WorldWideScience

Sample records for enamel dental restoration

  1. Evaluation of radiation effects on dental enamel hardness and dental restorative materials

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa; Saiki, Mitiko; Campos, Tomie Nakakuki

    2000-01-01

    This research presents the results of the microhardness of human dental enamel and of the following dental restorative materials: three dental porcelains - Ceramco II, Finesse and Noritake, and two resin restorative materials - Artglass and Targis, for materials submitted to different times of irradiation at the IEA-R1m nuclear reactor under a thermal neutron flux of 10 12 n cm -2 .s -1 . The results obtained indicated that there is a decrease of the surface microhardness when the enamel is irradiated for 1 h and when dental materials are irradiated for 3 h. However, enamels irradiated for 30 min. did not show significant change of their surface hardness. Therefore, the selection of irradiation time is an important factor to be considered when irradiated teeth or dental materials are used in the investigations of their properties. (author)

  2. An in vitro study of dental enamel wear by restorative materials using radiometric method

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa

    2000-01-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  3. An in vitro investigation of human enamel wear by restorative dental materials

    International Nuclear Information System (INIS)

    Adachi, L.K.; Saiki, M.; De Campos, T.N.

    2001-01-01

    A radiometric method was applied to asses enamel wear by another enamel and by restorative materials. The radioactive enamel was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with the radioactive enamel. The enamel wear was evaluated by measuring the beta-activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another natural enamel or by resin materials. Resin materials caused less enamel wear than another natural enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. (author)

  4. Matching the optical properties of direct esthetic dental restorative materials to those of human enamel and dentin

    Science.gov (United States)

    Ragain, James Carlton, Jr.

    One of the goals of the restorative dentist is to restore the appearance of the natural dentition. Clinical matching of teeth and restorative materials are seldom accurate and shade selection techniques are subjective. The first specific aim of this research was to characterize the optical absorption and scattering that occurs within enamel, dentin, and composite resin and compomer restorative materials and to relate those phenomena to translucency and color. The second aim was to evaluate small color differences among composite restorative materials which would be detectable by humans. The last aim was to lay the foundation for developing an improved model of specifying layers of dental restorative materials in order to match the translucency and color to those of human enamel. The Kubelka-Munk theory was validated for enamel, dentin, and the restorative materials. These tissues and materials were then characterized in terms of their color parameters. Tooth cores were also characterized in terms of color space parameters. Human subjects were evaluated for their abilities to discriminate small color differences in the dental composite resin materials. The following conclusions were derived from this study: (1) Kubelka-Munk theory accurately predicts the diffuse reflectance spectra of enamel, dentin, and the direct esthetic dental restorative materials studied. (2) Scattering and absorption coefficients of the dental tissues and esthetic restorative materials can be directly calculated from diffuse reflectance measurements of a uniformly thick slab of tissue/material using black and white backings and the appropriate refractive index. (3) For tooth cores, there is a positive correlation between L* and b* and a negative correlation between L* and a*. (4) The range of translucency parameters for the restorative materials studied does not match those of enamel and dentin. (5) None of the shades of the dental composite resin restorative materials studied fit into the

  5. Evaluation of radiation effects on dental enamel hardness and dental restorative materials; Avaliacao do efeito da irradiacao na dureza do esmalte dental e de materiais odontologicos

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Supervisao de Radioquimica; Campos, Tomie Nakakuki [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Protese

    2000-07-01

    This research presents the results of the microhardness of human dental enamel and of the following dental restorative materials: three dental porcelains - Ceramco II, Finesse and Noritake, and two resin restorative materials - Artglass and Targis, for materials submitted to different times of irradiation at the IEA-R1m nuclear reactor under a thermal neutron flux of 10{sup 12}n cm{sup -2}.s{sup -1} . The results obtained indicated that there is a decrease of the surface microhardness when the enamel is irradiated for 1 h and when dental materials are irradiated for 3 h. However, enamels irradiated for 30 min. did not show significant change of their surface hardness. Therefore, the selection of irradiation time is an important factor to be considered when irradiated teeth or dental materials are used in the investigations of their properties. (author)

  6. An in vitro study of dental enamel wear by restorative materials using radiometric method; Estudo in vitro do desgaste do esmalte dental pelos materiais restauradores utilizando metodo radiometrico

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa

    2000-07-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of {sup 32}P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  7. Development of fluorapatite cement for dental enamel defects repair.

    Science.gov (United States)

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  8. Weaker dental enamel explains dental decay.

    Science.gov (United States)

    Vieira, Alexandre R; Gibson, Carolyn W; Deeley, Kathleen; Xue, Hui; Li, Yong

    2015-01-01

    Dental caries continues to be the most prevalent bacteria-mediated non-contagious disease of humankind. Dental professionals assert the disease can be explained by poor oral hygiene and a diet rich in sugars but this does not account for caries free individuals exposed to the same risk factors. In order to test the hypothesis that amount of amelogenin during enamel development can influence caries susceptibility, we generated multiple strains of mice with varying levels of available amelogenin during dental development. Mechanical tests showed that dental enamel developed with less amelogenin is "weaker" while the dental enamel of animals over-expressing amelogenin appears to be more resistant to acid dissolution.

  9. Fluoride uptake from restorative dental materials by human enamel

    International Nuclear Information System (INIS)

    Forsten, L.; Rytoemaa, I.; Anttila, A.; Keinonen, J.

    1976-01-01

    The purpose of the study was to determine the uptake in vitro of fluoride from restorative materials by tooth enamel and whether prior etching of the enamel causes a change of uptake. The outermost layer of the labial surface of extracted canines was removed by grinding and the enamel was covered with five different fluoride-containing materials ; a silicate, a composite resin, an amalgam, a silicophosphate, and a polycarboxylate luting cement. The material was either removed immediately or after storing the tooth in distilled water. The fluoride content was determined using a sensitive physical method based on the 19 F (p, αγ) 16 O reaction. In addition, the fluoride content of enamel after etching for different periods of time and of etched enamel which had been in contact with silicate cement was determined. The mean fluoride content of uncovered interior enamel was 226 parts 10 6 . All materials, except the composite, increased clearly the fluoride content of the underlying enamel. Etching of interior enamel also increased the fluoride values. No difference could be shown in fluoride uptake from silicate and composite resin between etched and unetched enamel. (author)

  10. In Vitro Inhibition of Enamel Demineralisation by Fluoride-releasing Restorative Materials and Dental Adhesives.

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Koliniotou-Koumpia, Eugenia; Helvatzoglou-Antoniades, Maria; Kotsanos, Nikolaos

    2016-01-01

    To determine the ability of 5 contemporary fluoride-releasing restoratives and 3 fluoride-releasing adhesives to inhibit enamel demineralisation surrounding restorations, and the associations between inhibition and the levels of fluoride released from these materials. Five fluoride-releasing restoratives (Fuji IX GP, Ketac N100, Dyract Extra, Beautifil II and Wave) and 3 fluoride-releasing adhesives (Stae, Prime & Bond NT and Fluoro Bond II) were investigated. Eight disks of each material were prepared. Fluoride release was measured daily using a fluoride-ion-selective electrode for 15 days. Twenty-four cavities for each group were restored with a restorative and an adhesive. Specimens were subjected to thermal stress and stored for 30 days in saline solution. After a 15-day pH-cycling regimen, two 150-μm-thick sections were derived from each specimen. Enamel lesion depth was measured at 0, 100, and 200 μm from each restoration's margin via polarised light microscopy. Of the restoratives investigated, Fuji IX GP released the most fluoride. The fluoride-releasing restoratives tested exhibited shallower enamel lesions than did the control group at all distances tested (p < 0.05). Fuji IX GP yielded significantly lower enamel lesion depth than did the other experimental materials. The depths of enamel lesions did not differ significantly when comparing restoratives applied with a fluoride-releasing adhesive with those applied with a non-fluoride-releasing adhesive. The fluoride-releasing materials tested reduced enamel demineralisation but to different extents, depending on their levels of fluoride release. Fluoride-releasing adhesives did not influence enamel lesion formation.

  11. Dentist and practice characteristics associated with restorative treatment of enamel caries in permanent teeth

    DEFF Research Database (Denmark)

    Fellows, Jeffrey L; Gordan, Valeria V; Gilbert, Gregg H

    2014-01-01

    PURPOSE: Current evidence in dentistry recommends non-surgical treatment to manage enamel caries lesions. However, surveyed practitioners report they would restore enamel lesions that are confined to the enamel. Actual clinical data were used to evaluate patient, dentist, and practice...... characteristics associated with restoration of enamel caries, while accounting for other factors. METHODS: Data from a National Dental Practice-Based Research Network observational study of consecutive restorations placed in previously unrestored permanent tooth surfaces and practice/demographic data from 229...... participating network dentists were combined. ANOVA and logistic regression, using generalized estimating equations (GEE) and variable selection within blocks, were used to test the hypothesis that patient, dentist, and practice characteristics were associated with variations in enamel restorations of occlusal...

  12. Quantitative assessment of the enamel machinability in tooth preparation with dental diamond burs.

    Science.gov (United States)

    Song, Xiao-Fei; Jin, Chen-Xin; Yin, Ling

    2015-01-01

    Enamel cutting using dental handpieces is a critical process in tooth preparation for dental restorations and treatment but the machinability of enamel is poorly understood. This paper reports on the first quantitative assessment of the enamel machinability using computer-assisted numerical control, high-speed data acquisition, and force sensing systems. The enamel machinability in terms of cutting forces, force ratio, cutting torque, cutting speed and specific cutting energy were characterized in relation to enamel surface orientation, specific material removal rate and diamond bur grit size. The results show that enamel surface orientation, specific material removal rate and diamond bur grit size critically affected the enamel cutting capability. Cutting buccal/lingual surfaces resulted in significantly higher tangential and normal forces, torques and specific energy (pmachinability for clinical dental practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Recovery of crystallographic texture in remineralized dental enamel.

    Science.gov (United States)

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  14. Recovery of crystallographic texture in remineralized dental enamel.

    Directory of Open Access Journals (Sweden)

    Samera Siddiqui

    Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected

  15. Dental Enamel Defects and Celiac Disease

    Science.gov (United States)

    ... Digestive System & How it Works Zollinger-Ellison Syndrome Dental Enamel Defects and Celiac Disease Celiac disease manifestations ... affecting any organ or body system. One manifestation—dental enamel defects—can help dentists and other health ...

  16. A comparative evaluation of four restorative materials to support undermined occlusal enamel of permanent teeth

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2006-09-01

    Full Text Available The purpose of this study was to test the support to undermined occlusal enamel provided by posterior restorative composite (FiltekTM P60, 3M Dental products USA, polyacid modified resin composite (F2000 compomer, 3M Dental products, USA., radiopaque silver alloy-glass ionomer cement (Miracle Mix. GC Corp, Tokyo, Japan and Glass Ionomer cement (Fuji IX GP. To test each material, 20 human permanent mandibular third molars were selected. The lingual cusps were removed and the dentin supporting the facial cusps was cut away, leaving a shell of enamel. Each group of prepared teeth was restored using the materials according to the manufacturer′s instructions. All the specimens were thermocycled (250 cycles, 6°C- 60°C, dwell time 30 seconds and then mounted on an acrylic base. Specimens were loaded evenly across the cusp tips at a crosshead speed of 5 mm /minute in Hounsfield universal testing machine until fracture occurred. Data obtained was analyzed using analysis of variance and Studentized- Newman- Keul′s range test. No significant differences were detected in the support provided by P-60, F 2000, Miracle Mix or Fuji IX GP groups. The support provided to undermined occlusal enamel by these materials was intermediate between no support and that provided by sound dentin. Without further development in dental material technology and evidence of its efficacy, restorative materials should not be relied upon to support undermined occlusal enamel to a level comparable to that provided by sound dentin.

  17. Application of quantitative light-induced fluorescence to determine the depth of demineralization of dental fluorosis in enamel microabrasion: a case report

    Directory of Open Access Journals (Sweden)

    Tae-Young Park

    2016-08-01

    Full Text Available Enamel microabrasion has become accepted as a conservative, nonrestorative method of removing intrinsic and superficial dysmineralization defects from dental fluorosis, restoring esthetics with minimal loss of enamel. However, it can be difficult to determine if restoration is necessary in dental fluorosis, because the lesion depth is often not easily recognized. This case report presents a method for analysis of enamel hypoplasia that uses quantitative light-induced fluorescence (QLF followed by a combination of enamel microabrasion with carbamide peroxide home bleaching. We describe the utility of QLF when selecting a conservative treatment plan and confirming treatment efficacy. In this case, the treatment plan was based on QLF analysis, and the selected combination treatment of microabrasion and bleaching had good results.

  18. Effect of Enamel and Dentin Irradiation by Gamma Rays on the Bond Strength of Two Adhesive Restorations

    International Nuclear Information System (INIS)

    Zein, N.S.A.

    2014-01-01

    There have been many reports related to the high incidence of the head and neck cancers including those of the oral cavity. Ablative surgery, radiotherapy, chemotherapy and reconstructive surgery are components of the curative or palliative treatment of head and neck cancers which are intended to improve survival time and quality of life. In addition to the desirable anticancer effects, ionizing radiation causes damage to normal tissues located within the irradiation fields (1). The early responses of teeth to irradiation include dental hypersensitivity and spontaneous pain (2). Several types of desensitizers may be applied to the tooth after cavity preparation in an attempt to manage dental hypersensitivity. The most common form of management is the placement of a topically applied agent either by a dental professional or by the patient at home. These agents stimulate mineral deposition or occlude dental tubules to reduce hypersensitivity (3,4). Radiation caries is another irradiation-related damage to dental structures. It remains the most threatening complication of radiotherapy for the dentition. It is a highly destructive form of dental caries with a rapid onset and progression. Radiation caries may become evident as early as three months following the initiation of head and neck radiotherapy. In severe cases, a previously healthy dentition can be completely lost within a year (5). Radiation caries involves both enamel and dentin; it tends to first affect the cervical and incisal edges of the teeth. Beside the irradiation-induced xerostomia, the effect of irradiation on dental hard tissues may be an important factor in radiation caries. Studies have reported the physical and chemical changes in enamel after radiotherapy, which are a direct consequence of the irradiation treatment. For dentin, a significant reduction in microhardness is observed after irradiation accompanied by reduced stability of the dentino-enamel junction (DEJ) The oral environment of head

  19. Enamel microabrasion for aesthetic management of dental fluorosis.

    Science.gov (United States)

    Pandey, Pallavi; Ansari, Afroz Alam; Moda, Preeti; Yadav, Madhulika

    2013-10-11

    Fluorosis has increased in recent times due to fluoridation of drinking water and addition of fluoride to various edible items, which leads to unaesthetic appearance of teeth visible at close quarters. The enamel microabrasion technique is a conservative method that improves the appearance of the teeth by restoring bright and superficial smoothness, without causing significant structural loss. The aim of this article is to describe an easy technique for managing mild to moderate dental fluorosis using Opalustre (Ultradent Products) microabrasion slurry. This conservative approach may be considered an interesting alternative to more invasive prosthetic techniques like composite resin restorations, ceramic veneers or crown fabrications.

  20. Dental prostheses mimic the natural enamel behavior under functional loading: A review article

    Directory of Open Access Journals (Sweden)

    Ahmed A. Madfa

    2016-02-01

    Full Text Available Alumina- and zirconia-based ceramic dental restorations are designed to repair functionality as well as esthetics of the failed teeth. However, these materials exhibited several performance deficiencies such as fracture, poor esthetic properties of ceramic cores (particularly zirconia cores, and difficulty in accomplishing a strong ceramic–resin-based cement bond. Therefore, improving the mechanical properties of these ceramic materials is of great interest in a wide range of disciplines. Consequently, spatial gradients in surface composition and structure can improve the mechanical integrity of ceramic dental restorations. Thus, this article reviews the current status of the functionally graded dental prostheses inspired by the dentino-enamel junction (DEJ structures and the linear gradation in Young's modulus of the DEJ, as a new material design approach, to improve the performance compared to traditional dental prostheses. This is a remarkable example of nature's ability to engineer functionally graded dental prostheses. The current article opens a new avenue for recent researches aimed at the further development of new ceramic dental restorations for improving their clinical durability.

  1. [The effects of topical fluoridation of enamel on the growth of cariogenic bacteria contained in the dental plaque].

    Science.gov (United States)

    Płuciennik-Stronias, Małgorzata; Zarzycka, Beata; Bołtacz-Rzepkowska, Elzbieta

    2013-01-01

    Dental caries is a bacterial disease. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. Fluoride can inhibit metabolism and bacterial growth in the dental plaque. The aim of the study was to evaluate the effect of topical fluoridation of the enamel on the growth of Lactobacillus spp. in the dental plaque. The study was carried out in 15 patients with good oral hygiene, in whom three-day dental plaque from the enamel was examined. Next, fluoride was rubbed on the same surface and the examination of three-day dental plaque was repeated. No statistically significant differences (p = 0.475) in the amounts of Lactobacillus spp. in the plaque collected prior to and after the topical fluoridation were revealed. Fluoride rubbed in the enamel, did not affect the amount of Lactobacillus spp. in the dental plaque growing on this material.

  2. The fracture behaviour of dental enamel

    OpenAIRE

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A.

    2009-01-01

    Abstract Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterised in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge...

  3. Dental enamel defects in children with coeliac disease

    NARCIS (Netherlands)

    Werink, Claar D.; van Diermen, Denise E.; Aartman, Irene H. A.; Heymans, Hugo S. A.

    2007-01-01

    OBJECTIVE: The aim of this study was to investigate whether Dutch children with proven coeliac disease show specific dental enamel defects, and to asses whether children with the same gastrointestinal complaints, but proved no-coeliac disease, lack these specific dental enamel defects. MATERIALS AND

  4. Polymer coated liposomes for dental drug delivery--interactions with parotid saliva and dental enamel.

    Science.gov (United States)

    Nguyen, S; Hiorth, M; Rykke, M; Smistad, G

    2013-09-27

    The interactions between pectin coated liposomes and parotid saliva and dental enamel were studied to investigate their potential to mimic the protective biofilm formed naturally on tooth surfaces. Different pectin coated liposomes with respect to pectin type (LM-, HM- and AM-pectin) and concentration (0.05% and 0.2%) were prepared. Interactions between the pectin coated liposomes and parotid saliva were studied by turbidimetry and imaging by atomic force microscopy. The liposomes were adsorbed to hydroxyapatite (HA) and human dental enamel using phosphate buffer and parotid saliva as adsorption media. A continuous flow was imposed on the enamel surfaces for various time intervals to examine their retention on the dental enamel. The results were compared to uncoated, charged liposomes. No aggregation tendencies for the pectin coated liposomes and parotid saliva were revealed. This makes them promising as drug delivery systems to be used in the oral cavity. In phosphate buffer the adsorption to HA of pectin coated liposomes was significantly lower than the negative liposomes. The difference diminished in parotid saliva. Positive liposomes adsorbed better to the dental enamel than the pectin coated liposomes. However, when subjected to flow for 1h, no significant differences in the retention levels on the enamel were found between the formulations. For all formulations, more than 40% of the liposomes still remained on the enamel surfaces. At time point 20 min the retention of HM-pectin coated and positive liposomes were significantly higher. It was concluded that pectin coated liposomes can adsorb to HA as well as to the dental enamel. Their ability to retain on the enamel surfaces promotes the concept of using them as protective structures for the teeth. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Targeted p120-catenin ablation disrupts dental enamel development

    DEFF Research Database (Denmark)

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E

    2010-01-01

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide...... by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate...... attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached...

  6. In vivo Evaluation of Enamel Dental Restoration Interface by Optical Coherence Tomography

    International Nuclear Information System (INIS)

    Mota, Claudia C. B. O.; Gomes, Anderson S. L.; Kashyap, Hannah U. K. S.; Kyotoku, Bernardo B. C.

    2009-01-01

    In this work, we report in vivo application of Optical Coherence Tomography (OCT) to assess dental restorations in humans. After approval by the Ethical Committee in Humans Research of the Federal University of Pernambuco, thirty patients with resin composite restorations performed in anterior teeth were selected. The patients were clinically evaluated, and OCT was performed. Images were obtained using OCT operating in the spectral domain, with a 840 nm super luminescent diode light source (spectral width of 50 nm, fiber output power 25mW and a measured spatial resolution of 10 μm). The image acquisition time was less than one second. The results were analyzed with respect to the integrity and marginal adaptation of the restoration. Using appropriate software, the lesion region can be exactly located and a new restoration procedure can be carried out. We have shown that OCT is more than adequate in clinical practice to assess dental restorations. (Author)

  7. Targeted p120-catenin ablation disrupts dental enamel development.

    Science.gov (United States)

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E; Perez-Moreno, Mirna; Stokes, Nicole; Reynolds, Albert B; Fuchs, Elaine; Skobe, Ziedonis

    2010-09-16

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.

  8. Restorative treatment thresholds for interproximal primary caries based on radiographic images: findings from the Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Gordan, Valeria V; Garvan, Cynthia W; Heft, Marc W

    2009-01-01

    with restorative intervention in lesions that have penetrated only the enamel surface. This study surveyed dentists from the Dental Practice-Based Research Network (DPBRN) who had reported doing at least some restorative dentistry (n = 901). Dentists were asked to indicate the depth at which they would restore...

  9. Error in assessing the absorbed dose from the EPR signal from dental enamel

    International Nuclear Information System (INIS)

    Kleshchenko, E.D.; Kushnereva, K.K.

    1997-01-01

    Dose measurements from EPR signals from dental enamel were analyzed in a random sampling of 100 teeth extracted in liquidators of the Chernobyl accident aftermath and the EPR spectra of dental enamel of 80 intact teeth from children studied. The mean square deviation of enamel sensitivity to ionizing radiation in some teeth is approximately 0.3 of the mean sensitivity value. The variability of the nature EPR spectrum of dental enamel limits in principle the lower threshold of EPR-measured 60 mGy doses. When assessing the individual absorbed doses from the EPR signal from dental enamel without additional exposure it is necessary to bear in mind the extra error of approximately 6-% at a confidence probability P=0.95 caused by the variability of enamel sensitivity to radiation in some teeth. This additional error may be ruled out by graduated additional exposure of the examined enamel samples

  10. Amelogenesis Imperfect, Enamel Hypoplasia and Fluorosis Dental - Literature Review

    Directory of Open Access Journals (Sweden)

    Flávia Magnani Bevilacqua

    2015-12-01

    Full Text Available The developmental disorders of enamel are abnormalities of structure which can affect both dentitions. These abnormalities include amelogenesis imperfecta, enamel hypoplasia and dental fluorosis. The amelogenesis imperfecta is a hereditary change and enamel hypoplasia is a quantitative defect of enamel that occurs as a result of systemic problems, local and also inherited factors, or even the combination of them. Dental fluorosis is a hypoplasia caused by the chronic ingestion of fluoride during odontogenesis. All these anomalies have similar clinical characteristics, and it is necessary to be careful in their assessment. It is extremely important to know these abnormalities to establish a differential diagnosis and, consequently, a treatment plan, which can be set for each situation. Therefore, the purpose of this study was to review the literature regarding these three anomalies: amelogenesis imperfecta, enamel hypoplasia and dental fluorosis. It was concluded that to establish the differential diagnosis of these abnormalities as well as a proper treatment plan, it is indispensable the professional knowledge associated with the clinical examination. The examination has to consist of medical history and physical examination, and in some cases, x-ray examination.

  11. Morphology and structure of polymer layers protecting dental enamel against erosion.

    Science.gov (United States)

    Beyer, Markus; Reichert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2012-10-01

    Human dental erosion caused by acids is a major factor for tooth decay. Adding polymers to acidic soft drinks is one important approach to reduce human dental erosion caused by acids. The aim of this study was to investigate the thickness and the structure of polymer layers adsorbed in vitro on human dental enamel from polymer modified citric acid solutions. The polymers propylene glycol alginate (PGA), highly esterified pectin (HP) and gum arabic (GA) were used to prepare polymer modified citric acids solutions (PMCAS, pH 3.3). With these PMCAS, enamel samples were treated for 30, 60 and 120s respectively to deposit polymer layers on the enamel surface. Profilometer scratches on the enamel surface were used to estimate the thickness of the polymer layers via atomic force microscopy (AFM). The composition of the deposited polymer layers was investigated with X-ray photoelectron spectroscopy (XPS). In addition the polymer-enamel interaction was investigated with zeta-potential measurements and scanning electron microscopy (SEM). It has been shown that the profilometer scratch depth on the enamel with deposited polymers was in the range of 10nm (30s treatment time) up to 25nm (120s treatment time). Compared to this, the unmodified CAS-treated surface showed a greater scratch depth: from nearly 30nm (30s treatment time) up to 60nm (120s treatment time). Based on XPS measurements, scanning electron microscopy (SEM) and zeta-potential measurements, a model was hypothesized which describes the layer deposited on the enamel surface as consisting of two opposing gradients of polymer molecules and hydroxyapatite (HA) particles. In this study, the structure and composition of polymer layers deposited on in vitro dental enamel during treatment with polymer modified citric acid solutions were investigated. Observations are consistent with a layer consisting of two opposing gradients of hydroxyapatite particles and polymer molecules. This leads to reduced erosive effects of

  12. Association of dental enamel lead levels with risk factors for environmental exposure.

    Science.gov (United States)

    Olympio, Kelly Polido Kaneshiro; Naozuka, Juliana; Oliveira, Pedro Vitoriano; Cardoso, Maria Regina Alves; Bechara, Etelvino José Henriques; Günther, Wanda Maria Risso

    2010-10-01

    To analyze household risk factors associated with high lead levels in surface dental enamel. A cross-sectional study was conducted with 160 Brazilian adolescents aged 1418 years living in poor neighborhoods in the city of Bauru, southeastern Brazil, from August to December 2008. Body lead concentrations were assessed in surface dental enamel acid-etch microbiopsies. Dental enamel lead levels were measured by graphite furnace atomic absorption spectrometry and phosphorus levels were measured by inductively coupled plasma optical emission spectrometry. The parents answered a questionnaire about their children's potential early (05 years old) exposure to well-known lead sources. Logistic regression was used to identify associations between dental enamel lead levels and each environmental risk factor studied. Social and familial covariables were included in the models. The results suggest that the adolescents studied were exposed to lead sources during their first years of life. Risk factors associated with high dental enamel lead levels were living in or close to a contaminated area (OR = 4.49; 95% CI: 1.69;11.97); and member of the household worked in the manufacturing of paints, paint pigments, ceramics or batteries (OR = 3.43; 95% CI: 1.31;9.00). Home-based use of lead-glazed ceramics, low-quality pirated toys, anticorrosive paint on gates and/or sale of used car batteries (OR = 1.31; 95% CI: 0.56;3.03) and smoking (OR = 1.66; 95% CI: 0.52;5.28) were not found to be associated with high dental enamel lead levels. Surface dental enamel can be used as a marker of past environmental exposure to lead and lead concentrations detected are associated to well-known sources of lead contamination.

  13. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    Science.gov (United States)

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  14. Prevalence of enamel defects and association with dental caries in preschool children.

    Science.gov (United States)

    Massignan, C; Ximenes, M; da Silva Pereira, C; Dias, L; Bolan, M; Cardoso, M

    2016-12-01

    This was to evaluate the prevalence of the developmental defects of enamel (DDE) in primary teeth and its association with dental caries. A cross-sectional study with a randomised representative sample was carried out with 1101 children aged 2-5 years enrolled in public preschools (50% prevalence of DDE in primary teeth, a standard error of 3%, and a confidence level of 95%). Three calibrated dentists (K > 0.62) performed clinical examination. Data collected were: sex, age, DDE (Modified DDE Index) and dental caries (WHO). Descriptive analysis, Chi-square test and multinomial logistic regression were applied for data analysis. Among children, 565 (51.3%) were boys; mean age was 3.7 (±0.9 years). The prevalence of enamel defect was 39.1%; the prevalence of diffuse opacities, demarcated opacities and enamel hypoplasia was 25.3, 19.1 and 6.1%, respectively. The prevalence of dental caries was 31.0%, with mean def-t 1.14 (±2.44). Primary teeth with enamel hypoplasia had three times the odds of having dental caries than those with absence of enamel defects (OR = 3.10; 95% CI: 1.91, 5.01). The presence of enamel defects was moderate and associated with dental caries.

