WorldWideScience

Sample records for enamel matrix proteins

  1. Interaction between the enamel matrix proteins amelogenin and ameloblastin

    International Nuclear Information System (INIS)

    Ravindranath, Hanumanth H.; Chen, Li-Sha; Zeichner-David, Margaret; Ishima, Rieko; Ravindranath, Rajeswari M.H.

    2004-01-01

    Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [ 3 H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly

  2. Interaction between the enamel matrix proteins amelogenin and ameloblastin.

    Science.gov (United States)

    Ravindranath, Hanumanth H; Chen, Li-Sha; Zeichner-David, Margaret; Ishima, Rieko; Ravindranath, Rajeswari M H

    2004-10-22

    Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [(3)H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly.

  3. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    Science.gov (United States)

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  4. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix.

    Science.gov (United States)

    Bidlack, Felicitas B; Huynh, Chuong; Marshman, Jeffrey; Goetze, Bernhard

    2014-01-01

    An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D) organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM) was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM) in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  5. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix

    Directory of Open Access Journals (Sweden)

    Felicitas B Bidlack

    2014-10-01

    Full Text Available An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  6. Proteomic Mapping of Dental Enamel Matrix from Inbred Mouse Strains: Unraveling Potential New Players in Enamel.

    Science.gov (United States)

    Lima Leite, Aline; Silva Fernandes, Mileni; Charone, Senda; Whitford, Gary Milton; Everett, Eric T; Buzalaf, Marília Afonso Rabelo

    2018-01-01

    Enamel formation is a complex 2-step process by which proteins are secreted to form an extracellular matrix, followed by massive protein degradation and subsequent mineralization. Excessive systemic exposure to fluoride can disrupt this process and lead to a condition known as dental fluorosis. The genetic background influences the responses of mineralized tissues to fluoride, such as dental fluorosis, observed in A/J and 129P3/J mice. The aim of the present study was to map the protein profile of enamel matrix from A/J and 129P3/J strains. Enamel matrix samples were obtained from A/J and 129P3/J mice and analyzed by 2-dimensional electrophoresis and liquid chromatography coupled with mass spectrometry. A total of 120 proteins were identified, and 7 of them were classified as putative uncharacterized proteins and analyzed in silico for structural and functional characterization. An interesting finding was the possibility of the uncharacterized sequence Q8BIS2 being an enzyme involved in the degradation of matrix proteins. Thus, the results provide a comprehensive view of the structure and function for putative uncharacterized proteins found in the enamel matrix that could help to elucidate the mechanisms involved in enamel biomineralization and genetic susceptibility to dental fluorosis. © 2018 S. Karger AG, Basel.

  7. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    Science.gov (United States)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  8. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    International Nuclear Information System (INIS)

    Lubarsky, Gennady V; Lemoine, Patrick; Meenan, Brian J; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-01-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix. (papers)

  9. Biomineralization of a Self-assembled, Soft-Matrix Precursor: Enamel

    Science.gov (United States)

    Snead, Malcolm L.

    2015-04-01

    Enamel is the bioceramic covering of teeth, a composite tissue composed of hierarchical organized hydroxyapatite crystallites fabricated by cells under physiologic pH and temperature. Enamel material properties resist wear and fracture to serve a lifetime of chewing. Understanding the cellular and molecular mechanisms for enamel formation may allow a biology-inspired approach to material fabrication based on self-assembling proteins that control form and function. A genetic understanding of human diseases exposes insight from nature's errors by exposing critical fabrication events that can be validated experimentally and duplicated in mice using genetic engineering to phenocopy the human disease so that it can be explored in detail. This approach led to an assessment of amelogenin protein self-assembly that, when altered, disrupts fabrication of the soft enamel protein matrix. A misassembled protein matrix precursor results in loss of cell-to-matrix contacts essential to fabrication and mineralization.

  10. Protein- mediated enamel mineralization

    Science.gov (United States)

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  11. Keratins as components of the enamel organic matrix

    Science.gov (United States)

    Duverger, Olivier; Beniash, Elia; Morasso, Maria I.

    2016-01-01

    Dental enamel is a hardest tissue in the human body, and although it starts as a tissue rich in proteins, by the time of eruption of the tooth in the oral cavity only a small fraction of the protein remains. While this organic matrix of enamel represents less than 1% by weight it plays essential roles in improving both toughness and resilience to chemical attacks. Despite the fact that the first studies of the enamel matrix began in the 19th century its exact composition and mechanisms of its function remain poorly understood. It was proposed that keratin or a keratin-like primitive epithelial component exists in mature enamel, however due to the extreme insolubility of its organic matrix the presence of keratins there was never clearly established. We have recently identified expression of a number of hair keratins in ameloblasts, the enamel secreting cells, and demonstrated their incorporation into mature enamel. Mutation in epithelial hair keratin KRT75 leads to a skin condition called pseudofollicularis barbae. Carriers of this mutation have an altered enamel structure and mechanical properties. Importantly, these individuals have a much higher prevalence of caries. To the best of our knowledge, this is the first study showing a direct link between a mutation in a protein-coding region of a gene and increased caries rates. In this paper we present an overview of the evidence of keratin-like material in enamel that has accumulated over the last 150 years. Furthermore, we propose potential mechanisms of action of KTR75 in enamel and highlight the clinical implications of the link between mutations in KRT75 and caries. Finally, we discuss the potential use of keratins for enamel repair. PMID:26709044

  12. Anisotropic properties of the enamel organic extracellular matrix.

    Science.gov (United States)

    do Espírito Santo, Alexandre R; Novaes, Pedro D; Line, Sérgio R P

    2006-05-01

    Enamel biosynthesis is initiated by the secretion, processing, and self-assembly of a complex mixture of proteins. This supramolecular ensemble controls the nucleation of the crystalline mineral phase. The detection of anisotropic properties by polarizing microscopy has been extensively used to detect macromolecular organizations in ordinary histological sections. The aim of this work was to study the birefringence of enamel organic matrix during the development of rat molar and incisor teeth. Incisor and molar teeth of rats were fixed in 2% paraformaldehyde/0.5% glutaraldehyde in 0.2 M phosphate-buffered saline (PBS), pH 7.2, and decalcified in 5% nitric acid/4% formaldehyde. After paraffin embedding, 5-microm-thick sections were obtained, treated with xylene, and hydrated. Form birefringence curves were obtained after measuring optical retardations in imbibing media, with different refractive indices. Our observations showed that enamel organic matrix of rat incisor and molar teeth is strongly birefringent, presenting an ordered supramolecular structure. The birefringence starts during the early secretion phase and disappears at the maturation phase. The analysis of enamel organic matrix birefringence may be used to detect the effects of genetic and environmental factors on the supramolecular orientation of enamel matrix and their effects on the structure of mature enamel.

  13. β-TCP/HA with or without enamel matrix proteins for maxillary sinus floor augmentation

    DEFF Research Database (Denmark)

    Nery, James Carlos; Pereira, Luís Antônio Violin Dias; Guimarães, George Furtado

    2017-01-01

    BACKGROUND: It is still unclear whether enamel matrix proteins (EMD) as adjunct to bone grafting enhance bone healing. This study compared histomorphometrically maxillary sinus floor augmentation (MSFA) with β-TCP/HA in combination with or without EMD in humans. METHODS: In ten systemically healthy...

  14. Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts

    Directory of Open Access Journals (Sweden)

    Oscar Villa

    2015-03-01

    Full Text Available Enamel matrix derivative is used to promote periodontal regeneration during the corrective phase of the treatment of periodontal defects. Our main goal was to analyze the bioactivity of different molecular weight fractions of enamel matrix derivative. Enamel matrix derivative, a complex mixture of proteins, was separated into 13 fractions using size-exclusion chromatography and characterized by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–electrospray ionization–tandem mass spectrometry. Human periodontal ligament fibroblasts were treated with either enamel matrix derivative or the different fractions. Proliferation and cytokine secretion to the cell culture medium were measured and compared to untreated cells. The liquid chromatography–electrospray ionization–tandem mass spectrometry analyses revealed that the most abundant peptides were amelogenin and leucine-rich amelogenin peptide related. The fractions containing proteins above 20 kDa induced an increase in vascular endothelial growth factor and interleukin-6 secretion, whereas lower molecular weight fractions enhanced proliferation and secretion of interleukin-8 and monocyte chemoattractant protein-1 and reduced interleukin-4 release. The various molecular components in the enamel matrix derivative formulation might contribute to reported effects on tissue regeneration through their influence on vascularization, the immune response, and chemotaxis.

  15. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review.

    NARCIS (Netherlands)

    Sculean, A.; Schwarz, F.; Becker, J.; Brecx, M.

    2007-01-01

    Regenerative periodontal therapy aims at reconstitution of the lost periodontal structures such as new formation of root cementum, periodontal ligament and alveolar bone. Findings from basic research indicate that enamel matrix protein derivative (EMD) has a key role in periodontal wound healing.

  16. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals.

    Science.gov (United States)

    Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao; De Yoreo, James J; Moradian-Oldak, Janet

    2016-01-01

    Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Modulation of enamel matrix proteins on the formation and nano-assembly of hydroxyapatite in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong, E-mail: tlihong@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630 (China); Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States); Huang Weiya [Department of Chemistry, Jinan University, Guangzhou, Guangdong 510630 (China); Department of Materials Science and Engineering, Taizhou, Taizhou University, Zhejiang 317000 (China); Zhang Yuanming [Department of Chemistry, Jinan University, Guangzhou, Guangdong 510630 (China); Xue Bo [Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630 (China); Wen Xuejun [Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States)

    2012-05-01

    Natural enamel has a hierarchically nanoassembled architecture that is regulated by enamel matrix proteins (EMPs) during the formation of enamel crystals. To understand the role of EMPs on enamel mineralization, calcium phosphate (CaP) growth experiments in both the presence and absence of native rat EMPs in a single diffusion system were conducted. The morphology and organization of formed CaP crystals were examined by X-Ray Diffraction (XRD), High-Resolution Transmission Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). In the system containing the EMPs, hydroxyapatite (HAP) with hierarchical lamellar nanostructure can be formed and the aligned HAP assembly tightly bundled by 3-4 rod-like nanocrystals like an enamel prism. However, in the absence of EMPs, only a sheet-like structure of octacalcium phosphate (OCP) phase was presented. EMPs promote HAP formation and inhibit the growth of OCP on the (010) plane. It is discussed that the organized Amelogenin/Amorphous Calcium Phosphate might be the precursor to the bundled HAP crystal prism. The study benefits the understanding of biomineralization of tooth enamel. - Highlights: Black-Right-Pointing-Pointer An aligned hydroxyapatite crystal bundled by rod-like nanosize crystals was obtained. Black-Right-Pointing-Pointer An organized Amel/ACP would be the precursor of the bundled hydroxyapatite crystal prism. Black-Right-Pointing-Pointer EMPs inhibit the growth of octacalcium phosphate in a defined plane.

  18. Modulation of enamel matrix proteins on the formation and nano-assembly of hydroxyapatite in vitro

    International Nuclear Information System (INIS)

    Li Hong; Huang Weiya; Zhang Yuanming; Xue Bo; Wen Xuejun

    2012-01-01

    Natural enamel has a hierarchically nanoassembled architecture that is regulated by enamel matrix proteins (EMPs) during the formation of enamel crystals. To understand the role of EMPs on enamel mineralization, calcium phosphate (CaP) growth experiments in both the presence and absence of native rat EMPs in a single diffusion system were conducted. The morphology and organization of formed CaP crystals were examined by X-Ray Diffraction (XRD), High-Resolution Transmission Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). In the system containing the EMPs, hydroxyapatite (HAP) with hierarchical lamellar nanostructure can be formed and the aligned HAP assembly tightly bundled by 3–4 rod-like nanocrystals like an enamel prism. However, in the absence of EMPs, only a sheet-like structure of octacalcium phosphate (OCP) phase was presented. EMPs promote HAP formation and inhibit the growth of OCP on the (010) plane. It is discussed that the organized Amelogenin/Amorphous Calcium Phosphate might be the precursor to the bundled HAP crystal prism. The study benefits the understanding of biomineralization of tooth enamel. - Highlights: ► An aligned hydroxyapatite crystal bundled by rod-like nanosize crystals was obtained. ► An organized Amel/ACP would be the precursor of the bundled hydroxyapatite crystal prism. ► EMPs inhibit the growth of octacalcium phosphate in a defined plane.

  19. Endocytosis and Enamel Formation

    Directory of Open Access Journals (Sweden)

    Cong-Dat Pham

    2017-07-01

    Full Text Available Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage and to reach final mineralization (maturation stage. Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.

  20. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis.

    Science.gov (United States)

    Gasse, Barbara; Sire, Jean-Yves

    2015-01-01

    In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. We provide the full-length cDNA sequence of A. carolinensis AMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.

  1. Efficacy of enamel matrix protein applied to spontaneous periodontal disease in two dogs.

    Science.gov (United States)

    Watanabe, Kazuhiro; Kikuchi, Masahiro; Okumura, Masahiro; Kadosawa, Tsuyoshi; Fujinaga, Toru

    2003-09-01

    Enamel matrix protein (EMP) was applied for regeneration of periodontal tissue in 2 dogs with spontaneous periodontal disease. Case 1 had bony resorption around the root and root apex of the maxillary fourth premolars. Case 2 had vertical resorption of bone between the mandibular first and second molars. A flap was formed in the buccal gingiva, and EMP was applied onto the surface of the exposed root. One or 4 months postoperatively, increased bone level and clinical attachment were recognized. EMP was therefore suggested to be effective to induce regeneration of periodontal tissues in the cases with periodontal disease.

  2. Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds

    Directory of Open Access Journals (Sweden)

    Helen Pullisaar

    2015-03-01

    Full Text Available The purpose of bone tissue engineering is to employ scaffolds, cells, and growth factors to facilitate healing of bone defects. The aim of this study was to assess the viability and osteogenic differentiation of primary human osteoblasts and adipose tissue–derived mesenchymal stem cells from various donors on titanium dioxide (TiO2 scaffolds coated with an alginate hydrogel enriched with enamel matrix derivative. Cells were harvested for quantitative reverse transcription polymerase chain reaction on days 14 and 21, and medium was collected on days 2, 14, and 21 for protein analyses. Neither coating with alginate hydrogel nor alginate hydrogel enriched with enamel matrix derivative induced a cytotoxic response. Enamel matrix derivative–enriched alginate hydrogel significantly increased the expression of osteoblast markers COL1A1, TNFRSF11B, and BGLAP and secretion of osteopontin in human osteoblasts, whereas osteogenic differentiation of human adipose tissue–derived mesenchymal stem cells seemed unaffected by enamel matrix derivative. The alginate hydrogel coating procedure may have potential for local delivery of enamel matrix derivative and other stimulatory factors for use in bone tissue engineering.

  3. Type VII collagen is enriched in the enamel organic matrix associated with the dentin-enamel junction of mature human teeth.

    Science.gov (United States)

    McGuire, Jacob D; Walker, Mary P; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P

    2014-06-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of the enamel organic matrix at the dentin-enamel junction (DEJ) of mature human teeth. Immunofluorescent confocal microscopy of demineralized tooth sections localized type VII collagen to the organic matrix surrounding individual enamel rods near the DEJ. Morphologically, immunoreactive type VII collagen helical-bundles resembled the gnarled-pattern of enamel rods detected by Coomassie Blue staining. Western blotting of whole crown or enamel matrix extracts also identified characteristic Mr=280 and 230 kDa type VII dimeric forms, which resolved into 75 and 25 kDa bands upon reduction. As expected, the collagenous domain of type VII collagen was resistant to pepsin digestion, but was susceptible to purified bacterial collagenase. These results demonstrate the inner enamel organic matrix in mature teeth contains macromolecular type VII collagen. Based on its physical association with the DEJ and its well-appreciated capacity to complex with other collagens, we hypothesize that enamel embedded type VII collagen fibrils may contribute not only to the structural resilience of enamel, but may also play a role in bonding enamel to dentin. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Enamel formation and amelogenesis imperfecta.

    Science.gov (United States)

    Hu, Jan C-C; Chun, Yong-Hee P; Al Hazzazzi, Turki; Simmer, James P

    2007-01-01

    Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel. Copyright 2007 S. Karger AG, Basel.

  5. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.

    Science.gov (United States)

    Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V

    2015-07-01

    This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  7. Functions of KLK4 and MMP-20 in dental enamel formation

    Science.gov (United States)

    Lu, Yuhe; Papagerakis, Petros; Yamakoshi, Yasuo; Hu, Jan C-C.; Bartlett, John D.; Simmer, James P.

    2009-01-01

    Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory stage ameloblasts. Enamel protein cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. Kallikrein 4 is secreted by transition and maturation stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins. PMID:18627287

  8. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Directory of Open Access Journals (Sweden)

    Zhichun Zhang

    Full Text Available Mutation of distal-less homeobox 3 (DLX3 is responsible for human tricho-dento-osseous syndrome (TDO with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  9. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

    Directory of Open Access Journals (Sweden)

    Meredith Robert W

    2013-01-01

    Full Text Available Abstract Background Secondary edentulism (toothlessness has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales, birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma, providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle], Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch], and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo] for remnants of three enamel matrix protein (EMP genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results

  10. New insights into the functions of enamel matrices in calcified tissues

    Directory of Open Access Journals (Sweden)

    Satoshi Fukumoto

    2014-05-01

    Full Text Available Ameloblasts secrete enamel matrix proteins, including amelogenin, ameloblastin, enamelin, amelotin, and Apin/odontogenic ameloblast-associated protein (Apin/ODAM. Amelogenin is the major protein component of the enamel matrix. Amelogenin, ameloblastin, and enamelin are expressed during the secretory stage of ameloblast, while amelotin and Apin/ODAM are expressed during the maturation. Amelogenin and ameloblastin are also expressed in osteoblasts, and they regulate bone formation. In addition, recent studies show the importance of protein–protein interactions between enamel matrix components for enamel formation. In a mouse model mimicking a mutation of the amelogenin gene in amelogenesis imperfect (AI in humans, the mutated amelogenin forms a complex with ameloblastin, which accumulates in the endoplasmic reticulum/Golgi apparatus and causes ameloblast dysfunction resulting in AI phenotypes. Ameloblastin is a cell adhesion molecule that regulates cell proliferation. It inhibits odontogenic tumor formation and regulates osteoblast differentiation through binding to CD63. Amelotin interacts with Apin/ODAM, but not ameloblastin, while Apin/ODAM binds to ameloblastin. These interactions may be important for enamel mineralization during amelogenesis. The enamel matrix genes are clustered on human chromosome 4 except for the amelogenin genes located on the sex chromosomes. Genes for these enamel matrix proteins evolved from a common ancestral gene encoding secretory calcium-binding phosphoprotein.

  11. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    Science.gov (United States)

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  12. Bicarbonate Transport During Enamel Maturation.

    Science.gov (United States)

    Yin, Kaifeng; Paine, Michael L

    2017-11-01

    Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.

  13. Effect of enamel organic matrix on the potential of Galla chinensis to promote the remineralization of initial enamel carious lesions in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linglin; Zou Ling; Li Jiyao; Hao Yuqing; Xiao Liying; Zhou Xuedong; Li Wei, E-mail: leewei2000@sina.co, E-mail: zhll_sc@yahoo.c [State Key Laboratory of Oral Diseases, West China College of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu (China)

    2009-06-15

    Galla chinensis, a natural traditional Chinese medicine with main composition of tannic acid and gallic acid, is formed when the Chinese sumac aphid Baker (Melaphis chinensis bell) parasitizes the levels of Rhus chinensis Mill. Galla chinensis has shown the potential to enhance the remineralization of initial enamel carious lesion, but the mechanism is still unknown. This study was to investigate whether the enamel organic matrix plays a significant role in the potential of Galla chinensis to promote the remineralization of initial enamel caries. Bovine sound enamel blocks and non-organic enamel blocks were demineralized and exposed to a 12 day pH cycling. During the pH cycling, 30 specimens with the enamel organic matrix were randomly divided into three groups, and treated with 1 g L{sup -1} NaF (group A), 4 g L{sup -1} Galla chinensis extract (group B1) or double deionized water (group C1). Twenty specimens without the enamel organic matrix were randomly divided into two groups, and treated with 4 g L{sup -1} Galla chinensis extract (group B2) or double deionized water (group C2). The integrated mineral loss and lesion depth of all the specimens were analysed by transverse microradiography. The integrated mineral loss and lesion depth of group B1 were less than those of groups B2, C1 and C2, and there were no statistical differences among groups B2, C1 and C2. In conclusion, Galla chinensis can enhance the remineralization of initial enamel carious lesion, and the enamel organic matrix plays a significant role in this potential of Galla chinensis.

  14. The molecular basis of hereditary enamel defects in humans.

    Science.gov (United States)

    Wright, J T; Carrion, I A; Morris, C

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. © International & American Associations for

  15. The Molecular Basis of Hereditary Enamel Defects in Humans

    Science.gov (United States)

    Carrion, I.A.; Morris, C.

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. PMID:25389004

  16. Type VII Collagen is Enriched in the Enamel Organic Matrix Associated with the Dentin-Enamel Junction of Mature Human Teeth

    OpenAIRE

    McGuire, Jacob D.; Walker, Mary P.; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P.

    2014-01-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of...

  17. Distribution of Cathepsin K in Late Stage of Tooth Germ Development and Its Function in Degrading Enamel Matrix Proteins in Mouse.

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    Full Text Available Cathepsin K (CTSK is a member of cysteine proteinase family, and is predominantly expressed in osteoclastsfor degradationof bone matrix proteins. Given the similarity in physical properties of bone and dental mineralized tissues, including enamel, dentin and cementum, CTSK is likely to take part in mineralization process during odontogenesis. On the other hand, patients with pycnodysostosis caused by mutations of the CTSK gene displayedmultipledental abnormalities, such as hypoplasia of the enamel, obliterated pulp chambers, hypercementosis and periodontal disease. Thereforeitis necessary to study the metabolic role of CTSK in tooth matrix proteins. In this study, BALB/c mice at embryonic day 18 (E18, post-natal day 1 (P1, P5, P10 and P20 were used (5 mice at each time pointfor systematic analyses of CTSK expression in the late stage of tooth germ development. We found that CTSK was abundantly expressed in the ameloblasts during secretory and maturation stages (P5 and P10 by immunohistochemistry stainings.During dentinogenesis, the staining was also intense in the mineralization stage (P5 and P10,but not detectable in the early stage of dentin formation (P1 and after tooth eruption (P20.Furthermore, through zymography and digestion test in vitro, CTSK was proved to be capable of hydrolyzing Emdogain and also cleaving Amelogenininto multiple products. Our resultsshed lights on revealing new functions of CTSK and pathogenesis of pycnodysostosis in oral tissues.

  18. The glycogen metabolism via Akt signaling is important for the secretion of enamel matrix in tooth development.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Otsu, Keishi; Ohshima, Hayato; Harada, Hidemitsu

    2016-02-01

    Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3β and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Enamel formation in vitro in mouse molar explants exposed to amelogenin polypeptides ATMP and LRAP on enamel development.

    Science.gov (United States)

    Ravindranath, Rajeswari M H; Devarajan, Asokan; Bringas, Pablo

    2007-12-01

    The enamel matrix contains amelogenin, leucine-rich amelogenin-polypeptide (LRAP), resulting from alternative splicing of the primary amelogenin-RNA transcript and tyrosine-rich amelogenin-polypeptide (TRAP), a proteolytic product of amelogenin. Presence of amelogenin-trityrosyl-motif peptide (ATMP) distinguishes TRAP from LRAP. The roles of these polypeptides in the formation of enamel remain to be elucidated. The mouse in vitro molar tooth-organ developed from bud stage (E16) was exposed to LRAP, ATMP, and mutated ATMP (T-ATMP, third proline replaced by threonine). The histology and morphometry of the explants on day-12 in culture was examined using Mallory's stain. Guanidine-HCl soluble protein concentrations of explants were compared. The enamel width and protein solubility indicate that the explant on day-12 is comparable to postnatal molar on day-3 in vivo. The enamel of both untreated explants as well as that in vivo is fuchinophilic (acid fuchsin, AF+). ATMP reduced the ameloblast-height, accumulated AF+ spherules at the apical end of ameloblasts, and disrupted enamel-dentin bonding. T-ATMP abrogated deposition of AF+ material on the aniline blue positive (AB+) enamel matrix. LRAP reduced ameloblast-height, increased the enamel-width without disruption (at 17.25 nmol) and increased the density of AF+ dentinal tubules. AF+ substance from the tubules is released onto the surface of the dentin. The Guanidine-HCl-soluble protein is elevated in ATMP-treated explants but decreased in LRAP-treated explants. Exogenous ATMP, T-ATMP and LRAP have divergent effects on developing enamel. Exogenous ATMP, but not LRAP, abrogates enamel-dentin bonding at 17.25 nmol. LRAP may play a role in the differentiation of ameloblasts, growth of enamel and formation of dentinal tubules.

  20. Integrative Temporo-Spatial, Mineralogic, Spectroscopic, and Proteomic Analysis of Postnatal Enamel Development in Teeth with Limited Growth

    Directory of Open Access Journals (Sweden)

    Mirali Pandya

    2017-10-01

    Full Text Available Tooth amelogenesis is a complex process beginning with enamel organ cell differentiation and enamel matrix secretion, transitioning through changes in ameloblast polarity, cytoskeletal, and matrix organization, that affects crucial biomineralization events such as mineral nucleation, enamel crystal growth, and enamel prism organization. Here we have harvested the enamel organ including the pliable enamel matrix of postnatal first mandibular mouse molars during the first 8 days of tooth enamel development to conduct a step-wise cross-sectional analysis of the changes in the mineral and protein phase. Mineral phase diffraction pattern analysis using single-crystal, powder sample X-ray diffraction analysis indicated conversion of calcium phosphate precursors to partially fluoride substituted hydroxyapatite from postnatal day 4 (4 dpn onwards. Attenuated total reflectance spectra (ATR revealed a substantial elevation in phosphate and carbonate incorporation as well as structural reconfiguration between postnatal days 6 and 8. Nanoscale liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS demonstrated highest protein counts for ECM/cell surface proteins, stress/heat shock proteins, and alkaline phosphatase on postnatal day 2, high counts for ameloblast cytoskeletal proteins such as tubulin β5, tropomyosin, β-actin, and vimentin on postnatal day 4, and elevated levels of cofilin-1, calmodulin, and peptidyl-prolyl cis-trans isomerase on day 6. Western blot analysis of hydrophobic enamel proteins illustrated continuously increasing amelogenin levels from 1 dpn until 8 dpn, while enamelin peaked on days 1 and 2 dpn, and ameloblastin on days 1–5 dpn. In summary, these data document the substantial changes in the enamel matrix protein and mineral phase that take place during postnatal mouse molar amelogenesis from a systems biological perspective, including (i relatively high levels of matrix protein expression during the early

  1. Non-specific esterases in partly mineralized bovine enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S

    1990-01-01

    Activity for non-specific esterase was demonstrated in the matrix of developing bovine enamel with alpha-naphthyl acetate and 5-bromoindoxyl acetate as the esterase substrates. By use of high-performance liquid chromatography gel filtration, ion-exchange chromatography, and electrophoresis three...... esterases were shown to be present in the enamel matrix. The enzymes showed highest activity at pH 6.5-7.5. In sections a strong reaction was observed in the secretory ameloblasts. The esterases may be proteolytic enzymes that participate in the degradation of the matrix proteins....

  2. Intravesicular Phosphatase PHOSPHO1 Function in Enamel Mineralization and Prism Formation

    Directory of Open Access Journals (Sweden)

    Mirali Pandya

    2017-10-01

    Full Text Available The transport of mineral ions from the enamel organ-associated blood vessels to the developing enamel crystals involves complex cargo packaging and carriage mechanisms across several cell layers, including the ameloblast layer and the stratum intermedium. Previous studies have established PHOSPHO1 as a matrix vesicle membrane-associated phosphatase that interacts with matrix vesicles molecules phosphoethanolamine and phosphocholine to initiate apatite crystal formation inside of matrix vesicles in bone. In the present study, we sought to determine the function of Phospho1 during amelogenesis. PHOSPHO1 protein localization during amelogenesis was verified using immunohistochemistry, with positive signals in the enamel layer, ameloblast Tomes' processes, and in the walls of ameloblast secretory vesicles. These ameloblast secretory vesicle walls were also labeled for amelogenin and the exosomal protein marker HSP70 using immunohistochemistry. Furthermore, PHOSPHO1 presence in the enamel organ was confirmed by Western blot. Phospho1−/− mice lacked sharp incisal tips, featured a significant 25% increase in total enamel volume, and demonstrated a significant 2-fold reduction in silver grain density of von Kossa stained ground sections indicative of reduced mineralization in the enamel layer when compared to wild-type mice (p < 0.001. Scanning electron micrographs of Phospho1−/− mouse enamel revealed a loss of the prominent enamel prism “picket fence” structure, a loss of parallel crystal organization within prisms, and a 1.56-fold increase in enamel prism width (p < 0.0001. Finally, EDS elemental analysis demonstrated a significant decrease in phosphate incorporation in the enamel layer when compared to controls (p < 0.05. Together, these data establish that the matrix vesicle membrane-associated phosphatase PHOSPHO1 is essential for physiological enamel mineralization. Our findings also suggest that intracellular ameloblast secretory

  3. Electrophoretic demonstration of glycoproteins, lipoproteins, and phosphoproteins in human and bovine enamel

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Bøg-Hansen, T C

    1990-01-01

    Enamel proteins from fully mineralized human molars and from bovine tooth germs were separated by electrophoresis. The gels were stained for detection of glycoproteins, lipoproteins, and phosphoproteins. Glycoproteins were shown by periodic acid-Schiff staining and lectin blotting. In mature human...... enamel a number of high molecular weight proteins could be demonstrated after ethylenediaminetetra-acetic acid demineralization and subsequent Triton X-100 extraction. These proteins are suggested to be lipoproteins. Phosphoproteins could only be visualized in enamel matrix from the tooth germs....

  4. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    Science.gov (United States)

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  5. The Unfolded Protein Response in Amelogenesis and Enamel Pathologies

    Directory of Open Access Journals (Sweden)

    Steven J. Brookes

    2017-09-01

    Full Text Available During the secretory phase of their life-cycle, ameloblasts are highly specialized secretory cells whose role is to elaborate an extracellular matrix that ultimately confers both form and function to dental enamel, the most highly mineralized of all mammalian tissues. In common with many other “professional” secretory cells, ameloblasts employ the unfolded protein response (UPR to help them cope with the large secretory cargo of extracellular matrix proteins transiting their ER (endoplasmic reticulum/Golgi complex and so minimize ER stress. However, the UPR is a double-edged sword, and, in cases where ER stress is severe and prolonged, the UPR switches from pro-survival to pro-apoptotic mode. The purpose of this review is to consider the role of the ameloblast UPR in the biology and pathology of amelogenesis; specifically in respect of amelogenesis imperfecta (AI and fluorosis. Some forms of AI appear to correspond to classic proteopathies, where pathological intra-cellular accumulations of protein tip the UPR toward apoptosis. Fluorosis also involves the UPR and, while not of itself a classic proteopathic disease, shares some common elements through the involvement of the UPR. The possibility of therapeutic intervention by pharmacological modulation of the UPR in AI and fluorosis is also discussed.

  6. The Unfolded Protein Response in Amelogenesis and Enamel Pathologies.

    Science.gov (United States)

    Brookes, Steven J; Barron, Martin J; Dixon, Michael J; Kirkham, Jennifer

    2017-01-01

    During the secretory phase of their life-cycle, ameloblasts are highly specialized secretory cells whose role is to elaborate an extracellular matrix that ultimately confers both form and function to dental enamel, the most highly mineralized of all mammalian tissues. In common with many other "professional" secretory cells, ameloblasts employ the unfolded protein response (UPR) to help them cope with the large secretory cargo of extracellular matrix proteins transiting their ER (endoplasmic reticulum)/Golgi complex and so minimize ER stress. However, the UPR is a double-edged sword, and, in cases where ER stress is severe and prolonged, the UPR switches from pro-survival to pro-apoptotic mode. The purpose of this review is to consider the role of the ameloblast UPR in the biology and pathology of amelogenesis; specifically in respect of amelogenesis imperfecta (AI) and fluorosis. Some forms of AI appear to correspond to classic proteopathies, where pathological intra-cellular accumulations of protein tip the UPR toward apoptosis. Fluorosis also involves the UPR and, while not of itself a classic proteopathic disease, shares some common elements through the involvement of the UPR. The possibility of therapeutic intervention by pharmacological modulation of the UPR in AI and fluorosis is also discussed.

  7. Biomolecular Origin of The Rate-Dependent Deformation of Prismatic Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J; Hsiung, L

    2006-07-05

    Penetration deformation of columnar prismatic enamel was investigated using instrumented nanoindentation testing, carried out at three constant strain rates (0.05 s{sup -1}, 0.005 s{sup -1}, and 0.0005 s{sup -1}). Enamel demonstrated better resistance to penetration deformation and greater elastic modulus values were measured at higher strain rates. The origin of the rate-dependent deformation was rationalized to be the shear deformation of nanoscale protein matrix surrounding each hydroxyapatite crystal rods. And the shear modulus of protein matrix was shown to depend on strain rate in a format: G{sub p} = 0.213 + 0.021 ln {dot {var_epsilon}}. Most biological composites compromise reinforcement mineral components and an organic matrix. They are generally partitioned into multi-level to form hierarchical structures that have supreme resistance to crack growth [1]. The molecular mechanistic origin of toughness is associated with the 'sacrificial chains' between the individual sub-domains in a protein molecule [2]. As the protein molecule is stretched, these 'sacrificial chains' break to protect its backbone and dissipate energy [3]. Such fresh insights are providing new momentum toward updating our understanding of biological materials [4]. Prismatic enamel in teeth is one such material. Prismatic microstructure is frequently observed in the surface layers of many biological materials, as exemplified in mollusk shells [5] and teeth [6]. It is a naturally optimized microstructure to bear impact loading and penetration deformation. In teeth, the columnar prismatic enamel provides mechanical and chemical protection for the relatively soft dentin layer. Its mechanical behavior and reliability are extremely important to ensure normal tooth function and human health. Since enamel generally contains up to 95% hydroxyapatite (HAP) crystals and less than 5% protein matrix, it is commonly believed to be a weak and brittle material with little resistance to

  8. Chymotrypsin C (Caldecrin) Is Associated with Enamel Development

    Science.gov (United States)

    Lacruz, R.S.; Smith, C.E.; Smith, S.M.; Hu, P.; Bringas, P.; Sahin-Tóth, M.; Moradian-Oldak, J.; Paine, M.L.

    2011-01-01

    Two main proteases cleave enamel extracellular matrix proteins during amelogenesis. Matrix metalloprotease-20 (Mmp20) is the predominant enzyme expressed during the secretory stage, while kallikrein-related peptidase-4 (Klk4) is predominantly expressed during maturation. Mutations to both Mmp20 and Klk4 result in abnormal enamel phenotypes. During a recent whole-genome microarray analysis of rat incisor enamel organ cells derived from the secretory and maturation stages of amelogenesis, the serine protease chymotrypsin C (caldecrin, Ctrc) was identified as significantly up-regulated (> 11-fold) during enamel maturation. Prior reports indicate that Ctrc expression is pancreas-specific, albeit low levels were also noted in brain. We here report on the expression of Ctrc in the enamel organ. Quantitative PCR (qPCR) and Western blot analysis were used to confirm the expression of Ctrc in the developing enamel organ. The expression profile of Ctrc is similar to that of Klk4, increasing markedly during the maturation stage relative to the secretory stage, although levels of Ctrc mRNA are lower than for Klk4. The discovery of a new serine protease possibly involved in enamel development has important implications for our understanding of the factors that regulate enamel biomineralization. PMID:21828354

  9. Enamel Regeneration - Current Progress and Challenges

    Science.gov (United States)

    Baswaraj; H.K, Navin; K.B, Prasanna

    2014-01-01

    Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration. PMID:25386548

  10. Targeted p120-catenin ablation disrupts dental enamel development

    DEFF Research Database (Denmark)

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E

    2010-01-01

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide...... by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate...... attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached...

  11. Microstructure of enamel.

    Science.gov (United States)

    Boyde, A

    1997-01-01

    Enamel is a composite material consisting of mineral and organic phases. The properties of the mineral phase are modulated dramatically by its division into microscopic crystals, cemented together by the organic matrix protein polymer. A good concept of the 3D orientations of the crystals derives from visualizing their growth perpendicular to the surface in which they develop, which is pitted by the secretory poles of the ameloblasts. The arrangement of the crystals is the cause of the discontinuities, known as the prism boundaries or junctions, in the otherwise continuous structure. These locations acquire a more concentrated organic matrix during maturation, and they are both crack stoppers and crack propagation tracks in the adult tissue. Any tendency of prisms to cleave may be reduced by their varicosities, which reflect daily variations in the rate of production; their cross-sectional shape; the non-parallelism of adjacent groups, which develops through translocation of groups of cells across the surface during development; and the support of any one microscopic tissue element by other tissue, including dentine, placed to resist an applied load. Incremental growth lines are preferential cleavage planes within the enamel. Failure patterns of enamel in normal and abnormal use can be explained by these parameters, with additional consideration of functional variation and fatigue.

  12. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    Science.gov (United States)

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  13. Enamel matrix derivative enhances tissue formation around scaffolds used for tissue engineering of ligaments.

    Science.gov (United States)

    Messenger, Michael P; Raïf, El M; Seedhom, Bahaa B; Brookes, Steven J

    2010-02-01

    The following in vitro translational study investigated whether enamel matrix derivative (EMD), an approved biomimetic treatment for periodontal disease (Emdogain) and hard-to-heal wounds (Xelma), enhanced synovial cell colonization and protein synthesis around a scaffold used clinically for in situ tissue engineering of the torn anterior cruciate ligament (ACL). Synovial cells were enzymatically extracted from bovine synovium and dynamically seeded onto polyethylene terephthalate (PET) scaffolds. The cells were cultured in low-serum medium (0.5% FBS) for 4 weeks with either a single administration of EMD at the start of the 4 week period or multiple administrations of EMD at regular intervals throughout the 4 weeks. Samples were harvested and evaluated using the Hoechst DNA assay, BCA protein assay, cresolphthalein complexone calcium assay, SDS-PAGE, ELISA and electron microscopy. A significant increase in cell number (DNA) (p < 0.01), protein content (p < 0.01) and TGFbeta1 synthesis (p < 0.01) was observed with multiple administrations of EMD. Additionally, SDS-PAGE showed an increase in high molecular weight proteins, characteristic of the fibril-forming collagens. Electron microscopy supported these findings, showing that scaffolds treated with multiple administrations of EMD were heavily coated with cells and extracellular matrix (ECM) that enveloped the fibres. Multiple administrations of EMD to synovial cell-seeded scaffolds enhanced the formation of tissue in vitro. Additionally, it was shown that EMD enhanced TGFbeta1 synthesis of synovial cells, suggesting a potential mode of action for EMD's capacity to stimulate tissue regeneration.

  14. Enamel Defects Reflect Perinatal Exposure to Bisphenol A

    Science.gov (United States)

    Jedeon, Katia; De la Dure-Molla, Muriel; Brookes, Steven J.; Loiodice, Sophia; Marciano, Clémence; Kirkham, Jennifer; Canivenc-Lavier, Marie-Chantal; Boudalia, Sofiane; Bergès, Raymond; Harada, Hidemitsu; Berdal, Ariane; Babajko, Sylvie

    2014-01-01

    Endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), are environmental ubiquitous pollutants and associated with a growing health concern. Anecdotally, molar incisor hypomineralization (MIH) is increasing concurrently with EDC-related conditions, which has led us to investigate the effect of BPA on amelogenesis. Rats were exposed daily to BPA from conception until day 30 or 100. At day 30, BPA-affected enamel exhibited hypomineralization similar to human MIH. Scanning electron microscopy and elemental analysis revealed an abnormal accumulation of organic material in erupted enamel. BPA-affected enamel had an abnormal accumulation of exogenous albumin in the maturation stage. Quantitative real-timePCR, Western blotting, and luciferase reporter assays revealed increased expression of enamelin but decreased expression of kallikrein 4 (protease essential for removing enamel proteins) via transcriptional regulation. Data suggest that BPA exerts its effects on amelogenesis by disrupting normal protein removal from the enamel matrix. Interestingly, in 100-day-old rats, erupting incisor enamel was normal, suggesting amelogenesis is only sensitive to MIH-causing agents during a specific time window during development (as reported for human MIH). The present work documents the first experimental model that replicates MIH and presents BPA as a potential causative agent of MIH. Because human enamel defects are irreversible, MIH may provide an easily accessible marker for reporting early EDC exposure in humans. PMID:23764278

  15. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  16. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    International Nuclear Information System (INIS)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-01-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in vitro.

  17. Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity

    Directory of Open Access Journals (Sweden)

    MICHEL eGOLDBERG

    2014-09-01

    Full Text Available In the field of dentistry, the murine incisor has long been considered as an outstanding model to study amelogenesis. However, it clearly appears that enamel from wild type mouse incisors and molars presents several structural differences. In incisor, exclusively radial enamel is observed. In molars, enamel displays a high level of complexity since the inner part is lamellar whereas the outer enamel shows radial and tangential structures. Recently, the serotonin 2B receptor (5-HT2BR was shown to be involved in ameloblast function and enamel mineralization. The incisors from 5HT2BR knockout (KO mice exhibit mineralization defects mostly in the outer maturation zone and porous matrix network in the inner zone. In the molars, the mutation affects both secretory and maturation stages of amelogenesis since pronounced alterations concern overall enamel structures. Molars from 5HT2BR KO mice display reduction in enamel thickness, alterations of inner enamel architecture including defects in Hunter-Schreger Bands arrangements, and altered maturation of the outer radial enamel. Differences of enamel structure were also observed between incisor and molar from other KO mice depleted for genes encoding enamel extracellular matrix proteins.

  18. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo.

    Science.gov (United States)

    Bidlack, Felicitas B; Xia, Yan; Pugach, Megan K

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes ( Tg ) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180 Tg , CTRNC Tg and LRAP Tg mice to generate M180 Tg and CTRNC Tg double transgene and M180 Tg , CTRNC Tg , LRAP Tg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene ( p structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.

  19. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    Science.gov (United States)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  20. Amelogenin and Enamel Biomimetics

    Science.gov (United States)

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  1. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo

    Directory of Open Access Journals (Sweden)

    Felicitas B. Bidlack

    2017-11-01

    Full Text Available Mice lacking amelogenin (KO have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle or homozygosity (on both alleles. Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05. The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most

  2. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  3. Accelerated enamel mineralization in Dspp mutant mice

    Science.gov (United States)

    Verdelis, Kostas; Szabo-Rogers, Heather L.; Xu, Yang; Chong, Rong; Kang, Ryan; Cusack, Brian J.; Jani, Priyam; Boskey, Adele L.; Qin, Chunlin; Beniash, Elia

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases — dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp–/– mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp–/– animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp–/– incisors compared to the Dspp+/– control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel. PMID:26780724

  4. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. © 2015 Wiley Periodicals, Inc.

  5. Adaptor Protein Complex 2 (AP-2) Mediated, Clathrin Dependent Endocytosis, And Related Gene Activities, Are A Prominent Feature During Maturation Stage Amelogenesis

    Science.gov (United States)

    LACRUZ, Rodrigo S.; BROOKES, Steven J.; WEN, Xin; JIMENEZ, Jaime M.; VIKMAN, Susanna; HU, Ping; WHITE, Shane N.; LYNGSTADAAS, S. Petter; OKAMOTO, Curtis T.; SMITH, Charles E.; PAINE, Michael L.

    2012-01-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real time PCR, we show that the expression of clathrin and adaptor protein subunits are up-regulated in maturation stage rodent enamel organ cells. AP-2 is the most up-regulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin dependent endocytosis, thus implying the likelihood of a specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also up-regulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1), cluster of differentiation 63 and 68 (Cd63 and Cd68), ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2), ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2), chloride channel, voltage-sensitive 7 (Clcn7) and cathepsin K (Ctsk). Immunohistological data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain® showed up-regulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor regulated pathway for the endocytosis of enamel matrix proteins. These data together

  6. The role of organic proteins on the crack growth resistance of human enamel.

    Science.gov (United States)

    Yahyazadehfar, Mobin; Arola, Dwayne

    2015-06-01

    With only 1% protein by weight, tooth enamel is the most highly mineralized tissue in mammals. The focus of this study was to evaluate contributions of the proteins on the fracture resistance of this unique structural material. Sections of enamel were obtained from the cusps of human molars and the crack growth resistance was quantified using a conventional fracture mechanics approach with complementary finite element analysis. In selected specimens the proteins were extracted using a potassium hydroxide treatment. Removal of the proteins resulted in approximately 40% decrease in the fracture toughness with respect to the fully proteinized control. The loss of organic content was most detrimental to the extrinsic toughening mechanisms, causing over 80% reduction in their contribution to the total energy to fracture. This degradation occurred by embrittlement of the unbroken bridging ligaments and consequent reduction in the crack closure stress. Although the organic content of tooth enamel is very small, it is essential to crack growth toughening by facilitating the formation of unbroken ligaments and in fortifying their potency. Replicating functions of the organic content will be critical to the successful development of bio-inspired materials that are designed for fracture resistance. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Targeted p120-catenin ablation disrupts dental enamel development.

    Science.gov (United States)

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E; Perez-Moreno, Mirna; Stokes, Nicole; Reynolds, Albert B; Fuchs, Elaine; Skobe, Ziedonis

    2010-09-16

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.

  8. Periostin is an extracellular matrix protein required for eruption of incisors in mice

    International Nuclear Information System (INIS)

    Kii, Isao; Amizuka, Norio; Minqi, Li; Kitajima, Satoshi; Saga, Yumiko; Kudo, Akira

    2006-01-01

    A characteristic tooth of rodents, the incisor continuously grows throughout life by the constant formation of dentin and enamel. Continuous eruption of the incisor is accompanied with formation of shear zone, in which the periodontal ligament is remodeled. Although the shear zone plays a role in the remodeling, its molecular biological aspect is barely understood. Here, we show that periostin is essential for formation of the shear zone. Periostin -/- mice showed an eruption disturbance of incisors. Histological observation revealed that deletion of periostin led to disappearance of the shear zone. Electron microscopy revealed that the disappearance of the shear zone resulted from a failure in digestion of collagen fibers in the periostin -/- mice. Furthermore, immunohistochemical analysis using anti-periostin antibodies demonstrated the restricted localization of periostin protein in the shear zone. Periostin is an extracellular matrix protein, and immunoelectron microscopy showed a close association of periostin with collagen fibrils in vivo. These results suggest that periostin functions in the remodeling of collagen matrix in the shear zone

  9. A post-classical theory of enamel biomineralization… and why we need one.

    Science.gov (United States)

    Simmer, James P; Richardson, Amelia S; Hu, Yuan-Yuan; Smith, Charles E; Ching-Chun Hu, Jan

    2012-09-01

    Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.

  10. Minimally invasive flap surgery and enamel matrix derivative in the treatment of localized aggressive periodontitis: case report.

    Science.gov (United States)

    Kaner, Doğan; Bernimoulin, Jean-Pierre; Kleber, Bernd-Michael; Friedmann, Anton

    2009-02-01

    Localized aggressive periodontitis is a distinct entity of periodontal disease and is characterized by deep vertical bony defects that typically affect the first molars and incisors of young patients. Therapy is usually aimed at reducing the pathogenic microflora through scaling and root planing and the administration of systemic antibiotics. However, conservative periodontal therapy may result in reparative wound healing with limited regeneration of the lost tissues. Periodontal surgery combined with enamel matrix derivative has been introduced as a method to promote regeneration of the lost periodontium and has been studied extensively in the treatment of chronic periodontitis. This case report describes the treatment of a 27-year-old patient displaying severe localized aggressive periodontitis with documented disease progression. After initial therapy consisting of scaling and root planing and systemic administration of amoxicillin and metronidazole, the vertical defects were treated by minimally invasive access flaps combined with application of enamel matrix derivative. Clinical, microbiologic, and radiographic findings are reported for up to 1.5 years after initial therapy, indicating good efficacy of the therapeutic strategy and stability of the treatment outcome.

  11. The Influence of Arginine on the Response of Enamel Matrix Derivative (EMD Proteins to Thermal Stress: Towards Improving the Stability of EMD-Based Products.

