of 39 permanent teeth presenting DDE on labial surface was examined using the DDE Modified Index and SpectroShade evaluation. The spectrophotometric approach quantifies L* (luminosity, a* (quantity of green-red, and b* (quantity of blue-yellow of different DDE. Conclusions. SpectroShade evaluation of the optical properties of the enamel defect enhances clinical understanding of severity and extent of the defect and characterizes the enamel alteration in terms of color discrepancy and surface characterization.

  4. Measurement of surface roughness changes of unpolished and polished enamel following erosion.

    Directory of Open Access Journals (Sweden)

    Francesca Mullan

    Full Text Available To determine if Sa roughness data from measuring one central location of unpolished and polished enamel were representative of the overall surfaces before and after erosion.Twenty human enamel sections (4x4 mm were embedded in bis-acryl composite and randomised to either a native or polishing enamel preparation protocol. Enamel samples were subjected to an acid challenge (15 minutes 100 mL orange juice, pH 3.2, titratable acidity 41.3mmol OH/L, 62.5 rpm agitation, repeated for three cycles. Median (IQR surface roughness [Sa] was measured at baseline and after erosion from both a centralised cluster and four peripheral clusters. Within each cluster, five smaller areas (0.04 mm2 provided the Sa roughness data.For both unpolished and polished enamel samples there were no significant differences between measuring one central cluster or four peripheral clusters, before and after erosion. For unpolished enamel the single central cluster had a median (IQR Sa roughness of 1.45 (2.58 μm and the four peripheral clusters had a median (IQR of 1.32 (4.86 μm before erosion; after erosion there were statistically significant reductions to 0.38 (0.35 μm and 0.34 (0.49 μm respectively (p<0.0001. Polished enamel had a median (IQR Sa roughness 0.04 (0.17 μm for the single central cluster and 0.05 (0.15 μm for the four peripheral clusters which statistically significantly increased after erosion to 0.27 (0.08 μm for both (p<0.0001.Measuring one central cluster of unpolished and polished enamel was representative of the overall enamel surface roughness, before and after erosion.

  5. Spectrophotometric assessment of the effects of 10% carbamide peroxide on enamel translucency

    Directory of Open Access Journals (Sweden)

    Glauco Fioranelli Vieira

    2008-03-01

    Full Text Available Tooth shade results from the interaction between enamel color, enamel translucency and dentine color. A change in any of these parameters will change a tooth’s color. The objective of this study was to evaluate the changes occurring in enamel translucency during a tooth whitening process. Fourteen human tooth enamel fragments, with a mean thickness of 0.96 mm (± 0.3 mm, were subjected to a bleaching agent (10% carbamide peroxide 8 hours per day for 28 days. The enamel fragment translucency was measured by a computer controlled spectrophotometer before and after the bleaching agent applications in accordance with ANSI Z80.3-1986 - American National Standard for Ophthalmics - nonprescription sunglasses and fashion eyewear-requirements. The measurements were statistically compared by the Mann-Whitney non-parametric test. A decrease was observed in the translucency of all specimens and, consequently, there was a decrease in transmittance values for all samples. It was observed that the bleaching procedure significantly changes the enamel translucency, making it more opaque.

  6. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    Science.gov (United States)

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  7. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    Science.gov (United States)

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  8. Comparison Of Bond Strength Of Orthodontic Molar Tubes Using Different Enamel Etching Techniques And Their Effect On Enamel

    International Nuclear Information System (INIS)

    Abd el Rahman, H.Y.

    2013-01-01

    In fixed orthodontic treatment, brackets and tubes are used for transferring orthodontic forces to the teeth. Those attachments were welded to cemented bands. Fifty years ago, direct bonding of brackets and other attachments has become a common technique in fixed orthodontic treatment. Orthodontists used to band teeth, especially molars and second premolars, to avoid the need for re bonding accessories in these regions of heavy masticatory forces. However, it is a known fact that direct bonding saves chair time as it does not require prior band selection and fitting, has the ability to maintain good oral hygiene, improve esthetics and make easier attachment to crowded and partially erupted teeth. Moreover, when the banding procedure is not performed with utmost care it can damage periodontal and/or dental tissues. Molar tubes bonding decreases the chance of decalcification caused by leakage beneath the bands. Since molar teeth are subjected to higher masticatory impact, especially lower molars, it would be convenient to devise methods capable of increasing the efficiency of their traditional bonding. These methods may include variation in bond able molar tube material, design, bonding materials and etching techniques. For achieving successful bonding, the bonding agent must penetrate the enamel surface; have easy clinical use, dimensional stability and enough bond strength. Different etching techniques were introduced in literature to increase the bond strength which includes: conventional acid etching, sandblasting and laser etching techniques. The process of conventional acid etching technique was invented In (1955) as the surface of enamel has great potential for bonding by micromechanical retention, to form ‘the mechanical lock‘. The primary effect of enamel etching is to increase the surface area. However, this roughens the enamel microscopically and results in a greater surface area on which to bond. By dissolving minerals in enamel, etchants remove the

  9. Analysis of synchrotron X-ray diffraction patterns from fluorotic enamel samples

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ana P.G.; Braz, Delson, E-mail: anapaulagalmeida@gmail.co [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Colaco, Marcos V.; Barroso, Regina C., E-mail: cely@uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica; Porto, Isabel M., E-mail: belporto@ig.com.b [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia; Gerlach, Raquel F., E-mail: rfgerlach@forp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Odontologia; Droppa Junior, Roosevelt, E-mail: rdroppa@lnls.b [Associacao Brasileira de Tecnologia de Luz Sincrotron (ABTLuS), Campinas, SP (Brazil)

    2009-07-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basics physical-chemistry reactions of demineralisation and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The hexagonal symmetry seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using technique Synchrotron X-ray diffraction in order to determine the crystal structure and crystallinity of on fluoroapatite (FAp) crystal present in fluoritic enamel. All the scattering profile measurements was carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. (author)

  10. Analysis of synchrotron X-ray diffraction patterns from fluorotic enamel samples

    International Nuclear Information System (INIS)

    Almeida, Ana P.G.; Braz, Delson

    2009-01-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basics physical-chemistry reactions of demineralisation and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The hexagonal symmetry seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using technique Synchrotron X-ray diffraction in order to determine the crystal structure and crystallinity of on fluoroapatite (FAp) crystal present in fluoritic enamel. All the scattering profile measurements was carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. (author)

  11. Influence of Enamel Thickness on Bleaching Efficacy: An In-Depth Color Analysis.

    Science.gov (United States)

    Públio, Juliana do Carmo; D'Arce, Maria Beatriz Freitas; Catelan, Anderson; Ambrosano, Gláucia Maria Bovi; Aguiar, Flávio Henrique Baggio; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2016-01-01

    This study evaluated the influence of different enamel thicknesses and bleaching agents on treatment efficacy in-depth by spectrophotometry color analysis. Eighty bovine dental fragments were previously stained in black tea solution and randomly assigned into eight groups (n=10), 1.75mm dentin thickness and different enamel thicknesses as follows: 0.5mm, 1.0mm planned, 1.0mm unplanned (aprismatic enamel), and absence of enamel. The 10% carbamide peroxide (CP) and 35% hydrogen peroxide (HP) bleaching gels were applied on the enamel surface following the manufacturer's recommendations. Color of underlying dentin was evaluated at four times: after staining with tea (baseline) and after each one of the three weeks of bleaching treatment, by CIE L*a*b* system using reflectance spectrophotometer (CM 700d, Konica Minolta). The ΔE, ΔL, Δa, and Δb values were recorded and subjected to repeated measures ANOVA and Tukey's test (α=0.05). The results showed an increase on lightness (L*), with decreased redness (a*) and yellowness (b*). At first and second week, bleaching with CP showed higher whitening effectiveness compared to bleaching with HP and the presence of aprismatic enamel significantly reduced ΔE for bleaching with CP. After three weeks of bleaching, few differences were observed between CP and HP groups, and outer enamel layer caused no influence on bleaching effectiveness. Overall, both at-home and in-office bleaching treatments were effective and the presence of aprismatic enamel did not interfere on the whitening efficacy.

  12. Investigation of EPR signals on tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, A; Mironova-Ulmane, N; Polakov, M; Riekstina, D [Institute of Solid State Physics, University of Latvia, Riga (Latvia)

    2007-12-15

    Calcified tissues are involved in continues metabolic process in human organism exchanging a number of chemical elements with environment. The rate of biochemical reactions is tissue dependent and the slowest one at the tooth enamel, the most mineralized tissue of human organism. The long time stability and unique chemical composition make tooth enamel suitable for number of application. The assessment of individual radiation dose by Electron Paramagnetic Resonance (EPR) and evaluations of elemental composition by Instrumentation Neutron Activation Analysis (INAA) are the well known procedures where properties of tooth enamel intensively used. The current work is focused on investigation of EPR signals and determination of chemical composition on several teeth samples having different origin. The EPR spectra and INAA element content of milk tooth, caries tooth, and paradantose tooth have been compared to each other. The results showed that the intensity of EPR signal is much higher for the caries tooth than the for paradantose tooth that is in agreement with depleted Ca content.

  13. Bonding characteristics of self-etching adhesives to intact versus prepared enamel.

    Science.gov (United States)

    Perdigão, Jorge; Geraldeli, Saulo

    2003-01-01

    This study tested the null hypothesis that the preparation of the enamel surface would not affect the enamel microtensile bond strengths of self-etching adhesive materials. Ten bovine incisors were trimmed with a diamond saw to obtain a squared enamel surface with an area of 8 x 8 mm. The specimens were randomly assigned to five adhesives: (1) ABF (Kuraray), an experimental two-bottle self-etching adhesive; (2) Clearfil SE Bond (Kuraray), a two-bottle self-etching adhesive; (3) One-Up Bond F (Tokuyama), an all-in-one adhesive; (4) Prompt L-Pop (3M ESPE), an all-in-one adhesive; and (5) Single Bond (3M ESPE), a two-bottle total-etch adhesive used as positive control. For each specimen, one half was roughened with a diamond bur for 5 seconds under water spray, whereas the other half was left unprepared. The adhesives were applied as per manufacturers' directions. A universal hybrid composite resin (Filtek Z250, 3M ESPE) was inserted in three layers of 1.5 mm each and light-cured. Specimens were sectioned in X and Y directions to obtain bonded sticks with a cross-sectional area of 0.8 +/- 0.2 mm2. Sticks were tested in tension in an Instron at a cross-speed of 1 mm per minute. Statistical analysis was carried out with two-way analysis of variance and Duncan's test at p adhesive, resulted in statistically higher microtensile bond strength than any of the other adhesives regardless of the enamel preparation (unprepared = 31.5 MPa; prepared = 34.9 MPa, not statistically different at p adhesives resulted in higher microtensile bond strength when enamel was roughened than when enamel was left unprepared. However, for ABF and for Clearfil SE Bond this difference was not statistically significant at p > .05. When applied to ground enamel, mean bond strengths of Prompt L-Pop were not statistically different from those of Clearfil SE Bond and ABF. One-Up Bond F did not bond to unprepared enamel. Commercial self-etching adhesives performed better on prepared enamel than on

  14. [In vivo retention of KOH soluble and firmly bound fluoride in demineralized dental enamel].

    Science.gov (United States)

    Hellwig, E; Klimek, J; Albert, G

    1989-03-01

    Cylindrical enamel blocks with initial carious lesions were treated for one hour with Duraphat or Fluor-Protector. After removal of the fluoride varnishes the enamel blocks were kept in the mouths of 3 probands for 5 days. Plaque was allowed to accumulate on half of the enamel cylinders, while the other half was kept clean. Part of the enamel cylinders were retained as fluoridated controls. Compared with Duraphat the application of Fluor-Protector resulted in a significantly higher uptake of KOH soluble and firmly bound fluoride. During the 5 days of the experiment the amount of KOH soluble fluorides decreased in both groups. In the presence of plaque the fluoride loss was higher. The amount of firmly bound fluoride increased both in the plaque covered and in the clean enamel. The durable cariostatic effect of fluoridated varnishes seems to be due to the slow dissolution of Ca F2-like precipitates on the enamel surface and the concomitant fluoride uptake in the underlying demineralized enamel.

  15. Decalcification prevention around orthodontic brackets bonded to bleached enamel using different topical agents.

    Science.gov (United States)

    Msallam, Ferial Ahmed; Grawish, Mohammed El-Awady; Hafez, Ahmad Mohammed; Abdelnaby, Yasser Lotfy

    2017-12-01

    The present study was conducted to evaluate the effect of different topical agents utilized for prevention of enamel decalcification around orthodontic brackets bonded to bleached and non-bleached enamel. Human maxillary premolars (n = 120) were divided into two equal groups. Teeth in group I were left without bleaching while those in group II were bleached with Vivastyle gel. Metal brackets were bonded to all the teeth using light-cured adhesive. Each group was divided into six equal subgroups (A, B, C, D, E, and F). In subgroup A, no material was applied (control). In subgroups B, C, D, E, and F, the following materials were applied respectively: Profluorid varnish, Enamel Pro Varnish, Ortho-Choice Ortho-Coat, GC Tooth Mousse, and GC MI Paste Plus. All teeth were cycled in a demineralization solution/artificial saliva for 15 days. Laser fluorescence was used to measure the level of enamel mineralization. The data were statistically analyzed. Regarding the non-bleaching subgroups, all studied material revealed significant demineralization reduction in comparison to the control subgroup (P  0.05). Ortho-Choice Ortho-Coat, and Profluorid and Enamel Pro varnishes could be utilized successfully to reduce enamel demineralization around brackets bonded to either bleached or non-bleached enamel. GC MI Paste Plus and GC Tooth Mousse were effective only in non-bleached enamel.