  15. Utilization of radiometric method in evaluation of wear on human dental enamel in vitro by dental porcelain glazed and polished

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa; Campos, Tomie Nakakuki de; Adachi, Eduardo Makoto

    2005-01-01

    The dental porcelain is a material commonly used in prosthesis. Disadvantages of dental porcelain use include possibility to cause tooth or dental materials wear. Before its use in the mouth, surfaces are treated with polishing and/or glazing. This research used the radiometric method to verify the influence of these surface treatments on the porcelains of commercial brands: Ceramco II, Noritake and Finesse. This method was originally developed for dentifrice abrasiveness evaluation. Five specimens of dental enamel and 10 specimens of each porcelain (5 glazed, 5 polished) were used. The dental enamel was flattened and irradiated with neutrons from the IEA-R1 (IPEN/CNEN) nuclear reactor. Then it was weared by each porcelain in sliding motion, with water. After 2,500 cycles for each porcelain specimen, the released enamel residue was measured. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from the irradiated tooth. Results varied from 2.57 to 5.81 μg of enamel /mm 2 weared surface. There was no statistical difference (α=0.05) between dental enamel wear caused by the same porcelains glazed or polished. The results suggest that adequate surface finishing depend on the type of dental porcelain. (author)

  16. Association of dental enamel lead levels with risk factors for environmental exposure

    Directory of Open Access Journals (Sweden)

    Kelly Polido Kaneshiro Olympio

    2010-10-01

    Full Text Available OBJECTIVE: To analyze household risk factors associated with high lead levels in surface dental enamel. METHODS: A cross-sectional study was conducted with 160 Brazilian adolescents aged 14-18 years living in poor neighborhoods in the city of Bauru, southeastern Brazil, from August to December 2008. Body lead concentrations were assessed in surface dental enamel acid-etch microbiopsies. Dental enamel lead levels were measured by graphite furnace atomic absorption spectrometry and phosphorus levels were measured by inductively coupled plasma optical emission spectrometry. The parents answered a questionnaire about their children's potential early (05 years old exposure to well-known lead sources. Logistic regression was used to identify associations between dental enamel lead levels and each environmental risk factor studied. Social and familial covariables were included in the models. RESULTS: The results suggest that the adolescents studied were exposed to lead sources during their first years of life. Risk factors associated with high dental enamel lead levels were living in or close to a contaminated area (OR = 4.49; 95% CI: 1.69;11.97; and member of the household worked in the manufacturing of paints, paint pigments, ceramics or batteries (OR = 3.43; 95% CI: 1.31;9.00. Home-based use of lead-glazed ceramics, low-quality pirated toys, anticorrosive paint on gates and/or sale of used car batteries (OR = 1.31; 95% CI: 0.56;3.03 and smoking (OR = 1.66; 95% CI: 0.52;5.28 were not found to be associated with high dental enamel lead levels. CONCLUSIONS: Surface dental enamel can be used as a marker of past environmental exposure to lead and lead concentrations detected are associated to well-known sources of lead contamination.

  17. Proteomic Mapping of Dental Enamel Matrix from Inbred Mouse Strains: Unraveling Potential New Players in Enamel.

    Science.gov (United States)

    Lima Leite, Aline; Silva Fernandes, Mileni; Charone, Senda; Whitford, Gary Milton; Everett, Eric T; Buzalaf, Marília Afonso Rabelo

    2018-01-01

    Enamel formation is a complex 2-step process by which proteins are secreted to form an extracellular matrix, followed by massive protein degradation and subsequent mineralization. Excessive systemic exposure to fluoride can disrupt this process and lead to a condition known as dental fluorosis. The genetic background influences the responses of mineralized tissues to fluoride, such as dental fluorosis, observed in A/J and 129P3/J mice. The aim of the present study was to map the protein profile of enamel matrix from A/J and 129P3/J strains. Enamel matrix samples were obtained from A/J and 129P3/J mice and analyzed by 2-dimensional electrophoresis and liquid chromatography coupled with mass spectrometry. A total of 120 proteins were identified, and 7 of them were classified as putative uncharacterized proteins and analyzed in silico for structural and functional characterization. An interesting finding was the possibility of the uncharacterized sequence Q8BIS2 being an enzyme involved in the degradation of matrix proteins. Thus, the results provide a comprehensive view of the structure and function for putative uncharacterized proteins found in the enamel matrix that could help to elucidate the mechanisms involved in enamel biomineralization and genetic susceptibility to dental fluorosis. © 2018 S. Karger AG, Basel.

  18. Dental enamel defects in Italian children with cystic fibrosis: an observational study.

    Science.gov (United States)

    Ferrazzano, G F; Sangianantoni, G; Cantile, T; Amato, I; Orlando, S; Ingenito, A

    2012-03-01

    The relationship between cystic fibrosis (CF) and caries experience has already been explored, but relatively little information is available on dental enamel defects prevalence among children affected by cystic fibrosis. The aim of this study was to investigate this issue in deciduous and permanent teeth of children with CF resident in southern Italy. This cross sectional observational study was undertaken between October 2009 and March 2010. 88 CF patients and 101 healthy age-matched participated in this study. The prevalence of dental enamel defects was calculated using a modified Developmental Defects of Enamel (DDE) index. The comparison of dental enamel defects prevalence among groups was carried out using regression binary logistic analysis. In the CF subjects there was a higher prevalence (56%) of enamel defects in comparison to the healthy group (22%). The most prevalent enamel defect was hypoplasia with loss of enamel (23% of CF patients vs 1 1/2% of control group) in permanent teeth. This study confirms that children with cystic fibrosis are at increased risk of developing hypoplastic defects on their permanent teeth.

  19. Smile restoration through use of enamel microabrasion associated with tooth bleaching.

    Science.gov (United States)

    Sundfeld, Renato Herman; Rahal, Vanessa; de Alexandre, Rodrigo Sversut; Briso, André Luiz Fraga; Sundfeld Neto, Daniel

    2011-01-01

    in 1989, correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional. Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required.

  20. Composition of enamel pellicle from dental erosion patients.

    Science.gov (United States)

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p erosion patients (p erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  1. β-pyrophosphate: A potential biomaterial for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Anastasiou, A.D., E-mail: a.anastasiou@leeds.ac.uk [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Strafford, S. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Posada-Estefan, O. [Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, LS2 9JT (United Kingdom); Thomson, C.L. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Hussain, S.A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Cambridge Graphene Centre, Engineering Department, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Edwards, T.J. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Malinowski, M. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Hondow, N. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Metzger, N.K.; Brown, C.T.A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Routledge, M.N. [Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, LS2 9JT (United Kingdom); Brown, A.P. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Duggal, M.S. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Jha, A. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential replacement material for dental hard tissue. To this end, we have tested the hardness of β-pyrophosphate pellets (sintered at 1000 °C) and its mineral precursor (brushite), the wear rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in powder form. It was found that the hardness of the β-pyrophosphate pellets is comparable with that of dental enamel and significantly higher than dentine while, the brushing trials prove that the wear rate of β-pyrophosphate is much slower than that of natural enamel. Finally, cytotoxicity and genotoxicity tests suggest that iron doped β-pyrophosphate is cytocompatible and therefore could be used in dental applications. Taken together and with the previously reported results on laser irradiation of these materials we conclude that iron doped β-pyrophosphate may be a promising material for restoring acid eroded and worn enamel. - Highlights: • A novel procedure for the restoration of dental enamel is introduced. • Fe-doped ß-pyrophosphate is evaluated as potential biomaterial for enamel restoration. • Fe-doped ß-pyrophosphate found to have the same hardness as natural enamel and dramatically lower wear rate. • Cytotoxicity and genotoxicity tests suggest that Fe-doped ß-pyrophosphate is safe for dental applications.

  2. β-pyrophosphate: A potential biomaterial for dental applications

    International Nuclear Information System (INIS)

    Anastasiou, A.D.; Strafford, S.; Posada-Estefan, O.; Thomson, C.L.; Hussain, S.A.; Edwards, T.J.; Malinowski, M.; Hondow, N.; Metzger, N.K.; Brown, C.T.A.; Routledge, M.N.; Brown, A.P.; Duggal, M.S.; Jha, A.

    2017-01-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential replacement material for dental hard tissue. To this end, we have tested the hardness of β-pyrophosphate pellets (sintered at 1000 °C) and its mineral precursor (brushite), the wear rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in powder form. It was found that the hardness of the β-pyrophosphate pellets is comparable with that of dental enamel and significantly higher than dentine while, the brushing trials prove that the wear rate of β-pyrophosphate is much slower than that of natural enamel. Finally, cytotoxicity and genotoxicity tests suggest that iron doped β-pyrophosphate is cytocompatible and therefore could be used in dental applications. Taken together and with the previously reported results on laser irradiation of these materials we conclude that iron doped β-pyrophosphate may be a promising material for restoring acid eroded and worn enamel. - Highlights: • A novel procedure for the restoration of dental enamel is introduced. • Fe-doped ß-pyrophosphate is evaluated as potential biomaterial for enamel restoration. • Fe-doped ß-pyrophosphate found to have the same hardness as natural enamel and dramatically lower wear rate. • Cytotoxicity and genotoxicity tests suggest that Fe-doped ß-pyrophosphate is safe for dental applications.

  3. Oral aspects in celiac disease children: clinical and dental enamel chemical evaluation.

    Science.gov (United States)

    de Carvalho, Fabrício Kitazono; de Queiroz, Alexandra Mussolino; Bezerra da Silva, Raquel Assed; Sawamura, Regina; Bachmann, Luciano; Bezerra da Silva, Léa Assed; Nelson-Filho, Paulo

    2015-06-01

    The aim of this study was to evaluate the oral manifestations of celiac disease (CD), the chemical composition of dental enamel, and the occurrence of CD in children with dental enamel defects (DEDs). In the study, 52 children with CD and 52 controls were examined for DEDs, recurrent aphthous stomatitis (RAS), dental caries experience, and salivary parameters. In addition, 10 exfoliated primary enamel molars from each group were analyzed by energy dispersive x-ray spectroscopy and Fourier transform infrared spectroscopy. Fifty children with DEDs were submitted to CD diagnosis. Among the children with CD, a higher prevalence of DEDs (P = .00001) and RAS (P = .0052), lower caries experience (P = .0024), and reduction of salivary flow (P = .0060) were observed. Dental enamel from the children with CD demonstrated a lower calcium-to-phosphorus ratio (P = .0136), but no difference in the carbonate-to-phosphate ratio (P = .5862) was observed. In the multivariate analysis, CD was a protective factor for caries (OR = 0.74) and a risk factor for RAS (OR3.23). The children with CD presented with more RAS, DEDs, reduction of salivary flow, and chemical alterations in the enamel. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel.

    Science.gov (United States)

    Anastasiou, A D; Strafford, S; Thomson, C L; Gardy, J; Edwards, T J; Malinowski, M; Hussain, S A; Metzger, N K; Hassanpour, A; Brown, C T A; Brown, A P; Duggal, M S; Jha, A

    2018-04-15

    A radical new methodology for the exogenous mineralization of hard tissues is demonstrated in the context of laser-biomaterials interaction. The proposed approach is based on the use of femtosecond pulsed lasers (fs) and Fe 3+ -doped calcium phosphate minerals (specifically in this work fluorapatite powder containing Fe 2 O 3 nanoparticles (NP)). A layer of the synthetic powder is applied to the surface of eroded bovine enamel and is irradiated with a fs laser (1040 nm wavelength, 1 GHz repetition rate, 150 fs pulse duration and 0.4 W average power). The Fe 2 O 3 NPs absorb the light and may act as thermal antennae, dissipating energy to the vicinal mineral phase. Such a photothermal process triggers the sintering and densification of the surrounding calcium phosphate crystals thereby forming a new, dense layer of typically ∼20 μm in thickness, which is bonded to the underlying surface of the natural enamel. The dispersed iron oxide NPs, ensure the localization of temperature excursion, minimizing collateral thermal damage to the surrounding natural tissue during laser irradiation. Simulated brushing trials (pH cycle and mechanical force) on the synthetic layer show that the sintered material is more acid resistant than the natural mineral of enamel. Furthermore, nano-indentation confirms that the hardness and Young's modulus of the new layers are significantly more closely matched to enamel than current restorative materials used in clinical dentistry. Although the results presented herein are exemplified in the context of bovine enamel restoration, the methodology may be more widely applicable to human enamel and other hard-tissue regenerative engineering. In this work we provide a new methodology for the mineralisation of dental hard tissues using femtosecond lasers and iron doped biomaterials. In particular, we demonstrate selective laser sintering of an iron doped fluorapatite on the surface of eroded enamel under low average power and mid

  5. The fracture behaviour of dental enamel.

    Science.gov (United States)

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A

    2010-01-01

    Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).

  6. Measurement of opalescence of tooth enamel.

    Science.gov (United States)

    Lee, Yong-Keun; Yu, Bin

    2007-08-01

    Opalescent dental esthetic restoratives look natural and esthetic in any light, react to light in the same manner as the natural tooth and show improved masking effect. The objective of this study was to determine the opalescence of tooth enamel with reflection spectrophotometers. Color of intact bovine and human enamel was measured in the reflectance and transmittance modes. Two kinds of spectrophotometers were used for bovine and one kind was used for human enamel. The opalescence parameter (OP) was calculated as the difference in yellow-blue color coordinate (CIE Deltab(*)) and red-green color coordinate (CIE Deltaa(*)) between the reflected and transmitted colors. Mean OP value of bovine enamel was 10.6 (+/-1.4) to 19.0 (+/-2.1), and varied by the configuration of spectrophotometers. Mean OP value of human enamel was 22.9 (+/-1.9). Opalescence varied by the configuration of measuring spectrophotometer and the species of enamel. These values could be used in the development of esthetic restorative materials.

  7. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    OpenAIRE

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J.; Cooper, Paul R.

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and red...

  8. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    Science.gov (United States)

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  9. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  10. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    Science.gov (United States)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  11. Alteration of dentin-enamel mechanical properties due to dental whitening treatments.

    Science.gov (United States)

    Zimmerman, B; Datko, L; Cupelli, M; Alapati, S; Dean, D; Kennedy, M

    2010-05-01

    The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0 GPa versus 113.4 GPa), while smaller increases were observed in the dentin (17.9 GPa versus 27.9 GPa). Likewise, there was an increase in the hardness of enamel (2.0 GPa versus 4.3 GPa) and dentin (0.5 GPa versus 0.7 GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in the literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips, Opalescence or UltraEtch caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips showed a reduction in the elastic modulus of enamel (55.3 GPa to 32.7 GPa) and increase in the elastic modulus of dentin (17.2 GPa to 24.3 GPa). Opalescence treatments did not significantly affect the enamel properties, but did result in a decrease in the modulus of dentin (18.5 GPa to 15.1 GPa). Additionally, as expected, UltraEtch treatment decreased the modulus and hardness of enamel (48.7 GPa to 38.0 GPa and 1.9 GPa to 1.5 GPa, respectively) and dentin (21.4 GPa to 15.0 GPa and 1.9 GPa to 1.5 GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. Published by Elsevier Ltd.

  12. Cleidocranial Dysplasia Case Report: Remodeling of Teeth as Aesthetic Restorative Treatment

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandes da Cunha

    2014-01-01

    Full Text Available Cleidocranial dysplasia (CCD, is an autosomal dominant disorder with a prevalence of 1 in 1,000,000 individuals. It is generally characterized by orofacial manifestations, including enamel hypoplasia, retained primary teeth, and impacted permanent and supernumerary teeth. The successful treatment involving a timing intervention (orthodontic-maxillofacial surgeons-restorative is already described. However, the restorative treatment might improve the aesthetic final result in dentistry management for patients with cleidocranial dysplasia. Objective. Therefore, this clinical report presents a conservative restorative management (enamel microabrasion, dental bleaching, and direct composite resin for aesthetic solution for a patient with CCD. Clinical Considerations. The cosmetic remodeling is a conservative, secure, and low cost therapy that can be associated with other procedures such as enamel microabrasion and dental bleaching to achieve optimal outcome. Additionally, the Golden Proportion can be used to guide dental remodeling to improve the harmony of the smile and the facial composition. Conclusions. Thus, dentists must know and be able to treat dental aesthetic problems in cleidocranial dysplasia patients. The intention of this paper is to describe a restorative approach with the cosmetic remodeling teeth (by grinding or addicting material associated with enamel microabrasion and dental bleaching to reestablish the form, shape, and color of smile for patients with cleidocranial dysplasia.

  13. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals.

    Science.gov (United States)

    Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao; De Yoreo, James J; Moradian-Oldak, Janet

    2016-01-01

    Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Amino acid derivative-mediated detoxification and functionalization of dual cure dental restorative material for dental pulp cell mineralization.

    Science.gov (United States)

    Minamikawa, Hajime; Yamada, Masahiro; Iwasa, Fuminori; Ueno, Takeshi; Deyama, Yoshiaki; Suzuki, Kuniaki; Yawaka, Yasutaka; Ogawa, Takahiro

    2010-10-01

    Current dental restorative materials are only used to fill the defect of hard tissues, such as dentin and enamel, because of their cytotoxicity. Therefore, exposed dental pulp tissues in deep cavities must be first covered by a pulp capping material like calcium hydroxide to form a layer of mineralized tissue. However, this tissue mineralization is based on pathological reaction and triggers long-lasting inflammation, often causing clinical problems. This study tested the ability of N-acetyl cysteine (NAC), amino acid derivative, to reduce cytotoxicity and induce mineralized tissue conductivity in resin-modified glass ionomer (RMGI), a widely used dental restorative material having dual cure mechanism. Rat dental pulp cells were cultured on untreated or NAC-supplemented RMGI. NAC supplementation substantially increased the percentage of viable cells from 46.7 to 73.3% after 24-h incubation. Cell attachment, spreading, proliferative activity, and odontoblast-related gene and protein expressions increased significantly on NAC-supplemented RMGI. The mineralization capability of cells, which was nearly suppressed on untreated RMGI, was induced on NAC-supplemented RMGI. These improved behaviors and functions of dental pulp cells on NAC-supplemented RMGI were associated with a considerable reduction in the production of intracellular reactive oxygen species and with the increased level of intracellular glutathione reserves. These results demonstrated that NAC could detoxify and functionalize RMGIs via two different mechanisms involving in situ material detoxification and antioxidant cell protection. We believe that this study provides a new approach for developing dental restorative materials that enables mineralized tissue regeneration.

  15. Dental enamel defect diagnosis through different technology-based devices.

    Science.gov (United States)

    Kobayashi, Tatiana Yuriko; Vitor, Luciana Lourenço Ribeiro; Carrara, Cleide Felício Carvalho; Silva, Thiago Cruvinel; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira; Oliveira, Thais Marchini

    2018-06-01

    Dental enamel defects (DEDs) are faulty or deficient enamel formations of primary and permanent teeth. Changes during tooth development result in hypoplasia (a quantitative defect) and/or hypomineralisation (a qualitative defect). To compare technology-based diagnostic methods for detecting DEDs. Two-hundred and nine dental surfaces of anterior permanent teeth were selected in patients, 6-11 years of age, with cleft lip with/without cleft palate. First, a conventional clinical examination was conducted according to the modified Developmental Defects of Enamel Index (DDE Index). Dental surfaces were evaluated using an operating microscope and a fluorescence-based device. Interexaminer reproducibility was determined using the kappa test. To compare groups, McNemar's test was used. Cramer's V test was used for comparing the distribution of index codes obtained after classification of all dental surfaces. Cramer's V test revealed statistically significant differences (P < .0001) in the distribution of index codes obtained using the different methods; the coefficients were 0.365 for conventional clinical examination versus fluorescence, 0.961 for conventional clinical examination versus operating microscope and 0.358 for operating microscope versus fluorescence. The sensitivity of the operating microscope and fluorescence method was statistically significant (P = .008 and P < .0001, respectively). Otherwise, the results did not show statistically significant differences in accuracy and specificity for either the operating microscope or the fluorescence methods. This study suggests that the operating microscope performed better than the fluorescence-based device and could be an auxiliary method for the detection of DEDs. © 2017 FDI World Dental Federation.

  16. Human dental enamel and dentin structural effects after Er:YAG laser irradiation.

    Science.gov (United States)

    Lima, Darlon Martíns; Tonetto, Mateus Rodrigues; de Mendonça, Adriano Augusto Melo; Elossais, André Afif; Saad, José Roberto Cury; de Andrade, Marcelo Ferrarezi; Pinto, Shelon Cristina Souza; Bandéca, Matheus Coelho

    2014-05-01

    Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations--namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and influence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifications caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the superficial structure of the target tissue irradiated, may be correlated to the structural optical modifications of the substrate produced by an interaction of the energy propagated by laser systems.

  17. SEM Evaluation of Surrounding Enamel after Finishing of Composite Restorations- Preliminary Results

    Science.gov (United States)

    Iovan, G.; Stoleriu, S.; Solomon, S.; Ghiorghe, A.; Sandu, A. V.; Andrian, S.

    2017-06-01

    The purpose of this study was to analyze the surface characteristics of the enamel adjacent to composite resin after finishing the restoration with different diamond and tungsten carbide burs. The topography of enamel was observed by using a scanning electron microscope. Finishing with extra-/ultra-fine carbide burs, and extra-fine diamond burs resulted in smooth surfaces. In few areas some superficial scratches with no clinical relevance were observed. Deep grooves were observed on the surface of enamel when fine diamond burs were used. Finishing of composite restorations with coarse burs should be avoided when there is a high risk of touching and scratching adjacent enamel during the procedure.

  18. Optically stimulated luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure

    International Nuclear Information System (INIS)

    Yukihara, E.G.; Mittani, J.; McKeever, S.W.S.; Simon, S.L.

    2007-01-01

    This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed

  19. Acids with an equivalent taste lead to different erosion of human dental enamel.

    Science.gov (United States)

    Beyer, Markus; Reichert, Jörg; Bossert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2011-10-01

    The consumption of acidic soft drinks may lead to demineralization and softening of human dental enamel, known as dental erosion. The aims of this in vitro study were to determine: (i) if different acids with a similar sensorial acidic taste lead to different hardness loss of enamel and (ii) if the fruit acids tartaric, malic, lactic or ascorbic acid lead to less hardness loss of enamel than citric or phosphoric acid when their concentration in solution is based on an equivalent sensorial acidic taste. Enamel samples of non-erupted human third molars were treated with acidic solutions of tartaric (TA), malic (MA), lactic (LA), ascorbic (AA), phosphoric (PA) and citric (CA) acids with a concentration that gave an equivalent sensorial acidic taste. The acidic solutions were characterized by pH value and titratable acidity. Atomic force microscopy (AFM) based nanoindentation was used to study the nano mechanical properties and scanning electron microscopy (SEM) was used to study the morphology of the treated enamel samples and the untreated control areas, respectively. The investigated acids fell into two groups. The nano hardnesses of MA, TA and CA treated enamel samples (group I) were statistically significantly greater (penamel samples (group II). Within each group the nano hardness was not statistically significantly different (p>0.05). The SEM micrographs showed different etch prism morphologies depending on the acid used. In vitro, the acids investigated led to different erosion effects on human dental enamel, despite their equivalent sensorial acidic taste. This has not been reported previously. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE.

    Science.gov (United States)

    Lacruz, Rodrigo S; Habelitz, Stefan; Wright, J Timothy; Paine, Michael L

    2017-07-01

    Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function. Copyright © 2017 the American Physiological Society.

  1. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    International Nuclear Information System (INIS)

    Wei Jie; Wang Jiecheng; Liu Xiaochen; Ma Jian; Liu Changsheng; Fang Jing; Wei Shicheng

    2011-01-01

    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H 3 PO 4 ) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  2. The effects of acid erosion and remineralization on enamel and three different dental materials: FT-Raman spectroscopy and scanning electron microscopy analysis.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Soares, Ana Lúcia Silva; De Oliveira, Rodrigo; Nahórny, Sidnei

    2016-07-01

    FT-Raman spectroscopy and scanning electron microscopy (SEM) were employed to test the hypothesis that the beverage consumption or mouthwash utilization would change the chemistry of dental materials and enamel inorganic content. Bovine enamel samples (n = 36) each received two cavity preparations (n = 72), each pair filled with one of three dental materials (R: nanofilled composite resin, GIC: glass-ionomer cement, RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: artificial saliva, E: erosion/Pepsi Twist or EM: erosion + mouthwash/Colgate Plax). Reduction of carbonate content of enamel was greater in RE than RS (P erosion. Material degradation was greater after E and EM than S. GIC and RMGIC materials had a positive effect against acid erosion in the adjacent enamel after remineralization with mouthwash. The beverage and mouthwash utilization would change R and GIC chemical properties. A professional should periodically monitor the glass-ionomer and resin restorations, as they degrade over time under erosive challenges and mouthwash utilization. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc. Microsc. Res. Tech. 79:646-656, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. In vitro study of the diode laser effect on artificial demineralized surface of human dental enamel

    International Nuclear Information System (INIS)

    Ebel, Patricia

    2003-01-01

    In scientific literature there are many reports about fusion and resolidification of dental enamel after laser irradiation and their capability to generate surfaces with increased resistance to demineralization compared to non-irradiated areas. The use of high power diode laser on demineralized surfaces of human dental enamel is presented as a good alternative in caries prevention. The purpose of this study is to investigate the morphological changes produced by the use of one high power diode laser on human dental enamel surface after demineralization treatment with lactic acid, under chosen parameters. Fifteen samples of human dental molars were used and divided in four groups: control - demineralization treatment with lactic acid and no irradiation, and demineralization treatment with lactic acid followed of irradiation with 212,20 mJ/cm 2 , 282,84 mJ/cm 2 and 325,38 mJ/cm 2 , respectively. The samples were irradiated with high power diode laser (808 nm) with a 300 μm diameter fiber optics. Black ink was used on enamel surface to enhance the superficial absorption. The samples were studied by optical microscopy and scanning electron microscopy. Modifications on the enamel surfaces were observed. Such modifications were characterized by melted and re-solidified region of the enamel. According with our results the best parameter was 2.0 W, presenting the most uniform surface. The use of high power diode laser as demonstrated in this study is able to promote melting and re-solidification on human dental enamel. (author)

  4. Size dependent elastic modulus and mechanical resilience of dental enamel.

    Science.gov (United States)

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Association between developmental defects of enamel and dental caries: A systematic review and meta-analysis.

    Science.gov (United States)

    Vargas-Ferreira, F; Salas, M M S; Nascimento, G G; Tarquinio, S B C; Faggion, C M; Peres, M A; Thomson, W M; Demarco, F F

    2015-06-01

    Dental caries is the main problem oral health and it is not well established in the literature if the enamel defects are a risk factor for its development. Studies have reported a potential association between developmental defects enamel (DDE) and dental caries occurrence. We investigated the association between DDE and caries in permanent dentition of children and teenagers. A systematic review was carried out using four databases (Pubmed, Web of Science, Embase, and Science Direct), which were searched from their earliest records until December 31, 2014. Population-based studies assessing differences in dental caries experience according to the presence of enamel defects (and their types) were included. PRISMA guidelines for reporting systematic reviews were followed. Meta-analysis was performed to assess the pooled effect, and meta-regression was carried out to identify heterogeneity sources. From the 2558 initially identified papers, nine studies fulfilled all inclusion criteria after checking the titles, abstracts, references, and complete reading. Seven of them were included in the meta-analysis with random model. A positive association between enamel defects and dental caries was identified; meta-analysis showed that individuals with DDE had higher pooled odds of having dental caries experience [OR 2.21 (95% CI 1.3; 3.54)]. Meta-regression analysis demonstrated that adjustment for sociodemographic factors, countries' socioeconomic status, and bias (quality of studies) explained the high heterogeneity observed. A higher chance of dental caries should be expected among individuals with enamel defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of blue light irradiation on dental enamel remineralization in vitro

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2009-01-01

    This study aimed to investigate the effects of blue radiation on dental enamel remineralization. In addition, a methodology of analysis was developed to evaluate alterations of enamel mineral content by optical coherence tomography. Artificial lesions were formed in bovine dental enamel slabs by immersing the samples in under saturated acetate buffer (2 mL/mm 2 e 6.25 mL/mm 2 ). The lesions were irradiated with blue LED (l=455±20nm), with radiant power of 110 mW, irradiance of 1.4 W/cm 2 , radiant exposure of 13.8 J/ c m2 and exposure time of 10 s. Remineralization was induced by pH-cycling model during 8 days. Cross-sectional hardness and optical coherence tomography (OCT) were used to assess mineral changes after remineralization. Hardness data showed that non-irradiated enamel lesions presented higher mineral content than irradiated ones and this difference was more evident in lesions formed in higher solution volume. The analysis of OCT signal also demonstrated that the mineral content of non-irradiated group was higher than in irradiated one; however, no significant difference was observed. Furthermore, significant differences in OCT sign were detected between sound and demineralized enamel. Based on the results obtained in the present study it can be concluded that blue radiation caused an inhibition of enamel remineralization. The methodology adopted for OCT analysis allowed the quantification of enamel mineral loss; however, the remineralization process could not be evaluated by this technique. (author)

  7. Functions of KLK4 and MMP-20 in dental enamel formation

    Science.gov (United States)

    Lu, Yuhe; Papagerakis, Petros; Yamakoshi, Yasuo; Hu, Jan C-C.; Bartlett, John D.; Simmer, James P.

    2009-01-01

    Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory stage ameloblasts. Enamel protein cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. Kallikrein 4 is secreted by transition and maturation stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins. PMID:18627287

  8. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    Energy Technology Data Exchange (ETDEWEB)

    Wei Jie [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang Jiecheng; Liu Xiaochen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Ma Jian [Hospital of Stomatology, Tongji University, Shanghai 200072 (China); Liu Changsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Fang Jing, E-mail: biomater2006@yahoo.com.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Wei Shicheng, E-mail: nic7505@263.net [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China) and School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2011-06-15

    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H{sub 3}PO{sub 4}) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  9. Titanium dioxide in dental enamel as a trace element and its variation with bleaching.

    Science.gov (United States)

    Vargas-Koudriavtsev, Tatiana; Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey

    2018-06-01

    Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule ( p ≤0,05). All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide.