    Directory of Open Access Journals (Sweden)

    Alessandra Apicella

    Full Text Available In a current procedure for periodontal tissue regeneration, enamel matrix derivative (EMD, which is the active component, is mixed with a propylene glycol alginate (PGA gel carrier and applied directly to the periodontal defect. Exposure of EMD to physiological conditions then causes it to precipitate. However, environmental changes during manufacture and storage may result in modifications to the conformation of the EMD proteins, and eventually premature phase separation of the gel and a loss in therapeutic effectiveness. The present work relates to efforts to improve the stability of EMD-based formulations such as Emdogain™ through the incorporation of arginine, a well-known protein stabilizer, but one that to our knowledge has not so far been considered for this purpose. Representative EMD-buffer solutions with and without arginine were analyzed by 3D-dynamic light scattering, UV-Vis spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy at different acidic pH and temperatures, T, in order to simulate the effect of pH variations and thermal stress during manufacture and storage. The results provided evidence that arginine may indeed stabilize EMD against irreversible aggregation with respect to variations in pH and T under these conditions. Moreover, stopped-flow transmittance measurements indicated arginine addition not to suppress precipitation of EMD from either the buffers or the PGA gel carrier when the pH was raised to 7, a fundamental requirement for dental applications.

  12. MMP20 Promotes a Smooth Enamel Surface, a Strong DEJ, and a Decussating Enamel Rod Pattern

    Science.gov (United States)

    Bartlett, John D.; Skobe, Ziedonis; Nanci, Antonio; Smith, Charles E.

    2012-01-01

    Mutations of the Matrix metalloproteinase-20 (MMP20, enamelysin) gene cause autosomal recessive amelogenesis imperfecta and Mmp20 ablated mice also have malformed dental enamel. Here we show that Mmp20 null mouse secretory stage ameloblasts maintained a columnar shape and were present as a single layer of cells. However, the null maturation stage ameloblasts covered extraneous nodules of ectopic calcified material formed at the enamel surface. Remarkably, nodule formation occurs in null mouse enamel when MMP20 is normally no longer expressed. The malformed enamel in Mmp20 null teeth was loosely attached to the dentin and the entire enamel layer tended to separate from the dentin indicative of a faulty DEJ. The enamel rod pattern was also altered in Mmp20 null mice. Each enamel rod is formed by a single ameloblast and is a mineralized record of the migration path of the ameloblast that formed it. The Mmp20 null mouse enamel rods were grossly malformed or were absent indicating that the ameloblasts do not migrate properly when backing away from the DEJ. Thus, MMP20 is required for ameloblast cell movement necessary to form the decussating enamel rod patterns, for the prevention of ectopic mineral formation, and to maintain a functional DEJ. PMID:22243247

  13. Effect of enamel matrix derivative and parathyroid hormone on bone formation in standardized osseous defects: an experimental study in minipigs

    DEFF Research Database (Denmark)

    Jensen, Simon S; Chen, B; Bornstein, Michael M

    2011-01-01

    Previous experimental studies have indicated that locally administered enamel matrix derivative (EMD) and parathyroid hormone (PTH) may have a stimulatory effect on bone formation. However, it is not clear if the positive effect of EMD is related to its effect on the periodontium as a whole...

  14. Requirements for Ion and Solute Transport, and pH Regulation During Enamel Maturation

    Science.gov (United States)

    LACRUZ, RODRIGO S.; SMITH, CHARLES E.; MOFFATT, PIERRE; CHANG, EUGENE H.; BROMAGE, TIMOTHY G.; BRINGAS, PABLO; NANCI, ANTONIO; BANIWAL, SANJEEV K.; ZABNER, JOSEPH; WELSH, MICHAEL J.; KURTZ, IRA; PAINE, MICHAEL L.

    2012-01-01

    Transcellular bicarbonate transport is suspected to be an important pathway used by ameloblasts to regulate extracellular pH and support crystal growth during enamel maturation. Proteins that play a role in amelogenesis include members of the ABC transporters (SLC gene family and CFTR). A number of carbonic anhydrases (CAs) have also been identified. The defined functions of these genes are likely interlinked during enamel mineralization. The purpose of this study is to quantify relative mRNA levels of individual SLC, Cftr, and CAs in enamel cells obtained from secretory and maturation stages on rat incisors. We also present novel data on the enamel phenotypes for two animal models, amutant porcine(CFTR-ΔF508) and the NBCe1-null mouse.Our data show that two SLCs(AE2 and NBCe1),Cftr,and Car2, Car3,Car6,and Car12 are all significantly up-regulated at the onset of the maturation stage of amelogenesis when compared to the secretory stage. The remaining SLCs and CA gene transcripts showed negligible expression or no significant change in expression from secretory to maturation stages. The enamel of Cftr-ΔF508 adult pigs was hypomineralized and showed abnormal crystal growth. NBCe1-null mice enamel was structurally defective and had a marked decrease in mineral content relative to wild-type. These data demonstrate the importance of many non-matrix proteins to amelogenesis and that the expression levels of multiple genes regulating extracellular pH are modulated during enamel maturation in response to an increased need for pH buffering during hydroxyapatite crystal growth. PMID:21732355

  15. Clinical and Radiographic Evaluation of the Effectiveness of Formocresol, Mineral Trioxide Aggregate, Portland Cement, and Enamel Matrix Derivative in Primary Teeth Pulpotomies: A Two Year Follow-Up.

    Science.gov (United States)

    Yildirim, Ceren; Basak, Feridun; Akgun, Ozlem Marti; Polat, Gunseli Guven; Altun, Ceyhan

    2016-01-01

    The aim of this study was to evaluate and to compare clinical and radiographic outcomes of 4 materials (formocresol, mineral trioxide aggregate (MTA), Portland cement and enamel matrix derivative) using in primary teeth pulpotomies. Sixty-five patients aged 5-9 years (32 female, 33 male) were included in this study. A total of 140 primary first and second molars with deep caries were treated with pulpotomy. All teeth were then restored with stainless steel crowns. The treated teeth were evaluated clinically and radiographically at 3, 6, 12, 18 and 24 months. At 24 months, the clinical success rates of formocresol, MTA, Portland cement, and enamel matrix derivative were 96.9%, 100%, 93.9%, and 93.3%, respectively. The corresponding radiographic success rates were 84.4%, 93.9%, 86.7% and 78.1%, respectively. Although there were no statistically significant differences in clinical and radiographic success rates among the 4 groups, MTA appears to be superior to formocresol, Portland cement, and enamel matrix derivative as a pulpotomy agent in primary teeth.

  16. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes.

    Science.gov (United States)

    Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S

    2015-10-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs. © International & American Associations for Dental Research 2015.

  17. Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica

    Science.gov (United States)

    Gasse, Barbara; Liu, Xi; Corre, Erwan; Sire, Jean-Yves

    2015-01-01

    Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i) AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii) AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2%) exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at the onset of

  18. Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica.

    Directory of Open Access Journals (Sweden)

    Barbara Gasse

    Full Text Available Amelotin (AMTN is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2% exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at

  19. A review of the effect of vital teeth bleaching on the mechanical properties of tooth enamel.

    Science.gov (United States)

    Elfallah, Hunida M; Swain, Michael V

    2013-09-01

    Tooth whitening is considered the easiest and most cost-effective procedure for treating tooth discoloration. Contemporary bleaching agents contain hydrogen peroxide as the active ingredient. It is either applied directly or produced from its precursor, carbamide peroxide. A review of the published literature was undertaken to investigate the potential adverse effects of whitening products on dental enamel, with a focus on its mechanical properties and the influence of various parameters on study outcomes. There appear to be considerable differences in opinion as to whether changes in mechanical properties occur as a result of tooth whitening. However, the mechanical property findings of those studies appear to be related to the load applied during the indentation tests. Most studies which used loads higher than 500mN to determine enamel hardness showed no effect of bleaching, whereas those using lower loads were able to detect hardness reduction in the surface layer of enamel. In conclusion, bleaching reduces the hardness of the enamel surface of enamel, and that is more readily detected with instrumented low load testing systems. This hardness reduction may arise due to degradation or denaturation of enamel matrix proteins by the peroxide oxidation.

  20. Enamel matrix protein derivative plus synthetic bone substitute for the treatment of mandibular Class II furcation defects: a case series.

    Science.gov (United States)

    Queiroz, Lucas Araujo; Santamaria, Mauro; Casati, Marcio; Silverio, Karina; Nociti-Junior, Francisco; Sallum, Enilson

    2015-03-01

    The aim of this study is to report on the treatment of mandibular Class II furcation defects with enamel matrix protein derivative (EMD) combined with a βTCP/HA (β-tricalcium phosphate/hydroxyapatite) alloplastic material. Thirteen patients were selected. All patients were nonsmokers, systemically healthy, and diagnosed with chronic periodontitis; had not taken medications known to interfere with periodontal tissue health and healing; presented one Class II mandibular furcation defect with horizontal probing equal to or greater than 4 mm at buccal site. The clinical parameters evaluated were probing depth (PD), relative gingival margin position (RGMP), relative vertical clinical attachment level (RVCAL), and relative horizontal clinical attachment level (RHCAL). A paired Student t test was used to detect differences between the baseline and 6-month measurements, with the level of significance of .05. After 6 months, the treatment produced a statistically significant reduction in PD and a significant gain in RVCAL and RHCAL, but no observable change in RGMP. RVCAL ranged from 13.77 (± 1.31) at baseline to 12.15 (± 1.29) after 6 months, with a mean change of -1.62 ± 1.00 mm (P < .05). RHCAL ranged from 5.54 (± 0.75) to 2.92 (± 0.92), with a mean change of -2.62 ± 0.63 mm (P < .05). After 6 months, 76.92% of the patients improved their diagnosis to Class I furcation defects while 23.08% remained as Class II. The present study has shown that positive clinical results may be expected from the combined treatment of Class II furcation defects with EMD and βTCP/HA, especially considering the gain of horizontal attachment level. Despite this result, controlled clinical studies are needed to confirm our outcomes.

  1. Comparison of Two Mouse Ameloblast-like Cell Lines for Enamel-specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Juni eSarkar

    2014-07-01

    Full Text Available Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam and Mmp20, while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4. Western blot analyses show that Amelx, Ambn and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.

  2. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    Science.gov (United States)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  3. Indirect veneer treatment of anterior maxillary teeth with enamel hypoplasia

    Directory of Open Access Journals (Sweden)

    Devi Eka Juniarti

    2010-09-01

    Full Text Available Background: Nowadays, aesthetic rehabilitation becomes a necessity. It is affected by patient’s background, especially career, social and economic status. The aesthetic abnormality of anterior teeth i.e discoloration, malposition and malformation can affect patient’s appearance, especially during smile. These dental abnormalities, as a result, can decrease patient’s performance. Dental malformation, for instance, can be caused by developmental tooth defect, such as enamel hypoplasia. Enamel hypoplasia is a developmental defect caused by the lack of matrix amount which leads to thin and porous enamel. Enamel hypoplasia can also be caused by matrix calcification disturbance starting from the formation and development of enamel matrix causing defect and permanent changes which can occur on one or more tooth. Purpose: The aim of the study is to improve dental discoloration and tooth surface texture on anterior maxillary teeth with enamel hypoplasia by using indirect veneer with porcelain material. Case: A 20 years-old woman with enamel hypoplasia came to the Dental Hospital, Faculty of Dentistry Airlangga University. The patient wanted to improve her anterior maxillary teeth. It is clinically known that there were some opaque white spots (chalky spotted and porous on anterior teeth’s surface. Case management: Indirect veneer with porcelain material had been chosen as a restoration treatment which has excellent aesthetics and strength, and did not cause gingival irritation. As a result, the treatment could improve the confidence of the patient, and could also make their function normal. Conclusion: Indirect veneer is an effective treatment, which can improve patient’s appearance and self confidence.Latar belakang: Saat ini perbaikan estetik menjadi suatu kebutuhan. Kebutuhan akan estetik dipengaruhi latar belakang penderita, terutama karir, status sosial dan ekonomi. Hal ini disebabkan, kelainan estetik seperti diskolorasi, malposisi

  4. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    Science.gov (United States)

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  5. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    Science.gov (United States)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The fracture behaviour of dental enamel.

    Science.gov (United States)

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A

    2010-01-01

    Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).

  7. Mediator 1 contributes to enamel mineralization as a coactivator for Notch1 signaling and stimulates transcription of the alkaline phosphatase gene.

    Science.gov (United States)

    Yoshizaki, Keigo; Hu, Lizhi; Nguyen, Thai; Sakai, Kiyoshi; Ishikawa, Masaki; Takahashi, Ichiro; Fukumoto, Satoshi; DenBesten, Pamela K; Bikle, Daniel D; Oda, Yuko; Yamada, Yoshihiko

    2017-08-18

    Tooth enamel is mineralized through the differentiation of multiple dental epithelia including ameloblasts and the stratum intermedium (SI), and this differentiation is controlled by several signaling pathways. Previously, we demonstrated that the transcriptional coactivator Mediator 1 (MED1) plays a critical role in enamel formation. For instance, conditional ablation of Med1 in dental epithelia causes functional changes in incisor-specific dental epithelial stem cells, resulting in mineralization defects in the adult incisors. However, the molecular mechanism by which Med1 deficiency causes these abnormalities is not clear. Here, we demonstrated that Med1 ablation causes early SI differentiation defects resulting in enamel hypoplasia of the Med1 -deficient molars. Med1 deletion prevented Notch1-mediated differentiation of the SI cells resulting in decreased alkaline phosphatase (ALPL), which is essential for mineralization. However, it does not affect the ability of ameloblasts to produce enamel matrix proteins. Using the dental epithelial SF2 cell line, we demonstrated that MED1 directly activates transcription of the Alpl gene through the stimulation of Notch1 signaling by forming a complex with cleaved Notch1-RBP-Jk on the Alpl promoter. These results suggest that MED1 may be essential for enamel matrix mineralization by serving as a coactivator for Notch1 signaling regulating transcription of the Alpl gene.

  8. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  9. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    Full Text Available We have previously identified amelotin (AMTN as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL and ameloblastin (AMBN was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  10. Transcription factor FoxO1 is essential for enamel biomineralization.

    Directory of Open Access Journals (Sweden)

    Ross A Poché

    Full Text Available The Transforming growth factor β (Tgf-β pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.

  11. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    Science.gov (United States)

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  12. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD

    Directory of Open Access Journals (Sweden)

    Matthias J. Frank

    2014-03-01

    Full Text Available The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.

  13. Enamel Matrix Derivative has No Effect on the Chondrogenic Differentiation of Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveldt, Lisanne C.; Knuth, Callie; Witte-Bouma, Janneke [Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Center, Rotterdam (Netherlands); O’Brien, Fergal J. [Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin (Ireland); Wolvius, Eppo B.; Farrell, Eric, E-mail: e.farrell@erasmusmc.nl [Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Center, Rotterdam (Netherlands)

    2014-09-02

    Background: Treatment of large bone defects due to trauma, tumor resection, or congenital abnormalities is challenging. Bone tissue engineering using mesenchymal stem cells (MSCs) represents a promising treatment option. However, the quantity and quality of engineered bone tissue are not sufficient to fill large bone defects. The aim of this study was to determine if the addition of enamel matrix derivative (EMD) improves in vitro chondrogenic priming of MSCs to ultimately improve in vivo MSC mediated endochondral bone formation. Methods: MSCs were chondrogenically differentiated in 2.0 × 10{sup 5} cell pellets in medium supplemented with TGFβ3 in the absence or presence of 1, 10, or 100 μg/mL EMD. Samples were analyzed for gene expression of RUNX2, Col II, Col X, and Sox9. Protein and glycoaminoglycan (GAG) production were also investigated via DMB assays, histology, and immunohistochemistry. Osteogenic and adipogenic differentiation capacity were also assessed. Results: The addition of EMD did not negatively affect chondrogenic differentiation of adult human MSCs. EMD did not appear to alter GAG production or expression of chondrogenic genes. Osteogenic and adipogenic differentiation were also unaffected though a trend toward decreased adipogenic gene expression was observed. Conclusion: EMD does not affect chondrogenic differentiation of adult human MSCs. As such the use of EMD in combination with chondrogenically primed MSCs for periodontal bone tissue repair is unlikely to have negative effects on MSC differentiation.

  14. Enamel Matrix Derivative has No Effect on the Chondrogenic Differentiation of Mesenchymal Stem Cells

    International Nuclear Information System (INIS)

    Groeneveldt, Lisanne C.; Knuth, Callie; Witte-Bouma, Janneke; O’Brien, Fergal J.; Wolvius, Eppo B.; Farrell, Eric

    2014-01-01

    Background: Treatment of large bone defects due to trauma, tumor resection, or congenital abnormalities is challenging. Bone tissue engineering using mesenchymal stem cells (MSCs) represents a promising treatment option. However, the quantity and quality of engineered bone tissue are not sufficient to fill large bone defects. The aim of this study was to determine if the addition of enamel matrix derivative (EMD) improves in vitro chondrogenic priming of MSCs to ultimately improve in vivo MSC mediated endochondral bone formation. Methods: MSCs were chondrogenically differentiated in 2.0 × 10 5 cell pellets in medium supplemented with TGFβ3 in the absence or presence of 1, 10, or 100 μg/mL EMD. Samples were analyzed for gene expression of RUNX2, Col II, Col X, and Sox9. Protein and glycoaminoglycan (GAG) production were also investigated via DMB assays, histology, and immunohistochemistry. Osteogenic and adipogenic differentiation capacity were also assessed. Results: The addition of EMD did not negatively affect chondrogenic differentiation of adult human MSCs. EMD did not appear to alter GAG production or expression of chondrogenic genes. Osteogenic and adipogenic differentiation were also unaffected though a trend toward decreased adipogenic gene expression was observed. Conclusion: EMD does not affect chondrogenic differentiation of adult human MSCs. As such the use of EMD in combination with chondrogenically primed MSCs for periodontal bone tissue repair is unlikely to have negative effects on MSC differentiation.

  15. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  16. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  17. Prevention of the disrupted enamel phenotype in Slc4a4-null mice using explant organ culture maintained in a living host kidney capsule.

    Directory of Open Access Journals (Sweden)

    Xin Wen

    Full Text Available Slc4a4-null mice are a model of proximal renal tubular acidosis (pRTA. Slc4a4 encodes the electrogenic sodium base transporter NBCe1 that is involved in transcellular base transport and pH regulation during amelogenesis. Patients with mutations in the SLC4A4 gene and Slc4a4-null mice present with dysplastic enamel, amongst other pathologies. Loss of NBCe1 function leads to local abnormalities in enamel matrix pH regulation. Loss of NBCe1 function also results in systemic acidemic blood pH. Whether local changes in enamel pH and/or a decrease in systemic pH are the cause of the abnormal enamel phenotype is currently unknown. In the present study we addressed this question by explanting fetal wild-type and Slc4a4-null mandibles into healthy host kidney capsules to study enamel formation in the absence of systemic acidemia. Mandibular E11.5 explants from NBCe1-/- mice, maintained in host kidney capsules for 70 days, resulted in teeth with enamel and dentin with morphological and mineralization properties similar to cultured NBCe1+/+ mandibles grown under identical conditions. Ameloblasts express a number of proteins involved in dynamic changes in H+/base transport during amelogenesis. Despite the capacity of ameloblasts to dynamically modulate the local pH of the enamel matrix, at least in the NBCe1-/- mice, the systemic pH also appears to contribute to the enamel phenotype. Extrapolating these data to humans, our findings suggest that in patients with NBCe1 mutations, correction of the systemic metabolic acidosis at a sufficiently early time point may lead to amelioration of enamel abnormalities.

  18. Protection of enamel surfaces in the oral cavity

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo

    The two main diseases that can affect the tooth enamel are dental caries and dental erosion, which both are caused by exposure of the enamel surfaces to acids. In the case of dental caries, acids from bacterial metabolism cause chemical dissolution of the tooth surface, whereas acids from drinks...... and foodstuffs or gastric juice can cause dental erosion. During a lifetime the enamel surface is also exposed to fluids that can have protective effects against dental caries and erosion such as saliva, various foodstuffs, drinking water and many types of drinks. However, little is still known about simple...... inorganic interactions between different fluids and dental caries and little is also known about which saliva proteins are able to protect the enamel surface against dental erosion. Therefore, the overall aim of this thesis was to examine simple inorganic and protein related protective effects with dental...

  19. Amelogenesis Imperfecta; Genes, Proteins, and Pathways

    Directory of Open Access Journals (Sweden)

    Claire E. L. Smith

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/ containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and

  20. Amelogenesis Imperfecta; Genes, Proteins, and Pathways.

    Science.gov (United States)

    Smith, Claire E L; Poulter, James A; Antanaviciute, Agne; Kirkham, Jennifer; Brookes, Steven J; Inglehearn, Chris F; Mighell, Alan J

    2017-01-01

    Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX , encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the

  1. On the R-curve behavior of human tooth enamel.

    Science.gov (United States)

    Bajaj, Devendra; Arola, Dwayne D

    2009-08-01

    In this study the crack growth resistance behavior and fracture toughness of human tooth enamel were quantified using incremental crack growth measures and conventional fracture mechanics. Results showed that enamel undergoes an increase in crack growth resistance (i.e. rising R-curve) with crack extension from the outer to the inner enamel, and that the rise in toughness is a function of distance from the dentin enamel junction (DEJ). The outer enamel exhibited the lowest apparent toughness (0.67+/-0.12 MPam(0.5)), and the inner enamel exhibited a rise in the growth toughness from 1.13 MPam(0.5)/mm to 3.93 MPam(0.5)/mm. The maximum crack growth resistance at fracture (i.e. fracture toughness (K(c))) ranged from 1.79 to 2.37 MPam(0.5). Crack growth in the inner enamel was accompanied by a host of mechanisms operating from the micro- to the nano-scale. Decussation in the inner enamel promoted crack deflection and twist, resulting in a reduction of the local stress intensity at the crack tip. In addition, extrinsic mechanisms such as bridging by unbroken ligaments of the tissue and the organic matrix promoted crack closure. Microcracking due to loosening of prisms was also identified as an active source of energy dissipation. In summary, the unique microstructure of enamel in the decussated region promotes crack growth toughness that is approximately three times that of dentin and over ten times that of bone.

  2. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation.

    Directory of Open Access Journals (Sweden)

    Jan C-C Hu

    Full Text Available Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam-/- mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam-/- mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam-/- background did not fully recover enamel formation while a medium expresser in the Enam+/- background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation.

  3. Enamelin Is Critical for Ameloblast Integrity and Enamel Ultrastructure Formation

    Science.gov (United States)

    Hu, Jan C.-C.; Hu, Yuanyuan; Lu, Yuhe; Smith, Charles E.; Lertlam, Rangsiyakorn; Wright, John Timothy; Suggs, Cynthia; McKee, Marc D.; Beniash, Elia; Kabir, M. Enamul; Simmer, James P.

    2014-01-01

    Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam−/− mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam−/− mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam−/− background did not fully recover enamel formation while a medium expresser in the Enam+/− background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation. PMID:24603688

  4. Optical coherence tomography use in the diagnosis of enamel defects

    Science.gov (United States)

    Al-Azri, Khalifa; Melita, Lucia N.; Strange, Adam P.; Festy, Frederic; Al-Jawad, Maisoon; Cook, Richard; Parekh, Susan; Bozec, Laurent

    2016-03-01

    Molar incisor hypomineralization (MIH) affects the permanent incisors and molars, whose undermineralized matrix is evidenced by lesions ranging from white to yellow/brown opacities to crumbling enamel lesions incapable of withstanding normal occlusal forces and function. Diagnosing the condition involves clinical and radiographic examination of these teeth, with known limitations in determining the depth extent of the enamel defects in particular. Optical coherence tomography (OCT) is an emerging hard and soft tissue imaging technique, which was investigated as a new potential diagnostic method in dentistry. A comparison between the diagnostic potential of the conventional methods and OCT was conducted. Compared to conventional imaging methods, OCT gave more information on the structure of the enamel defects as well as the depth extent of the defects into the enamel structure. Different types of enamel defects were compared, each type presenting a unique identifiable pattern when imaged using OCT. Additionally, advanced methods of OCT image analysis including backscattered light intensity profile analysis and enface reconstruction were performed. Both methods confirmed the potential of OCT in enamel defects diagnosis. In conclusion, OCT imaging enabled the identification of the type of enamel defect and the determination of the extent of the enamel defects in MIH with the advantage of being a radiation free diagnostic technique.

  5. Structure and assembly of a paramyxovirus matrix protein.

    Science.gov (United States)

    Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G

    2012-08-28

    Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.

  6. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression.

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-05-05

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.

  7. Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta.

    Science.gov (United States)

    Parry, David A; Smith, Claire E L; El-Sayed, Walid; Poulter, James A; Shore, Roger C; Logan, Clare V; Mogi, Chihiro; Sato, Koichi; Okajima, Fumikazu; Harada, Akihiro; Zhang, Hong; Koruyucu, Mine; Seymen, Figen; Hu, Jan C-C; Simmer, James P; Ahmed, Mushtaq; Jafri, Hussain; Johnson, Colin A; Inglehearn, Chris F; Mighell, Alan J

    2016-10-06

    Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the pH of the developing enamel matrix. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with amelogenesis imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion, and a missense variant) were predicted to result in loss of function. GPR68 encodes a proton-sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localization of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Neanderthal and Denisova tooth protein variants in present-day humans.

    Directory of Open Access Journals (Sweden)

    Clément Zanolli

    Full Text Available Environment parameters, diet and genetic factors interact to shape tooth morphostructure. In the human lineage, archaic and modern hominins show differences in dental traits, including enamel thickness, but variability also exists among living populations. Several polymorphisms, in particular in the non-collagenous extracellular matrix proteins of the tooth hard tissues, like enamelin, are involved in dental structure variation and defects and may be associated with dental disorders or susceptibility to caries. To gain insights into the relationships between tooth protein polymorphisms and dental structural morphology and defects, we searched for non-synonymous polymorphisms in tooth proteins from Neanderthal and Denisova hominins. The objective was to identify archaic-specific missense variants that may explain the dental morphostructural variability between extinct and modern humans, and to explore their putative impact on present-day dental phenotypes. Thirteen non-collagenous extracellular matrix proteins specific to hard dental tissues have been selected, searched in the publicly available sequence databases of Neanderthal and Denisova individuals and compared with modern human genome data. A total of 16 non-synonymous polymorphisms were identified in 6 proteins (ameloblastin, amelotin, cementum protein 1, dentin matrix acidic phosphoprotein 1, enamelin and matrix Gla protein. Most of them are encoded by dentin and enamel genes located on chromosome 4, previously reported to show signs of archaic introgression within Africa. Among the variants shared with modern humans, two are ancestral (common with apes and one is the derived enamelin major variant, T648I (rs7671281, associated with a thinner enamel and specific to the Homo lineage. All the others are specific to Neanderthals and Denisova, and are found at a very low frequency in modern Africans or East and South Asians, suggesting that they may be related to particular dental traits or

  9. Influence of Surfactants and Fluoride against Enamel Erosion.

    Science.gov (United States)

    Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler

    2018-06-06

    This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.

  10. Spatial distribution of the human enamel fracture toughness with aging.

    Science.gov (United States)

    Zheng, Qinghua; Xu, Haiping; Song, Fan; Zhang, Lan; Zhou, Xuedong; Shao, Yingfeng; Huang, Dingming

    2013-10-01

    A better understanding of the fracture toughness (KIC) of human enamel and the changes induced by aging is important for the clinical treatment of teeth cracks and fractures. We conducted microindentation tests and chemical content measurements on molar teeth from "young" (18 ≤ age ≤ 25) and "old" (55 ≤ age) patients. The KIC and the mineral contents (calcium and phosphorus) in the outer, the middle, and the inner enamel layers within the cuspal and the intercuspal regions of the crown were measured through the Vickers toughness test and Energy Dispersive X-Ray Spectroscopy (EDS), respectively. The elastic modulus used for the KIC calculation was measured through atomic force microscope (AFM)-based nanoindentation tests. In the outer enamel layer, two direction-specific values of the KIC were calculated separately (direction I, crack running parallel to the occlusal surface; direction II, perpendicular to direction I). The mean KIC of the outer enamel layer was lower than that of the internal layers (penamel layer, old enamel has a lower KIC, II and higher mineral contents than young enamel (penamel surface becomes more prone to cracks with aging partly due to the reduction in the interprismatic organic matrix observed with the maturation of enamel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Composition of enamel pellicle from dental erosion patients.

    Science.gov (United States)

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p erosion patients (p erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  12. Enamel hypoplasia and its role in identification of individuals: A review of literature

    Science.gov (United States)

    Kanchan, Tanuj; Machado, Meghna; Rao, Ashwin; Krishan, Kewal; Garg, Arun K.

    2015-01-01

    Identification of individuals is the mainstay of any forensic investigation especially in cases of mass disasters when mutilated remains are brought for examination. Dental examination helps in establishing the identity of an individual and thus, has played a vital role in forensic investigation process since long. In this regard, description on the role of enamel hypoplasia is limited in the literature. The present article reviews the literature on the enamel hypoplasia and discusses its utility in forensic identification. Enamel hypoplasia is a surface defect of the tooth crown caused by disturbance of enamel matrix secretion. Enamel defects can be congenital or acquired. In cases of mass disasters, or when the body is completely charred, putrefied and mutilated beyond recognition, the unique dental features can help in identification of the victims. PMID:26097340

  13. Root maturation and dentin–pulp response to enamel matrix derivative in pulpotomized permanent teeth

    Directory of Open Access Journals (Sweden)

    Sherif S Darwish

    2014-01-01

    Full Text Available The success of pulpotomy of young permanent teeth depends on the proper selection of dressing materials. This study aimed to evaluate the histological and histomorphometric response of dentin–pulp complex to the enamel matrix derivative (Emdogain® gel compared to that of calcium hydroxide when used as a pulp dressing in immature young permanent dogs’ teeth. Dentin-like tissues bridging the full width of the coronal pulp at the interface between the injured and healthy pulp tissues were seen after 1 month in both groups. With time, the dentin bridge increased in thickness for calcium hydroxide but disintegrated and fully disappeared for Emdogain-treated group. Progressive inflammation and total pulp degeneration were only evident with Emdogain-treated group. The root apices of Emdogain-treated teeth became matured and closed by cementum that attached to new alveolar bone by a well-oriented periodontal ligament. In young permanent dentition, Emdogain could be a good candidate for periodontium but not dentino–pulpal complex regeneration.

  14. In vitro evaluation of demineralized freeze-dried bone allograft in combination with enamel matrix derivative.

    Science.gov (United States)

    Miron, Richard J; Bosshardt, Dieter D; Laugisch, Oliver; Dard, Michel; Gemperli, Anja C; Buser, Daniel; Gruber, Reinhard; Sculean, Anton

    2013-11-01

    Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze-dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. DFDBA particles were precoated with EMD or human blood and analyzed for protein adsorption patterns via scanning electron microscopy. Cell attachment and proliferation were quantified using a commercial assay. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen 1α1, and mineralization was assessed using alizarinred staining. Analysis of cell attachment revealed no significant differences among control, blood-coated, and EMD-coated DFDBA particles. EMD significantly increased cell proliferation at 3 and 5 days after seeding for both osteoblasts and PDL cells compared to control and blood-coated samples. Moreover, there were significantly higher messenger ribonucleic acid levels of osteogenic differentiation markers, including collagen 1α1, alkaline phosphatase, and osteocalcin, in osteoblasts and PDL cells cultured on EMD-coated DFDBA particles at 3, 7, and 14 days. The results suggest that the addition of EMD to DFDBA particles may influence periodontal regeneration by stimulating PDL cell and osteoblast proliferation and differentiation.

  15. Regulation of Dental Enamel Shape and Hardness

    Science.gov (United States)

    Simmer, J.P.; Papagerakis, P.; Smith, C.E.; Fisher, D.C.; Rountrey, A.N.; Zheng, L.; Hu, J.C.-C.

    2010-01-01

    Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation. PMID:20675598

  16. Analysis of enamel development using murine model systems: approaches and limitations.

    Directory of Open Access Journals (Sweden)

    Megan K Pugach

    2014-09-01

    Full Text Available A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI. Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: 1 generating transgenic, knockout and knockin mouse models, and 2 analyzing rodent enamel mineral density and functional properties (structure, mechanics of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.

  17. Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel.

    Science.gov (United States)

    White, Shane N; Paine, Michael L; Ngan, Amanda Y W; Miklus, Vetea G; Luo, Wen; Wang, HongJun; Snead, Malcolm L

    2007-02-23

    Dentin sialophosphpoprotein (Dspp) is transiently expressed in the early stage of secretory ameloblasts. The secretion of ameloblast-derived Dspp is short-lived, correlates to the establishment of the dentinoenamel junction (DEJ), and is consistent with Dspp having a role in producing the specialized first-formed harder enamel adjacent to the DEJ. Crack diffusion by branching and dissipation within this specialized first-formed enamel close to the DEJ prevents catastrophic interfacial damage and tooth failure. Once Dspp is secreted, it is subjected to proteolytic cleavage that results in two distinct proteins referred to as dentin sialoprotein (Dsp) and dentin phosphoprotein (Dpp). The purpose of this study was to investigate the biological and mechanical contribution of Dsp and Dpp to enamel formation. Transgenic mice were engineered to overexpress either Dsp or Dpp in their enamel organs. The mechanical properties (hardness and toughness) of the mature enamel of transgenic mice were compared with genetically matched and age-matched nontransgenic animals. Dsp and Dpp contributions to enamel formation greatly differed. The inclusion of Dsp in bulk enamel significantly and uniformly increased enamel hardness (20%), whereas the inclusion of Dpp weakened the bulk enamel. Thus, Dsp appears to make a unique contribution to the physical properties of the DEJ. Dsp transgenic animals have been engineered with superior enamel mechanical properties.

  18. On the critical parameters that regulate the deformation behaviour of tooth enamel.

    Science.gov (United States)

    Xie, Zonghan; Swain, Michael; Munroe, Paul; Hoffman, Mark

    2008-06-01

    Tooth enamel is the hardest tissue in the human body with a complex hierarchical structure. Enamel hypomineralisation--a developmental defect--has been reported to cause a marked reduction in the mechanical properties of enamel and loss of dental function. We discover a distinctive difference in the inelastic deformation mechanism between sound and hypomineralised enamels that is apparently controlled by microstructural variation. For sound enamel, when subjected to mechanical forces the controlling deformation mechanism was distributed shearing within nanometre thick protein layer between its constituent mineral crystals; whereas for hypomineralised enamel microcracking and subsequent crack growth were more evident in its less densely packed microstructure. We develop a mechanical model that not only identifies the critical parameters, i.e., the thickness and shear properties of enamels, that regulate the mechanical behaviour of enamel, but also explains the degradation of hypomineralised enamel as manifested by its lower resistance to deformation and propensity for catastrophic failure. With support of experimental data, we conclude that for sound enamel an optimal microstructure has been developed that endows enamel with remarkable structural integrity for durable mechanical function.

  19. Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Papanikolaou, Nikolaos; Coulthard, Paul; Worthington, Helen V

    2009-10-07

    Periodontitis is a chronic infective disease of the gums caused by bacteria present in dental plaque. This condition induces the breakdown of the tooth supporting apparatus until teeth are lost. Surgery may be indicated to arrest disease progression and regenerate lost tissues. Several surgical techniques have been developed to regenerate periodontal tissues including guided tissue regeneration (GTR), bone grafting (BG) and the use of enamel matrix derivative (EMD). EMD is an extract of enamel matrix and contains amelogenins of various molecular weights. Amelogenins are involved in the formation of enamel and periodontal attachment formation during tooth development. To test whether EMD is effective, and to compare EMD versus GTR, and various BG procedures for the treatment of intrabony defects. We searched the Cochrane Oral Health Group Trials Register, CENTRAL, MEDLINE and EMBASE. Several journals were handsearched. No language restrictions were applied. Authors of randomised controlled trials (RCTs) identified, personal contacts and the manufacturer were contacted to identify unpublished trials. Most recent search: February 2009. RCTs on patients affected by periodontitis having intrabony defects of at least 3 mm treated with EMD compared with open flap debridement, GTR and various BG procedures with at least 1 year follow up. The outcome measures considered were: tooth loss, changes in probing attachment levels (PAL), pocket depths (PPD), gingival recessions (REC), bone levels from the bottom of the defects on intraoral radiographs, aesthetics and adverse events. The following time-points were to be evaluated: 1, 5 and 10 years. Screening of eligible studies, assessment of the methodological quality of the trials and data extraction were conducted in duplicate and independently by two authors. Results were expressed as random-effects models using mean differences for continuous outcomes and risk ratios (RR) for dichotomous outcomes with 95% confidence intervals

  20. Dose response of hydrazine - Deproteinated tooth enamel under blue light stimulation

    International Nuclear Information System (INIS)

    Yuece, Ulkue Rabia; Meric, Niyazi; Atakol, Orhan; Yasar, Fusun

    2010-01-01

    The beta dose response and Optically Stimulated Luminescence (OSL) signal stability characteristics of human tooth enamel deproteinated by hydrazine reagent under blue photon stimulation are reported. Removal of the protein organic component of tooth enamel resulted in a higher OSL sensitivity and slower fading of OSL signals. The effect of chemical sample preparation on the enamel sample sensitivity is discussed and further steps to make this deproteinization treatment suitable for in vitro dose reconstruction studies are suggested.

  1. Dose response of hydrazine - Deproteinated tooth enamel under blue light stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuece, Ulkue Rabia, E-mail: ulkuyuce@hotmail.co [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Tandogan - Ankara (Turkey); Meric, Niyazi, E-mail: meric@ankara.edu.t [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Tandogan - Ankara (Turkey); Atakol, Orhan, E-mail: atakol@science.ankara.edu.t [Ankara University, Science Faculty, Department of Chemistry, 06100, Tandogan - Ankara (Turkey); Yasar, Fusun, E-mail: ab121310@adalet.gov.t [Council of Forensic Medicine, Ankara Branch, Ankara (Turkey)

    2010-08-15

    The beta dose response and Optically Stimulated Luminescence (OSL) signal stability characteristics of human tooth enamel deproteinated by hydrazine reagent under blue photon stimulation are reported. Removal of the protein organic component of tooth enamel resulted in a higher OSL sensitivity and slower fading of OSL signals. The effect of chemical sample preparation on the enamel sample sensitivity is discussed and further steps to make this deproteinization treatment suitable for in vitro dose reconstruction studies are suggested.

  2. Salivary a-amylase protects enamel surface against acid induced softening

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo; Moe, Dennis; Kirkeby, Svend

    Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were not iden......Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were......, and one Chinese. After collection, saliva was dialysed and lyophilised and re-dissolved at 0.5% in Type I water. Next, four polished bovine enamel specimens were immersed into each sample under gentle and constant shaking for 12 hours. Last, specimens were exposed to an erosive challenge of pH 2.3 for 4......-TOF mass fingerprinting following trypsin digestion. Each persistent peak in the HPLC chromatograms was related to the protective effect against acid-induced enamel softening obtained by the corresponding saliva sample by multiple regression analysis. Results: One peak identified as a-amylase had...

  3. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE.

    Science.gov (United States)

    Lacruz, Rodrigo S; Habelitz, Stefan; Wright, J Timothy; Paine, Michael L

    2017-07-01

    Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function. Copyright © 2017 the American Physiological Society.

  4. An investigation on the crack growth resistance of human tooth enamel: Anisotropy, microstructure and toughening

    Science.gov (United States)

    Yahyazadehfar, Mobin

    The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. The primary objective of this dissertation is to characterize the role of enamel's microstructure and degree of decussation on the fracture behavior of human enamel. The importance of the protein content and aging on the fracture toughness of enamel were also explored. Incremental crack growth in sections of human enamel was achieved using a special inset Compact Tension (CT) specimen configuration. Crack extension was achieved in two orthogonal directions, i.e. longitudinal and transverse to the prism axes. Fracture surfaces and the path of crack growth path were evaluated using scanning electron microscopy (SEM) to understand the fundamental mechanisms of crack growth extension. Furthermore, a hybrid approach was adopted to quantify the contribution of toughening mechanisms to the overall toughness. Results of this investigations showed that human enamel exhibits rising R-curve for both directions of crack extension. Cracks extending transverse to the rods in the outer enamel achieved lower rise in toughness with crack extension, and significantly lower toughness (1.23 +/- 0.20 MPa·m 0.5) than in the inner enamel (1.96 +/- 0.28 MPa· 0.5) and in the longitudinal direction (2.01 +/- 0.21 MPa· 0.5). The crack growth resistance exhibited both anisotropy and inhomogeneity, which arise from the complex hierarchical microstructure and the decussated prism structure. Decussation causes deflection of cracks extending from the enamel surface inwards, and facilitates a continuation of transverse crack extension within the outer enamel. This process dissipates fracture energy and averts cracks from extending toward the dentin and vital pulp. This study is the first to investigate the importance of proteins and the effect of

  5. Characterization of membrane association of Rinderpest virus matrix protein

    International Nuclear Information System (INIS)

    Subhashri, R.; Shaila, M.S.

    2007-01-01

    Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M protein gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein

  6. Co-option of Hair Follicle Keratins into Amelogenesis Is Associated with the Evolution of Prismatic Enamel: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Elia Beniash

    2017-10-01

    Full Text Available Recent discovery of hair follicle keratin 75 (KRT75 in enamel raises questions about the function of this protein in enamel and the mechanisms of its secretion. It is also not clear how this protein with a very specific and narrow expression pattern, limited to the inner root sheath of the hair follicle, became associated with enamel. We propose a hypothesis that KRT75 was co-opted by ameloblasts during the evolution of Tomes' process and the prismatic enamel in synapsids.

  7. The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space

    NARCIS (Netherlands)

    Stuart, Rosemary A.; Gruhler, Albrecht; Klei, Ida van der; Guiard, Bernard; Koll, Hans; Neupert, Walter

    1994-01-01

    The role of ATP in the matrix for the import of precursor proteins into the various mitochondrial subcompartments was investigated by studying protein translocation at experimentally defined ATP levels. Proteins targeted to the matrix were neither imported or processed when matrix ATP was depleted.

  8. EMMPRIN/CD147 deficiency disturbs ameloblast-odontoblast cross-talk and delays enamel mineralization.

    Science.gov (United States)

    Khaddam, Mayssam; Huet, Eric; Vallée, Benoît; Bensidhoum, Morad; Le Denmat, Dominique; Filatova, Anna; Jimenez-Rojo, Lucia; Ribes, Sandy; Lorenz, Georg; Morawietz, Maria; Rochefort, Gael Y; Kiesow, Andreas; Mitsiadis, Thimios A; Poliard, Anne; Petzold, Matthias; Gabison, Eric E; Menashi, Suzanne; Chaussain, Catherine

    2014-09-01

    Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5μm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mammalian enamel maturation: Crystallographic changes prior to tooth eruption

    Czech Academy of Sciences Publication Activity Database

    Kallistová, Anna; Horáček, I.; Šlouf, Miroslav; Skála, Roman; Fridrichová, Michaela

    2017-01-01

    Roč. 12, č. 2 (2017), č. článku e0171424. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:67985831 ; RVO:61389013 Keywords : resolution electron-microscopy * atomic-force microscopy * dental enamel * vertebrate dentition * rat enamel * protein * evolution * crystals * shape * ameloblastin Subject RIV: EH - Ecology, Behaviour; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Other biological topics; Polymer science (UMCH-V) Impact factor: 2.806, year: 2016

  10. Success Evaluation of Pulpotomy in Primary Molars with Enamel Matrix Derivative: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Fatemeh Mazhari

    2016-06-01

    Full Text Available Aim: To investigate the effect of Emdogain gel (EMD in pulpotomized primary molars and its clinical and radiographic outcomes. Methods and Materials: In this   study, 18 lower second primary molars of nine children were treated by   pulpotomy. The teeth were randomly assigned to the EMD (experimental and Formocresol (control groups in each patient (split mouth. Following removal of the coronal pulp and haemostasis, the pulp stumps were covered with Emdogain gel in the experimental group followed by application of resin-modified glass ionomer cement over the gel. In the control group, Formocresol (FC was placed with a cotton pellet over the pulp stumps. Lastly, the teeth in both groups were restored with stainless steel crowns. Results: Nine children referred with clinical failure before/at two months follow up. The radiographic evaluation revealed furcation involvement and extensive radicular radiolucency in molars treated with Emdogain gel. Conclusion: The present study showed the failure of enamel matrix derivative in pulpotomy of primary molars; therefore, we do not recommend using Emdogain as a pulpotomy agent for treatment of cariously exposed primary teeth

  11. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    Science.gov (United States)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  12. Bond strength of composite resin to enamel: assessment of two ethanol wet-bonding techniques.

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-04-01

    Full Text Available Ethanol wet-bonding (EWB technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength.Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control;Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher's exact test (α=0.05.There were no significant differences in bond strength between the groups (P=0.73. However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3.In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel.

  13. Maturation Stage Enamel Malformations in Amtn and Klk4 Null Mice

    Science.gov (United States)

    Nunez, Stephanie M.; Chun, Yong-Hee P.; Ganss, Bernhard; Hu, Yuanyuan; Richardson, Amelia S; Schmitz, James E.; Fajardo, Roberto; Yang, Jie; Hu, Jan C-C.; Simmer, James P.

    2015-01-01

    Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn−/−, Klk4−/−, Amtn+/−Klk4+/− and Amtn−/−Klk4−/− mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (µCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice, demonstrating a delay in enamel maturation in Amtn−/− incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4 gHA/cm3) in the Klk4−/− and Amtn−/−Klk4−/− mice respectively, compared with wild-type enamel (3.1 gHA/cm3). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4−/− and Amtn−/−Klk4−/− mice. Knoop hardness of Amtn−/− outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4−/− enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn−/− and Klk4−/− mice were distinctly different, while the Amtn−/−Klk4−/− outer enamel was not as hard as in the Amtn−/− and Klk4−/− mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation. PMID:26620968

  14. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel

    Directory of Open Access Journals (Sweden)

    N. Sabel

    2012-01-01

    Full Text Available Enamel structure is of importance in demineralization. Differences in porosity in enamel effect the rate of demineralization, seen between permanent and deciduous teeth. Individual differences have been shown in the mean mineral concentration values in enamel, the role of this in demineralization is not thoroughly investigated. The aim of this study was to study variations of depths of artificial lesions of demineralization and to analyze the depth in relation to variations in the chemical and mineral composition of the enamel. A demineralized lesion was created in second primary molars from 18 individuals. Depths of lesions were then related to individual chemical content of the enamel. Enamel responded to demineralization with different lesion depths and this was correlated to the chemical composition. The carbon content in sound enamel was shown to be higher where lesions developed deeper. The lesion was deeper when the degree of porosity of the enamel was higher.

  15. Role of crystal arrangement on the mechanical performance of enamel.

    Science.gov (United States)

    An, Bingbing; Wang, Raorao; Zhang, Dongsheng

    2012-10-01

    The superior mechanical properties of enamel, such as excellent penetration and crack resistance, are believed to be related to the unique microscopic structure. In this study, the effects of hydroxyapatite (HAP) crystallite orientation on the mechanical behavior of enamel have been investigated through a series of multiscale numerical simulations. A micromechanical model, which considers the HAP crystal arrangement in enamel prisms, the hierarchical structure of HAP crystals and the inelastic mechanical behavior of protein, has been developed. Numerical simulations revealed that, under compressive loading, plastic deformation progression took place in enamel prisms, which is responsible for the experimentally observed post-yield strain hardening. By comparing the mechanical responses for the uniform and non-uniform arrangement of HAP crystals within enamel prisms, it was found that the stiffness for the two cases was identical, while much greater energy dissipation was observed in the enamel with the non-uniform arrangement. Based on these results, we propose an important mechanism whereby the non-uniform arrangement of crystals in enamel rods enhances energy dissipation while maintaining sufficient stiffness to promote fracture toughness, mitigation of fracture and resistance to penetration deformation. Further simulations indicated that the non-uniform arrangement of the HAP crystals is a key factor responsible for the unique mechanical behavior of enamel, while the change in the nanostructure of nanocomposites could dictate the Young's modulus and yield strength of the biocomposite. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Surface variations affecting human dental enamel studied using nanomechanical and chemical analysis

    Science.gov (United States)

    Dickinson, Michelle Emma

    The enamel surface is the interface between the tooth and its ever changing oral environment. Cavity (caries) formation and extrinsic tooth staining are due, respectively, to degradation of the enamel structure under low pH conditions and interactions between salivary pellicle and dietary elements. Both of these occur at the enamel surface and are caused by the local environment changing the chemistry of the surface. The results can be detrimental to the enamel's mechanical integrity and aesthetics. Incipient carious lesions are the precursor to caries and form due to demineralisation of enamel. These carious lesions are a reversible structure where ions (e.g. Ca2+, F -) can diffuse in (remineralisation) to preserve the tooth's structural integrity. This investigation used controlled in vitro demineralisation and remineralisation to study artificial carious lesion formation and repair. The carious lesions were cross-sectioned and characterised using nanoindentation, electron probe micro-analysis and time of flight secondary ion mass spectrometry. Mechanical and chemical maps showed the carious lesion had a significantly reduced hardness and elastic modulus, and the calcium and phosphate content was lower than in sound enamel. Fluoride based remineralisation treatments gave a new phase (possibly fluorohydroxyapatite) within the lesion with mechanical properties higher than sound enamel. The acquired salivary pellicle is a protein-rich film formed by the physisorption of organic molecules in saliva onto the enamel surface. Its functions include lubrication during mastication and chemical protection. However, pellicle proteins react with dietary elements such as polyphenols (tannins in tea) causing a brown stain. This study has used in vitro dynamic nanoindentation and atomic force microscopy to examine normal and stained pellicles formed in vivo. The effects of polyphenols on the pellicle's mechanical properties and morphology have been studied. It was found that the

  17. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion

    Science.gov (United States)

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (pmeasurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

  18. In vitro wear of four ceramic materials and human enamel on enamel antagonist.

    Science.gov (United States)

    Nakashima, Jun; Taira, Yohsuke; Sawase, Takashi

    2016-06-01

    The purpose of the present study was to evaluate the wear of four different ceramics and human enamel. The ceramics used were lithium disilicate glass (e.max Press), leucite-reinforced glass (GN-Ceram), yttria-stabilized zirconia (Aadva Zr), and feldspathic porcelain (Porcelain AAA). Hemispherical styli were fabricated with these ceramics and with tooth enamel. Flattened enamel was used for antagonistic specimens. After 100,000 wear cycles of a two-body wear test, the height and volume losses of the styli and enamel antagonists were determined. The mean and standard deviation for eight specimens were calculated and statistically analyzed using a non-parametric (Steel-Dwass) test (α = 0.05). GN-Ceram exhibited greater stylus height and volume losses than did Porcelain AAA. E.max Press, Porcelain AAA, and enamel styli showed no significant differences, and Aadva Zr exhibited the smallest stylus height and volume losses. The wear of the enamel antagonist was not significantly different among GN-Ceram, e.max Press, Porcelain AAA, and enamel styli. Aadva Zr resulted in significantly lower wear values of the enamel antagonist than did GN-Ceram, Porcelain AAA, and enamel styli. In conclusion, leucite-reinforced glass, lithium disilicate glass, and feldspathic porcelain showed wear values closer to those for human enamel than did yttria-stabilized zirconia. © 2016 Eur J Oral Sci.