  16. Preparation and characterization of enamel coating on pure titanium as a hydrogen penetration barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jie, E-mail: taojie@nuaa.edu.cn [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Guo, Xunzhong [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Huang, Zhendong [Graduate School of Human and Environmental Studies, Kyoto University, oshida-Nihonmatsu-Cho, Sakyo-Ku, Kyoto shi 606-8501 (Japan); Liu, Hongbing [Shanghai Aircraft Manufacturing Co,. Ltd, Shanghai 200436 (China); Wang, Tao [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2013-06-15

    Highlights: ► The enamel coating was prepared by spin-coating and enameling method. ► The dense enamel coatings were chemically bonded with TA1 substrate. ► The coatings possessed better thermal shock resistance property. ► The coatings had excellent ball-dropping impact properties. ► The enamel coating exhibited a good barrier effect to hydrogen isotope penetration. -- Abstract: The enamel coating with a thickness of 90–110 × 10{sup −6} m was prepared on TA1 substrate by spin-coating and enameling to solve the problems of hydrogen isotope penetration for commercial pure titanium TA1. The microstructure and the interfacial morphology of the samples were characterized respectively by X-ray diffraction, optical and scanning electron microscopy. The profiles of main elements at the interface were analyzed by EDS line-scanning. The experimental results indicated that the dense enamel coatings were chemically bonded with TA1 substrate, and possessed better thermal shock resistance and ball-dropping impact properties. It was concluded from the results of hydrogen charging test with Vickers microhardness measurement and deuterium penetration experiments that the as-prepared dense enamel coating exhibited a good barrier effect to hydrogen isotope penetration.

  17. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs)

    International Nuclear Information System (INIS)

    Kaulitz, Danny; Fiebig, Uwe; Eschricht, Magdalena; Wurzbacher, Christian; Kurth, Reinhard; Denner, Joachim

    2011-01-01

    Antibodies neutralising porcine endogenous retroviruses (PERVs) were induced in different animal species by immunisation with the transmembrane envelope protein p15E. These antibodies recognised epitopes, designated E1, in the fusion peptide proximal region (FPPR) of p15E, and E2 in the membrane proximal external region (MPER). E2 is localised in a position similar to that of an epitope in the transmembrane envelope protein gp41 of the human immunodeficiency virus-1 (HIV-1), recognised by the monoclonal antibody 4E10 that is broadly neutralising. To detect neutralising antibodies specific for PERV, a novel assay was developed, which is based on quantification of provirus integration by real-time PCR. In addition, for the first time, highly effective neutralising antibodies were obtained by immunisation with the surface envelope protein of PERV. These data indicate that neutralising antibodies can be induced by immunisation with both envelope proteins.

  18. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments.

    Science.gov (United States)

    Yamakoshi, Yasuo; Nagano, Takatoshi; Hu, Jan Cc; Yamakoshi, Fumiko; Simmer, James P

    2011-02-03

    Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr

  19. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments

    Directory of Open Access Journals (Sweden)

    Yamakoshi Fumiko

    2011-02-01

    Full Text Available Abstract Background Dentin sialophosphoprotein (Dspp is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp, the N-terminal domain of dentin sialophosphoprotein (Dspp, is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were

  20. A study on the characteristics of enamel to electron spin resonance spectrum for retrospective dosimetry

    International Nuclear Information System (INIS)

    Hong, Dae Seok; Lee, Kun Jai

    2003-01-01

    Electron Spin Resonance (ESR) spectroscopy is one of the methods applicable to retrospective dosimetry. The retrospective dosimetry is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. A tooth can be separated as enamel, dentine and cementum. Among the three parts, enamel is known as to show the best sensitivity to the absorbed dose and is most widely used. Since the later 80s, ESR dosimetry with tooth enamel has been studied and applied for the retrospective dosimetry. There are some factors affecting the sensitivity of enamel to absorbed dose. One of the factors is a size of enamel. Grain size of the 1.0mm∼0.1mm range is commonly used and 0.6mm∼0.25mm is recommended in other study. But the sensitivity can be varied by the grain size. In this study, the granular effect of enamel to the sensitivity is examined for application to retrospective dosimetry. In the enamel separation, to minimize the physically induced ESR spectrum, only chemical separation method was used. Separated enamels were divided by their size. The sizes of each sample is 1.0mm∼0.71mm, 0.5mm∼0.3mm, and below 0.1mm, respectively. All enamel samples show ESR spectrum related to the absorbed dose and the ESR spectrum shows linearity to the absorbed dose. The sensitivities are similar for each sample. But the enamel of size below 0.1mm shows poor characteristics relative to other enamel size. So, it is not recommended to use enamel samples below 0.1mm

  1. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  2. Enamel thickness after preparation of tooth for porcelain laminate.

    Science.gov (United States)

    Pahlevan, Ayoub; Mirzaee, Mansoreh; Yassine, Esmaeil; Ranjbar Omrany, Ladan; Hasani Tabatabaee, Masumeh; Kermanshah, Hamid; Arami, Sakineh; Abbasi, Mehdy

    2014-07-01

    In this investigation the thickness of enamel in the gingival, middle, and incisal thirds of the labial surface of the anterior teeth were measured regarding preparation of the teeth for porcelain laminate veneers. Part one, 20 extracted intact human maxillary central and lateral incisors ten of each were selected. The teeth were imbedded in autopolimerize acrylic resin. Cross section was preformed through the midline of the incisal, middle and cervical one-third of the labial surface of the teeth. The samples were observed under reflected stereomicroscope and the thickness of enamel was recorded. Part II, the effect of different types of preparation on dentin exposure was evaluated. Thirty maxillary central incisor teeth were randomly divided into two groups: A: Knife-edge preparation. B: Chamfer preparation. All samples were embedded in autopolimerize acrylic resin using a silicon mold. The samples were cut through the midline of the teeth. The surface of the samples were polished and enamel and dentin were observed under the stereomicroscope. Data were analyzed by ANOVA-one way test. The results of this study showed that the least enamel thickness in the central incisor was 345 and in lateral incisor is 235 μ this thickness is related to the one-third labial cervical area. Maximum thickness in maxillary central and lateral incisors in the one-third labial incisal surface was 1260 μ and 1220μ, respectively. In the second part of the study, the tendency of dentinal exposure was shown with the chamfer preparation, but no dentinal exposure was found in the knife-edge preparation. The differences between groups were significant (p<0.05). The knowledge of enamel thickness in different part of labial surface is very important. The thickness of enamel in the gingival area does not permit a chamfer preparation. The knife edge preparation is preferable in gingival area.

  3. Enamel thickness after preparation of tooth for porcelain laminate.

    Directory of Open Access Journals (Sweden)

    Ayoub Pahlevan

    2014-08-01

    Full Text Available In this investigation the thickness of enamel in the gingival, middle, and incisal thirds of the labial surface of the anterior teeth were measured regarding preparation of the teeth for porcelain laminate veneers.Part one, 20 extracted intact human maxillary central and lateral incisors ten of each were selected. The teeth were imbedded in autopolimerize acrylic resin. Cross section was preformed through the midline of the incisal, middle and cervical one-third of the labial surface of the teeth. The samples were observed under reflected stereomicroscope and the thickness of enamel was recorded. Part II, the effect of different types of preparation on dentin exposure was evaluated. Thirty maxillary central incisor teeth were randomly divided into two groups: A: Knife-edge preparation. B: Chamfer preparation. All samples were embedded in autopolimerize acrylic resin using a silicon mold. The samples were cut through the midline of the teeth. The surface of the samples were polished and enamel and dentin were observed under the stereomicroscope.Data were analyzed by ANOVA-one way test. The results of this study showed that the least enamel thickness in the central incisor was 345 and in lateral incisor is 235 μ this thickness is related to the one-third labial cervical area. Maximum thickness in maxillary central and lateral incisors in the one-third labial incisal surface was 1260 μ and 1220μ, respectively. In the second part of the study, the tendency of dentinal exposure was shown with the chamfer preparation, but no dentinal exposure was found in the knife-edge preparation. The differences between groups were significant (p<0.05.The knowledge of enamel thickness in different part of labial surface is very important. The thickness of enamel in the gingival area does not permit a chamfer preparation. The knife edge preparation is preferable in gingival area.

  4. Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti.

    Directory of Open Access Journals (Sweden)

    Carolina Loch

    Full Text Available The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand to Pliocene (Caldera, Chile. Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth, the inner enamel was organized in Hunter-Schreger bands (HSB with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward

  5. Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti).

    Science.gov (United States)

    Loch, Carolina; Kieser, Jules A; Fordyce, R Ewan

    2015-01-01

    The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand) to Pliocene (Caldera, Chile). Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM) observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth), the inner enamel was organized in Hunter-Schreger bands (HSB) with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward odontocetes, with

  6. Molecular cloning and expression analyses of porcine MAP1LC3A in the granulosa cells of normal and miniature pig

    Directory of Open Access Journals (Sweden)

    Kim Sang H

    2013-02-01

    Full Text Available Abstract Background The members of the microtubule-associated protein 1 light chain (MAP1LC family, especially those of the LC3 family (MAP1LC3A, B, C, are known to induce autophagy upon localization onto the autophagosomal membrane. In this regard, LC3 can be utilized as a marker for the formation of autophagosomes during the process of autophagy. The aims of this study are to clone porcine MAP1LC3A, and analyze the pattern of its expression in the ovarian tissues of normal and miniature pig ovary in an attempt to understand the distinct mode of apoptosis between two strains. Methods Rapid amplification of cDNA ends (RACE were used to obtain the 5′ and 3′ ends of the porcine MAP1LC3A full length cDNA. Reverse-transcriptase-PCR (RT-PCR, real-time PCR, and western blot analysis were performed to examine the expression of porcine MAP1LC3A. The localization of MAP1LC3A in the ovary was determined by In situ Hybridization and Immunohistochemical staining. Results We cloned the full-length cDNA of porcine MAP1LC3A and identified an open reading frame of 980 bp encoding 121 amino acids. Based on its homology to known mammalian proteins (98% this novel cDNA was designated as porcine MAP1LC3A and registered to the GenBank (Accession No. GU272221. We compared the expression of MAP1LC3A in the Graafian follicles of normal and miniature pigs by in situ hybridization at day 15 of the estrus cycle. While normal pigs showed a stronger expression of MAP1LC3A mRNA than miniature pigs in the theca cell area, the expression was lower in the granulosa cells. Immunofluorescence analysis of the MAP1LC3A fusion reporter protein showed the subcellular localization of porcine MAP1LC3A and ATG5 as a punctate pattern in the cytoplasm of porcine granulosa cells under stress conditions. In addition, the expressions of MAP1LC3A and ATG5 were higher in normal pigs than in miniature pigs both in the presence and absence of rapamycin. Conclusions The newly cloned porcine

  7. Near-surface structural examination of human tooth enamel subject to in vitro demineralization and remineralization

    Science.gov (United States)

    Gaines, Carmen Veronica

    The early stages of chemical tooth decay are governed by dynamic processes of demineralization and remineralization of dental enamel that initiates along the surface of the tooth. Conventional diagnostic techniques lack the spatial resolution required to analyze near-surface structural changes in enamel at the submicron level. In this study, slabs of highly-polished, decay-free human enamel were subjected to 0.12M EDTA and buffered lactic acid demineralizing agents and MI Paste(TM) and calcifying (0.1 ppm F) remineralizing treatments in vitro. Grazing incidence x-ray diffraction (GIXD), a technique typically used for thin film analysis, provided depth profiles of crystallinity changes in surface enamel with a resolution better than 100 nm. In conjunction with nanoindentation, a technique gaining acceptance as a means of examining the mechanical properties of sound enamel, these results were corroborated with well-established microscopy and Raman techniques to assess the nanohardness, morphologies and chemical nature of treated enamel. Interestingly, the average crystallite size of surface enamel along its c-axis dimension increased by nearly 40% after a 60 min EDTA treatment as detected by GIXD. This result was in direct contrast to the obvious surface degradation observed by microscopic and confocal Raman imaging. A decrease in nanohardness from 4.86 +/- 0.44 GPa to 0.28 +/- 0.10 GPa was observed. Collective results suggest that mineral dissolution characteristics evident on the micron scale may not be fully translated to the nanoscale in assessing the integrity of chemically-modified tooth enamel. While an intuitive decrease in enamel crystallinity was observed with buffered lactic acid-treated samples, demineralization was too slow to adequately quantify the enamel property changes seen. MI Paste(TM) treatment of EDTA-demineralized enamel showed preferential growth along the a-axis direction. Calcifying solution treatments of both demineralized sample types

  8. Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO.

    Science.gov (United States)

    Zhu, Xinyu; Fang, Liurong; Wang, Dang; Yang, Yuting; Chen, Jiyao; Ye, Xu; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-02-01

    Porcine deltacoronavirus (PDCoV) causes acute enteric disease and mortality in seronegative neonatal piglets. Previously we have demonstrated that PDCoV infection suppresses the production of interferon-beta (IFN-β), while the detailed mechanisms are poorly understood. Here, we demonstrate that nonstructural protein 5 (nsp5) of PDCoV, the 3C-like protease, significantly inhibits Sendai virus (SEV)-induced IFN-β production by targeting the NF-κB essential modulator (NEMO), confirmed by the diminished function of NEMO cleaved by PDCoV. The PDCoV nsp5 cleavage site in the NEMO protein was identified as glutamine 231, and was identical to the porcine epidemic diarrhea virus nsp5 cleavage site, revealing the likelihood of a common target in NEMO for coronaviruses. Furthermore, this cleavage impaired the ability of NEMO to activate the IFN response and downstream signaling. Taken together, our findings reveal PDCoV nsp5 to be a newly identified IFN antagonist and enhance the understanding of immune evasion by deltacoronaviruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Tooth enamel dosimetric response to 2.8 MeV neutrons

    Science.gov (United States)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2003-03-01

    Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60Co relative sensitivity was 0.33±0.08.

  10. Tooth enamel dosimetric response to 2.8 MeV neutrons

    International Nuclear Information System (INIS)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2003-01-01

    Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60 Co relative sensitivity was 0.33±0.08

  11. Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na+/K+-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

    Directory of Open Access Journals (Sweden)

    Stefanie Klinger

    2018-03-01

    Full Text Available Background: Beneficial effects of Resveratrol (RSV have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min in Ussing chambers (functional studies and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs. Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1, AMP-activated protein kinase (AMPK, protein kinase A substrates (PKA-S and liver kinase B1 (LKB1 increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1 and (phosphorylated Na+/H+-exchanger 3 (NHE3 did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.