  10. Dental enamel, fluorosis and amoxicillin

    Directory of Open Access Journals (Sweden)

    I. Ciarrocchi

    2012-06-01

    Full Text Available Introduction: Amoxicillin is one of the most used antibiotics among pediatric patients for the treatment of upper respiratory tract infections and specially for acute otitis media (AOM, a common diseases of infants and childhood. It has been speculated that the use of amoxicillin during early childhood could be associated with dental enamel fluorosis, also described in literature with the term Molar Incisor Hypomineralization (MIH, because they are generally situated in one or more 1st permanent molars and less frequently in the incisors. The effect of Amoxicillin seems to be independent of other risk factors such as fluoride intake, prematurity, hypoxia, hypocalcaemia, exposure to dioxins, chikenpox, otitis media, high fever and could have a significant impact on oral health for the wide use of this drug in that period of life. Objective: The aim of this work was to review the current literature about the association between amoxicillin and fluorosis. Methods and Results: A literature survey was done by applying the Medline database (Entrez PubMed; the Cochrane Library database of the Cochrane Collaboration (CENTRAL. The databases were searched using the following strategy and keywords: amoxicillin* AND (dental fluorosis* OR dental enamel* AND MIH*. After selecting the studies, only three relevant articles published between 1966 and 2011 were included in the review. Conclusion: The presence of several methodological issues does not allow to draw any evidence-based conclusions. No evidence of association was detected, therefore, there is a need of further well-designed studies to assess the scientific evidence of the relationship between amoxicillin and fluorosis and to restrict the prescription of this drug for recurrent upper respiratory tract infections especially acute otitis media (AOM during the first two years of life. When it is possible can be opportune to use an alternative antibiotic treatment.

  11. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    Science.gov (United States)

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; de Oliveira, Rodrigo; Nahórny, Sídnei; Santo, Ana Maria do Espírito; Martin, Airton Abrahão

    2012-10-01

    Energy-dispersive X-ray fluorescence was employed to test the hypothesis that beverage consumption or mouthwash utilization will change the chemical properties of dental materials and enamel mineral content. Bovine enamel samples (n = 45) each received two cavity preparations (n = 90), each pair filled with one of three dental materials (R: nanofilled composite resin; GIC: glass-ionomer cement; RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: saliva; E: erosion/Pepsi Twist®; or EM: erosion+mouthwash/Colgate Plax®). It was found that mineral loss in enamel was greater in GICE samples than in RE > RMGICE > RMGICEM > REM > GICEM. An increased percentage of Zr was found in REM indicating organic matrix degradation. Dental materials tested (R, GIC, and RMGIC) were not able to protect adjacent enamel from acid erosion by the soft drink tested. The use of mouthwash promoted protection of enamel after erosion by the soft drink. To avoid chemical dissolution by mouthwashes, protection by resin composites with surface sealants is recommended.

  13. Isotopic study of the comparative uptake and release of ions by deciduous and permanent dental enamel

    International Nuclear Information System (INIS)

    Tetteh, G.K.

    1975-01-01

    A comparative study of the uptake and release of calcium, orthophosphate, strontium and sodium from decidus and permanent dental enamel has been made using radioactive techniques. The rates of uptake and release of orthophosphate, strontium and sodium were observed to be greater in deciduous than in permanent enamel. However, for calcium, the rate of uptake was observed to be greater in the deciduous than in the permanent enamel but the rate of release was observed to be smaller in the deciduous enamel. These results in conjunction with the findings of Tetteh (1974) suggest that most of the calcification in the early stages of development of dental enamel is by a hetero-ionic exchange. (author) [fr

  14. Isotopic study of the comparative uptake and release of ions by deciduous and permanent dental enamel

    Energy Technology Data Exchange (ETDEWEB)

    Tetteh, G K [Department of Physics, University of Ghana,Legon

    1975-04-01

    A comparative study of the uptake and release of calcium, orthophosphate, strontium and sodium from decidus and permanent dental enamel has been made using radioactive techniques. The rates of uptake and release of orthophosphate, strontium and sodium were observed to be greater in deciduous than in permanent enamel. However, for calcium, the rate of uptake was observed to be greater in the deciduous than in the permanent enamel but the rate of release was observed to be smaller in the deciduous enamel. These results in conjunction with the findings of Tetteh (1974) suggest that most of the calcification in the early stages of development of dental enamel is by a hetero-ionic exchange.

  15. Femtosecond laser etching of dental enamel for bracket bonding.

    Science.gov (United States)

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  16. Sea otter dental enamel is highly resistant to chipping due to its microstructure.

    Science.gov (United States)

    Ziscovici, Charles; Lucas, Peter W; Constantino, Paul J; Bromage, Timothy G; van Casteren, Adam

    2014-10-01

    Dental enamel is prone to damage by chipping with large hard objects at forces that depend on chip size and enamel toughness. Experiments on modern human teeth have suggested that some ante-mortem chips on fossil hominin enamel were produced by bite forces near physiological maxima. Here, we show that equivalent chips in sea otter enamel require even higher forces than human enamel. Increased fracture resistance correlates with more intense enamel prism decussation, often seen also in some fossil hominins. It is possible therefore that enamel chips in such hominins may have formed at even greater forces than currently envisaged. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Measurement of fluorine total concentration in dental enamel using fast neutron activation

    International Nuclear Information System (INIS)

    Mouadili, A.; Vernais, J.; Isabelle, D.B.

    1988-01-01

    Fluorine which is present in dental enamel, at the level of a few tens to a few hundred ppm, plays an important role in the behaviour of this tissue. Therefore quantitative determination is of interest for particular studies of the dental system. We present a nuclear nondestructive method to determine the total fluorine content in dental enamel by cyclotron-produced fast-neutron activation. The 19 F(n,2n) reaction leads to 18 F which is a β + emitter with a 109.8 min half-life. The irradiated sample activity is measured by detecting in coincidence the annihilation photons. A fluorine standard is used for calibration. The detection limit is of the order of 1 ppm, while the reproducibility is better than 95% [pt

  18. Near-UV laser treatment of extrinsic dental enamel stains.

    Science.gov (United States)

    Schoenly, J E; Seka, W; Featherstone, J D B; Rechmann, P

    2012-04-01

    The selective ablation of extrinsic dental enamel stains using a 400-nm laser is evaluated at several fluences for completely removing stains with minimal damage to the underlying enamel. A frequency-doubled Ti:sapphire laser (400-nm wavelength, 60-nanosecond pulse duration, 10-Hz repetition rate) was used to treat 10 extracted human teeth with extrinsic enamel staining. Each tooth was irradiated perpendicular to the surface in a back-and-forth motion over a 1-mm length using an ∼300-µm-diam 10th-order super-Gaussian beam with fluences ranging from 0.8 to 6.4 J/cm(2) . Laser triangulation determined stain depth and volume removed by measuring 3D surface images before and after irradiation. Scanning electron microscopy evaluated the surface roughness of enamel following stain removal. Fluorescence spectroscopy measured spectra of unbleached and photobleached stains in the spectral range of 600-800 nm. Extrinsic enamel stains are removed with laser fluences between 0.8 and 6.4 J/cm(2) . Stains removed on sound enamel leave behind a smooth enamel surface. Stain removal in areas with signs of earlier cariogenic acid attacks resulted in isolated and randomly located laser-induced, 50-µm-diam enamel pits. These pits contain 0.5-µm diam, smooth craters indicative of heat transfer from the stain to the enamel and subsequent melting and water droplet ejection. Ablation stalling of enamel stains is typically observed at low fluences (Laser ablation of extrinsic enamel stains at 400 nm is observed to be most efficient above 3 J/cm(2) with minimal damage to the underlying enamel. Unsound underlying enamel is also observed to be selectively removed after irradiation. Copyright © 2012 Wiley Periodicals, Inc.

  19. Histo-anatomic 3D printing of dental structures.

    Science.gov (United States)

    Schweiger, J; Beuer, F; Stimmelmayr, M; Edelhoff, D; Magne, P; Güth, J F

    2016-11-04

    The creation of dental restorations with natural appearance and biomechanics represents a major challenge for the restorative team. The manufacturing-process of high-aesthetic restorations from tooth-coloured restorative materials is currently dominated by manual manufacturing procedures and the outcome is highly dependent on the knowledge and skills of the performing dental technician. On the other hand, due to the simplicity of the manufacturing process, CAD/CAM restorations from different material classes gain more and more acceptance in the daily routine. Multi-layered restorations show significant aesthetic advantages versus monolithic ones, but are difficult to fabricate using digital technologies. The key element for the successful automated digital fabrication of aesthetic anterior restorations seems to be the form of the individual dentine core as defined by dentine enamel junction (DEJ) covered by a more transparent layer of material imitating the enamel layer to create the outer enamel surface (OES). This article describes the possibilities and technologies available for so-called '4D-printing'. It introduces the digital manufacturing process of multilayered anterior teeth using 3D multipart printing, taking the example of manufacturing replicas of extracted intact natural teeth.

  20. Influence of tooth bleaching on dental enamel microhardness: a systematic review and meta-analysis.

    Science.gov (United States)

    Zanolla, J; Marques, Abc; da Costa, D C; de Souza, A S; Coutinho, M

    2017-09-01

    Several studies have investigated the effect of bleaching on dental tissues. The evaluation of the effect of home bleaching with 10% carbamide peroxide is important for assessing alterations in enamel microhardness that may affect dental health in terms of resistance to masticatory forces. This meta-analysis was performed in order to determine scientific evidence regarding the effects of home vital bleaching with 10% carbamide peroxide gel on the microhardness of human dental enamel. A systematic electronic literature search was conducted in the PubMed and Web of Science databases using search terms. Two independent researchers evaluated the information and methodological quality of the studies. Inclusion and exclusion criteria were established for article selection; further, only studies published in English were selected. Thirteen studies that met all of the inclusion and exclusion criteria were selected and underwent statistical analysis. The results of this meta-analysis showed no significant changes in enamel microhardness when using the 10% carbamide peroxide bleaching gel over periods of 7, 14 and 21 days. © 2016 Australian Dental Association.

  1. Fluoride reactions with dental enamel following different forms of fluoride supply

    International Nuclear Information System (INIS)

    Hellstroem, I.; Ericsson, Y.

    1976-01-01

    The reactions with dental enamel of NaF as tablets dissolved in different beverages or supplied with NaCl, simulating domestic salt fluoridation, were studied in tests with enamel surfaces and enamel powder. It was confirmed that powdered enamel can react quite differently from enamel surfaces under certain conditions. Enamel surfaces took up much more fluoride (F) from orange juice than from water or milk, and neither the low pH nor the citrate content of the juice increased the formation of unstable CaF 2 in the enamel, as judged from a KOH leaching test. The F uptake by enamel surfaces from 0.25 mM NaF in 175 mM NaCl, corresponding to a dish prepared with salt containing 500 parts/10 6 F, was about 80 percent greater than from the same NaF concentration in water. This NaCl concentration did not increase the formation of CaF 2 in the enamel, as judged from the KOH test, while 350 mM NaCl caused a moderate increase. The investigations support the administration of NaF tablets with orange juice and the plans for domestic salt fluoridation. (author)

  2. A comparative study on component volumes from outer to inner dental enamel in relation to enamel tufts.

    Science.gov (United States)

    Setally Azevedo Macena, Marcus; de Alencar e Silva Leite, Maria Luísa; de Lima Gouveia, Cíntia; de Lima, Tamires Alcoforado Sena; Athayde, Priscilla Alves Aguiar; de Sousa, Frederico Barbosa

    2014-06-01

    Dental enamel presents marked mechanical properties gradients from outer to inner enamel, a region lacking component volumes profiles. Tufts, structures of inner enamel, have been shown to play a role in enamel resilience. We aimed at comparing component volumes from inner to outer enamel in relation to enamel tufts. Transversal ground sections from the cervical half of unerupted human third molars (n=10) were prepared and histological points were selected along transversal lines (extending from innermost to outer enamel) traced across tufts and adjacent control areas without tufts. Component volumes were measured at each histological point. Component volumes ranges were: 70.6-98.5% (mineral), 0.02-20.78% (organic), 3.8-9.8% (total water), 3-9% (firmly bound water), and 0.02-3.3% (loosely bound water). Inner enamel presented the lowest mineral volumes and the highest non-mineral volumes. Mineral, water and organic contents differed as a function of the distance from innermost enamel but not between the tuft and control lines. Tufts presented opaqueness in polarizing microscopy (feature of fracture lines). Organic volume gradient correlated with a relatively flat profile of loosely bound water. Inner, but not outer enamel, rehydrated after air-dried enamel was heated to 50°C and re-exposed to room conditions, as predicted by the organic/water gradient profiles. Component volumes vary markedly from outer to inner enamel, but not between areas with or without tufts (that behave like fracture lines under polarizing microscopy). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Enamel Regeneration - Current Progress and Challenges

    Science.gov (United States)

    Baswaraj; H.K, Navin; K.B, Prasanna

    2014-01-01

    Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration. PMID:25386548

  4. Evaluation of enamel mineral loss around cavities prepared by the Er,Cr:YSGG laser and restored with different materials

    Science.gov (United States)

    Navarro, Ricardo Scarparo; Lago, Andréa. Dias Neves; Bonifácio, Clarissa Calil; Mendes, Fausto Medeiros; de Freitas, Patrícia Moreira; Baptista, Alessandra; Nunez, Silvia Cristina; Matos, Adriana Bona; Imparato, José Carlos P.

    2018-02-01

    The aim of this study was to evaluate the enamel demineralization around cavities prepared by Er,Cr:YSGG laser (2780 nm) and restored with different materials after an acid challenge. The human dental enamel samples were randomly divided in 12 groups (n=10): G1- high-speed drill (HD); G2- Er,Cr:YSGG laser L (3 W, 20 Hz, 53.05 J/cm2)(air 65% - water 55%); G3- L (4 W, 20 Hz, 70.74 J/cm2); G4- L (5 W, 20 Hz, 88.43 J/cm2). Each group was divided in subgroups: 1- glass ionomer cement (GIC), 2- resin modified GIC (RMGIC), 3- composite resin (C). Samples were submitted to an acid challenge (4.8 pH) for7 days. The calcium ion contend (ppm/mm2) from demineralizing solutions were analyzed by atomic emission spectrometry. ANOVA and LSD tests were performed (α=5%). The significant lower average values of calcium loss were observed on G2 + GIC, G2 + RMGIC, G1 + RMGIC (penamel demineralization. The findings of this in vitro study suggest that the Er,Cr:YSGG lased cavities restored with GIC or RMGIC or conventional drill cavities with RMGIC were effective on reducing the demineralization around restorations, showing an important potential in preventing secondary caries.

  5. A New Sugarcane Cystatin Strongly Binds to Dental Enamel and Reduces Erosion.

    Science.gov (United States)

    Santiago, A C; Khan, Z N; Miguel, M C; Gironda, C C; Soares-Costa, A; Pelá, V T; Leite, A L; Edwardson, J M; Buzalaf, M A R; Henrique-Silva, F

    2017-08-01

    Cystatin B was recently identified as an acid-resistant protein in acquired enamel pellicle; it could therefore be included in oral products to protect against caries and erosion. However, human recombinant cystatin is very expensive, and alternatives to its use are necessary. Phytocystatins are reversible inhibitors of cysteine peptidases that are found naturally in plants. In plants, they have several biological and physiological functions, such as the regulation of endogenous processes, defense against pathogens, and response to abiotic stress. Previous studies performed by our research group have reported high inhibitory activity and potential agricultural and medical applications of several sugarcane cystatins, including CaneCPI-1, CaneCPI-2, CaneCPI-3, and CaneCPI-4. In the present study, we report the characterization of a novel sugarcane cystatin, named CaneCPI-5. This cystatin was efficiently expressed in Escherichia coli, and inhibitory assays demonstrated that it was a potent inhibitor of human cathepsins B, K, and L ( K i = 6.87, 0.49, and 0.34 nM, respectively). The ability of CaneCPI-5 to bind to dental enamel was evaluated using atomic force microscopy. Its capacity to protect against initial enamel erosion was also tested in vitro via changes in surface hardness. CaneCPI-5 showed a very large force of interaction with enamel (e.g., compared with mucin and casein) and significantly reduced initial enamel erosion. These results suggest that the inclusion of CaneCPIs in dental products might confer protection against enamel erosion.

  6. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    Science.gov (United States)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  7. Dental lesions and restorative treatment in molars

    Directory of Open Access Journals (Sweden)

    Gheorghiu Irina-Maria

    2017-08-01

    Full Text Available This article review specific clinical issues of the molar teeth, as well as the therapeutic approach of their pathology. The dental pathology we face in the group of molars is related to: dental caries, dental trauma (crown and crown-root fractures, dental wear phenomena. The therapeutic approach of the molar teeth is represented by: restoration of the loss of hard dental tissues; endodontic treatments of pulpal and periapical complications; surgical treatment. The restorative treatments in molars are: direct restorations, with or without supplementary anchorage for obturations; inlay, onlay; prosthetic crown.

  8. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  9. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    Full Text Available We have previously identified amelotin (AMTN as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL and ameloblastin (AMBN was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  10. SUSTENTAÇÃO DE ESMALTE COM IONÔMEROS DE VIDRO E RESINA COMPOSTA: EFEITO NA RESISTÊNCIA À FRATURA DAS CÚSPIDES DE DENTES RESTAURADOS SUPPORTING ENAMEL WITH GLASS IONOMER CEMENT AND COMPOSITE RESIN: EFFECT ON FRACTURE RESISTANCE OF CUSPS OF RESTORED TEETH

    Directory of Open Access Journals (Sweden)

    Angelo Stefano SECCO

    1997-10-01

    Full Text Available Este estudo determinou a resistência e o tipo de fratura do esmalte suportado pelos materiais restauradores ionômeros de vidro convencional e modificado por resina e resina composta, bem como a influência dessa técnica restauradora na resistência das cúspides dos dentes. A remoção da estrutura dental para o preparo de cavidades tipo classe II e a presença de esmalte socavado diminuiram significativamente a resistência das cúspides dos dentes em relação ao dente hígido (p This study determined the resistance to fracture and its pattern for enamel supported with conventional and modified glass ionomer cements, and composite resin restorative materials, as well as the influence of these restorative techniques on cuspal strength of teeth. Removal of dental structure by class II cavity preparations and unsupported enamel had decreased significantly the cuspal strength in relation to healthy teeth (p < 0.01. Restorative materials used to support enamel reduced the fracture rate of restored cusps, but did not increase the fracture resistance values statistically. All tested groups presented alterations in the fracture pattern

  11. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    Energy Technology Data Exchange (ETDEWEB)

    Verde, A Vila [Department of Chemical Engineering, Fenske Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Ramos, M M D [Department of Physics, University of Minho, 4710-057 Braga (Portugal); Stoneham, A M [London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2007-05-21

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO{sub 2} at 10.6 {mu}m and Er:YAG at 2.94 {mu}m). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO{sub 2} and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of {approx}10 {mu}s are used, the CO{sub 2} laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 {mu}s duration can induce high stress transients which may cause unwanted cracking.

  12. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    Science.gov (United States)

    Vila Verde, A.; Ramos, M. M. D.; Stoneham, A. M.

    2007-05-01

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO2 at 10.6 µm and Er:YAG at 2.94 µm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ap10 µs are used, the CO2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 µs duration can induce high stress transients which may cause unwanted cracking.

  13. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    International Nuclear Information System (INIS)

    Verde, A Vila; Ramos, M M D; Stoneham, A M

    2007-01-01

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO 2 at 10.6 μm and Er:YAG at 2.94 μm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO 2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ∼10 μs are used, the CO 2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 μs duration can induce high stress transients which may cause unwanted cracking

  14. To Analyse the Erosive Potential of Commercially Available Drinks on Dental Enamel and Various Tooth Coloured Restorative Materials - An In-vitro Study.

    Science.gov (United States)

    Karda, Babita; Jindal, Ritu; Mahajan, Sandeep; Sandhu, Sanam; Sharma, Sunila; Kaur, Rajwinder

    2016-05-01

    With the enormous change in life style pattern of a common man through the past few decades, there has been proportional variation in the amount and frequency of consumption of drinks. An increased consumption of these drinks will concurrently increase enamel surface roughness by demineralization, resulting in hypersensitivity and elevated caries risk. The present study was designed to evaluate the erosive potential of commercially available drinks on tooth enamel and various tooth coloured restorative materials. Extracted human teeth were taken and divided into four groups i.e. tooth enamel, glass ionomer cement, composite and compomer. Four commercially available drinks were chosen these were Coca -Cola, Nimbooz, Frooti and Yakult. The pH of each drink was measured. Each group was immersed in various experimental drinks for a period of 14 days. The erosive potential of each drink was measured by calculating the change in average surface roughness of these groups after the immersion protocol in various drinks. The data analysis was done by One Way Anova, Post-Hoc Bonferroni, and paired t -test. Group II-GIC showed highest values for mean of change in average surface roughness and the values were statistically significant (pCoca-cola showed the highest erosive potential and Yakult showed the lowest, there was no statistical significant difference between the results shown by Yakult and Frooti. Characteristics which may promote erosion of enamel and tooth coloured restorative materials were surface texture of the material and pH of the drinks.

  15. Effect of moisture on dental enamel in the interaction of two orthodontic bonding systems.

    Science.gov (United States)

    Bertoz, André Pinheiro de Magalhães; de Oliveira, Derly Tescaro Narcizo; Gimenez, Carla Maria Melleiro; Briso, André Luiz Fraga; Bertoz, Francisco Antonio; Santos, Eduardo César Almada

    2013-01-01

    The purpose of this study was to assess by means of scanning electron microscopy (SEM) the remaining adhesive interface after debonding orthodontic attachments bonded to bovine teeth with the use of hydrophilic and hydrophobic primers under different dental substrate moisture conditions. Twenty mandibular incisors were divided into four groups (n = 5). In Group I, bracket bonding was performed with Transbond MIP hydrophilic primer and Transbond XT adhesive paste applied to moist substrate, and in Group II a bonding system comprising Transbond XT hydrophobic primer and adhesive paste was applied to moist substrate. Brackets were bonded to the specimens in Groups III and IV using the same adhesive systems, but on dry dental enamel. The images were qualitatively assessed by SEM. The absence of moisture in etched enamel enabled better interaction between bonding materials and the adamantine structure. The hydrophobic primer achieved the worst micromechanical interlocking results when applied to a moist dental structure, whereas the hydrophilic system proved versatile, yielding acceptable results in moist conditions and excellent interaction in the absence of contamination. The authors assert that the best condition for the application of primers to dental enamel occurs in the absence of moisture.

  16. Utilization of radiometric method in evaluation of wear on human dental enamel in vitro by dental porcelain glazed and polished; Utilizacao do metodo radiometrico na avaliacao in vitro do desgaste provocado ao esmalte dental humano por porcelanas dentais glazeadas e polidas

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa; Campos, Tomie Nakakuki de; Adachi, Eduardo Makoto [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Protese]. E-mail: katekawa@usp.br; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mitiko@curiango.ipen.br

    2005-07-01

    The dental porcelain is a material commonly used in prosthesis. Disadvantages of dental porcelain use include possibility to cause tooth or dental materials wear. Before its use in the mouth, surfaces are treated with polishing and/or glazing. This research used the radiometric method to verify the influence of these surface treatments on the porcelains of commercial brands: Ceramco II, Noritake and Finesse. This method was originally developed for dentifrice abrasiveness evaluation. Five specimens of dental enamel and 10 specimens of each porcelain (5 glazed, 5 polished) were used. The dental enamel was flattened and irradiated with neutrons from the IEA-R1 (IPEN/CNEN) nuclear reactor. Then it was weared by each porcelain in sliding motion, with water. After 2,500 cycles for each porcelain specimen, the released enamel residue was measured. The enamel wear was evaluated by measuring beta activity of {sup 32}P transferred to water from the irradiated tooth. Results varied from 2.57 to 5.81 {mu}g of enamel /mm{sup 2} weared surface. There was no statistical difference ({alpha}=0.05) between dental enamel wear caused by the same porcelains glazed or polished. The results suggest that adequate surface finishing depend on the type of dental porcelain. (author)

  17. Influence of bleaching agents on surface roughness of sound or eroded dental enamel specimens.

    Science.gov (United States)

    Azrak, Birgül; Callaway, Angelika; Kurth, Petra; Willershausen, Brita

    2010-12-01

    The aim of the present in vitro study was to assess the effect of bleaching agents on eroded and sound enamel specimens. Enamel specimens prepared from human permanent anterior teeth were incubated with different bleaching agents containing active ingredients as 7.5 or 13.5% hydrogen peroxide or 35% carbamide peroxide, ranging in pH from 4.9 to 10.8. The effect of the tooth whitening agents on surface roughness was tested for sound enamel surfaces as well as for eroded enamel specimens. To provoke erosive damage, the enamel specimens were incubated for 10 hours with apple juice (pH = 3.4). Afterwards, pretreated and untreated dental slices were incubated with one of the bleaching agents for 10 hours. The surface roughness (R(a)) of all enamel specimens (N = 80) was measured using an optical profilometric device. A descriptive statistical analysis of the R(a) values was performed. The study demonstrated that exposure to an acidic bleaching agent (pH = 4.9) resulted in a higher surface roughness (p = 0.043) than treatment with a high peroxide concentration (pH = 6.15). If the enamel surface was previously exposed to erosive beverages, subsequent bleaching may enhance damage to the dental hard tissue. Bleaching agents with a high concentration of peroxide or an acidic pH can influence the surface roughness of sound or eroded enamel. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  18. Clinical Effect of Dental Adhesive on Marginal Integrity in Class I And Class II Resin-Composite Restorations

    Directory of Open Access Journals (Sweden)

    Manchorova-Veleva Neshka A.

    2015-12-01

    Full Text Available BACKGROUND: Dental adhesives are believed to influence marginal adaptation and marginal discoloration when used under posterior resin-based composite restorations. Studies on the latest adhesive systems reveal that the group of the three-step etch-and-rinse adhesive (3-E&RA and the one-step self-etch adhesive (1-SEA have entirely different bonding mechanisms, as well as different bond strength and resistance to chemical, thermal and mechanical factors. STUDY OBJECTIVES: A hypothesis that a 1-SEA would result in greater enamel marginal discoloration and poorer marginal adaptation than a 3-E&RA was tested. MATERIAL AND METHODS: One hundred restorations were placed with a 1-SEA and 100 restorations with a 3-E&RA. Teeth were restored with Filtek Supreme nanofilled resin-composite and were evaluated for marginal adaptation and marginal discoloration at baseline, and 6 months, 12 months, and 36 months postoperatively. RESULTS: The statistical analysis revealed significant differences in marginal integrity between test groups. The 1-SEA resulted in greater enamel marginal discoloration and poorer marginal adaptation than the 3-E&RA at any recall time. CONCLUSIONS: Marginal adaptation and marginal discoloration depend on the type of dentin adhesive used. The restorations with Filtek Supreme and Scotchbond MP are better than the restorations with Adper Prompt L-Pop with regard to the marginal adaptation and marginal discoloration at 6-, 12- and 36-month evaluations.

  19. Laser investigation of the non-uniformity of fluorescent species in dental enamel

    Science.gov (United States)

    Tran, Stephanie U.; Ridge, Jeremy S.; Nelson, Leonard Y.; Seibel, Eric J.

    In the present study, artificial type I and type II erosions were created on dental specimen using acetic acid and EDTA respectively. Specimens were prepared by etching extracted teeth samples in acid to varying degrees, after which the absolute fluorescence intensity ratio of the etched enamel relative to sound enamel was recorded for each specimen using 405 and 532 nm laser excitation. Results showed differences in the fluorescence ratio of etched to sound enamel for type I and II erosions. These findings suggest a non-uniform distribution of fluorescent species in the interprismatic region as compared to the prismatic region.

  20. High Radiation Doses from Radiotherapy Measured by Electron Spin Resonance in Dental Enamel

    International Nuclear Information System (INIS)

    Pass, B.; Wood, R.E.; Liu, F.; McLean, M.; Aldrich, J.E.

    1998-01-01

    For radiotherapy, an error in the complicated treatment planning or treatment procedure is a possibility, however remote. Thus, in the present study electron spin resonance (ESR) in dental enamel was investigated for the first time as a means of retrospective dosimetry for validating applied radiotherapy doses to the head and neck regions. Total absorbed radiation doses measured by ESR in dental enamel were compared to the doses determined by treatment planning for 19 patients who received radiotherapy for intra-oral, pharyngeal or laryngeal malignancies, or total-body irradiation prior to bone marrow transplants (BMT). For the 15 tumour irradiations there was, within the framework of the tooth positions as presented, general agreement between the treatment planned and ESR dose determinations. There were, however, both significant and minor discrepancies. For the BMT patients there were major discrepancies for two of the four patients investigated. This study indicates that ESR in dental enamel may be useful as the only means of retrospective dosimetry for validating applied radiotherapy doses after treatment. However, further research must be carried out before this technique can be accepted as accurate and reliable. (author)

  1. Enamel formation and amelogenesis imperfecta.

    Science.gov (United States)

    Hu, Jan C-C; Chun, Yong-Hee P; Al Hazzazzi, Turki; Simmer, James P

    2007-01-01

    Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel. Copyright 2007 S. Karger AG, Basel.