  19. Clinical and histologic evaluation of non-surgical periodontal therapy with enamel matrix derivative: a report of four cases.

    Science.gov (United States)

    Mellonig, James T; Valderrama, Pilar; Gregory, Holly J; Cochran, David L

    2009-09-01

    Enamel matrix derivative (EMD) is a composite of proteins that was demonstrated histologically to work as an adjunct to periodontal regenerative surgical therapy. The purpose of this study was to evaluate the clinical and histologic effects of EMD as an adjunct to scaling and root planing. Four patients with severe chronic periodontitis and scheduled to receive complete dentures were accrued. Probing depth and clinical attachment levels were obtained. Unlimited time was allowed for hand and ultrasonic instrumentation. A notch was placed in the root >or=1 to 2 mm from the apical extent of root planing. EMD was inserted into the pocket, and a periodontal dressing was placed. Patients were seen every 2 weeks for plaque control. At 6 months post-treatment, soft tissue measurements were repeated, and the teeth were removed en bloc and prepared for histomorphologic analysis. Probing depth reduction and clinical attachment level gain were obtained in three-fourths of the specimens. Three of the four specimens analyzed histologically demonstrated new cementum, bone, periodontal ligament, and connective tissue attachment coronal to the notch. In one specimen, the gingival margin had receded below the notch. The results were unexpected and may represent an aberration. However, the substantial reduction in deep probing depths and clinical attachment level gain in three of four specimens, in addition to the histologic findings of new cementum, new bone, a new periodontal ligament, and a new connective tissue attachment, suggest that EMD may be useful as an adjunct to scaling and root planing in single-rooted teeth.

  20. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar

    Science.gov (United States)

    Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William

    2016-01-01

    Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation. PMID:27494172

  1. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization.

    Science.gov (United States)

    Wang, Hua; Huang, Heng; Ding, Chris; Nie, Feiping

    2013-04-01

    Protein interactions are central to all the biological processes and structural scaffolds in living organisms, because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Several high-throughput methods, for example, yeast two-hybrid system and mass spectrometry method, can help determine protein interactions, which, however, suffer from high false-positive rates. Moreover, many protein interactions predicted by one method are not supported by another. Therefore, computational methods are necessary and crucial to complete the interactome expeditiously. In this work, we formulate the problem of predicting protein interactions from a new mathematical perspective--sparse matrix completion, and propose a novel nonnegative matrix factorization (NMF)-based matrix completion approach to predict new protein interactions from existing protein interaction networks. Through using manifold regularization, we further develop our method to integrate different biological data sources, such as protein sequences, gene expressions, protein structure information, etc. Extensive experimental results on four species, Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Caenorhabditis elegans, have shown that our new methods outperform related state-of-the-art protein interaction prediction methods.

  2. Matrix proteins as centralized organizers of negative-sense RNA virions.

    Science.gov (United States)

    Liljeroos, Lassi; Butcher, Sarah J

    2013-01-01

    Matrix proteins are essential components of most negative-sense RNA, enveloped viruses. They serve a wide range of duties ranging from self-driven membrane budding and coordination of other viral components to modulation of viral transcription. The functional similarity between these proteins is striking, despite major differences in their structures. Whereas biochemical and structural studies have partly been hindered by the inherent aggregation properties of these proteins, their cellular functions are beginning to be understood. In this review we summarize the current knowledge on negative-sense RNA virus matrix proteins and their interactions with other viral and cellular proteins. We also discuss the similarities and differences in matrix protein functions between the different families within the negative-sense RNA viruses.

  3. Protein structure estimation from NMR data by matrix completion.

    Science.gov (United States)

    Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing

    2017-09-01

    Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.

  4. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; de Oliveira, Rodrigo; Nahórny, Sídnei; Santo, Ana Maria do Espírito; Martin, Airton Abrahão

    2012-10-01

    Energy-dispersive X-ray fluorescence was employed to test the hypothesis that beverage consumption or mouthwash utilization will change the chemical properties of dental materials and enamel mineral content. Bovine enamel samples (n = 45) each received two cavity preparations (n = 90), each pair filled with one of three dental materials (R: nanofilled composite resin; GIC: glass-ionomer cement; RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: saliva; E: erosion/Pepsi Twist®; or EM: erosion+mouthwash/Colgate Plax®). It was found that mineral loss in enamel was greater in GICE samples than in RE > RMGICE > RMGICEM > REM > GICEM. An increased percentage of Zr was found in REM indicating organic matrix degradation. Dental materials tested (R, GIC, and RMGIC) were not able to protect adjacent enamel from acid erosion by the soft drink tested. The use of mouthwash promoted protection of enamel after erosion by the soft drink. To avoid chemical dissolution by mouthwashes, protection by resin composites with surface sealants is recommended.

  5. Binding of triiodothyronine to rat liver nuclear matrix. influence of thyroid hormones on the phosphorylation of nuclear matrix proteins

    International Nuclear Information System (INIS)

    Adylova, A.T.; Atakhanova, B.A.

    1986-01-01

    The interaction of thyroid hormones with rat liver nuclear matrix proteins was investigated. It was shown that the nuclear matrix contains sites that bind triiodothyronine with high affinity (K = 1.07.10 9 M -1 ) and limited capacity (the maximum binding capacity is equal to 28 /SUP a/ .5 fmoles of triiodothyronine per 100 ug protein). Electrophoretic identification of the matrix proteins that bind triiodothyronine was performed. The molecular weight of the main triiodothyronine-binding fraction is 50,000-52,000. It was shown that the administration of triiodothyronine to thyroidectomized rats stimulates the phosphorylation of all the protein fractions of the nuclear matrix

  6. A combined approach of enamel matrix derivative gel and autogenous bone grafts in treatment of intrabony periodontal defects. A case report.

    Science.gov (United States)

    Leung, George; Jin, Lijian

    2003-04-01

    Enamel matrix derivative (EMD) has recently been introduced as a new modality in regenerative periodontal therapy. This case report demonstrates a combined approach in topical application of EMD gel (Emdogain) and autogenous bone grafts for treatment of intrabony defects and furcation involvement defects in a patient with chronic periodontitis. The seven-month post-surgery clinical and radiographic results were presented. The combined application of EMD gel with autogenous bone grafts in intrabony osseous defects resulted in clinically significant gain of attachment on diseased root surfaces and bone fill on radiographs. Further controlled clinical studies are required to confirm the long-term effectiveness of the combination of EMD gel and autogenous bone grafts in treatment of various osseous defects in subjects with chronic periodontitis.

  7. Type 1 diabetes mellitus effects on dental enamel formation revealed by microscopy and microanalysis.

    Science.gov (United States)

    Silva, Bruna Larissa Lago; Medeiros, Danila Lima; Soares, Ana Prates; Line, Sérgio Roberto Peres; Pinto, Maria das Graças Farias; Soares, Telma de Jesus; do Espírito Santo, Alexandre Ribeiro

    2018-03-01

    Type 1 diabetes mellitus (T1DM) largely affects children, occurring therefore at the same period of deciduous and permanent teeth development. The aim of this work was to investigate birefringence and morphology of the secretory stage enamel organic extracellular matrix (EOECM), and structural and mechanical features of mature enamel from T1DM rats. Adult Wistar rats were maintained alive for a period of 56 days after the induction of experimental T1DM with a single dose of streptozotocin (60 mg/kg). After proper euthanasia of the animals, fixed upper incisors were accurately processed, and secretory stage EOECM and mature enamel were analyzed by transmitted polarizing and bright field light microscopies (TPLM and BFLM), energy-dispersive x-ray (EDX) analysis, scanning electron microscopy (SEM), and microhardness testing. Bright field light microscopies and transmitted polarizing light microscopies showed slight morphological changes in the secretory stage EOECM from diabetic rats, which also did not exhibit statistically significant alterations in birefringence brightness when compared to control animals (P > .05). EDX analysis showed that T1DM induced statistically significant little increases in the amount of calcium and phosphorus in outer mature enamel (P  .05). T1DM also caused important ultrastructural alterations in mature enamel as revealed by SEM and induced a statistically significant reduction of about 13.67% in its microhardness at 80 μm from dentin-enamel junction (P enamel development, leading to alterations in mature enamel ultrastructure and in its mechanical features. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention.

    Directory of Open Access Journals (Sweden)

    A A Algarni

    Full Text Available To compare the effects of stannous (Sn and fluoride (F ions and their combination on acquired enamel pellicle (AEP protein composition (proteome experiment, and protection against dental erosion (functional experiment.In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10, according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2, F (225ppm/13mM, NaF, Sn and F combination (Sn+F and deionized water (DIW, negative control. The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10 were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d. Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry.Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89%, Sn (67% and F (42% compared to DIW (all significantly different, p<0.05.This study highlighted that anti-erosion rinses (e.g. Sn+F can modify quantitatively and qualitatively the AEP formed on bovine enamel. Moreover, our study demonstrated a combinatory effect that amplified the anti-erosive protection on tooth surface.

  9. The development of enamel tubules during the formation of enamel in the marsupial Monodelphis domestica.

    OpenAIRE

    Sasagawa, I; Ferguson, M W

    1991-01-01

    In Monodelphis domestica, although both processes from odontoblasts and projections from ameloblasts were found in developing enamel, the majority of the contents of enamel tubules were probably processes that originated from odontoblasts. Processes from odontoblasts penetrating into enamel touched part of the ameloblasts in the stage of enamel formation. No specialised cell junctions were seen at the adherence between the two. There were no enamel tubules in the aprismatic and pseudoprismati...

  10. Determination of insoluble avian eggshell matrix proteins

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Sedláková, Pavla; Lacinová, Kateřina; Pataridis, Statis; Eckhardt, Adam

    2010-01-01

    Roč. 397, č. 1 (2010), s. 205-214 ISSN 1618-2642 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z50110509 Keywords : eggshell proteins * insoluble proteins * matrix proteins Subject RIV: CE - Biochemistry Impact factor: 3.841, year: 2010

  11. Three-dimensional primate molar enamel thickness.

    Science.gov (United States)

    Olejniczak, Anthony J; Tafforeau, Paul; Feeney, Robin N M; Martin, Lawrence B

    2008-02-01

    Molar enamel thickness has played an important role in the taxonomic, phylogenetic, and dietary assessments of fossil primate teeth for nearly 90 years. Despite the frequency with which enamel thickness is discussed in paleoanthropological discourse, methods used to attain information about enamel thickness are destructive and record information from only a single plane of section. Such semidestructive planar methods limit sample sizes and ignore dimensional data that may be culled from the entire length of a tooth. In light of recently developed techniques to investigate enamel thickness in 3D and the frequent use of enamel thickness in dietary and phylogenetic interpretations of living and fossil primates, the study presented here aims to produce and make available to other researchers a database of 3D enamel thickness measurements of primate molars (n=182 molars). The 3D enamel thickness measurements reported here generally agree with 2D studies. Hominoids show a broad range of relative enamel thicknesses, and cercopithecoids have relatively thicker enamel than ceboids, which in turn have relatively thicker enamel than strepsirrhine primates, on average. Past studies performed using 2D sections appear to have accurately diagnosed the 3D relative enamel thickness condition in great apes and humans: Gorilla has the relatively thinnest enamel, Pan has relatively thinner enamel than Pongo, and Homo has the relatively thickest enamel. Although the data set presented here has some taxonomic gaps, it may serve as a useful reference for researchers investigating enamel thickness in fossil taxa and studies of primate gnathic biology.

  12. Hipoplasia Enamel Pada Penderita Penyakit Eksantema

    OpenAIRE

    Dewi saputri

    2008-01-01

    Hipoplasia enamel merupakan gangguan pada masa pemhentukan matriks organik yang menyebabkan gangguan struktur pada enamel sehingga secara klinis terlihat pada suatu bagian dari gigi tidak terbentuk enamel dan kadang-kadang sama sekali tidak terbentuk enamel, serta diikuti dengan perubahan warna pada gigi. Dikenal berbagai faktor penyebab hipoplasia enamel, salah satunya adalah penyakit eksantema yaitu menyebabkan infeksi pada bayi dan anak-anak. Gambaran histopatologis hipoplasia enamel adala...

  13. Deformation behavior of human enamel and dentin-enamel junction under compression.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  14. Ultrastructural and immunocytochemical characterization of ameloblast-enamel adhesion at maturation stage in amelogenesis in Macaca fuscata tooth germ.

    Science.gov (United States)

    Sawada, Takashi

    2015-12-01

    Maturation-stage ameloblasts are firmly bound to the tooth enamel by a basal lamina-like structure. The mechanism underlying this adhesion, however, remains to be fully clarified. The goal of this study was to investigate the mechanism underlying adhesion between the basal lamina-like structure and the enamel in monkey tooth germ. High-resolution immunogold labeling was performed to localize amelotin and laminin 332 at the interface between ameloblasts and tooth enamel. Minute, electron-dense strands were observed on the enamel side of the lamina densa, extending into the degrading enamel matrix to produce a well-developed fibrous layer (lamina fibroreticularis). In un-demineralized tissue sections, mineral crystals smaller than those in the bulk of the enamel were observed adhering to these strands where they protruded into the surface enamel. Immunogold particles reactive for amelotin were preferentially localized on these strands in the fibrous layer. On the other hand, those for laminin 332 were localized solely in the lamina densa; none were observed in the fibrous layer. These results suggest that the fibrous layer of the basal lamina-like structure is partly composed of amelotin molecules, and that these molecules facilitate ameloblast-enamel adhesion by promoting mineralization of the fibrous layer during the maturation stage of amelogenesis.

  15. Silicate enamel for alloyed steel

    International Nuclear Information System (INIS)

    Ket'ko, K.K.

    1976-01-01

    The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru

  16. A Fourth KLK4 Mutation Is Associated with Enamel Hypomineralisation and Structural Abnormalities

    Directory of Open Access Journals (Sweden)

    Claire E. L. Smith

    2017-05-01

    Full Text Available “Amelogenesis imperfecta” (AI describes a group of genetic conditions that result in defects in tooth enamel formation. Mutations in many genes are known to cause AI, including the gene encoding the serine protease, kallikrein related peptidase 4 (KLK4, expressed during the maturation stage of amelogenesis. In this study we report the fourth KLK4 mutation to be identified in autosomal recessively-inherited hypomaturation type AI, c.632delT, p.(L211Rfs*37 (NM_004917.4, NP_004908.4. This homozygous variant was identified in five Pakistani AI families and is predicted to result in a transcript with a premature stop codon that escapes nonsense mediated decay. However, the protein may misfold, as three of six disulphide bonds would be disrupted, and may be degraded or non-functional as a result. Primary teeth were obtained from one affected individual. The enamel phenotype was characterized using high-resolution computerized X-ray tomography (CT, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX, and microhardness testing (MH. Enamel from the affected individual (referred to as KLK4 enamel was hypomineralised in comparison with matched control enamel. Furthermore, KLK4 inner enamel was hypomineralised compared with KLK4 outer enamel. SEM showed a clear structural demarcation between KLK4 inner and outer enamel, although enamel structure was similar to control tissue overall. EDX showed that KLK4 inner enamel contained less calcium and phosphorus and more nitrogen than control inner enamel and KLK4 outer enamel. MH testing showed that KLK4 inner enamel was significantly softer than KLK4 outer enamel (p < 0.001. However, the hardness of control inner enamel was not significantly different to that of control outer enamel. Overall, these findings suggest that the KLK4 c.632delT mutation may be a common cause of autosomal recessive AI in the Pakistani population. The phenotype data obtained mirror findings in the Klk4

  17. Enamel matrix derivative (Emdogain) for periodontal tissue regeneration in intrabony defects. A Cochrane systematic review.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Papanikolaou, Nikolaos; Coulthard, Paul; Worthington, Helen V

    2009-01-01

    Periodontitis is a chronic infective disease of the gums caused by bacteria present in dental plaque. This condition induces the breakdown of the tooth supporting apparatus until teeth are lost. Surgery may be indicated to arrest disease progression and regenerate lost tissues. Several surgical techniques have been developed to regenerate periodontal tissues including guided tissue regeneration (GTR), bone grafting (BG) and the use of enamel matrix derivative (EMD). EMD is an extract of enamel matrix and contains amelogenins of various molecular weights. Amelogenins are involved in the formation of enamel and periodontal attachment formation during tooth development. To test whether EMD is effective, and to compare EMD versus GTR, and various BG procedures for the treatment of intrabony defects. The Cochrane Oral Health Group Trials Register, CENTRAL, MEDLINE and EMBASE were searched. Several dental journals were hand searched. No language restrictions were applied. Authors of randomised controlled trials (RCTs) identified, personal contacts and the manufacturer were contacted to identify unpublished trials. The last electronic search was conducted on 4 February 2009. RCTs on patients affected by periodontitis having intrabony defects of at least 3 mm treated with EMD compared with open flap debridement, GTR and various BG procedures with at least 1 year of follow-up. The outcome measures considered were: tooth loss, changes in probing attachment levels (PAL), pocket depths (PPD), gingival recessions (REC), bone levels from the bottom of the defects on intraoral radiographs, aesthetics and adverse events. The following time points were to be evaluated: 1, 5 and 10 years. Screening of eligible studies, assessment of the methodological quality of the trials and data extraction were conducted in duplicate and independently by at least two authors. Results were expressed as random-effects models using mean differences for continuous outcomes and risk ratios (RR) for

  18. Ameloblasts require active RhoA to generate normal dental enamel.

    Science.gov (United States)

    Xue, Hui; Li, Yong; Everett, Eric T; Ryan, Kathleen; Peng, Li; Porecha, Rakhee; Yan, Yan; Lucchese, Anna M; Kuehl, Melissa A; Pugach, Megan K; Bouchard, Jessica; Gibson, Carolyn W

    2013-08-01

    RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited. © 2013 Eur J Oral Sci.

  19. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  20. Structural, mechanical and chemical evaluation of molar-incisor hypomineralization-affected enamel: A systematic review.

    Science.gov (United States)

    Elhennawy, Karim; Manton, David John; Crombie, Felicity; Zaslansky, Paul; Radlanski, Ralf J; Jost-Brinkmann, Paul-Georg; Schwendicke, Falk

    2017-11-01

    To systematically assess and contrast reported differences in microstructure, mineral density, mechanical and chemical properties between molar-incisor-hypomineralization-affected (MIH) enamel and unaffected enamel. Studies on extracted human teeth, clinically diagnosed with MIH, reporting on the microstructure, mechanical properties or the chemical composition and comparing them to unaffected enamel were reviewed. Electronic databases (PubMed, Embase and Google Scholar) were screened; hand searches and cross-referencing were also performed. Twenty-two studies were included. Fifteen studies on a total of 201 teeth investigated the structural properties, including ten (141 teeth) on microstructure and seven (60 teeth) on mineral density; six (29 teeth) investigated the mechanical properties and eleven (87 teeth) investigated the chemical properties of MIH-affected enamel and compared them to unaffected enamel. Studies unambiguously found a reduction in mineral quantity and quality (reduced Ca and P content), reduction of hardness and modulus of elasticity (also in the clinically sound-appearing enamel bordering the MIH-lesion), an increase in porosity, carbon/carbonate concentrations and protein content compared to unaffected enamel. were ambiguous with regard to the extent of the lesion through the enamel to the enamel-dentin junction, the Ca/P ratio and the association between clinical appearance and defect severity. There is an understanding of the changes related to MIH-affected enamel. The association of these changes with the clinical appearance and resulting implications for clinical management are unclear. MIH-affected enamel is greatly different from unaffected enamel. This has implications for management strategies. The possibility of correlating the clinical appearance of MIH-affected enamel with the severity of enamel changes and deducing clinical concepts (risk stratification etc.) is limited. Crown Copyright © 2017. Published by Elsevier Ltd. All

  1. Graphene oxide as a protein matrix: influence on protein biophysical properties.

    Science.gov (United States)

    Hernández-Cancel, Griselle; Suazo-Dávila, Dámaris; Ojeda-Cruzado, Axel J; García-Torres, Desiree; Cabrera, Carlos R; Griebenow, Kai

    2015-10-19

    This study provides fundamental information on the influence of graphene oxide (GO) nanosheets and glycans on protein catalytic activity, dynamics, and thermal stability. We provide evidence of protein stabilization by glycans and how this strategy could be implemented when GO nanosheets is used as protein immobilization matrix. A series of bioconjugates was constructed using two different strategies: adsorbing or covalently attaching native and glycosylated bilirubin oxidase (BOD) to GO. Bioconjugate formation was followed by FT-IR, zeta-potential, and X-ray photoelectron spectroscopy measurements. Enzyme kinetic parameters (k(m) and k(cat)) revealed that the substrate binding affinity was not affected by glycosylation and immobilization on GO, but the rate of enzyme catalysis was reduced. Structural analysis by circular dichroism showed that glycosylation did not affect the tertiary or the secondary structure of BOD. However, GO produced slight changes in the secondary structure. To shed light into the biophysical consequence of protein glycosylation and protein immobilization on GO nanosheets, we studied structural protein dynamical changes by FT-IR H/D exchange and thermal inactivation. It was found that glycosylation caused a reduction in structural dynamics that resulted in an increase in thermostability and a decrease in the catalytic activity for both, glycoconjugate and immobilized enzyme. These results establish the usefulness of chemical glycosylation to modulate protein structural dynamics and stability to develop a more stable GO-protein matrix.

  2. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    Science.gov (United States)

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  3. A detailed study of enamel hypoplasia in a post-medieval adolescent of known age and sex.

    Science.gov (United States)

    King, T; Hillson, S; Humphrey, L T

    2002-01-01

    Developmental disturbances that affect the secretion of enamel matrix can cause defective enamel structure. Linear hypoplasia is one type of enamel defect and manifests itself as a furrow that runs around the circumference of the tooth. Such defects range in size from the microscopic to those that are several millimetres wide. Enamel defects have been widely used by anthropologists for the investigation of growth disruptions in past populations, as they provide a permanent record of disturbances during much of a child's developmental period. This is a detailed case study of enamel growth disruptions in a 15-year-old female from the 18th and 19th century crypt of Christ Church, Spitalfields. The method used relates linear enamel hypoplasia to the incremental structures in the enamel surface, the perikymata, in order to investigate the timing of growth disturbances. Linear enamel hypoplasia was defined here as a greater than expected spacing between neighbouring pairs of perikymata. In addition, this study used recently published histological data on the precise timing of tooth development to establish chronologies for growth disruptions. Defects were matched in at least two teeth with overlapping developmental schedules to ensure that systemic disturbances, as opposed to localised traumas, were identified. Thirteen enamel defects were matched between five different teeth from the same individual from Spitalfields. Most linear enamel hypoplasias were evident on the anterior dentition. Using an 8-day average perikymata periodicity, the age at first defect in this individual was calculated as 1.5 years and the last growth disruption occurred when she was 4.6 years of age. The distribution of the defects was examined to identify any seasonal pattern in the occurrence of the growth disturbances.

  4. A comparative study on component volumes from outer to inner dental enamel in relation to enamel tufts.

    Science.gov (United States)

    Setally Azevedo Macena, Marcus; de Alencar e Silva Leite, Maria Luísa; de Lima Gouveia, Cíntia; de Lima, Tamires Alcoforado Sena; Athayde, Priscilla Alves Aguiar; de Sousa, Frederico Barbosa

    2014-06-01

    Dental enamel presents marked mechanical properties gradients from outer to inner enamel, a region lacking component volumes profiles. Tufts, structures of inner enamel, have been shown to play a role in enamel resilience. We aimed at comparing component volumes from inner to outer enamel in relation to enamel tufts. Transversal ground sections from the cervical half of unerupted human third molars (n=10) were prepared and histological points were selected along transversal lines (extending from innermost to outer enamel) traced across tufts and adjacent control areas without tufts. Component volumes were measured at each histological point. Component volumes ranges were: 70.6-98.5% (mineral), 0.02-20.78% (organic), 3.8-9.8% (total water), 3-9% (firmly bound water), and 0.02-3.3% (loosely bound water). Inner enamel presented the lowest mineral volumes and the highest non-mineral volumes. Mineral, water and organic contents differed as a function of the distance from innermost enamel but not between the tuft and control lines. Tufts presented opaqueness in polarizing microscopy (feature of fracture lines). Organic volume gradient correlated with a relatively flat profile of loosely bound water. Inner, but not outer enamel, rehydrated after air-dried enamel was heated to 50°C and re-exposed to room conditions, as predicted by the organic/water gradient profiles. Component volumes vary markedly from outer to inner enamel, but not between areas with or without tufts (that behave like fracture lines under polarizing microscopy). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse

    NARCIS (Netherlands)

    Jalali, R.; Guo, J.; Zandieh-Doulabi, B.; Bervoets, T.J.M.; Paine, M.L.; Boron, W.F.; Parker, M.D.; Bijvelds, M.J.C.; Medina, J.F.; DenBesten, P.K.; Bronckers, A.L.J.J.

    2014-01-01

    During the formation of dental enamel, maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by cotransporting HCO3 − with Na+. Mutation in SLC4A4 (coding for the sodium-bicarbonate

  6. Morphology and fracture of enamel.

    Science.gov (United States)

    Myoung, Sangwon; Lee, James; Constantino, Paul; Lucas, Peter; Chai, Herzl; Lawn, Brian

    2009-08-25

    This study examines the inter-relation between enamel morphology and crack resistance by sectioning extracted human molars after loading to fracture. Cracks appear to initiate from tufts, hypocalcified defects at the enamel-dentin junction, and grow longitudinally around the enamel coat to produce failure. Microindentation corner cracks placed next to the tufts in the sections deflect along the tuft interfaces and occasionally penetrate into the adjacent enamel. Although they constitute weak interfaces, the tufts are nevertheless filled with organic matter, and appear to be stabilized against easy extension by self-healing, as well as by mutual stress-shielding and decussation, accounting at least in part for the capacity of tooth enamel to survive high functional forces.

  7. Hen's teeth with enamel cap: from dream to impossibility

    Directory of Open Access Journals (Sweden)

    Girondot Marc

    2008-09-01

    Full Text Available Abstract Background The ability to form teeth was lost in an ancestor of all modern birds, approximately 100-80 million years ago. However, experiments in chicken have revealed that the oral epithelium can respond to inductive signals from mouse mesenchyme, leading to reactivation of the odontogenic pathway. Recently, tooth germs similar to crocodile rudimentary teeth were found in a chicken mutant. These "chicken teeth" did not develop further, but the question remains whether functional teeth with enamel cap would have been obtained if the experiments had been carried out over a longer time period or if the chicken mutants had survived. The next odontogenetic step would have been tooth differentiation, involving deposition of dental proteins. Results Using bioinformatics, we assessed the fate of the four dental proteins thought to be specific to enamel (amelogenin, AMEL; ameloblastin, AMBN; enamelin, ENAM and to dentin (dentin sialophosphoprotein, DSPP in the chicken genome. Conservation of gene synteny in amniotes allowed definition of target DNA regions in which we searched for sequence similarity. We found the full-length chicken AMEL and the only N-terminal region of DSPP, and both are invalidated genes. AMBN and ENAM disappeared after chromosomal rearrangements occurred in the candidate region in a bird ancestor. Conclusion These findings not only imply that functional teeth with enamel covering, as present in ancestral Aves, will never be obtained in birds, but they also indicate that these four protein genes were dental specific, at least in the last toothed ancestor of modern birds, a specificity which has been questioned in recent years.

  8. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S; Chen, Faye H

    2012-04-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention.

  9. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  10. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel

    OpenAIRE

    Sabel, N.; Robertson, A.; Nietzsche, S.; Norén, J. G.

    2012-01-01

    Enamel structure is of importance in demineralization. Differences in porosity in enamel effect the rate of demineralization, seen between permanent and deciduous teeth. Individual differences have been shown in the mean mineral concentration values in enamel, the role of this in demineralization is not thoroughly investigated. The aim of this study was to study variations of depths of artificial lesions of demineralization and to analyze the depth in relation to variations in the chemical an...

  11. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  12. Conformational plasticity of the Ebola virus matrix protein.

    Science.gov (United States)

    Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried

    2014-11-01

    Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.

  13. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    Energy Technology Data Exchange (ETDEWEB)

    Assenberg, René [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Delmas, Olivier [UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris CEDEX 15 (France); Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J. [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Bourhy, Hervé [UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris CEDEX 15 (France); Grimes, Jonathan M., E-mail: jonathan@strubi.ox.ac.uk [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

  14. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    International Nuclear Information System (INIS)

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-01-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6 1 22 or P6 5 22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress

  15. Mechanical characterization of enamel coated steel bars.

    Science.gov (United States)

    2012-12-01

    In this study, the corrosion process of enamel-coated deformed rebar completely immersed in 3.5 wt.% NaCl solution was evaluated : over a period of 84 days by EIS testing. Three types of enamel coating were investigated: pure enamel, 50/50 enamel coa...

  16. An association of external and internal enamel pearls.

    OpenAIRE

    Mahajan S; Charan C

    2005-01-01

    We report a rare case of an association of external enamel pearl with internal enamel pearl on the root of a molar. To the best of our knowledge, association of external and internal enamel pearls has not been previously reported. We discussed the histogenesis of enamel pearls and proposed that internal enamel pearl formation may be a continuation of formation of external enamel pearl.

  17. Properties of hot rolled steels for enamelling

    International Nuclear Information System (INIS)

    Gavrilovski, Dragica; Gavrilovski, Milorad

    2003-01-01

    The results of an investigation of the structure and properties of experimental produced hot rolled steels suitable for enamelling are presented in the paper. Hot rolled steels for enamelling represent a special group of the steels for conventional enamelling. Their quality has to be adapted to the method and conditions of enamelling. Therefore, these steels should meet some specific requirements. In addition to usual investigation of the chemical composition and mechanical properties, microstructure and quality of the steel surface also were investigated. The basic aim was to examine steels capability for enamelling, i. e. steels resistance to the fish scales phenomena, by trial enamelling, as well as quality of the steel - enamel contact surface, to evaluate the binding. Also, the changes of the mechanical properties, especially the yield point, during thermal treatment, as a very specific requirement, were investigated, by simplified method. Good results were obtained confirming the steels capability for enamelling. (Original)

  18. The fracture behaviour of dental enamel

    OpenAIRE

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A.

    2009-01-01

    Abstract Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterised in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge...

  19. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    Science.gov (United States)

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  20. Distance matrix-based approach to protein structure prediction.

    Science.gov (United States)

    Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr

    2009-03-01

    Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r(ij)(2)] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r (ij) is greater or less than a cutoff value r (cutoff). We have performed spectral decomposition of the distance matrices D = sigma lambda(k)V(k)V(kT), in terms of eigenvalues lambda kappa and the corresponding eigenvectors v kappa and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r (2)--the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r (2) from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 A, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 A. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the

  1. Domain organizations of modular extracellular matrix proteins and their evolution.

    Science.gov (United States)

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  2. Comparison of shear bond strength between unfilled resin to dry enamel and dentin bonding to moist and dry enamel

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-05-01

    Full Text Available Statement of Problem: The use of dentine bondings on enamel and dentin in total etch protocols has recently become popular. Unfilled resin is hydrophobic and dentin bonding is hydrophilic in nature. This chemical difference could be effective in enamel bonding process. Purpose: The aim of this study was to compare the shear bond strength of unfilled resin to dry enamel and dentin bonding to dry and moist enamel. Materials and Methods: In this experimental study, a total of 30 incisor teeth were used. The specimens were randomly assigned to three groups of 10. 37% phosphoric acid etchant was applied to the enamel surfaces in each group for 15 seconds, rinsed with water for 20 seconds and dried for 20 seconds with compressed air in groups one and two. After conditioning, group 1 received unfilled resin (Margin Bond, Colten and group 2 received dentin bonding (Single Bond, 3M and in group 3 after conditioning and rinsing with water, a layer of dentin bonding (Single Bond was applied on wet enamel. The enamel and dentin bonding were light cured for 20 seconds. A ring mold 3.5 mm in diameter and 2 mm height was placed over the specimens to receive the composite filling material (Z100, 3M. The composite was cured for 40 seconds. The specimens were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. The findings were analyzed by ANOVA One-Way and Tukey HSD tests. Results: Shear bond strength of dentin bonding to dry enamel was significantly less than unfilled resin to dry enamel (P<0.05. There was no significant difference between the bond strength of dentin bonding to moist and dry enamel. In addition bond strength of dentin bonding to wet enamel was not significantly different from unfilled resin to dry enamel. Conclusion: Based on the findings of this study, it is suggested that enamel surface should remain slightly moist after etching before bonding with single bond but when using unfilled resin, the

  3. A New Sugarcane Cystatin Strongly Binds to Dental Enamel and Reduces Erosion.

    Science.gov (United States)

    Santiago, A C; Khan, Z N; Miguel, M C; Gironda, C C; Soares-Costa, A; Pelá, V T; Leite, A L; Edwardson, J M; Buzalaf, M A R; Henrique-Silva, F

    2017-08-01

    Cystatin B was recently identified as an acid-resistant protein in acquired enamel pellicle; it could therefore be included in oral products to protect against caries and erosion. However, human recombinant cystatin is very expensive, and alternatives to its use are necessary. Phytocystatins are reversible inhibitors of cysteine peptidases that are found naturally in plants. In plants, they have several biological and physiological functions, such as the regulation of endogenous processes, defense against pathogens, and response to abiotic stress. Previous studies performed by our research group have reported high inhibitory activity and potential agricultural and medical applications of several sugarcane cystatins, including CaneCPI-1, CaneCPI-2, CaneCPI-3, and CaneCPI-4. In the present study, we report the characterization of a novel sugarcane cystatin, named CaneCPI-5. This cystatin was efficiently expressed in Escherichia coli, and inhibitory assays demonstrated that it was a potent inhibitor of human cathepsins B, K, and L ( K i = 6.87, 0.49, and 0.34 nM, respectively). The ability of CaneCPI-5 to bind to dental enamel was evaluated using atomic force microscopy. Its capacity to protect against initial enamel erosion was also tested in vitro via changes in surface hardness. CaneCPI-5 showed a very large force of interaction with enamel (e.g., compared with mucin and casein) and significantly reduced initial enamel erosion. These results suggest that the inclusion of CaneCPIs in dental products might confer protection against enamel erosion.

  4. Alteration of dentin-enamel mechanical properties due to dental whitening treatments.

    Science.gov (United States)

    Zimmerman, B; Datko, L; Cupelli, M; Alapati, S; Dean, D; Kennedy, M

    2010-05-01

    The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0 GPa versus 113.4 GPa), while smaller increases were observed in the dentin (17.9 GPa versus 27.9 GPa). Likewise, there was an increase in the hardness of enamel (2.0 GPa versus 4.3 GPa) and dentin (0.5 GPa versus 0.7 GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in the literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips, Opalescence or UltraEtch caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips showed a reduction in the elastic modulus of enamel (55.3 GPa to 32.7 GPa) and increase in the elastic modulus of dentin (17.2 GPa to 24.3 GPa). Opalescence treatments did not significantly affect the enamel properties, but did result in a decrease in the modulus of dentin (18.5 GPa to 15.1 GPa). Additionally, as expected, UltraEtch treatment decreased the modulus and hardness of enamel (48.7 GPa to 38.0 GPa and 1.9 GPa to 1.5 GPa, respectively) and dentin (21.4 GPa to 15.0 GPa and 1.9 GPa to 1.5 GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. Published by Elsevier Ltd.

  5. Effect of colchicine on the transport of precursor enamel protein in secretory ameloblasts studied by 3H-proline radioautography in vitro

    International Nuclear Information System (INIS)

    Matsuo, S.; Takano, Y.; Wakisaka, S.; Ichikawa, H.; Nishikawa, S.; Akai, M.

    1988-01-01

    The incorporation of 3H-proline into the secretory ameloblasts of rat molar tooth germs cultured with or without colchicine was studied by light and electron microscope radioautography to determine the function of microtubules in the transport of precursor enamel protein from the rough-surfaced endoplasmic reticulum (rER) to the Golgi cisternae. The grain counts over the transitional vesicles, which accumulated in various cellular regions with colchicine treatment, continued to increase with chase time, unlike in controls. At 30 and 90 min chase, these counts were significantly higher than in controls. Moreover, the total grain count over the organelles (rER, pale granules, and transitional vesicles), which are positioned before the Golgi cisternae in the synthetic pathway, maintained a significantly higher level at 90 min chase in colchicine-treated tooth germs than in controls. The transport of synthesized protein to the Golgi cisternae via transitional vesicles was suppressed in colchicine-treated tooth germs. Some grains appeared with time over pale granular materials that appeared in the intercellular spaces of secretory ameloblasts with colchicine treatment. However, at each chase period, the grain count over pale granular materials was not so high as the count over the enamel in control. The present results indicate that colchicine affects the transport of newly synthesized protein from the rER to the Golgi cisterna via transitional vesicles, probably by interfering with the oriented transport related to microtubular function. It is suggested that the microtubular system may be concerned with the movement of the transitional vesicles

  6. Measurement of opalescence of tooth enamel.

    Science.gov (United States)

    Lee, Yong-Keun; Yu, Bin

    2007-08-01

    Opalescent dental esthetic restoratives look natural and esthetic in any light, react to light in the same manner as the natural tooth and show improved masking effect. The objective of this study was to determine the opalescence of tooth enamel with reflection spectrophotometers. Color of intact bovine and human enamel was measured in the reflectance and transmittance modes. Two kinds of spectrophotometers were used for bovine and one kind was used for human enamel. The opalescence parameter (OP) was calculated as the difference in yellow-blue color coordinate (CIE Deltab(*)) and red-green color coordinate (CIE Deltaa(*)) between the reflected and transmitted colors. Mean OP value of bovine enamel was 10.6 (+/-1.4) to 19.0 (+/-2.1), and varied by the configuration of spectrophotometers. Mean OP value of human enamel was 22.9 (+/-1.9). Opalescence varied by the configuration of measuring spectrophotometer and the species of enamel. These values could be used in the development of esthetic restorative materials.

  7. In vitro study of hydroxy apatite and enamel powder fused in human enamel by Nd:YAG laser

    International Nuclear Information System (INIS)

    Ferrreira, Marcus Vinicius Lucas

    2000-01-01

    The aim of this study was to evaluate the effects of pulsed Nd:YAG (1064 nm) laser irradiation on hydroxyapatite and enamel powder fusion. This laser beam is not well absorbed by this two compounds for this reason they were mixed with vegetal coal to increase the absorption of the laser beam. Fifteen enamel flat surfaces and six occlusal enamel surfaces were prepared with three different substances: hydroxyapatite mixed with vegetal coal (3:1 in weigh); enamel powder mixed with vegetal coal (3:1 in weigh); vegetal coal. The occlusal surfaces were utilized to determine if the compounds could seal pits and fissures. Flat surfaces were utilized to determine fusion of hydroxyapatite and enamel powder. All samples were irradiated with Nd:YAG laser with the parameters: 80 mJ, 15 Hz, 1,2 W, 100 μs pulse-width, 131,1 J/cm 2 . Laser beam was delivered to the samples with a 300 μm diameter fiber optic. Morphology of the irradiated surfaces were examined by scanning electron microscopy (SEM). The compounds with hydroxyapatite and enamel powder were fused to enamel surfaces. Only partial pits and fissures sealing could be observed. (author)

  8. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  9. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice

    Directory of Open Access Journals (Sweden)

    Kaifeng Yin

    2017-05-01

    Full Text Available Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7, which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.

  10. In vivo extracellular matrix protein expression by human periodontal ...

    African Journals Online (AJOL)

    It is well known that the orthodontic force applied to teeth generates a series of events that remodel the periodontal ligament (PDL). Extracellular matrix proteins (ECM) are described as molecular regulators of these events. However, the exact contribution of these proteins in human PDL modeling by orthodontic force ...

  11. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations.

    Science.gov (United States)

    Ito, Mikako; Ohno, Kinji

    2018-02-20

    Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression

  12. Distribution of the amelogenin protein in developing, injured and carious human teeth

    Directory of Open Access Journals (Sweden)

    Thimios eMitsiadis

    2014-12-01

    Full Text Available Amelogenin is the major enamel matrix protein with key roles in amelogenesis. Although for many decades amelogenin was considered to be exclusively expressed by ameloblasts, more recent studies have shown that amelogenin is also expressed in other dental and no-dental cells. However, amelogenin expression in human tissues remains unclear. Here, we show that amelogenin protein is not only expressed during human embryonic development but also in pathological conditions such as carious lesions and injuries after dental cavity preparation. In developing embryonic teeth, amelogenin stage-specific expression is found in all dental epithelia cell populations but with different instensities. In the different layers of enamel matrix, waves of positive versus negative immunostaining for amelogenin are detected suggesting that the secretion of amelogenin protein is orchestreted by a biological clock. Amelogenin is also expressed transiently in differentiating odontoblasts during predentin formation, but was absent in mature functional odontoblasts. In intact adult teeth, amelogenin was not present in dental pulp, odontoblasts, and dentin. However, in injured and carious adult human teeth amelogenin is strongly re-expressed in newly differentiated odontoblasts and is distributed in the dentinal tubuli under the lesion site. In an in vitro culture system, amelogenin is expressed preferentially in human dental pulp cells that start differentiating into odontoblast-like cells and form mineralization nodules. These data suggest that amelogenin plays important roles not only during cytodifferentiation, but also during tooth repair processes in humans.

  13. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  14. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  15. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    Science.gov (United States)

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Chemical/molecular structure of the dentin-enamel junction is dependent on the intratooth location.

    Science.gov (United States)

    Xu, Changqi; Yao, Xiaomei; Walker, Mary P; Wang, Yong

    2009-03-01

    The dentin-enamel junction (DEJ) plays an important role in preventing crack propagation from enamel into dentin. This function stems from its complex structure and materials properties that are different from either dentin or enamel. The molecular structural differences in both mineral and organic matrix across the DEJ zone were investigated by two-dimensional confocal Raman microspectroscopic mapping/imaging technique. The intensity ratios of 1450 (CH, matrix)/960 (P-O, mineral) decreased gradually to nearly zero across the DEJ. The width of this transition zone was dependent on the intratooth location, with 12.9 +/- 3.2 microm width at occlusal positions and 6.2 +/- 1.3 microm at cervical positions. The difference in width was significant (P < 0.001). Concurrently, spectral differences in both organic and inorganic matrices across the DEJ were also noted. For example, the ratios of 1243 (amide III)/1450 (CH) within the DEJ were lower than the values in dentin; however, the ratios of 1665 (amide I)/1450 (CH) within the DEJ were higher than those values in dentin. In addition, the ratios of 1070 (carbonate)/960 (phosphate) within the dentin were lower than the values in the DEJ. Raman images indicated that the distribution of the above ratios across the DEJ zone were also different at occlusal and cervical positions. The results suggest that the intratooth-location-dependent structure of the DEJ may be related to its function. Micro-Raman spectroscopic/imaging analysis of the DEJ provides a powerful means of identifying the functional width and molecular structural differences across the DEJ.

  17. Interactions of rat repetitive sequence MspI8 with nuclear matrix proteins during spermatogenesis

    International Nuclear Information System (INIS)

    Rogolinski, J.; Widlak, P.; Rzeszowska-Wolny, J.

    1996-01-01

    Using the Southwestern blot analysis we have studied the interactions between rat repetitive sequence MspI8 and the nuclear matrix proteins of rats testis cells. Starting from 2 weeks the young to adult animal showed differences in type of testis nuclear matrix proteins recognizing the MspI8 sequence. The same sets of nuclear matrix proteins were detected in some enriched in spermatocytes and spermatids and obtained after fractionation of cells of adult animal by the velocity sedimentation technique. (author). 21 refs, 5 figs

  18. The Role of Na:K:2Cl Cotransporter 1 (NKCC1/SLC12A2) in Dental Epithelium during Enamel Formation in Mice

    Science.gov (United States)

    Jalali, Rozita; Lodder, Johannes C.; Zandieh-Doulabi, Behrouz; Micha, Dimitra; Melvin, James E.; Catalan, Marcelo A.; Mansvelder, Huibert D.; DenBesten, Pamela; Bronckers, Antonius

    2017-01-01

    Na+:K+:2Cl− cotransporters (NKCCs) belong to the SLC12A family of cation-coupled Cl− transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for Nkcc1 were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer. In incisors of Nkcc1-null mice late maturation ameloblasts were disorganized, shorter and the mineral density of the enamel was reduced by 10% compared to wild-type controls. Protein levels of gap junction protein connexin 43, Na+-dependent bicarbonate cotransporter e1 (NBCe1), and the Cl−-dependent bicarbonate exchangers SLC26A3 and SLC26A6 were upregulated in Nkcc1-null enamel organs while the level of NCKX4/SLC24A4, the major K+, Na+ dependent Ca2+ transporter in maturation ameloblasts, was slightly downregulated. Whole-cell voltage clamp studies on rat ameloblast-like HAT-7 cells indicated that bumetanide increased ion-channel activity conducting outward currents. Bumetanide also reduced cell volume of HAT-7 cells. We concluded that non-ameloblast dental epithelium expresses NKCC1 to regulate cell volume in enamel organ and provide ameloblasts with Na+, K+ and Cl− ions required for the transport of mineral- and bicarbonate-ions into enamel. Absence of functional Nkcc1 likely is compensated by other types of ion channels and ion transporters. The increased amount of Cx43 in enamel organ cells in Nkcc1-null mice suggests that these cells display a higher number of gap junctions to increase intercellular communication. PMID:29209227

  19. Morphology of the cemento-enamel junction in premolar teeth.

    Science.gov (United States)

    Arambawatta, Kapila; Peiris, Roshan; Nanayakkara, Deepthi

    2009-12-01

    The present study attempted to describe the distribution of the mineralized tissues that compose the cemento-enamel junction, with respect to both the different types of permanent premolars of males and females and the various surfaces of individual teeth. The cervical region of ground sections of 67 premolars that had been extracted for orthodontic reasons were analyzed using transmitted light microscopy to identify which of the following tissue interrelationships was present at the cemento-enamel junction: cementum overlapping enamel; enamel overlapping cementum; edge-to-edge relationship between cementum and enamel; or the presence of gaps between the enamel and cementum with exposed dentin. An edge-to-edge interrelation between root cementum and enamel was predominant (55.1%). In approximately one-third of the sample, gaps between cementum and enamel with exposed dentin were observed. Cementum overlapping enamel was less prevalent than previously reported, and enamel overlapping cementum was seen in a very small proportion of the sample. In any one tooth, the distribution of mineralized tissues at the cemento-enamel junction was irregular and unpredictable. The frequency of gaps between enamel and cementum with exposure of dentin was higher than previously reported, which suggests that this region is fragile and strongly predisposed to pathological changes. Hence, this region should be protected and carefully managed during routine clinical procedures such as dental bleaching, orthodontic treatment, and placement of restorative materials.

  20. Studies of direct electroinsulating enamels

    International Nuclear Information System (INIS)

    Siwulski, S.; Gruszka, B.; Nocun, M.