  12. Microtensile bond strength of enamel after bleaching.

    Science.gov (United States)

    Lago, Andrea Dias Neves; Garone-Netto, Narciso

    2013-01-01

    To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Twenty bovine teeth were randomly distributed into 4 groups (n = 5), 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control); G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm) area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min) 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM). There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2). There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive) failure in all groups. The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  13. Magnesium stable isotope ecology using mammal tooth enamel

    Science.gov (United States)

    Martin, Jeremy E.; Vance, Derek; Balter, Vincent

    2015-01-01

    Geochemical inferences on ancient diet using bone and enamel apatite rely mainly on carbon isotope ratios (δ13C) and to a lesser extent on strontium/calcium (Sr/Ca) and barium/calcium (Ba/Ca) elemental ratios. Recent developments in nontraditional stable isotopes provide an unprecedented opportunity to use additional paleodietary proxies to disentangle complex diets such as omnivory. Of particular relevance for paleodietary reconstruction are metals present in large quantity in bone and enamel apatite, providing that biologically mediated fractionation processes are constrained. Calcium isotope ratios (δ44Ca) meet these criteria but exhibit complex ecological patterning. Stable magnesium isotope ratios (δ26Mg) also meet these criteria but a comprehensive understanding of its variability awaits new isotopic data. Here, 11 extant mammal species of known ecology from a single locality in equatorial Africa were sampled for tooth enamel and, together with vegetation and feces, analyzed for δ26Mg, δ13C, Sr/Ca, and Ba/Ca ratios. The results demonstrate that δ26Mg incorporated in tooth enamel becomes heavier from strict herbivores to omnivores/faunivores. Using data from experimentally raised sheep, we suggest that this 26Mg enrichment up the trophic chain is due to a 26Mg enrichment in muscle relative to bone. Notably, it is possible to distinguish omnivores from herbivores, using δ26Mg coupled to Ba/Ca ratios. The potential effects of metabolic and dietary changes on the enamel δ26Mg composition remain to be explored but, in the future, multiproxy approaches would permit a substantial refinement of dietary behaviors or enable accurate trophic reconstruction despite specimen-limited sampling, as is often the case for fossil assemblages.

  14. Detection and Analysis of Enamel Cracks by Quantitative Light-induced Fluorescence Technology.

    Science.gov (United States)

    Jun, Mi-Kyoung; Ku, Hye-Min; Kim, Euiseong; Kim, Hee-Eun; Kwon, Ho-Keun; Kim, Baek-Il

    2016-03-01

    The ability to accurately detect tooth cracks and quantify their depth would allow the prediction of crack progression and treatment success. The aim of this in vitro study was to determine the capabilities of quantitative light-induced fluorescence (QLF) technology in the detection of enamel cracks. Ninety-six extracted human teeth were selected for examining naturally existing or suspected cracked teeth surfaces using a photocuring unit. QLF performed with a digital camera (QLF-D) images were used to assess the ability to detect enamel cracks based on the maximum fluorescence loss value (ΔFmax, %), which was then analyzed using the QLF-D software. A histologic evaluation was then performed in which the samples were sectioned and observed with the aid of a polarized light microscope. The relationship between ΔFmax and the histology findings was assessed based on the Spearman rank correlation. The sensitivity and specificity were calculated to evaluate the validity of using QLF-D to analyze enamel inner-half cracks and cracks extending to the dentin-enamel junction. There was a strong correlation between the results of histologic evaluations of enamel cracks and the ΔFmax value, with a correlation coefficient of 0.84. The diagnostic accuracy of QLF-D had a sensitivity of 0.87 and a specificity of 0.98 for enamel inner-half cracks and a sensitivity of 0.90 and a specificity of 1.0 for cracks extending to the dentin-enamel junction. These results indicate that QLF technology would be a useful clinical tool for diagnosing enamel cracks, especially given that this is a nondestructive method. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. 7 CFR 1230.18 - Porcine animal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold to...

  16. Spectrally enhanced image resolution of tooth enamel surfaces

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2012-01-01

    Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.

  17. SEM Evaluation of Surrounding Enamel after Finishing of Composite Restorations- Preliminary Results

    Science.gov (United States)

    Iovan, G.; Stoleriu, S.; Solomon, S.; Ghiorghe, A.; Sandu, A. V.; Andrian, S.

    2017-06-01

    The purpose of this study was to analyze the surface characteristics of the enamel adjacent to composite resin after finishing the restoration with different diamond and tungsten carbide burs. The topography of enamel was observed by using a scanning electron microscope. Finishing with extra-/ultra-fine carbide burs, and extra-fine diamond burs resulted in smooth surfaces. In few areas some superficial scratches with no clinical relevance were observed. Deep grooves were observed on the surface of enamel when fine diamond burs were used. Finishing of composite restorations with coarse burs should be avoided when there is a high risk of touching and scratching adjacent enamel during the procedure.

  18. Uranium compounds in ceramic enamels-radioactivity analysis and use hazards

    International Nuclear Information System (INIS)

    Cucchi, G.; Amadesi, P.

    1980-01-01

    An analysis was made of the radioactivity of enamel samples, containing depleted Uranium and Uranium ore, such as employed by the ceramic industry to produce paving and lining tiles. An investigation was also made of various types of tiles with depleted Uranium containing enamels, in order to evaluate the use hazard for dwelling houses, in particular in regard to the wear of tiled floors by children as a critical group. The risk to the population due to the use of tiles dyed with enamel containing depleted Uranium was considered an undue risk and as such not permissible. (U.K.)

  19. Inter-proximal enamel reduction in contemporary orthodontics.

    Science.gov (United States)

    Pindoria, J; Fleming, P S; Sharma, P K

    2016-12-16

    Inter-proximal enamel reduction has gained increasing prominence in recent years being advocated to provide space for orthodontic alignment, to refine contact points and to potentially improve long-term stability. An array of techniques and products are available ranging from hand-held abrasive strips to handpiece mounted burs and discs. The indications for inter-proximal enamel reduction and the importance of formal space analysis, together with the various techniques and armamentarium which may be used to perform it safely in both the labial and buccal segments are outlined.

  20. Enamel Bond Strength of New Universal Adhesive Bonding Agents.

    Science.gov (United States)

    McLean, D E; Meyers, E J; Guillory, V L; Vandewalle, K S

    2015-01-01

    Universal bonding agents have been introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinician's preference. The purpose of this study was to evaluate the shear bond strength (SBS) of composite to enamel using universal adhesives compared to a self-etch adhesive when applied in self-etch and etch-and-rinse modes over time. Extracted human third molars were used to create 120 enamel specimens. The specimens were ground flat and randomly divided into three groups: two universal adhesives and one self-etch adhesive. Each group was then subdivided, with half the specimens bonded in self-etch mode and half in etch-and-rinse mode. The adhesives were applied as per manufacturers' instructions, and composite was bonded using a standardized mold and cured incrementally. The groups were further divided into two subgroups with 10 specimens each. One subgroup was stored for 24 hours and the second for six months in 37°C distilled water and tested in shear. Failure mode was also determined for each specimen. A three-way analysis of variance (ANOVA) found a significant difference between groups based on bonding agent (p0.05). Clearfil SE in etch-and-rinse and self-etch modes had more mixed fractures than either universal adhesive in either mode. Etching enamel significantly increased the SBS of composite to enamel. Clearfil SE had significantly greater bond strength to enamel than either universal adhesive, which were not significantly different from each other.

  1. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel.

    Science.gov (United States)

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed

    2014-01-01

    The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  2. Effect of storage solutions on microhardness of crown enamel and dentin.

    Science.gov (United States)

    Aydın, Berdan; Pamir, Tijen; Baltaci, Aysun; Orman, Mehmet N; Turk, Tugba

    2015-01-01

    The aim of this study was to determine alterations in microhardness of crown dentin and enamel, after 2 and 12-month storage in de-ionized water, 0.2% glutaraldehyde, Hanks' Balanced Salt Solution (HBSS), 0.1% sodium hypochlorite (NaOCl) or 0.1% thymol. Freshly extracted, nonsterile 60 intact human premolars were distributed to five groups. Six teeth from each group were evaluated after two, and other six teeth were evaluated after 12 months storage. After grinding and polishing of teeth, Vickers hardness was evaluated with making indentations on enamel and dentin, using a pyramid diamond indenter tip exerting 100 g load for 15 s. After 2 months storage in solutions, range of the hardness values (HV) of enamel and dentin were in between 315-357 and 64-67, respectively. However, 12 months storage of the teeth resulted in a statistically significant decrease in microhardness when compared to microhardness of teeth stored for 2 months (P = 0.001). Although the differences were not significant regarding solutions, all solutions decreased the microhardness both in enamel and dentin (P > 0.05). However, decrease in microhardness was relatively less in de-ionized water and thymol solutions while glutaraldehyde decreased microhardness the most: 63% for enamel and 53% for dentin. Microhardness of enamel and dentin was in an acceptable range when teeth were stored for 2 months in de-ionized water, glutaraldehyde, HBSS, NaOCl or in thymol; thus, teeth kept up to 2 months in these solutions can be used for mechanical in vitro tests. However, 12 months storage significantly decreased the microhardness of enamel and dentin.

  3. Effects of 960 nm diode laser irradiation on dental enamel in vitro: temperature and morphological analysis and evaluation of enamel demineralization

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2004-01-01

    The aim of this study is to determine the effects of diode laser irradiation on enamel demineralization. To achieve this goal appropriate photon absorbing substances for the laser radiation, safe laser parameters and adequate temperature measuring apparatus had to be determined. Next, the effects of diode laser and acidulated phosphate fluoride on enamel demineralization by calcium content analysis were evaluated with inductively coupled plasma atomic emission spectrometry (ICP-AES). In the first part of the study, five dyes consisting of vegetable coal diluted in five different liquids were analyzed and vegetable coal diluted in physiological solution was chosen for use as absorber. Methodologies to measure pulp chamber temperature were evaluated and modeling clay was chosen as fixture for the enamel samples held at body temperature. In the second part of the study, different energy density parameters (1.8 J/cm 2 , 3.7 J/cm 2 , 5.6 J/cm 2 , 7.4 J/cm 2 and 9.3 J/cm 2 ) exposure times (10, 15, 20, 25 e 30 seconds) and time intervals between dye application and laser irradiation (5, 30, 60, 90 e 120 seconds) were evaluated with respect to temperature changes in the pulp chamber. The enamel morphology was analyzed by scanning electron microscopy. Acid resistance was measured using seventy five enamel specimens, divided in five groups (control, fluoride, laser, laser + fluoride and fluoride + laser). The amount of calcium lost during demineralization in lactic acid was measured by ICP-AES. The results obtained in this experiment permit the conclusion that diode laser irradiation did not increase acid resistance. When associated with fluoride, the acid resistance did not differ from the results obtained with fluoride alone. (author)

  4. Bond strength of composite resin to enamel: assessment of two ethanol wet-bonding techniques.

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-04-01

    Full Text Available Ethanol wet-bonding (EWB technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength.Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control;Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher's exact test (α=0.05.There were no significant differences in bond strength between the groups (P=0.73. However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3.In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel.

  5. Effects of probiotic fermented milk on biofilms, oral microbiota, and enamel

    OpenAIRE

    Lodi, Carolina Simonetti; Oliveira, Lidiane Viana; Brighenti, Fernanda Lourenção [UNESP; Delbem, Alberto Carlos Botazzo; Martinhon, Cleide Cristina Rodrigues

    2015-01-01

    The aim of this study was to evaluate in vitro and in vivo the effects of 2 brands of probiotic fermented milk on biofilms, oral microbiota, and enamel. For the in situ experiment, ten volunteers wore palatine devices containing four blocks of bovine dental enamel over 3 phases, during which 20% sucrose solution, Yakult® (Treatment A), and Batavito® (Treatment B) were dropped on the enamel blocks. Salivary microbial counts were obtained and biofilm samples were analyzed after each phase. For ...

  6. A Comparison of Fatigue Crack Growth in Human Enamel and Hydroxyapatite

    OpenAIRE

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne

    2008-01-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state cra...

  7. Sub-10-micrometer toughening and crack tip toughness of dental enamel

    OpenAIRE

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A.

    2011-01-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip toughness (KI0, KIII0), the crack closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine en...

  8. 3D enamel thickness in Neandertal and modern human permanent canines.

    Science.gov (United States)

    Buti, Laura; Le Cabec, Adeline; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A; Hublin, Jean-Jacques; Feeney, Robin N M; Benazzi, Stefano

    2017-12-01

    Enamel thickness figures prominently in studies of human evolution, particularly for taxonomy, phylogeny, and paleodietary reconstruction. Attention has focused on molar teeth, through the use of advanced imaging technologies and novel protocols. Despite the important results achieved thus far, further work is needed to investigate all tooth classes. We apply a recent approach developed for anterior teeth to investigate the 3D enamel thickness of Neandertal and modern human (MH) canines. In terms of crown size, the values obtained for both upper and lower unworn/slightly worn canines are significantly greater in Neandertals than in Upper Paleolithic and recent MH. The 3D relative enamel thickness (RET) is significantly lower in Neandertals than in MH. Moreover, differences in 3D RET values between the two groups appear to decrease in worn canines beginning from wear stage 3, suggesting that both the pattern and the stage of wear may have important effects on the 3D RET value. Nevertheless, the 3D average enamel thickness (AET) does not differ between the two groups. In both groups, 3D AET and 3D RET indices are greater in upper canines than in lower canines, and overall the enamel is thicker on the occlusal half of the labial aspect of the crown, particularly in MH. By contrast, the few early modern humans investigated show the highest volumes of enamel while for all other components of 3D enamel, thickness this group holds an intermediate position between Neandertals and recent MH. Overall, our study supports the general findings that Neandertals have relatively thinner enamel than MH (as also observed in molars), indicating that unworn/slightly worn canines can be successfully used to discriminate between the two groups. Further studies, however, are needed to understand whether these differences are functionally related or are the result of pleiotropic or genetic drift effects. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Xenotransplantation of neonatal porcine liver cells.