  2. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion

    Science.gov (United States)

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (pmeasurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

  3. Comparative study of dental enamel loss after debonding braces by analytical scanning electron microscopy (SEM).

    Science.gov (United States)

    Rodríguez-Chávez, Jacqueline Adelina; Arenas-Alatorre, Jesús; Belio-Reyes, Irma Araceli

    2017-07-01

    Clinical procedures when shear forces are applied to brackets suggest adhesion forces between 2.8 and 10.0 MPa as appropriate. In this study dental enamel was evaluated by scanning electron microscopy (SEM) before and after removing the brackets. Thirty bicuspids (previous prophylaxis) with metallic brackets (Roth Inovation 0.022 GAC), Transbond Plus SEP 3M Unitek adhesive and Transbond XT 3M resin were used. The samples were preserved to 37°C during 24 hr and submited to tangential forces with the Instron Universal machine 1.0 mm/min speed load strength resistance debonding. Also the Adhesive Remanent Index (ARI) test was made, evaluating the bracket base and the bicuspid surface. All the bracket SEM images were processed with AutoCAD to determine the enamel detached area. The average value was 6.86 MPa (SD ± 3.2 MPa). ARI value 1= 63.3%, value 2= 20%, value 3= 13.3% and 33% presented value 0. All those samples with dental enamel loss, presented different situations as fractures, ledges, horizontal, and vertical loss in some cases, and some scratch lines. There is no association between the debonding resistance and enamel presence. Less than half of the remanent adhesive on the dental enamel was present in most of the samples when the ARI test was applied. When the resin area increases, the debonding resistance also increases, and when the enamel loss increases, the resin free metallic area of the bracket base decreases in the debonding. © 2017 Wiley Periodicals, Inc.

  4. Dental enamel defects in adult coeliac disease: prevalence and correlation with symptoms and age at diagnosis.

    Science.gov (United States)

    Trotta, Lucia; Biagi, Federico; Bianchi, Paola I; Marchese, Alessandra; Vattiato, Claudia; Balduzzi, Davide; Collesano, Vittorio; Corazza, Gino R

    2013-12-01

    Coeliac disease is a condition characterized by a wide spectrum of clinical manifestations. Any organ can be affected and, among others, dental enamel defects have been described. Our aims were to study the prevalence of dental enamel defects in adults with coeliac disease and to investigate a correlation between the grade of teeth lesion and clinical parameters present at the time of diagnosis of coeliac disease. A dental examination was performed in 54 coeliac disease patients (41 F, mean age 37 ± 13 years, mean age at diagnosis 31 ± 14 years). Symptoms leading to diagnosis were diarrhoea/weight loss (32 pts.), anaemia (19 pts.), familiarity (3 pts.); none of the patients was diagnosed because of enamel defects. At the time of evaluation, they were all on a gluten-free diet. Enamel defects were classified from grade 0 to 4 according to its severity. Enamel defects were observed in 46/54 patients (85.2%): grade 1 defects were seen in 18 patients (33.3%) grade 2 in 16 (29.6%), grade 3 in 8 (14.8%), and grade 4 in 4 (7.4%). We also observed that grades 3 and 4 were more frequent in patients diagnosed with classical rather than non-classical coeliac disease (10/32 vs. 2/20). However, this was not statistically significant. This study confirms that enamel defects are common in adult coeliac disease. Observation of enamel defects is an opportunity to diagnose coeliac disease. Copyright © 2013 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  5. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    Science.gov (United States)

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  6. STRATIFICATION TECHNIQUE IN MAXILLARY ANTERIOR INCISORS RESTORATION

    Directory of Open Access Journals (Sweden)

    Janet Kirilova

    2014-08-01

    Full Text Available Background: Because of their main characteristics: transparency, opalescence and color density, the tooth structures are extremely difficult to restore by means of completely inconspicuous restorations of the natural tooth tissue characteristics. The aim is to show successful aesthetic restoration of III Class dental lesions in upper incisors by means of high quality composites. Materials and method: A female patient visited the clinic being not satisfied with the esthetics of her front teeth. The intraoral examination showed previous restorations and carious lesions in 12, 11, 21, 22. After defining the tooth color a silicone key was made. The treatment was performed under anesthesia, the existing restorations were removed and the carious lesions in teeth 11, 12, 21, 22 were treated with restorations using Vanini edge preparation. The teeth were restored by means of stratification technique. After etching and rinsing, bonding was applied for 20 sec. and then polymerized. After fixing the silicone key enamel shade was applied and then dentine shades UD2, UD3, UD4 of 0.5mm thickness each. The polymerization was done layer by layer. Applied were 10 to 15 layers in total. The composite material was preheated in oven up to 55. Teeth 21 and 22 are restored with Enamel Plus HRi (Micerium. Results and Discussion: Excellent aesthetics is achieved with composite material. They have enamel and dentine shades and allow high quality aesthetics. The polishing is excellent in Enamel Plus HRi (Micerium which is typical for this type of composite. The result of the carious lesion treatment in this patient is real improvement of the dental appearance of her anterior incisors. Conclusion: Materials show excellent aesthetic results due to their characteristics and the stratification technique used.

  7. Prenatal effects by exposing to amoxicillin on dental enamel in Wistar rats.

    Science.gov (United States)

    Gottberg, Beatriz; Berné, Jeanily; Quiñónez, Belkis; Solórzano, Eduvigis

    2014-01-01

    Amoxicillin is an antibiotic widely prescribed; its most frequent side effects are gastrointestinal disorders and hypersensitivity reactions. Over the last 10 years studies have been published which suggest that amoxicillin may cause dental alterations similar to dental fluorosis. Never the less, the results are not conclusive, this is why it was planned the need to make controlled studies on test animals. The purpose of this study was to determine the effect produced by amoxicillin prenatal administration on dental enamel in Wistar rats. 12 pregnant adult rats were used distributed into five different groups: witness control (n=2) didn't get any treatment; negative control (n=2) they were prescribed with saline solution; positive control (n=3) they were prescribed with tetracycline 130 mg/kg, and two groups (n=3 and n=2) treated with amoxicillin doses of 50 and 100 mg/kg respectively. The treatments were daily administered by mouth, from the 6th gestation day to the end of gestation. Twenty five days after they were born, the offspring were sacrificed with a sodium pentobarbital overdose, the mandible was dissected and the first lower molars were gotten. The samples were fixed in 10% formaldehyde solution and clinically and histologically observed to determine any enamel disorders. hypomineralization was observed in every single sample of the tetracyclic and amoxicillin treated group 100 mg/kg, meanwhile only 50% from the group administered with 50 mg/kg amoxicillin showed this histological disorder. the side effect caused by amoxicillin on dental enamel was doses dependent.

  8. Synthetic tooth enamel: SEM characterization of a fluoride hydroxyapatite coating for dentistry applications

    Directory of Open Access Journals (Sweden)

    Marise Oliveira

    2007-06-01

    Full Text Available An alternative to etching enamel for retention of an adhesive is to grow crystals on the enamel surface. The potential advantages of crystal growth include easy procedure and less damage to the enamel. These crystals retain the adhesive or are the actual dental restoration. In this work, a paste of synthetic enamel was used to grow crystals of fluoride hydroxyapatite (F-HA onto the human tooth surface. This technique can be used for several dentistry applications like enamel whitening, strengthening and restoration of early carie lesions. The low cost of reagents and simplicity of the technique along with the biocompatibility of the paste render possible the utilization on the market. The samples were prepared through the application of the paste by the incremental technique. The results obtained by scanning electron microscope (SEM/EDX have indicated the deposition of a homogeneous layer of calcium phosphate that was grown onto the enamel substrate. The average thickness of the deposited film was in the range of 50-100 µm and with a similar density from the natural enamel observed by radiographic images.

  9. Prevalence of dental anomalies and enamel hypoplasia in primary dentition among preschool children of West Godavari District, Andhra Pradesh -A cross - sectional study

    Directory of Open Access Journals (Sweden)

    Suzan Sahana

    2013-01-01

    Full Text Available Background: It is axiomatic that Pediatric dental anomalies and enamel hypoplasia (E.H are routinely encountered in primary dentition and early detection and prudent management of the condition facilitates normal occlusal development. Objectives: To determine the prevalence of various dental anomalies and enamel hypoplasia in preschool children between two to six years of age. Materials & Method: A total of 1898 children, between two to six years were randomly selected and screened for dental anomalies and enamel hypoplasia The chi square test was used to analyze the data statistically. Results: The overall prevalence rate of dental anomalies and enamel hypoplasia in this study was 0.63% and 8.95% respectively. Double teeth were the most frequently reported dental anomaly while supernumerary teeth were least reported. None of them reported with hypodontia.

  10. Dental stigmata and enamel thickness in a probable case of congenital syphilis from XVI century Croatia.

    Science.gov (United States)

    Lauc, Tomislav; Fornai, Cinzia; Premužić, Zrinka; Vodanović, Marin; Weber, Gerhard W; Mašić, Boris; Rajić Šikanjić, Petra

    2015-10-01

    To analyse the dental remains of an individual with signs of congenital syphilis by using macroscopic observation, CBCT and micro-CT images, and the analysis of the enamel thickness. Anthropological analysis of human skeletal remains from the 16th century archaeological site Park Grič in Zagreb, Croatia discovered a female, 17-20 years old at the time of death, with dental signs supportive of congenital syphilis: mulberry molars and canine defects, as well as non-specific hypoplastic changes on incisors. The focus of the analysis was on three aspects: gross morphology, hypoplastic defects of the molars, canines and incisors, as well as enamel thickness of the upper first and second molars. The observed morphology of the first molars corresponds to the typical aspect of mulberry molars, while that of the canines is characterised by hypomineralisation. Hypoplastic grooves were observed on the incisal edges of all incisors. The enamel of the first molars is underdeveloped while in the second molars a thick-enamelled condition is observed. Our observations for the dental and skeletal evidence are supportive to a diagnosis of congenital syphilis for this specimen from XVI century Croatia. The use of CT imaging helped documenting the diagnostic features and quantifying the effect of the dental stigmata on first molars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of enamel by scanning electron microscopy green LED associated to hydrogen peroxide 35% for dental bleaching

    Science.gov (United States)

    Monteiro, Juliana S. C.; de Oliveira, Susana C. P. S.; Zanin, Fátima A. A.; Santos, Gustavo M. P.; Sampaio, Fernando J. P.; Gomes Júnior, Rafael Araújo; Gesteira, Maria F. M.; Vannier-Santos, Marcos A.; Pinheiro, Antônio Luiz B.

    2014-02-01

    Dental bleaching is a frequently requested procedure in clinical dental practice. The literature is contradictory regarding the effects of bleaching agents on both morphology and demineralization of enamel after bleaching. The aim of this study was to analyze by SEM the effect of 35% neutral hydrogen peroxide cured by green LED. Buccal surfaces of 15 pre-molars were sectioned and marked with a central groove to allow experimental and control groups on the same specimen. For SEM, 75 electron micrographs were evaluated by tree observers at 43X, 220X and 1000X. Quantitative analysis for the determination of the surface elemental composition of the samples through X-ray microanalysis by SEM was also performed. The protocol tested neither showed significant changes in mineral composition of the samples nor to dental enamel structure when compared to controls. SEM analysis allowed inferring that there were marked morphological differences between the enamel samples highlighting the need for the use of the same tooth in comparative morphological studies. The tested protocol did not cause morphological damage the enamel surface when compared to their respective controls.

  12. Distribution patterns of elements in dental enamel of G. blacki: a preliminary dietary investigation using SRXRF

    International Nuclear Information System (INIS)

    Qu, Yating; Hu, Yaowu; Shang, Xue; Wang, Changsui; Jin, Changzhu; Zhang, Yingqi

    2013-01-01

    We measured the elemental mappings in dental enamel of Gigantopithecus blacki (n=3) using synchrotron radiation X-ray fluorescence (SRXRF) to understand the dietary variation during the time of tooth eruption. In order to account for the effects of diagenesis on the variation of elements in these fossil teeth, we compared the Fe and Mn elemental distribution and levels in dental enamel of G. blacki with that of a single modern pig tooth and found no differences. The observation of the variations of Sr, Ca and RE (rare earth elements) distribution in the incremental lines reveals that the plant foods utilized by G. blacki from the early Pleistocene or the middle Pleistocene had varied during the formation of dental enamel, possibly caused by the change of living environment or food resources. The variations of elemental distribution in different incremental lines are very promising to understand the nutritional and physical stress of G. blacki during the tooth eruption and environmental adaptations. (orig.)

  13. Distribution patterns of elements in dental enamel of G. blacki: a preliminary dietary investigation using SRXRF

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yating; Hu, Yaowu; Shang, Xue; Wang, Changsui [Chinese Academy of Sciences, Lab of Human Evolution, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing (China); University of Chinese Academy of Sciences, Department of Scientific History and Archaeometry, School of Humanities, Beijing (China); Jin, Changzhu; Zhang, Yingqi [Chinese Academy of Sciences, Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing (China)

    2013-04-15

    We measured the elemental mappings in dental enamel of Gigantopithecus blacki (n=3) using synchrotron radiation X-ray fluorescence (SRXRF) to understand the dietary variation during the time of tooth eruption. In order to account for the effects of diagenesis on the variation of elements in these fossil teeth, we compared the Fe and Mn elemental distribution and levels in dental enamel of G. blacki with that of a single modern pig tooth and found no differences. The observation of the variations of Sr, Ca and RE (rare earth elements) distribution in the incremental lines reveals that the plant foods utilized by G. blacki from the early Pleistocene or the middle Pleistocene had varied during the formation of dental enamel, possibly caused by the change of living environment or food resources. The variations of elemental distribution in different incremental lines are very promising to understand the nutritional and physical stress of G. blacki during the tooth eruption and environmental adaptations. (orig.)

  14. Distribution patterns of elements in dental enamel of G. blacki: a preliminary dietary investigation using SRXRF

    Science.gov (United States)

    Qu, Yating; Jin, Changzhu; Zhang, Yingqi; Hu, Yaowu; Shang, Xue; Wang, Changsui

    2013-04-01

    We measured the elemental mappings in dental enamel of Gigantopithecus blacki ( n=3) using synchrotron radiation X-ray fluorescence (SRXRF) to understand the dietary variation during the time of tooth eruption. In order to account for the effects of diagenesis on the variation of elements in these fossil teeth, we compared the Fe and Mn elemental distribution and levels in dental enamel of G. blacki with that of a single modern pig tooth and found no differences. The observation of the variations of Sr, Ca and RE (rare earth elements) distribution in the incremental lines reveals that the plant foods utilized by G. blacki from the early Pleistocene or the middle Pleistocene had varied during the formation of dental enamel, possibly caused by the change of living environment or food resources. The variations of elemental distribution in different incremental lines are very promising to understand the nutritional and physical stress of G. blacki during the tooth eruption and environmental adaptations.

  15. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    Science.gov (United States)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  16. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    International Nuclear Information System (INIS)

    Lubarsky, Gennady V; Lemoine, Patrick; Meenan, Brian J; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-01-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix. (papers)

  17. Developmental defects of enamel and dental caries in the primary dentition: A systematic review and meta-analysis.

    Science.gov (United States)

    Costa, Francine S; Silveira, Ethieli R; Pinto, Gabriela S; Nascimento, Gustavo G; Thomson, William Murray; Demarco, Flávio F

    2017-05-01

    This systematic review and meta-analysis evaluated the association between developmental defects of enamel and dental caries in the primary dentition. Electronic searches were performed in PubMed, Web of Knowledge, Scopus and Scielo for the identification of relevant studies. Observational studies that examined the association between developmental defects of enamel and dental caries in the deciduous dentition were included. Additionally, meta-analysis, funnel plots and sensitivity analysis were employed to synthesize the available evidence. Multivariable meta-regression analysis was performed to explore heterogeneity among studies. A total of 318 articles were identified in the electronic searches. Of those, 16 studies were included in the meta-analysis. Pooled estimates revealed that children with developmental defects of enamel had higher odds of having dental caries (OR 3.32; 95%CI 2.41-4.57), with high heterogeneity between studies (I 2 80%). Methodological characteristic of the studies, such as where it was conducted, the examined teeth and the quality of the study explained about 30% of the variability. Concerning type of defect, children with hypoplasia and diffuse opacities had higher odds of having dental caries (OR 4.28; 95%CI 2.24-8.15; OR1.42; 95%CI 1.15-1.76, respectively). This systematic review and meta-analysis demonstrates a clear association between developmental defects of enamel and dental caries in the primary dentition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enamel microabrasion: An overview of clinical and scientific considerations

    Science.gov (United States)

    Pini, Núbia Inocencya Pavesi; Sundfeld-Neto, Daniel; Aguiar, Flavio Henrique Baggio; Sundfeld, Renato Herman; Martins, Luis Roberto Marcondes; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2015-01-01

    Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface with mechanical pressure from a rubber cup coupled to a rotatory mandrel of a low-rotation micromotor. If necessary, this treatment can be safely combined with bleaching for better esthetic results. Recent studies show that microabrasion is a conservative treatment when the enamel wear is minimal and clinically imperceptible. The most important factor contributing to the success of enamel microabrasion is the depth of the defect, as deeper, opaque stains, such as those resulting from hypoplasia, cannot be resolved with microabrasion, and require a restorative approach. Surface enamel alterations that result from microabrasion, such as roughness and microhardness, are easily restored by saliva. Clinical studies support the efficacy and longevity of this safe and minimally invasive treatment. The present article presents the clinical and scientific aspects concerning the microabrasion technique, and discusses the indications for and effects of the treatment, including recent works describing microscopic and clinical evaluations. PMID:25610848

  19. The effect of baking soda when applied to bleached enamel prior to restorative treatment.

    Science.gov (United States)

    Tostes, Bhenya Ottoni; Mondelli, Rafael Francisco Lia; Lima-Arsati, Ynara Bosco de Oliveira; Rodrigues, Jose Augusto; Costa, Leonardo Cesar

    2013-08-01

    This in vitro study evaluated the effect of 10% baking soda solution and sodium bicarbonate powder (applied with jets) when applied to bleached enamel prior to restorative treatment. The surfaces of 40 bovine incisors were flattened and divided into 5 groups (n = 8): Group B (bleached and restored, negative control), Group W (bleached, stored in distilled water for 7 days, and restored), Group BSJ (bleached, abraded with baking soda jet for 1 min, and restored), Group BSS (bleached, application of 10% baking soda solution for 5 min, and restored), and Group R (restored, without bleaching, positive control). The samples were bleached in 1 session with 3 applications of 35% HP-based gel and activated with a LED appliance for 9 min each. Resin composite cylinders (2 mm height and 0.8 mm diameter) were made on the enamel surface after the acid etching and a conventional 1-step single vial adhesive application was performed. After storage in distilled water (37 ± 1°C, 24 hr), the microshear bond test was performed (1 mm/min). ANOVA and Tukey tests were applied to compare the results. The mean results of these tests showed that Groups W, BBS, and R were not statistically different. These groups also indicated a higher bond strength when compared with Groups B and BSJ. The application of 10% baking soda solution for 5 min may be an alternative pre-restorative treatment for bleached enamel, but further studies are needed to consider whether or not this treatment may be effectively used in clinical practice.

  20. Bioinspired design of dental multilayers.

    Science.gov (United States)

    Huang, M; Wang, R; Thompson, V; Rekow, D; Soboyejo, W O

    2007-01-01

    This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crown materials and the joins that attach them to dentin) are shown to promote significant reductions in stress and improvements in the critical crack size. Special inspiration is drawn from the low stress concentrations associated with the graded distributions in the dentin-enamel-junction (DEJ). The implications of such functionally graded structures are also discussed for the design of dental restorations.

  1. Signal processing for radiation dosimetry using EPR in dental enamel: comparison of three methods

    International Nuclear Information System (INIS)

    Pass, B. Barry.; Shames, A.I. Alexander I.

    2000-01-01

    We are reporting an alternative method of extracting useful dose information from complex EPR spectra of dental enamel. Digital differentiation of the initial first derivative spectrum followed by filtering is used to clearly distinguish the radiation-induced signal from the native background signal. The peak-to-peak height of the resulting second derivative of the signal is then measured as an indication of absorbed dose. This method does not require preliminary elimination of the native background signal, and is not effected by any uncertainty in the determination of the background signal or by errors resulting from the subtraction of two signals of comparable magnitude. Ten enamel samples were irradiated with known doses in the range of 250-10 5 mGy. There was agreement for all the samples, within the typical experimental error of ±10% for EPR dosimetry in dental enamel, between the doses determined by two common techniques using native signal subtraction and the doses determined by the new second derivative method proposed here

  2. Dental Pulp Defence and Repair Mechanisms in Dental Caries.

    Science.gov (United States)

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J; Cooper, Paul R

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  3. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Farges

    2015-01-01

    Full Text Available Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  4. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Science.gov (United States)

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (perosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  5. Restorative Rehabilitation of a Patient with Dental Erosion.

    Science.gov (United States)

    AlShahrani, Mohammed Thamer; Haralur, Satheesh B; Alqarni, Mohammed

    2017-01-01

    Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition.

  6. Restorative Rehabilitation of a Patient with Dental Erosion

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer AlShahrani

    2017-01-01

    Full Text Available Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition.

  7. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    Science.gov (United States)

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  8. Amelogenin and Enamel Biomimetics

    Science.gov (United States)

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  9. In vitro study of the diode laser effect on artificial demineralized surface of human dental enamel; Estudo in vitro do efeito do laser diodo sobre a superficie de esmalte dental humano desmineralizado artificialmente

    Energy Technology Data Exchange (ETDEWEB)

    Ebel, Patricia

    2003-07-01

    In scientific literature there are many reports about fusion and resolidification of dental enamel after laser irradiation and their capability to generate surfaces with increased resistance to demineralization compared to non-irradiated areas. The use of high power diode laser on demineralized surfaces of human dental enamel is presented as a good alternative in caries prevention. The purpose of this study is to investigate the morphological changes produced by the use of one high power diode laser on human dental enamel surface after demineralization treatment with lactic acid, under chosen parameters. Fifteen samples of human dental molars were used and divided in four groups: control - demineralization treatment with lactic acid and no irradiation, and demineralization treatment with lactic acid followed of irradiation with 212,20 mJ/cm{sup 2}, 282,84 mJ/cm{sup 2} and 325,38 mJ/cm{sup 2}, respectively. The samples were irradiated with high power diode laser (808 nm) with a 300 {mu}m diameter fiber optics. Black ink was used on enamel surface to enhance the superficial absorption. The samples were studied by optical microscopy and scanning electron microscopy. Modifications on the enamel surfaces were observed. Such modifications were characterized by melted and re-solidified region of the enamel. According with our results the best parameter was 2.0 W, presenting the most uniform surface. The use of high power diode laser as demonstrated in this study is able to promote melting and re-solidification on human dental enamel. (author)

  10. Retrospective dosimetry by electronic paramagnetic resonance (EPR) in dental enamel

    International Nuclear Information System (INIS)

    Dubner, D.; Gisone, P.; Perez, M.R.; Davila, F.A.; Boveris, A.; Puntarulo, S.

    1998-01-01

    Biophysical dosimetry based on EPR in biological solid samples (like bone and teeth) or in organic materials (like textile fibres, sugar, etc.) is a complementary technique that could contribute, along with the biological dosimetry, to the retrospective evaluation of the absorbed dose in accidental situations. Dental enamel could be considered as the only tissue with structure and composition essentially constant over time: this characteristic feature allows its use as an index of radiation exposure since tooth retains indefinitely its radiation history. Samples of human molars were exposed to gamma-Rays (Co 60) with doses between 0,5 Gy to 10 Gy. After a chemical treatment of samples, enamel was removed by grinding with a dental drill and reduced to a fine powder. A characteristic EPR signal was detected at g=2.002. The dose effect curves were done using 20 mw of microwave power. Measurements were done both, with flat cells and disposable Pasteur pipettes allowing the use of lower amounts of sample. The intensity of the signal was proportional to the dose and linearity was verified in both cases. We discuss the applicability of this technique in evaluating radiation dose in accidental overexposures. (author) [es

  11. Trace elementary concentration in enamel after dental bleaching using HI-ERDA

    International Nuclear Information System (INIS)

    Added, N.; Rizzutto, M.A.; Curado, J.F.; Francci, C.; Markarian, R.; Mori, M.

    2006-01-01

    Changes of elementary concentrations in dental enamel after a bleaching treatment with different products, is presented, with special focus on the oxygen contribution. Concentrations for Ca, P, O and C and some other trace elements were obtained for enamel of bovine incisor teeth by HI-ERDA measurements using a 35 Cl incident beam and an ionization chamber. Five groups of teeth with five samples each were treated with a different bleaching agents. Each tooth had its crown sectioned in two halves, one for bleaching test and one the other used as a control. Average values of C/Ca, O/Ca, F/Ca enrichment factors were found. The comparison between bleached and non-bleached halves indicates that bleaching treatment did not affect the mineral structure when low-concentration whitening systems were used. The almost constant oxygen concentration in enamel, suggests little changes due to whitening therapy

  12. Trace elementary concentration in enamel after dental bleaching using HI-ERDA

    Science.gov (United States)

    Added, N.; Rizzutto, M. A.; Curado, J. F.; Francci, C.; Markarian, R.; Mori, M.

    2006-08-01

    Changes of elementary concentrations in dental enamel after a bleaching treatment with different products, is presented, with special focus on the oxygen contribution. Concentrations for Ca, P, O and C and some other trace elements were obtained for enamel of bovine incisor teeth by HI-ERDA measurements using a 35Cl incident beam and an ionization chamber. Five groups of teeth with five samples each were treated with a different bleaching agents. Each tooth had its crown sectioned in two halves, one for bleaching test and one the other used as a control. Average values of C/Ca, O/Ca, F/Ca enrichment factors were found. The comparison between bleached and non-bleached halves indicates that bleaching treatment did not affect the mineral structure when low-concentration whitening systems were used. The almost constant oxygen concentration in enamel, suggests little changes due to whitening therapy.

  13. Trace elementary concentration in enamel after dental bleaching using HI-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Added, N [GFAA, Depto de Fisica Nuclear, IFUSP, University of Sao Paulo, Travessa R da rua do Matao 187, Cidade Universitaria, Caixa Postal 66318, CEP 05508-970 Sao Paulo, SP (Brazil); Rizzutto, M A [GFAA, Depto de Fisica Nuclear, IFUSP, University of Sao Paulo, Travessa R da rua do Matao 187, Cidade Universitaria, Caixa Postal 66318, CEP 05508-970 Sao Paulo, SP (Brazil); Curado, J F [GFAA, Depto de Fisica Nuclear, IFUSP, University of Sao Paulo, Travessa R da rua do Matao 187, Cidade Universitaria, Caixa Postal 66318, CEP 05508-970 Sao Paulo, SP (Brazil); Francci, C [School of Dentistry, University of Sao Paulo (Brazil); Markarian, R [School of Dentistry, University of Sao Paulo (Brazil); Mori, M [School of Dentistry, University of Sao Paulo (Brazil)

    2006-08-15

    Changes of elementary concentrations in dental enamel after a bleaching treatment with different products, is presented, with special focus on the oxygen contribution. Concentrations for Ca, P, O and C and some other trace elements were obtained for enamel of bovine incisor teeth by HI-ERDA measurements using a {sup 35}Cl incident beam and an ionization chamber. Five groups of teeth with five samples each were treated with a different bleaching agents. Each tooth had its crown sectioned in two halves, one for bleaching test and one the other used as a control. Average values of C/Ca, O/Ca, F/Ca enrichment factors were found. The comparison between bleached and non-bleached halves indicates that bleaching treatment did not affect the mineral structure when low-concentration whitening systems were used. The almost constant oxygen concentration in enamel, suggests little changes due to whitening therapy.

  14. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    Science.gov (United States)

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  15. Dental OCT

    Science.gov (United States)

    Wilder-Smith, Petra; Otis, Linda; Zhang, Jun; Chen, Zhongping

    This chapter describes the applications of OCT for imaging in vivo dental and oral tissue. The oral cavity is a diverse environment that includes oral mucosa, gingival tissues, teeth and their supporting structures. Because OCT can image both hard and soft tissues of the oral cavity at high resolution, it offers the unique capacity to identity dental disease before destructive changes have progressed. OCT images depict clinically important anatomical features such as the location of soft tissue attachments, morphological changes in gingival tissue, tooth decay, enamel thickness and decay, as well as the structural integrity of dental restorations. OCT imaging allows for earlier intervention than is possible with current diagnostic modalities.

  16. Randomized clinical study of alterations in the color and surface roughness of dental enamel brushed with whitening toothpaste.

    Science.gov (United States)

    de Moraes Rego Roselino, Lourenço; Tirapelli, Camila; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2018-03-30

    This clinical study evaluated the influence of whitening toothpaste on color and surface roughness of dental enamel. Initially, the abrasiveness of the toothpastes used (Sorriso Dentes Brancos [SDB]; Colgate Luminous White and Close up White Now) was tested on 30 (n = 10) plexiglass acrylic plates that were submitted to mechanical tooth brushing totalizing 29,200 cycles. Subsequently, 30 participants were selected, and received a toothbrush and nonwhitening toothpaste (SDB). The participants used these products for 7 days and initial color readouts (Spectrophotometer) and surface roughness of one maxillary central incisors was performed after this period of time. For surface roughness readouts, one replica of the maxillary central incisor was obtained by a polyvinyl siloxane impression material (Express) and polyurethane resin. After baseline measurements, participants were separated into three groups (n = 10), according to the toothpaste used. The participants returned after 7, 30, and 90 days when new color readouts and surface roughness were recorded. The measured values were statistically analyzed (2-way-ANOVA, repeated measures, Tukey, P Whitening toothpastes did not promote significant (P > .05) color alteration and nor increased the surface roughness of the dental enamel in brushing time of the study. The abrasiveness of whitening toothpaste and the brushing trial period did not affect the surface roughness of dental enamel. However, color changes observed on enamel were above the perceptibility and acceptability thresholds reported in the literature. The over-the-counter toothpastes tested had an effect on dental enamel color above the perceptibility and acceptability thresholds but did not change the surface roughness of the teeth. © 2018 Wiley Periodicals, Inc.