    1998-01-01

    The results of studies on the influence of chemical composition of direct electroinsulating enamel on its properties were presented. The influence of alkaline Li 2 O, Na 2 O, K 2 O and adhesion promoting oxides CoO, NiO, CuO, MoO 3 on the frits properties were estimated. The characteristic temperature T g and T m as well as flowability were measured. The dielectric properties of frits and prepared enamels were also measured. Enamel substrates were prepared and tested for application in thick hybrid circuit technology. (author)

  1. Enamel subsurface damage due to tooth preparation with diamonds.

    Science.gov (United States)

    Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D

    1997-10-01

    In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.

  2. Decomposition of spectra in EPR dosimetry using the matrix method

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.

    2003-01-01

    The matrix method of EPR spectra decomposition is developed and adapted for routine application in retrospective EPR dosimetry with teeth. According to this method, the initial EPR spectra are decomposed (using methods of matrix algebra) into several reference components (reference matrices) that are specific for each material. Proposed procedure has been tested on the example of tooth enamel. Reference spectra were a spectrum of an empty sample tube and three standard signals of enamel (two at g=2.0045, both for the native signal and one at g perpendicular =2.0018, g parallel =1.9973 for the dosimetric signal). Values of dosimetric signals obtained using the given method have been compared with data obtained by manual manipulation of spectra, and good coincidence was observed. This allows considering the proposed method as potent for application in routine EPR dosimetry

  3. Ceramic-like wear behaviour of human dental enamel.

    Science.gov (United States)

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Morphogenetic roles of perlecan in the tooth enamel organ: an analysis of overexpression using transgenic mice.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Satokata, Ichiro; Ohshima, Hayato; Sato, Toshiya; Yokoyama, Minesuke; Yamada, Yoshihiko; Saku, Takashi

    2011-09-01

    Perlecan, a heparan sulfate proteoglycan, is enriched in the intercellular space of the enamel organ. To understand the role of perlecan in tooth morphogenesis, we used a keratin 5 promoter to generate transgenic (Tg) mice that over-express perlecan in epithelial cells, and examined their tooth germs at tissue and cellular levels. Immunohistochemistry showed that perlecan was more strongly expressed in the enamel organ cells of Tg mice than in wild-type mice. Histopathology showed wider intercellular spaces in the stellate reticulum of the Tg molars and loss of cellular polarity in the enamel organ, especially in its cervical region. Hertwig's epithelial root sheath (HERS) cells in Tg mice were irregularly aligned due to excessive deposits of perlecan along the inner, as well as on the outer sides of the HERS. Tg molars had dull-ended crowns and outward-curved tooth roots and their enamel was poorly crystallized, resulting in pronounced attrition of molar cusp areas. In Tg mice, expression of integrin β1 mRNA was remarkably higher at E18, while expression of bFGF, TGF-β1, DSPP and Shh was more elevated at P1. The overexpression of perlecan in the enamel organ resulted in irregular morphology of teeth, suggesting that the expression of perlecan regulates growth factor signaling in a stage-dependent manner during each step of the interaction between ameloblast-lineage cells and mesenchymal cells. Copyright © 2011 International Society of Matrix Biology. All rights reserved.

  5. In vivo extracellular matrix protein expression by human periodontal ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... Extracellular matrix proteins (ECM) are described as molecular regulators of these events. ..... zation and adhesive interaction of cells (Yamada, 1983). .... periodontal ligament fibroblasts after simulation of orthodontic force.

  6. Rhabdovirus matrix protein structures reveal a novel mode of self-association.

    Directory of Open Access Journals (Sweden)

    Stephen C Graham

    2008-12-01

    Full Text Available The matrix (M proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus and from Lagos bat virus (genus: Lyssavirus, revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins.

  7. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules.

    Science.gov (United States)

    Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter

    2006-05-01

    Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.

  8. Retrospective individual dosimetry using EPR of tooth enamel

    International Nuclear Information System (INIS)

    Skvortzo, V.; Ivannikov, A.; Stepanenko, V.; Wieser, A.; Bougai, A.; Brick, A.; Chumak, V.; Radchuk, V.; Repin, V.; Kirilov, V.

    1996-01-01

    The results of joint investigations (in the framework of ECP-10 program) aimed on the improvement of the sensitivity and accuracy of the procedure of dose measurement using tooth enamel EPR spectroscopy are presented. It is shown, what the sensitivity of method may be increased using special physical-chemical procedure of the enamel samples treatment, which leads to the reducing of EPR signal of organic components in enamel. Tooth diseases may have an effect on radiation sensitivity of enamel. On the basis of statistical analysis of the results of more then 2000 tooth enamel samples measurements it was shown, what tooth enamel EPR spectroscopy gives opportunity to register contribution into total dose, which is caused by natural environmental radiation and by radioactive contamination. EPR response of enamel to ultraviolet exposure is investigated and possible influences to EPR dosimetry is discussed. The correction factors for EPR dosimetry in real radiation fields are estimated

  9. A single peroxisomal targeting signal mediates matrix protein import in diatoms.

    Directory of Open Access Journals (Sweden)

    Nicola H Gonzalez

    Full Text Available Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1.

  10. Further morphological evidence on South African earliest Homo lower postcanine dentition: Enamel thickness and enamel dentine junction.

    Science.gov (United States)

    Pan, Lei; Dumoncel, Jean; de Beer, Frikkie; Hoffman, Jakobus; Thackeray, John Francis; Duployer, Benjamin; Tenailleau, Christophe; Braga, José

    2016-07-01

    The appearance of the earliest members of the genus Homo in South Africa represents a key event in human evolution. Although enamel thickness and enamel dentine junction (EDJ) morphology preserve important information about hominin systematics and dietary adaptation, these features have not been sufficiently studied with regard to early Homo. We used micro-CT to compare enamel thickness and EDJ morphology among the mandibular postcanine dentitions of South African early hominins (N = 30) and extant Homo sapiens (N = 26), with special reference to early members of the genus Homo. We found that South African early Homo shows a similar enamel thickness distribution pattern to modern humans, although three-dimensional average and relative enamel thicknesses do not distinguish australopiths, early Homo, and modern humans particularly well. Based on enamel thickness distributions, our study suggests that a dietary shift occurred between australopiths and the origin of the Homo lineage. We also observed that South African early Homo postcanine EDJ combined primitive traits seen in australopith molars with derived features observed in modern human premolars. Our results confirm that some dental morphological patterns in later Homo actually occurred early in the Homo lineage, and highlight the taxonomic value of premolar EDJ morphology in hominin species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT Slc13a5 deficient mice.

    Directory of Open Access Journals (Sweden)

    Armando R Irizarry

    Full Text Available There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.

  12. Cell differentiation and matrix organization in engineered teeth.

    Science.gov (United States)

    Nait Lechguer, A; Couble, M L; Labert, N; Kuchler-Bopp, S; Keller, L; Magloire, H; Bleicher, F; Lesot, H

    2011-05-01

    Embryonic dental cells were used to check a series of criteria to be achieved for tooth engineering. Implantation of cultured cell-cell re-associations led to crown morphogenesis, epithelial histogenesis, organ vascularization, and root and periodontium development. The present work aimed to investigate the organization of predentin/dentin, enamel, and cementum which formed and mineralized after implantation. These implants were processed for histology, transmission electron microscopy, x-ray microanalysis, and electron diffraction. After two weeks of implantation, the re-associations showed gradients of differentiating odontoblasts. There were ciliated, polarized, and extended cell processes in predentin/dentin. Ameloblasts became functional. Enamel crystals showed a typical oriented arrangement in the inner and outer enamel. In the developing root, odontoblasts differentiated, cementogenesis occurred, and periodontal ligament fibroblasts interacted with the root surface and newly formed bone. The implantation of cultured dental cell re-associations allows for reproduction of complete functional differentiation at the cell, matrix, and mineral levels.

  13. Near-UV laser treatment of extrinsic dental enamel stains.

    Science.gov (United States)

    Schoenly, J E; Seka, W; Featherstone, J D B; Rechmann, P

    2012-04-01

    The selective ablation of extrinsic dental enamel stains using a 400-nm laser is evaluated at several fluences for completely removing stains with minimal damage to the underlying enamel. A frequency-doubled Ti:sapphire laser (400-nm wavelength, 60-nanosecond pulse duration, 10-Hz repetition rate) was used to treat 10 extracted human teeth with extrinsic enamel staining. Each tooth was irradiated perpendicular to the surface in a back-and-forth motion over a 1-mm length using an ∼300-µm-diam 10th-order super-Gaussian beam with fluences ranging from 0.8 to 6.4 J/cm(2) . Laser triangulation determined stain depth and volume removed by measuring 3D surface images before and after irradiation. Scanning electron microscopy evaluated the surface roughness of enamel following stain removal. Fluorescence spectroscopy measured spectra of unbleached and photobleached stains in the spectral range of 600-800 nm. Extrinsic enamel stains are removed with laser fluences between 0.8 and 6.4 J/cm(2) . Stains removed on sound enamel leave behind a smooth enamel surface. Stain removal in areas with signs of earlier cariogenic acid attacks resulted in isolated and randomly located laser-induced, 50-µm-diam enamel pits. These pits contain 0.5-µm diam, smooth craters indicative of heat transfer from the stain to the enamel and subsequent melting and water droplet ejection. Ablation stalling of enamel stains is typically observed at low fluences (Laser ablation of extrinsic enamel stains at 400 nm is observed to be most efficient above 3 J/cm(2) with minimal damage to the underlying enamel. Unsound underlying enamel is also observed to be selectively removed after irradiation. Copyright © 2012 Wiley Periodicals, Inc.

  14. On the mechanical properties of tooth enamel under spherical indentation.

    Science.gov (United States)

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. A major protein component of the Bacillus subtilis biofilm matrix.

    Science.gov (United States)

    Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto

    2006-02-01

    Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.

  16. Fluoride varnishes and enamel caries

    NARCIS (Netherlands)

    Bruyn, Hugo de

    1987-01-01

    Topical fluoride applications have the aim of increasing the fluoride uptake in enamel and consequently reducing caries. In the early ‘60s fluoride varnishes were introduced because they had a long contact period with the enamel which resulted in a higher fluoride uptake than from other topical

  17. Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    2011-03-01

    Full Text Available Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL, the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates.

  18. Fluoride uptake from restorative dental materials by human enamel

    International Nuclear Information System (INIS)

    Forsten, L.; Rytoemaa, I.; Anttila, A.; Keinonen, J.

    1976-01-01

    The purpose of the study was to determine the uptake in vitro of fluoride from restorative materials by tooth enamel and whether prior etching of the enamel causes a change of uptake. The outermost layer of the labial surface of extracted canines was removed by grinding and the enamel was covered with five different fluoride-containing materials ; a silicate, a composite resin, an amalgam, a silicophosphate, and a polycarboxylate luting cement. The material was either removed immediately or after storing the tooth in distilled water. The fluoride content was determined using a sensitive physical method based on the 19 F (p, αγ) 16 O reaction. In addition, the fluoride content of enamel after etching for different periods of time and of etched enamel which had been in contact with silicate cement was determined. The mean fluoride content of uncovered interior enamel was 226 parts 10 6 . All materials, except the composite, increased clearly the fluoride content of the underlying enamel. Etching of interior enamel also increased the fluoride values. No difference could be shown in fluoride uptake from silicate and composite resin between etched and unetched enamel. (author)

  19. ON THE R-CURVE BEHAVIOR OF HUMAN TOOTH ENAMEL

    OpenAIRE

    Bajaj, Devendra; Arola, Dwayne

    2009-01-01

    In this study the crack growth resistance behavior and fracture toughness of human tooth enamel were quantified using incremental crack growth measures and conventional fracture mechanics. Results showed that enamel undergoes an increase in crack growth resistance (i.e. rising R-curve) with crack extension from the outer to the inner enamel, and that the rise in toughness is function of distance from the Dentin Enamel Junction (DEJ). The outer enamel exhibited the lowest apparent toughness (0...

  20. Suppression of matrix protein synthesis in endothelial cells by herpes simplex virus is not dependent on viral protein synthesis

    International Nuclear Information System (INIS)

    Kefalides, N.A.

    1986-01-01

    The synthesis of matrix proteins by human endothelial cells (EC) in vitro was studied before and at various times after infection with Herpes Simplex virus Type 1 (HSV-1) or 2 (HSV-2). Monolayers of EC were either mock-infected or infected with virus for 1 hr at a multiplicity infection (MOI) of 5 to 20 at 37 0 C. Control and infected cultures were pulse-labeled for 1 or 2 hrs with either [ 14 C]proline or [ 35 S]methionine. Synthesis of labeled matrix proteins was determined by SDS-gel electrophoresis. Suppression of synthesis of fibronectin, Type IV collagen and thrombospondin began as early as 2 hrs and became almost complete by 10 hrs post-infection. The degree of suppression varied with the protein and the virus dose. Suppression of Type IV collagen occurred first followed by that of fibronectin and then thrombospondin. Infection of EC with UV irradiated HSV-1 or HSV-2 resulted in suppression of host-cell protein synthesis as well as viral protein synthesis. Infection with intact virus in the presence of actinomycin-D resulted in suppression of both host-cell and viral protein synthesis. The data indicate that infection of EC with HSV leads to suppression of matrix protein synthesis which does not depend on viral protein synthesis

  1. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    Science.gov (United States)

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  2. Dental Enamel Defects and Celiac Disease

    Science.gov (United States)

    ... Digestive System & How it Works Zollinger-Ellison Syndrome Dental Enamel Defects and Celiac Disease Celiac disease manifestations ... affecting any organ or body system. One manifestation—dental enamel defects—can help dentists and other health ...

  3. Enamel renal syndrome: A rare case report

    Directory of Open Access Journals (Sweden)

    S V Kala Vani

    2012-01-01

    Full Text Available Enamel renal syndrome is a very rare disorder associating amelogenesis imperfecta with nephrocalcinosis. It is known by various synonyms such as amelogenesis imperfecta nephrocalcinosis syndrome, MacGibbon syndrome, Lubinsky syndrome, and Lubinsky-MacGibbon syndrome. It is characterized by enamel agenesis and medullary nephrocalcinosis. This paper describes enamel renal syndrome in a female patient born in a consanguineous family.

  4. Finite element analysis of the cyclic indentation of bilayer enamel

    International Nuclear Information System (INIS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  5. Finite element analysis of the cyclic indentation of bilayer enamel

    Science.gov (United States)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  6. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    Science.gov (United States)

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-01-01

    The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6122 or P6522, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress. PMID:18391421

  7. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans

    International Nuclear Information System (INIS)

    Sterky, Fredrik H.; Ruzzenente, Benedetta; Gustafsson, Claes M.; Samuelsson, Tore; Larsson, Nils-Goeran

    2010-01-01

    Research highlights: → LRPPRC orthologs are restricted to metazoans. → LRPPRC is imported to the mitochondrial matrix. → No evidence of nuclear isoform. -- Abstract: LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.

  8. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  9. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    Science.gov (United States)

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Special Frits for Direct-On Enamelling of Pipelines

    International Nuclear Information System (INIS)

    Berdzenishvili, I.; Siradze, M.; Erokhin, V.; Kldiashvili, R.

    2010-01-01

    The compositions of low-melting zirconium-strontium frits have been developed for direct-on enamelling of pipes. Owing to the given combination of active cations, toxic fluorine and expensive nickel and lithium were eliminated from glass frit compositions. The enamels were subjected to firing by the induction method. In the synthesized enamels, the optimal complex of properties combining high corrosion-resistant and thermo-mechanic indices, adhesive strength and required specifications was realized. These enamels are recommended for testing on pipelines. (author)

  11. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    Science.gov (United States)

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  12. Diffusion of fluoride in bovine enamel

    International Nuclear Information System (INIS)

    Flim, G.J.; Arends, J.; Kolar, Z.

    1976-01-01

    The uptake of 18 F and the penetration of both F and 18 F in bovine enamel was investigated. Sodium fluoride solutions buffered at pH 7 were employed. The uptake of 18 F was measured by a method described by R. Duckworth and M. Braden, Archs. Oral. Biol., 12(1967), pp. 217-230. The penetration concentration profiles of fluoride (F, 18 F) in the enamel were measured by a sectioning technique. The 18 F uptake in enamel was proportional to approximately tsup(3/4); t being the uptake time. The 18 F concentration as a function of the position in the enamel can be described by: c*(x,t) = c 0 *(t)exp[-α*(t)x]. After correction for the initial fluoride concentration in enamel, for unlabelled fluoride the same dependency is obtained. A model based on simultaneous diffusion and chemical reaction in the pores and diffusion into the hydroxyapatite crystallites will be presented. The results show that diffusion coefficients of the pores are approximately equal to 10 -10 cm 2 s -1 and in the apatite crystallites approximately equal to 10 -17 cm 2 s -1 . The limitations and the approximations of the model are discussed

  13. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta.

    Science.gov (United States)

    Santos, Maria C L G; Hart, P Suzanne; Ramaswami, Mukundhan; Kanno, Cláudia M; Hart, Thomas C; Line, Sergio R P

    2007-01-31

    Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  14. X-ray micro-analysis of the mineralization patterns in developing enamel in hamster tooth germs exposed to fluoride in vitro during the secretory phase of amelogenesis

    International Nuclear Information System (INIS)

    Lyaruu, D.M.; Blijleven, N.; Hoeben-Schornagel, K.; Bronckers, A.L.; Woeltgens, J.H.

    1989-01-01

    The developing enamel from three-day-old hamster first maxillary (M1) molar tooth germs exposed to fluoride (F-) in vitro was analyzed for its mineral content by means of the energy-dispersive x-ray microanalysis technique. The aim of this study was to obtain semi-quantitative data on the F(-)-induced hypermineralization patterns in the enamel and to confirm that the increase in electron density observed in micrographs of F(-)-treated enamel is indeed due to an increase in mineral content in the fluorotic enamel. The tooth germs were explanted during the early stages of secretory amelogenesis and initially cultured for 24 hr in the presence of 10 ppm F- in the culture medium. The germs were then cultured for another 24 hr without F-. In order to compare the ultrastructural results directly with the microprobe data, we used the same specimens for both investigations. The net calcium counts (measurement minus background counts) in the analyses were used as a measure of the mineral content in the enamel. The aprismatic pre-exposure enamel, deposited in vivo before the onset of culture, was the most hypermineralized region in the fluorotic enamel, i.e., it contained the highest amount of calcium measured. The degree of the F(-)-induced hypermineralization gradually decreased (but was not abolished) in the more mature regions of the enamel. The unmineralized enamel matrix secreted during the initial F- treatment in vitro mineralized during the subsequent culture without F-. The calcium content in this enamel layer was in the same order of magnitude as that recorded for the newly deposited enamel in control tooth germs cultured without F-

  15. An in vitro investigation of human enamel wear by restorative dental materials

    International Nuclear Information System (INIS)

    Adachi, L.K.; Saiki, M.; De Campos, T.N.

    2001-01-01

    A radiometric method was applied to asses enamel wear by another enamel and by restorative materials. The radioactive enamel was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with the radioactive enamel. The enamel wear was evaluated by measuring the beta-activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another natural enamel or by resin materials. Resin materials caused less enamel wear than another natural enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. (author)

  16. Collagen and related extracellular matrix proteins in atherosclerotic plaque development.

    Science.gov (United States)

    Shami, Annelie; Gonçalves, Isabel; Hultgårdh-Nilsson, Anna

    2014-10-01

    The structure, composition and turnover of the extracellular matrix (ECM) as well as cell-matrix interactions are crucial in the developing atherosclerotic plaque. There is a need for further insight into specific proteins in the ECM and their functions in the developing plaque, and during the last few years a number of publications have highlighted this very important field of research. These novel findings will be addressed in the present review. This review covers literature focused on collagen and ECM proteins interacting with collagen, and what their roles may be in plaque development. Acute myocardial infarction and stroke are common diseases that cause disability and mortality, and the underlying mechanism is often the rupture of a vulnerable atherosclerotic plaque. The vascular ECM and the tissue repair in the atherosclerotic lesion are important players in plaque progression. Understanding how specific proteins in the ECM interact with cells in the plaque and affect the fate of the plaque can lead to new treatments for cardiovascular disease.

  17. Structure and composition of enamel and dentin after thermal treatment or infrared laser irradiation

    International Nuclear Information System (INIS)

    Bachmann, Luciano

    2004-01-01

    The main purpose of this work is to identify the crystallographic structure, optical properties, chemical composition and electron paramagnetic signals that laser irradiation or oven heating produces on the tissue. The thermal treatment was conducted in oven with temperature range below 1000 deg C and the laser irradiation with holmium (Ho:YLF - 2,065 μm) and erbium (Er:YAG - 2,94 μm) laser. The tissue characterization was carried out with X-ray diffraction, scanning electron microscopy, ultraviolet and visible transmission spectroscopy, light microscopy, infrared transmission/reflection spectroscopy and electron paramagnetic resonance. The holmium irradiated enamel (600-800 J/cm 2 ) shows the presence of tetracalcium phosphate that coexists with the natural phase (hydroxyapatite). The irradiated dentin shows only the sharper diffraction peaks of the natural phase. The narrows peaks, observed after irradiation, could be assigned to the dentin crystal growth and impurities elimination. Tissue discoloration is observed after thermal treatment with temperatures above 100 deg C. Heated enamel become white-opaque and the origin is assigned to the water elimination, which promotes higher light scattering by the prismatic structure. On the other hand, heated dentin, with similar temperatures becomes brown. The dentin browning changes with the temperature and shown two peaks, at 375 deg C and 700 deg C. The peak at 375 deg C is assigned to the collagen structure degradation and at 700 deg C to the cyanate formation. The dentin discoloration produced with temperatures below 200 deg C is reversible after the tissue hydration. Both enamel and dentin discoloration are also observed in erbium irradiated tissues. Thermal treatments, heating in oven or laser irradiation, change mainly the organic matrix composition and water present in the tissues. The inorganic matrix is more stable and its radicals are changed, with more predominance, only at temperatures higher than 500 deg

  18. Brief communication: Enamel thickness and durophagy in mangabeys revisited.

    Science.gov (United States)

    McGraw, W Scott; Pampush, James D; Daegling, David J

    2012-02-01

    The documentation of enamel thickness variation across primates is important because enamel thickness has both taxonomic and functional relevance. The Old World monkeys commonly referred to as mangabeys have figured prominently in investigations of feeding ecology and enamel thickness. In this article, we report enamel thickness values for four mangabey taxa (Cercocebus atys, Cercocebus torquatus, Lophocebus aterrimus, and Lophocebus albigena), offer revised interpretation of the significance of thick enamel in papionin evolution, and place our new data in a broader comparative framework. Our data indicate that all mangabeys have thick enamel and that the values obtained for Cercocebus and Lophocebus equal or exceed those published for most extant non-human primates. In addition, new field data combined with a current reading of the dietary literature indicate that hard foods make up a portion of the diet of every mangabey species sampled to date. Clarification on the relationship between diet and enamel thickness among mangabeys is important not only because of recognition that mangabeys are not a natural group but also because of recent arguments that explain thick enamel as an evolved response to the seasonal consumption of hard foods. Copyright © 2011 Wiley Periodicals, Inc.

  19. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  20. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes

    DEFF Research Database (Denmark)

    Gannagé, Monique; Dormann, Dorothee; Albrecht, Randy

    2009-01-01

    Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here, we...... demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient...... for this inhibition of autophagosome degradation. Macroautophagy inhibition by matrix protein 2 compromises survival of influenza virus-infected cells but does not influence viral replication. We propose that influenza A virus, which also encodes proapoptotic proteins, is able to determine the death of its host cell...

  1. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.

    Science.gov (United States)

    Massiah, M A; Starich, M R; Paschall, C; Summers, M F; Christensen, A M; Sundquist, W I

    1994-11-25

    The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away

  2. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    Science.gov (United States)

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    Srsen Vlastimil

    2009-04-01

    Full Text Available Abstract Background Muscle fibres are formed by elongation and fusion of myoblasts into myotubes. During this differentiation process, the cytoskeleton is reorganized, and proteins of the centrosome re-localize to the surface of the nucleus. The exact timing of this event, and the underlying molecular mechanisms are still poorly understood. Results We performed studies on mouse myoblast cell lines that were induced to differentiate in culture, to characterize the early events of centrosome protein re-localization. We demonstrate that this re-localization occurs already at the single cell stage, prior to fusion into myotubes. Centrosome proteins that accumulate at the nuclear surface form an insoluble matrix that can be reversibly disassembled if isolated nuclei are exposed to mitotic cytoplasm from Xenopus egg extract. Our microscopy data suggest that this perinuclear matrix of centrosome proteins consists of a system of interconnected fibrils. Conclusion Our data provide new insights into the reorganization of centrosome proteins during muscular differentiation, at the structural and biochemical level. Because we observe that centrosome protein re-localization occurs early during differentiation, we believe that it is of functional importance for the reorganization of the cytoskeleton in the differentiation process.

  4. Trace Elements in Human Tooth Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, G. S. [Turner Dental School, University Of Manchester, Manchester (United Kingdom); Smith, H.; Livingston, H. D. [Department of Forensic Medicine, University Of Glasgow, Glasgow (United Kingdom)

    1967-10-15

    The trace elements are considered to play a role in the resistance of teeth to dental caries. The exact mechanism by which they act has not yet been fully established. Estimations of trace elements have been undertaken in sound human teeth. By means of activation analysis it has been possible to determine trace element concentrations in different layers of enamel in the same tooth. The concentrations of the following elements have been determined: arsenic, antimony, copper, zinc, manganese, mercury, molybdenum and vanadium. The distribution of trace elements in enamel varies from those with a narrow range, such as manganese, to those with a broad range, such as antimony. The elements present in the broad range are considered to be non-essential and their presence is thought to result from a chance incorporation into the enamel. Those in the narrow range appear to be essential trace elements and are present in amounts which do not vary unduly from other body tissues. Only manganese and zinc were found in higher concentrations in the surface layer of enamel compared with the inner layers. The importance of the concentration of trace elements on this surface layer of enamel is emphasized as this layer is the site of the first attack by the carious process. (author)

  5. Developmental Defects of Enamel : an increasing reality in the everyday practice

    Directory of Open Access Journals (Sweden)

    Fabrizio Guerra

    2014-09-01

    Full Text Available Developmental defects of enamel (DDE are daily encountered in clinical practice. DDE are alteration in quality and quantity of the enamel, caused by disruption and/or damage to the enamel organ during the amelogenesis process. Several clinical indices have been developed to categorize enamel defects based on their nature, appearance, microscopic features or their cause. The aetiology of DDE is not completely clear. Enamel fluorosis is a hypo-mineralization of enamel characterised by subsurface porosity as a result of excess fluoride intake during the period of enamel formation. Several types of treatment have been reported, related to the degree of enamel defect. Correct diagnosis according to lesion depth and prognosis of the technique are fundamental factors in the treatment decision-making process.

  6. Effect of various tooth-whitening products on enamel microhardness.

    Science.gov (United States)

    Grobler, S R; Majeed, A; Moola, M H

    2009-11-01

    The purpose of this in vitro study was to evaluate the effect of various tooth-whitening products containing carbamide peroxide (CP) or hydrogen peroxide (HP), on enamel microhardness. Enamel blocks were exposed to: Nite White ACP 10% CP (Group 2, n=10); Yotuel Patient 10% CP (Group 3, n=10); Opalescence PF 10% CP (Group 4, n=10); Opalescence PF 20% CP (Group 5, n=10); Opalescence Treswhite Supreme 10% HP (Group 6, n=10); Yotuel 10 Minutes 30% CP (Group 7, n=10); Opalescence Quick 45% CP (Group 8, n=10), Yotuel Special 35% HP (Group 9, n=10), Opalescence Boost 38% HP (Group 10, n=10) according to the instructions of the manufacturers. The control (Group 1, n=10) was enamel blocks kept in artificial saliva at 37 degrees C without any treatment. The microhardness values were obtained before exposure and after a 14-day treatment period. Specimens were kept in artificial saliva at 37 degrees C between treatments. Data were analysed using Kruskal-Wallis one-way ANOVA and Tukey-Kramer Multiple Comparison Test. Indent marks on the enamel blocks were also examined under the Scanning Electron Microscope. All whitening products decreased enamel microhardness except group 10 but only Groups 2, 3, 4, 5 and 7 showed significant decrease in enamel microhardness as compared to the control group (p enamel. All products tested in this study decreased enamel microhardness except Opalescence Boost 38% HP. The products containing carbamide peroxide were more damaging to enamel because of the longer application times. Nite White ACP 10% CP showed the highest reduction in enamel microhardness as compared to other products tested.

  7. Enamel: From brittle to ductile like tribological response.

    Science.gov (United States)

    Guidoni, G; Swain, M; Jäger, I

    2008-10-01

    To identify the intrinsic nano-scale wear mechanisms of enamel by comparing it with that of highly brittle glass, and highly ductile copper and silver monocrystals. A sharp cube corner indenter tip (20-50 nm radius) was used to abrade glass, enamel as well as copper and silver monocrystals. Square abraded areas (5 microm x 5 microm, 10 microm x 10 microm) were generated with loads of 50 microN for enamel and 100 microN for the remaining materials (2D abrasion). The normal load and displacement data were utilized in a complementary manner to support the comparison. In addition normal and lateral forces were simultaneously measured along 10 microm single scratched lines (1D abrasion). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used to characterise the worn areas and debris. The sharp tip cuts into and ploughs the specimens creating a wedge or ridge of material ahead of itself which eventually detaches, for the ductile materials and at high loads in enamel. For glass and enamel at low loads, the indenter tip ploughs into the material and the removed material is redistributed and pressed back into the abraded area. The wear behaviour of enamel at the nano-level resembles that obtained with glass at low loads (50 microN) and that obtained with metal mono-crystals at high load (100 microN). The role of the microstructural heterogeneity in the wear behaviour of enamel is considered in the discussion. The relevance to clinical wear of enamel is also considered.

  8. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies.

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L; Hacia, Joseph G; Paine, Michael L

    2017-03-13

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.

  9. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways–Novel Insight into the Origins of Enamel Pathologies

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L.; Hacia, Joseph G.; Paine, Michael L.

    2017-01-01

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3′-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI. PMID:28287144

  10. Tooth enamel hypoplasia in PHACE syndrome.

    Science.gov (United States)

    Chiu, Yvonne E; Siegel, Dawn H; Drolet, Beth A; Hodgson, Brian D

    2014-01-01

    Individuals with PHACE syndrome (posterior fossa malformations, hemangiomas, arterial anomalies, cardiac defects, eye abnormalities, sternal cleft, and supraumbilical raphe syndrome) have reported dental abnormalities to their healthcare providers and in online forums, but dental involvement has not been comprehensively studied. A study was conducted at the third PHACE Family Conference, held in Milwaukee, Wisconsin, in July 2012. A pediatric dentist examined subjects at enrollment. Eighteen subjects were enrolled. The median age was 4.2 years (range 9 mos-9 yrs; 14 girls, 4 boys). Eleven of 18 patients had intraoral hemangiomas and five of these (50%) had hypomature enamel hypoplasia. None of the seven patients without intraoral hemangiomas had enamel hypoplasia. No other dental abnormalities were seen. Enamel hypoplasia may be a feature of PHACE syndrome when an intraoral hemangioma is present. Enamel hypoplasia increases the risk of caries, and clinicians should refer children with PHACE syndrome to a pediatric dentist by 1 year of age. © 2014 Wiley Periodicals, Inc.

  11. Effect of ethanol-wet-bonding technique on resin–enamel bonds

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar

    2014-03-01

    Conclusion: The ethanol-wet-bonding technique may increase the bond strength of commercial adhesives to enamel. The chemical composition of the adhesives can affect the bond strength of adhesives when bonding to acid-etched enamel, using the ethanol-wet-bonding technique. Some adhesive systems used in the present study may simultaneously be applied to enamel and dentin using ethanol-wet-bonding. Furthermore, deploying ethanol-wet-bonding for the tested commercial adhesives to enamel can increase the adhesion abilities of these adhesives to enamel.

  12. The Exopolysaccharide Matrix

    Science.gov (United States)

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  13. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins

    Directory of Open Access Journals (Sweden)

    M. Azizur Rahman

    2016-09-01

    Full Text Available In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP. Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery.

  14. Improved gel electrophoresis matrix for hydrophobic protein separation and identification.

    Science.gov (United States)

    Tokarski, Caroline; Fillet, Marianne; Rolando, Christian

    2011-03-01

    We propose an improved acrylamide gel for the separation of hydrophobic proteins. The separation strategy is based on the incorporation of N-alkylated and N,N'-dialkylated acrylamide monomers in the gel composition in order to increase hydrophobic interactions between the gel matrix and the membrane proteins. Focusing on the most efficient monomer, N,N'-dimethylacrylamide, the potentiality of the new matrix was evaluated on membrane proteins of the human colon HCT-116 cell line. Protein analysis was performed using an adapted analytical strategy based on FT-ICR tandem mass spectrometry. As a result of this comparative study, including advanced reproducibility experiments, more hydrophobic proteins were identified in the new gel (average GRAVY: -0.085) than in the classical gel (average GRAVY: -0.411). Highly hydrophobic peptides were identified reaching a GRAVY value up to 1.450, therefore indicating their probable locations in the membrane. Focusing on predicted transmembrane domains, it can be pointed out that 27 proteins were identified in the hydrophobic gel containing up to 11 transmembrane domains; in the classical gel, only 5 proteins containing 1 transmembrane domain were successfully identified. For example, multiple ionic channels and receptors were characterized in the hydrophobic gel such as the sodium/potassium channel and the glutamate or the transferrin receptors whereas they are traditionally detected using specific enrichment techniques such as immunoprecipitation. In total, membrane proteins identified in the classical gel are well documented in the literature, while most of the membrane proteins only identified on the hydrophobic gel have rarely or never been described using a proteomic-based approach. 2010 Elsevier Inc. All rights reserved.

  15. Pb enamel biomarker: Deposition of pre- and postnatal Pb isotope injection in reconstructed time points along rat enamel transect

    International Nuclear Information System (INIS)

    Rinderknecht, A.L.; Kleinman, M.T.; Ericson, J.E.

    2005-01-01

    Exposure to lead (Pb) as well as other heavy metals in the environment is still a matter of public health concern. The development of the enamel biomarker for heavy metal exposure assessment is designed to improve studies of dose-effect relationships to developmental anomalies, particularly embryonic dysfunctions, and to provide a time-specific recount of past exposures. The work presented in this paper demonstrates maternal transfer across the placental barrier of the enriched isotope 206 Pb tracer to the enamel of the rat pup. Likewise, injections of 204 Pb-enriched tracer in the neonate rat resulted in deposition of the tracer in the enamel histology as measured by secondary ion microprobe spectrometry. Through enamel, we were able to observe biological removal and assimilation of prenatal and postnatal tracers, respectively. This research demonstrates that enamel can be used as a biomarker of exposure to Pb and may illustrate the toxicokinetics of incorporating Pb into fetal and neonatal steady-state system processes. The biomarker technique, when completely developed, may be applied to cross-sectional and longitudinal epidemiological research

  16. Elemental and chemical characterization of dolphin enamel and dentine using X-ray and Raman microanalyzes (Cetacea: Delphinoidea and Inioidea).

    Science.gov (United States)

    Loch, Carolina; Swain, Michael V; Fraser, Sara J; Gordon, Keith C; Kieser, Jules A; Fordyce, R Ewan

    2014-01-01

    Dolphins show increased tooth number and simplified tooth shape compared to most mammals, together with a simpler ultrastructural organization and less demanding biomechanical function. However, it is unknown if these factors are also reflected in the chemical composition of their teeth. Here, the bulk chemical composition and elemental distribution in enamel and dentine of extant dolphins were characterized and interpreted using X-ray and spectroscopy techniques. Teeth of 10 species of Delphinida were analyzed by WDX, EDX and Raman spectroscopy. For most of the species sampled, the mineral content was higher in enamel than in dentine, increasing from inner towards outer enamel. The transition from dentine to enamel was marked by an increase in concentration of the major components Ca and P, but also in Na and Cl. Mg decreased from dentine to enamel. Concentrations of Sr and F were often low and below detection limits, but F peaked at the outer enamel region for some species. Raman spectroscopy analyzes showed characteristics similar to carbonated hydroxyapatite, with the strongest peak for the phosphate PO4(3-) stretching mode at 960-961cm(-1). Dentine samples revealed a higher diversity of peaks representative of organic components and proteins than enamel. The similar distribution pattern and small variation in average concentration of major and minor elements in dentine and enamel of dolphins suggest that they are subject to strong physiological control. A clear trend of the elemental variations for all dolphin species sampled suggests that the general pattern of tooth chemistry is conserved among the Mammalia. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The developmental clock of dental enamel: a test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind

    Science.gov (United States)

    Antoine, Daniel; Hillson, Simon; Dean, M Christopher

    2009-01-01

    Dental tissues contain regular microscopic structures believed to result from periodic variations in the secretion of matrix by enamel- and dentine-forming cells. Counts of these structures are an important tool for reconstructing the chronology of dental development in both modern and fossil hominids. Most studies rely on the periodicity of the regular cross-banding that occurs along the long axis of enamel prisms. These prism cross-striations are widely thought to reflect a circadian rhythm of enamel matrix secretion and are generally regarded as representing daily increments of tissue. Previously, some researchers have argued against the circadian periodicity of these structures and questioned their use in reconstructing dental development. Here we tested the periodicity of enamel cross-striations – and the accuracy to which they can be used – in the developing permanent dentition of five children, excavated from a 19th century crypt in London, whose age-at-death was independently known. The interruption of crown formation by death was used to calibrate cross-striation counts. All five individuals produced counts that were strongly consistent with those expected from the independently known ages, taking into account the position of the neonatal line and factors of preservation. These results confirm that cross-striations do indeed reflect a circadian rhythm in enamel matrix secretion. They further validate their use in reconstructing dental development and in determining the age-at-death of the remains of children whose dentitions are still forming at the time of death. Significantly they identify the most likely source of error and the common difficulties encountered in histological studies of this kind. PMID:19166472

  18. Shear bond strength of porcelain laminate veneers to enamel, dentine and enamel-dentine complex bonded with different adhesive luting systems.

    Science.gov (United States)

    Öztürk, Elif; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta

    2013-02-01

    The aim of this study was to evaluate the shear bond strength of porcelain laminate veneers to 3 different surfaces by means of enamel, dentine, and enamel-dentine complex. One hundred thirty-five extracted human maxillary central teeth were used, and the teeth were randomly divided into 9 groups (n=15). The teeth were prepared with 3 different levels for bonding surfaces of enamel (E), dentine (D), and enamel-dentine complex (E-D). Porcelain discs (IPS e.max Press, Ivoclar Vivadent) of 2mm in thickness and 4mm in diameter were luted to the tooth surfaces by using 2 light-curing (RelyX Veneer [RV], 3M ESPE; Variolink Veneer [VV], Ivoclar Vivadent) and a dual-curing (Variolink II [V2], Ivoclar Vivadent) adhesive systems according to the manufacturers' instructions. Shear bond strength test was performed in a universal testing machine at 0.5mm/min until bonding failure. Failure modes were determined under a stereomicroscope, and fracture surfaces were evaluated with a scanning electron microscope. The data were statistically analysed (SPSS 17.0) (p=0.05). Group RV-D exhibited the lowest bond strength value (5.42±6.6MPa). There was statistically no difference among RV-D, V2-D (13.78±8.8MPa) and VV-D (13.84±6.2MPa) groups (p>0.05). Group VV-E exhibited the highest bond strength value (24.76±8.8MPa). The type of tooth structure affected the shear bond strength of the porcelain laminate veneers to the 3 different types of tooth structures (enamel, dentine, and enamel-dentine complex). When dentine exposure is necessary during preparation, enough sound enamel must be protected as much as possible to maintain a good bonding; to obtain maximum bond strength, preparation margins should be on sound enamel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Regulation of pH During Amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nanci, Antonio; Kurtz, Ira; Wright, J Timothy; Paine, Michael L

    2010-02-01

    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.

  20. Weaker dental enamel explains dental decay.

    Science.gov (United States)

    Vieira, Alexandre R; Gibson, Carolyn W; Deeley, Kathleen; Xue, Hui; Li, Yong

    2015-01-01

    Dental caries continues to be the most prevalent bacteria-mediated non-contagious disease of humankind. Dental professionals assert the disease can be explained by poor oral hygiene and a diet rich in sugars but this does not account for caries free individuals exposed to the same risk factors. In order to test the hypothesis that amount of amelogenin during enamel development can influence caries susceptibility, we generated multiple strains of mice with varying levels of available amelogenin during dental development. Mechanical tests showed that dental enamel developed with less amelogenin is "weaker" while the dental enamel of animals over-expressing amelogenin appears to be more resistant to acid dissolution.

  1. Camel molar tooth enamel response to gamma rays using EPR spectroscopy.

    Science.gov (United States)

    El-Faramawy, N A; El-Somany, I; Mansour, A; Maghraby, A M; Eissa, H; Wieser, A

    2018-03-01

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp ) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.

  2. Camel molar tooth enamel response to gamma rays using EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El-Faramawy, N.A.; El-Somany, I. [Ain Shams University, Physics Department, Faculty of Science, Cairo (Egypt); Mansour, A. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Maghraby, A.M.; Eissa, H. [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Giza (Egypt); Wieser, A. [Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Department of Radiation Sciences, Institute of Radiation Protection, Neuherberg (Germany)

    2018-03-15

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH{sub pp}) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry. (orig.)

  3. Topical application of amelogenin extracellular matrix protein in non-healing venous ulcers

    Directory of Open Access Journals (Sweden)

    Burçin Abud

    2014-12-01

    Full Text Available Background and Design: Treatment of chronic venous ulcers of the lower extremity is still an important difficulty. The principal treatment of these ulcers includes compression therapy, local wound care and surgery. Unresponsiveness to these standard treatments is a frequent situation with negative effects on life quality and reductions in personal productivity. Therefore, there is a need for new applications to increase the effectiveness of treatment in treatment-resistant cases. In the present study, we retrospectively evaluated the results of topical application of amelogenin extracellular matrix protein in resistant venous ulcers. Materials and Methods: We analyzed the records of patients with treatment-resistant venous ulceration who were treated with amelogenin extracellular matrix protein between June 2011 and December 2012.. Results: 26 patients (21 male and 5 female with a total number of 28 ulcers (24 patients with 1 ulcer, 2 patients with two ulcers were evaluated. The patients were treated with topically applied amelogenin extracellular matrix protein and regional four bandage compression. Bandages were changed weekly. Each cure continued for six weeks. In fourteen patients (15 ulcers, we observed a complete healing by the end of the first cure. In another twelve cases (13 ulcers, the same period resulted with a reduction in wound diameter. We continued to the second cure for these patients. By the end of the second cure, complete healing was achieved in five cases (6 ulcers. Conclusion: Topical application of amelogenin extracellular matrix protein may be considered as an effective therapeutic choice for refractory venous ulcers.

  4. Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis.

    Science.gov (United States)

    Somogyi-Ganss, Eszter; Nakayama, Yohei; Iwasaki, Kengo; Nakano, Yukiko; Stolf, Daiana; McKee, Marc D; Ganss, Bernhard

    2012-01-01

    Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define the spatiotemporal expression profile of AMTN during tooth development in comparison with other known enamel proteins. A peptide antibody against AMTN was raised in rabbits, affinity purified and used for immunohistochemical analyses on sagittal and transverse paraffin sections of decalcified mouse hemimandibles. The localization of AMTN was compared to that of known enamel proteins amelogenin, ameloblastin, enamelin, odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4. Three-dimensional images of AMTN localization in molars at selected ages were reconstructed from serial stained sections, and transmission electron microscopy was used for ultrastructural localization of AMTN. AMTN was detected in ameloblasts of molars in a transient fashion, declining at the time of tooth eruption. Prominent expression in maturation stage ameloblasts of the continuously erupting incisor persisted into adulthood. In contrast, amelogenin, ameloblastin and enamelin were predominantly found during the early secretory stage, while odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4 expression in maturation stage ameloblasts paralleled that of AMTN. Secreted AMTN was detected at the interface between ameloblasts and the mineralized enamel. Recombinant AMTN protein did not mediate cell attachment in vitro. These results suggest a primary role for AMTN in the late stages of enamel mineralization. Copyright © 2011 S. Karger AG, Basel.

  5. Theobromine Effects on Enamel Surface Microhardness: In Vitro

    Directory of Open Access Journals (Sweden)

    Grace Syafira

    2013-07-01

    Full Text Available Dental caries is still a dental health problem in Indonesia. Fluoride, one of the dental caries prevention material, but its safety and the danger of fluorosis is still debated. Theobromine is an alkaloid compound contained in cocoa beans. Theobromine is believed to increase enamel microhardness with mineral changes in the enamel superficial layer. Objectives: To determine the influence of theobromine on the enamel surface microhardness. Methods: This study used 40 premolar tooth crown pieces that were embedded in epoxy resin. Furthermore specimens were randomly divided into 4 groups, which were control (distilled water, theobromine 100 mg/L (T100, theobromine 500 mg/L (T500 and theobromine 1000 mg/L (T1000. Specimens were immersed for 15 minutes and microhardness test was performed using Knoop microhardness tester. Results: Increasing enamel microhardness was observed after treatment with four different theobromine concentrations. The highest icreased of enamel microhardness was shown in T1000 group and difference compared to other groups were statistically significant (p<0.05. Conclusion: theobromine is a potential dental caries prevention material due to its effect in improving the microhardness of tooth enamel.

  6. Molecular events in matrix protein metabolism in the aging kidney

    Science.gov (United States)

    Sataranatarajan, Kavithalakshmi; Feliers, Denis; Mariappan, Meenalakshmi M.; Lee, Hak Joo; Lee, Myung Ja; Day, Robert T.; Yalamanchili, Hima Bindu; Choudhury, Goutam G.; Barnes, Jeffrey L.; Van Remmen, Holly; Richardson, Arlan; Kasinath, Balakuntalam S.

    2018-01-01

    Summary We explored molecular events associated with aging-induced matrix changes in the kidney. C57BL6 mice were studied in youth, middle age, and old age. Albuminuria and serum cystatin C level (an index of glomerular filtration) increased with aging. Renal hypertrophy was evident in middle-aged and old mice and was associated with glomerulomegaly and increase in mesangial fraction occupied by extracellular matrix. Content of collagen types I and III and fibronectin was increased with aging; increment in their mRNA varied with the phase of aging. The content of ZEB1 and ZEB2, collagen type I transcription inhibitors, and their binding to the collagen type Iα2 promoter by ChIP assay also showed age-phase-specific changes. Lack of increase in mRNA and data from polysome assay suggested decreased degradation as a potential mechanism for kidney collagen type I accumulation in the middle-aged mice. These changes occurred with increment in TGFβ mRNA and protein and activation of its SMAD3 pathway; SMAD3 binding to the collagen type Iα2 promoter was also increased. TGFβ-regulated microRNAs (miRs) exhibited selective regulation. The renal cortical content of miR-21 and miR-200c, but not miR-192, miR-200a, or miR-200b, was increased with aging. Increased miR-21 and miR-200c contents were associated with reduced expression of their targets, Sprouty-1 and ZEB2, respectively. These data show that aging is associated with complex molecular events in the kidney that are already evident in the middle age and progress to old age. Agephase-specific regulation of matrix protein synthesis occurs and involves matrix protein-specific transcriptional and post-transcriptional mechanisms. PMID:23020145

  7. Photomechanical model of tooth enamel ablation by Er-laser radiation

    Science.gov (United States)

    Belikov, A. V.; Shatilova, K. V.; Skrypnik, A. V.; Vostryakov, R. G.; Maykapar, N. O.

    2012-03-01

    The photomechanical model of ablation of human tooth enamel is described in this work. It takes into account the structural peculiarities of enamel: free water in the enamel pores or cracks. We consider the photomechanical destruction of the enamel rods of hydroxyapatite by the pressure of water contained in the enamel pores and heated by laser radiation. This model takes into account attenuation by the Lambert-Beer law when radiation passes through the tissue and the fact that the tissue removal occurs when a unit volume of water was heated to the critical temperature. Decreasing logarithmic dependence of the enamel removal efficiency on the energy density was obtained as a result of the calculations. The shape of this function follows the shape of the experimental curve.

  8. DESIGN AND APPLICATION OF TRANSPARENT AND TRANSLUCENT ENAMELS ON ALUMINUM

    Directory of Open Access Journals (Sweden)

    H. AHMADI MOGHADDAM

    2012-09-01

    Full Text Available Transparent and opaque glass enamels for aluminum plates were designed with a minimum or with no heavy atom oxides such as lead and bismuth oxides. The thermal properties of the enamels were studied by DTA and their stability as measured by the difference of glass transition and crystallization onset temperatures was determined. Bending and rapid deformation (impact tests indicated the interfacial adhesion. The enamel/aluminum interfacial qualities were viewed and examined by scanning electron microscopy (SEM. A large amount of NaF and P2O5 in their formulation created opaque enamels. The three methods of melt dipping, pouring, and sintering were used to apply layers of enamels on aluminum plates. The novelty of the pouring and spreading method and its advantages over other methods, were in the use of lower stability and higher melting point enamels, without thermally/mechanically damaging the aluminum. Observations suggested that the interfacial contact and adhesion properties were good, particularly with the transparent or glassy state enamels.