    Science.gov (United States)

    Garkavenko, O; Emerich, D F; Muzina, M; Muzina, Z; Vasconcellos, A V; Ferguson, A B; Cooper, I J; Elliott, R B

    2005-01-01

    Xenotransplantation of porcine liver cell types may provide a means of overcoming the shortage of suitable donor tissues to treat hepatic diseases characterized by inherited inborn errors of metabolism or protein production. Here we report the successful isolation, culture, and xenotransplantation of liver cells harvested from 7- to 10-day-old piglets. Liver cells were isolated and cultured immediately after harvesting. Cell viability was excellent (>90%) over the duration of the in vitro studies (3 weeks) and the cultured cells continued to significantly proliferate. These cells also retained their normal secretory and metabolic capabilities as determined by continued release of albumin, factor 8, and indocyanin green (ICG) uptake. After 3 weeks in culture, porcine liver cells were loaded into immunoisolatory macro devices (Theracyte devices) and placed into the intraperitoneal cavity of immunocompetant CD1 mice. Eight weeks later, the devices were retrieved and the cells analyzed for posttransplant determinations of survival and function. Post mortem analysis confirmed that the cell-loaded devices were biocompatible, and were well-tolerated without inducing any notable inflammatory reaction in the tissues immediately surrounding the encapsulated cells. Finally, the encapsulated liver cells remained viable and functional as determined by histologic analyses and ICG uptake/release. The successful harvesting, culturing, and xenotransplantation of functional neonatal pig liver cells support the continued development of this approach for treating a range of currently undertreated or intractable hepatic diseases.

  10. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    Science.gov (United States)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  11. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    Science.gov (United States)

    Heravi, Farzin; Shafaee, Hooman; Abdollahi, Mojtaba; Rashed, Roozbeh

    2015-03-01

    The objective of this study was to assess the effect of new bonding techniques on enamel surface. Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using TransbondXT and, in the second group, the same brackets were bonded with Maxcem Elite. The shear bond strength (SBS) of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI) scores in each group were also measured. There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval). Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely to damage the enamel.

  12. Synchrotron radiation microbeam X-ray fluorescence analysis of zinc concentration in remineralized enamel in situ.

    Science.gov (United States)

    Matsunaga, Tsunenori; Ishizaki, Hidetaka; Tanabe, Shuji; Hayashi, Yoshihiko

    2009-05-01

    Remineralization is an indispensable phenomenon during the natural healing process of enamel decay. The incorporation of zinc (Zn) into enamel crystal could accelerate this remineralization. The present study was designed to investigate the concentration and distribution of Zn in remineralized enamel after gum chewing. The experiment was performed at the Photon Factory. Synchrotron radiation was monochromatized and X-rays were focused into a small beam spot. The X-ray fluorescence (XRF) from the sample was detected with a silicon (Si) (lithium (Li)) detector. X-ray beam energy was tuned to detect Zn. The examined samples were small enamel fragments remineralized after chewing calcium phosphate-containing gum in situ. The incorporation of Zn atom into hydroxyapatite (OHAP), the main component of enamel, was measured using Zn K-edge extended X-ray absorption fine structure (EXAFS) with fluorescence mode at the SPring-8. A high concentration of Zn was detected in a superficial area 10-microm deep of the sectioned enamel after gum chewing. This concentration increased over that in the intact enamel. The atomic distance between Zn and O in the enamel was calculated using the EXAFS data. The analyzed atomic distances between Zn and O in two sections were 0.237 and 0.240 nm. The present experiments suggest that Zn is effectively incorporated into remineralized enamel through the physiological processes of mineral deposition in the oral cavity through gum-chewing and that Zn substitution probably occurred at the calcium position in enamel hydroxyapatite.

  13. Gastrin-releasing peptide in the porcine pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    1987-01-01

    to consist of one main form, namely the 27-amino acid peptide originally extracted from porcine stomach, and small amounts of a C-terminal fragment identical with the C-terminal 10-amino acid peptide. Gastrin-releasing peptide-like immunoreactivity released from the isolated perfused porcine pancreas during...... electrical vagal stimulation was shown by gel filtration to consist of the same two forms. By use of immunocytochemical techniques employing an antiserum directed against its N terminus, GRP was localized to varicose nerve fibers in close association with the exocrine tissue of the porcine pancreas...... in particular. Some fibers were found penetrating into pancreatic islets also. Immunoreactive nerve cell bodies as well as fibers were found within intrapancreatic ganglia. The potency of GRP in stimulating exocrine as well as endocrine secretion from the porcine pancreas, its presence in close contact...

  14. Enamel hypoplasia and its role in identification of individuals: A review of literature

    Science.gov (United States)

    Kanchan, Tanuj; Machado, Meghna; Rao, Ashwin; Krishan, Kewal; Garg, Arun K.

    2015-01-01

    Identification of individuals is the mainstay of any forensic investigation especially in cases of mass disasters when mutilated remains are brought for examination. Dental examination helps in establishing the identity of an individual and thus, has played a vital role in forensic investigation process since long. In this regard, description on the role of enamel hypoplasia is limited in the literature. The present article reviews the literature on the enamel hypoplasia and discusses its utility in forensic identification. Enamel hypoplasia is a surface defect of the tooth crown caused by disturbance of enamel matrix secretion. Enamel defects can be congenital or acquired. In cases of mass disasters, or when the body is completely charred, putrefied and mutilated beyond recognition, the unique dental features can help in identification of the victims. PMID:26097340

  15. Porcine Endogenous Retroviruses in Xenotransplantation—Molecular Aspects

    Directory of Open Access Journals (Sweden)

    Magdalena C. Kimsa

    2014-05-01

    Full Text Available In the context of the shortage of organs and other tissues for use in human transplantation, xenotransplantation procedures with material taken from pigs have come under increased consideration. However, there are unclear consequences of the potential transmission of porcine pathogens to humans. Of particular concern are porcine endogenous retroviruses (PERVs. Three subtypes of PERV have been identified, of which PERV-A and PERV-B have the ability to infect human cells in vitro. The PERV-C subtype does not show this ability but recombinant PERV-A/C forms have demonstrated infectivity in human cells. In view of the risk presented by these observations, the International Xenotransplantation Association recently indicated the existence of four strategies to prevent transmission of PERVs. This article focuses on the molecular aspects of PERV infection in xenotransplantation and reviews the techniques available for the detection of PERV DNA, RNA, reverse transcriptase activity and proteins, and anti-PERV antibodies to enable carrying out these recommendations. These methods could be used to evaluate the risk of PERV transmission in human recipients, enhance the effectiveness and reliability of monitoring procedures, and stimulate discussion on the development of improved, more sensitive methods for the detection of PERVs in the future.

  16. Porcine Endogenous Retroviruses in Xenotransplantation—Molecular Aspects

    Science.gov (United States)

    Kimsa, Magdalena C.; Strzalka-Mrozik, Barbara; Kimsa, Malgorzata W.; Gola, Joanna; Nicholson, Peter; Lopata, Krzysztof; Mazurek, Urszula

    2014-01-01

    In the context of the shortage of organs and other tissues for use in human transplantation, xenotransplantation procedures with material taken from pigs have come under increased consideration. However, there are unclear consequences of the potential transmission of porcine pathogens to humans. Of particular concern are porcine endogenous retroviruses (PERVs). Three subtypes of PERV have been identified, of which PERV-A and PERV-B have the ability to infect human cells in vitro. The PERV-C subtype does not show this ability but recombinant PERV-A/C forms have demonstrated infectivity in human cells. In view of the risk presented by these observations, the International Xenotransplantation Association recently indicated the existence of four strategies to prevent transmission of PERVs. This article focuses on the molecular aspects of PERV infection in xenotransplantation and reviews the techniques available for the detection of PERV DNA, RNA, reverse transcriptase activity and proteins, and anti-PERV antibodies to enable carrying out these recommendations. These methods could be used to evaluate the risk of PERV transmission in human recipients, enhance the effectiveness and reliability of monitoring procedures, and stimulate discussion on the development of improved, more sensitive methods for the detection of PERVs in the future. PMID:24828841

  17. Penetration pattern of rhodamine dyes into enamel and dentin: confocal laser microscopy observation.

    Science.gov (United States)

    Kwon, S R; Wertz, P W; Li, Y; Chan, D C N

    2012-02-01

    Enamel and dentin are susceptible to extrinsic and intrinsic stains. The purposes of this study were to determine the penetration pattern of Rhodamine B and dextran-conjugated Rhodamine B into the enamel and dentin as observed by confocal laser microscopy and to relate it to the penetration pattern of hydrogen peroxide commonly used as an active ingredient in tooth-whitening agents and high-molecular-weight staining molecules. Eighteen recently extracted human maxillary anterior teeth were used. Teeth were cleaned and painted with nail varnish except for the crown area above the cemento-enamel junction (CEJ). The painted teeth were then immersed in Rhodamine B and dextran-conjugated Rhodamine B (70 000 MW) for 4, 7, 10 and 15 days. Teeth were sliced to 3 mm thickness in transverse plane and mounted on a glass slide just prior to observation with confocal laser microscopy. Rhodamine B and dextran-conjugated Rhodamine B readily penetrated into the enamel and dentin when exposed for 4 and 7 days, respectively. Rhodamine B penetrated along the interprismatic spaces of the enamel into the dentin. The penetration was accentuated in sections with existing crack lines in the enamel. Rhodamine B was readily absorbed into the dentinal tubules at the dentino-enamel junction and continued to penetrate through the dentin via the dentinal tubules into the pre-dentin. Within the limitations of this study, it is concluded that Rhodamine B and dextran-conjugated Rhodamine B when applied to the external surface of the tooth readily penetrate into the enamel and dentin via the interprismatic spaces in the enamel and dentinal tubules in the dentin, suggesting that stain molecules and bleaching agents possibly exhibit similar penetration pathways. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Conversion from tooth enamel dose to organ doses for electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Yamaguchi, Yasuhiro; Saito, Kimiaki; Hamada, Tatsuji

    2002-01-01

    Conversion from tooth enamel dose to organ doses was analyzed to establish a method of retrospective individual dose assessment against external photon exposure by electron spin resonance (ESR) dosimetry. Dose to tooth enamel was obtained by Monte Carlo calculations using a modified MIRD-type phantom with a teeth part. The calculated tooth enamel doses were verified by measurements with thermo-luminescence dosimeters inserted in a physical head phantom. Energy and angular dependences of tooth enamel dose were compared with those of other organ doses. Additional Monte Carlo calculations were performed to study the effect of human model on the tooth enamel dose with a voxel-type phantom, which was based on computed tomography images of the physical phantom. The data derived with the modified MIRD-type phantom were applied to convert from tooth enamel dose to organ doses against external photon exposure in a hypothesized field, where scattered radiation was taken into account. The results indicated that energy distribution of photons incident to a human body is required to evaluate precisely an individual dose based on ESR dosimetry for teeth. (author)

  19. Some advances in the instrumental retrospective dosimetry techniques with tooth enamel and quartz

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.; Pasalskaja, L.F.; Pavlenko, J.V.

    1996-01-01

    Some aspects of retrospective dosimetry with tooth enamel and quartz have been considered. Firstly, the experimental and theoretical investigation had been carried out concerning influence of secondary electron equilibrium on the absorbed dose in enamel under the laboratory irradiation. The irradiation had been made with photons of energy 1,25 MeV, 662 and 100 keV. It is demonstrated that the influence of secondary electron equilibrium on the absorbed dose in enamel does not exceed few percent. Secondly, some of paramagnetic centers of enamel different from CO 2 - ones have been researched by using of the thermo activation technique. The enamel for this experiment had been carefully purified from organic components and then irradiated following annealed to consecutively increasing temperature. It was established that at least four of EPR centers of enamel possess radiation sensitivity and could be used for dosimetry purposes. Thirsty, it was performed a thorough investigation of the influence of different stages in quartz separation and purification with respect to obtaining of samples for TL-dosimetry. The optimal procedure has been developed

  20. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Science.gov (United States)

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (perosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  1. Testing functional and morphological interpretations of enamel thickness along the deciduous tooth row in human children.

    OpenAIRE

    Mahoney, Patrick

    2013-01-01

    The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel ...

  2. Influence of fluoride varnish on shear bond strength of a universal adhesive on intact and demineralized enamel.

    Science.gov (United States)

    Ortiz-Ruiz, Antonio José; Muñoz-Gómez, Iban Jesús; Pérez-Pardo, Ana; Germán-Cecilia, Concepción; Martínez-Beneyto, Yolanda; Vicente, Ascensión

    2018-04-27

    The aim was to evaluate the effect of fluoride varnish on the shear bond strength (SBS) on polished and non-polished intact and demineralized enamel. Bovine incisors (half demineralized) were used. Bifluorid 12™ was applied. Bonding was made with Futurabond ® M + and GrandioSO, 24 h and 7 days after varnishing. In some groups, varnish was removed by polishing before bonding. SBS was measured. Fracture type was determined by stereomicroscopy and scanning electron microscope (SEM) observations of the enamel surface were made. Between-group differences were determined by one-way ANOVA and the Tukey test. Associations between study factors and fracture modes were analysed using contingency tables and Pearson's chi-squared test. For intact enamel, SBS on varnished enamel at 24 h was significantly less than in the other groups. SBS recovered 7 days after varnishing. Varnish elimination after 24 h significantly increased the SBS. However, removal at 7 days did not modify SBS. SBS on demineralized enamel groups was significantly less than in intact enamel, except for demineralized enamel varnished and removed at 7 days. Demineralized enamel was associated with cohesive enamel fractures and intact enamel with cohesive fractures of the composite and adhesive fractures. SEM of varnish surfaces showed a homogenous layer scattered with amorphous precipitate. In conclusion, on intact enamel fluoride varnish had a negative effect on SBS at 24 h, which disappeared after 7 days. On demineralized enamel, varnish did not reduce SBS at either time. Polishing the varnished enamel surface showed a similar SBS to intact enamel after 7 days.