  17. Dental radiography: tooth enamel EPR dose assessment from Rando phantom measurements

    International Nuclear Information System (INIS)

    Aragno, D.; Fattibene, P.; Onori, S.

    2000-01-01

    Electron paramagnetic resonance dosimetry of tooth enamel is now established as a suitable method for individual dose reconstruction following radiation accidents. The accuracy of the method is limited by some confounding factors, among which is the dose received due to medical x-ray irradiation. In the present paper the EPR response of tooth enamel to endoral examination was experimentally evaluated using an anthropomorphic phantom. The dose to enamel for a single exposure of a typical dental examination performed with a new x-ray generation unit working at 65 kVp gave rise to a CO 2 -signal of intensity similar to that induced by a dose of about 2 mGy of 60 Co. EPR measurements were performed on the entire tooth with no attempt to separate buccal and lingual components. Also the dose to enamel for an orthopantomography exam was estimated. It was derived from TLD measurements as equivalent to 0.2 mGy of 60 Co. In view of application to risk assessment analysis, in the present work the value for the ratio of the reference dose at the phantom surface measured with TLD to the dose at the tooth measured with EPR was determined. (author)

  18. Quantitative study of fluoride transport during subsurface dissolution of dental enamel

    International Nuclear Information System (INIS)

    Chu, J.S.; Fox, J.L.; Higuchi, W.I.

    1989-01-01

    Previous studies using bovine dental enamel as a model have shown that surface and subsurface dissolution of enamel may be governed by micro-environmental solution conditions. We have now investigated the demineralization phenomenon more rigorously with the primary objective of developing a method for deducing solution species concentration profiles as a function of time from appropriate experimental data. More specifically, in this report, a model-independent method is described for determination of the pore solution fluoride gradients in bovine enamel during subsurface demineralization. Microradiography was used to determine the mineral density profiles, and an electron microprobe technique to determine total fluoride (F) profiles associated with the enamel. In each case, matched sections of bovine enamel were exposed to partially saturated acetate buffers at pH = 4.5 containing 0.5 ppm F for various periods of time (from six to 24 hours). The treated enamel was found to have an intact surface layer and subsurface demineralization. The extent of the demineralization and the depths of the lesions increased with time in all cases. The data were first used to calculate (a) the total F gradients in the enamel at various times, and (b) the local uptake rate of F as a function of time and position. Then, by manipulation of the equations describing the uptake and transport of F, we calculated the pore diffusion rate of F and the micro-environmental solution F concentration in the aqueous pores as a function of time and of distance from the enamel surface. It was also possible to calculate an intrinsic F diffusion coefficient in the pores, which was about 1.0 X 10(-5) cm2/sec, in good agreement with reported values

  19. Morphology of the cemento-enamel junction in premolar teeth.

    Science.gov (United States)

    Arambawatta, Kapila; Peiris, Roshan; Nanayakkara, Deepthi

    2009-12-01

    The present study attempted to describe the distribution of the mineralized tissues that compose the cemento-enamel junction, with respect to both the different types of permanent premolars of males and females and the various surfaces of individual teeth. The cervical region of ground sections of 67 premolars that had been extracted for orthodontic reasons were analyzed using transmitted light microscopy to identify which of the following tissue interrelationships was present at the cemento-enamel junction: cementum overlapping enamel; enamel overlapping cementum; edge-to-edge relationship between cementum and enamel; or the presence of gaps between the enamel and cementum with exposed dentin. An edge-to-edge interrelation between root cementum and enamel was predominant (55.1%). In approximately one-third of the sample, gaps between cementum and enamel with exposed dentin were observed. Cementum overlapping enamel was less prevalent than previously reported, and enamel overlapping cementum was seen in a very small proportion of the sample. In any one tooth, the distribution of mineralized tissues at the cemento-enamel junction was irregular and unpredictable. The frequency of gaps between enamel and cementum with exposure of dentin was higher than previously reported, which suggests that this region is fragile and strongly predisposed to pathological changes. Hence, this region should be protected and carefully managed during routine clinical procedures such as dental bleaching, orthodontic treatment, and placement of restorative materials.

  20. The effect of additional enamel etching and a flowable composite to the interfacial integrity of Class II adhesive composite restorations.

    Science.gov (United States)

    Belli, S; Inokoshi, S; Ozer, F; Pereira, P N; Ogata, M; Tagami, J

    2001-01-01

    This in vitro study evaluated the interfacial integrity of Class II resin composite restorations. The influence of a flowable composite and additional enamel etching was also evaluated. Deep, saucer-shaped Class II cavities were prepared in the mesial and distal proximal surfaces of 25 extracted human molars and assigned to five treatment groups. The gingival margins were extended to approximately 1 mm above the CEJ in 40 cavities and below the CEJ in 10 cavities. The prepared cavities were then restored with a self-etching primer system (Clearfil Liner Bond II) and a hybrid resin composite (Clearfil AP-X), with and without a flowable composite (Protect Liner F) and additional enamel etching with 37% phosphoric acid gel (K-etchant). After finishing, polishing and thermocycling (4 and 60 degrees C, x300), the samples were longitudinally sectioned through the restorations and resin-tooth interfaces were observed directly under a laser scanning microscope. Statistical analysis indicated that the use of a flowable composite produced significantly more (p = 0.04) gap-free resin-dentin interfaces than teeth restored without the flowable composite. However, both flowable composite and enamel etching could not prevent gap formation at enamel-resin interfaces and crack formation on enamel walls.

  1. Indirect veneer treatment of anterior maxillary teeth with enamel hypoplasia

    Directory of Open Access Journals (Sweden)

    Devi Eka Juniarti

    2010-09-01

    Full Text Available Background: Nowadays, aesthetic rehabilitation becomes a necessity. It is affected by patient’s background, especially career, social and economic status. The aesthetic abnormality of anterior teeth i.e discoloration, malposition and malformation can affect patient’s appearance, especially during smile. These dental abnormalities, as a result, can decrease patient’s performance. Dental malformation, for instance, can be caused by developmental tooth defect, such as enamel hypoplasia. Enamel hypoplasia is a developmental defect caused by the lack of matrix amount which leads to thin and porous enamel. Enamel hypoplasia can also be caused by matrix calcification disturbance starting from the formation and development of enamel matrix causing defect and permanent changes which can occur on one or more tooth. Purpose: The aim of the study is to improve dental discoloration and tooth surface texture on anterior maxillary teeth with enamel hypoplasia by using indirect veneer with porcelain material. Case: A 20 years-old woman with enamel hypoplasia came to the Dental Hospital, Faculty of Dentistry Airlangga University. The patient wanted to improve her anterior maxillary teeth. It is clinically known that there were some opaque white spots (chalky spotted and porous on anterior teeth’s surface. Case management: Indirect veneer with porcelain material had been chosen as a restoration treatment which has excellent aesthetics and strength, and did not cause gingival irritation. As a result, the treatment could improve the confidence of the patient, and could also make their function normal. Conclusion: Indirect veneer is an effective treatment, which can improve patient’s appearance and self confidence.Latar belakang: Saat ini perbaikan estetik menjadi suatu kebutuhan. Kebutuhan akan estetik dipengaruhi latar belakang penderita, terutama karir, status sosial dan ekonomi. Hal ini disebabkan, kelainan estetik seperti diskolorasi, malposisi

  2. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Directory of Open Access Journals (Sweden)

    Gabriela Cristina de Oliveira

    Full Text Available This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15: GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3 for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05. The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm. The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  3. Protection of enamel surfaces in the oral cavity

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo

    The two main diseases that can affect the tooth enamel are dental caries and dental erosion, which both are caused by exposure of the enamel surfaces to acids. In the case of dental caries, acids from bacterial metabolism cause chemical dissolution of the tooth surface, whereas acids from drinks...... and foodstuffs or gastric juice can cause dental erosion. During a lifetime the enamel surface is also exposed to fluids that can have protective effects against dental caries and erosion such as saliva, various foodstuffs, drinking water and many types of drinks. However, little is still known about simple...... inorganic interactions between different fluids and dental caries and little is also known about which saliva proteins are able to protect the enamel surface against dental erosion. Therefore, the overall aim of this thesis was to examine simple inorganic and protein related protective effects with dental...

  4. Research on optical properties of dental enamel for early caries diagnostics using a He-Ne laser

    Science.gov (United States)

    Tang, Jing; Liu, Li; Li, Song-zhan

    2008-12-01

    A new and non-invasive method adapted for optical diagnosis of early caries is proposed by researching on the interaction mechanism of laser with dental tissue and relations of remitted light with optical properties of the tissue. This method is based on simultaneous analyses of the following parameters: probing radiation, backscattering and auto-fluorescence. Investigation was performed on 104 dental samples in vitro by using He-Ne laser (λ=632.8nm, 2.0+/-0.1mW) as the probing. Spectrums of all samples were obtained. Characteristic spectrums of dental caries in various stages (intact, initial, moderate and deep) were given. Using the back-reflected light to normalize the intensity of back-scattering and fluorescence, a quantitative diagnosis standard for different stages of caries is proposed. In order to verify the test, comparison research was conducted among artificial caries, morphological damaged enamel, dental calculus and intact tooth. Results show that variations in backscattering characteristic changes in bio-tissue morphological and the quantity of auto-fluorescence is correlated with concentration of anaerobic microflora in hearth of caries lesion. This method poses a high potential of diagnosing various stages of dental caries, and is more reliability to detect early caries, surface damage of health enamel and dental calculus.

  5. β-pyrophosphate: A potential biomaterial for dental applications

    OpenAIRE

    Anastasiou, AD; Strafford, S; Posada-Estefan, O; Thomson, CL; Hussaein, SA; Edwards, TJ; Malinowski, M; Hondow, N; Metzger, NK; Brown, CTA; Routledge, MN; Brown, AP; Duggal, MS; Jha, A

    2017-01-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluat...

  6. Influence of dental bleaching on marginal leakage of Class V restorations

    Directory of Open Access Journals (Sweden)

    Andréia Cristina Ramos Dorini

    2010-04-01

    Full Text Available Objective: Evaluate the in vitro effect of bleaching performed in the dental office and waiting time on the degree of microleakage in class V cavities with margins in enamel, restored with resin composite. Methods: Forty-five human third molars were used, in which the vestibular faces were bleached with 35% hydrogen peroxide activated with LED and the palatine faces were not bleached (control. The teeth were randomly divided into 3 groups with 15 teeth in each: Group 1, restored immediately after bleaching; Group 2, seven days after bleaching; and Group 3, fourteen days after bleaching. After cavity preparation, 35% phosphoric acid, Adper Single Bond 2 adhesive (3M ESPE, St. Paul, Mn, USA, and resin composite Filtek Z250 (3M ESPE, St. Paul, MN, USA were applied. The teeth were thermal cycled and sealed with red nail polish on the bleached faces and blue on the non bleached faces, except for 1mm around the restored region. The samples were classified according to the following scores: 0 = no leakage, 1 = minimum leakage (less than 1 / 3 the length of the wall, 2 = moderate leakage (1/3 to 2/3 of the wall and 3 = extensive leakage (over 2/3 of the wall. The data were submitted to the Kruskal-Wallis test at a level of significance of 5%. Results: The restorative procedure immediately after bleaching resulted in statistically higher microleakage values (p 0.05. Conclusion: Based on the results, it is advisable to wait at least 7 days after bleaching to make the definitive restoration.

  7. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    Science.gov (United States)

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects. © 2014 Wiley Periodicals, Inc.

  8. New developments in understanding development defects of enamel: optimizing clinical outcomes.

    Science.gov (United States)

    Kilpatrick, Nicky

    2009-12-01

    Developmental defects of enamel appear to be presenting with increasing frequency and with this comes significant clinical challenges. Affected teeth, in particular first permanent molars, are susceptible to dental caries as they are not only more porous but also very sensitive making effective oral hygiene difficult. Affected children require more dental treatment than their unaffected peers while also suffering greater pain and anxiety. Current clinical approaches focus on the placement of contemporary adhesive restorative materials onto the compromised tooth which in turn, fail, leading to premature loss of permanent molars with associated repercussions. Incomplete understanding of the structure, composition and behaviour of affected enamel means that clinical protocols are, as yet, empiric rather than evidence based. This review summarises contemporary evidence regarding this condition and identifies potential areas for future research which would assist in improving clinical outcomes.

  9. Evaluation of the effect of food and beverages on enamel and restorative materials by SEM and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Sari, Mustafa Erhan; Erturk, Aliye Gediz; Koyuturk, Alp Erdin; Bekdemir, Yunus

    2014-01-01

    To examine different types of restorative materials used in children as well as primary and permanent teeth enamel when affected by erosive foods. Buttermilk, fruit yoghurt, Coca-cola, fruit juice, Filtek Z-250, Dyract Extra, Fuji II LC, and Fuji IX and tooth enamel were used. Measurements were performed on 1-day, 1-week, 1-month, 3-month, 6-month time periods by using ATR-FTIR technique and surface of the specimens were examined with SEM. Permanent tooth showed the least change among human tooth samples when compared to restorative materials. Among filler materials, the most change was observed in Fuji IX. In terms of beverages the most changes on absorption peaks obtained from spectra were seen on the samples held in Coca-Cola and orange-juice. The exposure of human enamel and restorative materials to acidic drinks may accelerate the degradation process and so reduce the life time of filler materials at equivalent integral exposure times longer than three months. Clinical Relevance Erosive foods and drinks having acidic potential destroy not only tooth enamel but also restorative materials. Copyright © 2013 Wiley Periodicals, Inc.

  10. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser.

    Science.gov (United States)

    Pires, Patrícia T; Ferreira, João C; Oliveira, Sofia A; Azevedo, Alvaro F; Dias, Walter R; Melo, Paulo R

    2013-01-01

    Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA)+ ExciTE(®); Group II - ExciTE(®); Group III - AdheSE(®) self-etching; Group IV - FuturaBond(®) no-rinse. NR; Group V - Xeno(®) V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. One-way ANOVA and post-hoc tests (P adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE(®) and ExciTE(®) without condition with PA. FuturaBond(®) NR and Xeno(®) V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  11. Radiopacity of 28 Composite Resins for Teeth Restorations.

    Science.gov (United States)

    Raitz, Ricardo; Moruzzi, Patrizia Dubinskas; Vieira, Glauco; Fenyo-Pereira, Marlene

    2016-02-01

    Radiopacity is a fundamental requisite to check marginal adaptation of restorations. Our objective was to assess the radiopacity of 28 brands of light-cured composite resins and compare their radiopacity with that of enamel, dentin, and aluminum of equivalent thickness. Composite resin disks (0.2, 0.5, and 1 mm) were radiographed by the digital method, together with an aluminum penetrometer and a human tooth equivalent tooth section. The degree of radiopacity of each image was quantified using digital image processing. Wilcoxon nonparametric test was used for comparison of the mean thickness of each material. All of the materials tested had an equal or greater radiopacity than that of aluminum of equivalent thickness. Similar results for enamel were found with the exception of Durafill, which was less radiopaque than enamel (p composite resins comply with specification #27 of the American Dental Association. The radiopacity of Amelogen Plus, Aph, Brilhiante, Charisma, Concept Advanced, Evolux X, Exthet X, Inten S, Llis, Master Fill, Natural Look, Opallis, P60, Tetric, Tph, Z100, and Z250 was significantly higher than that of enamel (p composites, it is possible to observe the boundaries between restoration and tooth structure, thus allowing clinicians to establish the presence of microleakage or restoration gap. Suitable radiopacity is an essential requisite for good-quality esthetic restorative materials. We demonstrate that only some composites have the sufficient radiopacity to observe the boundaries between restoration and tooth structure, which is the main cause of restoration failure.

  12. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    Science.gov (United States)

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (Pcomposite resins (P>.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (Pcomposite resin roughness and bacterial adhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Machinable glass-ceramics forming as a restorative dental material.

    Science.gov (United States)

    Chaysuwan, Duangrudee; Sirinukunwattana, Krongkarn; Kanchanatawewat, Kanchana; Heness, Greg; Yamashita, Kimihiro

    2011-01-01

    MgO, SiO(2), Al(2)O(3), MgF(2), CaF(2), CaCO(3), SrCO(3), and P(2)O(5) were used to prepare glass-ceramics for restorative dental materials. Thermal properties, phases, microstructures and hardness were characterized by DTA, XRD, SEM and Vickers microhardness. Three-point bending strength and fracture toughness were applied by UTM according to ISO 6872: 1997(E). XRD showed that the glass crystallized at 892°C (second crystallization temperature+20°C) for 3 hrs consisted mainly of calcium-mica and fluorapatite crystalline phases. Average hardness (3.70 GPa) closely matched human enamel (3.20 GPa). The higher fracture toughness (2.04 MPa√m) combined with the hardness to give a lower brittleness index (1.81 µm(-1/2)) which indicates that they have exceptional machinability. Bending strength results (176.61 MPa) were analyzed by Weibull analysis to determine modulus value (m=17.80). Machinability of the calcium mica-fluorapatite glass-ceramic was demonstrated by fabricating with CAD/CAM.

  14. Threshold value of enamel mineral solubility and dental erosion after consuming acidic soft drinks

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2011-09-01

    Full Text Available Background: Dental erosion is irreversible and can caused by acidic soft drink consumption. Dental erosion prevention had already been done, but it still has not been satisfying since the consumption of acidic soft drink is still high. There is still no explanation about the threshold value of enamel mineral solubility and the occurance of dental erosion after consuming acidic soft drink. Purpose: This research is aimed to find the threshold value of enamel mineral solubility and dental erosion before and after consuming acidic soft drinks. Methods: Subjects of the research are saliva and enamel of 12 rabbits, which have some criteria such as age > 70 days, body weight > 600 grams, and teeth considered to be healthy. The sample devided equally into 4 groups. Each of those marmooths was given a drink as much as 2.5 cc/consumption (there are 1, 2 and 3× per day by using syringe without injection needle. Salivary minerals then were examined by using atomic absorption spectrophotometric (ASS, while dental erosion was examined using scanning electron microscop (SEM. The data were analyzed by using Paired t-test. Results: It is known that the threshold value of enamel mineral solubility (K, Na, Fe, Mg, Cl, P, Ca, F, C has significant difference (p < 0.05 after being exposed to folic acid. Meanwhile, Fe did not have significant difference (p = 0.090 after being exposed to citric acid. Similarly, C did not have significant difference (p = 0.063 after being exposed to bicarbonate acid. Furthermore, it is also known that the threshold time value of dental erosion are on the 105th day for folic acid, on the 111th day for citric acid, and on the 117th day for bicarbonate acid. Conclusion: Threshold value of enamel mineral solubility before and after consuming soft drinks containing acid is different. Based on the threshold value of dental erosion, it is known that folic acid is the most erosive acid.Latar belakang: Erosi gigi bersifat irreversible

  15. Efficacy and cytotoxicity of a bleaching gel after short application times on dental enamel.

    Science.gov (United States)

    Soares, Diana Gabriela; Ribeiro, Ana Paula Dias; da Silveira Vargas, Fernanda; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2013-11-01

    This study aimed to evaluate and correlate the efficacy and cytotoxicity of a 35 % hydrogen peroxide (HP) bleaching gel after different application times on dental enamel. Enamel/dentin disks in artificial pulp chambers were placed in wells containing culture medium. The following groups were formed: G1, control (no bleaching); G2 and G3, three or one 15-min bleaching applications, respectively; and G4 and G5, three or one 5-min bleaching applications, respectively. Extracts (culture medium with bleaching gel components) were applied for 60 min on cultured odontoblast-like MDPC-23 cells. Cell metabolism (methyl tetrazolium assay) (Kruskal-Wallis/Mann-Whitney; α = 5 %) and cell morphology (scanning electron microscopy) were analyzed immediately after the bleaching procedures and the trans-enamel and trans-dentinal HP diffusion quantified (one-way analysis of variance/Tukey's test; α = 5 %). The alkaline phosphatase (ALP) activity was evaluated 24 h after the contact time of the extracts with the cells (Kruskal-Wallis/Mann-Whitney; α = 5 %). Tooth color was analyzed before and 24 h after bleaching using a spectrophotometer according to the Commission Internationale de l'Eclairage L*a*b* system (Kruskal-Wallis/Mann-Whitney; α = 0.05). Significant difference (p 0.05). The lowest amount of HP diffusion was observed in G5 (p 0.05). HP diffusion through dental tissues and its cytotoxic effects were proportional to the contact time of the bleaching gel with enamel. However, shorter bleaching times reduced bleaching efficacy. Shortening the in-office tooth bleaching time could be an alternative to minimize the cytotoxic effects of this clinical procedure to pulp tissue. However, the reduced time of bleaching agent application on enamel may not provide adequate esthetic outcome.

  16. Opalescence of human teeth and dental esthetic restorative materials.

    Science.gov (United States)

    Lee, Yong-Keun

    2016-12-01

    Human tooth enamel is opalescent, which renders teeth bluish in reflected and orange in transmitted color. The aim was to review opalescent property of teeth and application and mimetic reproduction in esthetic restorations. A PubMed search for articles published in English till 2015 on the opalescence of teeth and esthetic materials revealed 29 relevant papers. Opalescence was measured with OP-RT index, which was calculated as the difference in the yellow-blue and red-green color coordinates between the reflected and transmitted colors. Mean OP-RT value of human enamel was 22.9. OP-RT values of direct resin composites changed after polymerization, and the range in these materials was 5.7-23.7. OP-RT value ranges were 1.6-6.1 and 2.0-7.1 for the core and veneer ceramics, respectively. Since the OP-RT values of esthetic materials were lower than that of enamel, it is recommended that materials that can reproduce the opalescence of enamel be further designed.

  17. Efficient digitalization method for dental restorations using micro-CT data.

    Science.gov (United States)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-03-15

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.

  18. Efficient digitalization method for dental restorations using micro-CT data

    Science.gov (United States)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-03-01

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.

  19. Theobromine Effects on Enamel Surface Microhardness: In Vitro

    OpenAIRE

    Grace Syafira; Rina Permatasari; Nina Wardani

    2013-01-01

    Dental caries is still a dental health problem in Indonesia. Fluoride, one of the dental caries prevention material, but its safety and the danger of fluorosis is still debated. Theobromine is an alkaloid compound contained in cocoa beans. Theobromine is believed to increase enamel microhardness with mineral changes in the enamel superficial layer. Objectives: To determine the influence of theobromine on the enamel surface microhardness. Methods: This study used 40 premolar tooth crown pieces...

  20. Ph-activated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization.

    Science.gov (United States)

    Melo, Mary A S; Weir, Michael D; Passos, Vanara F; Powers, Michael; Xu, Hockin H K

    2017-12-01

    Enamel demineralization is destructive, esthetically compromised, and costly complications for orthodontic patients. Nano-sized amorphous calcium phosphate (NACP) has been explored to address this challenge. The 20% NACP-loaded ortho-cement notably exhibited favorable behavior on reducing demineralization of enamel around brackets in a caries model designed to simulate the carious attack. The 20% NACP-loaded ortho-cement markedly promotes higher calcium and phosphate release at a low pH, and the mineral loss was almost two fold lower and carious lesion depth decreased the by 1/3. This novel approach is promising co-adjuvant route for prevention of dental caries dissemination in millions of patients under orthodontic treatment.

  1. The demand for preventive and restorative dental services.

    Science.gov (United States)

    Meyerhoefer, Chad D; Zuvekas, Samuel H; Manski, Richard

    2014-01-01

    Chronic tooth decay is the most common chronic condition in the United States among children ages 5-17 and also affects a large percentage of adults. Oral health conditions are preventable, but less than half of the US population uses dental services annually. We seek to examine the extent to which limited dental coverage and high out-of-pocket costs reduce dental service use by the nonelderly privately insured and uninsured. Using data from the 2001-2006 Medical Expenditure Panel Survey and an American Dental Association survey of dental procedure prices, we jointly estimate the probability of using preventive and both basic and major restorative services through a correlated random effects specification that controls for endogeneity. We found that dental coverage increased the probability of preventive care use by 19% and the use of restorative services 11% to 16%. Both conditional and unconditional on dental coverage, the use of dental services was not sensitive to out-of-pocket costs. We conclude that dental coverage is an important determinant of preventive dental service use, but other nonprice factors related to consumer preferences, especially education, are equal if not stronger determinants. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Effect of beverages on bovine dental enamel subjected to erosive challenge with hydrochloric acid.

    Science.gov (United States)

    Amoras, Dinah Ribeiro; Corona, Silmara Aparecida Milori; Rodrigues, Antonio Luiz; Serra, Mônica Campos

    2012-01-01

    This study evaluated by an in vitro model the effect of beverages on dental enamel previously subjected to erosive challenge with hydrochloric acid. The factor under study was the type of beverage, in five levels: Sprite® Zero Low-calorie Soda Lime (positive control), Parmalat® ultra high temperature (UHT) milk, Ades® Original soymilk, Leão® Ice Tea Zero ready-to-drink low-calorie peach-flavored black teaand Prata® natural mineral water (negative control). Seventy-five bovine enamel specimens were distributed among the five types of beverages (n=15), according to a randomized complete block design. For the formation of erosive wear lesions, the specimens were immersed in 10 mL aqueous solution of hydrochloric acid 0.01 M for 2 min. Subsequently, the specimens were immersed in 20 mL of the beverages for 1 min, twice daily for 2 days at room temperature. In between, the specimens were kept in 20 mL of artificial saliva at 37ºC. The response variable was the quantitative enamel microhardness. ANOVA and Tukey's test showed highly significant differences (penamel exposed to hydrochloric acid and beverages. The soft drink caused a significantly higher decrease in microhardness compared with the other beverages. The black tea caused a significantly higher reduction in microhardness than the mineral water, UHT milk and soymilk, but lower than the soft drink. Among the analyzed beverages, the soft drink and the black tea caused the most deleterious effects on dental enamel microhardness.

  3. Wear properties of dental ceramics and porcelains compared with human enamel.

    Science.gov (United States)

    D'Arcangelo, Camillo; Vanini, Lorenzo; Rondoni, Giuseppe D; De Angelis, Francesco

    2016-03-01

    Contemporary pressable and computer-aided design/manufacturing (CAD/CAM) ceramics exhibit good mechanical and esthetic properties. Their wear resistance compared with human enamel and traditional gold based alloys needs to be better investigated. The purpose of this in vitro study was to compare the 2-body wear resistance of human enamel, gold alloy, and 5 different dental ceramics, including a recently introduced zirconia-reinforced lithium silicate ceramic (Celtra Duo). Cylindrical specimens were fabricated from a Type III gold alloy (Aurocast8), 2 hot pressed ceramics (Imagine PressX, IPS e.max Press), 2 CAD/CAM ceramics (IPS e.max CAD, Celtra Duo), and a CAD/CAM feldspathic porcelain (Vitablocs Mark II) (n=10). Celtra Duo was tested both soon after grinding and after a subsequent glaze firing cycle. Ten flat human enamel specimens were used as the control group. All specimens were subjected to a 2-body wear test in a dual axis mastication simulator for 120000 loading cycles against yttria stabilized tetragonal zirconia polycrystal cusps. The wear resistance was analyzed by measuring the vertical substance loss (mm) and the volume loss (mm(3)). Antagonist wear (mm) was also recorded. Data were statistically analyzed with 1-way ANOVA tests (α=.05). The wear depth (0.223 mm) of gold alloy was the closest to that of human enamel (0.217 mm), with no significant difference (P>.05). The greatest wear was recorded on the milled Celtra Duo (wear depth=0.320 mm), which appeared significantly less wear resistant than gold alloy or human enamel (Pceramics did not statistically differ in comparison with the human enamel. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Dental enamel defects, caries experience and oral health-related quality of life: a cohort study.

    Science.gov (United States)

    Arrow, P

    2017-06-01

    The impact of enamel defects of the first permanent molars on caries experience and child oral health-related quality of life was evaluated in a cohort study. Children who participated in a study of enamel defects of the first permanent molars 8 years earlier were invited for a follow-up assessment. Consenting children completed the Child Perception Questionnaire and the faces Modified Child Dental Anxiety Scale, and were examined by two calibrated examiners. ANOVA, Kruskal-Wallis, negative binomial and logistic regression were used for data analyses. One hundred and eleven children returned a completed questionnaire and 91 were clinically examined. Negative binomial regression found that oral health impacts were associated with gender (boys, risk ratio (RR) = 0.73, P = 0.03) and decayed, missing or filled permanent teeth (DMFT) (RR = 1.1, P = 0.04). The mean DMFT of children were sound (0.9, standard deviation (SD) = 1.4), diffuse defects (0.8, SD = 1.7), demarcated defects (1.5, SD = 1.4) and pit defects (1.3, SD = 2.3) (Kruskal-Wallis, P = 0.05). Logistic regression of first permanent molar caries found higher odds of caries experience with baseline primary tooth caries experience (odds ratio (OR) = 1.5, P = 0.01), the number of teeth affected by enamel defects (OR = 1.9, P = 0.05) and lower odds with the presence of diffuse enamel defects (OR = 0.1, P = 0.04). The presence of diffuse enamel defects was associated with lower odds of caries experience. © 2016 Australian Dental Association.