  9. Size dependent elastic modulus and mechanical resilience of dental enamel.

    Science.gov (United States)

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Regulated fracture in tooth enamel: a nanotechnological strategy from nature.

    Science.gov (United States)

    Ghadimi, Elnaz; Eimar, Hazem; Song, Jun; Marelli, Benedetto; Ciobanu, Ovidiu; Abdallah, Mohamed-Nur; Stähli, Christoph; Nazhat, Showan N; Vali, Hojatollah; Tamimi, Faleh

    2014-07-18

    Tooth enamel is a very brittle material; however it has the ability to sustain cracks without suffering catastrophic failure throughout the lifetime of mechanical function. We propose that the nanostructure of enamel can play a significant role in defining its unique mechanical properties. Accordingly we analyzed the nanostructure and chemical composition of a group of teeth, and correlated it with the crack resistance of the same teeth. Here we show how the dimensions of apatite nanocrystals in enamel can affect its resistance to crack propagation. We conclude that the aspect ratio of apatite nanocrystals in enamel determines its resistance to crack propagation. According to this finding, we proposed a new model based on the Hall-Petch theory that accurately predicts crack propagation in enamel. Our new biomechanical model of enamel is the first model that can successfully explain the observed variations in the behavior of crack propagation of tooth enamel among different humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    Fattibene, Paola; Callens, Freddy

    2010-01-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  12. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan

    2009-01-01

    Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in patients...

  13. Enamel surface remineralization: Using synthetic nanohydroxyapatite

    Directory of Open Access Journals (Sweden)

    J Shanti Swarup

    2012-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the effects of synthetically processed hydroxyapatite particles in remineralization of the early enamel lesions in comparison with 2% sodium fluoride. Materials and Methods: Thirty sound human premolars were divided into nanohydroxyapatite group (n0 = 15 and the sodium fluoride group (n = 15. The specimens were subjected to demineralization before being coated with 10% aqueous slurry of 20 nm nanohydroxyapatite or 2% sodium fluoride. The remineralizing efficacy of the materials was evaluated using surface microhardness (SMH measurements, scanning microscopic analysis and analysis of the Ca/P ratio of the surface enamel. Data analysis was carried out using paired t-test and independent t-test. Results: The results showed that the nanohydroxyapatite group produced a surface morphology close to the biologic enamel, the increase in mineral content (Ca/P ratio was more significant in the nanohydroxyapatite group ( P 0.05. Conclusion: The use of biomimetic nanohydroxyapatite as a remineralizing agent holds promise as a new synthetic enamel biocompatible material to repair early carious lesions.

  14. Nanoindentation creep behavior of human enamel.

    Science.gov (United States)

    He, Li-Hong; Swain, Michael V

    2009-11-01

    In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.

  15. Solubility and diffusivity of hydrogen in enameling steel

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, P.; Valentini, R.; Solina, A.; Gastaldo, F. (Centro Sviluppo Materiali, Rome (Italy) Pisa Univ. (Italy). Dip. di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali)

    1991-06-01

    In recent years, continuous casting has almost expelled conventional ingot casting from the steel-making process by its much higher productivity. However, enameling steel sheets doesn't give the steel sufficient resistance to fishscale, as that which is achieved by the inclusions in case of ingot capped steel. Fishscales are caused by hydrogen gas building up pressure at the interface between enamel and steel, resulting in the rupture of enamel. Object of this study, was not only to correlate fishscale susceptibility with metallurgical parameters, but to define the effect of reversible and irreversible traps on hydrogen solubility and diffusivity in enameling steel. Hydrogen permeation was studied, in low carbon enameling steel, with an electrochemical technique developed by Devanathan and co-workers. This method was used to calculate concentrations of irreversibly adsorbed hydrogen and evaluate hydrogen diffusion coefficients. The results on reversible traps correlated with micro-voids formations around the carbide precipitate, while the irreversible traps correlated with inclusions and precipitate content.

  16. Indentation Damage and Crack Repair in Human Enamel*

    Science.gov (United States)

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701

  17. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  18. Enamel microstructure and microstrain in the fracture of human and pig molar cusps.

    Science.gov (United States)

    Popowics, T E; Rensberger, J M; Herring, S W

    2004-08-01

    The role of microstructure in enamel strain and breakage was investigated in human molar cusps and those of the pig, Sus scrofa. Rosette strain gauges were affixed to cusp surfaces (buccal human M3, n=15, and lingual pig M1, n=13), and a compressive load was applied to individual cusps using an MTS materials testing machine. Load and strain data were recorded simultaneously until cusp fracture, and these data were used to estimate enamel stresses, principal strains, and stiffness. Fractured and polished enamel fragments were examined in multiple planes using scanning electron microscopy (SEM). Human cusp enamel showed greater stiffness than pig enamel (P=0.02), and tensile stress at yield was higher (17.9 N/mm2 in humans versus 8.9 N/mm2 in pigs, P=0.06). SEM revealed enamel rod decussation in both human and pig enamel; however, only pig enamel showed a decussation plane between rod and inter-rod crystallites. Human inter-rod enamel was densely packed between rods, whereas in pig enamel, inter-rod enamel formed partitions between rows of enamel rods. Overall, human enamel structure enabled molar cusps to withstand horizontal tensile stress during both elastic and plastic phases of compressive loading. In contrast, pig cusp enamel was less resistant to horizontal tensile stresses, but appeared to fortify the enamel against crack propagation in multiple directions. These structural and biomechanical differences in cusp enamel are likely to reflect species-level differences in occlusal function.

  19. The isotope record of short- and long-term dietary changes in sheep tooth enamel: Implications for quantitative reconstruction of paleodiets

    Science.gov (United States)

    Zazzo, A.; Balasse, M.; Passey, B. H.; Moloney, A. P.; Monahan, F. J.; Schmidt, O.

    2010-06-01

    Quantitative reconstruction of paleodiet by means of sequential sampling and carbon isotope analysis in hypsodont tooth enamel requires a precise knowledge of the isotopic enrichment between dietary carbon and carbon from enamel apatite ( ɛD-E), as well as of the timing and duration of the enamel mineralization process (amelogenesis). To better constrain these parameters, we performed a series of controlled feeding experiments on sheep ranging in age from 6 to 24 months-old. Twenty-eight lambs and 14 ewes were fed isotopically distinct diets for different periods of time, and then slaughtered, allowing the timing and rate of molar growth to be determined. High resolution sampling and stable carbon isotope analysis of breath CO 2 performed on six individuals following a diet-switch showed that 70-90% of dietary carbon had turned over in less than 24 h. Sequential sampling and carbon isotopic analysis was performed on the first (M 1) and second (M 2) lower molars of four lambs as well as on the third lower molar (M 3) of 11 ewes. The changes in diet were recorded in all molars. We found that the length of enamel matrix apposition is approximately one-quarter of the final tooth length during crown extension, and that enamel maturation spans slightly less than 3 months in M 1, and 4 months in M 2 and M 3. Portions of enamel in equilibrium with dietary carbon were used to calculate ɛD-E values. Animals on grass silage diets had values similar to previous observations, whereas animal switched to pelleted corn diets had values ca. 4‰ lower, a pattern consistent with lower methane production observed for animals fed concentrate diets. The tooth enamel forward model of Passey and Cerling (2002) closely predicted the amplitude of isotope changes recorded in tooth enamel, but slightly underestimated the rate of isotope change, suggesting that the rate of accumulation of carbonate during maturation may not be constant over time. Although stable isotope profiles in tooth

  20. Development of fluorapatite cement for dental enamel defects repair.

    Science.gov (United States)

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  1. Wear of human enamel: a quantitative in vitro assessment.

    Science.gov (United States)

    Kaidonis, J A; Richards, L C; Townsend, G C; Tansley, G D

    1998-12-01

    Many factors influence the extent and rate at which enamel wears. Clinical studies in humans are limited by difficulties in the accurate quantification of intra-oral wear and by a lack of control over the oral environment. The purpose of this study was to determine the wear characteristics of human dental enamel under controlled experimental conditions. An electro-mechanical tooth wear machine, in which opposing enamel surfaces of sectioned, extracted teeth were worn under various conditions, was used to simulate tooth grinding or bruxism. Enamel surface wear was quantified by weight to an accuracy of 0.1 mg, with water uptake and loss controlled. The variables considered included the structure and hardness of enamel, facet area, duration of tooth contact, relative speed of opposing surfaces, temperature, load, pH, and the nature of the lubricant. Enamel wear under non-lubricated conditions increased with increasing load over the range of 1.7 to 16.2 kg. The addition of a liquid lubricant (pH = 7) reduced enamel wear up to 6.7 kg, but when the load increased above this threshold, the rate of wear increased dramatically. With the viscosity of the lubricant constant and pH = 3, the rate of wear was further reduced to less than 10% of the non-lubricated rate at 9.95 kg, after which the rate again increased substantially. Under more extreme conditions (pH = 1.2, simulating gastric acids), the wear was excessive under all experimental loads. When saliva was used as a lubricant, the amount of wear was relatively low at 9.95 kg, but rapid wear occurred at 14.2 kg and above. These results indicate that under non-lubricated conditions, enamel wear remains low at high loads due to the dry-lubricating capabilities of fine enamel powder. Under lubricated conditions, low loads with an acidic lubricant lead to little enamel wear, whereas very low pH results in a high rate of wear under all loads.

  2. Ca2+ transport and signalling in enamel cells

    Science.gov (United States)

    Nurbaeva, Meerim K.; Eckstein, Miriam; Feske, Stefan

    2016-01-01

    Abstract Dental enamel is one of the most remarkable examples of matrix‐mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage‐dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up‐dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ. PMID:27510811

  3. In vitro demineralization of tooth enamel subjected to two whitening regimens.

    Science.gov (United States)

    Ogura, Kayoko; Tanaka, Reina; Shibata, Yo; Miyazaki, Takashi; Hisamitsu, Hisashi

    2013-07-01

    The resistance of bleached enamel to demineralization has not been elucidated fully. In this study, the authors aimed to examine the level of in vitro demineralization of human tooth enamel after bleaching by using two common bleaching regimens: home bleaching (HB) and office bleaching (OB) with photoirradiation. The authors bleached teeth to equivalent levels by means of the two bleaching regimens. They used fluorescence spectroscopy to measure the reduction in enamel density and the release of calcium into solution after storing the treated teeth in a demineralizing solution for two weeks. They also visualized and quantified mineral distribution in demineralized bleached enamel over time by using a desktop microcomputed-tomographic analyzer. Enamel subjected to HB or to photoirradiation without bleaching showed increased demineralization. In contrast, enamel treated with OB was more resistant to demineralization. This resistance to demineralization in teeth treated with OB presumably is due to peroxide's permeating to deeper layers of enamel before being activated by photoirradiation, which enhances mineralization. The mineral distribution pattern of enamel after treatment plays a critical role in providing resistance to demineralization in whitened teeth. OB confers to enamel significant resistance to in vitro demineralization. Dentists should supervise the nightguard HB process.

  4. Fluoride reactions with dental enamel following different forms of fluoride supply

    International Nuclear Information System (INIS)

    Hellstroem, I.; Ericsson, Y.

    1976-01-01

    The reactions with dental enamel of NaF as tablets dissolved in different beverages or supplied with NaCl, simulating domestic salt fluoridation, were studied in tests with enamel surfaces and enamel powder. It was confirmed that powdered enamel can react quite differently from enamel surfaces under certain conditions. Enamel surfaces took up much more fluoride (F) from orange juice than from water or milk, and neither the low pH nor the citrate content of the juice increased the formation of unstable CaF 2 in the enamel, as judged from a KOH leaching test. The F uptake by enamel surfaces from 0.25 mM NaF in 175 mM NaCl, corresponding to a dish prepared with salt containing 500 parts/10 6 F, was about 80 percent greater than from the same NaF concentration in water. This NaCl concentration did not increase the formation of CaF 2 in the enamel, as judged from the KOH test, while 350 mM NaCl caused a moderate increase. The investigations support the administration of NaF tablets with orange juice and the plans for domestic salt fluoridation. (author)

  5. Theobromine Effects on Enamel Surface Microhardness: In Vitro

    OpenAIRE

    Grace Syafira; Rina Permatasari; Nina Wardani

    2013-01-01

    Dental caries is still a dental health problem in Indonesia. Fluoride, one of the dental caries prevention material, but its safety and the danger of fluorosis is still debated. Theobromine is an alkaloid compound contained in cocoa beans. Theobromine is believed to increase enamel microhardness with mineral changes in the enamel superficial layer. Objectives: To determine the influence of theobromine on the enamel surface microhardness. Methods: This study used 40 premolar tooth crown pieces...

  6. Indentation damage and mechanical properties of human enamel and dentin.

    Science.gov (United States)

    Xu, H H; Smith, D T; Jahanmir, S; Romberg, E; Kelly, J R; Thompson, V P; Rekow, E D

    1998-03-01

    Understanding the mechanical properties of human teeth is important to clinical tooth preparation and to the development of "tooth-like" restorative materials. Previous studies have focused on the macroscopic fracture behavior of enamel and dentin. In the present study, we performed indentation studies to understand the microfracture and deformation and the microcrack-microstructure interactions of teeth. It was hypothesized that crack propagation would be influenced by enamel rods and the dentino-enamel junction (DEJ), and the mechanical properties would be influenced by enamel rod orientation and tooth-to-tooth variation. Twenty-eight human third molars were used for the measurement of hardness, fracture toughness, elastic modulus, and energy absorbed during indentation. We examined the effect of enamel rod orientation by propagating cracks in the occlusal surface, and in the axial section in directions parallel and perpendicular to the occlusal surface. The results showed that the cracks in the enamel axial section were significantly longer in the direction perpendicular to the occlusal surface than parallel. The cracks propagating toward the DEJ were always arrested and unable to penetrate dentin. The fracture toughness of enamel was not single-valued but varied by a factor of three as a function of enamel rod orientation. The elastic modulus of enamel showed a significant difference between the occlusal surface and the axial section. It is concluded that the cracks strongly interact with the DEJ and the enamel rods, and that the mechanical properties of teeth are functions of microstructural orientations; hence, single values of properties (e.g., a single toughness value or a single modulus value) should not be used without information on microstructural orientation.

  7. Refining enamel thickness measurements from B-mode ultrasound images.

    Science.gov (United States)

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  8. Effect of four different opalescence tooth-whitening products on enamel microhardness.

    Science.gov (United States)

    Majeed, A; Grobler, S R; Moola, M H; Rossouw, R J; van Kotze, T J W

    2008-06-01

    The purpose was to evaluate the effect of various Opalescence tooth-whitening products on enamel. Enamel blocks were exposed to Opalescence PF 10% Carbamide Peroxide (n = 10), Opalescence PF 20% Carbamide Peroxide (n = 10), Opalescence Trèswhite Supreme 10% Hydrogen Peroxide (n = 10) and Opalescence Quick PF 45% Carbamide Peroxide (n = 10) according to the manufacturer's instructions. The control group was enamel blocks (n = 10) kept in artificial saliva. The values were obtained before exposure and after the 14-days treatment period. Enamel blocks were kept in saliva between treatments. Indent marks on enamel blocks were examined using the scanning electron microscope for treatment effects. All four different Opalescence products damaged enamel. The most damage was done when treated for a long period (112 hours). SEM images also showed damage to enamel by all 4 products. Opalescence with 10% and with 20% Carbamide Peroxide showed the highest damage, which also differed significantly (p enamel. Higher damage was done by the 10% carbamide peroxide and 20% carbamide peroxide products because of the much longer exposure period (112 hours in comparison to 7 hours).

  9. Smile restoration through use of enamel microabrasion associated with tooth bleaching.

    Science.gov (United States)

    Sundfeld, Renato Herman; Rahal, Vanessa; de Alexandre, Rodrigo Sversut; Briso, André Luiz Fraga; Sundfeld Neto, Daniel

    2011-01-01

    Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes. Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986, and by other investigators who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure. It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface, and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann

  10. Indentation damage and crack repair in human enamel.

    Science.gov (United States)

    Rivera, C; Arola, D; Ossa, A

    2013-05-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 h. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Enamel microabrasion: An overview of clinical and scientific considerations

    Science.gov (United States)

    Pini, Núbia Inocencya Pavesi; Sundfeld-Neto, Daniel; Aguiar, Flavio Henrique Baggio; Sundfeld, Renato Herman; Martins, Luis Roberto Marcondes; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2015-01-01

    Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface with mechanical pressure from a rubber cup coupled to a rotatory mandrel of a low-rotation micromotor. If necessary, this treatment can be safely combined with bleaching for better esthetic results. Recent studies show that microabrasion is a conservative treatment when the enamel wear is minimal and clinically imperceptible. The most important factor contributing to the success of enamel microabrasion is the depth of the defect, as deeper, opaque stains, such as those resulting from hypoplasia, cannot be resolved with microabrasion, and require a restorative approach. Surface enamel alterations that result from microabrasion, such as roughness and microhardness, are easily restored by saliva. Clinical studies support the efficacy and longevity of this safe and minimally invasive treatment. The present article presents the clinical and scientific aspects concerning the microabrasion technique, and discusses the indications for and effects of the treatment, including recent works describing microscopic and clinical evaluations. PMID:25610848

  12. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    Science.gov (United States)

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Novel Dental Cement to Combat Biofilms and Reduce Acids for Orthodontic Applications to Avoid Enamel Demineralization

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-05-01

    Full Text Available Orthodontic treatments often lead to biofilm buildup and white spot lesions due to enamel demineralization. The objectives of this study were to develop a novel bioactive orthodontic cement to prevent white spot lesions, and to determine the effects of cement compositions on biofilm growth and acid production. 2-methacryloyloxyethyl phosphorylcholine (MPC, nanoparticles of silver (NAg, and dimethylaminohexadecyl methacrylate (DMAHDM were incorporated into a resin-modified glass ionomer cement (RMGI. Enamel shear bond strength (SBS was determined. Protein adsorption was determined using a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU and lactic acid production. Incorporating 3% of MPC, 1.5% of DMAHDM, and 0.1% of NAg into RMGI, and immersing in distilled water at 37 °C for 30 days, did not decrease the SBS, compared to control (p > 0.1. RMGI with 3% MPC + 1.5% DMAHDM + 0.1% NAg had protein amount that was 1/10 that of control. RMGI with triple agents (MPC + DMAHDM + NAg had much stronger antibacterial property than using a single agent or double agents (p < 0.05. Biofilm CFU on RMGI with triple agents was reduced by more than 3 orders of magnitude, compared to commercial control. Biofilm metabolic activity and acid production were also greatly reduced. In conclusion, adding MPC + DMAHDM + NAg in RMGI substantially inhibited biofilm viability and acid production, without compromising the orthodontic bracket bond strength to enamel. The novel bioactive cement is promising for orthodontic applications to hinder biofilms and plaque buildup and enamel demineralization.

  14. Emdogain--periodontal regeneration based on biomimicry.

    Science.gov (United States)

    Gestrelius, S; Lyngstadaas, S P; Hammarström, L

    2000-06-01

    Biomimicry has been introduced as a term for innovations inspired by nature [1]. Such innovations may appear in almost every part of modern society. This review on the effects of enamel matrix proteins on the formation of cementum and the development of emdogain for regeneration of periodontal tissues lost due to periodontitis shows an example of biomimicry in dentistry. Findings from clinical and laboratory investigations are summarized and the biological basis for enamel matrix-induced periodontal regeneration is discussed.

  15. Indentation Damage and Crack Repair in Human Enamel*

    OpenAIRE

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced ...

  16. Modelling of micromachining of human tooth enamel by erbium laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belikov, A V; Skrypnik, A V; Shatilova, K V [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  17. Modelling of micromachining of human tooth enamel by erbium laser radiation

    International Nuclear Information System (INIS)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    2014-01-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  18. ONLINE TECHNOLOGICAL MONITORING OF INSULATION DEFECTS IN ENAMELED WIRES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2017-08-01

    Full Text Available In this paper the authors used non-destructive technological monitoring of defects insulation enameled wire with poliimid polymer. The paper is devoted to the statistical method for processing, comparison and analysis of results of measurements of parameters of insulation of enameled wire because of mathematical model of trend for application in active technological monitoring is developed; the recommendations for parameters of such monitoring are used. It is theoretically justified and the possibility of determination of dependence of the error on the velocity of movement of a wire for want of quantifying of defects in enameled insulation by non-destructive tests by high voltage. The dependence of average value of amount of defects for enameled wire with two-sheeted poliimid insulation in a range of nominal diameter 0.56 mm is experimentally determined. The technological monitoring purpose is to reduce the quantifying defects of enameled insulation.

  19. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins

    Science.gov (United States)

    Shibata, Toshio; Maki, Kouki; Hadano, Jinki; Fujikawa, Takumi; Kitazaki, Kazuki; Koshiba, Takumi; Kawabata, Shun-ichiro

    2015-01-01

    Transglutaminase (TG) catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi) of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes. PMID:26506243

  20. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins.

    Directory of Open Access Journals (Sweden)

    Toshio Shibata

    2015-10-01

    Full Text Available Transglutaminase (TG catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes.

  1. Malnutrition-related early childhood exposures and enamel defects in the permanent dentition: A longitudinal study from the Bolivian Amazon.

    Science.gov (United States)

    Masterson, Erin E; Fitzpatrick, Annette L; Enquobahrie, Daniel A; Mancl, Lloyd A; Conde, Esther; Hujoel, Philippe P

    2017-10-01

    We investigated the relationship between early childhood malnutrition-related measures and subsequent enamel defects in the permanent dentition. This cohort study included 349 Amerindian adolescents (10-17 years, 52% male) from the Bolivian Amazon. Exposures included: stunted growth (height-for-age z-scores), underweight (weight-for-age z-scores), anemia (hemoglobin), acute inflammation (C-reactive protein) and parasitic infection (hookworm). We measured the occurrence (no/yes) and extent (2/3) of enamel defects. We estimated associations between childhood exposures and enamel defect measures using log-binomial and multinomial logistic regression. The prevalence of an enamel defect characterized by an orange peel texture on a large central depression on the labial surface of the central maxillary incisors was 92.3%. During childhood (1-4 years), participants had a high prevalence of stunted growth (75.2%), anemia (56.9%), acute inflammation (39.1%), and hookworm infection (49.6%). We observed associations between childhood height-for-age (OR = 0.65; P = 0.028 for >2/3 extent vs. no EH) and gastrointestinal hookworm infection (OR = 3.43; P = 0.035 for >2/3 extent vs. no defects or malnutrition-related measures in early childhood, including stunted growth and parasitic helminth infection, with the observed enamel defects. © 2017 Wiley Periodicals, Inc.

  2. Bonding strategies for MIH-affected enamel and dentin.

    Science.gov (United States)

    Krämer, Norbert; Bui Khac, Ngoc-Han Nana; Lücker, Susanne; Stachniss, Vitus; Frankenberger, Roland

    2018-02-01

    Aim of the present study was to evaluate resin composite adhesion to dental hard tissues affected by molar incisor hypomineralisation (MIH). 94 freshly extracted human molars and incisors (53 suffering MIH) were used. 68 teeth (35 with MIH) were used for μ-TBS tests in enamel and dentin, 26 (18 with MIH) for qualitative evaluation. Specimens were bonded with Clearfil SE Bond, Scotchbond Universal, and OptiBond FL. For MIH affected enamel, additional OptiBond FL groups with NaOCl and NaOCl+Icon were investigated. Beside fractographic analysis, also qualitative evaluations were performed using SEM at different magnifications as well as histological sectioning. Highest μ-TBS values were recorded with dentin specimens (ANOVA, mod. LSD, p0.05). Pre-test failures did not occur in dentin specimens. Sound enamel specimens exhibited significantly higher μ-TBS values than MIH enamel (p0.05), however, it caused less pre-test failures (pMIH enamel is the limiting factor in adhesion to MIH teeth. MIH-affected dentin may be bonded conventionally. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4.......4. Three enzyme peaks were eluted using low pressure chromatography with a Bio-gel column. With a HPLC gel filtration column the separation of the enamel extract resulted in only one peak with AP activity. The fractions of this peak were used to produce an antibody against bovine AP....

  4. Abrasive wear of enamel by bioactive glass-based toothpastes.

    Science.gov (United States)

    Mahmood, Asad; Mneimne, Mohammed; Zou, Li Fong; Hill, Robert G; Gillam, David G

    2014-10-01

    To determine the abrasivity of a 45S5 bioactive glass based toothpaste on enamel as a function of the particle size and shape of the glass. 45S5 glass was synthesized ground and sieved to give various particle sized fractions toothpastes and their tooth brush abrasivity measured according to BS EN ISO11609 methodology. Enamel loss increased with increasing particle size. The percussion milled powder exhibited particles that had sharp edges and the pastes were significantly more abrasive than the pastes made with round ball milled powders. One interesting observation made during the present study was that there was preferential wear of the enamel at the dentin-enamel junction (DEJ), particularly with the coarse particle sized pastes.

  5. Heat Transfer Behavior across the Dentino-Enamel Junction in the Human Tooth.

    Directory of Open Access Journals (Sweden)

    Lin Niu

    Full Text Available During eating, the teeth usually endure the sharply temperature changes because of different foods. It is of importance to investigate the heat transfer and heat dissipation behavior of the dentino-enamel junction (DEJ of human tooth since dentine and enamel have different thermophysical properties. The spatial and temporal temperature distributions on the enamel, dentine, and pulpal chamber of both the human tooth and its discontinuous boundaries, were measured using infrared thermography using a stepped temperature increase on the outer boundary of enamel crowns. The thermal diffusivities for enamel and dentine were deduced from the time dependent temperature change at the enamel and dentine layers. The thermal conductivities for enamel and dentine were calculated to be 0.81 Wm-1K-1 and 0.48 Wm-1K-1 respectively. The observed temperature discontinuities across the interfaces between enamel, dentine and pulp-chamber layers were due to the difference of thermal conductivities at interfaces rather than to the phase transformation. The temperature gradient distributes continuously across the enamel and dentine layers and their junction below a temperature of 42°C, whilst a negative thermal resistance is observed at interfaces above 42°C. These results suggest that the microstructure of the dentin-enamel junction (DEJ junction play an important role in tooth heat transfer and protects the pulp from heat damage.

  6. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Science.gov (United States)

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  7. One-step separation of myristoylated and nonmyristoylated retroviral matrix proteins

    Czech Academy of Sciences Publication Activity Database

    Doležal, Michal; Zábranský, Aleš; Hrabal, R.; Ruml, T.; Pichová, Iva; Rumlová, Michaela

    2013-01-01

    Roč. 92, č. 1 (2013), s. 94-99 ISSN 1046-5928 R&D Projects: GA ČR GA204/09/1388 Institutional support: RVO:61388963 Keywords : matrix protein * mouse mammary tumor virus * murine leukemia virus * myristoylation * N-myristoyltransferase * retrovirus Subject RIV: CE - Biochemistry Impact factor: 1.508, year: 2013

  8. Enamel alteration following tooth bleaching and remineralization.

    Science.gov (United States)

    Coceska, Emilija; Gjorgievska, Elizabeta; Coleman, Nichola J; Gabric, Dragana; Slipper, Ian J; Stevanovic, Marija; Nicholson, John W

    2016-06-01

    The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence(®) Boost and Mirawhite(®) Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive(®) hap+, Mirawhite(®) Gelleѐ, GC Tooth Mousse™ and Mirafluor(®) C. The samples were analysed by SEM/3D-SEM-micrographs, SEM/EDX-qualitative analysis and SEM/EDX-semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line-scans of the sample remineralized with GC Tooth Mousse™. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth-bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  9. Methods for the visualization and analysis of extracellular matrix protein structure and degradation.

    Science.gov (United States)

    Leonard, Annemarie K; Loughran, Elizabeth A; Klymenko, Yuliya; Liu, Yueying; Kim, Oleg; Asem, Marwa; McAbee, Kevin; Ravosa, Matthew J; Stack, M Sharon

    2018-01-01

    This chapter highlights methods for visualization and analysis of extracellular matrix (ECM) proteins, with particular emphasis on collagen type I, the most abundant protein in mammals. Protocols described range from advanced imaging of complex in vivo matrices to simple biochemical analysis of individual ECM proteins. The first section of this chapter describes common methods to image ECM components and includes protocols for second harmonic generation, scanning electron microscopy, and several histological methods of ECM localization and degradation analysis, including immunohistochemistry, Trichrome staining, and in situ zymography. The second section of this chapter details both a common transwell invasion assay and a novel live imaging method to investigate cellular behavior with respect to collagen and other ECM proteins of interest. The final section consists of common electrophoresis-based biochemical methods that are used in analysis of ECM proteins. Use of the methods described herein will enable researchers to gain a greater understanding of the role of ECM structure and degradation in development and matrix-related diseases such as cancer and connective tissue disorders. © 2018 Elsevier Inc. All rights reserved.

  10. Retrospective radiation dosimetry using electron paramagnetic resonance in canine dental enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.; Pekar, J.; Rink, W.J.; Boreham, D.R.

    2005-01-01

    Electron paramagnetic resonance (EPR) biodosimetry of human tooth enamel has been widely used for measuring radiation doses in various scenarios. We have now developed EPR dosimetry in tooth enamel extracted from canines. Molars and incisors from canines were cleaned by processing in supersaturated aqueous potassium hydroxide solution. The dosimetric signal in canine tooth enamel was found to increase linearly as a function of laboratory added dose from 0.44±0.02 to 4.42±0.22 Gy. The gamma radiation sensitivity of the canine molar enamel was found to be comparable to that of human tooth enamel. The dosimetric signal in canine enamel has been found to be stable up to at least 6 weeks after in vitro irradiation. A dosimetric signal variation of 10-25% was observed for canines ranging from in age 3 years to 16 year old

  11. Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants.

    Science.gov (United States)

    Andrade Neto, D M; Carvalho, E V; Rodrigues, E A; Feitosa, V P; Sauro, S; Mele, G; Carbone, L; Mazzetto, S E; Rodrigues, L K; Fechine, P B A

    2016-06-01

    Enamel resin infiltrants are biomaterials able to treat enamel caries at early stages. Nevertheless, they cannot prevent further demineralization of mineral-depleted enamel. Therefore, the aim of this work was to synthesize and incorporate specific hydroxyapatite nanoparticles (HAps) into the resin infiltrant to overcome this issue. HAps were prepared using a hydrothermal method (0h, 2h and 5h). The crystallinity, crystallite size and morphology of the nanoparticles were characterized through XRD, FT-IR and TEM. HAps were then incorporated (10wt%) into a light-curing co-monomer resin blend (control) to create different resin-based enamel infiltrants (HAp-0h, HAp-2h and HAp-5h), whose degree of conversion (DC) was assessed by FT-IR. Enamel caries lesions were first artificially created in extracted human molars and infiltrated using the tested resin infiltrants. Specimens were submitted to pH-cycling to simulate recurrent caries. Knoop microhardness of resin-infiltrated underlying and surrounding enamel was analyzed before and after pH challenge. Whilst HAp-0h resulted amorphous, HAp-2h and HAp-5h presented nanorod morphology and higher crystallinity. Resin infiltration doped with HAp-2h and HAp-5h caused higher enamel resistance against demineralization compared to control HAp-free and HAp-0h infiltration. The inclusion of more crystalline HAp nanorods (HAp-2h and HAp-5h) increased significantly (p<0.05) the DC. Incorporation of more crystalline HAp nanorods into enamel resin infiltrants may be a feasible method to improve the overall performance in the prevention of recurrent demineralization (e.g. caries lesion) in resin-infiltrated enamel. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Enamel micromorphology of the tribosphenic molar

    OpenAIRE

    Hanousková, Pavla

    2014-01-01

    The tribosphenic molar is an ancestral type of mammalian teeth and a phy- lotypic stage of the mammalian dental evolution. Yet, in contrast to derived teeth types, its enamel microarchitecture attracted only little attention and the information on that subject is often restricted to statements suggesting a simple homogenous arrangement of a primitive radial prismatic enamel. The present paper tests this prediction with aid of comparative study of eight model species representing the orders Ch...

  13. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Science.gov (United States)

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  14. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    Science.gov (United States)

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  15. Vitamin K Intake and Plasma Desphospho-Uncarboxylated Matrix Gla-Protein Levels in Kidney Transplant Recipients

    NARCIS (Netherlands)

    Boxma, P.Y.; Berg, van den E.; Geleijnse, J.M.; Laverman, G.D.; Schurgers, L.J.; Vermeer, C.; Kema, I.P.; Muskiet, F.A.J.; Navis, G.; Bakker, S.J.L.; Borst, de M.H.

    2012-01-01

    Vitamin K is essential for activation of ¿-carboxyglutamate (Gla)-proteins including the vascular calcification inhibitor matrix Gla-protein (MGP). Insufficient vitamin K intake leads to production of uncarboxylated, mostly inactive proteins and contributes to an increased cardiovascular risk. In

  16. Calcinosis in juvenile dermatomyositis : a possible role for the vitamin K-dependent protein matrix Gla protein

    NARCIS (Netherlands)

    Van Summeren, M. J. H.; Spliet, W. G. M.; Van Royen-Kerkhof, A.; Vermeer, C.; Lilien, M.; Kuis, W.; Schurgers, L. J.

    Objectives. The aims of the present study were to investigate whether the calcification inhibitor matrix Gla protein (MGP) is expressed in muscle biopsies of patients with juvenile dermatomyositis (JDM), and whether different forms of MGP are differentially expressed in JDM patients with and without

  17. Sea otter dental enamel is highly resistant to chipping due to its microstructure.

    Science.gov (United States)

    Ziscovici, Charles; Lucas, Peter W; Constantino, Paul J; Bromage, Timothy G; van Casteren, Adam

    2014-10-01

    Dental enamel is prone to damage by chipping with large hard objects at forces that depend on chip size and enamel toughness. Experiments on modern human teeth have suggested that some ante-mortem chips on fossil hominin enamel were produced by bite forces near physiological maxima. Here, we show that equivalent chips in sea otter enamel require even higher forces than human enamel. Increased fracture resistance correlates with more intense enamel prism decussation, often seen also in some fossil hominins. It is possible therefore that enamel chips in such hominins may have formed at even greater forces than currently envisaged. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Hardness of enamel exposed to Coca-Cola and artificial saliva.

    Science.gov (United States)

    Devlin, H; Bassiouny, M A; Boston, D

    2006-01-01

    The purpose of this study was to determine the rate of change in indentation hardness of enamel in permanent teeth exposed to Coca-Cola. In a further experiment, the ability of a commercially available artificial saliva to remineralize enamel treated with Coca-Cola was tested. Ten enamel specimens were randomly chosen to be treated with Coca-Cola (experimental groups) and seven with water (control group). The fluids were applied for 1, 2, 3 h and overnight (15 h), washed off with a few drops of water and the moist enamel indentation hardness tested after each interval. With Coca-Cola treatment, the mean enamel hardness was 92.6% (s.d. = 7.9) of the original baseline hardness after 1 h, 93.25% (s.d. = 10.15) after 2 h, 85.7% (s.d. = 12.03) after 3 h and 80.3% after 15 h. The mean indentation hardness of control specimens treated with water was 108.7% (s.d. = 16.09) of the original hardness after 1 h, 99.09% (s.d. = 18.98) after 2 h, 98.97% (s.d. =11.24) after 3 h and 98.42% (s.d. = 22.78) after 15 h. In a separate experiment, the hardness of 9 enamel specimens was tested, as previously described, before and after treatment with Coca-Cola overnight and again after application of artificial saliva for 3 min. Coca-Cola reduced the mean indentation hardness of enamel in the teeth, but the hardness was partially restored with artificial saliva (Salivart) and increased by 18% from the demineralized enamel hardness.

  19. Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents.

    Directory of Open Access Journals (Sweden)

    Anil S Thakur

    2007-10-01

    Full Text Available Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed.We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other.Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens.

  20. Mineral composition of enamel from two South African population groups

    Energy Technology Data Exchange (ETDEWEB)

    Retief, D H [University of the Witwatersrand, Johannesburg (South Africa). Dental Research Unit; Turkstra, J [University of Fort Hare, Alice (South Africa). Department of Chemistry; Cleaton-Jones, P E; Biddlecombe, F [Atomic Energy Board, Pelindaba, Pretoria (South Africa). Chemistry Div.

    1979-10-01

    The mineral composition of pooled bulk enamel from Black and White South Africans respectively, resident in the Johannesburg area, was determined by neutron activation analysis and high resolution gamma spectromety. The differences between the concentrations of Ca, Cl, Mg, Na, Br and Co in the enamel of the two population groups were apparently not significant. There was a trend for the concentrations of Al, Ag, Au, Fe, Sb, and Zn to be higher in the enamel from the White subjects and for the concentrations of Mn, Se and Sr to be higher in the enamel from the Black subjects.

  1. Kekerasan mikro enamel gigi permanen muda setelah aplikasi bahan pemutih gigi dan pasta remineralisasi (Enamel micro hardness of young permanent tooth after bleaching and remineralization paste application

    Directory of Open Access Journals (Sweden)

    Budianto Liwang

    2014-12-01

    Full Text Available Background: Studies showed that bleaching agent had demineralization effect to enamel, and encourage use of remineralization paste after bleaching treatment especially in young permanent tooth which in post-eruptive enamel maturation. Purpose: The study ere aimed to determine the bleaching agent effect on enamel surface micro hardness, and to determine the effect of remineralization paste application on enamel surface micro hardness of young permanent tooth after bleaching treatment. Methods: Fourteen young permanent teeth were placed in a block of resin with a window on the buccal surface enamel. The initial enamel surface hardness was measured using Microvickers Hardness Tester. Then the application of hydrogen peroxide bleaching materials 30% was done three times for 15 minutes and followed by surface hardness of enamel measurement. Samples were divided into 2 groups; the first group was applied paste of Hydroxy apatite + NaF 1450ppm , and the second group was applied paste of CPP–ACP + NaF 900ppm. Each paste was applied for 30 minutes for 7 days, then the enamel surface hardness of samples were measured. Results: The enamel surface micro hardness decreased after bleaching from 333.09 ± 10.49 VHN to 299.15±5.70 VHN. Micro hardness after application of Hidroxy apatite + NaF 1450ppm was 316.61±5.87 VHN and after application of CPP-ACP + NaF 900ppm was 319.94±3.25 VHN, however the micro hardness still lower than initial micro hardness. Conclusion: Tooth bleaching agent caused a decrease of enamel surface micro hardness in young permanent tooth. The use of remineralization paste enabled to increase the enamel surface micro hardness young permanent tooth.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa produk pemutih gigi memiliki efek demineralisasi enamel gigi, dan mendorong penggunaan pasta remineralisasi setelah pemutihan gigi terutama di gigi muda permanen yang enamelnya masih dalam proses maturasi pasca-erupsi. Tujuan

  2. Nanoindentation mapping of the mechanical properties of human molar tooth enamel.

    Science.gov (United States)

    Cuy, J L; Mann, A B; Livi, K J; Teaford, M F; Weihs, T P

    2002-04-01

    The mechanical behavior of dental enamel has been the subject of many investigations. Initial studies assumed that it was a more or less homogeneous material with uniform mechanical properties. Now it is generally recognized that the mechanical response of enamel depends upon location, chemical composition, and prism orientation. This study used nanoindentation to map out the properties of dental enamel over the axial cross-section of a maxillary second molar (M(2)). Local variations in mechanical characteristics were correlated with changes in chemical content and microstructure across the entire depth and span of a sample. Microprobe techniques were used to examine changes in chemical composition and scanning electron microscopy was used to examine the microstructure. The range of hardness (H) and Young's modulus (E) observed over an individual tooth was found to be far greater than previously reported. At the enamel surface H>6GPa and E>115GPa, while at the enamel-dentine junction H<3GPa and E<70GPa. These variations corresponded to the changes in chemistry, microstructure, and prism alignment but showed the strongest correlations with changes in the average chemistry of enamel. For example, the concentrations of the constituents of hydroxyapatite (P(2)O(5) and CaO) were highest at the hard occlusal surface and decreased on moving toward the softer enamel-dentine junction. Na(2)O and MgO showed the opposite trend. The mechanical properties of the enamel were also found to differ from the lingual to the buccal side of the molar. At the occlusal surface the enamel was harder and stiffer on the lingual side than on the buccal side. The interior enamel, however, was softer and more compliant on the lingual than on the buccal side, a variation that also correlated with differences in average chemistry and might be related to differences in function.

  3. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  4. Dental enamel defects in children with coeliac disease

    NARCIS (Netherlands)

    Werink, Claar D.; van Diermen, Denise E.; Aartman, Irene H. A.; Heymans, Hugo S. A.

    2007-01-01

    OBJECTIVE: The aim of this study was to investigate whether Dutch children with proven coeliac disease show specific dental enamel defects, and to asses whether children with the same gastrointestinal complaints, but proved no-coeliac disease, lack these specific dental enamel defects. MATERIALS AND

  5. Enamel-based mark performance for marking Chinese mystery snail Bellamya chinensis

    Science.gov (United States)

    Wong, Alec; Allen, Craig R.; Hart, Noelle M.; Haak, Danielle M.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.

    2013-01-01

    The exoskeleton of gastropods provides a convenient surface for carrying marks, and i the interest of improving future marking methods our laboratory assessed the performance of an enamel paint. The endurance of the paint was also compared to other marking methods assessed in the past. We marked the shells of 30 adult Chinese mystery snails Bellamya chinensis and held them in an aquarium for 181 days. We observed no complete degradation of any enamel-paint mark during the 181 days. The enamel-paint mark was superior to a nai;-polish mark, which lasted a median of 100 days. Enamel-paint marks also have a lower rate of loss (0.00 month-1 181 days) than plastic bee tags (0.01 month-1, 57 days), gouache paint (0.07 month-1, 18.5 days), or car body paint from studies found in scientific literature. Legibility of enamel-paint marks had a median lifetime of 102 days. The use of enamel paint on the shells of gastropods is a viable option for studies lasting up to 6 months. Furthermore, visits to capture-mark-recapture site 1 year after application of enamel-paint marks on B. chinesnis shells produced several individuals on which the enamel paint was still visible, although further testing is required to clarify durability over longer periods.

  6. Quantitative proteomics reveals altered expression of extracellular matrix related proteins of human primary dermal fibroblasts in response to sulfated hyaluronan and collagen applied as artificial extracellular matrix.

    Science.gov (United States)

    Müller, Stephan A; van der Smissen, Anja; von Feilitzsch, Margarete; Anderegg, Ulf; Kalkhof, Stefan; von Bergen, Martin

    2012-12-01

    Fibroblasts are the main matrix producing cells of the dermis and are also strongly regulated by their matrix environment which can be used to improve and guide skin wound healing processes. Here, we systematically investigated the molecular effects on primary dermal fibroblasts in response to high-sulfated hyaluronan [HA] (hsHA) by quantitative proteomics. The comparison of non- and high-sulfated HA revealed regulation of 84 of more than 1,200 quantified proteins. Based on gene enrichment we found that sulfation of HA alters extracellular matrix remodeling. The collagen degrading enzymes cathepsin K, matrix metalloproteinases-2 and -14 were found to be down-regulated on hsHA. Additionally protein expression of thrombospondin-1, decorin, collagen types I and XII were reduced, whereas the expression of trophoblast glycoprotein and collagen type VI were slightly increased. This study demonstrates that global proteomics provides a valuable tool for revealing proteins involved in molecular effects of growth substrates for further material optimization.

  7. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  8. [Differential diagnosis of dental enamel focal demineralization and fluorosis by means of spectrophotometry].

    Science.gov (United States)

    Makarova, N E; Vinnichenko, Yu A

    2018-01-01

    The article presents the results of spectrophotometric tooth enamel scanning for differential diagnosis of focal enamel demineralization and fluorosis. Research was conducted in vivo on teeth affected by these diseases. VITA EasyShade spectrophotometer measurements were made on the affected area and on the visually healthy part of enamel. The lightness appeared as the only one differential significant optical characteristics of tooth enamel. Lightness metrics were higher in the case of initial caries than on the healthy part of enamel when these metrics were lower in the case of fluorosis than on the healthy part of enamel.

  9. Enamel lesions in development, classification in Costa Rican families

    International Nuclear Information System (INIS)

    Murillo Knudsen, Gina; Berrocal Salazar, Cristina

    2013-01-01

    Enamel lesions in development were identified and classified in patients of Llano Grande de Cartago, examined at the Facultad de Odontologia of the Universidad de Costa Rica. A guide is provided over the topic. 15 children and 2 Costa Rican adults were selected. Clinical examinations, radiographs and clinical photographs were used as data collection method. Dental defects of the enamel were classified according to the possible genetic causes and without genetic causes. Imperfect Amelogenesis (IA) was diagnosed in 10 of patients. Hypoplastic IA was determined in 3 siblings with autosomal recessive inheritance, for 16% of the total sample. Hypomineralized IA was identified in an adult and two of his sons, with autosomal dominant inheritance. The remaining 4 cases of IA have been sporadic. Lesions of dental fluorosis were determined in the Horowitz index in 4 individuals, from 2 unrelated families. Other defects unspecified of the enamel or hypoplasias were found in 3 individuals. Enamel lesions in development should be classified with precision, for the purpose to inform to patients affected about their condition, origin, prognosis and appropriate treatment. The basis are established to implement reliability in the construction of family genealogy, identification and classification of enamel lesions, as well as the probabilities of future generations to express the lesions in the enamel of temporary or permanent dentition [es

  10. Separate whitening effects on enamel and dentin after fourteen days.

    Science.gov (United States)

    Kugel, Gerard; Petkevis, Jason; Gurgan, Sevil; Doherty, Eileen

    2007-01-01

    The purpose of this study was to investigate the mechanism of action of a bleaching agent, as it relates to enamel and dentin. Twenty-six extracted human molar teeth were sectioned at the cemento-enamel junction and were randomly assigned to two groups. L*a*b* readings were taken with a spectrophotometer: on buccal surfaces of the crown, at enamel and dentin. The teeth were exposed to carbamide peroxide or placebo gel and L*a*b* scores were again recorded to determine color changes. Treatments were compared using ancova test with baseline color as the covariate. Relative to placebo, buccal surfaces exhibited the greatest Deltab* and DeltaL* color change. On buccal surfaces, the adjusted mean (SE) treatment differences were -7.8 (1.00) for Deltab* and 5.7 (0.97) for DeltaL, with groups differing significantly (p enamel surfaces, treatment differences were -3.6 (0.61) for Deltab* and 4.6 (0.80) for DeltaL* (p tooth crowns exposed to carbamide peroxide 15% was because of the color change in enamel. As compared to enamel, dentin was less affected after 14 days.

  11. Tooth enamel sample preparation using alkaline treatment in ESR dosimetry

    International Nuclear Information System (INIS)

    Yongzeng, Zhou; Jiadong, Wang; Xiaomei, Jia; Ke, Wu; Jianbo, Cong

    2002-01-01

    Tooth enamel sample preparation using alkaline treatment was studied and compared with traditional mechanical method in this paper. 20 adult teeth were used. Samples were placed into NaOH solution. This method requires 4-5 weeks and the enamel was separated from dentin. Experimental results show that 8M NaOH was appropriate for separating enamel from dentin and that there is no difference in background signal relative intensity between samples prepared by mechanical and by chemical methods. There is also no difference in radiosensitivity between samples prepared by two methods mentioned above. Dose response curve for tooth enamel samples isolated by 8M NaOH solution was obtained

  12. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  13. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  14. Glass enamel and glass-ceramic coatings for chemical apparatus

    International Nuclear Information System (INIS)

    Es'kov, A.S.; Oleinik, M.I.; Shabrova, E.A.

    1984-01-01

    Among the known anticorrosion coatings used in chemical engineering, glass enamel base coatings are distinguished by such advantages as a high degree of continuity and chemical resistance. The paper describes basic principles for the creation of acid and alkali resistant glass enamel and ceramic coatings for chemical apparatus. As the result of investgations, glass enamel coatings with increased electrical conductivity and also experimental production compositions of chemical, temperature and radiation resistant coatings for protection of chemical equipment of 12Kh18N10T stainless steel have been developed. The coatings have successfully passed testing under service conditions. A new type of coating is short-term glass enamel, which may be recommended for use in chemical machinery manufacturing and other branches of industry in oxidation-free heating and forming of stainless steels

  15. Triad 'Metal – Enamel – Glass'

    International Nuclear Information System (INIS)

    Mukhina, T; Petrova, S; Toporova, V; Fedyaeva, T

    2014-01-01

    This article shows how to change the color of metal and glass. Both these materials are self–sufficient, but sometimes used together. For example, enameling. In this case, the adhesion between metal substrate and stekloobraznae enamel layer, which was conducted on a stretching and a bend, was tested

  16. Role of Prism Decussation on Fatigue Crack Growth and Fracture of Human Enamel

    OpenAIRE

    Bajaj, Devendra; Arola, Dwayne

    2009-01-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset Compact Tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Re...