  3. Effect of cow and soy milk on enamel hardness of immersed teeth

    Science.gov (United States)

    Widanti, H. A.; Herda, E.; Damiyanti, M.

    2017-08-01

    Cow milk and soy milk have different mineral contents and this can affect the tooth remineralization process. The aim of this study was to determine the effect of cow and soy milk on immersed teeth after demineralization. Twenty-one specimens, of human maxillary premolars, were measured for enamel hardness before immersion and demineralization in orange juice. The teeth were divided into three groups (n = 7) with each group immersed in either distilled water, cow milk, or soy milk. There was a significant increase in enamel hardness in all groups (p Cow milk provided the highest increase in enamel hardness, of all the three groups, but was not able to restore the initial enamel hardness.

  4. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem.

    Science.gov (United States)

    Huang, Honggang; Larsen, Martin R; Palmisano, Giuseppe; Dai, Jie; Lametsch, René

    2014-06-25

    Protein phosphorylation can regulate most of the important processes in muscle, such as metabolism and contraction. The postmortem (PM) metabolism and rigor mortis have essential effects on meat quality. In order to identify and characterize the protein phosphorylation events involved in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy. In total 305 unique proteins were identified, including 160 phosphoproteins with 784 phosphorylation sites. Among these, 184 phosphorylation sites on 93 proteins had their phosphorylation levels significantly changed. The proteins involved in glucose metabolism and muscle contraction were the two largest clusters of phosphoproteins with significantly changed phosphorylation levels in muscle within 24 h PM. The high phosphorylation level of heat shock proteins (HSPs) in early PM may be an adaptive response to slaughter stress and protect muscle cell from apoptosis, as observed in the serine 84 of HSP27. This work indicated that PM muscle proteins underwent significant changes at the phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat quality development through the regulation of proteins involved in glucose metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. The manuscript describes the characterization of postmortem (PM) porcine muscle within 24 h postmortem from the perspective of protein phosphorylation using advanced phosphoproteomic techniques. In the study, the authors employed the dimethyl labeling combined with the TiSH phosphopeptide enrichment and LC-MS/MS strategy. This was the first high-throughput quantitative phosphoproteomic study in PM muscle of farm animals. In the work, both the proteome

  6. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro.

    Science.gov (United States)

    Imai, Kanako; Shimada, Yasushi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji

    2012-09-01

    Current methods for the detection of enamel cracks are not very sensitive. Optical coherence tomography (OCT) is a promising diagnostic method for creating cross-sectional imaging of internal biological structures by measuring echoes of backscattered light. In this study, swept-source OCT (SS-OCT), a variant of OCT that sweeps the near-infrared wavelength at a rate of 30 kHz over a span of 110 nm centered at 1,330 nm, was examined as a diagnostic tool for enamel cracks. Twenty extracted human teeth were visually evaluated without magnification. SS-OCT was conducted on locations in which the presence of an enamel crack was suspected under visual inspection using a photocuring unit as transillumination. The teeth were then sectioned with a diamond saw and directly viewed under a confocal laser scanning microscope (CLSM). Using SS-OCT, the presence and extent of enamel cracks were clearly visualized on images based on backscattering signals. The extension of enamel cracks beyond the dentinoenamel junction could also be confirmed. The diagnostic accuracy of SS-OCT was shown to be superior to that of conventional visual inspection--the area under the receiver operating characteristic curve--for the detection of enamel crack and whole-thickness enamel crack; visual inspection: 0.69 and 0.56, SS-OCT: 0.85 and 0.77, respectively). Enamel cracks can be clearly detected because of increased backscattering of light matching the location of the crack, and the results correlated well with those from the CLSM. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel

    Directory of Open Access Journals (Sweden)

    Shiva Alavi

    2014-01-01

    Full Text Available Background: The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. Materials and Methods: In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA. P < 0.05 was considered as significant. Results: The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. Conclusion: The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  8. Modulation of type I interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells

    International Nuclear Information System (INIS)

    Kim, Oekyung; Sun Yan; Lai, Frances W.; Song Cheng; Yoo, Dongwan

    2010-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is an emerged disease of swine characterized by negligible response of type I IFNs and viral persistence. We show that the PRRSV non-structural protein 1 (Nsp1) is the viral component responsible for modulation of IFN response. Nsp1 blocked dsRNA-induced IRF3 and IFN promoter activities. Nsp1 did not block phosphorylation and nuclear translocation of IRF3 but inhibited IRF3 association with CREB-binding protein (CBP) in the nucleus. While IRF3 was stable, CBP was degraded, and CBP degradation was proteasome-dependent, suggesting that CBP degradation is not due to the protease activity of Nsp1 but an intermediary is involved. Our data suggest that the Nsp1-mediated CBP degradation inhibits the recruitment of CBP for enhanceosome assembly, leading to the block of IFN response. CBP degradation is a novel strategy for viral evasion from the host response, and Nsp1 may form a new class of viral antagonists for IFN modulation.

  9. Prevalence of enamel defects and association with dental caries in preschool children.

    Science.gov (United States)

    Massignan, C; Ximenes, M; da Silva Pereira, C; Dias, L; Bolan, M; Cardoso, M

    2016-12-01

    This was to evaluate the prevalence of the developmental defects of enamel (DDE) in primary teeth and its association with dental caries. A cross-sectional study with a randomised representative sample was carried out with 1101 children aged 2-5 years enrolled in public preschools (50% prevalence of DDE in primary teeth, a standard error of 3%, and a confidence level of 95%). Three calibrated dentists (K > 0.62) performed clinical examination. Data collected were: sex, age, DDE (Modified DDE Index) and dental caries (WHO). Descriptive analysis, Chi-square test and multinomial logistic regression were applied for data analysis. Among children, 565 (51.3%) were boys; mean age was 3.7 (±0.9 years). The prevalence of enamel defect was 39.1%; the prevalence of diffuse opacities, demarcated opacities and enamel hypoplasia was 25.3, 19.1 and 6.1%, respectively. The prevalence of dental caries was 31.0%, with mean def-t 1.14 (±2.44). Primary teeth with enamel hypoplasia had three times the odds of having dental caries than those with absence of enamel defects (OR = 3.10; 95% CI: 1.91, 5.01). The presence of enamel defects was moderate and associated with dental caries.

  10. Evaluation of human enamel surfaces treated with theobromine: a pilot study.

    Science.gov (United States)

    Kargul, Betul; Özcan, Mutlu; Peker, Sertac; Nakamoto, Tetsuo; Simmons, William B; Falster, Alexander U

    2012-01-01

    The objectives of this in-vitro study were to investigate the effect of theobromine, which is the principle xanthine species in Theobroma cacao, at two concentrations on the surface hardness and topography of human enamel. Twenty-four freshly extracted human third molars were collected and stored in distilled water with 0.1% thymol solution at room temperature prior to the experiments. The enamel specimens were treated with one coat of theobromine at two concentrations (100 mg/l or 200 mg/l in distilled water) for 5 min. Enamel surfaces in the control group received no theobromine. They were then kept in distilled water for 1 week and subjected to SEM analysis. The specimens were demineralised by storing them in acidic hydroxyethylcellulose for three days. After baseline microhardness measurements, they were incubated either in 100 or 200 mg/l theobromine for 5 min. The control group was kept in distilled water. After washing the specimens under distilled water, they were kept in a remineralising solution for 18 h. Microhardness of the enamel surface was initially determined for each specimen before artificial demineralisation. After demineralisation, the experimental groups were incubated in 100 mg or 200 mg theobromine and control-group specimens were placed in remineralising solution. Enamel surfaces of the untreated control group presented a generally smooth and slightly hummocky surface with small lines of pits. Specimens treated with theobromine showed differences between the two concentrations. The group treated with 200 mg/l solution for 5 min showed a greater quantity of globules on enamel than did specimens treated with 100 mg/l solution. As shown by the microhardness values, a consistent and remarkable protection of the enamel surface was found with the application of theobromine.

  11. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    Science.gov (United States)

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  12. Microstructure and hardness of bovine enamel in roselle extract solution

    Science.gov (United States)

    Dame, M. T.; Noerdin, A.; Indrani, D. J.

    2017-08-01

    The aim of this study was to analyze the effect of roselle extract solution on the microstructure and hardness of bovine enamel. Ten bovine teeth and a 5% concentration of roselle extract solution were prepared. Immersions of each bovine tooth in roselle extract solution were conducted up to 60 minutes. The bovine enamel surface was characterized in hardness and microscopy. It was apparent that the initial hardness was 328 KHN, and after immersion in 15 and 60 min, the values decrease to 57.4 KHN and 11 KHN, respectively. Scanning electron microscopy (SEM) revealed changes in enamel rods after immersion in the roselle extract solution.

  13. Microtensile bond strength of enamel after bleaching

    Directory of Open Access Journals (Sweden)

    Andréa Dias Neves Lago

    2013-01-01

    Full Text Available Objective: To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Materials and Methods: Twenty bovine teeth were randomly distributed into 4 groups (n = 5, 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control; G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM. Results: There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2. There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive failure in all groups. Conclusion: The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  14. Quantification of Porcine Vocal Fold Geometry.

    Science.gov (United States)

    Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L

    2016-07-01

    The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Effects of bleaching agents on human enamel light reflectance.

    Science.gov (United States)

    Markovic, Ljubisa; Fotouhi, Kasra; Lorenz, Heribert; Jordan, Rainer A; Gaengler, Peter; Zimmer, Stefan

    2010-01-01

    Tooth whitening has been associated with splitting-up chromogenic molecules by hydrogen peroxides. Though micromorphological alterations are well documented, little is known about optical changes as a function of shifting in wavelengths. Therefore, the aim of the current study was to measure reflectance changes after bleaching in vitro by using a spectrometer. Forty-eight enamel slabs (diameter = 5 mm) were prepared from the sound enamel of extracted human teeth that were: 1) fully impacted, 2) from juveniles ages 10 to 16 years, 3) from adults 35 to 45 years of age and 4) from seniors older than age 65. In all specimens, the baseline total reflectance measurement was performed with a computer-assisted spectrometer (Ocean Optics, Dunedin, FL, USA) within wavelengths (wl) from 430 nm to 800 nm. Four enamel samples of each age group were exposed to either 10% or 15% carbamide peroxide (Illuminé Home, Dentsply, Konstanz, Germany) or 35% hydrogen peroxide (Pola Office, SDI Limited, Victoria, Australia). After surface treatment, all slabs underwent total reflectance measurement again. Statistical analysis was calculated at wl 450, 500 and 750 nm using the Student's paired t-test and one-way variance analysis. Total reflectance significantly increased after bleaching at all enamel maturation stages, irrespective of the bleaching agent concentration, for wl 450 nm (blue) and 500 nm (green) with penamel from adults and seniors (pwhitening of the dental enamel works at different maturation stages, even in impacted teeth. This effect is irrespective of the bleaching protocol used and the bleaching agent concentration.

  16. Relationship between microhardness and fluorine contents on tooth enamel determined by PIGE analysis

    International Nuclear Information System (INIS)

    Ma, D.S.; Paik, D.I.; Park, D.Y.; Moon, H.S.; Chang, Y.I.; Kim, J.B.

    1997-01-01

    The remineralization effect of fluoride has been measured by surface microhardness on tooth enamel. The purpose of this study was to investigate the relationship between microhardness and fluorine concentration on tooth enamel. Twelve sound bovine enamel specimens were prepared and immersed in 0.05% NaF solution for 1, 3, 6, 24 and 36 hours, respectively. The concentration of fluorine in specimens were measured by PIGE analysis and surface microhardness of each specimen was measured by surface microhardness tester. Fluorine concentration was increased by immersing time. There was no change in microhardness of each specimen by fluorine content. The results of this study suggest that there was no relationship between the fluorine concentration and surface microhardness in sound tooth enamel. PIGE analysis can be used effectively to assess the remineralization effect of fluorine content in tooth enamel. (author)

  17. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation.

    Science.gov (United States)

    Bai, Fangfang; Ni, Bo; Liu, Maojun; Feng, Zhixin; Xiong, Qiyan; Xiao, Shaobo; Shao, Guoqing

    2013-09-15

    Mycoplasma hyopneumoniae is the primary etiological agent of enzootic pneumonia in swine. Lipid-associated membrane proteins (LAMP) of mycoplasma are the main pathogenicity factors in mycoplasma diseases. In this study, we investigated the effects of M. hyopneumoniae LAMP on porcine alveolar macrophage (PAM) 3D4/21 cell line. Apoptotic features, such as chromatin condensation and apoptotic bodies, were observed in LAMP-treated PAM 3D4/21 cells. Moreover, LAMP significantly increased the number of TUNEL positive apoptotic cells in PAM 3D4/21 cells compared with the untreated control. In addition, flow cytometric analysis using dual staining with annexin-V-FITC and propidium iodide (PI) showed that LAMP of M. hyopneumoniae induced a time-dependent apoptosis in PAM 3D4/21 cells. Moreover, increased levels of superoxide anion production and activated caspase-3 in PAM 3D4/21 cells were observed after exposure to LAMP. Increased production of nitric oxide (NO) was also confirmed in the cell supernatants. Besides, apoptotic rates increase and caspase-3 activation were suppressed by NOS inhibitor or antioxidant. It is suggested that LAMP of M. hyopneumoniae induced apoptosis in porcine alveolar macrophage via NO production, superoxide anion production, and caspase-3 activation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Diagnostic investigation of porcine periweaning failure-to-thrive syndrome: lack of compelling evidence linking to common porcine pathogens.