  5. A useful and non-invasive microanalysis method for dental restoration materials

    Science.gov (United States)

    Hosoki, M.; Satsuma, T.; Nishigawa, K.; Takeuchi, H.; Asaoka, K.

    2012-12-01

    The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.

  6. Restorative Management of Intrinsic and Extrinsic Dental Erosion.

    Science.gov (United States)

    Al-Salehi, Samira Kathryn

    2014-12-01

    The restorative management of tooth surface loss is highlighted through the presentation of two advanced cases of dental erosion. On presentation, the causes of the dental erosion in both patients had been previously diagnosed and stopped. The first patient was a 67 year old with intrinsic erosion and an element of attrition where a multidisciplinary approach was used. The other, a 17 year old patient with extrinsic erosion managed via adhesive restorations. Adhesive techniques are a relatively simple, effective and conservative method for the treatment of dental erosion. The two treatment modalities (conventional versus contemporary) are compared and discussed.

  7. Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles

    International Nuclear Information System (INIS)

    Espinosa-Cristóbal, L.F.; Martínez-Castañón, G.A.; Téllez-Déctor, E.J.

    2013-01-01

    The aim of this ex vivo study was to evaluate the adherence capacity of Streptococcus mutans after being exposed to three different sizes of silver nanoparticles on healthy human dental enamel. Three different sizes of silver nanoparticles (9.3, 21.3 and 98 nm) were prepared, characterized and an adherence testing was performed to evaluate their anti-adherence activity on a reference strain of S. mutans on healthy dental enamel surfaces. Colony-Forming Unit count was made for adherence test and light microscopy, atomic force microscopy and scanning electron microscopy were used to compare qualitative characteristics of S. mutans. 9.3 nm and 21.3 nm groups did not show differences between them but statistical differences were found when 9.3 nm and 21.3 nm groups were compared with 98 nm and negative control groups (p < 0.05). Microscopy analysis shows a better inhibition of S. mutans adherence in 9.3 nm and 21.3 nm groups than the 98 nm group when compared with control group. Silver nanoparticles showed an adherence inhibition on S. mutans and the anti-adherence capacity was better when silver nanoparticles were smaller. Highlights: ► We examined how SNP can affect cellular adhesion from S. mutans. ► Several techniques were applied to analyzed S. mutans biofilm on enamel. ► All SNP sizes had an adhesion inhibition of S. mutans. ► Smaller SNP showed a better adhesion inhibition than larger SNP. ► Inhibition effect of SNP could be related with adhesion inhibition from S. mutans

  8. Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Cristóbal, L.F. [Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Maestría en Ciencias Odontológicas en el Área de Odontología Integral Avanzada, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Martínez-Castañón, G.A., E-mail: mtzcastanon@fciencias.uaslp.mx [Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Maestría en Ciencias Odontológicas en el Área de Odontología Integral Avanzada, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Téllez-Déctor, E.J. [Facultad de Odontología de la Universidad Veracruzana campus Río Blanco, Mariano Abasolo S/N. Col. Centro. Río Blanco, Veracruz (Mexico); and others

    2013-05-01

    The aim of this ex vivo study was to evaluate the adherence capacity of Streptococcus mutans after being exposed to three different sizes of silver nanoparticles on healthy human dental enamel. Three different sizes of silver nanoparticles (9.3, 21.3 and 98 nm) were prepared, characterized and an adherence testing was performed to evaluate their anti-adherence activity on a reference strain of S. mutans on healthy dental enamel surfaces. Colony-Forming Unit count was made for adherence test and light microscopy, atomic force microscopy and scanning electron microscopy were used to compare qualitative characteristics of S. mutans. 9.3 nm and 21.3 nm groups did not show differences between them but statistical differences were found when 9.3 nm and 21.3 nm groups were compared with 98 nm and negative control groups (p < 0.05). Microscopy analysis shows a better inhibition of S. mutans adherence in 9.3 nm and 21.3 nm groups than the 98 nm group when compared with control group. Silver nanoparticles showed an adherence inhibition on S. mutans and the anti-adherence capacity was better when silver nanoparticles were smaller. Highlights: ► We examined how SNP can affect cellular adhesion from S. mutans. ► Several techniques were applied to analyzed S. mutans biofilm on enamel. ► All SNP sizes had an adhesion inhibition of S. mutans. ► Smaller SNP showed a better adhesion inhibition than larger SNP. ► Inhibition effect of SNP could be related with adhesion inhibition from S. mutans.

  9. Effect of Toothpaste Application Prior to Dental Bleaching on Whitening Effectiveness and Enamel Properties.

    Science.gov (United States)

    Vieira-Junior, W F; Lima, D A N L; Tabchoury, C P M; Ambrosano, G M B; Aguiar, F H B; Lovadino, J R

    2016-01-01

    The purpose of this study was to investigate the effects on the enamel properties and effectiveness of bleaching using 35% hydrogen peroxide (HP) when applying toothpastes with different active agents prior to dental bleaching. Seventy enamel blocks (4 × 4 × 2 mm) were submitted to in vitro treatment protocols in a tooth-brushing machine (n=10): with distilled water and exposure to placebo gel (negative control [NC]) or HP bleaching (positive control [PC]); and brushing with differing toothpastes prior to HP bleaching, including potassium nitrate toothpaste (PN) containing NaF, conventional sodium monofluorophosphate toothpaste (FT), arginine-based toothpastes (PA and SAN), or a toothpaste containing bioactive glass (NM). Color changes were determined using the CIE L*a*b* system (ΔE, ΔL, Δa, and Δb), and a roughness (Ra) analysis was performed before and after treatments. Surface microhardness (SMH) and cross-sectional microhardness (CSMH) were analyzed after treatment. Data were analyzed with repeated measures ANOVA for Ra, one-way ANOVA (SMH, ΔE, ΔL, Δa, and Δb), split-plot ANOVA (CSMH), and Tukey post hoc test (α PA = SAN > all other groups) or decreased HP effects (CSMH). Ra increased in all bleached groups, with the exception of NM, which did not differ from the NC. The variation in the color variables (ΔL, Δa, and Δb) explained 21% of the variation in the physical surface variables (Ra and SMH). The application of toothpaste prior to dental bleaching did not interfere with the effectiveness of treatment. The bioactive glass based toothpaste protected the enamel against the deleterious effects of dental bleaching.

  10. Fluoride-releasing restorative materials and secondary caries.

    Science.gov (United States)

    Hicks, John; Garcia-Godoy, Franklin; Donly, Kevin; Flaitz, Catherine

    2003-03-01

    Secondary caries is responsible for 60 percent of all replacement restorations in the typical dental practice. Risk factors for secondary caries are similar to those for primary caries development. Unfortunately, it is not possible to accurately predict which patients are at risk for restoration failure. During the past several decades, fluoride-releasing dental materials have become a part of the dentist's armamentarium. Considerable fluoride is released during the setting reaction and for periods up to eight years following restoration placement. This released fluoride is readily taken up by the cavosurface tooth structure, as well as the enamel and root surfaces adjacent to the restoration. Resistance against caries along the cavosurface and the adjacent smooth surface has been shown in both in vitro and in vivo studies. Fluoride-releasing dental materials provide for improved resistance against primary and secondary caries in coronal and root surfaces. Plaque and salivary fluoride levels are elevated to a level that facilitates remineralization. In addition, the fluoride released to dental plaque adversely affects the growth of lactobacilli and mutans streptococci by interference with bacterial enzyme systems. Fluoride recharging of these dental materials is readily achieved with fluoridated toothpastes, fluoride mouthrinses, and other sources of topical fluoride. This allows fluoride-releasing dental materials to act as intraoral fluoride reservoirs. The improvement in the properties of dental materials with the ability to release fluoride has improved dramatically in the past decade, and it is anticipated that in the near future the vast majority of restorative procedures will employ fluoride-releasing dental materials as bonding agents, cavity liners, luting agents, adhesives for orthodontic brackets, and definitive restoratives.

  11. A useful and non-invasive microanalysis method for dental restoration materials

    International Nuclear Information System (INIS)

    Hosoki, M.; Satsuma, T.; Nishigawa, K.; Takeuchi, H.; Asaoka, K.

    2012-01-01

    Highlights: ► This method for the microanalysis of dental alloys is beneficial for patients with allergies to dental materials. ► This metal sample is easy to mail it for inspection at specialist institutes. ► This method can be also be used in general dental clinics. - Abstract: The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was <20 μg. An energy dispersive X-ray fluorescence spectrometer was used to carry out the elementary analysis of the metal dust on the polyethylene film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.

  12. A useful and non-invasive microanalysis method for dental restoration materials

    Energy Technology Data Exchange (ETDEWEB)

    Hosoki, M., E-mail: hosoki@tokushima-u.ac.jp [Department of Fixed Prosthodontics, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504 (Japan); Satsuma, T.; Nishigawa, K.; Takeuchi, H. [General Dentistry, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima 770-8504 (Japan); Asaoka, K. [Department of Biomaterials and Bioengineering, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer This method for the microanalysis of dental alloys is beneficial for patients with allergies to dental materials. Black-Right-Pointing-Pointer This metal sample is easy to mail it for inspection at specialist institutes. Black-Right-Pointing-Pointer This method can be also be used in general dental clinics. - Abstract: The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was <20 {mu}g. An energy dispersive X-ray fluorescence spectrometer was used to carry out the elementary analysis of the metal dust on the polyethylene film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.

  13. Scanning electron microscopy analysis of marginal adaptation of composite resines to enamel after using of standard and gradual photopolimerization

    Directory of Open Access Journals (Sweden)

    Dačić Stefan

    2014-01-01

    Full Text Available Introduction. Bonding between composite and hard dental tissue is most commonly assessed by measuring bonding strength or absence of marginal gap along the restoration interface. Marginal index (MI is a significant indicator of the efficiency of the bond between material and dental tissue because it also shows the values of width and length of marginal gap. Objective. The aim of this investigation was to estimate quantitative and qualitative features of the bond between composite resin and enamel and to determine the values of MI in enamel after application of two techniques of photopolymerization with two composite systems. Methods. Forty Class V cavities on extracted teeth were prepared and restored for scanning electron microscope (SEM analysis of composite bonding to enamel. Adhesion to enamel was achieved by Adper Single Bond 2 - ASB (3M ESPE, or by Adper Easy One - AEO (3M ESPE. Photopolymerization of Filtek Ultimate - FU (3M ESPE was performed using constant halogen light (HIP or soft start program (SOF. Results. Quantitative and qualitative analysis, showed better mikromorphological bonding with SOF photopolymerization and ASB/FU composite system. Differences in MI between different photopolymerization techniques (HIP: 0.6707; SOF: 0.2395 were statistically significant (p<0.001, as well as differences between the composite systems (ASB/FU: 0.0470; AEO/ FU: 0.8651 (p<0.001 by two-way ANOVA test. Conclusion. Better marginal adaptation of composite to enamel was obtained with SOF photopolymerization in both composite systems.

  14. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials

    Directory of Open Access Journals (Sweden)

    Andreas Hellak

    2016-01-01

    Full Text Available Objective. The aim of this in vitro study was to determine the shear bond strength (SBS and adhesive remnant index (ARI score of two self-etching no-mix adhesives (iBond™ and Scotchbond™ on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™. Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces, n=30 were randomly divided into three adhesive groups. In group 1 (control brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2 and Scotchbond Universal adhesive (group 3 were used. The SBS was measured using a Zwicki 1120™ testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P≤0.05. Results. Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain, with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  15. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials.

    Science.gov (United States)

    Hellak, Andreas; Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond ™ and Scotchbond ™ ) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT ™ . Materials and Methods . A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120 ™ testing machine. The ARI and SBS were compared statistically using the Kruskal-Wallis test ( P ≤ 0.05). Results . Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions . Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  16. A Conservative Esthetic Approach Using Enamel Recontouring and Composite Resin Restorations

    OpenAIRE

    Mathias, Paula; da Silva, Emily Vivianne Freitas; Aguiar, Thaiane Rodrigues; Andrade, Aline Silva; Azevedo, Juliana

    2016-01-01

    Conservative clinical solutions, predictable esthetic, and immediate outcomes are important concepts of restorative dentistry. The aim of this case study was to recognize the selective enamel removal as an interesting conservative alternative to achieve optimal esthetic results and discuss the clinical protocol. This clinical report described an alternative esthetic and conservative treatment to transform the long and sharp aspect of the maxillary canines with a slightly aggressive aspect int...

  17. Evaluation of patients with oral lichenoid lesions by dental patch testing and results of removal of the dental restoration material

    Directory of Open Access Journals (Sweden)

    Emine Buket Şahin

    2016-12-01

    Full Text Available Background and Design: Oral lichenoid lesions (OLL are contact stomatitis characterized by white reticular or erosive patches, plaque-like lesions that are clinically and histopathologically indistinguishable from oral lichen planus (OLP. Amalgam dental fillings and dental restoration materials are among the etiologic agents. In the present study, it was aimed to evaluate the standard and dental series patch tests in patients with OLL in comparison to a control group and evaluate our results. Materials and Methods: Thirty-three patients with OLL or OLP and 30 healthy control subjects, who had at least one dental restoration material and/or dental filling, were included in the study. Both groups received standard series and dental patch test and the results were evaluated simultaneously. Results: The most frequent allergens in the dental series patch test in the patient group were palladium chloride (n=4; 12.12% and benzoyl peroxide (n=2, 6.06%. Of the 33 patients with OLL; 8 had positive reaction to allergents in the standard patch test series and 8 had positive reaction in the dental patch test series. There was no significant difference in the rate of patch test reaction to the dental and standard series between the groups. Ten patients were advised to have the dental restoration material removed according to the results of the patch tests. The lesions improved in three patients [removal of all amalgam dental fillings (n=1, replacement of all amalgam dental fillings with an alternative filling material (n=1 and replacement of the dental prosthesis (n=1] following the removal or replacement of the dental restoration material. Conclusion: Dental patch test should be performed in patients with OLL and dental restoration material. Dental filling and/or prosthesis should be removed/replaced if there is a reaction against a dental restoration material-related allergen.

  18. Theobromine Effects on Enamel Surface Microhardness: In Vitro

    Directory of Open Access Journals (Sweden)

    Grace Syafira

    2013-07-01

    Full Text Available Dental caries is still a dental health problem in Indonesia. Fluoride, one of the dental caries prevention material, but its safety and the danger of fluorosis is still debated. Theobromine is an alkaloid compound contained in cocoa beans. Theobromine is believed to increase enamel microhardness with mineral changes in the enamel superficial layer. Objectives: To determine the influence of theobromine on the enamel surface microhardness. Methods: This study used 40 premolar tooth crown pieces that were embedded in epoxy resin. Furthermore specimens were randomly divided into 4 groups, which were control (distilled water, theobromine 100 mg/L (T100, theobromine 500 mg/L (T500 and theobromine 1000 mg/L (T1000. Specimens were immersed for 15 minutes and microhardness test was performed using Knoop microhardness tester. Results: Increasing enamel microhardness was observed after treatment with four different theobromine concentrations. The highest icreased of enamel microhardness was shown in T1000 group and difference compared to other groups were statistically significant (p<0.05. Conclusion: theobromine is a potential dental caries prevention material due to its effect in improving the microhardness of tooth enamel.

  19. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.

    Science.gov (United States)

    Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D

    2014-05-01

    Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Morphological and mineral analysis of dental enamel after erosive challenge in gastric juice and orange juice.

    Science.gov (United States)

    Braga, Sheila Regina Maia; De Faria, Dalva Lúcia Araújo; De Oliveira, Elisabeth; Sobral, Maria Angela Pita

    2011-12-01

    This study evaluated and compared in vitro the morphology and mineral composition of dental enamel after erosive challenge in gastric juice and orange juice. Human enamel specimens were submitted to erosive challenge using gastric juice (from endoscopy exam) (n = 10), and orange juice (commercially-available) (n = 10), as follows: 5 min in 3 mL of demineralization solution, rinse with distilled water, and store in artificial saliva for 3 h. This cycle was repeated four times a day for 14 days. Calcium (Ca) loss after acid exposure was determined by atomic emission spectroscopy. The presence of carbonate (CO) and phosphate (PO) in the specimens was evaluated before and after the erosive challenge by FT-Raman spectroscopy. Data were tested using t-tests (P enamel was observed in scanning electron microscopy (SEM). The mean loss of Ca was: 12.74 ± 3.33 mg/L Ca (gastric juice) and 7.07 ± 1.44 mg/L Ca (orange juice). The analysis by atomic emission spectroscopy showed statistically significant difference between erosive potential of juices (P = 0.0003). FT-Raman spectroscopy found no statistically significant difference in the ratio CO/PO after the erosive challenge. The CO/PO ratios values before and after the challenge were: 0.16/0.17 (gastric juice) (P = 0.37) and 0.18/0.14 (orange juice) (P = 0.16). Qualitative analysis by SEM showed intense alterations of enamel surface. The gastric juice caused more changes in morphology and mineral composition of dental enamel than orange juice. The atomic emission spectroscopy showed to be more suitable to analyze small mineral loss after erosive challenge than FT-Raman. Copyright © 2011 Wiley Periodicals, Inc.

  1. Restorative Rehabilitation of a Patient with Dental Erosion

    OpenAIRE

    AlShahrani, Mohammed Thamer; Haralur, Satheesh B.; Alqarni, Mohammed

    2017-01-01

    Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clini...

  2. Management of periodontal destruction caused by overhanging dental restoration

    Directory of Open Access Journals (Sweden)

    Misnova Misnova

    2016-06-01

    Full Text Available Periodontal tissue inflammations are occasionally caused by positions of restoration margins, particularly if they are placed subgingivally. A 44-year old male was referred to the Dental and Mouth Hospital of Dentistry Faculty Hasanuddin University with the chief complaint of severe pain at right posterior maxillary. Clinical examinations demonstrate a 7-mm periodontal pocket at buccal aspect of 16 teeth with tooth mobility °2. Overhanging dental composite restorations of Class V were detected at the subgingival areas of 15, 16, and 17. Radiographic results show vertically and horizontally alveolar bone loss. This case report is aimed to describe the management of periodontal tissue destruction as a result of overhanging dental composite restorations. Scaling and root planing were conducted as the initial therapy. The periodontal surgery was performed a week after the initial therapy. A full-thickness flap design with sulcular incision from 14 to 18 was made before the pocket curretage and necrotic tissue debridement along with restoration recontouring. The flap was sutured with simple suture technique. Periodontal dressing was packed for a week. Antibiotics, analgetics and antiinflammatory drugs were prescribed per orally. There was no history of pain a week after the surgical procedure. Tooth mobility was decreased to °1 and the periodontal pocket was reduced to 3 mm. Overhanging dental restorations may lead to periodontal tissue destruction. The subgingivally placement of those restorations should consider the health of periodontal tissues.

  3. The staining effect of different mouthwashes containing nanoparticles on dental enamel.

    OpenAIRE

    Eslami, Neda; Ahrari, Farzaneh; Rajabi, Omid; Zamani, Roya

    2015-01-01

    Background This study aimed to evaluate the effects of several mouthwashes containing nanoparticles on discoloration of dental enamel, and compare the results with that of 0.2% chlorhexidine (CHX). Material and Methods Sixty intact premolars were randomly assigned to six groups. A spectrophotometer was used to measure the color of the teeth (T1) according to the CIELAB system. The specimens in groups 1 to 4 were then immersed in colloidal solutions containing nanoTiO2 (Group 1), nanoZnO (Grou...

  4. Components of patient satisfaction with a dental restorative visit

    DEFF Research Database (Denmark)

    Riley, Joseph L; Gordan, Valeria V; Rindal, D Brad

    2012-01-01

    The authors conducted a study to identify components of patient satisfaction with restorative dental care and to test the hypothesis that certain dentist, patient and procedure factors are associated with patient satisfaction.......The authors conducted a study to identify components of patient satisfaction with restorative dental care and to test the hypothesis that certain dentist, patient and procedure factors are associated with patient satisfaction....

  5. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.

    Science.gov (United States)

    Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo

    2014-06-01

    To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (penamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (penamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  6. Various Effects of Sandblasting of Dental Restorative Materials.

    Directory of Open Access Journals (Sweden)

    Goro Nishigawa

    Full Text Available Sandblasting particles which remain on the surfaces of dental restorations are removed prior to cementation. It is probable that adhesive strength between luting material and sandblasting particle remnants might exceed that with restorative material. If that being the case, blasting particles adhere to sandblasted material surface could be instrumental to increasing adhesive strength like underlying bonding mechanism between luting material and silanized particles of tribochemical silica coating-treated surface. We hypothesize that ultrasonic cleaning of bonding surfaces, which were pretreated with sandblasting, may affect adhesive strength of a resin luting material to dental restorative materials.We therefore observed adhesive strength of resin luting material to aluminum oxide was greater than those to zirconia ceramic and cobalt-chromium alloy beforehand. To measure the shear bond strengths of resin luting material to zirconia ceramic and cobalt-chromium alloy, forty specimens of each restorative material were prepared. Bonding surfaces were polished with silicon abrasive paper and then treated with sandblasting. For each restorative material, 40 sandblasted specimens were equally divided into two groups: ultrasonic cleaning (USC group and non-ultrasonic cleaning (NUSC group. After resin luting material was polymerized on bonding surface, shear test was performed to evaluate effect of ultrasonic cleaning of bonding surfaces pretreated with sandblasting on bond strength.For both zirconia ceramic and cobalt-chromium alloy, NUSC group showed significantly higher shear bond strength than USC group.Ultrasonic cleaning of dental restorations after sandblasting should be avoided to retain improved bonding between these materials.

  7. Tooth enamel hypoplasia in PHACE syndrome.

    Science.gov (United States)

    Chiu, Yvonne E; Siegel, Dawn H; Drolet, Beth A; Hodgson, Brian D

    2014-01-01

    Individuals with PHACE syndrome (posterior fossa malformations, hemangiomas, arterial anomalies, cardiac defects, eye abnormalities, sternal cleft, and supraumbilical raphe syndrome) have reported dental abnormalities to their healthcare providers and in online forums, but dental involvement has not been comprehensively studied. A study was conducted at the third PHACE Family Conference, held in Milwaukee, Wisconsin, in July 2012. A pediatric dentist examined subjects at enrollment. Eighteen subjects were enrolled. The median age was 4.2 years (range 9 mos-9 yrs; 14 girls, 4 boys). Eleven of 18 patients had intraoral hemangiomas and five of these (50%) had hypomature enamel hypoplasia. None of the seven patients without intraoral hemangiomas had enamel hypoplasia. No other dental abnormalities were seen. Enamel hypoplasia may be a feature of PHACE syndrome when an intraoral hemangioma is present. Enamel hypoplasia increases the risk of caries, and clinicians should refer children with PHACE syndrome to a pediatric dentist by 1 year of age. © 2014 Wiley Periodicals, Inc.

  8. Mesoscopic modeling of the response of human dental enamel to mid-infrared radiation

    Science.gov (United States)

    Vila Verde, Ana; Ramos, Marta; Stoneham, A. M.

    2006-03-01

    Ablation of human dental enamel, a composite biomaterial with water pores, is of significant importance in minimally invasive laser dentistry but progress in the area is hampered by the lack of optimal laser parameters. We use mesoscopic finite element models of this material to study its response to mid-infrared radiation. Our results indicate that the cost-effective, off-the-shelf CO2 laser at λ = 10.6 μm may in fact ablate enamel precisely, reproducibly and with limited unwanted side effects such as cracking or heating, provided that a pulse duration of 10 μs is used. Furthermore, our results also indicate that the Er:YAG laser (λ = 2.94 μm), currently popular for laser dentistry, may in fact cause unwanted deep cracking in the enamel when regions with unusually high water content are irradiated, and also provide an explanation for the large range of ablation threshold values observed for this material. The model may be easily adapted to study the response of any composite material to infrared radiation and thus may be useful for the scientific community.

  9. Role of dental restoration materials in oral mucosal lichenoid lesions

    Directory of Open Access Journals (Sweden)

    Rajneesh Sharma

    2015-01-01

    Full Text Available Background: Dental restorative materials containing silver-mercury compounds have been known to induce oral lichenoid lesions. Objectives: To determine the frequency of contact allergy to dental restoration materials in patients with oral lichenoid lesions and to study the effect of removal of the materials on the lesions. Results: Forty-five patients were recruited in three groups of 15 each: Group A (lesions in close contact with dental materials, Group B (lesions extending 1 cm beyond the area of contact and Group C (no topographic relationship. Thirty controls were recruited in two groups of 15 individuals each: Group D (oral lichenoid lesions but no dental material and Group E (dental material but no oral lichenoid lesions. Patch tests were positive in 20 (44.5% patients. Mercury was the most common allergen to elicit a positive reaction in eight patients, followed by nickel (7, palladium (5, potassium dichromate (3, balsam of Peru, gold sodium thiosulphate 2 and tinuvin (2 and eugenol (1, cobalt chloride (1 and carvone (1. Seven patients elicited positive response to more than one allergen. In 13 of 20 patients who consented to removal of the dental material, complete healing was observed in 6 (30%, marked improvement in 7 (35% and no improvement in 7 (35% patients. Relief of symptoms was usually observed 3 months after removal. Limitations: Limited number of study subjects and short follow up after removal/replacement of dental restoration materials are the main limitations of this study. Conclusion: Contact allergy to amalgam is an important etiologic factor in oral lichenoid lesions and removal of restorative material should be offered to patients who have lesions in close proximity to the dental material.

  10. ON THE EROSIVE EFFECT OF SOME BEVERAGES FOR SPORTSMEN UPON DENTAL ENAMEL

    Directory of Open Access Journals (Sweden)

    Cosmin ARNAUTEANU

    2015-06-01

    Full Text Available The aim of the study was to compare the surface morphology of enamel and the variation of the mineral ions concentration after the manifestation of the erosive effect determined by various commercial beverages for athletes. 14 premolars extracted from orthodontic reasons have been cut in two halves. On each section, an enamel surface of 3x3 mm was preserved for investigations. The samples have been divided into 4 groups. In the control group, the 7 sections were kept in artificial saliva while, in the other 3 groups, the sections were introduced in 3 beverages for athletes: Gatorade Citron (Pepsi Cola Co., 5-hour Energy (Living Essentials, Powerade Cherry (Coca Cola Co.. The samples were analyzed on an electronic microscope with Vega II LSH scanning device, coupled with EDX Quantax QX2 detector. SEM analysis evidenced erosion zones at the level of enamel, which appears pinched in the samples subjected to the action of acid beverages. A decreasing tendency of the average values of calcium ion concentrations was observed in the batches in which the enamel samples had been subjected to the action of beverages for athletes. The highest relative variations of calcium and phosphorous ions (10%, respectively 8% were recorded for Gatorade, followed, in decreasing order, by Powerade, for which variations of 9%, respectively 6%, were noticed, and by the 5-hour Energy beverage, in which the relative losses were of 5%, respectively 3%. All beverages for athletes tested in the present study showed erosion potential upon the dental enamel. Gatorade appeared as the most aggressive beverage for athletes followed by Powerade and 5-hour Energy.

  11. The Distribution of Mutans Streptococci in Plaque on the margin of Amalgam, on the Enamel, and on the Surface of Amalgam Restoration

    Directory of Open Access Journals (Sweden)

    Soeherwin Mangundjaja

    2015-10-01

    Full Text Available The aim of the study was to evaluate the level of distribution of mutans streptococci on the margin of amalgam restoration, compared with that on the enamel and on the surface of restoration. It is assumed that the level of distribution of mutans streptococci on the margin will be able to influence the presence of secondary caries. In this study the first molars of 20 patients were treated with amalgam restoration. The mutans streptococci was measured as the percentage of total CFU count in the plaque. The results showed a mean count of 108.8 (SD= 55.2 of mutans streptococci in the margin; 97.7 (SD=63.5 on the enamel; and 61.4 (SD=32.4 on the surface of amalgam restoration. It seems that the level of mutans streptococci on the margin is higher than those on the enamel (p=0.006 as well as higher than those on the surface of (p=0.031. It is suggested that elevated level of mutans streptococci on the margin can indicate risk to secondary caries.

  12. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser

    Directory of Open Access Journals (Sweden)

    Patrícia T Pires

    2013-01-01

    Full Text Available Context: Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Aims: Evaluate shear bond strength (SBS values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. Subjects and Methods: One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15 and to enamel morphology analysis ( n = 5 after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA+ ExciTE® ; Group II - ExciTE® ; Group III - AdheSE® self-etching; Group IV - FuturaBond® no-rinse. NR; Group V - Xeno® V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. Statistical Analysis Used: One-way ANOVA and post-hoc tests (p < 0.05. For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA and the etching pattern analyzed under Scanning Electron Microscope (SEM. Results: Mean bond strengths were Group I - 47.17 ± 1.61 MPa (type I etching pattern; Group II - 32.56 ± 1.64 MPa, Group III - 29.10 ± 1.34 MPa, Group IV - 23.32 ± 1.53 MPa (type III etching pattern; Group V - 24.43 MPa ± 1.55 (type II etching pattern. Conclusions: Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE® and ExciTE® without condition with PA. FuturaBond® NR and Xeno® V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  13. Resin-bonded restorations: a strategy for managing anterior tooth loss in adolescence.