  17. Recovery of crystallographic texture in remineralized dental enamel.

    Science.gov (United States)

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  18. Quantitative analysis of enamel on debonded orthodontic brackets.

    Science.gov (United States)

    Cochrane, Nathan J; Lo, Thomas W G; Adams, Geoffrey G; Schneider, Paul M

    2017-09-01

    Iatrogenic damage to the tooth surface in the form of enamel tearouts can occur during removal of fixed orthodontic appliances. The aim of this study was to assess debonded metal and ceramic brackets attached with a variety of bonding materials to determine how frequently this type of damage occurs. Eighty-one patients close to finishing fixed orthodontic treatment were recruited. They had metal brackets bonded with composite resin and a 2-step etch-and-bond technique or ceramic brackets bonded with composite resin and a 2-step etch-and- bond technique, and composite resin with a self-etching primer or resin-modified glass ionomer cement. Debonded brackets were examined by backscattered scanning electron microscopy with energy dispersive x-ray spectroscopy to determine the presence and area of enamel on the base pad. Of the 486 brackets collected, 26.1% exhibited enamel on the bonding material on the bracket base pad. The incidences of enamel tearouts for each group were metal brackets, 13.3%; ceramic brackets, 30.2%; composite resin with self-etching primer, 38.2%; and resin-modified glass ionomer cement, 21.2%. The percentage of the bracket base pad covered in enamel was highly variable, ranging from 0% to 46.1%. Enamel damage regularly occurred during the debonding process with the degree of damage being highly variable. Damage occurred more frequently when ceramic brackets were used (31.9%) compared with metal brackets (13.3%). Removal of ceramic brackets bonded with resin-modified glass ionomer cement resulted in less damage compared with the resin bonding systems. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. Ameloblasts express type I collagen during amelogenesis.

    Science.gov (United States)

    Assaraf-Weill, N; Gasse, B; Silvent, J; Bardet, C; Sire, J Y; Davit-Béal, T

    2014-05-01

    Enamel and enameloid, the highly mineralized tooth-covering tissues in living vertebrates, are different in their matrix composition. Enamel, a unique product of ameloblasts, principally contains enamel matrix proteins (EMPs), while enameloid possesses collagen fibrils and probably receives contributions from both odontoblasts and ameloblasts. Here we focused on type I collagen (COL1A1) and amelogenin (AMEL) gene expression during enameloid and enamel formation throughout ontogeny in the caudate amphibian, Pleurodeles waltl. In this model, pre-metamorphic teeth possess enameloid and enamel, while post-metamorphic teeth possess enamel only. In first-generation teeth, qPCR and in situ hybridization (ISH) on sections revealed that ameloblasts weakly expressed AMEL during late-stage enameloid formation, while expression strongly increased during enamel deposition. Using ISH, we identified COL1A1 transcripts in ameloblasts and odontoblasts during enameloid formation. COL1A1 expression in ameloblasts gradually decreased and was no longer detected after metamorphosis. The transition from enameloid-rich to enamel-rich teeth could be related to a switch in ameloblast activity from COL1A1 to AMEL synthesis. P. waltl therefore appears to be an appropriate animal model for the study of the processes involved during enameloid-to-enamel transition, especially because similar events probably occurred in various lineages during vertebrate evolution.

  20. Enamel microhardness and bond strengths of self-etching primer adhesives.

    Science.gov (United States)

    Adebayo, Olabisi A; Burrow, Michael F; Tyas, Martin J; Adams, Geoffrey G; Collins, Marnie L

    2010-04-01

    The aim of this study was to determine the relationship between enamel surface microhardness and microshear bond strength (microSBS). Buccal and lingual mid-coronal enamel sections were prepared from 22 permanent human molars and divided into two groups, each comprising the buccal and lingual enamel from 11 teeth, to analyze two self-etching primer adhesives (Clearfil SE Bond and Tokuyama Bond Force). One-half of each enamel surface was tested using the Vickers hardness test with 10 indentations at 1 N and a 15-s dwell time. A hybrid resin composite was bonded to the other half of the enamel surface with the adhesive system assigned to the group. After 24 h of water storage of specimens at 37 degrees C, the microSBS test was carried out on a universal testing machine at a crosshead speed of 1 mm min(-1) until bond failure occurred. The mean microSBS was regressed on the mean Vickers hardness number (VHN) using a weighted regression analysis in order to explore the relationship between enamel hardness and microSBS. The weights used were the inverse of the variance of the microSBS means. Neither separate correlation analyses for each adhesive nor combined regression analyses showed a significant correlation between the VHN and the microSBS. These results suggest that the microSBS of the self-etch adhesive systems are not influenced by enamel surface microhardness.

  1. Bleaching Gels Containing Calcium and Fluoride: Effect on Enamel Erosion Susceptibility

    Directory of Open Access Journals (Sweden)

    Alessandra B. Borges

    2012-01-01

    Full Text Available This in vitro study evaluated the effect of 35% hydrogen peroxide (HP bleaching gel modified or not by the addition of calcium and fluoride on enamel susceptibility to erosion. Bovine enamel samples (3 mm in diameter were divided into four groups (n=15 according to the bleaching agent: control—without bleaching (C; 35% hydrogen peroxide (HP; 35% HP with the addition of 2% calcium gluconate (HP + Ca; 35% HP with the addition of 0.6% sodium fluoride (HP + F. The bleaching gels were applied on the enamel surface for 40 min, and the specimens were subjected to erosive challenge with Sprite Zero and remineralization with artificial saliva for 5 days. Enamel wear was assessed using profilometry. The data were analyzed by ANOVA/ Tukey’s test (P<0.05. There were significant differences among the groups (P=0.009. The most enamel wear was seen for C (3.37±0.80 μm, followed by HP (2.89 ± 0.98 μm and HP + F (2.72 ± 0.64 μm. HP + Ca (2.31 ± 0.92 μm was the only group able to significantly reduce enamel erosion compared to C. The application of HP bleaching agent did not increase the enamel susceptibility to erosion. However, the addition of calcium gluconate to the HP gel resulted in reduced susceptibility of the enamel to erosion.

  2. Self-etching adhesive on intact enamel, with and without pre-etching.

    Science.gov (United States)

    Devarasa, G M; Subba Reddy, V V; Chaitra, N L; Swarna, Y M

    2012-05-01

    Bond strengths of composite resin to enamel using self-etch adhesive (SEA) Clearfil SE bond system on intact enamel and enamel pre-etched with phosphoric acid were compared. The objective was to determine if the pre-etching would increase the bond strengths of the SEA systems to intact enamel and to evaluate the effect of pre-etching on bond formation of self-etch adhesives on intact enamel. Labial surfaces of 40 caries free permanent upper central and lateral incisors were cleaned, sectioned of their roots. All specimens were mounted on acrylic block and divided randomly into four groups. In two groups the application of self-etch adhesive, Clearfil SE bond was carried as per manufacturer's instructions, composite cylinders were built, whereas in the other two groups, 37% phosphoric acid etching was done before the application of self-etching adhesives. Then the resin tags were analyzed using scanning electron microscope and shear bond strength was measured using Instron universal testing machine. When phosphoric acid was used, there was significant increase in the depth of penetration of resin tags and in the Shear Bond Strength of composite to enamel. The results indicate that out of both treatment groups, pre-etching the intact enamel with 37% phosphoric acid resulted in formation of longer resin tags and higher depth of penetration of resin tags of the Clearfil SE bond, and attaining higher bond strength of the Clearfil SE bond to intact enamel. Copyright © 2011 Wiley Periodicals, Inc.

  3. Quantitative assessment of the enamel machinability in tooth preparation with dental diamond burs.

    Science.gov (United States)

    Song, Xiao-Fei; Jin, Chen-Xin; Yin, Ling

    2015-01-01

    Enamel cutting using dental handpieces is a critical process in tooth preparation for dental restorations and treatment but the machinability of enamel is poorly understood. This paper reports on the first quantitative assessment of the enamel machinability using computer-assisted numerical control, high-speed data acquisition, and force sensing systems. The enamel machinability in terms of cutting forces, force ratio, cutting torque, cutting speed and specific cutting energy were characterized in relation to enamel surface orientation, specific material removal rate and diamond bur grit size. The results show that enamel surface orientation, specific material removal rate and diamond bur grit size critically affected the enamel cutting capability. Cutting buccal/lingual surfaces resulted in significantly higher tangential and normal forces, torques and specific energy (pmachinability for clinical dental practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The effect of three whitening oral rinses on enamel micro-hardness.

    Science.gov (United States)

    Potgieter, E; Osman, Y; Grobler, S R

    2014-05-01

    The purpose of this study was to determine the effect on human enamel micro-hardness of three over-the-counter whitening oral rinses available in South Africa. Enamel fragments were gathered into three groups of 15 each. One group was exposed to Colgate Plax Whitening Blancheur, the second group to White Glo 2 in 1 and the third to Plus White, in each case for periods recommended by the respective manufacturers. Surface micro-hardness of all groups was measured before and after a 14 day treatment period. pH levels of the oral rinses were also determined with a combination pH electrode. Pre- and post- treatment data were analysed by the Wilcoxon Signed Rank Sum Test. According to the micro-hardness values no significant (p > 0.05) enamel damage was found as a result of treatment. However, it was observed that Colgate Pax and White Glo decreased the enamel hardness, an early sign of enamel damage, while Plus White showed a small increase in hardness. The three whitening oral rinses on the South African market do not damage the tooth enamel significantly when used as recommended by the manufacturers. However, extending the contact period and increasing the frequency of application might lead to damage of enamel.

  5. Methodic of the gamma-rays absorbed dose measurements on tooth enamel

    International Nuclear Information System (INIS)

    Linev, S.V.; Muravskij, V.A.; Mashevskij, A.A.; Ugolev, I.I.

    1997-01-01

    The analysis of the metrological aspects of the tooth enamel ESR dosimetry has been done. The sample preparation and measurement methods have been elaborated. The methods have passed metrological certification. The methods include tabletting of the mixture of tooth enamel powder and MnO paramagnetic centres concentration additional standard, two loops of additional irradiation of samples by 1 Gy dose and ESR-spectra measurements, calculation of absorbed dose by maximum likelihood algorithm. The algorithm of dose calculation uses enamel spectrum model with axial anisotropic spin-Hamiltonian based on 126 spectra of enamel samples. The algorithm takes into account spectra of the empty cavity, the tube for a sample, the glue and MnO standard. Certificated ESR-station is based on the ESR-analyser PS-100X. ESR-station provides tooth enamel absorbed dose measurements from 0.05 to 0.25 Gy with error 35%, and from 0.25 to 3 Gy with error 20%. The set of tooth enamel absorbed dose standard samples has been created and certificated for the purposes of ESR-station testing and certification. The set consists of 12 tabletted samples of tooth enamel irradiated by doses from 0.05 to 4 Gy. (authors). 7 refs., 1 tab., 2 figs

  6. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna

    2012-01-01

    -specific monoclonal antibodies (mAbs). METHODS: B cell immunodominant regions on the COMP molecule were measured with a novel enzyme-linked immunosorbent assay using mammalian expressed full-length mouse COMP as well as a panel of recombinant mouse COMP fragments. 18 mAbs specific to COMP were generated......ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP...

  7. Dental enamel defects in Italian children with cystic fibrosis: an observational study.

    Science.gov (United States)

    Ferrazzano, G F; Sangianantoni, G; Cantile, T; Amato, I; Orlando, S; Ingenito, A

    2012-03-01

    The relationship between cystic fibrosis (CF) and caries experience has already been explored, but relatively little information is available on dental enamel defects prevalence among children affected by cystic fibrosis. The aim of this study was to investigate this issue in deciduous and permanent teeth of children with CF resident in southern Italy. This cross sectional observational study was undertaken between October 2009 and March 2010. 88 CF patients and 101 healthy age-matched participated in this study. The prevalence of dental enamel defects was calculated using a modified Developmental Defects of Enamel (DDE) index. The comparison of dental enamel defects prevalence among groups was carried out using regression binary logistic analysis. In the CF subjects there was a higher prevalence (56%) of enamel defects in comparison to the healthy group (22%). The most prevalent enamel defect was hypoplasia with loss of enamel (23% of CF patients vs 1 1/2% of control group) in permanent teeth. This study confirms that children with cystic fibrosis are at increased risk of developing hypoplastic defects on their permanent teeth.

  8. Effect of four over-the-counter tooth-whitening products on enamel microhardness.

    Science.gov (United States)

    Majeed, A; Grobler, S R; Moola, M H; Oberholzer, T G

    2011-10-01

    This in vitro study evaluated the effect of four over-the-counter tooth-whitening products on enamel microhardness. Fifty enamel blocks were prepared from extracted human molar teeth. The enamel surfaces were polished up to 1200 grit fineness and the specimens randomly divided into five groups. Enamel blocks were exposed to: Rapid White (n=10); Absolute White (n=10); Speed White (n=10) and White Glo (n=10) whitening products, according to the manufacturers' instructions. As control, ten enamel blocks were kept in artificial saliva at 37 degrees C without any treatment. Microhardness values were obtained before exposure (baseline) and after 1, 7 and 14-day treatment periods using a digital hardness tester with a Vickers diamond indenter. Data were analysed using Wilcoxon Signed Rank Sum Test, one-way ANOVA and Tukey-Kramer Multiple Comparison Test (penamel microhardness. Speed White increased the microhardness of enamel, while White Glo and artificial saliva had no effect on hardness. Over-the-counter tooth-whitening products might decrease enamel microhardness depending on the type of product.

  9. Enamel and dentin bond strength following gaseous ozone application.

    Science.gov (United States)

    Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo

    2009-08-01

    To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p enamel and dentin bond strength.

  10. Analysis of the enamel hypoplasia using micro-CT scanner versus classical method.

    Science.gov (United States)

    Marchewka, Justyna; Skrzat, Janusz; Wróbel, Andrzej

    2014-01-01

    This article demonstrates the use of micro-CT scanning of the teeth surface for recognizing and evaluating severity of the enamel hypoplasia. To test capabilities of the microtomography versus classical method of evaluation hypoplastic defects of the enamel we selected two human teeth (C, M(2)) showing different types of enamel hypoplasia: linear, pits, and groove. Examined samples derive from archeological material dated on XVII-XVIII AD and excavated in Poland. In the current study we proved that micro-CT scanning is a powerful technique not only for imaging all kinds of the enamel hypoplasia but also allows to perform accurate measurements of the enamel defects. We figure out that contrary to the classical method of scoring enamel defects, the micro-computed tomography yields adequate data which serve for estimating the length of stress episode and length of interval between them.

  11. Amelogenesis Imperfect, Enamel Hypoplasia and Fluorosis Dental - Literature Review

    Directory of Open Access Journals (Sweden)

    Flávia Magnani Bevilacqua

    2015-12-01

    Full Text Available The developmental disorders of enamel are abnormalities of structure which can affect both dentitions. These abnormalities include amelogenesis imperfecta, enamel hypoplasia and dental fluorosis. The amelogenesis imperfecta is a hereditary change and enamel hypoplasia is a quantitative defect of enamel that occurs as a result of systemic problems, local and also inherited factors, or even the combination of them. Dental fluorosis is a hypoplasia caused by the chronic ingestion of fluoride during odontogenesis. All these anomalies have similar clinical characteristics, and it is necessary to be careful in their assessment. It is extremely important to know these abnormalities to establish a differential diagnosis and, consequently, a treatment plan, which can be set for each situation. Therefore, the purpose of this study was to review the literature regarding these three anomalies: amelogenesis imperfecta, enamel hypoplasia and dental fluorosis. It was concluded that to establish the differential diagnosis of these abnormalities as well as a proper treatment plan, it is indispensable the professional knowledge associated with the clinical examination. The examination has to consist of medical history and physical examination, and in some cases, x-ray examination.

  12. Enamel softening with Coca-Cola and rehardening with milk or saliva.

    Science.gov (United States)

    Gedalia, I; Dakuar, A; Shapira, L; Lewinstein, I; Goultschin, J; Rahamim, E

    1991-06-01

    Rehardening effects by cow's milk and by secreted saliva were investigated, in situ, following softening of human enamel with an acidic beverage (Coca-Cola). Volunteers wearing orthodontic removable appliances participated in the study. The intra-oral test was chosen for measuring microhardness of enamel slabs inserted into the dental appliance. The softening and the rehardening degrees were defined as the alterations between initial- and experimental-microhardness value at the enamel surface. In addition, SEM photos were prepared from the initial and experimental stages. Exposure of enamel slabs to the acidic beverage during 1 hour had a softening effect as expressed by the hardness decrease and visualized by the SEM photo. Rehardening effects following milk or saliva exposures respectively were evident, presumably due to deposited organic and mineral material on the enamel surface.

  13. In phantom dosimetric response of tooth enamel to neutrons

    International Nuclear Information System (INIS)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2004-01-01

    Electron Paramagnetic Resonance dosimetry based on tooth enamel has one important application in dose reconstruction of nuclear plant workers, where the contribution of neutrons to individual dose is often important. Evaluation of tooth enamel response to neutrons is thus an important goal. A few experimental data at thermal and fast neutron energies are available. A first evaluation of the tooth enamel relative response to 60 Co in monoenergetic neutron flux of 2.8 and of 14 MeV, published elsewhere, has provided results apparently non-consistent with the results obtained at lower and higher energies. A comparison of those results in the 2.8 and 14 MeV beams with those available in the literature for other beams is reported and possible reasons for incongruities are discussed. Dose conversion factors of enamel to the water and air are also calculated and reported. (authors)

  14. Molecular Basis of Human Enamel Defects

    Directory of Open Access Journals (Sweden)

    Chatzopoulos Georgios

    2014-03-01

    Full Text Available During eruption of teeth in the oral cavity, the effect of gene variations and environmental factors can result in morphological and structural changes in teeth. Amelogenesis imperfecta is a failure which is detected on the enamel of the teeth and clinical picture varies by the severity and type of the disease. Classification of the types of amelogenesis imperfecta is determined by histological, genetic, clinical and radiographic criteria. Specifically, there are 4 types of amelogenesis imperfecta (according to Witkop: hypoplastic form, hypo-maturation form, hypo-calcified form, and hypo-maturation/hypoplasia form with taurodontism and 14 subcategories. The diagnosis and classification of amelogenesis imperfecta has traditionally been based on clinical presentation or phenotype and the inheritance pattern. Several genes can be mutated and cause the disease. Millions of genes, possibly more than 10,000 genes produce proteins that regulate synthesis of enamel. Some of the genes and gene products that are likely associated with amelogenesis imperfecta are: amelogenin (AMELX, AMELY genes, ameloblastin (AMBN gene, enamelin (ENAM gene, enamelysin (MMP20 gene, kalikryn 4 (KLK 4 gene, tuftelins (Tuftelin gene, FAM83H (FAM83H gene and WDR72 (WDR72 gene. Particular attention should be given by the dentist in recognition and correlation of phenotypes with genotypes, in order to diagnose quickly and accurately such a possible disease and to prevent or treat it easily and quickly. Modern dentistry should restore these lesions in order to guarantee aesthetics and functionality, usually in collaboration with a group of dentists.

  15. Application of micro-PIXE analysis to investigate trace elements in deciduous teeth enamel

    International Nuclear Information System (INIS)

    Igari, K.; Takahashi, A.; Ando, H.

    2010-01-01

    The early life environment has widespread consequences for later health and disease. To prevent the disease in later life, the assessment of fetal environment is very important. In Japan, birthweight has fallen rapidly during recent two decades. The reduction of birthweight represents reduced fetal nutrition. Deciduous tooth enamel contains pre- and postnatal enamel and its chemical composition reflects the status of metabolism of trace elements during formation period. Deciduous tooth enamel is considered to be a suitable indicator of trace elements exposure in utero. We applied micro-PIXE analysis to investigate the trace elemental content in deciduous tooth enamel. Two deciduous canines from one healthy Japanese boy were used for this study. The enamel section including pre- and postnatal enamel was prepared for micro-PIXE analysis. Five trace elements (Na, Mg, Cl, Zn, and Sr) were detected in the scanning area of tooth. The distribution profiles of 5 elements were obtained as X-ray maps. The distribution profiles of zinc and chlorine were specific, and showed higher concentration in surface enamel. No elements showed different profiles of X-ray maps between pre- and postnatal enamel in this sample. The results of this study suggested that micro-PIXE analysis would be able to estimate the trace elements in prenatal and postnatal enamel, respectively. (author)

  16. An in vitro study of dental enamel wear by restorative materials using radiometric method

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa

    2000-01-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  17. Error in assessing the absorbed dose from the EPR signal from dental enamel

    International Nuclear Information System (INIS)

    Kleshchenko, E.D.; Kushnereva, K.K.

    1997-01-01

    Dose measurements from EPR signals from dental enamel were analyzed in a random sampling of 100 teeth extracted in liquidators of the Chernobyl accident aftermath and the EPR spectra of dental enamel of 80 intact teeth from children studied. The mean square deviation of enamel sensitivity to ionizing radiation in some teeth is approximately 0.3 of the mean sensitivity value. The variability of the nature EPR spectrum of dental enamel limits in principle the lower threshold of EPR-measured 60 mGy doses. When assessing the individual absorbed doses from the EPR signal from dental enamel without additional exposure it is necessary to bear in mind the extra error of approximately 6-% at a confidence probability P=0.95 caused by the variability of enamel sensitivity to radiation in some teeth. This additional error may be ruled out by graduated additional exposure of the examined enamel samples

  18. Biophysical characterization and crystal structure of the Feline Immunodeficiency Virus p15 matrix protein.

    Science.gov (United States)

    Serrière, Jennifer; Robert, Xavier; Perez, Magali; Gouet, Patrice; Guillon, Christophe

    2013-06-24

    Feline Immunodeficiency Virus (FIV) is a viral pathogen that infects domestic cats and wild felids. During the viral replication cycle, the FIV p15 matrix protein oligomerizes to form a closed matrix that underlies the lipidic envelope of the virion. Because of its crucial role in the early and late stages of viral morphogenesis, especially in viral assembly, FIV p15 is an interesting target in the development of potential new therapeutic strategies. Our biochemical study of FIV p15 revealed that it forms a stable dimer in solution under acidic conditions and at high concentration, unlike other retroviral matrix proteins. We determined the crystal structure of full-length FIV p15 to 2 Å resolution and observed a helical organization of the protein, typical for retroviral matrix proteins. A hydrophobic pocket that could accommodate a myristoyl group was identified, and the C-terminal end of FIV p15, which is mainly unstructured, was visible in electron density maps. As FIV p15 crystallizes in acidic conditions but with one monomer in the asymmetric unit, we searched for the presence of a biological dimer in the crystal. No biological assembly was detected by the PISA server, but the three most buried crystallographic interfaces have interesting features: the first one displays a highly conserved tryptophan acting as a binding platform, the second one is located along a 2-fold symmetry axis and the third one resembles the dimeric interface of EIAV p15. Because the C-terminal end of p15 is involved in two of these three interfaces, we investigated the structure and assembly of a C-terminal-truncated form of p15 lacking 14 residues. The truncated FIV p15 dimerizes in solution at a lower concentration and crystallizes with two molecules in the asymmetric unit. The EIAV-like dimeric interface is the only one to be retained in the new crystal form. The dimeric form of FIV p15 in solution and its extended C-terminal end are characteristic among lentiviral matrix proteins

  19. Chronic fluoride toxicity: dental fluorosis.

    Science.gov (United States)

    Denbesten, Pamela; Li, Wu

    2011-01-01

    Dental fluorosis occurs as a result of excess fluoride ingestion during tooth formation. Enamel fluorosis and primary dentin fluorosis can only occur when teeth are forming, and therefore fluoride exposure (as it relates to dental fluorosis) occurs during childhood. In the permanent dentition, this would begin with the lower incisors, which complete mineralization at approximately 2-3 years of age, and end after mineralization of the third molars. The white opaque appearance of fluorosed enamel is caused by a hypomineralized enamel subsurface. With more severe dental fluorosis, pitting and a loss of the enamel surface occurs, leading to secondary staining (appearing as a brown color). Many of the changes caused by fluoride are related to cell/matrix interactions as the teeth are forming. At the early maturation stage, the relative quantity of amelogenin protein is increased in fluorosed enamel in a dose-related manner. This appears to result from a delay in the removal of amelogenins as the enamel matures. In vitro, when fluoride is incorporated into the mineral, more protein binds to the forming mineral, and protein removal by proteinases is delayed. This suggests that altered protein/mineral interactions are in part responsible for retention of amelogenins and the resultant hypomineralization that occurs in fluorosed enamel. Fluoride also appears to enhance mineral precipitation in forming teeth, resulting in hypermineralized bands of enamel, which are then followed by hypomineralized bands. Enhanced mineral precipitation with local increases in matrix acidity may affect maturation stage ameloblast modulation, potentially explaining the dose-related decrease in cycles of ameloblast modulation from ruffle-ended to smooth-ended cells that occur with fluoride exposure in rodents. Specific cellular effects of fluoride have been implicated, but more research is needed to determine which of these changes are relevant to the formation of fluorosed teeth. As further

  20. Recovery of crystallographic texture in remineralized dental enamel.

    Directory of Open Access Journals (Sweden)

    Samera Siddiqui

    Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected

  1. Enamel and dentin bond strengths of a new self-etch adhesive system.

    Science.gov (United States)

    Walter, Ricardo; Swift, Edward J; Boushell, Lee W; Braswell, Krista

    2011-12-01

    statement of problem:  Self-etch adhesives typically are mildly acidic and therefore less effective than etch-and-rinse adhesives for bonding to enamel.   The purpose of this study was to evaluate the enamel and dentin shear bond strengths of a new two-step self-etch adhesive system, OptiBond XTR (Kerr Corporation, Orange, CA, USA).   The labial surfaces of 80 bovine teeth were ground to create flat, 600-grit enamel or dentin surfaces. Composite was bonded to enamel or dentin using the new two-step self-etch system or a three-step etch-and-rinse (OptiBond FL, Kerr), two-step self-etch (Clearfil SE Bond, Kuraray America, Houston, TX, USA), or one-step self-etch adhesive (Xeno IV, Dentsply Caulk, Milford, DE, USA). Following storage in water for 24 hours, shear bond strengths were determined using a universal testing machine. The enamel and dentin data sets were subjected to separate analysis of variance and Tukey's tests. Scanning electron microscopy was used to evaluate the effects of each system on enamel.   Mean shear bond strengths to enamel ranged from 18.1 MPa for Xeno IV to 41.0 MPa for OptiBond FL. On dentin, the means ranged from 33.3 MPa for OptiBond FL to 47.1 MPa for Clearfil SE Bond. OptiBond XTR performed as well as Clearfil SE Bond on dentin and as well as OptiBond FL on enamel. Field emission scanning electron microscope revealed that OptiBond XTR produced an enamel etch pattern that was less defined than that of OptiBond FL (37.5% phosphoric acid) but more defined than that of Clearfil SE Bond or Xeno IV.   The new two-step self-etch adhesive system formed excellent bonds to enamel and dentin in vitro. OptiBond XTR, a new two-step self-etch adhesive system, is a promising material for bonding to enamel as well as to dentin. © 2011 Wiley Periodicals, Inc.

  2. Biofilm-specific extracellular matrix proteins of non-typeable Haemophilus influenzae

    Science.gov (United States)

    Wu, Siva; Baum, Marc M.; Kerwin, James; Guerrero-Given, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24 hr and 96 hr NTHi biofilms contained polysaccharides and proteinaceous components as detected by NMR and FTIR spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24 hr biofilms, two were found only in 96 hr biofilms, and fifteen were present in the ECM of both 24 hr and 96 hr NTHi biofilms. All proteins identified were either associated with bacterial membranes or were cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. PMID:24942343

  3. Structure and expression of an unusually acidic matrix protein of pearl oyster shells

    International Nuclear Information System (INIS)

    Tsukamoto, Daiki; Sarashina, Isao; Endo, Kazuyoshi

    2004-01-01

    We report identification and characterization of the unusually acidic molluscan shell matrix protein Aspein, which may have important roles in calcium carbonate biomineralization. The Aspein gene (aspein) encodes a sequence of 413 amino acids, including a high proportion of Asp (60.4%), Gly (16.0%), and Ser (13.2%), and the predicted isoelectric point is 1.45; this is the most acidic of all the molluscan shell matrix proteins sequenced so far, or probably even of all known proteins on earth. The main body of Aspein is occupied by (Asp) 2-10 sequences punctuated with Ser-Gly dipeptides. RT-PCR demonstrated that the transcript of aspein is expressed at the outer edge of the mantle, corresponding to the calcitic prismatic layer, but not at the inner part of the mantle, corresponding to the aragonitic nacreous layer. Our findings and previous in vitro experiments taken together suggest that Aspein is responsible for directed formation of calcite in the shell of the pearl oyster Pinctada fucata

  4. Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis.

    Directory of Open Access Journals (Sweden)

    Kanu Priya Aggarwal

    Full Text Available BACKGROUND: The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal-membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. METHODS: Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin-Darby Canine Kidney (MDCK renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. RESULTS: Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. CONCLUSIONS: We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone

  5. Connective tissue graft vs. emdogain: A new approach to compare the outcomes.

    Science.gov (United States)

    Sayar, Ferena; Akhundi, Nasrin; Gholami, Sanaz

    2013-01-01

    The aim of this clinical trial study was to clinically evaluate the use of enamel matrix protein derivative combined with the coronally positioned flap to treat gingival recession compared to the subepithelial connective tissue graft by a new method to obtain denuded root surface area. Thirteen patients, each with two or more similar bilateral Miller class I or II gingival recession (40 recessions) were randomly assigned to the test (enamel matrix protein derivative + coronally positioned flap) or control group (subepithelial connective tissue graft). Recession depth, width, probing depth, keratinized gingival, and plaque index were recorded at baseline and at one, three, and six months after treatment. A stent was used to measure the denuded root surface area at each examination session. Results were analyzed using Kolmogorov-Smirnov, Wilcoxon, Friedman, paired-sample t test. The average percentages of root coverage for control and test groups were 63.3% and 55%, respectively. Both groups showed significant keratinized gingival increase (P 0.05). The results of Friedman test were significant for clinical indices (P < 0.05), except for probing depth in control group (P = 0.166). Enamel matrix protein derivative showed the same results as subepithelial connective tissue graft with relatively easy procedure to perform and low patient morbidity.

  6. Micro-indentation fracture behavior of human enamel.

    Science.gov (United States)

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  7. Relationship between human tooth enamel free radical concentration and radiation dose

    International Nuclear Information System (INIS)

    Zhou Yongzeng; Wang Jiadong; Jia Xiaomei; Wu Ke; Cong Jianbo; Sun Cunpu

    1999-01-01

    Free radical concentrations of 25 adult tooth enamel samples were measured by electron spin resonance (ESR) technique in this paper, and the relationship between free radical concentration of tooth enamel and radiation dose was also investigated. In the 25 adult enamel samples they are 16 male samples and 9 female samples, Ages of tooth donors range from 18-41 years. Difference in background ESR signal intensity between male and female samples was no observed; free radical concentration (or increment of radiation-induced free radical concentration) in tooth enamel increases linearly with increasing of radiation dose. In the case of radiation accident, the study results of this paper could be applied to dose estimation when conditions of ESR measurement of exposed individual tooth enamel are similar to measurement conditions of dose-effect calibration curve in this paper

  8. Metabolism in tooth enamel and reliability of retrospective EPR dosimetry connected with Chernobyl accident

    International Nuclear Information System (INIS)

    Brik, A.; Radchuk, V.; Scherbina, O.; Matyash, M.; Gaver, O.

    1996-01-01

    It is shown that the results of retrospective EPR dosimetry by tooth enamel are essentially determined by the fact that tooth enamel is the mineral of biological origin. The structure of tooth enamel, properties of radiation defects and the role of metabolism in tooth enamel are discussed. It is shown that at deep metamorphic modifications tooth enamel don't save information about its radiation history. The reliability and accuracy of retrospective EPR dosimetry are discussed. Because after Chernobyl accident have passed 10 years the application of tooth enamel for reconstruction of doses which are connected with Chernobyl accident need care and additional investigations

  9. The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis

    NARCIS (Netherlands)

    Bronckers, A.L.J.J.; Lyaruu, D.M.; Denbesten, P.K.

    2009-01-01

    Intake of excess amounts of fluoride during tooth development cause enamel fluorosis, a developmental disturbance that makes enamel more porous. In mild fluorosis, there are white opaque striations across the enamel surface, whereas in more severe cases, the porous regions increase in size, with

  10. Femtosecond laser etching of dental enamel for bracket bonding.

    Science.gov (United States)

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  11. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...... is presented encompassing protein characterization prior to and after cloning of the corresponding gene....

  12. Quantitative analysis of fluoride-induced hypermineralization of developing enamel in neonatal hamster tooth germs

    Science.gov (United States)

    Tros, G. H. J.; Lyaruu, D. M.; Vis, R. D.

    1993-10-01

    A procedure was developed for analysing the effect of fluoride on mineralization in the enamel of neonatal hamster molars during amelogenesis by means of the quantitative determination of the mineral content. In this procedure the distribution of calcium and mineral concentration was determined in sections containing developing tooth enamel mineral embedded in an organic epoxy resin matrix by means of the micro-PIXE technique. This allowed the determination of the calcium content along preselected tracks with a spatial resolution of 2 μm using a microprobe PIXE setup with a 3 MeV proton beam of 10 to 50 pA with a spot size of 2 μm in the track direction. In this procedure the X-ray yield is used as a measure for the calcium content. The thickness of each sample section is determined independently by measuring the energy loss of α-particles from a calibration source upon passing through the sample. The sample is considered as consisting of two bulk materials, allowing the correction for X-ray self-absorption and the calculation of the calcium concentration. The procedure was applied for measuring the distribution of mineral concentration in 2 μm thick sections taken from tooth germs of hamsters administered with NaF. The measurements indicated that a single intraperitoneal administration of 20 mg NaF/kg body weight to 4-to-5-day-old hamsters leads within 24 h to hypermineralization of certain focal enamel surface areas containing cystic lesions under transitional and early secretory ameloblasts. The mineral concentration there is substantially increased due to the fluoride treatment (35%, instead of 5 to 10% as in the controls), indicating that the normal mineralization process has been seriously disturbed. Furthermore it is found that using this technique the mineral concentration peaks at about 70% at the dentine-enamel junction, which is comparable to that reported for human dentine using other techniques.

  13. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    Science.gov (United States)

    Koprowski, Robert; Safranow, Krzysztof; Woźniak, Krzysztof

    2017-01-01

    Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant. PMID:28243604

  14. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Julia Seeliger

    2017-01-01

    Full Text Available Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant.

  15. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    Science.gov (United States)

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  16. An exploratory study of human teeth enamel by using Ft-Raman spectroscopy

    International Nuclear Information System (INIS)

    Afishah Alias; Siti Rahayu Mohd Hashim; Mihaly, Judith; Julyannie Wajir; Fauziah Abdul Aziz

    2009-01-01

    Unaffected , affected and heavily affected teeth enamel were studied by using FT-Raman spectroscopy. The 14 permanent teeths enamel surface were measured randomly, resulting in total n = 43 FT-Raman spectra. The results obtained from FT-Raman spectra of heavily affected, affected and unaffected tooths enamel surfaces did not show any significant difference. In this study, Kruskal-Wallis and Wilcoxon rank sum tests were used to compare the intensity between the categories of enamel as well as the surfaces of teeth samples. (author)

  17. A model for predicting wear rates in tooth enamel.

    Science.gov (United States)

    Borrero-Lopez, Oscar; Pajares, Antonia; Constantino, Paul J; Lawn, Brian R

    2014-09-01

    It is hypothesized that wear of enamel is sensitive to the presence of sharp particulates in oral fluids and masticated foods. To this end, a generic model for predicting wear rates in brittle materials is developed, with specific application to tooth enamel. Wear is assumed to result from an accumulation of elastic-plastic micro-asperity events. Integration over all such events leads to a wear rate relation analogous to Archard׳s law, but with allowance for variation in asperity angle and compliance. The coefficient K in this relation quantifies the wear severity, with an arbitrary distinction between 'mild' wear (low K) and 'severe' wear (high K). Data from the literature and in-house wear-test experiments on enamel specimens in lubricant media (water, oil) with and without sharp third-body particulates (silica, diamond) are used to validate the model. Measured wear rates can vary over several orders of magnitude, depending on contact asperity conditions, accounting for the occurrence of severe enamel removal in some human patients (bruxing). Expressions for the depth removal rate and number of cycles to wear down occlusal enamel in the low-crowned tooth forms of some mammals are derived, with tooth size and enamel thickness as key variables. The role of 'hard' versus 'soft' food diets in determining evolutionary paths in different hominin species is briefly considered. A feature of the model is that it does not require recourse to specific material removal mechanisms, although processes involving microplastic extrusion and microcrack coalescence are indicated. Published by Elsevier Ltd.

  18. Enzyme replacement prevents enamel defects in hypophosphatasia mice

    Science.gov (United States)

    Yadav, Manisha C.; de Oliveira, Rodrigo Cardoso; Foster, Brian L.; Fong, Hanson; Cory, Esther; Narisawa, Sonoko; Sah, Robert L.; Somerman, Martha; Whyte, Michael P.; Millán, José Luis

    2012-01-01

    Hypophosphatasia (HPP) is the inborn error of metabolism characterized by deficiency of alkaline phosphatase activity leading to rickets or osteomalacia and to dental defects. HPP occurs from loss-of-function mutations within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNAP). TNAP knockout (Alpl−/−, a.k.a. Akp2−/−) mice closely phenocopy infantile HPP, including the rickets, vitamin B6-responsive seizures, improper dentin mineralization, and lack of acellular cementum. Here, we report that lack of TNAP in Alpl−/− mice also causes severe enamel defects, which are preventable by enzyme replacement with mineral-targeted TNAP (ENB-0040). Immunohistochemistry was used to map the spatiotemporal expression of TNAP in the tissues of the developing enamel organ of healthy mouse molars and incisors. We found strong, stage-specific expression of TNAP in ameloblasts. In the Alpl−/− mice, histological, μCT, and scanning electron microscopy analysis showed reduced mineralization and disrupted organization of the rods and inter-rod structures in enamel of both the molars and incisors. All of these abnormalities were prevented in mice receiving from birth daily subcutaneous injections of mineral-targeting, human TNAP (sALP-FcD10, a.k.a. ENB-0040) at 8.2 mg/kg/day for up to 44 days. These data reveal an important role for TNAP in enamel mineralization, and demonstrate the efficacy of mineral-targeted TNAP to prevent enamel defects in HPP. PMID:22461224

  19. Enamel formation and growth in non-mammalian cynodonts

    Science.gov (United States)

    Dirks, Wendy; Martinelli, Agustín G.

    2018-01-01

    The early evolution of mammals is associated with the linked evolutionary origin of diphyodont tooth replacement, rapid juvenile growth and determinate adult growth. However, specific relationships among these characters during non-mammalian cynodont evolution require further exploration. Here, polarized light microscopy revealed incremental lines, resembling daily laminations of extant mammals, in histological sections of enamel in eight non-mammalian cynodont species. In the more basal non-probainognathian group, enamel extends extremely rapidly from cusp to cervix. By contrast, the enamel of mammaliamorphs is gradually accreted, with slow rates of crown extension, more typical of the majority of non-hypsodont crown mammals. These results are consistent with the reduction in dental replacement rate across the non-mammalian cynodont lineage, with greater rates of crown extension required in most non-probainognathians, and slower crown extension rates permitted in mammaliamorphs, which have reduced patterns of dental replacement in comparison with many non-probainognathians. The evolution of mammal-like growth patterns, with faster juvenile growth and more abruptly terminating adult growth, is linked with this reduction in dental replacement rates and may provide an additional explanation for the observed pattern in enamel growth rates. It is possible that the reduction in enamel extension rates in mammaliamorphs reflects an underlying reduction in skeletal growth rates at the time of postcanine formation, due to a more abruptly terminating pattern of adult growth in these more mammal-like, crownward species. PMID:29892415

  20. Year of birth determination using radiocarbon dating of dental enamel.

    Science.gov (United States)

    Buchholz, B A; Spalding, K L

    2010-05-01

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ((14)C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, (14)C levels in the enamel represent (14)C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  1. Year of Birth Determination Using Radiocarbon Dating of Dental Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Spalding, K L

    2009-03-10

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ({sup 14}C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, {sup 14}C levels in the enamel represent {sup 14}C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  2. The dentin-enamel junction and the fracture of human teeth

    Science.gov (United States)

    Imbeni, V.; Kruzic, J. J.; Marshall, G. W.; Marshall, S. J.; Ritchie, R. O.

    2005-03-01

    The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness (~5 to 10 times higher than enamel but ~75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.

  3. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per....... The results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing....

  4. Ingestion of Casein in a Milk Matrix Modulates Dietary Protein Digestion and Absorption Kinetics but Does Not Modulate Postprandial Muscle Protein Synthesis in Older Men.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Snijders, Tim; Linkens, Armand M A; Hamer, Henrike M; van Kranenburg, Janneau; van Loon, Luc J C

    2015-07-01

    The slow digestion and amino acid absorption kinetics of isolated micellar casein have been held responsible for its relatively lower postprandial muscle protein synthetic response compared with rapidly digested proteins such as isolated whey. However, casein is normally consumed within a milk matrix. We hypothesized that protein digestion and absorption kinetics and the subsequent muscle protein synthetic response after micellar casein ingestion are modulated by the milk matrix. The aim of this study was to determine the impact of a milk matrix on casein protein digestion and absorption kinetics and postprandial muscle protein synthesis in older men. In a parallel-group design, 32 healthy older men (aged 71 ± 1 y) received a primed continuous infusion of L-[ring-(2)H5]-phenylalanine, L-[ring-3,5-(2)H2]-tyrosine, and L-[1-(13)C]-leucine, and ingested 25 g intrinsically L-[1-(13)C]-phenylalanine and L-[1-(13)C]-leucine labeled casein dissolved in bovine milk serum (Cas+Serum) or water (Cas). Plasma samples and muscle biopsies were collected in the postabsorptive state and for 300 min in the postprandial period to examine whole-body and skeletal muscle protein metabolism. Casein ingestion increased plasma leucine and phenylalanine concentrations and L-[1-(13)C]-phenylalanine enrichments, with a more rapid rise after Cas vs. Cas+Serum. Nonetheless, dietary protein-derived phenylalanine availability did not differ between Cas+Serum (47 ± 2%, mean ± SEM) and Cas (46 ± 3%) when assessed over the 300-min postprandial period (P = 0.80). The milk matrix did not modulate postprandial myofibrillar protein synthesis rates from 0 to 120 min (0.038 ± 0.005 vs. 0.031 ± 0.007%/h) or from 120 to 300 min (0.052 ± 0.004 vs. 0.067 ± 0.005%/h) after Cas+Serum vs. Cas. Similarly, no treatment differences in muscle protein-bound L-[1-(13)C]-phenylalanine enrichments were observed at 120 min (0.003 ± 0.001 vs. 0.002 ± 0.001) or 300 min (0.015 ± 0.002 vs. 0.016 ± 0.002 mole

  5. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  6. A laser-abrasive method for the cutting of enamel and dentin.

    Science.gov (United States)

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  7. Thermodynamics of protein folding: a random matrix formulation.

    Science.gov (United States)

    Shukla, Pragya

    2010-10-20

    The process of protein folding from an unfolded state to a biologically active, folded conformation is governed by many parameters, e.g. the sequence of amino acids, intermolecular interactions, the solvent, temperature and chaperon molecules. Our study, based on random matrix modeling of the interactions, shows, however, that the evolution of the statistical measures, e.g. Gibbs free energy, heat capacity, and entropy, is single parametric. The information can explain the selection of specific folding pathways from an infinite number of possible ways as well as other folding characteristics observed in computer simulation studies. © 2010 IOP Publishing Ltd

  8. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization.

    Science.gov (United States)

    Jeremias, Fabiano; Koruyucu, Mine; Küchler, Erika C; Bayram, Merve; Tuna, Elif B; Deeley, Kathleen; Pierri, Ricardo A; Souza, Juliana F; Fragelli, Camila M B; Paschoal, Marco A B; Gencay, Koray; Seymen, Figen; Caminaga, Raquel M S; dos Santos-Pinto, Lourdes; Vieira, Alexandre R

    2013-10-01

    Genetic disturbances during dental development influence variation of number and shape of the dentition. In this study, we tested if genetic variation in enamel formation genes is associated with molar-incisor hypomineralization (MIH), also taking into consideration caries experience. DNA samples from 163 cases with MIH and 82 unaffected controls from Turkey, and 71 cases with MIH and 89 unaffected controls from Brazil were studied. Eleven markers in five genes [ameloblastin (AMBN), amelogenin (AMELX), enamelin (ENAM), tuftelin (TUFT1), and tuftelin-interacting protein 11 (TFIP11)] were genotyped by the TaqMan method. Chi-square was used to compare allele and genotype frequencies between cases with MIH and controls. In the Brazilian data, distinct caries experience within the MIH group was also tested for association with genetic variation in enamel formation genes. The ENAM rs3796704 marker was associated with MIH in both populations (Brazil: p=0.03; OR=0.28; 95% C.I.=0.06-1.0; Turkey: p=1.22e-012; OR=17.36; 95% C.I.=5.98-56.78). Associations between TFIP11 (p=0.02), ENAM (p=0.00001), and AMELX (p=0.01) could be seen with caries independent of having MIH or genomic DNA copies of Streptococcus mutans detected by real time PCR in the Brazilian sample. Several genes involved in enamel formation appear to contribute to MIH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Science.gov (United States)

    Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  10. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    Full Text Available In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%. Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  11. Geographic Variations in the EPR Spectrum of Tooth Enamel

    International Nuclear Information System (INIS)

    Romanyukha, A.A.; Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1999-01-01

    The presence of stable radiation-induced radicals in the mineral component of tooth enamel allows use of this material as a biological dosemeter. Estimation of the dose absorbed in tooth enamel can be done by EPR. Generally, for the purpose of dose reconstruction, the EPR spectrum of tooth enamel is interpreted in terms of two main components. The first is a broad background signal often called the native signal centered at a g value of 2.0045. The origin of this signal is not precisely known. The second main component in the tooth enamel spectrum is purely radiation induced and can be used for retrospective dosimetry. Internal structure of the native signal and variations of its amplitude and linewidth were investigated for the samples prepared from modern teeth obtained from different geographic locations (USA and Russia). Possible reasons for the variations observed are discussed as are the potential effects of the variations on the reliability of dose estimation. (author)

  12. Membrane and inclusion body targeting of lyssavirus matrix proteins.

    Science.gov (United States)

    Pollin, Reiko; Granzow, Harald; Köllner, Bernd; Conzelmann, Karl-Klaus; Finke, Stefan

    2013-02-01

    Lyssavirus matrix proteins (M) support virus budding and have accessory functions that may contribute to host cell manipulation and adaptation to specific hosts. Here, we show that rabies virus (RABV) and European Bat Lyssavirus Type 1 (EBLV-1) M proteins differ in targeting and accumulation at cellular membranes. In contrast to RABV M, EBLV-1 M expressed from authentic EBLV-1 or chimeric RABV accumulated at the Golgi apparatus. Chimeric M proteins revealed that Golgi association depends on the integrity of the entire EBLV-1 M protein. Since RABV and EBLV-1 M differ in the use of cellular membranes for particle formation, differential membrane targeting and transport of M might determine the site of virus production. Moreover, both RABV and EBLV-1 M were for the first time detected within the nucleus and in Negri body-like inclusions bodies. Whereas nuclear M may imply hitherto unknown functions of lyssavirus M in host cell manipulation, the presence of M in inclusion bodies may correlate with regulatory functions of M in virus RNA synthesis. The data strongly support a model in which targeting of lyssavirus M proteins to distinctintracellular sites is a key determinant of diverse features in lyssavirus replication, host adaptation and pathogenesis. © 2012 Blackwell Publishing Ltd.