    Science.gov (United States)

    Huang, Yanyun; Gauvreau, Henry; Harding, John

    2012-01-01

    Porcine periweaning failure-to-thrive syndrome (PFTS), an increasingly recognized syndrome in the swine industry of North America, is characterized by the anorexia of nursery pigs noticeable within 1 week of weaning, and progressive loss of body condition and lethargy during the next 1-2 weeks. Morbidity caused by PFTS is moderate, but case fatality is high. The etiology of PFTS is presently unknown and may include infectious agent(s), noninfectious factors, or both. PFTS was identified in a high health status farm with good management in early 2007. A diagnostic investigation was undertaken to identify the pathological lesions of, and infectious agents associated with, pigs demonstrating typical clinical signs. Affected (PFTS-SICK) and unaffected (PFTS-HLTHY) pigs from an affected farm, and unaffected pigs from 2 unaffected farms, were examined. The most prevalent lesions in PFTS-SICK pigs were superficial lymphocytic fundic gastritis, atrophic enteritis, superficial colitis, lymphocytic and neutrophilic rhinitis, mild nonsuppurative meningoencephalitis, and thymic atrophy. Rotavirus A and Betacoronavirus 1 (Porcine hemagglutinating encephalomyelitis virus) were identified only in PFTS-SICK pigs, but the significance of the viruses is uncertain because PFTS is not consistent with the typical presentation following infection by these pathogens. Porcine reproductive and respiratory syndrome virus, Porcine circovirus-2, Influenza A virus, Alphacoronavirus 1 (Transmissible gastroenteritis virus), Torque teno virus 1, Brachyspira hyodysenteriae, and Brachyspira pilosicoli were not identified in PFTS-SICK pigs. Suid herpesvirus 2 (Porcine cytomegalovirus), Porcine enteric calicivirus, Torque teno virus 2, pathogenic Escherichia coli, and coccidia were detected in both PFTS-SICK and PFTS-HLTHY pigs. It was concluded that there is a lack of compelling evidence that PFTS is caused by any of these pathogens.

  19. Role of prism decussation on fatigue crack growth and fracture of human enamel.

    Science.gov (United States)

    Bajaj, Devendra; Arola, Dwayne

    2009-10-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset compact tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near-threshold region of cyclic extension was typical of "short crack" behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth's surface.

  20. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2015-10-01

    Full Text Available Objectives: The objective of this study was to assess the effect of new bonding techniques on enamel surface.Materials and Methods: Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using Trans- bondXT and, in the second group, the same brackets were bonded with MaxcemElite. The shear bond strength (SBS of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI scores in each group were also measured.Results: There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval.Conclusion: Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely todamage the enamel.

  2. Electron paramagnetic resonance biophysical radiation dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.

    2003-01-01

    This thesis deals with the advancements made in the field of Electron Paramagnetic Resonance (EPR) for biophysical dosimetry with tooth enamel for accident, emergency, and retrospective radiation dose reconstruction. A methodology has been developed to measure retrospective radiation exposures in human tooth enamel. This entails novel sample preparation procedures with minimum mechanical treatment to reduce the preparation induced uncertainties, establish optimum measurement conditions inside the EPR cavity, post-process the measured spectrum with functional simulation of dosimetric and other interfering signals, and reconstruct dose. By using this technique, retrospective gamma exposures as low as 80±30 mGy have been successfully deciphered. The notion of dose modifier was introduced in EPR biodosimetry for low dose measurements. It has been demonstrated that by using the modified zero added dose (MZAD) technique for low radiation exposures, doses in 100 mGy ranges can be easily reconstructed in teeth that were previously thought useless for EPR dosimetry. Also, the use of a dose modifier makes robust dose reconstruction possible for higher radiation exposures. The EPR dosimetry technique was also developed for tooth samples extracted from rodents, which represent small tooth sizing. EPR doses in the molars, extracted from the mice irradiated with whole body exposures, were reassessed and shown to be correct within the experimental uncertainty. The sensitivity of human tooth enamel for neutron irradiation, obtained from the 3 MV McMaster K.N. Van de Graaff accelerator, was also studied. For the first time this work has shown that the neutron sensitivity of the tooth enamel is approximately 1/10th of the equivalent gamma sensitivity. Parametric studies for neutron dose rate and neutron energy within the available range of the accelerator, showed no impact on the sensitivity of the tooth enamel. Therefore, tooth enamel can be used as a dosimeter for both neutrons

  3. Endosulfine, endogenous ligand for the sulphonylurea receptor: isolation from porcine brain and partial structural determination of the alpha form.

    Science.gov (United States)

    Virsolvy-Vergine, A; Salazar, G; Sillard, R; Denoroy, L; Mutt, V; Bataille, D

    1996-02-01

    Anti-diabetic sulphonylureas act via high affinity binding sites coupled to K-ATP channels. Endosulfine, an endogenous ligand for these binding sites, was shown to exist in two molecular forms, alpha and beta, in both the pancreas and the central nervous system. We describe here the isolation, and partial structural characterization of alpha endosulfine derived from porcine brains by means of a series of chromatography runs and gel electrophoresis. Porcine alpha endosulfine is a protein with a molecular mass of 13,196 daltons as determined by mass spectrometry and which is N-terminally blocked. Tryptic digestion followed by separation of the fragments by HPLC and automated Edman degradation yielded a total of 72 amino acids in four partial sequences. Comparison of these sequences with that present in the National Biomedical Research Foundation protein data bank indicated a 82% identity with a 112-amino acid protein with a molecular mass of 12,353 daltons called "cyclic AMP-regulated phosphoprotein-19', isolated from the bovine brain as a substrate for protein kinase A.

  4. Co-administration of amygdalin and deoxynivalenol disrupted regulatory proteins linked to proliferation of porcine ovarian cells in vitro

    Directory of Open Access Journals (Sweden)

    Marek Halenár

    2017-01-01

    Full Text Available Deoxynivalenol (DON represents one of the most prevalent trichothecene mycotoxin produced by Fusarium species, causing economic and health impacts. On the other hand, amygdalin has been demonstrated to possess both prophylactic and curative properties, thus it has been used as a traditional drug because of its wide range of medicinal benefits, including curing or preventing cancer, relieving fever, suppressing cough, and quenching thirst. The aim of this in vitro study was to evaluate potential effects of natural product amygdalin combined with mycotoxin deoxynivalenol (DON on the key regulators of cell proliferation and apoptosis in porcine ovarian granulosa cells. Ovarian granulosa cells were incubated for 24h with amygdalin (1, 10, 100, 1000, 10 000 μg.mL-1 combined with deoxynivalenol (1 μg.mL-1, while the control group remained untreated. The presence of proliferative (cyclin B1, PCNA and apoptotic markers (caspase-3 in porcine ovarian granulosa cells after amygdalin treatment (1, 10, 100, 1000, 10 000 μg.mL-1 combined with deoxynivalneol (1 μg.mL-1 was detected by immunocytochemistry. The presence of proliferative (cyclin B1, PCNA and apoptotic markers (caspase-3 in porcine ovarian granulosa cells was detected by immunocytochemistry. Co-administration of amygdalin plus DON significantly (p <0.05 increased the number of granulosa cells containing cyclin B1 and PCNA at all tested concetrations, when compared to control. However, percentage of granulosa cells containing major apoptotic marker caspase-3 did not differ after co-administration of amygdalin and DON. In summary, results form this in vitro study indicate that co-exposure of amygdalin and deoxynivalenol  may act to stimulate proliferation-associated peptides in porcine ovarian granulosa cells, and thus alter cell proliferation and normal follicular development.

  5. Dentist and practice characteristics associated with restorative treatment of enamel caries in permanent teeth

    DEFF Research Database (Denmark)

    Fellows, Jeffrey L; Gordan, Valeria V; Gilbert, Gregg H

    2014-01-01

    PURPOSE: Current evidence in dentistry recommends non-surgical treatment to manage enamel caries lesions. However, surveyed practitioners report they would restore enamel lesions that are confined to the enamel. Actual clinical data were used to evaluate patient, dentist, and practice...... characteristics associated with restoration of enamel caries, while accounting for other factors. METHODS: Data from a National Dental Practice-Based Research Network observational study of consecutive restorations placed in previously unrestored permanent tooth surfaces and practice/demographic data from 229...... participating network dentists were combined. ANOVA and logistic regression, using generalized estimating equations (GEE) and variable selection within blocks, were used to test the hypothesis that patient, dentist, and practice characteristics were associated with variations in enamel restorations of occlusal...

  6. Effect of antioxidant agents on bond strength of composite to bleached enamel with 38% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Juliane Marcela Guimaraes da Silva

    2011-01-01

    Full Text Available This study evaluated the effect of antioxidant agents on microtensile bond strengths (mTBS of composite to bleached enamel. Fifteen freshly extracted human third molars were selected and randomly assigned to 6 groups (n = 5: (NB enamel not bleached, (B bleached enamel, (BR7 bleached enamel and restored 7 days later, (BSA bleached enamel+sodium ascorbate, (BMC bleached enamel+malvidin chloride, (BPC bleached enamel+pelargonidin chloride. The groups were bleached with 38% hydrogen peroxide (HP - Opalescence Xtra Boost and restored with Single Bond+Filtek Z350. The specimens were thermocycled and submitted to a microtensile load at 1 mm/min crosshead speed. The data were evaluated by ANOVA and Tukey test at 5% of significance. The mean and standard-deviation for all groups were: NB: 30.95(±11.97a; BSA: 30.34(±8.73a, BPC: 22.81(6.00b, BR7: 21.41(±6.12b, B: 14.10(±4.45c, BMC: 13.25(±6.02c. Sodium ascorbate reversed the bond strengths to enamel immediately after bleaching.

  7. Effect of acidity upon attrition-corrosion of human dental enamel.

    Science.gov (United States)

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    International Nuclear Information System (INIS)

    Lei Caixia; Liao Yingmin; Feng Zude

    2009-01-01

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm -2 to 10 mA cm -2 ) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  9. Retrospective dosimetry assessment using the 380 deg. C thermoluminescence peak of tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Secu, C.E. [National Institute for Materials Physics, PO Box MG-7, 77125 Bucharest-Magurele (Romania); Cherestes, M. [Dozimed Ltd., Dosimetry Laboratory, 77125 Bucharest-Magurele (Romania); Secu, M., E-mail: msecu@infim.ro [National Institute for Materials Physics, PO Box MG-7, 77125 Bucharest-Magurele (Romania); Cherestes, C.; Paraschiva, V. [Dozimed Ltd., Dosimetry Laboratory, 77125 Bucharest-Magurele (Romania); Barca, C. [Faculty of Physics, University of Bucharest, 77125 Bucharest-Magurele (Romania)

    2011-10-15

    The thermoluminescence (TL) response to gamma-ray irradiation of tooth enamel is reported. The tooth enamel was separated from dentine by using mechanical and physico-chemical procedures followed by grinding (grain size {approx}100 {mu}m) and etching. The TL was attributed to the recombination of CO{sub 2}{sup -} radicals incorporated into or attached to the surface of hydroxyapatite crystals. The growth of the {approx}380 deg. C TL peak with absorbed dose was examined with irradiated tooth enamel samples and reconstructed doses evaluated for tooth enamel samples from four human subjects. - Highlights: > Thermoluminescence response after gamma-ray irradiation of tooth enamel was investigated. > Thermoluminescence was attributed to the recombination of CO{sub 2}{sup -} radicals. > CO{sub 2}{sup -} radicals are produced inside or at the surface of hydroxyapatite crystals. > From the growth of the 380C peak reconstructed doses have been evaluated.

  10. Change of color in resins by adding layers of color 'enamel'

    International Nuclear Information System (INIS)

    Lafuente Marin, David; Arce Navarro, Hilda

    2007-01-01

    The quantification of the color change is proposed at the time of employing enamel resin over dentine resin. Six resins color dentin and two color enamel were used. Five discs of resin were built of each resin, with a deameter of 10 mm and a thicjness of 2 mm. The reflectance spectrophotometer Color-Eye ® 7000-A were used, to obtain the values L*, a*, b* of the dentin resin disks and transposition of these with enamel. The conclusion has been that in the color have produced changes clinically detectable when put layers of enamel. The Resin Helio Fill Transparent has been which has produced major changes. Given the two enamel resins, dentin resin Helio Molar 310/B3 has been which has suffered major changes and Helio Fill A2 which has introduced fewer changes. Most resins have decreased the chroma, less the value. (author) [es

  11. SEM Evaluation of Enamel Surface Changes and Enamel Microhardness around Orthodontic Brackets after Application of CO2 Laser, Er,Cr:YSGG Laser and Fluoride Varnish: An In vivo Study.

    Science.gov (United States)

    Kaur, Tarundeep; Tripathi, Tulika; Rai, Priyank; Kanase, Anup

    2017-09-01

    One of the most undesirable consequences of orthodontic treatment is occurrence of enamel demineralization around orthodontic brackets. Numerous in vitro studies have reported the prevention of enamel demineralization by surface treatment with lasers and fluoride varnish. To evaluate the changes on the enamel surface and microhardness around orthodontic brackets after surface treatment by CO 2 laser, Er, Cr:YSGG laser and fluoride varnish in vivo. A double blind interventional study was carried out on 100 premolars which were equally divided into five groups, out of which one was the control group (Group 0). The intervention groups (Group I to IV) comprised of patients requiring fixed orthodontic treatment with all 4 first premolars extraction. Brackets were bonded on all 80 premolars which were to be extracted. Enamel surface treatment of Groups I, II and III was done by CO 2 laser, Er, Cr:YSGG laser and 5% sodium fluoride varnish respectively and Group IV did not receive any surface treatment. A modified T-loop was ligated to the bracket and after two months, the premolars were extracted. Surface changes were evaluated by Scanning Electron Microscopic (SEM) and microhardness testing. Comparison of mean microhardness between all the groups was assessed using post-hoc test with Bonferroni correction. Group I showed a melted enamel appearance with fine cracks and fissures while Group II showed a glossy, homogenous enamel surface with well coalesced enamel rods. Group III showed slight areas of erosions and Group IV presented areas of stripped enamel. Significant difference was observed between the mean microhardness (VHN) of Group I, Group II, Group III, Group IV and Group 0 with p<0.001. A significant difference of p<0.001 was observed while comparing Group I vs II,III,IV,0 and Group II vs III,IV,0. However, difference while comparing Group III vs IV was p=0.005 and difference between the mean microhardness of Group 0 vs Group III was non significant. Surface

  12. Development Enamel Defects in Children Prenatally Exposed to Anti-Epileptic Drugs

    DEFF Research Database (Denmark)

    Jacobsen, Pernille Endrup; Henriksen, Tine Brink; Haubek, Dorte

    2013-01-01

    Objective Some anti-epileptic drugs (AED) have well-known teratogenic effects. The aim of the present study was to elucidate the effect of prenatal exposure to AED and the risk of enamel defects in the primary and permanent dentition. Methods A total of 38 exposed and 129 non-exposed children, 6......–10 years of age, were recruited from the Aarhus Birth Cohort and the Department of Neurology, Viborg Regional Hospital, Denmark. Medication during pregnancy was confirmed by the Danish Prescription Database. All children had their teeth examined and outcomes in terms of enamel opacities and enamel...... hypoplasia were recorded. Results Children prenatally exposed to AED have an increased prevalence of enamel hypoplasia (11% vs. 4%, odds ratio (OR) = 3.6 [95% confidence interval (CI): 0.9 to 15.4]), diffuse opacities (18% vs. 7%, OR = 3.0; [95% CI: 1.0 to 8.7, p3) white opacities (18...