    Science.gov (United States)

    Zitzmann, Nicola U; Özcan, Mutlu; Scherrer, Susanne S; Bühler, Julia M; Weiger, Roland; Krastl, Gabriel

    2015-04-01

    In children or adolescents with anterior tooth loss, space closure with the patient's own teeth should be considered as the first choice to avoid lifelong restorative needs. Thorough diagnostics and treatment planning are required when autotransplantation or orthodontic space closure is considered. If these options are not indicated and a single tooth implant restoration is considered, implant placement should be postponed until adulthood, particularly in young women and in patients with hyperdivergent skeletal growth pattern. A ceramic resin-bonded fixed dental prosthesis with 1 retainer is an excellent treatment solution for the interim period; it may also serve as a long-term restoration, providing that sound enamel structure is present, sufficient framework dimensions have been provided, adhesive cementation techniques have been meticulously applied, and functional contacts of the cantilever pontic avoided. In contrast, a resin-bonded fixed dental prosthesis with a metal framework and retentive preparation is indicated if the palatal enamel structure is compromised, interocclusal clearance is limited, splinting (such as after orthodontic treatment) is required, or more than 1 tooth has to be replaced. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Determination of biomechanical characteristics of dentine and dental enamel in vitro

    OpenAIRE

    UTYUZH ANATOLIJ SERGEEVICH; YUMASHEV ALEKSEJ VALERIEVICH; ZAGORSKY VLADISLAV VALERIEVICH; ZAKHAROV ALEKSEJ NIKOLAEVICH; NEFEDOVA IRINA VALERIEVNA

    2016-01-01

    Hardness characteristics of the hard tissues of a tooth are widely used in dentistry practice, both in diagnostics and in therapy, they are also very important for individual selection of restoration and other specialized materials. During examination of enamel and dentine hardness, it is very important to handle information that beside its theoretical value also has high practical value. For this purpose, we suggest to calculate hardness of tooth tissue on the basis of quantitative indicator...

  15. [Dental implant restoration abutment selection].

    Science.gov (United States)

    Bin, Shi; Hao, Zeng

    2017-04-01

    An increasing number of implant restoration abutment types are produced with the rapid development of dental implantology. Although various abutments can meet different clinical demands, the selection of the appropriate abutment is both difficult and confusing. This article aims to help clinicians select the appropriate abutment by describing abutment design, types, and selection criteria.

  16. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. 'In vitro' assessment to instrumented indentation hardness tests in enamel of bovine teeth, before and after dental bleaching by laser

    International Nuclear Information System (INIS)

    Britto Junior, Francisco Meira

    2004-01-01

    The laser enamel bleaching is a common used procedure due to its satisfactory esthetic results. The possible changes on the dental structures caused by the bleaching technique are of great importance. The enamel superficial microhardness changes through instrumented indentation hardness on bovine teeth were analyzed in this present study. The samples were divided in two halves, one being the control and the other irradiated with a diode laser (808 nm) or with a Nd:YAG laser (1064 nm) to activate the Whiteness HP bleaching gel (hydrogen peroxide at 35%). It was possible to conclude that there was a statistical significant increase on the enamel superficial microhardness (Group I, sample 1 and Group II, sample 1) despite this increase did not seem to indicate a concern regarding the enamel surface resistance change. There was not a significant statistical change on the enamel microhardness on the other samples. The final conclusion is that there was no superficial enamel morphological change after these treatments. (author)

  18. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, Laurent; Lebon, Nicolas; Mawussi, Bernardin; Fron-Chabouis, Hélène; Duret, Francois; Attal, Jean-Pierre

    2015-01-01

    As is the case in the field of medicine, as well as in most areas of daily life, digital technology is increasingly being introduced into dental practice. Computer-aided design/ computer-aided manufacturing (CAD/CAM) solutions are available not only for chairside practice but also for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental practice can be considered as the handling of devices and software processing for the almost automatic design and creation of dental restorations. However, dentists who want to use dental CAD/CAM systems often do not have enough information to understand the variations offered by such technology practice. Knowledge of the random and systematic errors in accuracy with CAD/CAM systems can help to achieve successful restorations with this technology, and help with the purchasing of a CAD/CAM system that meets the clinical needs of restoration. This article provides a mechanical engineering viewpoint of the accuracy of CAD/ CAM systems, to help dentists understand the impact of this technology on restoration accuracy.

  19. Regulation of Dental Enamel Shape and Hardness

    Science.gov (United States)

    Simmer, J.P.; Papagerakis, P.; Smith, C.E.; Fisher, D.C.; Rountrey, A.N.; Zheng, L.; Hu, J.C.-C.

    2010-01-01

    Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation. PMID:20675598

  20. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.

    Science.gov (United States)

    Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C

    2011-05-01

    In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries.

    Science.gov (United States)

    Dorri, Mojtaba; Martinez-Zapata, Maria José; Walsh, Tanya; Marinho, Valeria Cc; Sheiham Deceased, Aubrey; Zaror, Carlos

    2017-12-28

    Dental caries is a sugar-dependent disease that damages tooth structure and, due to loss of mineral components, may eventually lead to cavitation. Dental caries is the most prevalent disease worldwide and is considered the most important burden of oral health. Conventional treatment methods (drill and fill) involve the use of rotary burs under local anaesthesia. The need for an electricity supply, expensive handpieces and highly trained dental health personnel may limit access to dental treatment, especially in underdeveloped regions.To overcome the limitations of conventional restorative treatment, the Atraumatic Restorative Treatment (ART) was developed, mainly for treating caries in children living in under-served areas of the world where resources and facilities such as electricity and trained manpower are limited. ART is a minimally invasive approach which involves removal of decayed tissue using hand instruments alone, usually without use of anaesthesia and electrically driven equipment, and restoration of the dental cavity with an adhesive material (glass ionomer cement (GIC), composite resins, resin-modified glass-ionomer cement (RM-GICs) and compomers). To assess the effects of Atraumatic Restorative Treatment (ART) compared with conventional treatment for managing dental caries lesions in the primary and permanent teeth of children and adults. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 22 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 1), MEDLINE Ovid (1946 to 22 February 2017), Embase Ovid (1980 to 22 February 2017), LILACS BIREME Virtual Health Library (Latin American and Caribbean Health Science Information database; 1982 to 22 February 2017) and BBO BIREME Virtual Health Library (Bibliografia Brasileira de Odontologia; 1986 to 22 February 2017). The US National Institutes of Health Trials Registry (Clinical

  2. Ceramic-like wear behaviour of human dental enamel.

    Science.gov (United States)

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Unique CAD/CAM three-quarter crown restoration of a central incisor: a case report.

    Science.gov (United States)

    Goldberg, Marvin B; Siegel, Sharon C; Rezakani, Niloufar

    2013-07-01

    Computer-aided design and computer-aided manufacturing (CAD/CAM) dentistry has been in use for more than 2 decades. Recent improvements in this technology have made CAD/CAM restorations a viable alternative for routine dental care. This technology is being taught in dental schools to prepare students for contemporary dental practice and is particularly useful in unique restorative situations that allow conservation of tooth structure. This case report describes the restoration of a central incisor that was previously restored with an unesthetic three-quarter gold crown. The tooth exhibited recurrent caries and an unaffected labial wall of supported enamel. A CAD/CAM three-quarter crown was planned to conserve tooth structure. After preparation, the tooth was scanned for a CAD/CAM crown in order to fabricate a ceramic restoration, which was then milled and bonded, producing an esthetic result. Typically, in cases of esthetic enhancement, a labial laminate restoration is fabricated, but in this situation, a different approach was necessary to make a design for the lingual surface of an anterior tooth.

  4. High resolution ultrastructure imaging of fractures in human dental tissues

    Directory of Open Access Journals (Sweden)

    Tan Sui

    2014-01-01

    Full Text Available Human dental hard tissues are dentine, cementum, and enamel. These are hydrated mineralised composite tissues with a hierarchical structure and versatile thermo-mechanical properties. The hierarchical structure of dentine and enamel was imaged by transmission electron microscopy (TEM of samples prepared by focused ion beam (FIB milling. High resolution TEM was carried out in the vicinity of a crack tip in dentine. An intricate “random weave” pattern of hydroxyapatile crystallites was observed and this provided a possible explanation for toughening of the mineralized dentine tissue at the nano-scale. The results reported here provide the basis for improved understanding of the relationship between the multi-scale nature and the mechanical properties of hierarchically structured biomaterials, and will also be useful for the development of better prosthetic and dental restorative materials.

  5. THE CURRENT STATE OF CALCIUM SILICATE CEMENTS IN RESTORATIVE DENTISTRY: A REVIEW

    OpenAIRE

    Corral-Núñez, Camila; Fernández-Godoy, Eduardo; Casielles, Javier Martín; Estay, Juan; Bersezio-Miranda, Cristian; Cisternas-Pinto, Patricia; Batista-de Oliveira Jr, Osmir

    2016-01-01

    ABSTRACT Calcium silicate cements have been used as dental materials for more than twenty years; however, their use in restorative dentistry is more recent. Better mechanical properties and shorter curing times make them suitable for a variety of applications in which they are used as a substitute of dentin, including direct/indirect pulp capping and as cavity base/liner. These materials may also be used to restore enamel temporarily. This article seeks to review the available scientific evid...

  6. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2010-09-01

    Full Text Available Introduction: Dentin sialoprotein (DSP is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth.Evaluation of the hypothesis: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  7. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair.

    Science.gov (United States)

    Yuan, Guo-Hua; Yang, Guo-Bin; Wu, Li-An; Chen, Zhi; Chen, Shuo

    2010-01-01

    INTRODUCTION: Dentin sialoprotein (DSP) is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models. THE HYPOTHESIS: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth. EVALUATION OF THE HYPOTHESIS: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  8. Selective ablation of dental enamel and dentin using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lizarelli, R F Z; Costa, M M; Carvalho-Filho, E; Bagnato, V S; Nunes, F D

    2008-01-01

    The study of the interaction of intense laser light with matter, as well as transient response of atoms and molecules is very appropriated because of the laser energy concentration in a femtosecond optical pulses. The fundamental problem to be solved is to find tools and techniques which allow us to observe and manipulate on a femtosecond time scale the photonics events on and into the matter. Six third human extracted molars were exposed to a femtosecond Ti:Sapphire Q-switched and mode locked laser (Libra-S, Coherent, Palo Alto, CA, USA), emitting pulses with 70 fs width, radiation wavelength of 801 nm, at a constant pulse repetition rate of 1 KHz. The laser was operated at different power levels (70 to 400 mW) with constant exposition time of 10 seconds, at focused and defocused mode. Enamel and dentin surfaces were evaluated concerned ablation rate and morphological aspects under scanning electron microscopic. The results in this present experiment suggest that at the focused mode and under higher average power, enamel tissues present microcavities with higher depth and very precise edges, but, while dentin shows a larger melt-flushing, lower depth and melting and solidification aspect. In conclusion, it is possible to choose hard or soft ablation, under lower and higher average power, respectively, revealing different aspects of dental enamel and dentin, depending on the average power, fluence and distance from the focal point of the ultra-short pulse laser on the tooth surface

  9. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    Science.gov (United States)

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  10. Selective removal of esthetic composite restorations with spectral guided laser ablation

    Science.gov (United States)

    Yi, Ivana; Chan, Kenneth H.; Tsuji, Grant H.; Staninec, Michal; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Dental composites are used for a wide range of applications such as fillings for cavities, adhesives for orthodontic brackets, and closure of gaps (diastemas) between teeth by esthetic bonding. Anterior restorations are used to replace missing, diseased and unsightly tooth structure for both appearance and function. When these restorations must be replaced, they are difficult to remove mechanically without causing excessive removal or damage to enamel because dental composites are color matched to teeth. Previous studies have shown that CO2 lasers have high ablation selectivity and are well suited for removal of composite on occlusal surfaces while minimizing healthy tissue loss. A spectral feedback guidance system may be used to discriminate between dental composite and dental hard tissue for selective ablation of composite material. The removal of composite restorations filling diastemas is more challenging due to the esthetic concern for anterior teeth. The objective of this study is to determine if composite spanning a diastema between anterior teeth can be removed by spectral guided laser ablation at clinically relevant rates with minimal damage to peripheral healthy tissue and with higher selectivity than a high speed dental handpiece.

  11. Dental Calculus Arrest of Dental Caries.

    Science.gov (United States)

    Keyes, Paul H; Rams, Thomas E

    An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.

  12. Dental Calculus Arrest of Dental Caries

    Science.gov (United States)

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993

  13. Understanding dental CAD/CAM for restorations--dental milling machines from a mechanical engineering viewpoint. Part B: labside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    Nowadays, dental numerical controlled (NC) milling machines are available for dental laboratories (labside solution) and dental production centers. This article provides a mechanical engineering approach to NC milling machines to help dental technicians understand the involvement of technology in digital dentistry practice. The technical and economic criteria are described for four labside and two production center dental NC milling machines available on the market. The technical criteria are focused on the capacities of the embedded technologies of milling machines to mill prosthetic materials and various restoration shapes. The economic criteria are focused on investment cost and interoperability with third-party software. The clinical relevance of the technology is discussed through the accuracy and integrity of the restoration. It can be asserted that dental production center milling machines offer a wider range of materials and types of restoration shapes than labside solutions, while labside solutions offer a wider range than chairside solutions. The accuracy and integrity of restorations may be improved as a function of the embedded technologies provided. However, the more complex the technical solutions available, the more skilled the user must be. Investment cost and interoperability with third-party software increase according to the quality of the embedded technologies implemented. Each private dental practice may decide which fabrication option to use depending on the scope of the practice.

  14. [Influence of the fluoride releasing dental materials on the bacterial flora of dental plaque].

    Science.gov (United States)

    Płuciennik, Małgorzata; Sakowska, Danuta; Krzemiński, Zbigniew; Piatowska, Danuta

    2008-01-01

    The assessment of influence of silver-free, fluor releasing dental materials on dental plaque bacteria quantity. 17 patients were included into the study. 51 restorations were placed following manufacturers recommendations. Following materials were used: conventional glassionomer Ketac-Molar ESPE, resin modified glassionomer Fuji II LC GC and fluor containing composite Charisma Heraeus Kulzer Class V restorations were placed in following teeth of upper and lower jaw: canines, first bicuspids, second bicuspids. Sound enamel was a control. After 10 weeks the 72 hours old dental plaque was collected from surface of restorations and control using sterile probe. Total amount of 68 dental plaques were investigated. Each plaque was placed on scaled and sterile aluminum foil. The moist weight of dental plaque was scaled. Dental plaque was moved into 7 ml 0.85% NaCl solution reduced by cystein chlorine hydrogen and disintegrated by ultrasounds (power:100 Watt, wave amplitude: 5 micorm). The suspension of dental plaque was serially diluted from 10(-4) to 10(-5) in sterile 0,85% NaCl solution, and seeded with amount of 0.1 ml on appropriate base. In dental plaque trials the amount of cariogenic bacteria was calculated--Streptococcus mutans, Streptococcus, Lactobacillus, Veillonella and Neisseria, and also total amount of aerobic and anaerobic bacteria was measured. Microbiologic studies were performed in Institute of Microbiology, Medical University, Łódź. Statistical analysis of collected data was accomplished. In 72 hours old dental plaques collected from the surfaces of Ketac -Molar, Fuji II LC, Charisma after 10 weeks since being placed into the class V cavity, results show no statistically significant differences in the amount of Streptococcus mutans, Streptococcus spp., Lactobacillus spp., Veillonella spp., Neisseria spp, in total amount of aerobic and anaerobic bacteria and in the quantity proportion of Streptococcus mutans versus Streptococcus spp. in comparison

  15. Heat Transfer and Thermal Stress Analysis of a Mandibular Molar Tooth Restored by Different Indirect Restorations Using a Three-Dimensional Finite Element Method.

    Science.gov (United States)

    Çelik Köycü, Berrak; İmirzalıoğlu, Pervin

    2017-07-01

    Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.

  16. Improving the competency of dental hygiene students in detecting dental restorations using quantitative light-induced fluorescence technology.

    Science.gov (United States)

    Oh, Hye-Young; Jung, Hoi-In; Lee, Jeong-Woo; de Jong, Elbert de Josselin; Kim, Baek-Il

    2017-03-01

    The purpose of this study was to determine the usefulness of a quantitative light-induced fluorescence (QLF) technology in detecting dental restorations by comparing the detection ability of dental hygiene students between using conventional visual inspection alone and visual inspection combined with QLF technology. The subjects of this study comprised 92 dental hygiene students. The students assigned to the control group only used white-light images to visually assess the mouth environment, while those in the experimental group additionally used fluorescence images. Using the test results of an experienced inspector as a reference value, the agreement between the reference value and the evaluation results of the students in the experimental and control groups was evaluated using Cohen's kappa and the percentage agreement. The subjects were then classified into groups covering three percentage ranges according to the score distribution and agreement values of the three groups were compared. The percentage agreement was calculated according to the type of dental restorations. The mean kappa value was significantly higher in the experimental group than the control group (0.70 vs 0.60, ptechnology increased by 8% more in the middle and bottom percentage groups than in the top percentage group (ptechnology with conventional visual inspections could improve the ability to detect dental restorations and distinguish sound teeth from aesthetic restorations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Complex layered dental restorations: Are they recognizable and do they survive extreme conditions?

    Science.gov (United States)

    Soon, Alistair S; Bush, Mary A; Bush, Peter J

    2015-09-01

    Recent research has shown that restorative dental materials can be recognized by microscopy and elemental analysis (scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence; SEM/EDS and XRF) and that this is possible even in extreme conditions, such as cremation. These analytical methods and databases of dental materials properties have proven useful in DVI (disaster victim identification) of a commercial plane crash in 2009, and in a number of other victim identification cases. Dental materials appear on the market with ever expanding frequency. With their advent, newer methods of restoration have been proposed and adopted in the dental office. Methods might include placing multiple layers of dental materials, where they have different properties including adhesion, viscosity, or working time. These different dental materials include filled adhesives, flowable resins, glass ionomer cements, composite resins, liners and sealants. With possible combinations of different materials in these restorations, the forensic odontologist is now confronted with a new difficulty; how to recognize each individual material. The question might be posed if it is even possible to perform this task. Furthermore, an odontologist might be called upon to identify a victim under difficult circumstances, such as when presented with fragmented or incinerated remains. In these circumstances the ability to identify specific dental materials could assist in the identification of the deceased. Key to use of this information is whether these new materials and methods are detailed in the dental chart. Visual or radiographic inspection may not reveal the presence of a restoration, let alone the possible complex nature of that restoration. This study demonstrates another scientific method in forensic dental identification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. An approach to biomimetics: the natural CAD/CAM restoration: a clinical report.

    Science.gov (United States)

    Schlichting, Luís Henrique; Schlichting, Kathryn Klemz; Stanley, Kyle; Magne, Michel; Magne, Pascal

    2014-02-01

    Those in the dental field have always pursued the perfect dental material for the treatment of compromised teeth. Gold, amalgam, composite resin, glass ionomer, and porcelain have been used. Tooth-like restorative materials (composite resin and porcelain) combined with an effective hard tissue bond have met the growing demand for esthetic or metal-free restorations in the past 15 to 20 years. However, none of those materials can fully mimic the unique properties of dentin (compliance and crack-stopping behavior) and enamel (wear resistance, function). The aim of this article is to report the restoration of an extensively damaged tooth with a natural restoration obtained by milling an extracted third molar tooth with a computer-aided design and computer-aided manufacturing (CAD/CAM) system. The main benefit of this novel technique is the replacement of lost tissues by actual enamel and dentin, with the potential to recover mechanical, esthetic, and biologic properties. The indication for extracting third molars and premolars because of impaction or for orthodontic reasons makes these posterior teeth readily available. The innovation of the method presented here is the optimal use of the extracted tooth substrate thanks to its positioning technique in the CAD/CAM milling chamber. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. [Detection of marginal leakage of Class V restorations in vitro by micro-CT].

    Science.gov (United States)

    Gu, Lin-juan; Zhao, Xin-yi; Li, Shi-bao

    2012-09-01

    To evaluate the reliability and superiority of micro-CT in marginal leakage assessment of Class V restorations. Class V preparations with gingival margins in dentin and occlusal in enamel were made in sixteen extracted non-carious human molars and restored with dental bonding agents and composite resin. All teeth were then immersed in 50% ammonia-silver nitrate solution for 12 hours, followed by developing solution for 8 hours. Each restoration was scanned by a micro-CT and silver leakage was measured and three-dimensional image of the silver leakage alone cavity wall were reconstructed. Afterward, all restorations were sectioned and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by micro-CT and microscope were compared for equivalency. The silver leakage depths in gingival wall obtained with micro-CT (0.78 mm) and microscope (0.74 mm) showed no significant difference (P > 0.05), while the judgment of leakage depths in occlusal wall in micro-CT image (0.40 mm) was affected by adjacent enamel structure, giving less leakage depths compared to microscope (0.72 mm)(P leakages showed channels on their way to spreading. Micro-CT can detect precisely the silver leakage in the dentin wall of a restoration and display its three-dimensional shape fully. Enamel structure affects the detection of the silver leakage next to it.

  20. Interaction of ArF laser with dental hard tissue (AEM Study

    Directory of Open Access Journals (Sweden)

    Abbas Majdabadi

    2016-07-01

    Full Text Available Background and Aims: Nowadays lasers are used as alternatives to the tooth preparation because of reducing pain and bloodshed. The aim of this study was to observe the effect of ArF laser on the dental hard tissues. Materials and Methods: For this research human molar teeth with no caries or dental restoration and enamel cracks were used. Irradiation laser energies were taken 95, 70 and 50 mJ for enamel and 80, 70 and 50 mJ for dentine. Then, for each of energy values pulse numbers (repetition rate were adjusted at 200, 400, 600, 800, 1000 and 1500. Ablation was carried out without water spray on both enamel and dentine. Finally, the dimensions of ablated areas were measured by using a camera connected to the computer and results were applied in graphs. Results: For each energy value, the ablation dimension increased by increasing pulse numbers. Ablation depth in dentine was more than that of for enamel. Trends of graphs for dentine and enamel were the same. SEM images of ablations by 95 mJ energy on enamel and 80 mJ energy on dentine showed sharp edges. Conclusion: Ablation depths increased by increasing pulse numbers, for each energy level. However, this increase was not that as expected, because the lack of water spray while irradiating.

  1. Radiopacity of restorative composites by conventional radiography and digital images with different resolutions

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Raquel Venancio; Samento, Hugo Ramalho [Graduate Program in Dentistry, Federal University of Pelotas, Pelotas (Brazil); Duarte, Rosangela Marques; Raso, Sonia Saeger Meireles Monte; De Andrade Ana Karina Maciel; Anjos-Pontual Maria Luiza Dos [Dept. of Operative Dentistry, Federal University of Paraiba, Pelotas (Brazil)

    2013-09-15

    This study was performed to evaluate and compare the radiopacity of dentin, enamel, and 8 restorative composites on conventional radiograph and digital images with different resolutions. Specimens were fabricated from 8 materials and human molars were longitudinally sectioned 1.0 mm thick to include both enamel and dentin. The specimens and tooth sections were imaged by conventional radiograph using 4 sized intraoral film and digital images were taken in high speed and high resolution modes using a phosphor storage plate. Densitometric evaluation of the enamel, dentin, restorative materials, a lead sheet, and an aluminum step wedge was performed on the radiographic images. For the evaluation, the Al equivalent (mm) for each material was calculated. The data were analyzed using one-way ANOVA and Tukey's test (p<0.05), considering the material factor and then the radiographic method factor, individually. The high speed mode allowed the highest radiopacity, while the high resolution mode generated the lowest values. Furthermore, the high resolution mode was the most efficient method for radiographic differentiation between restorative composites and dentin. The conventional radiograph was the most effective in enabling differentiation between enamel and composites. The high speed mode was the least effective in enabling radiographic differentiation between the dental tissues and restorative composites. The high speed mode of digital imaging was not effective for differentiation between enamel and composites. This made it less effective than the high resolution mode and conventional radiographs. All of the composites evaluated showed radiopacity values that fit the ISO 4049 recommendations.

  2. Caries experience of Egyptian adolescents: does the atraumatic restorative treatment approach offer a solution?

    Science.gov (United States)

    Mobarak, E H; Shabayek, M M; Mulder, J; Reda, A H; Frencken, J E

    2011-01-01

    To assess the prevalence and severity of dental caries amongst Egyptian adolescents and the prevalence of carious lesions treatable through the atraumatic restorative treatment (ART) approach. Using a convenient sample procedure, two secondary schools with a dental clinic were selected (967 students, average age: 13.7 ± 0.8 years, range: 12-15). Dental caries was diagnosed using the ART caries criteria, and plaque and calculus were assessed using the Green and Vermillion criteria amongst students grades 1-3 in the dental clinic by 3 calibrated examiners. The effect of the independent variables gender, age, tooth surface, jaw side (left or right) and type of jaw (mandible/maxilla) on dependent caries experience variables and D(2) and D(3) variables were tested using ANOVA. The prevalence of dental caries including enamel lesion (D(2)MFT) amongst the 967 students was 51.4% and that of dental caries excluding enamel lesions (D(3)MFT) was 38.1%. The mean D(2)MFT and D(3)MFT scores were 1.5 and 0.8, respectively. The percentage of teeth filled and extracted was low. Female students had statistically significantly higher mean D(3)MFT/S and D(2)MFT/S scores than males (p ART was 48% for score 2 and 28% for score 3. Most of the cavitated lesions were found untreated despite the presence of a dental clinic and a dentist on the school premises. The majority of cavitated lesions without pulp involvement could be treated using the preventive and restorative components of the ART approach. Copyright © 2011 S. Karger AG, Basel.

  3. A comparative study of additive and subtractive manufacturing for dental restorations.

    Science.gov (United States)

    Bae, Eun-Jeong; Jeong, Il-Do; Kim, Woong-Chul; Kim, Ji-Hwan

    2017-08-01

    Digital systems have recently found widespread application in the fabrication of dental restorations. For the clinical assessment of dental restorations fabricated digitally, it is necessary to evaluate their accuracy. However, studies of the accuracy of inlay restorations fabricated with additive manufacturing are lacking. The purpose of this in vitro study was to evaluate and compare the accuracy of inlay restorations fabricated by using recently introduced additive manufacturing with the accuracy of subtractive methods. The inlay (distal occlusal cavity) shape was fabricated using 3-dimensional image (reference data) software. Specimens were fabricated using 4 different methods (each n=10, total N=40), including 2 additive manufacturing methods, stereolithography apparatus and selective laser sintering; and 2 subtractive methods, wax and zirconia milling. Fabricated specimens were scanned using a dental scanner and then compared by overlapping reference data. The results were statistically analyzed using a 1-way analysis of variance (α=.05). Additionally, the surface morphology of 1 randomly (the first of each specimen) selected specimen from each group was evaluated using a digital microscope. The results of the overlap analysis of the dental restorations indicated that the root mean square (RMS) deviation observed in the restorations fabricated using the additive manufacturing methods were significantly different from those fabricated using the subtractive methods (Padditive manufacturing methods (P=.466). Similarly, no significant differences were found between wax and zirconia, the subtractive methods (P=.986). The observed RMS values were 106 μm for stereolithography apparatus, 113 μm for selective laser sintering, 116 μm for wax, and 119 μm for zirconia. Microscopic evaluation of the surface revealed a fine linear gap between the layers of restorations fabricated using stereolithography apparatus and a grooved hole with inconsistent weak scratches

  4. Effect of 10% sodium bicarbonate on bond strength of enamel and dentin after bleaching with 38% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Fernanda Medeiros Darzé

    Full Text Available AbstractIntroductionBy-products of hydrogen peroxide degradation released during dental bleaching influence the polymerization of adhesive systems and composite resins, causing a reduction in shear bond strength to the tooth.Objectivethe aim of this article was to evaluate the effect of 10% sodium bicarbonate (SB, applied for different lengths of time, on the shear bond strength to enamel and dentin after bleaching.Material and methodEnamel and dentin blocks were divided into groups (n=10: (1 control: no bleaching; (2 immediate: bleaching immediately followed by restoration; (3 14-day: bleaching, restoration 14 days later; (4 SB for 10 minutes: bleaching, SB gel for 10 minutes, immediately followed by restoration; (5 SB for 20 minutes: bleaching, SB gel for 20 minutes, immediately followed by restoration. A 38% hydrogen peroxide gel (Opalescence Boost/Ultradent was used. After application of the adhesive system, composite resin cylinders were mounted on the surface of the substrates in order to test shear bond strength. Result: ANOVA and Tukey tests showed significantly higher mean enamel bond strength values for the 14-day follow-up group and without significant differences for control group. Mean bond strength values obtained for the other groups were intermediate. When testing dentin, the Tukey test revealed a significantly higher mean bond strength value for the 14-day follow-up group when compared with application of SB for 20 minutes.ConclusionSB gel applied was unable to reverse the low bond strength to enamel and dentin after bleaching treatment.