  13. Morphology and structure of polymer layers protecting dental enamel against erosion.

    Science.gov (United States)

    Beyer, Markus; Reichert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2012-10-01

    Human dental erosion caused by acids is a major factor for tooth decay. Adding polymers to acidic soft drinks is one important approach to reduce human dental erosion caused by acids. The aim of this study was to investigate the thickness and the structure of polymer layers adsorbed in vitro on human dental enamel from polymer modified citric acid solutions. The polymers propylene glycol alginate (PGA), highly esterified pectin (HP) and gum arabic (GA) were used to prepare polymer modified citric acids solutions (PMCAS, pH 3.3). With these PMCAS, enamel samples were treated for 30, 60 and 120s respectively to deposit polymer layers on the enamel surface. Profilometer scratches on the enamel surface were used to estimate the thickness of the polymer layers via atomic force microscopy (AFM). The composition of the deposited polymer layers was investigated with X-ray photoelectron spectroscopy (XPS). In addition the polymer-enamel interaction was investigated with zeta-potential measurements and scanning electron microscopy (SEM). It has been shown that the profilometer scratch depth on the enamel with deposited polymers was in the range of 10nm (30s treatment time) up to 25nm (120s treatment time). Compared to this, the unmodified CAS-treated surface showed a greater scratch depth: from nearly 30nm (30s treatment time) up to 60nm (120s treatment time). Based on XPS measurements, scanning electron microscopy (SEM) and zeta-potential measurements, a model was hypothesized which describes the layer deposited on the enamel surface as consisting of two opposing gradients of polymer molecules and hydroxyapatite (HA) particles. In this study, the structure and composition of polymer layers deposited on in vitro dental enamel during treatment with polymer modified citric acid solutions were investigated. Observations are consistent with a layer consisting of two opposing gradients of hydroxyapatite particles and polymer molecules. This leads to reduced erosive effects of

  14. Effects of blue light irradiation on dental enamel remineralization in vitro

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2009-01-01

    This study aimed to investigate the effects of blue radiation on dental enamel remineralization. In addition, a methodology of analysis was developed to evaluate alterations of enamel mineral content by optical coherence tomography. Artificial lesions were formed in bovine dental enamel slabs by immersing the samples in under saturated acetate buffer (2 mL/mm 2 e 6.25 mL/mm 2 ). The lesions were irradiated with blue LED (l=455±20nm), with radiant power of 110 mW, irradiance of 1.4 W/cm 2 , radiant exposure of 13.8 J/ c m2 and exposure time of 10 s. Remineralization was induced by pH-cycling model during 8 days. Cross-sectional hardness and optical coherence tomography (OCT) were used to assess mineral changes after remineralization. Hardness data showed that non-irradiated enamel lesions presented higher mineral content than irradiated ones and this difference was more evident in lesions formed in higher solution volume. The analysis of OCT signal also demonstrated that the mineral content of non-irradiated group was higher than in irradiated one; however, no significant difference was observed. Furthermore, significant differences in OCT sign were detected between sound and demineralized enamel. Based on the results obtained in the present study it can be concluded that blue radiation caused an inhibition of enamel remineralization. The methodology adopted for OCT analysis allowed the quantification of enamel mineral loss; however, the remineralization process could not be evaluated by this technique. (author)

  15. A comparison of fatigue crack growth in human enamel and hydroxyapatite.

    Science.gov (United States)

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne D

    2008-12-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m=7.7+/-1.0) was similar to that for HAp (m=7.9+/-1.4), whereas the crack growth coefficient (C) for enamel (C=8.7 E-04 (mm/cycle)x(MPa m(0.5))(-m)) was significantly lower (pcrack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth.

  16. Matrix-assisted laser-desorption-ionization mass spectrometry of proteins using a free-electron laser

    International Nuclear Information System (INIS)

    Cramer, R.; Hillenkamp, F.; Haglund, R.

    1995-01-01

    Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) is one of the most promising techniques for spectral fingerprinting large molecules, such as proteins, oligonucleotides and carbohydrates. In the usual implementation of this technique, the analyte molecule is dissolved in an aromatic liquid matrix material which resonantly absorbs ultraviolet laser light. Resonant absorption by π-π* transitions volatilizes the matrix and initiates subsequent charge transfer to the analyte molecules, which are detected by time-of-flight mass spectrometry. Recent MALDI-MS studies with Er:YAG (2.94 μm) and CO 2 4 (9.4-10.6 μm) lasers suggest that them is significant unexplored potential for mass spectrometry of macromolecules, including oligonucleotide, in the mid-infrared. Preliminary experiments show that it is possible to capitalize on the rich rovibronic absorption spectrum of virtually all organics to initiate resonant desorption in matrix material over the entire range of pH values. However, the mechanism of charge transfer is particularly problematic for infrared MALDI because of the low photon energy. In this paper, we report the results of MALI-MS studies on small proteins using the Vanderbilt FEL and several matrix materials. Proteins with masses up to roughly 6,000 amu were detected with high resolution in a linear time-of-flight mass spectrometer. By varying the pulse duration using a broadband Pockels cell, we have been able to compare the results of relatively long (5 μs) and short (0.1 μs) irradiation on the desorption and ionization processes. Compared to uv-MALDI spectra of identical analytes obtained with a nitrogen laser (337 nm) in the same time-of-flight spectrometer, the infrared results appear to show that the desorption and ionization process goes on over a somewhat longer time scale

  17. Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension

    DEFF Research Database (Denmark)

    Leeming, Diana Julie; Karsdal, M A; Byrjalsen, I

    2013-01-01

    The hepatic venous pressure gradient (HVPG) is an invasive, but important diagnostic and prognostic marker in cirrhosis with portal hypertension (PHT). During cirrhosis, remodelling of fibrotic tissue by matrix metalloproteinases (MMPs) is a permanent process generating small fragments of degrade...... extracellular matrix (ECM) proteins known as neoepitopes, which are then released into the circulation....

  18. Graded changes in enamel component volumes resulted from a short tooth bleaching procedure.

    Science.gov (United States)

    Ferreira, Artemisa Fernanda Moura; Perez, Flávia Maria de Moraes Ramos; Limeira Júnior, Francisco de Assis; de Moura, Mirella de Fátima Liberato; de Sousa, Frederico Barbosa

    2016-05-01

    To test the hypothesis that changes in enamel component volumes (mineral, organic, and water volumes, and permeability) are graded from outer to inner enamel after a short bleaching procedure. Extracted unerupted human third molars had half of their crowns bleached (single bleaching session, 3 × 15 min), and tooth shade changes in bleached parts were analyzed with a spectrophotometer. Ground sections were prepared, component volumes and permeability were quantified at histological points located at varying distances from the enamel surface (n=10 points/location), representing conditions before and after bleaching. Tooth shade changes were significant (pbleaching, except at the outer layers. Multiple analysis of covariances revealed that most of the variance of the change in enamel composition after bleaching was explained by the combination of the set of types of component volume (in decreasing order of relevance: mineral loss, organic gain, water gain, and decrease in permeability) with the set of distances from the enamel surface (graded from the enamel surface inward) (canonical R(2)=0.97; p99%). Changes in enamel composition after a short bleaching procedure followed a gradient within component volumes (mineral loss>organic gain>water gain>decrease in permeability) and decreased from the enamel surface inward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synthetic tooth enamel: SEM characterization of a fluoride hydroxyapatite coating for dentistry applications

    Directory of Open Access Journals (Sweden)

    Marise Oliveira

    2007-06-01

    Full Text Available An alternative to etching enamel for retention of an adhesive is to grow crystals on the enamel surface. The potential advantages of crystal growth include easy procedure and less damage to the enamel. These crystals retain the adhesive or are the actual dental restoration. In this work, a paste of synthetic enamel was used to grow crystals of fluoride hydroxyapatite (F-HA onto the human tooth surface. This technique can be used for several dentistry applications like enamel whitening, strengthening and restoration of early carie lesions. The low cost of reagents and simplicity of the technique along with the biocompatibility of the paste render possible the utilization on the market. The samples were prepared through the application of the paste by the incremental technique. The results obtained by scanning electron microscope (SEM/EDX have indicated the deposition of a homogeneous layer of calcium phosphate that was grown onto the enamel substrate. The average thickness of the deposited film was in the range of 50-100 µm and with a similar density from the natural enamel observed by radiographic images.

  20. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    Science.gov (United States)

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard

    2012-10-26

    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. Copyright © 2012. Published by Elsevier Ltd.

  1. A comparison of sports and energy drinks--Physiochemical properties and enamel dissolution.

    Science.gov (United States)

    Jain, Poonam; Hall-May, Emily; Golabek, Kristi; Agustin, Ma Zenia

    2012-01-01

    The consumption of sports and energy drinks by children and adolescents has increased at an alarming rate in recent years. It is essential for dental professionals to be informed about the physiochemical properties of these drinks and their effects on enamel. The present study measured the fluoride levels, pH, and titratable acidity of multiple popular, commercially available brands of sports and energy drinks. Enamel dissolution was measured as weight loss using an in vitro multiple exposure model consisting of repeated short exposures to these drinks, alternating with exposure to artificial saliva. The relationship between enamel dissolution and fluoride levels, pH, and titratable acidity was also examined. There was a statistically significant difference between the fluoride levels (p = 0.034) and pH (p = 0.04) of the sports and energy drinks studied. The titratable acidity of energy drinks (11.78) was found to be significantly higher than that of sports drinks (3.58) (p energy drinks (Red Bull Sugar Free, Monster Assault, Von Dutch, Rockstar, and 5-Hour Energy) were found to have the highest titratable acidity values among the brands studied. Enamel weight loss after exposure to energy drinks was significantly higher than it was after exposure to sports drinks. The effect of titratable acidity on enamel weight loss was found to vary inversely with the pH of the drinks. The findings indicated that energy drinks have significantly higher titratable acidity and enamel dissolution associated with them than sports drinks. Enamel weight loss after exposure to energy drinks was more than two times higher than it was after exposure to sports drinks. Titratable acidity is a significant predictor of enamel dissolution, and its effect on enamel weight loss varies inversely with the pH of the drink. The data from the current study can be used to educate patients about the differences between sports and energy drinks and the effects of these drinks on tooth enamel.

  2. Quantitative study of fluoride transport during subsurface dissolution of dental enamel

    International Nuclear Information System (INIS)

    Chu, J.S.; Fox, J.L.; Higuchi, W.I.

    1989-01-01

    Previous studies using bovine dental enamel as a model have shown that surface and subsurface dissolution of enamel may be governed by micro-environmental solution conditions. We have now investigated the demineralization phenomenon more rigorously with the primary objective of developing a method for deducing solution species concentration profiles as a function of time from appropriate experimental data. More specifically, in this report, a model-independent method is described for determination of the pore solution fluoride gradients in bovine enamel during subsurface demineralization. Microradiography was used to determine the mineral density profiles, and an electron microprobe technique to determine total fluoride (F) profiles associated with the enamel. In each case, matched sections of bovine enamel were exposed to partially saturated acetate buffers at pH = 4.5 containing 0.5 ppm F for various periods of time (from six to 24 hours). The treated enamel was found to have an intact surface layer and subsurface demineralization. The extent of the demineralization and the depths of the lesions increased with time in all cases. The data were first used to calculate (a) the total F gradients in the enamel at various times, and (b) the local uptake rate of F as a function of time and position. Then, by manipulation of the equations describing the uptake and transport of F, we calculated the pore diffusion rate of F and the micro-environmental solution F concentration in the aqueous pores as a function of time and of distance from the enamel surface. It was also possible to calculate an intrinsic F diffusion coefficient in the pores, which was about 1.0 X 10(-5) cm2/sec, in good agreement with reported values

  3. Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.

    Science.gov (United States)

    Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P

    2008-05-01

    To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.

  4. Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.

    Science.gov (United States)

    Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi

    2010-04-01

    Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.

  5. Postsynaptic density protein 95 in the striosome and matrix compartments of the human neostriatum.

    Directory of Open Access Journals (Sweden)

    Ryoma eMorigaki

    2015-11-01

    Full Text Available The human neostriatum consists of two functional subdivisions referred to as the striosome (patch and matrix compartments. The striosome-matrix dopamine systems play a central role in cortico-thalamo-basal ganglia circuits, and their involvement is thought to underlie the genesis of multiple movement and behavioral disorders, and of drug addiction. Human neuropathology also has shown that striosomes and matrix have differential vulnerability patterns in several striatal neurodegenerative diseases. Postsynaptic density protein 95 (PSD-95, also known as DLG4, is a major scaffolding protein in the postsynaptic densities of dendritic spines. PSD-95 is now known to negatively regulate not only N-methyl-D-aspartate glutamate signaling, but also dopamine D1 signals at sites of postsynaptic transmission. Accordingly, a neuroprotective role for PSD-95 against dopamine D1 receptor (D1R-mediated neurotoxicity in striatal neurodegeneration also has been suggested. Here, we used a highly sensitive immunohistochemistry technique to show that in the human neostriatum, PSD-95 is differentially concentrated in the striosome and matrix compartments, with a higher density of PSD-95 labeling in the matrix compartment than in the striosomes. This compartment-specific distribution of PSD-95 was strikingly complementary to that of D1R. In addition to the possible involvement of PSD-95-mediated synaptic function in compartment-specific dopamine signals, we suggest that the striosomes might be more susceptible to D1R-mediated neurotoxicity than the matrix compartment. This notion may provide new insight into the compartment-specific vulnerability of MSNs in striatal neurodegeneration.

  6. An electron microscopic studies of radiation effects on the enamel development of the rat molar

    International Nuclear Information System (INIS)

    Cho, Hyo Suck; Yoo, Dong Soo

    1995-01-01

    Mandibular first molars of the rats were undertaken to observe the radiosensitivity of amelogenesis. Twenty four Sprague-Dawley rats received 396cGy radiation with the MK Cell irradiator using Cs-137, and twenty four rats served as control. They were divided into two groups; Group 1 which received radiation at the 14th day after gestation and group 2 which received radiation at the 19th day after gestation. Light Microscopy and Transmitted Electron Microscopy investigation was undertaken in the group 1 at the 15th, 18th, 20th, 22nd (2 days after birth), and 25th day (5 days after birth) after gestation, and in the group Z at the 21th (birth day), 22nd (2 days after birth), and 25th (5 days after birth) day after gestation. The following histopathologic findings were obtained. 1. Compared with control group, experimental group showed a delayed formation of enamel and dentin due to slow rate of differentiation of undifferentiated mesenchymal cells. 2. In the experimental groups, the arrangement of the inner enamel epithelium was irregular and there were many vacuoles in the cytoplasm. There were dilated rER and mitochondria, increase of the intercellular space, and loss of the cellular polarity. 3. In the group 1, early enamel without Tomes' process, and early organic matrix was observed at the 25th day after gestation. 4. In the group 2, histopathologic changes were similar to those of the group 1, but the degree of changes was more severe than that of the group l.

  7. An electron microscopic studies of radiation effects on the enamel development of the rat molar

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo Suck; Yoo, Dong Soo [Dept. of Oral and Maxillofacial Radiology, Graduate School, Seoul National University, Seoul (Korea, Republic of)

    1995-08-15

    Mandibular first molars of the rats were undertaken to observe the radiosensitivity of amelogenesis. Twenty four Sprague-Dawley rats received 396cGy radiation with the MK Cell irradiator using Cs-137, and twenty four rats served as control. They were divided into two groups; Group 1 which received radiation at the 14th day after gestation and group 2 which received radiation at the 19th day after gestation. Light Microscopy and Transmitted Electron Microscopy investigation was undertaken in the group 1 at the 15th, 18th, 20th, 22nd (2 days after birth), and 25th day (5 days after birth) after gestation, and in the group Z at the 21th (birth day), 22nd (2 days after birth), and 25th (5 days after birth) day after gestation. The following histopathologic findings were obtained. 1. Compared with control group, experimental group showed a delayed formation of enamel and dentin due to slow rate of differentiation of undifferentiated mesenchymal cells. 2. In the experimental groups, the arrangement of the inner enamel epithelium was irregular and there were many vacuoles in the cytoplasm. There were dilated rER and mitochondria, increase of the intercellular space, and loss of the cellular polarity. 3. In the group 1, early enamel without Tomes' process, and early organic matrix was observed at the 25th day after gestation. 4. In the group 2, histopathologic changes were similar to those of the group 1, but the degree of changes was more severe than that of the group l.

  8. Evaluation of the Esthetic Properties of Developmental Defects of Enamel: A Spectrophotometric Clinical Study

    Directory of Open Access Journals (Sweden)

    Fabrizio Guerra

    2015-01-01

    Full Text Available Objectives. Detailed clinical quantification of optical properties of developmental defect of enamel is possible with spectrophotometric evaluation. Developmental defects of enamel (DDE are daily encountered in clinical practice. DDE are an alteration in quality and quantity of the enamel, caused by disruption and/or damage to the enamel organ during amelogenesis. Methods. Several clinical indices have been developed to categorize enamel defects based on their nature, appearance, microscopic features, or cause. A sample of 39 permanent teeth presenting DDE on labial surface was examined using the DDE Modified Index and SpectroShade evaluation. The spectrophotometric approach quantifies L* (luminosity, a* (quantity of green-red, and b* (quantity of blue-yellow of different DDE. Conclusions. SpectroShade evaluation of the optical properties of the enamel defect enhances clinical understanding of severity and extent of the defect and characterizes the enamel alteration in terms of color discrepancy and surface characterization.

  9. Matrix Gla Protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritis

    Science.gov (United States)

    Objective. Factors associated with mineralization and osteophyte formation in osteoarthritis (OA) are incompletely understood. Genetic polymorphisms of matrix Gla protein (MGP), a mineralization inhibitor, have been associated clinically with conditions of abnormal calcification. We therefore evalua...

  10. Measurement of surface roughness changes of unpolished and polished enamel following erosion.

    Directory of Open Access Journals (Sweden)

    Francesca Mullan

    Full Text Available To determine if Sa roughness data from measuring one central location of unpolished and polished enamel were representative of the overall surfaces before and after erosion.Twenty human enamel sections (4x4 mm were embedded in bis-acryl composite and randomised to either a native or polishing enamel preparation protocol. Enamel samples were subjected to an acid challenge (15 minutes 100 mL orange juice, pH 3.2, titratable acidity 41.3mmol OH/L, 62.5 rpm agitation, repeated for three cycles. Median (IQR surface roughness [Sa] was measured at baseline and after erosion from both a centralised cluster and four peripheral clusters. Within each cluster, five smaller areas (0.04 mm2 provided the Sa roughness data.For both unpolished and polished enamel samples there were no significant differences between measuring one central cluster or four peripheral clusters, before and after erosion. For unpolished enamel the single central cluster had a median (IQR Sa roughness of 1.45 (2.58 μm and the four peripheral clusters had a median (IQR of 1.32 (4.86 μm before erosion; after erosion there were statistically significant reductions to 0.38 (0.35 μm and 0.34 (0.49 μm respectively (p<0.0001. Polished enamel had a median (IQR Sa roughness 0.04 (0.17 μm for the single central cluster and 0.05 (0.15 μm for the four peripheral clusters which statistically significantly increased after erosion to 0.27 (0.08 μm for both (p<0.0001.Measuring one central cluster of unpolished and polished enamel was representative of the overall enamel surface roughness, before and after erosion.

  11. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    Science.gov (United States)

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  12. Spectrophotometric assessment of the effects of 10% carbamide peroxide on enamel translucency

    Directory of Open Access Journals (Sweden)

    Glauco Fioranelli Vieira

    2008-03-01

    Full Text Available Tooth shade results from the interaction between enamel color, enamel translucency and dentine color. A change in any of these parameters will change a tooth’s color. The objective of this study was to evaluate the changes occurring in enamel translucency during a tooth whitening process. Fourteen human tooth enamel fragments, with a mean thickness of 0.96 mm (± 0.3 mm, were subjected to a bleaching agent (10% carbamide peroxide 8 hours per day for 28 days. The enamel fragment translucency was measured by a computer controlled spectrophotometer before and after the bleaching agent applications in accordance with ANSI Z80.3-1986 - American National Standard for Ophthalmics - nonprescription sunglasses and fashion eyewear-requirements. The measurements were statistically compared by the Mann-Whitney non-parametric test. A decrease was observed in the translucency of all specimens and, consequently, there was a decrease in transmittance values for all samples. It was observed that the bleaching procedure significantly changes the enamel translucency, making it more opaque.

  13. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    Science.gov (United States)

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  14. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration.

    Science.gov (United States)

    Shin, M; Chavez, M B; Ikeda, A; Foster, B L; Bartlett, J D

    2018-02-01

    Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20 +/+ Tg + ) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20 +/+ Tg + mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20 +/+ Tg + molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20 +/+ Tg + mouse molar enamel organs had increased levels

  15. Comparison Of Bond Strength Of Orthodontic Molar Tubes Using Different Enamel Etching Techniques And Their Effect On Enamel

    International Nuclear Information System (INIS)

    Abd el Rahman, H.Y.

    2013-01-01

    In fixed orthodontic treatment, brackets and tubes are used for transferring orthodontic forces to the teeth. Those attachments were welded to cemented bands. Fifty years ago, direct bonding of brackets and other attachments has become a common technique in fixed orthodontic treatment. Orthodontists used to band teeth, especially molars and second premolars, to avoid the need for re bonding accessories in these regions of heavy masticatory forces. However, it is a known fact that direct bonding saves chair time as it does not require prior band selection and fitting, has the ability to maintain good oral hygiene, improve esthetics and make easier attachment to crowded and partially erupted teeth. Moreover, when the banding procedure is not performed with utmost care it can damage periodontal and/or dental tissues. Molar tubes bonding decreases the chance of decalcification caused by leakage beneath the bands. Since molar teeth are subjected to higher masticatory impact, especially lower molars, it would be convenient to devise methods capable of increasing the efficiency of their traditional bonding. These methods may include variation in bond able molar tube material, design, bonding materials and etching techniques. For achieving successful bonding, the bonding agent must penetrate the enamel surface; have easy clinical use, dimensional stability and enough bond strength. Different etching techniques were introduced in literature to increase the bond strength which includes: conventional acid etching, sandblasting and laser etching techniques. The process of conventional acid etching technique was invented In (1955) as the surface of enamel has great potential for bonding by micromechanical retention, to form ‘the mechanical lock‘. The primary effect of enamel etching is to increase the surface area. However, this roughens the enamel microscopically and results in a greater surface area on which to bond. By dissolving minerals in enamel, etchants remove the

  16. Analysis of synchrotron X-ray diffraction patterns from fluorotic enamel samples

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ana P.G.; Braz, Delson, E-mail: anapaulagalmeida@gmail.co [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Colaco, Marcos V.; Barroso, Regina C., E-mail: cely@uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica; Porto, Isabel M., E-mail: belporto@ig.com.b [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia; Gerlach, Raquel F., E-mail: rfgerlach@forp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Odontologia; Droppa Junior, Roosevelt, E-mail: rdroppa@lnls.b [Associacao Brasileira de Tecnologia de Luz Sincrotron (ABTLuS), Campinas, SP (Brazil)

    2009-07-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basics physical-chemistry reactions of demineralisation and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The hexagonal symmetry seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using technique Synchrotron X-ray diffraction in order to determine the crystal structure and crystallinity of on fluoroapatite (FAp) crystal present in fluoritic enamel. All the scattering profile measurements was carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. (author)

  17. Analysis of synchrotron X-ray diffraction patterns from fluorotic enamel samples

    International Nuclear Information System (INIS)

    Almeida, Ana P.G.; Braz, Delson

    2009-01-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basics physical-chemistry reactions of demineralisation and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The hexagonal symmetry seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using technique Synchrotron X-ray diffraction in order to determine the crystal structure and crystallinity of on fluoroapatite (FAp) crystal present in fluoritic enamel. All the scattering profile measurements was carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. (author)

  18. Influence of Enamel Thickness on Bleaching Efficacy: An In-Depth Color Analysis.

    Science.gov (United States)

    Públio, Juliana do Carmo; D'Arce, Maria Beatriz Freitas; Catelan, Anderson; Ambrosano, Gláucia Maria Bovi; Aguiar, Flávio Henrique Baggio; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2016-01-01

    This study evaluated the influence of different enamel thicknesses and bleaching agents on treatment efficacy in-depth by spectrophotometry color analysis. Eighty bovine dental fragments were previously stained in black tea solution and randomly assigned into eight groups (n=10), 1.75mm dentin thickness and different enamel thicknesses as follows: 0.5mm, 1.0mm planned, 1.0mm unplanned (aprismatic enamel), and absence of enamel. The 10% carbamide peroxide (CP) and 35% hydrogen peroxide (HP) bleaching gels were applied on the enamel surface following the manufacturer's recommendations. Color of underlying dentin was evaluated at four times: after staining with tea (baseline) and after each one of the three weeks of bleaching treatment, by CIE L*a*b* system using reflectance spectrophotometer (CM 700d, Konica Minolta). The ΔE, ΔL, Δa, and Δb values were recorded and subjected to repeated measures ANOVA and Tukey's test (α=0.05). The results showed an increase on lightness (L*), with decreased redness (a*) and yellowness (b*). At first and second week, bleaching with CP showed higher whitening effectiveness compared to bleaching with HP and the presence of aprismatic enamel significantly reduced ΔE for bleaching with CP. After three weeks of bleaching, few differences were observed between CP and HP groups, and outer enamel layer caused no influence on bleaching effectiveness. Overall, both at-home and in-office bleaching treatments were effective and the presence of aprismatic enamel did not interfere on the whitening efficacy.

  19. Investigation of EPR signals on tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, A; Mironova-Ulmane, N; Polakov, M; Riekstina, D [Institute of Solid State Physics, University of Latvia, Riga (Latvia)

    2007-12-15

    Calcified tissues are involved in continues metabolic process in human organism exchanging a number of chemical elements with environment. The rate of biochemical reactions is tissue dependent and the slowest one at the tooth enamel, the most mineralized tissue of human organism. The long time stability and unique chemical composition make tooth enamel suitable for number of application. The assessment of individual radiation dose by Electron Paramagnetic Resonance (EPR) and evaluations of elemental composition by Instrumentation Neutron Activation Analysis (INAA) are the well known procedures where properties of tooth enamel intensively used. The current work is focused on investigation of EPR signals and determination of chemical composition on several teeth samples having different origin. The EPR spectra and INAA element content of milk tooth, caries tooth, and paradantose tooth have been compared to each other. The results showed that the intensity of EPR signal is much higher for the caries tooth than the for paradantose tooth that is in agreement with depleted Ca content.

  20. Trends in global warming and evolution of matrix protein 2 family from influenza A virus.

    Science.gov (United States)

    Yan, Shao-Min; Wu, Guang

    2009-12-01

    The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

  1. Bonding characteristics of self-etching adhesives to intact versus prepared enamel.

    Science.gov (United States)

    Perdigão, Jorge; Geraldeli, Saulo

    2003-01-01

    This study tested the null hypothesis that the preparation of the enamel surface would not affect the enamel microtensile bond strengths of self-etching adhesive materials. Ten bovine incisors were trimmed with a diamond saw to obtain a squared enamel surface with an area of 8 x 8 mm. The specimens were randomly assigned to five adhesives: (1) ABF (Kuraray), an experimental two-bottle self-etching adhesive; (2) Clearfil SE Bond (Kuraray), a two-bottle self-etching adhesive; (3) One-Up Bond F (Tokuyama), an all-in-one adhesive; (4) Prompt L-Pop (3M ESPE), an all-in-one adhesive; and (5) Single Bond (3M ESPE), a two-bottle total-etch adhesive used as positive control. For each specimen, one half was roughened with a diamond bur for 5 seconds under water spray, whereas the other half was left unprepared. The adhesives were applied as per manufacturers' directions. A universal hybrid composite resin (Filtek Z250, 3M ESPE) was inserted in three layers of 1.5 mm each and light-cured. Specimens were sectioned in X and Y directions to obtain bonded sticks with a cross-sectional area of 0.8 +/- 0.2 mm2. Sticks were tested in tension in an Instron at a cross-speed of 1 mm per minute. Statistical analysis was carried out with two-way analysis of variance and Duncan's test at p adhesive, resulted in statistically higher microtensile bond strength than any of the other adhesives regardless of the enamel preparation (unprepared = 31.5 MPa; prepared = 34.9 MPa, not statistically different at p adhesives resulted in higher microtensile bond strength when enamel was roughened than when enamel was left unprepared. However, for ABF and for Clearfil SE Bond this difference was not statistically significant at p > .05. When applied to ground enamel, mean bond strengths of Prompt L-Pop were not statistically different from those of Clearfil SE Bond and ABF. One-Up Bond F did not bond to unprepared enamel. Commercial self-etching adhesives performed better on prepared enamel than on

  2. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry for the Investigation of Proteins and Peptides

    Science.gov (United States)

    Burnum, Kristin E.; Frappier, Sara L.; Caprioli, Richard M.

    2008-07-01

    Mass spectrometry (MS) is an excellent technology for molecular imaging because of its high data dimensionality. MS can monitor thousands of individual molecular data channels measured as mass-to-charge (m/z). We describe the use of matrix-assisted laser desorption/ionization (MALDI) MS for the image analysis of proteins, peptides, lipids, drugs, and metabolites in tissues. We discuss the basic instrumentation and sample preparation methods needed to produce high-resolution images and high image reproducibility. Matrix-addition protocols are briefly discussed along with normal operating procedures, and selected biological and medical applications of MALDI imaging MS are described. We give examples of both two- and three-dimensional imaging, including normal mouse embryo implantation, sperm maturation in mouse epididymis, protein distributions in brain sections, protein alterations as a result of drug administration, and protein changes in brain due to neurodegeneration and tumor formation. Advantages of this technology and future challenges for its improvement are discussed.

  3. [In vivo retention of KOH soluble and firmly bound fluoride in demineralized dental enamel].

    Science.gov (United States)

    Hellwig, E; Klimek, J; Albert, G

    1989-03-01

    Cylindrical enamel blocks with initial carious lesions were treated for one hour with Duraphat or Fluor-Protector. After removal of the fluoride varnishes the enamel blocks were kept in the mouths of 3 probands for 5 days. Plaque was allowed to accumulate on half of the enamel cylinders, while the other half was kept clean. Part of the enamel cylinders were retained as fluoridated controls. Compared with Duraphat the application of Fluor-Protector resulted in a significantly higher uptake of KOH soluble and firmly bound fluoride. During the 5 days of the experiment the amount of KOH soluble fluorides decreased in both groups. In the presence of plaque the fluoride loss was higher. The amount of firmly bound fluoride increased both in the plaque covered and in the clean enamel. The durable cariostatic effect of fluoridated varnishes seems to be due to the slow dissolution of Ca F2-like precipitates on the enamel surface and the concomitant fluoride uptake in the underlying demineralized enamel.

  4. Decalcification prevention around orthodontic brackets bonded to bleached enamel using different topical agents.

    Science.gov (United States)

    Msallam, Ferial Ahmed; Grawish, Mohammed El-Awady; Hafez, Ahmad Mohammed; Abdelnaby, Yasser Lotfy

    2017-12-01

    The present study was conducted to evaluate the effect of different topical agents utilized for prevention of enamel decalcification around orthodontic brackets bonded to bleached and non-bleached enamel. Human maxillary premolars (n = 120) were divided into two equal groups. Teeth in group I were left without bleaching while those in group II were bleached with Vivastyle gel. Metal brackets were bonded to all the teeth using light-cured adhesive. Each group was divided into six equal subgroups (A, B, C, D, E, and F). In subgroup A, no material was applied (control). In subgroups B, C, D, E, and F, the following materials were applied respectively: Profluorid varnish, Enamel Pro Varnish, Ortho-Choice Ortho-Coat, GC Tooth Mousse, and GC MI Paste Plus. All teeth were cycled in a demineralization solution/artificial saliva for 15 days. Laser fluorescence was used to measure the level of enamel mineralization. The data were statistically analyzed. Regarding the non-bleaching subgroups, all studied material revealed significant demineralization reduction in comparison to the control subgroup (P  0.05). Ortho-Choice Ortho-Coat, and Profluorid and Enamel Pro varnishes could be utilized successfully to reduce enamel demineralization around brackets bonded to either bleached or non-bleached enamel. GC MI Paste Plus and GC Tooth Mousse were effective only in non-bleached enamel.

  5. Preparation and characterization of enamel coating on pure titanium as a hydrogen penetration barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jie, E-mail: taojie@nuaa.edu.cn [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Guo, Xunzhong [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Huang, Zhendong [Graduate School of Human and Environmental Studies, Kyoto University, oshida-Nihonmatsu-Cho, Sakyo-Ku, Kyoto shi 606-8501 (Japan); Liu, Hongbing [Shanghai Aircraft Manufacturing Co,. Ltd, Shanghai 200436 (China); Wang, Tao [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2013-06-15

    Highlights: ► The enamel coating was prepared by spin-coating and enameling method. ► The dense enamel coatings were chemically bonded with TA1 substrate. ► The coatings possessed better thermal shock resistance property. ► The coatings had excellent ball-dropping impact properties. ► The enamel coating exhibited a good barrier effect to hydrogen isotope penetration. -- Abstract: The enamel coating with a thickness of 90–110 × 10{sup −6} m was prepared on TA1 substrate by spin-coating and enameling to solve the problems of hydrogen isotope penetration for commercial pure titanium TA1. The microstructure and the interfacial morphology of the samples were characterized respectively by X-ray diffraction, optical and scanning electron microscopy. The profiles of main elements at the interface were analyzed by EDS line-scanning. The experimental results indicated that the dense enamel coatings were chemically bonded with TA1 substrate, and possessed better thermal shock resistance and ball-dropping impact properties. It was concluded from the results of hydrogen charging test with Vickers microhardness measurement and deuterium penetration experiments that the as-prepared dense enamel coating exhibited a good barrier effect to hydrogen isotope penetration.

  6. A study on the characteristics of enamel to electron spin resonance spectrum for retrospective dosimetry

    International Nuclear Information System (INIS)

    Hong, Dae Seok; Lee, Kun Jai

    2003-01-01

    Electron Spin Resonance (ESR) spectroscopy is one of the methods applicable to retrospective dosimetry. The retrospective dosimetry is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. A tooth can be separated as enamel, dentine and cementum. Among the three parts, enamel is known as to show the best sensitivity to the absorbed dose and is most widely used. Since the later 80s, ESR dosimetry with tooth enamel has been studied and applied for the retrospective dosimetry. There are some factors affecting the sensitivity of enamel to absorbed dose. One of the factors is a size of enamel. Grain size of the 1.0mm∼0.1mm range is commonly used and 0.6mm∼0.25mm is recommended in other study. But the sensitivity can be varied by the grain size. In this study, the granular effect of enamel to the sensitivity is examined for application to retrospective dosimetry. In the enamel separation, to minimize the physically induced ESR spectrum, only chemical separation method was used. Separated enamels were divided by their size. The sizes of each sample is 1.0mm∼0.71mm, 0.5mm∼0.3mm, and below 0.1mm, respectively. All enamel samples show ESR spectrum related to the absorbed dose and the ESR spectrum shows linearity to the absorbed dose. The sensitivities are similar for each sample. But the enamel of size below 0.1mm shows poor characteristics relative to other enamel size. So, it is not recommended to use enamel samples below 0.1mm

  7. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  8. Enamel thickness after preparation of tooth for porcelain laminate.

    Science.gov (United States)

    Pahlevan, Ayoub; Mirzaee, Mansoreh; Yassine, Esmaeil; Ranjbar Omrany, Ladan; Hasani Tabatabaee, Masumeh; Kermanshah, Hamid; Arami, Sakineh; Abbasi, Mehdy

    2014-07-01

    In this investigation the thickness of enamel in the gingival, middle, and incisal thirds of the labial surface of the anterior teeth were measured regarding preparation of the teeth for porcelain laminate veneers. Part one, 20 extracted intact human maxillary central and lateral incisors ten of each were selected. The teeth were imbedded in autopolimerize acrylic resin. Cross section was preformed through the midline of the incisal, middle and cervical one-third of the labial surface of the teeth. The samples were observed under reflected stereomicroscope and the thickness of enamel was recorded. Part II, the effect of different types of preparation on dentin exposure was evaluated. Thirty maxillary central incisor teeth were randomly divided into two groups: A: Knife-edge preparation. B: Chamfer preparation. All samples were embedded in autopolimerize acrylic resin using a silicon mold. The samples were cut through the midline of the teeth. The surface of the samples were polished and enamel and dentin were observed under the stereomicroscope. Data were analyzed by ANOVA-one way test. The results of this study showed that the least enamel thickness in the central incisor was 345 and in lateral incisor is 235 μ this thickness is related to the one-third labial cervical area. Maximum thickness in maxillary central and lateral incisors in the one-third labial incisal surface was 1260 μ and 1220μ, respectively. In the second part of the study, the tendency of dentinal exposure was shown with the chamfer preparation, but no dentinal exposure was found in the knife-edge preparation. The differences between groups were significant (p<0.05). The knowledge of enamel thickness in different part of labial surface is very important. The thickness of enamel in the gingival area does not permit a chamfer preparation. The knife edge preparation is preferable in gingival area.

  9. Enamel thickness after preparation of tooth for porcelain laminate.

    Directory of Open Access Journals (Sweden)

    Ayoub Pahlevan

    2014-08-01

    Full Text Available In this investigation the thickness of enamel in the gingival, middle, and incisal thirds of the labial surface of the anterior teeth were measured regarding preparation of the teeth for porcelain laminate veneers.Part one, 20 extracted intact human maxillary central and lateral incisors ten of each were selected. The teeth were imbedded in autopolimerize acrylic resin. Cross section was preformed through the midline of the incisal, middle and cervical one-third of the labial surface of the teeth. The samples were observed under reflected stereomicroscope and the thickness of enamel was recorded. Part II, the effect of different types of preparation on dentin exposure was evaluated. Thirty maxillary central incisor teeth were randomly divided into two groups: A: Knife-edge preparation. B: Chamfer preparation. All samples were embedded in autopolimerize acrylic resin using a silicon mold. The samples were cut through the midline of the teeth. The surface of the samples were polished and enamel and dentin were observed under the stereomicroscope.Data were analyzed by ANOVA-one way test. The results of this study showed that the least enamel thickness in the central incisor was 345 and in lateral incisor is 235 μ this thickness is related to the one-third labial cervical area. Maximum thickness in maxillary central and lateral incisors in the one-third labial incisal surface was 1260 μ and 1220μ, respectively. In the second part of the study, the tendency of dentinal exposure was shown with the chamfer preparation, but no dentinal exposure was found in the knife-edge preparation. The differences between groups were significant (p<0.05.The knowledge of enamel thickness in different part of labial surface is very important. The thickness of enamel in the gingival area does not permit a chamfer preparation. The knife edge preparation is preferable in gingival area.

  10. Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti.

    Directory of Open Access Journals (Sweden)

    Carolina Loch

    Full Text Available The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand to Pliocene (Caldera, Chile. Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth, the inner enamel was organized in Hunter-Schreger bands (HSB with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward

  11. Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti).

    Science.gov (United States)

    Loch, Carolina; Kieser, Jules A; Fordyce, R Ewan

    2015-01-01

    The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand) to Pliocene (Caldera, Chile). Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM) observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth), the inner enamel was organized in Hunter-Schreger bands (HSB) with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward odontocetes, with

  12. Near-surface structural examination of human tooth enamel subject to in vitro demineralization and remineralization

    Science.gov (United States)

    Gaines, Carmen Veronica

    The early stages of chemical tooth decay are governed by dynamic processes of demineralization and remineralization of dental enamel that initiates along the surface of the tooth. Conventional diagnostic techniques lack the spatial resolution required to analyze near-surface structural changes in enamel at the submicron level. In this study, slabs of highly-polished, decay-free human enamel were subjected to 0.12M EDTA and buffered lactic acid demineralizing agents and MI Paste(TM) and calcifying (0.1 ppm F) remineralizing treatments in vitro. Grazing incidence x-ray diffraction (GIXD), a technique typically used for thin film analysis, provided depth profiles of crystallinity changes in surface enamel with a resolution better than 100 nm. In conjunction with nanoindentation, a technique gaining acceptance as a means of examining the mechanical properties of sound enamel, these results were corroborated with well-established microscopy and Raman techniques to assess the nanohardness, morphologies and chemical nature of treated enamel. Interestingly, the average crystallite size of surface enamel along its c-axis dimension increased by nearly 40% after a 60 min EDTA treatment as detected by GIXD. This result was in direct contrast to the obvious surface degradation observed by microscopic and confocal Raman imaging. A decrease in nanohardness from 4.86 +/- 0.44 GPa to 0.28 +/- 0.10 GPa was observed. Collective results suggest that mineral dissolution characteristics evident on the micron scale may not be fully translated to the nanoscale in assessing the integrity of chemically-modified tooth enamel. While an intuitive decrease in enamel crystallinity was observed with buffered lactic acid-treated samples, demineralization was too slow to adequately quantify the enamel property changes seen. MI Paste(TM) treatment of EDTA-demineralized enamel showed preferential growth along the a-axis direction. Calcifying solution treatments of both demineralized sample types

  13. Tooth enamel dosimetric response to 2.8 MeV neutrons

    Science.gov (United States)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2003-03-01

    Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60Co relative sensitivity was 0.33±0.08.

  14. Tooth enamel dosimetric response to 2.8 MeV neutrons

    International Nuclear Information System (INIS)

    Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.

    2003-01-01

    Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60 Co relative sensitivity was 0.33±0.08

  15. Alterations in proteins of bone marrow extracellular matrix in undernourished mice

    Directory of Open Access Journals (Sweden)

    C.L. Vituri

    2000-08-01

    Full Text Available The objective of the present study was to determine the effect of protein malnutrition on the glycoprotein content of bone marrow extracellular matrix (ECM. Two-month-old male Swiss mice were submitted to protein malnutrition with a low-protein diet containing 4% casein as compared to 20% casein in the control diet. When the experimental group had attained a 20% loss of their original body weight, we extracted the ECM proteins from bone marrow with PBS buffer, and analyzed ECM samples by SDS-PAGE (7.5% and ECL Western blotting. Quantitative differences were observed between control and experimental groups. Bone marrow ECM from undernourished mice had greater amounts of extractable fibronectin (1.6-fold increase and laminin (4.8-fold increase when compared to the control group. These results suggest an association between fluctuations in the composition of the hematopoietic microenvironment and altered hematopoiesis observed in undernourished mice.

  16. Beyond the Protein Matrix : Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction

    NARCIS (Netherlands)

    Martinoli, Christian; Dudek, Hanna M.; Orru, Roberto; Edmondson, Dale E.; Fraaije, Marco W.; Mattevi, Andrea

    2013-01-01

    A general question in biochemistry is the interplay between the chemical properties of cofactors and the surrounding protein matrix. Here, the functions of NADP(+) and FAD are explored by investigation of a representative monooxygenase reconstituted with chemically modified cofactor analogues. Like

  17. Microtensile bond strength of enamel after bleaching.

    Science.gov (United States)

    Lago, Andrea Dias Neves; Garone-Netto, Narciso

    2013-01-01

    To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Twenty bovine teeth were randomly distributed into 4 groups (n = 5), 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control); G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm) area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min) 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM). There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2). There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive) failure in all groups. The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  18. Magnesium stable isotope ecology using mammal tooth enamel

    Science.gov (United States)

    Martin, Jeremy E.; Vance, Derek; Balter, Vincent

    2015-01-01

    Geochemical inferences on ancient diet using bone and enamel apatite rely mainly on carbon isotope ratios (δ13C) and to a lesser extent on strontium/calcium (Sr/Ca) and barium/calcium (Ba/Ca) elemental ratios. Recent developments in nontraditional stable isotopes provide an unprecedented opportunity to use additional paleodietary proxies to disentangle complex diets such as omnivory. Of particular relevance for paleodietary reconstruction are metals present in large quantity in bone and enamel apatite, providing that biologically mediated fractionation processes are constrained. Calcium isotope ratios (δ44Ca) meet these criteria but exhibit complex ecological patterning. Stable magnesium isotope ratios (δ26Mg) also meet these criteria but a comprehensive understanding of its variability awaits new isotopic data. Here, 11 extant mammal species of known ecology from a single locality in equatorial Africa were sampled for tooth enamel and, together with vegetation and feces, analyzed for δ26Mg, δ13C, Sr/Ca, and Ba/Ca ratios. The results demonstrate that δ26Mg incorporated in tooth enamel becomes heavier from strict herbivores to omnivores/faunivores. Using data from experimentally raised sheep, we suggest that this 26Mg enrichment up the trophic chain is due to a 26Mg enrichment in muscle relative to bone. Notably, it is possible to distinguish omnivores from herbivores, using δ26Mg coupled to Ba/Ca ratios. The potential effects of metabolic and dietary changes on the enamel δ26Mg composition remain to be explored but, in the future, multiproxy approaches would permit a substantial refinement of dietary behaviors or enable accurate trophic reconstruction despite specimen-limited sampling, as is often the case for fossil assemblages.

  19. Detection and Analysis of Enamel Cracks by Quantitative Light-induced Fluorescence Technology.

    Science.gov (United States)

    Jun, Mi-Kyoung; Ku, Hye-Min; Kim, Euiseong; Kim, Hee-Eun; Kwon, Ho-Keun; Kim, Baek-Il

    2016-03-01

    The ability to accurately detect tooth cracks and quantify their depth would allow the prediction of crack progression and treatment success. The aim of this in vitro study was to determine the capabilities of quantitative light-induced fluorescence (QLF) technology in the detection of enamel cracks. Ninety-six extracted human teeth were selected for examining naturally existing or suspected cracked teeth surfaces using a photocuring unit. QLF performed with a digital camera (QLF-D) images were used to assess the ability to detect enamel cracks based on the maximum fluorescence loss value (ΔFmax, %), which was then analyzed using the QLF-D software. A histologic evaluation was then performed in which the samples were sectioned and observed with the aid of a polarized light microscope. The relationship between ΔFmax and the histology findings was assessed based on the Spearman rank correlation. The sensitivity and specificity were calculated to evaluate the validity of using QLF-D to analyze enamel inner-half cracks and cracks extending to the dentin-enamel junction. There was a strong correlation between the results of histologic evaluations of enamel cracks and the ΔFmax value, with a correlation coefficient of 0.84. The diagnostic accuracy of QLF-D had a sensitivity of 0.87 and a specificity of 0.98 for enamel inner-half cracks and a sensitivity of 0.90 and a specificity of 1.0 for cracks extending to the dentin-enamel junction. These results indicate that QLF technology would be a useful clinical tool for diagnosing enamel cracks, especially given that this is a nondestructive method. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Fanconi anemia proteins localize to chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner.

    Science.gov (United States)

    Qiao, F; Moss, A; Kupfer, G M

    2001-06-29

    Fanconi anemia (FA) is a genetic disease characterized by congenital defects, bone marrow failure, and cancer susceptibility. Cells from patients with FA exhibit genomic instability and hypersensitivity to DNA cross linking agents such as mitomycin C. Despite the identification of seven complementation groups and the cloning of six genes, the function of the encoded gene products remains elusive. The FancA (Fanconi anemia complementation group A), FancC, and FancG proteins have been detected within a nuclear complex, but no change in level, binding, or localization has been reported as a result of drug treatment or cell cycle. We show that in immunofluorescence studies, FancA appears as a non-nucleolar nuclear protein that is excluded from condensed, mitotic chromosomes. Biochemical fractionation reveals that the FA proteins are found in nuclear matrix and chromatin and that treatment with mitomycin C results in increase of the FA proteins in nuclear matrix and chromatin fractions. This induction occurs in wild-type cells and mutant FA-D (Fanconi complementation group D) cells but not in mutant FA-A cells. Immunoprecipitation of FancA protein in chromatin demonstrates the coprecipitation of FancA, FancC, and FancG, showing that the FA proteins move together as a complex. Also, fractionation of mitotic cells confirms the lack of FA proteins in chromatin or the nuclear matrix. Furthermore, phosphorylation of FancG was found to be temporally correlated with exit of the FA complex from chromosomes at mitosis. Taken together, these findings suggest a role for FA proteins in chromatin and nuclear matrix.

  1. Spectrally enhanced image resolution of tooth enamel surfaces

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2012-01-01

    Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.

  2. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants.

    Science.gov (United States)

    Echtay, Karim S; Murphy, Michael P; Smith, Robin A J; Talbot, Darren A; Brand, Martin D

    2002-12-06

    Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide

  3. SEM Evaluation of Surrounding Enamel after Finishing of Composite Restorations- Preliminary Results

    Science.gov (United States)

    Iovan, G.; Stoleriu, S.; Solomon, S.; Ghiorghe, A.; Sandu, A. V.; Andrian, S.

    2017-06-01

    The purpose of this study was to analyze the surface characteristics of the enamel adjacent to composite resin after finishing the restoration with different diamond and tungsten carbide burs. The topography of enamel was observed by using a scanning electron microscope. Finishing with extra-/ultra-fine carbide burs, and extra-fine diamond burs resulted in smooth surfaces. In few areas some superficial scratches with no clinical relevance were observed. Deep grooves were observed on the surface of enamel when fine diamond burs were used. Finishing of composite restorations with coarse burs should be avoided when there is a high risk of touching and scratching adjacent enamel during the procedure.

  4. Uranium compounds in ceramic enamels-radioactivity analysis and use hazards

    International Nuclear Information System (INIS)

    Cucchi, G.; Amadesi, P.

    1980-01-01

    An analysis was made of the radioactivity of enamel samples, containing depleted Uranium and Uranium ore, such as employed by the ceramic industry to produce paving and lining tiles. An investigation was also made of various types of tiles with depleted Uranium containing enamels, in order to evaluate the use hazard for dwelling houses, in particular in regard to the wear of tiled floors by children as a critical group. The risk to the population due to the use of tiles dyed with enamel containing depleted Uranium was considered an undue risk and as such not permissible. (U.K.)