  13. Effect of Galla chinensis on enhancing remineralization of enamel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lei; Huang Shengbin [State Key Laboratory of Oral Disease, Sichuan University, Chengdu (China); Li Jiyao; Zhou Xuedong, E-mail: stonedentist@yahoo.c [West China College of Stomatology, Sichuan University, Chengdu (China)

    2009-06-15

    The aim of this scanning electron microscopy (SEM) study was to investigate the effect of chemical compounds of Galla chinensis (GCE, gallic acid) on the remineralization of enamel crystals in vitro. Bovine enamel blocks with an in vitro produced initial lesion were used. The lesions were subjected to a pH-cycling regime for 12 days. Each daily cycle included 4 x 1 min applications with one of six treatments: group A: 1000 ppm F aq. (as NaF, positive control); group B: deionized water (DDW, negative control); group C: 4000 ppm crude aqueous extract of GCE; group D: 4000 ppm gallic acid; group E: 4000 ppm GCE with 1000 ppm F; group F: 4000 ppm gallic acid with 1000 ppm F. The surface and vertical section of the enamel lesions were analyzed by SEM. The results indicated that the chemical compounds of G. chinensis could regulate the de-/remineralization balance through influencing the morphology and structure of enamel crystals, and the mechanisms seem to be different for GCE and gallic acid.

  14. Effect of Galla chinensis on enhancing remineralization of enamel crystals

    International Nuclear Information System (INIS)

    Cheng Lei; Huang Shengbin; Li Jiyao; Zhou Xuedong

    2009-01-01

    The aim of this scanning electron microscopy (SEM) study was to investigate the effect of chemical compounds of Galla chinensis (GCE, gallic acid) on the remineralization of enamel crystals in vitro. Bovine enamel blocks with an in vitro produced initial lesion were used. The lesions were subjected to a pH-cycling regime for 12 days. Each daily cycle included 4 x 1 min applications with one of six treatments: group A: 1000 ppm F aq. (as NaF, positive control); group B: deionized water (DDW, negative control); group C: 4000 ppm crude aqueous extract of GCE; group D: 4000 ppm gallic acid; group E: 4000 ppm GCE with 1000 ppm F; group F: 4000 ppm gallic acid with 1000 ppm F. The surface and vertical section of the enamel lesions were analyzed by SEM. The results indicated that the chemical compounds of G. chinensis could regulate the de-/remineralization balance through influencing the morphology and structure of enamel crystals, and the mechanisms seem to be different for GCE and gallic acid.

  15. Influence of bleaching agents on surface roughness of sound or eroded dental enamel specimens.

    Science.gov (United States)

    Azrak, Birgül; Callaway, Angelika; Kurth, Petra; Willershausen, Brita

    2010-12-01

    The aim of the present in vitro study was to assess the effect of bleaching agents on eroded and sound enamel specimens. Enamel specimens prepared from human permanent anterior teeth were incubated with different bleaching agents containing active ingredients as 7.5 or 13.5% hydrogen peroxide or 35% carbamide peroxide, ranging in pH from 4.9 to 10.8. The effect of the tooth whitening agents on surface roughness was tested for sound enamel surfaces as well as for eroded enamel specimens. To provoke erosive damage, the enamel specimens were incubated for 10 hours with apple juice (pH = 3.4). Afterwards, pretreated and untreated dental slices were incubated with one of the bleaching agents for 10 hours. The surface roughness (R(a)) of all enamel specimens (N = 80) was measured using an optical profilometric device. A descriptive statistical analysis of the R(a) values was performed. The study demonstrated that exposure to an acidic bleaching agent (pH = 4.9) resulted in a higher surface roughness (p = 0.043) than treatment with a high peroxide concentration (pH = 6.15). If the enamel surface was previously exposed to erosive beverages, subsequent bleaching may enhance damage to the dental hard tissue. Bleaching agents with a high concentration of peroxide or an acidic pH can influence the surface roughness of sound or eroded enamel. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  16. Thermal Transformations of Iron Cations in the System Metal-Vitreous Enamel Coat. Moessbauer Spectroscopic Study

    International Nuclear Information System (INIS)

    Barcova, K.; Mashlan, M.; Zboril, R.; Hrabovska, K.

    2005-01-01

    Vitreous enameling on steel is carried out to provide a protective layer against chemical corrosion from the surrounding environment. The glass bonds with the steel to form a composite material. The Moessbauer spectroscopy was firstly applied to study the vitreous enameling in which the complex of processes, as diffusion of species, adhesion between the glass and the steel, galvanic reactions, plays an important role. The Moessbauer spectroscopy provides unique information about the Fe-phase structure of the vitreous enamel layer and that of the steel-enamel interface. Diffusion of iron from steel surface towards enamel layer and formation of a new Fe2+ phase was proved

  17. Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method.

    Science.gov (United States)

    Hayashi-Sakai, Sachiko; Sakai, Jun; Sakamoto, Makoto; Endo, Hideaki

    2012-09-01

    The purpose of the present study was to examine the fracture toughness and Vickers microhardness number of permanent and primary human enamel using the indentation microfracture method. Crack resistance and a parameter indirectly related to fracture toughness were measured in 48 enamel specimens from 16 permanent teeth and 12 enamel specimens obtained from six primary teeth. The Vickers microhardness number of the middle portion was greater than the upper portion in primary enamel. The fracture toughness was highest in the middle portion of permanent enamel, because fracture toughness greatly depends upon microstructure. These findings suggest that primary teeth are not miniature permanent teeth but have specific and characteristic mechanical properties.

  18. In situ effect of CPP-ACP chewing gum upon erosive enamel loss

    Directory of Open Access Journals (Sweden)

    Catarina Ribeiro Barros de ALENCAR

    Full Text Available Abstract Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP is able to increase salivary calcium and phosphate levels at an acidic pH. Previous studies demonstrated that a CPP-ACP chewing gum was able to enhance the re-hardening of erosion lesions, but could not diminish enamel hardness loss. Therefore, there is no consensus regarding the effectiveness of CPP-ACP on dental erosion. Objective This in situ study investigated the ability of a CPP-ACP chewing gum in preventing erosive enamel loss. Material and Methods: During three experimental crossover phases (one phase per group of seven days each, eight volunteers wore palatal devices with human enamel blocks. The groups were: GI – Sugar free chewing gum with CPP-ACP; GII – Conventional sugar free chewing gum; and GIII – No chewing gum (control. Erosive challenge was extraorally performed by immersion of the enamel blocks in cola drink (5 min, 4x/day. After each challenge, in groups CPP and No CPP, volunteers chewed one unit of the corresponding chewing gum for 30 minutes. Quantitative analysis of enamel loss was performed by profilometry (µm. Data were analyzed by Repeated-Measures ANOVA and Tukey’s test (p0.05. Conclusion The CPP-ACP chewing gum was not able to enhance the anti-erosive effect of conventional chewing gum against enamel loss.

  19. Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures

    Science.gov (United States)

    2010-02-01

    Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry

  20. Association of dental enamel lead levels with risk factors for environmental exposure.

    Science.gov (United States)

    Olympio, Kelly Polido Kaneshiro; Naozuka, Juliana; Oliveira, Pedro Vitoriano; Cardoso, Maria Regina Alves; Bechara, Etelvino José Henriques; Günther, Wanda Maria Risso

    2010-10-01

    To analyze household risk factors associated with high lead levels in surface dental enamel. A cross-sectional study was conducted with 160 Brazilian adolescents aged 1418 years living in poor neighborhoods in the city of Bauru, southeastern Brazil, from August to December 2008. Body lead concentrations were assessed in surface dental enamel acid-etch microbiopsies. Dental enamel lead levels were measured by graphite furnace atomic absorption spectrometry and phosphorus levels were measured by inductively coupled plasma optical emission spectrometry. The parents answered a questionnaire about their children's potential early (05 years old) exposure to well-known lead sources. Logistic regression was used to identify associations between dental enamel lead levels and each environmental risk factor studied. Social and familial covariables were included in the models. The results suggest that the adolescents studied were exposed to lead sources during their first years of life. Risk factors associated with high dental enamel lead levels were living in or close to a contaminated area (OR = 4.49; 95% CI: 1.69;11.97); and member of the household worked in the manufacturing of paints, paint pigments, ceramics or batteries (OR = 3.43; 95% CI: 1.31;9.00). Home-based use of lead-glazed ceramics, low-quality pirated toys, anticorrosive paint on gates and/or sale of used car batteries (OR = 1.31; 95% CI: 0.56;3.03) and smoking (OR = 1.66; 95% CI: 0.52;5.28) were not found to be associated with high dental enamel lead levels. Surface dental enamel can be used as a marker of past environmental exposure to lead and lead concentrations detected are associated to well-known sources of lead contamination.

  1. Three-dimensional quantitative analysis of adhesive remnants and enamel loss resulting from debonding orthodontic molar tubes.

    Science.gov (United States)

    Janiszewska-Olszowska, Joanna; Tandecka, Katarzyna; Szatkiewicz, Tomasz; Sporniak-Tutak, Katarzyna; Grocholewicz, Katarzyna

    2014-09-10

    Presenting a new method for direct, quantitative analysis of enamel surface. Measurement of adhesive remnants and enamel loss resulting from debonding molar tubes. Buccal surfaces of fifteen extracted human molars were directly scanned with an optic blue-light 3D scanner to the nearest 2 μm. After 20 s etching molar tubes were bonded and after 24 h storing in 0.9% saline - debonded. Then 3D scanning was repeated. Superimposition and comparison were proceeded and shape alterations of the entire objects were analyzed using specialized computer software. Residual adhesive heights as well as enamel loss depths have been obtained for the entire buccal surfaces. Residual adhesive volume and enamel loss volume have been calculated for every tooth. The maximum height of adhesive remaining on enamel surface was 0.76 mm and the volume on particular teeth ranged from 0.047 mm3 to 4.16 mm3. The median adhesive remnant volume was 0.988 mm3. Mean depths of enamel loss for particular teeth ranged from 0.0076 mm to 0.0416 mm. Highest maximum depth of enamel loss was 0.207 mm. Median volume of enamel loss was 0.104 mm3 and maximum volume was 1.484 mm3. Blue-light 3D scanning is able to provide direct precise scans of the enamel surface, which can be superimposed in order to calculate shape alterations. Debonding molar tubes leaves a certain amount of adhesive remnants on the enamel, however the interface fracture pattern varies for particular teeth and areas of enamel loss are present as well.

  2. Analysis of enamel microbiopsies in shed primary teeth by Scanning Electron Microscopy (SEM) and Polarizing Microscopy (PM)

    International Nuclear Information System (INIS)

    Costa de Almeida, Glauce Regina; Molina, Gabriela Ferian; Meschiari, Cesar Arruda; Barbosa de Sousa, Frederico; Gerlach, Raquel Fernanda

    2009-01-01

    The aims of this study were 1) to verify how close to the theoretically presumed areas are the areas of enamel microbiopsies carried out in vivo or in exfoliated teeth; 2) to test whether the etching solution penetrates beyond the tape borders; 3) to test whether the etching solution demineralizes the enamel in depth. 24 shed upper primary central incisors were randomly divided into two groups: the Rehydrated Teeth Group and the Dry Teeth Group. An enamel microbiopsy was performed, and the enamel microbiopsies were then analyzed by Scanning Electron Microscopy (SEM) and Polarizing Microscopy (PM). Quantitative birefringence measurements were performed. The 'true' etched area was determined by measuring the etched enamel using the NIH Image analysis program. Enamel birefringence was compared using the paired t test. There was a statistically significant difference when the etched areas in the Rehydrated teeth were compared with those of the Dry teeth (p = 0.04). The etched areas varied from - 11.6% to 73.5% of the presumed area in the Rehydrated teeth, and from 6.6% to 61.3% in the Dry teeth. The mean percentage of variation in each group could be used as a correction factor for the etched area. Analysis of PM pictures shows no evidence of in-depth enamel demineralization by the etching solution. No statistically significant differences in enamel birefringence were observed between values underneath and outside the microbiopsy area in the same tooth, showing that no mineral loss occurred below the enamel superficial layer. Our data showed no evidence of in-depth enamel demineralization by the etching solution used in the enamel microbiopsy proposed for primary enamel. This study also showed a variation in the measured diameter of the enamel microbiopsy in nineteen teeth out of twenty four, indicating that in most cases the etching solution penetrated beyond the tape borders.

  3. Effects of a pulsed Nd:YAG laser on enamel and dentin

    Science.gov (United States)

    Myers, Terry D.

    1990-06-01

    Enamel and dentin samples were exposed extraorally to a pulsed neodymium yttriuma1uminumgarnet (Nd:YAG) laser. The lased samples were observed using both scanning electron microscopy and histological techniques to determine the effects of the laser. The present study has provided the following points: (1) Properly treated, enamel can be 1aser etched to a depth comparable to that achieved with phosphoric acid etching; and (2) both carious and noncarious dentin can be vaporized by the Nd:YAG laser. No cracking or chipping of any enamel or dentin sample was observed histologically or under the SEM.

  4. Enamels in stained glass windows: Preparation, chemical composition, microstructure and causes of deterioration

    International Nuclear Information System (INIS)

    Schalm, O.; Van der Linden, V.; Frederickx, P.; Luyten, S.; Van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; Van Dyck, D.; Schreiner, M.

    2009-01-01

    Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, green-blue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16-early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K 2 O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 16-17th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or green-blue) as coloring elements. Blue-purple enamel paints were obtained by mixing two different coloring agents. The coloring agent for red-purple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.

  5. Shear bond strength of hydrophilic adhesive systems to enamel.

    Science.gov (United States)

    Hara, A T; Amaral, C M; Pimenta, L A; Sinhoreti, M A

    1999-08-01

    To compare the enamel shear bond strength of four hydrophilic adhesive systems: one multiple-bottle (Scotchbond Multi-Purpose Plus), two one-bottle (Stae, Single Bond) and one self-etching (Etch & Prime). 120 bovine incisor teeth were obtained, embedded in polyester resin, polished to 600 grit to form standardized enamel surfaces, and randomly assigned to four groups (n = 30). Each adhesive system was used on enamel according to the manufacturer's instructions, and resin-based composite (Z100) cylinders with 3 mm diameter and 5 mm height were bonded. Specimens were stored in humid environment for 1 week, and bond strength was determined using a universal testing machine, at a crosshead speed of 0.5 mm/minute. The mean shear bond strength values (MPa +/- SD) were: Single Bond: 24.28 +/- 5.27 (a); Scotchbond Multi-Purpose Plus: 21.18 +/- 4.35 (ab); Stae: 19.56 +/- 4.71 (b); Etch & Prime 3.0: 15.13 +/- 4.92 (c). ANOVA revealed significant difference in means (P < 0.01) and Tukey's test showed the statistical differences that are expressed by different letters for each group. It could be concluded that the self-etching adhesive system did not provide as good a bond to enamel surface, as did the one- and multiple-bottle systems.

  6. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    Science.gov (United States)

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  7. EFFECT OF SURFACE CONDTIONINGON BOND STRENGTH TO ENAMEL AND DENTIN

    Directory of Open Access Journals (Sweden)

    M MOUSAVINASAB

    2002-09-01

    Full Text Available Introduction. Compoglass is a trade mark of dental compomers and because of its partially resinus structure, surface conditioning of dental surfaces is needed for a better bonding process. In this study, the effect of enamel and dentin conditioning procedure on shear bond strength (SBS of compoglass to tooth surfaces was studied. Methods. four groups each one including 11 sound premolars were chosen and their surfaces were prepared as following groups: group1, unconitioned dentin; group 2, dentin conditioning with phosphoric acid 35%; group 3, dentin conditioning with polyacrylic acid 20% group 4, unconditioning enamel; group 5, enamel conditioning with phosphoric acid 35%; and group 6, enamel conditioning with polyacrylic acid 20%. Compoglass was bonded to prepared surfaces and after fixation of the samples in acrylic molds, all samples were tested under shear force of instron testing machine at a rate of 1 mm/min speed. Results. The mean SBS obtained in these 6 groups were 6.207, 8.057, 10.146, 25.939 and 11.827 mpa. the mode of fracture also studied using a streomicroscope. Statistical analysis of the results showed that the maximum SBS obtained in group 5 and the lowest SBS about 6.207 mpa obtained in group 1. Despite increase in SBS group 2 and 3, there was no statistical differncies between group 1, 2 and 3. Discussion. Based on results of this study, conditioning of enamel and dentin surface due to improve SBS is recommeneded.

  8. Polymer coated liposomes for dental drug delivery--interactions with parotid saliva and dental enamel.

    Science.gov (United States)

    Nguyen, S; Hiorth, M; Rykke, M; Smistad, G

    2013-09-27

    The interactions between pectin coated liposomes and parotid saliva and dental enamel were studied to investigate their potential to mimic the protective biofilm formed naturally on tooth surfaces. Different pectin coated liposomes with respect to pectin type (LM-, HM- and AM-pectin) and concentration (0.05% and 0.2%) were prepared. Interactions between the pectin coated liposomes and parotid saliva were studied by turbidimetry and imaging by atomic force microscopy. The liposomes were adsorbed to hydroxyapatite (HA) and human dental enamel using phosphate buffer and parotid saliva as adsorption media. A continuous flow was imposed on the enamel surfaces for various time intervals to examine their retention on the dental enamel. The results were compared to uncoated, charged liposomes. No aggregation tendencies for the pectin coated liposomes and parotid saliva were revealed. This makes them promising as drug delivery systems to be used in the oral cavity. In phosphate buffer the adsorption to HA of pectin coated liposomes was significantly lower than the negative liposomes. The difference diminished in parotid saliva. Positive liposomes adsorbed better to the dental enamel than the pectin coated liposomes. However, when subjected to flow for 1h, no significant differences in the retention levels on the enamel were found between the formulations. For all formulations, more than 40% of the liposomes still remained on the enamel surfaces. At time point 20 min the retention of HM-pectin coated and positive liposomes were significantly higher. It was concluded that pectin coated liposomes can adsorb to HA as well as to the dental enamel. Their ability to retain on the enamel surfaces promotes the concept of using them as protective structures for the teeth. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Tachykinins in the porcine pancreas

    DEFF Research Database (Denmark)

    Schmidt, P T; Tornøe, K; Poulsen, Steen Seier

    2000-01-01

    The localization, release, and effects of substance P and neurokinin A were studied in the porcine pancreas and the localization of substance P immunoreactive nerve fibers was examined by immunohistochemistry. The effects of electrical vagus stimulation and capsaicin infusion on tachykinin release...... and the effects of substance P and neurokinin A infusion on insulin, glucagon, somatostatin, and exocrine secretion were studied using the isolated perfused porcine pancreas with intact vagal innervation. NK-1 and NK-2 receptor antagonists were used to investigate receptor involvement. Substance P immunoreactive...

  10. Thermal induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Fattibene, P.; Aragno, D.; Onori, S.; Pressello, M.C.

    2000-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to detect the effects of temperature on powdered human tooth enamel, not irradiated in the laboratory. Samples were heated at temperature between 350 and 450, at 600 and at 1000 deg. C, for different heating times, between 6 min and 39 h. Changes in the EPR spectra were detected, with the formation of new signals. Possible correlation between the changes in EPR spectra and modifications in the enamel and in the mineral phase of bone detected with other techniques is discussed. The implications for dosimetric applications of signals induced by overheating due to mechanical friction during sample preparation are underlined

  11. Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii

    Science.gov (United States)

    Sasagawa, Ichiro; Ishiyama, Mikio; Yokosuka, Hiroyuki; Mikami, Masato

    2008-06-01

    The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light, scanning electron and transmission electron microscopy. In the enamel, slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed, suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians. Ameloblasts containing developed Golgi apparatus, rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage. In the maturation stage, a ruffled border was not seen at the distal end of the ameloblasts, while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm. The enamel organ consisted of the outer dental epithelial cells, stratum reticulum cells and ameloblasts, but there was no stratum intermedium. It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

  12. Methods for the detection and serum depletion of porcine galectin-3.

    Science.gov (United States)

    Eliaz, Isaac; Patil, Aarti; Navarro-Alvarez, Nalu; Wang, Zhirui; Eliaz, Amity; Weil, Elaine; Wilk, Barry; Sachs, David H; Huang, Christene A

    2017-10-01

    Circulating galectin-3 (Gal-3) is elevated in systemic inflammatory disorders, fibrotic diseases, and in cancers. Gal-3 is a promising cancer target where it promotes tumorigenesis and metastasis, as well as in renal, pulmonary, hepatic, and cardiovascular diseases, because of its role as a driver of fibrotic remodeling. This reports goal was to establish methods for the detection and removal of porcine Gal-3 that will enable further studies of the therapeutic potential of Gal-3 depletion by apheresis in porcine disease models. The long-term aim is to develop a safe, effective method of removing Gal-3 via apheresis as a standalone therapeutic tool and as an adjuvant to other therapies. Purified recombinant porcine Gal-3 was prepared and used as the standard for development of a porcine Gal-3 enzyme-linked immunosorbent assay (ELISA). Different affinity column matrices that incorporated either a rat IgG2a anti-Gal-3 monoclonal antibody or carbohydrate ligand were assessed for depletion of Gal-3 from porcine serum. A porcine Gal-3 ELISA with a linear range from 0.3 to 20 ng/mL was able to detect native porcine Gal-3 in both fetal (∼150-200 ng/mL) and juvenile (∼5-15 ng/mL) porcine serum samples. Use of an anti-Gal-3 monoclonal antibody affinity column depleted Gal-3 from porcine serum to at least 313 pg/mL, the limit of ELISA detection. Methods have been developed for the detection and depletion of porcine Gal-3. These methods will be used to study the specific effects of Gal-3 depletion via apheresis in porcine models of disease. © 2017 Wiley Periodicals, Inc.

  13. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  14. Refractory porcelain enamel passive-thermal-control coating for high-temperature superalloys

    Science.gov (United States)

    Levin, H.; Auker, B. H.; Gardos, M. N.

    1973-01-01

    Study was conducted to match thermal expansion coefficients thereby preventing enamels from cracking. Report discusses various enamel coatings that are applied to two different high-temperature superalloys. Study may be of interest to manufacturers of chemical equipment, furnaces, and metal components intended for high-temperature applications.

  15. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    International Nuclear Information System (INIS)

    Gomez, Jorge A.; Kinoshita, Angela; Leonor, Sergio J.; Belmonte, Gustavo C.; Baffa, Oswaldo

    2011-01-01

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  16. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jorge A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Kinoshita, Angela [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Leonor, Sergio J. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Belmonte, Gustavo C. [Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Baffa, Oswaldo, E-mail: baffa@usp.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2011-09-15

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  17. Tooth enamel as a naturtal beta dosemeter for bone seeking radionuclides

    International Nuclear Information System (INIS)

    Wieser, A.; Petzoldt, G.

    1996-01-01

    EPR dosimetry was done on teeth from residents of villages along the Techa river, Southern Urals, Russia. The residents have a 90 Sr body burden due to massive releases of liquid nuclear waste into the Techa river in the early fifties. A long time after ingestion, strontium is only incorporated into the skeleton and dentine of the adults but not in tooth enamel. Tooth enamel therefore, is measuring the beta dose from the contaminated dentine. Based on experimental data of this study a first approximation of the ingestion dose coefficient of tooth enamel was found to be more than 5 times lower than the value given in ICRP 69 for the bone surface of the skeleton. A similar difference was found earlier for the dose absorbed in tooth enamel and dentine. The result of this study allows the supposition that that the metabolism of strontium is very very similar for tooth dentine and the skeleton. (author)

  18. ENAMEL SUSCEPTIBILITY TO RED WINE STAINING AFTER 35% HYDROGEN PEROXIDE BLEACHING

    Science.gov (United States)

    Berger, Sandrine Bittencourt; Coelho, Alessandra Sanchez; Oliveira, Valéria Aparecida Pessatti; Cavalli, Vanessa; Giannini, Marcelo

    2008-01-01

    Concern has been expressed regarding the staining of enamel surface by different beverages after bleaching. This study investigated the influence of 35% hydrogen peroxide bleaching agents on enamel surface stained with wine after whitening treatments. Flat and polished bovine enamel surfaces were submitted to two commercially available 35% hydrogen peroxide bleaching agents or kept in 100% humidity, as a control group (n = 10). Specimens of all groups were immersed in red wine for 48 h at 37°C, immediately, 24 h or 1 week after treatments. All specimens were ground into powder and prepared for the spectrophotometric analysis. Data were subjected to two-way analysis of variance and Fisher's PLSD test at 5% significance level. The amount of wine pigments uptake by enamel submitted to bleaching treatments was statistically higher than that of control group, independently of the evaluation time. Results suggested that wine staining susceptibility was increased by bleaching treatments. PMID:19089218

  19. Enamel susceptibility to red wine staining after 35% hydrogen peroxide bleaching

    Directory of Open Access Journals (Sweden)

    Sandrine Bittencourt Berger

    2008-06-01

    Full Text Available Concern has been expressed regarding the staining of enamel surface by different beverages after bleaching. This study investigated the influence of 35% hydrogen peroxide bleaching agents on enamel surface stained with wine after whitening treatments. Flat and polished bovine enamel surfaces were submitted to two commercially available 35% hydrogen peroxide bleaching agents or kept in 100% humidity, as a control group (n = 10. Specimens of all groups were immersed in red wine for 48 h at 37°C, immediately, 24 h or 1 week after treatments. All specimens were ground into powder and prepared for the spectrophotometric analysis. Data were subjected to two-way analysis of variance and Fisher's PLSD test at 5% significance level. The amount of wine pigments uptake by enamel submitted to bleaching treatments was statistically higher than that of control group, independently of the evaluation time. Results suggested that wine staining susceptibility was increased by bleaching treatments.

  20. In vivo and in vitro study of /sub 90/Sr in developing rat molar enamel

    International Nuclear Information System (INIS)

    White, B.A.; Deaton, T.G.; Bawden, J.W.

    1980-01-01

    The uptake patterns of /sub 90/Sr in developing rat molar enamel were studied in vivo and in vitro. Autoradiographic methods were used that preclude loss or translocation of tracers associated with water-soluble compounds in the sections. In eight-day-old rats injected with the tracer, /sub 90/Sr uptake in the enamel was significantly less than for dentin and bone, particularly at early sacrifice times. The uptake pattern of 90Sr was somewhat different from that previously observed for /sub 45/Ca. The in vitro experiments indicated that the viable intact enamel organ limits uptake of /sub 90/Sr by enamel in both the secretory and maturation phases of enamel formation