  5. Inter-proximal enamel reduction in contemporary orthodontics.

    Science.gov (United States)

    Pindoria, J; Fleming, P S; Sharma, P K

    2016-12-16

    Inter-proximal enamel reduction has gained increasing prominence in recent years being advocated to provide space for orthodontic alignment, to refine contact points and to potentially improve long-term stability. An array of techniques and products are available ranging from hand-held abrasive strips to handpiece mounted burs and discs. The indications for inter-proximal enamel reduction and the importance of formal space analysis, together with the various techniques and armamentarium which may be used to perform it safely in both the labial and buccal segments are outlined.

  6. Enamel Bond Strength of New Universal Adhesive Bonding Agents.

    Science.gov (United States)

    McLean, D E; Meyers, E J; Guillory, V L; Vandewalle, K S

    2015-01-01

    Universal bonding agents have been introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinician's preference. The purpose of this study was to evaluate the shear bond strength (SBS) of composite to enamel using universal adhesives compared to a self-etch adhesive when applied in self-etch and etch-and-rinse modes over time. Extracted human third molars were used to create 120 enamel specimens. The specimens were ground flat and randomly divided into three groups: two universal adhesives and one self-etch adhesive. Each group was then subdivided, with half the specimens bonded in self-etch mode and half in etch-and-rinse mode. The adhesives were applied as per manufacturers' instructions, and composite was bonded using a standardized mold and cured incrementally. The groups were further divided into two subgroups with 10 specimens each. One subgroup was stored for 24 hours and the second for six months in 37°C distilled water and tested in shear. Failure mode was also determined for each specimen. A three-way analysis of variance (ANOVA) found a significant difference between groups based on bonding agent (p0.05). Clearfil SE in etch-and-rinse and self-etch modes had more mixed fractures than either universal adhesive in either mode. Etching enamel significantly increased the SBS of composite to enamel. Clearfil SE had significantly greater bond strength to enamel than either universal adhesive, which were not significantly different from each other.

  7. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel.

    Science.gov (United States)

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed

    2014-01-01

    The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  8. Effect of storage solutions on microhardness of crown enamel and dentin.

    Science.gov (United States)

    Aydın, Berdan; Pamir, Tijen; Baltaci, Aysun; Orman, Mehmet N; Turk, Tugba

    2015-01-01

    The aim of this study was to determine alterations in microhardness of crown dentin and enamel, after 2 and 12-month storage in de-ionized water, 0.2% glutaraldehyde, Hanks' Balanced Salt Solution (HBSS), 0.1% sodium hypochlorite (NaOCl) or 0.1% thymol. Freshly extracted, nonsterile 60 intact human premolars were distributed to five groups. Six teeth from each group were evaluated after two, and other six teeth were evaluated after 12 months storage. After grinding and polishing of teeth, Vickers hardness was evaluated with making indentations on enamel and dentin, using a pyramid diamond indenter tip exerting 100 g load for 15 s. After 2 months storage in solutions, range of the hardness values (HV) of enamel and dentin were in between 315-357 and 64-67, respectively. However, 12 months storage of the teeth resulted in a statistically significant decrease in microhardness when compared to microhardness of teeth stored for 2 months (P = 0.001). Although the differences were not significant regarding solutions, all solutions decreased the microhardness both in enamel and dentin (P > 0.05). However, decrease in microhardness was relatively less in de-ionized water and thymol solutions while glutaraldehyde decreased microhardness the most: 63% for enamel and 53% for dentin. Microhardness of enamel and dentin was in an acceptable range when teeth were stored for 2 months in de-ionized water, glutaraldehyde, HBSS, NaOCl or in thymol; thus, teeth kept up to 2 months in these solutions can be used for mechanical in vitro tests. However, 12 months storage significantly decreased the microhardness of enamel and dentin.

  9. Effects of 960 nm diode laser irradiation on dental enamel in vitro: temperature and morphological analysis and evaluation of enamel demineralization

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2004-01-01

    The aim of this study is to determine the effects of diode laser irradiation on enamel demineralization. To achieve this goal appropriate photon absorbing substances for the laser radiation, safe laser parameters and adequate temperature measuring apparatus had to be determined. Next, the effects of diode laser and acidulated phosphate fluoride on enamel demineralization by calcium content analysis were evaluated with inductively coupled plasma atomic emission spectrometry (ICP-AES). In the first part of the study, five dyes consisting of vegetable coal diluted in five different liquids were analyzed and vegetable coal diluted in physiological solution was chosen for use as absorber. Methodologies to measure pulp chamber temperature were evaluated and modeling clay was chosen as fixture for the enamel samples held at body temperature. In the second part of the study, different energy density parameters (1.8 J/cm 2 , 3.7 J/cm 2 , 5.6 J/cm 2 , 7.4 J/cm 2 and 9.3 J/cm 2 ) exposure times (10, 15, 20, 25 e 30 seconds) and time intervals between dye application and laser irradiation (5, 30, 60, 90 e 120 seconds) were evaluated with respect to temperature changes in the pulp chamber. The enamel morphology was analyzed by scanning electron microscopy. Acid resistance was measured using seventy five enamel specimens, divided in five groups (control, fluoride, laser, laser + fluoride and fluoride + laser). The amount of calcium lost during demineralization in lactic acid was measured by ICP-AES. The results obtained in this experiment permit the conclusion that diode laser irradiation did not increase acid resistance. When associated with fluoride, the acid resistance did not differ from the results obtained with fluoride alone. (author)

  10. Effects of probiotic fermented milk on biofilms, oral microbiota, and enamel

    OpenAIRE

    Lodi, Carolina Simonetti; Oliveira, Lidiane Viana; Brighenti, Fernanda Lourenção [UNESP; Delbem, Alberto Carlos Botazzo; Martinhon, Cleide Cristina Rodrigues

    2015-01-01

    The aim of this study was to evaluate in vitro and in vivo the effects of 2 brands of probiotic fermented milk on biofilms, oral microbiota, and enamel. For the in situ experiment, ten volunteers wore palatine devices containing four blocks of bovine dental enamel over 3 phases, during which 20% sucrose solution, Yakult® (Treatment A), and Batavito® (Treatment B) were dropped on the enamel blocks. Salivary microbial counts were obtained and biofilm samples were analyzed after each phase. For ...

  11. A Comparison of Fatigue Crack Growth in Human Enamel and Hydroxyapatite

    OpenAIRE

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne

    2008-01-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state cra...

  12. Sub-10-micrometer toughening and crack tip toughness of dental enamel

    OpenAIRE

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A.

    2011-01-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip toughness (KI0, KIII0), the crack closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine en...

  13. 3D enamel thickness in Neandertal and modern human permanent canines.

    Science.gov (United States)

    Buti, Laura; Le Cabec, Adeline; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A; Hublin, Jean-Jacques; Feeney, Robin N M; Benazzi, Stefano

    2017-12-01

    Enamel thickness figures prominently in studies of human evolution, particularly for taxonomy, phylogeny, and paleodietary reconstruction. Attention has focused on molar teeth, through the use of advanced imaging technologies and novel protocols. Despite the important results achieved thus far, further work is needed to investigate all tooth classes. We apply a recent approach developed for anterior teeth to investigate the 3D enamel thickness of Neandertal and modern human (MH) canines. In terms of crown size, the values obtained for both upper and lower unworn/slightly worn canines are significantly greater in Neandertals than in Upper Paleolithic and recent MH. The 3D relative enamel thickness (RET) is significantly lower in Neandertals than in MH. Moreover, differences in 3D RET values between the two groups appear to decrease in worn canines beginning from wear stage 3, suggesting that both the pattern and the stage of wear may have important effects on the 3D RET value. Nevertheless, the 3D average enamel thickness (AET) does not differ between the two groups. In both groups, 3D AET and 3D RET indices are greater in upper canines than in lower canines, and overall the enamel is thicker on the occlusal half of the labial aspect of the crown, particularly in MH. By contrast, the few early modern humans investigated show the highest volumes of enamel while for all other components of 3D enamel, thickness this group holds an intermediate position between Neandertals and recent MH. Overall, our study supports the general findings that Neandertals have relatively thinner enamel than MH (as also observed in molars), indicating that unworn/slightly worn canines can be successfully used to discriminate between the two groups. Further studies, however, are needed to understand whether these differences are functionally related or are the result of pleiotropic or genetic drift effects. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Distinct profile of vascular progenitor attachment to extracellular matrix proteins in cancer patients.

    Science.gov (United States)

    Labonté, Laura; Li, Yuhua; Addison, Christina L; Brand, Marjorie; Javidnia, Hedyeh; Corsten, Martin; Burns, Kevin; Allan, David S

    2012-04-01

    Vascular progenitor cells (VPCs) facilitate angiogenesis and initiate vascular repair by homing in on sites of damage and adhering to extracellular matrix (ECM) proteins. VPCs also contribute to tumor angiogenesis and induce angiogenic switching in sites of metastatic cancer. In this study, the binding of attaching cells in VPC clusters that form in vitro on specific ECM proteins was investigated. VPC cluster assays were performed in vitro on ECM proteins enriched in cancer cells and in remodelling tissue. Profiles of VPC clusters from patients with cancer were compared to healthy controls. The role of VEGF and integrin-specific binding of angiogenic attaching cells was addressed. VPC clusters from cancer patients were markedly increased on fibronectin relative to other ECM proteins tested, in contrast to VPC clusters from control subjects, which formed preferentially on laminin. Specific integrin-mediated binding of attaching cells in VPC clusters was matrix protein-dependent. Furthermore, cancer patients had elevated plasma VEGF levels compared to healthy controls and VEGF facilitated preferential VPC cluster formation on fibronectin. Incubating cells from healthy controls with VEGF induced a switch from the 'healthy' VPC binding profile to the profile observed in cancer patients with a marked increase in VPC cluster formation on fibronectin. The ECM proteins laminin and fibronectin support VPC cluster formation via specific integrins on attaching cells and can facilitate patterns of VPC cluster formation that are distinct in cancer patients. Larger studies, however, are needed to gain insight on how tumor angiogenesis may differ from normal repair processes.

  15. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    Science.gov (United States)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  16. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    Science.gov (United States)

    Heravi, Farzin; Shafaee, Hooman; Abdollahi, Mojtaba; Rashed, Roozbeh

    2015-03-01

    The objective of this study was to assess the effect of new bonding techniques on enamel surface. Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using TransbondXT and, in the second group, the same brackets were bonded with Maxcem Elite. The shear bond strength (SBS) of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI) scores in each group were also measured. There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval). Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely to damage the enamel.

  17. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association.

    Science.gov (United States)

    Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J

    2017-08-08

    Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.

  18. Synchrotron radiation microbeam X-ray fluorescence analysis of zinc concentration in remineralized enamel in situ.

    Science.gov (United States)

    Matsunaga, Tsunenori; Ishizaki, Hidetaka; Tanabe, Shuji; Hayashi, Yoshihiko

    2009-05-01

    Remineralization is an indispensable phenomenon during the natural healing process of enamel decay. The incorporation of zinc (Zn) into enamel crystal could accelerate this remineralization. The present study was designed to investigate the concentration and distribution of Zn in remineralized enamel after gum chewing. The experiment was performed at the Photon Factory. Synchrotron radiation was monochromatized and X-rays were focused into a small beam spot. The X-ray fluorescence (XRF) from the sample was detected with a silicon (Si) (lithium (Li)) detector. X-ray beam energy was tuned to detect Zn. The examined samples were small enamel fragments remineralized after chewing calcium phosphate-containing gum in situ. The incorporation of Zn atom into hydroxyapatite (OHAP), the main component of enamel, was measured using Zn K-edge extended X-ray absorption fine structure (EXAFS) with fluorescence mode at the SPring-8. A high concentration of Zn was detected in a superficial area 10-microm deep of the sectioned enamel after gum chewing. This concentration increased over that in the intact enamel. The atomic distance between Zn and O in the enamel was calculated using the EXAFS data. The analyzed atomic distances between Zn and O in two sections were 0.237 and 0.240 nm. The present experiments suggest that Zn is effectively incorporated into remineralized enamel through the physiological processes of mineral deposition in the oral cavity through gum-chewing and that Zn substitution probably occurred at the calcium position in enamel hydroxyapatite.

  19. Distribution of cytoskeletal proteins, integrins, leukocyte adhesion molecules and extracellular matrix proteins in plastic-embedded human and rat kidneys

    NARCIS (Netherlands)

    van Goor, H; Coers, W; van der Horst, MLC; Suurmeijer, AJH

    2001-01-01

    OBJECTIVE: To study the distribution of cytoskeletal proteins (actin, alpha -actinin, vinculin, beta -tubulin, keratin, vimentin, desmin), adhesion molecules for cell-matrix interations (very later antigens [VLA1-6], beta1, beta2 [CD18], vitronectin receptor [alphav beta3], CD 11b), leukocyte

  20. Patchwork structure-function analysis of the Sendai virus matrix protein.

    Science.gov (United States)

    Mottet-Osman, Geneviève; Miazza, Vincent; Vidalain, Pierre-Olivier; Roux, Laurent

    2014-09-01

    Paramyxoviruses contain a bi-lipidic envelope decorated by two transmembrane glycoproteins and carpeted on the inner surface with a layer of matrix proteins (M), thought to bridge the glycoproteins with the viral nucleocapsids. To characterize M structure-function features, a set of M domains were mutated or deleted. The genes encoding these modified M were incorporated into recombinant Sendai viruses and expressed as supplemental proteins. Using a method of integrated suppression complementation system (ISCS), the functions of these M mutants were analyzed in the context of the infection. Cellular membrane association, localization at the cell periphery, nucleocapsid binding, cellular protein interactions and promotion of viral particle formation were characterized in relation with the mutations. At the end, lack of nucleocapsid binding go together with lack of cell surface localization and both features definitely correlate with loss of M global function estimated by viral particle production. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Penetration pattern of rhodamine dyes into enamel and dentin: confocal laser microscopy observation.

    Science.gov (United States)

    Kwon, S R; Wertz, P W; Li, Y; Chan, D C N

    2012-02-01

    Enamel and dentin are susceptible to extrinsic and intrinsic stains. The purposes of this study were to determine the penetration pattern of Rhodamine B and dextran-conjugated Rhodamine B into the enamel and dentin as observed by confocal laser microscopy and to relate it to the penetration pattern of hydrogen peroxide commonly used as an active ingredient in tooth-whitening agents and high-molecular-weight staining molecules. Eighteen recently extracted human maxillary anterior teeth were used. Teeth were cleaned and painted with nail varnish except for the crown area above the cemento-enamel junction (CEJ). The painted teeth were then immersed in Rhodamine B and dextran-conjugated Rhodamine B (70 000 MW) for 4, 7, 10 and 15 days. Teeth were sliced to 3 mm thickness in transverse plane and mounted on a glass slide just prior to observation with confocal laser microscopy. Rhodamine B and dextran-conjugated Rhodamine B readily penetrated into the enamel and dentin when exposed for 4 and 7 days, respectively. Rhodamine B penetrated along the interprismatic spaces of the enamel into the dentin. The penetration was accentuated in sections with existing crack lines in the enamel. Rhodamine B was readily absorbed into the dentinal tubules at the dentino-enamel junction and continued to penetrate through the dentin via the dentinal tubules into the pre-dentin. Within the limitations of this study, it is concluded that Rhodamine B and dextran-conjugated Rhodamine B when applied to the external surface of the tooth readily penetrate into the enamel and dentin via the interprismatic spaces in the enamel and dentinal tubules in the dentin, suggesting that stain molecules and bleaching agents possibly exhibit similar penetration pathways. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Conversion from tooth enamel dose to organ doses for electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Yamaguchi, Yasuhiro; Saito, Kimiaki; Hamada, Tatsuji

    2002-01-01

    Conversion from tooth enamel dose to organ doses was analyzed to establish a method of retrospective individual dose assessment against external photon exposure by electron spin resonance (ESR) dosimetry. Dose to tooth enamel was obtained by Monte Carlo calculations using a modified MIRD-type phantom with a teeth part. The calculated tooth enamel doses were verified by measurements with thermo-luminescence dosimeters inserted in a physical head phantom. Energy and angular dependences of tooth enamel dose were compared with those of other organ doses. Additional Monte Carlo calculations were performed to study the effect of human model on the tooth enamel dose with a voxel-type phantom, which was based on computed tomography images of the physical phantom. The data derived with the modified MIRD-type phantom were applied to convert from tooth enamel dose to organ doses against external photon exposure in a hypothesized field, where scattered radiation was taken into account. The results indicated that energy distribution of photons incident to a human body is required to evaluate precisely an individual dose based on ESR dosimetry for teeth. (author)

  3. Some advances in the instrumental retrospective dosimetry techniques with tooth enamel and quartz

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.; Pasalskaja, L.F.; Pavlenko, J.V.

    1996-01-01

    Some aspects of retrospective dosimetry with tooth enamel and quartz have been considered. Firstly, the experimental and theoretical investigation had been carried out concerning influence of secondary electron equilibrium on the absorbed dose in enamel under the laboratory irradiation. The irradiation had been made with photons of energy 1,25 MeV, 662 and 100 keV. It is demonstrated that the influence of secondary electron equilibrium on the absorbed dose in enamel does not exceed few percent. Secondly, some of paramagnetic centers of enamel different from CO 2 - ones have been researched by using of the thermo activation technique. The enamel for this experiment had been carefully purified from organic components and then irradiated following annealed to consecutively increasing temperature. It was established that at least four of EPR centers of enamel possess radiation sensitivity and could be used for dosimetry purposes. Thirsty, it was performed a thorough investigation of the influence of different stages in quartz separation and purification with respect to obtaining of samples for TL-dosimetry. The optimal procedure has been developed

  4. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Science.gov (United States)

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (perosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  5. Testing functional and morphological interpretations of enamel thickness along the deciduous tooth row in human children.

    OpenAIRE

    Mahoney, Patrick

    2013-01-01

    The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel ...

  6. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    Science.gov (United States)

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Influence of fluoride varnish on shear bond strength of a universal adhesive on intact and demineralized enamel.

    Science.gov (United States)

    Ortiz-Ruiz, Antonio José; Muñoz-Gómez, Iban Jesús; Pérez-Pardo, Ana; Germán-Cecilia, Concepción; Martínez-Beneyto, Yolanda; Vicente, Ascensión

    2018-04-27

    The aim was to evaluate the effect of fluoride varnish on the shear bond strength (SBS) on polished and non-polished intact and demineralized enamel. Bovine incisors (half demineralized) were used. Bifluorid 12™ was applied. Bonding was made with Futurabond ® M + and GrandioSO, 24 h and 7 days after varnishing. In some groups, varnish was removed by polishing before bonding. SBS was measured. Fracture type was determined by stereomicroscopy and scanning electron microscope (SEM) observations of the enamel surface were made. Between-group differences were determined by one-way ANOVA and the Tukey test. Associations between study factors and fracture modes were analysed using contingency tables and Pearson's chi-squared test. For intact enamel, SBS on varnished enamel at 24 h was significantly less than in the other groups. SBS recovered 7 days after varnishing. Varnish elimination after 24 h significantly increased the SBS. However, removal at 7 days did not modify SBS. SBS on demineralized enamel groups was significantly less than in intact enamel, except for demineralized enamel varnished and removed at 7 days. Demineralized enamel was associated with cohesive enamel fractures and intact enamel with cohesive fractures of the composite and adhesive fractures. SEM of varnish surfaces showed a homogenous layer scattered with amorphous precipitate. In conclusion, on intact enamel fluoride varnish had a negative effect on SBS at 24 h, which disappeared after 7 days. On demineralized enamel, varnish did not reduce SBS at either time. Polishing the varnished enamel surface showed a similar SBS to intact enamel after 7 days.

  8. Effect of cow and soy milk on enamel hardness of immersed teeth

    Science.gov (United States)

    Widanti, H. A.; Herda, E.; Damiyanti, M.

    2017-08-01

    Cow milk and soy milk have different mineral contents and this can affect the tooth remineralization process. The aim of this study was to determine the effect of cow and soy milk on immersed teeth after demineralization. Twenty-one specimens, of human maxillary premolars, were measured for enamel hardness before immersion and demineralization in orange juice. The teeth were divided into three groups (n = 7) with each group immersed in either distilled water, cow milk, or soy milk. There was a significant increase in enamel hardness in all groups (p Cow milk provided the highest increase in enamel hardness, of all the three groups, but was not able to restore the initial enamel hardness.

  9. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro.

    Science.gov (United States)

    Imai, Kanako; Shimada, Yasushi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji

    2012-09-01

    Current methods for the detection of enamel cracks are not very sensitive. Optical coherence tomography (OCT) is a promising diagnostic method for creating cross-sectional imaging of internal biological structures by measuring echoes of backscattered light. In this study, swept-source OCT (SS-OCT), a variant of OCT that sweeps the near-infrared wavelength at a rate of 30 kHz over a span of 110 nm centered at 1,330 nm, was examined as a diagnostic tool for enamel cracks. Twenty extracted human teeth were visually evaluated without magnification. SS-OCT was conducted on locations in which the presence of an enamel crack was suspected under visual inspection using a photocuring unit as transillumination. The teeth were then sectioned with a diamond saw and directly viewed under a confocal laser scanning microscope (CLSM). Using SS-OCT, the presence and extent of enamel cracks were clearly visualized on images based on backscattering signals. The extension of enamel cracks beyond the dentinoenamel junction could also be confirmed. The diagnostic accuracy of SS-OCT was shown to be superior to that of conventional visual inspection--the area under the receiver operating characteristic curve--for the detection of enamel crack and whole-thickness enamel crack; visual inspection: 0.69 and 0.56, SS-OCT: 0.85 and 0.77, respectively). Enamel cracks can be clearly detected because of increased backscattering of light matching the location of the crack, and the results correlated well with those from the CLSM. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel

    Directory of Open Access Journals (Sweden)

    Shiva Alavi

    2014-01-01

    Full Text Available Background: The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. Materials and Methods: In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA. P < 0.05 was considered as significant. Results: The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. Conclusion: The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  12. Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate.

    Science.gov (United States)

    Brookes, Steven J; Barron, Martin J; Boot-Handford, Ray; Kirkham, Jennifer; Dixon, Michael J

    2014-05-01

    Inherited diseases caused by genetic mutations can arise due to loss of protein function. Alternatively, mutated proteins may mis-fold, impairing endoplasmic reticulum (ER) trafficking, causing ER stress and triggering the unfolded protein response (UPR). The UPR attempts to restore proteostasis but if unsuccessful drives affected cells towards apoptosis. Previously, we reported that in mice, the p.Tyr64His mutation in the enamel extracellular matrix (EEM) protein amelogenin disrupts the secretory pathway in the enamel-forming ameloblasts, resulting in eruption of malformed tooth enamel that phenocopies human amelogenesis imperfecta (AI). Defective amelogenin post-secretory self-assembly and processing within the developing EEM has been suggested to underlie the pathogenesis of X chromosome-linked AI. Here, we challenge this concept by showing that AI pathogenesis associated with the p.Tyr64His amelogenin mutation involves ameloblast apoptosis induced by ER stress. Furthermore, we show that 4-phenylbutyrate can rescue the enamel phenotype in affected female mice by promoting cell survival over apoptosis such that they are able to complete enamel formation despite the presence of the mutation, offering a potential therapeutic option for patients with this form of AI and emphasizing the importance of ER stress in the pathogenesis of this inherited conformational disease.

  13. Prevalence of enamel defects and association with dental caries in preschool children.

    Science.gov (United States)

    Massignan, C; Ximenes, M; da Silva Pereira, C; Dias, L; Bolan, M; Cardoso, M

    2016-12-01

    This was to evaluate the prevalence of the developmental defects of enamel (DDE) in primary teeth and its association with dental caries. A cross-sectional study with a randomised representative sample was carried out with 1101 children aged 2-5 years enrolled in public preschools (50% prevalence of DDE in primary teeth, a standard error of 3%, and a confidence level of 95%). Three calibrated dentists (K > 0.62) performed clinical examination. Data collected were: sex, age, DDE (Modified DDE Index) and dental caries (WHO). Descriptive analysis, Chi-square test and multinomial logistic regression were applied for data analysis. Among children, 565 (51.3%) were boys; mean age was 3.7 (±0.9 years). The prevalence of enamel defect was 39.1%; the prevalence of diffuse opacities, demarcated opacities and enamel hypoplasia was 25.3, 19.1 and 6.1%, respectively. The prevalence of dental caries was 31.0%, with mean def-t 1.14 (±2.44). Primary teeth with enamel hypoplasia had three times the odds of having dental caries than those with absence of enamel defects (OR = 3.10; 95% CI: 1.91, 5.01). The presence of enamel defects was moderate and associated with dental caries.

  14. Evaluation of human enamel surfaces treated with theobromine: a pilot study.

    Science.gov (United States)

    Kargul, Betul; Özcan, Mutlu; Peker, Sertac; Nakamoto, Tetsuo; Simmons, William B; Falster, Alexander U

    2012-01-01

    The objectives of this in-vitro study were to investigate the effect of theobromine, which is the principle xanthine species in Theobroma cacao, at two concentrations on the surface hardness and topography of human enamel. Twenty-four freshly extracted human third molars were collected and stored in distilled water with 0.1% thymol solution at room temperature prior to the experiments. The enamel specimens were treated with one coat of theobromine at two concentrations (100 mg/l or 200 mg/l in distilled water) for 5 min. Enamel surfaces in the control group received no theobromine. They were then kept in distilled water for 1 week and subjected to SEM analysis. The specimens were demineralised by storing them in acidic hydroxyethylcellulose for three days. After baseline microhardness measurements, they were incubated either in 100 or 200 mg/l theobromine for 5 min. The control group was kept in distilled water. After washing the specimens under distilled water, they were kept in a remineralising solution for 18 h. Microhardness of the enamel surface was initially determined for each specimen before artificial demineralisation. After demineralisation, the experimental groups were incubated in 100 mg or 200 mg theobromine and control-group specimens were placed in remineralising solution. Enamel surfaces of the untreated control group presented a generally smooth and slightly hummocky surface with small lines of pits. Specimens treated with theobromine showed differences between the two concentrations. The group treated with 200 mg/l solution for 5 min showed a greater quantity of globules on enamel than did specimens treated with 100 mg/l solution. As shown by the microhardness values, a consistent and remarkable protection of the enamel surface was found with the application of theobromine.

  15. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    Science.gov (United States)

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  16. Microstructure and hardness of bovine enamel in roselle extract solution

    Science.gov (United States)

    Dame, M. T.; Noerdin, A.; Indrani, D. J.

    2017-08-01

    The aim of this study was to analyze the effect of roselle extract solution on the microstructure and hardness of bovine enamel. Ten bovine teeth and a 5% concentration of roselle extract solution were prepared. Immersions of each bovine tooth in roselle extract solution were conducted up to 60 minutes. The bovine enamel surface was characterized in hardness and microscopy. It was apparent that the initial hardness was 328 KHN, and after immersion in 15 and 60 min, the values decrease to 57.4 KHN and 11 KHN, respectively. Scanning electron microscopy (SEM) revealed changes in enamel rods after immersion in the roselle extract solution.

  17. Microtensile bond strength of enamel after bleaching

    Directory of Open Access Journals (Sweden)

    Andréa Dias Neves Lago

    2013-01-01

    Full Text Available Objective: To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Materials and Methods: Twenty bovine teeth were randomly distributed into 4 groups (n = 5, 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control; G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM. Results: There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2. There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive failure in all groups. Conclusion: The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  18. The influence of γ-radiation on biosynthesis of nuclear matrix proteins of hepatic cells of pregnant rats

    International Nuclear Information System (INIS)

    Mirkhamidova, P.; Shamsutdinova, G.T.; Mirakhmedov, A.K.; Filatova, L.S.; Bul'dyaeva, T.V.; Zbarskij, I.B.

    1992-01-01

    A study was made of incorporation of 35 S-methionine into nuclear matrix proteins of hepatic cells of pregnant rats and their embryos subjected to single γ-irradiation ( 60 Co, 1 and 2 Gy, 0.0233 Gy/s) on days 3, 13 and 17 of pregrnancy and embryogenesis. On day 21 of pregnancy and embryogenesis a decrease in the rate of incorporation of 35 S-methionine into nuclear matrix proteins was shown to be a function of radiation dose and time of pregnancy and embryogenesis on the moment of exposure

  19. EcmPred: Prediction of extracellular matrix proteins based on random forest with maximum relevance minimum redundancy feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar Umar

    2013-01-01

    The extracellular matrix (ECM) is a major component of tissues of multicellular organisms. It consists of secreted macromolecules, mainly polysaccharides and glycoproteins. Malfunctions of ECM proteins lead to severe disorders such as marfan syndrome, osteogenesis imperfecta, numerous chondrodysplasias, and skin diseases. In this work, we report a random forest approach, EcmPred, for the prediction of ECM proteins from protein sequences. EcmPred was trained on a dataset containing 300 ECM and 300 non-ECM and tested on a dataset containing 145 ECM and 4187 non-ECM proteins. EcmPred achieved 83% accuracy on the training and 77% on the test dataset. EcmPred predicted 15 out of 20 experimentally verified ECM proteins. By scanning the entire human proteome, we predicted novel ECM proteins validated with gene ontology and InterPro. The dataset and standalone version of the EcmPred software is available at http://www.inb.uni-luebeck.de/tools-demos/Extracellular_matrix_proteins/EcmPred. © 2012 Elsevier Ltd.

  20. Effects of bleaching agents on human enamel light reflectance.

    Science.gov (United States)

    Markovic, Ljubisa; Fotouhi, Kasra; Lorenz, Heribert; Jordan, Rainer A; Gaengler, Peter; Zimmer, Stefan

    2010-01-01

    Tooth whitening has been associated with splitting-up chromogenic molecules by hydrogen peroxides. Though micromorphological alterations are well documented, little is known about optical changes as a function of shifting in wavelengths. Therefore, the aim of the current study was to measure reflectance changes after bleaching in vitro by using a spectrometer. Forty-eight enamel slabs (diameter = 5 mm) were prepared from the sound enamel of extracted human teeth that were: 1) fully impacted, 2) from juveniles ages 10 to 16 years, 3) from adults 35 to 45 years of age and 4) from seniors older than age 65. In all specimens, the baseline total reflectance measurement was performed with a computer-assisted spectrometer (Ocean Optics, Dunedin, FL, USA) within wavelengths (wl) from 430 nm to 800 nm. Four enamel samples of each age group were exposed to either 10% or 15% carbamide peroxide (Illuminé Home, Dentsply, Konstanz, Germany) or 35% hydrogen peroxide (Pola Office, SDI Limited, Victoria, Australia). After surface treatment, all slabs underwent total reflectance measurement again. Statistical analysis was calculated at wl 450, 500 and 750 nm using the Student's paired t-test and one-way variance analysis. Total reflectance significantly increased after bleaching at all enamel maturation stages, irrespective of the bleaching agent concentration, for wl 450 nm (blue) and 500 nm (green) with penamel from adults and seniors (pwhitening of the dental enamel works at different maturation stages, even in impacted teeth. This effect is irrespective of the bleaching protocol used and the bleaching agent concentration.

  1. Relationship between microhardness and fluorine contents on tooth enamel determined by PIGE analysis

    International Nuclear Information System (INIS)

    Ma, D.S.; Paik, D.I.; Park, D.Y.; Moon, H.S.; Chang, Y.I.; Kim, J.B.

    1997-01-01

    The remineralization effect of fluoride has been measured by surface microhardness on tooth enamel. The purpose of this study was to investigate the relationship between microhardness and fluorine concentration on tooth enamel. Twelve sound bovine enamel specimens were prepared and immersed in 0.05% NaF solution for 1, 3, 6, 24 and 36 hours, respectively. The concentration of fluorine in specimens were measured by PIGE analysis and surface microhardness of each specimen was measured by surface microhardness tester. Fluorine concentration was increased by immersing time. There was no change in microhardness of each specimen by fluorine content. The results of this study suggest that there was no relationship between the fluorine concentration and surface microhardness in sound tooth enamel. PIGE analysis can be used effectively to assess the remineralization effect of fluorine content in tooth enamel. (author)

  2. The Role of Structural Extracellular Matrix Proteins in Urothelial Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Andrea Brunner

    2007-01-01

    Full Text Available The extracellular matrix (ECM plays a key role in the modulation of cancer cell invasion. In urothelial carcinoma of the bladder (UC the role of ECM proteins has been widely studied. The mechanisms, which are involved in the development of invasion, progression and generalization, are complex, depending on the interaction of ECM proteins with each other as well as with cancer cells. The following review will focus on the pathogenetic role and prognostic value of structural proteins, such as laminins, collagens, fi bronectin (FN, tenascin (Tn-C and thrombospondin 1 (TSP1 in UC. In addition, the role of integrins mediating the interaction of ECM molecules and cancer cells will be addressed, since integrin-mediated FN, Tn-C and TSP1 interactions seem to play an important role during tumor cell invasion and angiogenesis.

  3. Characterization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that interacts with nuclear spectrin-like proteins.

    Science.gov (United States)

    Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz

    2012-01-01

    Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.

  4. Role of prism decussation on fatigue crack growth and fracture of human enamel.

    Science.gov (United States)

    Bajaj, Devendra; Arola, Dwayne

    2009-10-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset compact tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near-threshold region of cyclic extension was typical of "short crack" behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth's surface.

  5. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2015-10-01

    Full Text Available Objectives: The objective of this study was to assess the effect of new bonding techniques on enamel surface.Materials and Methods: Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using Trans- bondXT and, in the second group, the same brackets were bonded with MaxcemElite. The shear bond strength (SBS of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI scores in each group were also measured.Results: There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval.Conclusion: Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely todamage the enamel.

  7. Electron paramagnetic resonance biophysical radiation dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.

    2003-01-01

    This thesis deals with the advancements made in the field of Electron Paramagnetic Resonance (EPR) for biophysical dosimetry with tooth enamel for accident, emergency, and retrospective radiation dose reconstruction. A methodology has been developed to measure retrospective radiation exposures in human tooth enamel. This entails novel sample preparation procedures with minimum mechanical treatment to reduce the preparation induced uncertainties, establish optimum measurement conditions inside the EPR cavity, post-process the measured spectrum with functional simulation of dosimetric and other interfering signals, and reconstruct dose. By using this technique, retrospective gamma exposures as low as 80±30 mGy have been successfully deciphered. The notion of dose modifier was introduced in EPR biodosimetry for low dose measurements. It has been demonstrated that by using the modified zero added dose (MZAD) technique for low radiation exposures, doses in 100 mGy ranges can be easily reconstructed in teeth that were previously thought useless for EPR dosimetry. Also, the use of a dose modifier makes robust dose reconstruction possible for higher radiation exposures. The EPR dosimetry technique was also developed for tooth samples extracted from rodents, which represent small tooth sizing. EPR doses in the molars, extracted from the mice irradiated with whole body exposures, were reassessed and shown to be correct within the experimental uncertainty. The sensitivity of human tooth enamel for neutron irradiation, obtained from the 3 MV McMaster K.N. Van de Graaff accelerator, was also studied. For the first time this work has shown that the neutron sensitivity of the tooth enamel is approximately 1/10th of the equivalent gamma sensitivity. Parametric studies for neutron dose rate and neutron energy within the available range of the accelerator, showed no impact on the sensitivity of the tooth enamel. Therefore, tooth enamel can be used as a dosimeter for both neutrons

  8. Primate enamel evinces long period biological timing and regulation of life history.

    Science.gov (United States)

    Bromage, Timothy G; Hogg, Russell T; Lacruz, Rodrigo S; Hou, Chen

    2012-07-21

    The factor(s) regulating the combination of traits that define the overall life history matrix of mammalian species, comprising attributes such as brain and body weight, age at sexual maturity, lifespan and others, remains a complete mystery. The principal objectives of the present research are (1) to provide evidence for a key variable effecting life history integration and (2) to provide a model for how one would go about investigating the metabolic mechanisms responsible for this rhythm. We suggest here that a biological rhythm with a period greater than the circadian rhythm is responsible for observed variation in primate life history. Evidence for this rhythm derives from studies of tooth enamel formation. Enamel contains an enigmatic periodicity in its microstructure called the striae of Retzius, which develops at species specific intervals in units of whole days. We refer to this enamel rhythm as the repeat interval (RI). For primates, we identify statistically significant relationships between RI and all common life history traits. Importantly, RI also correlates with basal and specific metabolic rates. With the exception of estrous cyclicity, all relationships share a dependence upon body mass. This dependence on body mass informs us that some aspect of metabolism is responsible for periodic energy allocations at RI timescales, regulating cell proliferation rates and growth, thus controlling the pace, patterning, and co-variation of life history traits. Estrous cyclicity relates to the long period rhythm in a body mass-independent manner. The mass-dependency and -independency of life history relationships with RI periodicity align with hypothalamic-mediated neurosecretory anterior and posterior pituitary outputs. We term this period the Havers-Halberg Oscillation (HHO), in reference to Clopton Havers, a 17th Century hard tissue anatomist, and Franz Halberg, a long-time explorer of long-period rhythms. We propose a mathematical model that may help elucidate

  9. Expression of extracellular matrix proteins: tenascin-C, fibronectin and galectin-3 in prostatic adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Monika Ulamec

    2015-12-01

    Full Text Available Introduction: The interchanged stromal-epithelial relations and altered expression profiles of various extracellular matrix (ECM proteins creates a suitable microenvironment for cancer development and growth. We support the opinion that remodeling of the extracellular matrix (ECM plays an important role in the cancer progression. The aim of this study was to examine the expression of ECM proteins tenascin-C, fibronectin and galectin-3 in prostatic adenocarcinoma. Methods: Glands and surrounding stroma were analyzed in randomly selected specimens from 52 patients with prostate cancer and 28 patients with benign prostatic hyperplasia (BHP. To evaluate the intensity of tenascin-C, fibronectin and galectin-3 expression the percentage of positively immunostained stromal cells was examined.Results: Compared to BPH, stroma of prostatic adenocarcinoma showed statistically significant increase in tenascin-C expression (p<0.001, predominantly around neoplastic glands, while fibronectin (p=0.001 and galectin-3 (p<0.001 expression in the same area was decreased.Conclusions: Our study confirms changes in the expression of ECM proteins of prostate cancer which may have important role in the cancer development.

  10. The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins)

    NARCIS (Netherlands)

    Faber, Klaas Nico; Haima, Pieter; Gietl, Christine; Harder, Willem; Ab, Geert; Veenhuis, Marten

    1994-01-01

    Two main types of peroxisomal targeting signals have been identified that reside either at the extreme C terminus (PTS1) or the N terminus (PTS2) of the protein. In the methylotrophic yeast Hansenula polymorpha the majority of peroxisomal matrix proteins are of the PTS1 type. Thus far, for H.

  11. Dentist and practice characteristics associated with restorative treatment of enamel caries in permanent teeth

    DEFF Research Database (Denmark)

    Fellows, Jeffrey L; Gordan, Valeria V; Gilbert, Gregg H

    2014-01-01

    PURPOSE: Current evidence in dentistry recommends non-surgical treatment to manage enamel caries lesions. However, surveyed practitioners report they would restore enamel lesions that are confined to the enamel. Actual clinical data were used to evaluate patient, dentist, and practice...... characteristics associated with restoration of enamel caries, while accounting for other factors. METHODS: Data from a National Dental Practice-Based Research Network observational study of consecutive restorations placed in previously unrestored permanent tooth surfaces and practice/demographic data from 229...... participating network dentists were combined. ANOVA and logistic regression, using generalized estimating equations (GEE) and variable selection within blocks, were used to test the hypothesis that patient, dentist, and practice characteristics were associated with variations in enamel restorations of occlusal...

  12. Effect of antioxidant agents on bond strength of composite to bleached enamel with 38% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Juliane Marcela Guimaraes da Silva

    2011-01-01

    Full Text Available This study evaluated the effect of antioxidant agents on microtensile bond strengths (mTBS of composite to bleached enamel. Fifteen freshly extracted human third molars were selected and randomly assigned to 6 groups (n = 5: (NB enamel not bleached, (B bleached enamel, (BR7 bleached enamel and restored 7 days later, (BSA bleached enamel+sodium ascorbate, (BMC bleached enamel+malvidin chloride, (BPC bleached enamel+pelargonidin chloride. The groups were bleached with 38% hydrogen peroxide (HP - Opalescence Xtra Boost and restored with Single Bond+Filtek Z350. The specimens were thermocycled and submitted to a microtensile load at 1 mm/min crosshead speed. The data were evaluated by ANOVA and Tukey test at 5% of significance. The mean and standard-deviation for all groups were: NB: 30.95(±11.97a; BSA: 30.34(±8.73a, BPC: 22.81(6.00b, BR7: 21.41(±6.12b, B: 14.10(±4.45c, BMC: 13.25(±6.02c. Sodium ascorbate reversed the bond strengths to enamel immediately after bleaching.

  13. Effect of acidity upon attrition-corrosion of human dental enamel.

    Science.gov (United States)

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    International Nuclear Information System (INIS)

    Lei Caixia; Liao Yingmin; Feng Zude

    2009-01-01

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm -2 to 10 mA cm -2 ) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  15. Retrospective dosimetry assessment using the 380 deg. C thermoluminescence peak of tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Secu, C.E. [National Institute for Materials Physics, PO Box MG-7, 77125 Bucharest-Magurele (Romania); Cherestes, M. [Dozimed Ltd., Dosimetry Laboratory, 77125 Bucharest-Magurele (Romania); Secu, M., E-mail: msecu@infim.ro [National Institute for Materials Physics, PO Box MG-7, 77125 Bucharest-Magurele (Romania); Cherestes, C.; Paraschiva, V. [Dozimed Ltd., Dosimetry Laboratory, 77125 Bucharest-Magurele (Romania); Barca, C. [Faculty of Physics, University of Bucharest, 77125 Bucharest-Magurele (Romania)

    2011-10-15

    The thermoluminescence (TL) response to gamma-ray irradiation of tooth enamel is reported. The tooth enamel was separated from dentine by using mechanical and physico-chemical procedures followed by grinding (grain size {approx}100 {mu}m) and etching. The TL was attributed to the recombination of CO{sub 2}{sup -} radicals incorporated into or attached to the surface of hydroxyapatite crystals. The growth of the {approx}380 deg. C TL peak with absorbed dose was examined with irradiated tooth enamel samples and reconstructed doses evaluated for tooth enamel samples from four human subjects. - Highlights: > Thermoluminescence response after gamma-ray irradiation of tooth enamel was investigated. > Thermoluminescence was attributed to the recombination of CO{sub 2}{sup -} radicals. > CO{sub 2}{sup -} radicals are produced inside or at the surface of hydroxyapatite crystals. > From the growth of the 380C peak reconstructed doses have been evaluated.

  16. Change of color in resins by adding layers of color 'enamel'

    International Nuclear Information System (INIS)

    Lafuente Marin, David; Arce Navarro, Hilda

    2007-01-01

    The quantification of the color change is proposed at the time of employing enamel resin over dentine resin. Six resins color dentin and two color enamel were used. Five discs of resin were built of each resin, with a deameter of 10 mm and a thicjness of 2 mm. The reflectance spectrophotometer Color-Eye ® 7000-A were used, to obtain the values L*, a*, b* of the dentin resin disks and transposition of these with enamel. The conclusion has been that in the color have produced changes clinically detectable when put layers of enamel. The Resin Helio Fill Transparent has been which has produced major changes. Given the two enamel resins, dentin resin Helio Molar 310/B3 has been which has suffered major changes and Helio Fill A2 which has introduced fewer changes. Most resins have decreased the chroma, less the value. (author) [es

  17. SEM Evaluation of Enamel Surface Changes and Enamel Microhardness around Orthodontic Brackets after Application of CO2 Laser, Er,Cr:YSGG Laser and Fluoride Varnish: An In vivo Study.

    Science.gov (United States)

    Kaur, Tarundeep; Tripathi, Tulika; Rai, Priyank; Kanase, Anup

    2017-09-01

    One of the most undesirable consequences of orthodontic treatment is occurrence of enamel demineralization around orthodontic brackets. Numerous in vitro studies have reported the prevention of enamel demineralization by surface treatment with lasers and fluoride varnish. To evaluate the changes on the enamel surface and microhardness around orthodontic brackets after surface treatment by CO 2 laser, Er, Cr:YSGG laser and fluoride varnish in vivo. A double blind interventional study was carried out on 100 premolars which were equally divided into five groups, out of which one was the control group (Group 0). The intervention groups (Group I to IV) comprised of patients requiring fixed orthodontic treatment with all 4 first premolars extraction. Brackets were bonded on all 80 premolars which were to be extracted. Enamel surface treatment of Groups I, II and III was done by CO 2 laser, Er, Cr:YSGG laser and 5% sodium fluoride varnish respectively and Group IV did not receive any surface treatment. A modified T-loop was ligated to the bracket and after two months, the premolars were extracted. Surface changes were evaluated by Scanning Electron Microscopic (SEM) and microhardness testing. Comparison of mean microhardness between all the groups was assessed using post-hoc test with Bonferroni correction. Group I showed a melted enamel appearance with fine cracks and fissures while Group II showed a glossy, homogenous enamel surface with well coalesced enamel rods. Group III showed slight areas of erosions and Group IV presented areas of stripped enamel. Significant difference was observed between the mean microhardness (VHN) of Group I, Group II, Group III, Group IV and Group 0 with p<0.001. A significant difference of p<0.001 was observed while comparing Group I vs II,III,IV,0 and Group II vs III,IV,0. However, difference while comparing Group III vs IV was p=0.005 and difference between the mean microhardness of Group 0 vs Group III was non significant. Surface

  18. Development Enamel Defects in Children Prenatally Exposed to Anti-Epileptic Drugs

    DEFF Research Database (Denmark)

    Jacobsen, Pernille Endrup; Henriksen, Tine Brink; Haubek, Dorte

    2013-01-01

    Objective Some anti-epileptic drugs (AED) have well-known teratogenic effects. The aim of the present study was to elucidate the effect of prenatal exposure to AED and the risk of enamel defects in the primary and permanent dentition. Methods A total of 38 exposed and 129 non-exposed children, 6......–10 years of age, were recruited from the Aarhus Birth Cohort and the Department of Neurology, Viborg Regional Hospital, Denmark. Medication during pregnancy was confirmed by the Danish Prescription Database. All children had their teeth examined and outcomes in terms of enamel opacities and enamel...... hypoplasia were recorded. Results Children prenatally exposed to AED have an increased prevalence of enamel hypoplasia (11% vs. 4%, odds ratio (OR) = 3.6 [95% confidence interval (CI): 0.9 to 15.4]), diffuse opacities (18% vs. 7%, OR = 3.0; [95% CI: 1.0 to 8.7, p3) white opacities (18...

  19. Effect of Galla chinensis on enhancing remineralization of enamel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lei; Huang Shengbin [State Key Laboratory of Oral Disease, Sichuan University, Chengdu (China); Li Jiyao; Zhou Xuedong, E-mail: stonedentist@yahoo.c [West China College of Stomatology, Sichuan University, Chengdu (China)

    2009-06-15

    The aim of this scanning electron microscopy (SEM) study was to investigate the effect of chemical compounds of Galla chinensis (GCE, gallic acid) on the remineralization of enamel crystals in vitro. Bovine enamel blocks with an in vitro produced initial lesion were used. The lesions were subjected to a pH-cycling regime for 12 days. Each daily cycle included 4 x 1 min applications with one of six treatments: group A: 1000 ppm F aq. (as NaF, positive control); group B: deionized water (DDW, negative control); group C: 4000 ppm crude aqueous extract of GCE; group D: 4000 ppm gallic acid; group E: 4000 ppm GCE with 1000 ppm F; group F: 4000 ppm gallic acid with 1000 ppm F. The surface and vertical section of the enamel lesions were analyzed by SEM. The results indicated that the chemical compounds of G. chinensis could regulate the de-/remineralization balance through influencing the morphology and structure of enamel crystals, and the mechanisms seem to be different for GCE and gallic acid.

  20. Effect of Galla chinensis on enhancing remineralization of enamel crystals

    International Nuclear Information System (INIS)

    Cheng Lei; Huang Shengbin; Li Jiyao; Zhou Xuedong

    2009-01-01

    The aim of this scanning electron microscopy (SEM) study was to investigate the effect of chemical compounds of Galla chinensis (GCE, gallic acid) on the remineralization of enamel crystals in vitro. Bovine enamel blocks with an in vitro produced initial lesion were used. The lesions were subjected to a pH-cycling regime for 12 days. Each daily cycle included 4 x 1 min applications with one of six treatments: group A: 1000 ppm F aq. (as NaF, positive control); group B: deionized water (DDW, negative control); group C: 4000 ppm crude aqueous extract of GCE; group D: 4000 ppm gallic acid; group E: 4000 ppm GCE with 1000 ppm F; group F: 4000 ppm gallic acid with 1000 ppm F. The surface and vertical section of the enamel lesions were analyzed by SEM. The results indicated that the chemical compounds of G. chinensis could regulate the de-/remineralization balance through influencing the morphology and structure of enamel crystals, and the mechanisms seem to be different for GCE and gallic acid.