  5. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    Science.gov (United States)

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  6. Radiation-induced dental caries, prevention and treatment - A systematic review.

    Science.gov (United States)

    Gupta, Nishtha; Pal, Manoj; Rawat, Sheh; Grewal, Mandeep S; Garg, Himani; Chauhan, Deepika; Ahlawat, Parveen; Tandon, Sarthak; Khurana, Ruparna; Pahuja, Anjali K; Mayank, Mayur; Devnani, Bharti

    2015-01-01

    Treatment of head and neck cancers (HNCs) involves radiotherapy. Patients undergoing radiotherapy for HNCs are prone to dental complications. Radiotherapy to the head and neck region causes xerostomia and salivary gland dysfunction which dramatically increases the risk of dental caries and its sequelae. Radiation therapy (RT) also affects the dental hard tissues increasing their susceptibility to demineralization following RT. Postradiation caries is a rapidly progressing and highly destructive type of dental caries. Radiation-related caries and other dental hard tissue changes can appear within the first 3 months following RT. Hence, every effort should be focused on prevention to manage patients with severe caries. This can be accomplished through good preoperative dental treatment, frequent dental evaluation and treatment after RT (with the exception of extractions), and consistent home care that includes self-applied fluoride. Restorative management of radiation caries can be challenging. The restorative dentist must consider the altered dental substrate and a hostile oral environment when selecting restorative materials. Radiation-induced changes in enamel and dentine may compromise bonding of adhesive materials. Consequently, glass ionomer cements have proved to be a better alternative to composite resins in irradiated patients. Counseling of patients before and after radiotherapy can be done to make them aware of the complications of radiotherapy and thus can help in preventing them.

  7. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    Science.gov (United States)

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  8. Rehabilitation of a patient with amelogenesis imperfecta using porcelain veneers and CAD/CAM polymer restorations: A clinical report.

    Science.gov (United States)

    Saeidi Pour, Reza; Edelhoff, Daniel; Prandtner, Otto; Liebermann, Anja

    2015-01-01

    The complete dental rehabilitation of patients with a vertical dimension loss (VDL) caused by structural enamel deficits associated with amelogenesis imperfecta (AI) represents a difficult challenge for restorative teams. Accurate analysis and treatment planning that includes esthetic and functional evaluations and adequate material selection are important prerequisites for successful results. Long-term provisional restorations play an important role in exploring and elucidating the patients' esthetic demands and functional needs. Restorative treatment options can vary from requiring only oral hygiene instructions to extensive dental restorations that include composite fillings, ceramic veneers, metal-ceramic, or all-ceramic crowns. This case report describes a full-mouth rehabilitation of a patient with amelogenesis imperfecta including the case planning, bite replacement, preparation, and restoration setting steps with an experimental CAD/CAM polymer and porcelain veneers.

  9. Modelling of micromachining of human tooth enamel by erbium laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belikov, A V; Skrypnik, A V; Shatilova, K V [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  10. Modelling of micromachining of human tooth enamel by erbium laser radiation

    International Nuclear Information System (INIS)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    2014-01-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  11. Effect of Cigarette Smoke on Resin Composite Bond Strength to Enamel and Dentin Using Different Adhesive Systems.

    Science.gov (United States)

    Theobaldo, J D; Catelan, A; Rodrigues-Filho, U; Marchi, G M; Lima, Danl; Aguiar, Fhb

    2016-01-01

    To evaluate the microshear bond strength of composite resin restorations in dental blocks with or without exposure to cigarette smoke. Eighty bovine dental blocks were divided into eight groups (n=10) according to the type of adhesive (Scotchbond Multi-Purpose, 3M ESPE, St Paul, MN, USA [SBMP]; Single Bond 2, 3M ESPE [SB]; Clearfil SE Bond, Kuraray Medical Inc, Okayama, Japan [CSEB]; Single Bond Universal, 3M ESPE [SBU]) and exposure to smoke (no exposure; exposure for five days/20 cigarettes per day). The adhesive systems were applied to the tooth structure, and the blocks received a composite restoration made using a matrix of perforated pasta. Data were statistically analyzed using analysis of variance and Tukey test (αadhesive systems (padhesives, but no differences were noted in enamel.

  12. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy

    OpenAIRE

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, ?scar-Andrey

    2017-01-01

    Background There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Material and Methods Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and Pol...

  13. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives.

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Koliniotou-Koumpia, Eugenia; Helvatzoglou-Antoniades, Maria; Kotsanos, Nikolaos

    2013-01-01

    The aim of this study was to evaluate the fluoride release of five fluoride-releasing restorative materials and three dental adhesives, before and after NaF solution treatment. Five restorative materials (Fuji IX GP, GC Corp.; Ketac N100, 3M ESPE; Dyract Extra, Dentsply; Beautifil II, Shofu Inc.; Wave, SDI) and three dental adhesives (Stae, SDI; Fluorobond II - Shofu Inc.; Prime & Bond NT, Dentsply) were investigated before and after NaF solution treatment. A fluoride ion-selective electrode was to measure fluoride concentrations. During the 86-day period before NaF solution treatment, Fuji IX GP released the highest amount of fluoride among the restorative materials while Prime & Bond NT was the highest among the dental adhesives. After NaF solution treatment, Fuji IX GP again ranked the highest in fluoride release among the restorative materials while Fluorobond II ranked the highest among dental adhesives. It was concluded that the compositions and setting mechanisms of fluoride-containing dental materials influenced their fluoride release and recharge abilities.

  14. Effect of carbonated beverages, coffee, sports and high energy drinks, and bottled water on the in vitro erosion characteristics of dental enamel.

    Science.gov (United States)

    Kitchens, Michael; Owens, Barry M

    2007-01-01

    This study evaluated the effect of carbonated and non-carbonated beverages, bottled and tap water, on the erosive potential of dental enamel with and without fluoride varnish protection. Beverages used in this study included: Coca Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappuccino coffee drink, Dasani water (bottled), and tap water (control). Enamel surfaces were coated with Cavity Shield 5% sodium fluoride treatment varnish. Twenty-eight previously extracted human posterior teeth free of hypocalcification and caries were used in this study. The coronal portion of each tooth was removed and then sectioned transverse from the buccal to lingual surface using a diamond coated saw blade. The crown sections were embedded in acrylic resin blocks leaving the enamel surfaces exposed. The enamel surfaces were polished using 600 to 2000 grit abrasive paper and diamond paste. Test specimens were randomly distributed to seven beverage groups and comprised 4 specimens per group. Two specimens per beverage group were treated with a fluoride varnish while 2 specimens did not receive fluoride coating. Surface roughness (profilometer) readings were performed at baseline (prior to fluoride treatment and immersion in the beverage) and again, following immersion for 14 days (24 hours/day). The test beverages were changed daily and the enamel specimens were immersed at 37 degrees C. Surface roughness data was evaluated using multiple factor ANOVA at a significance level of pStarBucks coffee, Dasani water, and tap water. Fluoride varnish was not a significant impact factor; however, beverage (type) and exposure time were significant impact variables. Both carbonated and non-carbonated beverages displayed a significant erosive effect on dental enamel; however, fluoride varnish treatments did not demonstrate a significant protective influence on enamel surfaces.

  15. The Role of Na:K:2Cl Cotransporter 1 (NKCC1/SLC12A2) in Dental Epithelium during Enamel Formation in Mice

    Science.gov (United States)

    Jalali, Rozita; Lodder, Johannes C.; Zandieh-Doulabi, Behrouz; Micha, Dimitra; Melvin, James E.; Catalan, Marcelo A.; Mansvelder, Huibert D.; DenBesten, Pamela; Bronckers, Antonius

    2017-01-01

    Na+:K+:2Cl− cotransporters (NKCCs) belong to the SLC12A family of cation-coupled Cl− transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for Nkcc1 were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer. In incisors of Nkcc1-null mice late maturation ameloblasts were disorganized, shorter and the mineral density of the enamel was reduced by 10% compared to wild-type controls. Protein levels of gap junction protein connexin 43, Na+-dependent bicarbonate cotransporter e1 (NBCe1), and the Cl−-dependent bicarbonate exchangers SLC26A3 and SLC26A6 were upregulated in Nkcc1-null enamel organs while the level of NCKX4/SLC24A4, the major K+, Na+ dependent Ca2+ transporter in maturation ameloblasts, was slightly downregulated. Whole-cell voltage clamp studies on rat ameloblast-like HAT-7 cells indicated that bumetanide increased ion-channel activity conducting outward currents. Bumetanide also reduced cell volume of HAT-7 cells. We concluded that non-ameloblast dental epithelium expresses NKCC1 to regulate cell volume in enamel organ and provide ameloblasts with Na+, K+ and Cl− ions required for the transport of mineral- and bicarbonate-ions into enamel. Absence of functional Nkcc1 likely is compensated by other types of ion channels and ion transporters. The increased amount of Cx43 in enamel organ cells in Nkcc1-null mice suggests that these cells display a higher number of gap junctions to increase intercellular communication. PMID:29209227

  16. Casein phosphopeptide-amorphous calcium phosphate and shear bond strength of adhesives to primary teeth enamel.

    Science.gov (United States)

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-02-01

    CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth enamel.

  17. Evaluation of the dental structure loss produced during maintenance and replacement of occlusal amalgam restorations

    Directory of Open Access Journals (Sweden)

    Fernanda Sardenberg

    2008-09-01

    Full Text Available The aim of this in vitro study was to evaluate four different approaches to the decision of changing or not defective amalgam restorations in first primary molar teeth concerning the loss of dental structure. Ditched amalgam restorations (n = 11 were submitted to four different treatments, as follows: Control group - polishing and finishing of the restorations were carried out; Amalgam group - the ditched amalgam restorations were replaced by new amalgam restorations; Composite resin group - the initial amalgam restorations were replaced by composite resin restorations; Flowable resin group - the ditching around the amalgam restorations was filled with flowable resin. Images of the sectioned teeth were made and the area of the cavities before and after the procedures was determined by image analysis software to assess structural loss. The data were submitted to ANOVA complemented by the Student Newman Keuls test (p < 0.05. The cavities in all the groups presented significantly greater areas after the procedures. However, the amalgam group showed more substantial dental loss. The other three groups presented no statistically significant difference in dental structure loss after the re-treatments. Thus, replacing ditched amalgam restorations by other similar restorations resulted in a significant dental structure loss while maintaining them or replacing them by resin restorations did not result in significant loss.

  18. Detection sensitivity of fluorine in dental enamel through the 19F(p,psup(')γ)19F reaction

    International Nuclear Information System (INIS)

    Papper, C.S.; Chittleborough, G.; Kennett, S.R.; Chaudhri, M.A.

    1978-01-01

    The total cross sections for production of 109 and 197 keV gamma rays in the reaction 19 F(p,psup(')γ) 19 F have been measured, over a range of energies up to 4.3 MeV. From these cross sections, the thick detection sensitivities for a uniform distribution of fluorine in dental enamel have been calculated

  19. Efficacy of microtensile versus microshear bond testing for evaluation of bond strength of dental adhesive systems to enamel

    NARCIS (Netherlands)

    El Zohairy, A.A.; Saber, M.H.; Abdalla, A.I.; Feilzer, A.J.

    2010-01-01

    Objective The aim of the study was to evaluate the efficacy of the microtensile bond test (μTBS) and the microshear bond test (μSBS) in ranking four dental adhesives according to bond strength to enamel and identify the modes of failure involved. Materials and methods Forty-four caries-free human

  20. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization.

    Science.gov (United States)

    Jeremias, Fabiano; Koruyucu, Mine; Küchler, Erika C; Bayram, Merve; Tuna, Elif B; Deeley, Kathleen; Pierri, Ricardo A; Souza, Juliana F; Fragelli, Camila M B; Paschoal, Marco A B; Gencay, Koray; Seymen, Figen; Caminaga, Raquel M S; dos Santos-Pinto, Lourdes; Vieira, Alexandre R

    2013-10-01

    Genetic disturbances during dental development influence variation of number and shape of the dentition. In this study, we tested if genetic variation in enamel formation genes is associated with molar-incisor hypomineralization (MIH), also taking into consideration caries experience. DNA samples from 163 cases with MIH and 82 unaffected controls from Turkey, and 71 cases with MIH and 89 unaffected controls from Brazil were studied. Eleven markers in five genes [ameloblastin (AMBN), amelogenin (AMELX), enamelin (ENAM), tuftelin (TUFT1), and tuftelin-interacting protein 11 (TFIP11)] were genotyped by the TaqMan method. Chi-square was used to compare allele and genotype frequencies between cases with MIH and controls. In the Brazilian data, distinct caries experience within the MIH group was also tested for association with genetic variation in enamel formation genes. The ENAM rs3796704 marker was associated with MIH in both populations (Brazil: p=0.03; OR=0.28; 95% C.I.=0.06-1.0; Turkey: p=1.22e-012; OR=17.36; 95% C.I.=5.98-56.78). Associations between TFIP11 (p=0.02), ENAM (p=0.00001), and AMELX (p=0.01) could be seen with caries independent of having MIH or genomic DNA copies of Streptococcus mutans detected by real time PCR in the Brazilian sample. Several genes involved in enamel formation appear to contribute to MIH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Penetration of Streptococcus sobrinus and Streptococcus sanguinis into dental enamel.

    Science.gov (United States)

    Kneist, Susanne; Nietzsche, Sandor; Küpper, Harald; Raser, Gerhard; Willershausen, Brita; Callaway, Angelika

    2015-10-01

    The aim of this pilot study was to assess the difference in virulence of acidogenic and aciduric oral streptococci in an in vitro caries model using their penetration depths into dental enamel. 30 caries-free extracted molars from 11- to 16-year-olds were cleaned ultrasonically for 1 min with de-ionized water and, after air-drying, embedded in epoxy resin. After 8-h of setting at room temperature, the specimens were ground on the buccal side with SiC-paper 1200 (particle size 13-16 μm). Enamel was removed in circular areas sized 3 mm in diameter; the mean depth of removed enamel was 230 ± 60 μm. 15 specimens each were incubated anaerobically under standardized conditions with 24 h-cultures of Streptococcus sanguinis 9S or Streptococcus sobrinus OMZ 176 in Balmelli broth at 37 ± 2 °C; the pH-values of the broths were measured at the beginning and end of each incubation cycle. After 2, 4, 6, 8, and 10 weeks 3 teeth each were fixed in 2.5% glutaraldehyde in cacodylate buffer for 24 h, washed 3× and dehydrated 30-60min by sequential washes through a series of 30-100% graded ethanol. The teeth were cut in half longitudinally; afterward, two slits were made to obtain fracture surfaces in the infected area. After critical-point-drying the fragments were gold-sputtered and viewed in a scanning electron microscope at magnifications of ×20-20,000. After 10 weeks of incubation, penetration of S. sanguinis of 11.13 ± 24.04 μm below the break edges into the enamel was observed. The invasion of S. sobrinus reached depths of 87.53 ± 76.34 μm. The difference was statistically significant (paired t test: p = 0.033). The experimental penetration depths emphasize the importance of S. sanguinis versus S. sobrinus in the context of the extended ecological plaque hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The influence of the Nd:YAG laser bleaching on physical and mechanical properties of the dental enamel.

    Science.gov (United States)

    Marcondes, Maurem; Paranhos, Maria Paula Gandolfi; Spohr, Ana Maria; Mota, Eduardo Gonçalves; da Silva, Isaac Newton Lima; Souto, André Arigony; Burnett, Luiz Henrique

    2009-07-01

    The Nd:YAG laser can be used in Dentistry to remove soft tissue, disinfect canals in endodontic procedures and prevent caries. However, there is no protocol for Nd:YAG laser application in dental bleaching. The aims of this in vitro study were: (a) to observe the tooth shade alteration when hydrogen peroxide whitening procedures are associated with dyes with different wavelengths and irradiated with Nd:YAG laser or halogen light; (b) to measure the Vickers (VHN) enamel microhardness before and after the whitening procedure; (c) to evaluate the tensile bond strength of two types of adhesive systems applied on bleached enamel; (d) to observe the failure pattern after bond strength testing; (e) to evaluate the pulpal temperature during the bleaching procedures with halogen light or laser; (f) to measure the kinetic reaction of hydrogen peroxide. Extracted sound human molar crowns were sectioned in the mesiodistal direction to obtain 150 fragments that were divided into five groups for each adhesive system: WL (H(2)O(2) + thickener and Nd:YAG), WH (H(2)O(2) + thickener and halogen light), QL (H(2)O(2) + carbopol + Q-switch and Nd:YAG), QH (H(2)O(2) + carbopol + Q-switch and halogen light), and C (Control, without whitening agent). Shade assessment was made with a shade guide and the microhardness tests were performed before and after the bleaching procedures. Immediately afterwards, the groups were restored with the adhesive systems Adper Single Bond 2 or Solobond M plus composite resin, and the tensile bond strength test was performed. The temperature was measured by thermocouples placed on the enamel surface and intrapulpal chamber. The kinetics of hydrogen peroxide was observed by ultraviolet analysis. The shade changed seven levels for Nd:YAG laser groups and eight levels for halogen light. According to the student's t-test, there was no statistical difference between the VHN before and after the whitening protocols (p > 0.05). The tensile bond strength showed no

  3. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    Science.gov (United States)

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Tricho-Dento-Osseous Syndrome: Diagnosis and Dental Management

    Directory of Open Access Journals (Sweden)

    Ola B. Al-Batayneh

    2012-01-01

    Full Text Available Tricho-dento-osseous (TDO syndrome is a rare, autosomal dominant disorder principally characterised by curly hair at infancy, severe enamel hypomineralization and hypoplasia and taurodontism of teeth, sclerotic bone, and other defects. Diagnostic criteria are based on the generalized enamel defects, severe taurodontism especially of the mandibular first permanent molars, an autosomal dominant mode of inheritance, and at least one of the other features (i.e., nail defects, bone sclerosis, and curly, kinky or wavy hair present at a young age that may straighten out later. Confusion with amelogenesis imperfecta is common; however, taurodontism is not a constant feature of any of the types of amelogenesis imperfecta. Management of TDO requires a team approach, proper documentation, and a long-term treatment and follow-up plan. The aim of treatment is to prevent problems such as sensitivity, caries, dental abscesses, and loss of occlusal vertical dimension through attrition of hypoplastic tooth structure. Another aim is to restore function of the dentition and enhance the esthetics and self-esteem of the patient. This paper proposes treatment approaches that include preventive, restorative, endodontic, prosthetic, and surgical options to management. In addition, it sheds light on the difficulties faced during dental treatment of such cases.

  5. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    Science.gov (United States)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  6. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    International Nuclear Information System (INIS)

    Hikov, Todor; Pecheva, Emilia; Petrov, Todor; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry. (paper)

  7. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy.

    Science.gov (United States)

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, Óscar-Andrey

    2017-01-01

    There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and PolaOffice) according to the manufacturer´s instructions. The concentration of carbonate molecules in enamel was measured prior to and during the treatment by means of Raman spectroscopy. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. At home bleaching agents depicted a decrease in the carbonate molecule. This decrease was statistically significant for the bleaching gel with the highest hydrogen peroxide concentration ( p ≤0,05). In-office whitening agents caused an increase in carbonate, which was significant for all three groups ( p ≤0,05). In-office bleaching gels seem to cause a gain in carbonate of the enamel structure, whilst at-home whitening gels caused a loss in carbonate. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, carbonate.

  8. Effect of different dental ceramic systems on the wear of human enamel: An in vitro study.

    Science.gov (United States)

    Zandparsa, Roya; El Huni, Rabie M; Hirayama, Hiroshi; Johnson, Marc I

    2016-02-01

    The wear of tooth structure opposing different advanced dental ceramic systems requires investigation. The purpose of this in vitro study was to compare the wear of advanced ceramic systems against human enamel antagonists. Four ceramic systems (IPS e.max Press, IPS e.max CAD, Noritake Super Porcelain EX-3, and LAVA Plus Zirconia) and 1 control group containing human enamel specimens were used in this study (n = 12). All specimens were fabricated as disks 11 mm in diameter and 3 mm thick. The mesiopalatal cusps of the maxillary third molars were prepared to serve as the enamel styluses. All specimens were embedded individually in 25 mm(3) autopolymerizing acrylic resin blocks. Wear was measured with a cyclic loading machine and a newly designed wear simulator. All enamel styluses (cusps) were scanned using the Activity 880 digital scanner (SmartOptics). Data from the base line and follow-up scans were collected and compared with Qualify 2012 3-dimensional (3D) and 2D digital inspection software (Geomagic), which aligned the models and detected the geometric changes and the wear caused by the antagonist specimen. One-way ANOVA was used to analyze the collected data. After 125,000 bidirectional loading cycles, the mean loss of opposing enamel volume for the enamel disks in the control group was 37.08 μm(3), the lowest mean value for IPS e.max Press system was 39.75 μm(3); 40.58 μm(3) for IPS e.max CAD; 45.08 μm(3) for Noritake Super Porcelain EX-3 system; and 48.66 μm(3) for the Lava Plus Zirconia system. No statically significant differences were found among the groups in opposing enamel volume loss (P=.225) or opposing enamel height loss (P=.149). In terms of opposing enamel height loss, Lava Plus Zirconia system showed the lowest mean value of 27.5 μm. The mean value for the IPS e.max CAD system was 27.91 μm; 29.08 μm for the control enamel; 33.25 μm for the IPS e.max Press system; and 34.75 μm for the Noritake Super Porcelain EX-3 system. Within the

  9. Effects of blue light irradiation on dental enamel remineralization in vitro; Avaliacao dos efeitos promovidos pela radiacao azul na remineralizacao do esmalte dentario in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Ilka Tiemy

    2009-07-01

    This study aimed to investigate the effects of blue radiation on dental enamel remineralization. In addition, a methodology of analysis was developed to evaluate alterations of enamel mineral content by optical coherence tomography. Artificial lesions were formed in bovine dental enamel slabs by immersing the samples in under saturated acetate buffer (2 mL/mm{sup 2} e 6.25 mL/mm{sup 2}). The lesions were irradiated with blue LED (l=455{+-}20nm), with radiant power of 110 mW, irradiance of 1.4 W/cm{sup 2}, radiant exposure of 13.8 J/{sup c}m2 and exposure time of 10 s. Remineralization was induced by pH-cycling model during 8 days. Cross-sectional hardness and optical coherence tomography (OCT) were used to assess mineral changes after remineralization. Hardness data showed that non-irradiated enamel lesions presented higher mineral content than irradiated ones and this difference was more evident in lesions formed in higher solution volume. The analysis of OCT signal also demonstrated that the mineral content of non-irradiated group was higher than in irradiated one; however, no significant difference was observed. Furthermore, significant differences in OCT sign were detected between sound and demineralized enamel. Based on the results obtained in the present study it can be concluded that blue radiation caused an inhibition of enamel remineralization. The methodology adopted for OCT analysis allowed the quantification of enamel mineral loss; however, the remineralization process could not be evaluated by this technique. (author)

  10. β-pyrophosphate : a potential biomaterial for dental applications

    OpenAIRE

    Anastasiou, A. D.; Strafford, S.; Posada-Estefan, O.; Thomson, C. L.; Hussaein, S. A.; Edwards, T. J.; Malinowski, M.; Hondow, N.; Metzger, N. K.; Brown, C. T. A.; Routledge, M. N.; Brown, A. P.; Duggal, M. S.; Jha, A.

    2017-01-01

    The authors acknowledge support from the sponsors of this work; the EPSRC LUMIN (EP/K020234/1) and EU-Marie-Curie-IAPP LUSTRE (324538) projects. Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral trans...

  11. SU-E-T-89: Characterization of Dental Restoration Material for Cs-137 Radiation Dosimetry.

    Science.gov (United States)

    Ratliff, S; Gustafson, B; Barry, K

    2012-06-01

    The purpose of this work is to characterize the radiation-induced thermoluminescence properties of a dental restoration material and to see if the material might be feasible for use in retrospective radiation dosimetry. Retrospective, or accidental, dosimetry is the study of using nearby materials to measure radiation received by individuals. In this project we obtained samples of Ivoclar Vivadent e.max CAD material, a glass-ceramic used for making dental restorations such as full or partial crowns. The samples were machined into square chips .32 cm × .32 cm × .089 cm and annealed in the same furnace used by the dentist. The samples were exposed to a Cs-137 source using a PMMA source holder and then read in a Harshaw 3500 TLD reader. The samples were read without nitrogen gas flux using heating rates of 5 degrees C/s or 10 degrees C/s up to a maximum temperature of 400 degrees Celsius. The glow curves were analyzed using Systat PeakFIT peak-fitting software and Microsoft Excel spreadsheets. The authors gratefully thank Dr. Aaron Imdieke and the staff of River City Dental, St. Cloud, MN for the dental restoration materials and the use of their dental furnace. A sample subjected to a radiation exposure of .04 C/kg exhibits a glow curve with a prominent peak at approximately 140 degrees Celsius, which is well-modeled by the first order glow curve deconvolution formula developed by Kitis, Gomez-Ros, and Tuyn. The activation energy corresponding to this peak is approximately 1 eV. The thermoluminescent signal fades with time after exposure. Ivoclar Vivadent e.max CAD dental restoration material has the potential to be used as a material for retrospective Cs-137 radiation dosimetry. Future work could look at its thermoluminescent dosimetry properties in more detail and also at other dental restoration materials. The authors would like to thank Dr. Aaron Imdieke and the staff of River City Dental, St. Cloud, MN, for the donation of scrap dental restoration materials and

  12. Dental plaque as a biofilm - a risk in oral cavity and methods to prevent

    OpenAIRE

    Renata Chałas; Ilona Wójcik-Chęcińska; Michał J. Woźniak; Justyna Grzonka; Wojciech Święszkowski; Krzysztof J. Kurzydłowski

    2015-01-01

    Bacteria living constantly in the oral cavity are in the form of a biofilm. The biofilm formed on a solid base such as the enamel of the teeth, fillings, restorations, orthodontic appliances or obturators is dental plaque. Disturbance of homeostasis of biofilm, excessive growth or increase in the number of acid-forming bacteria leads to the development of the most common diseases of the oral cavity, i.e. dental caries and periodontal disease. The presence of bacterial biofilm on the walls of ...

  13. Detection of marginal leakage of Class V restorations in vitro by micro-computed tomography.

    Science.gov (United States)

    Zhao, X Y; Li, S B; Gu, L J; Li, Y

    2014-01-01

    This in vitro study evaluated the efficacy of micro-computed tomography (CT) in marginal leakage detection of Class V restorations. Standardized Class V preparations with cervical margins in dentin and occlusal margins in enamel were made in 20 extracted human molars and restored with dental bonding agents and resin composite. All teeth were then immersed in 50% ammoniacal silver nitrate solution for 12 hours, followed by a developing solution for eight hours. Each restoration was scanned by micro-CT, the depth of marginal silver leakage in the central scanning section was measured, and the three-dimensional images of the silver leakage around each restoration were reconstructed. Afterward, all restorations were cut through the center and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by the micro-CT and the microscope were compared for equivalency. The silver leakage depth in cervical walls observed by micro-CT and microscope showed no significant difference; however, in certain cases the judgment of leakage depth in the occlusal wall in micro-CT image was affected by adjacent enamel structure, providing less leakage depth than was observed with the microscope (pleakage around the Class V restorations with clear borders only in the dentin region. It can be concluded that micro-CT can detect nondestructively the leakage around a resin composite restoration in two and three dimensions, with accuracy comparable to that of the conventional microscope method in the dentin region but with inferior accuracy in the enamel region.

  14. Understanding the management and teaching of dental restoration repair: Systematic review and meta-analysis of surveys.

    Science.gov (United States)

    Kanzow, Philipp; Wiegand, Annette; Göstemeyer, Gerd; Schwendicke, Falk

    2018-02-01

    Repair instead of complete replacement is recommended to manage partially defective restorations. It is unclear if and why such treatment is taught at dental schools or practiced by dentists. We aimed to identify barriers and facilitators for repairs using a systematic review and meta- and qualitative analysis. Electronic databases (PubMed, CENTRAL, Embase, PsycINFO) were searched. Quantitative studies reporting on the proportion of (1) dentists stating to perform repairs, (2) dental schools teaching repairs, (3) failed restorations having been repaired were included. We also included qualitative studies on barriers/facilitators for repairs. Random-effects meta-analyses, meta-regression and a thematic analysis using the theoretical domains framework were conducted. 401 articles were assessed and 29, mainly quantitative, studies included. 7228 dentists and 276 dental schools had been surveyed, and treatment data of 30,172 restorations evaluated. The mean (95% CI) proportion of dentists stating to perform repairs was 71.5% (49.7-86.4%). 83.3% (73.6-90.0%) of dental schools taught repairs. 31.3% (26.3-36.7%) of failed restorations had been repaired. More recent studies reported significantly more dentists to repair restorations (p=0.004). Employment in public health practices and being the dentist who placed the original restoration were facilitators for repairs. Amalgam restorations were repaired less often, and financial aspects and regulations came as barriers. While most dentists state to perform repairs and the vast majority of dental schools teach repairs, the proportion of truly repaired restorations was low. A number of interventions to implement repair in dental practice can be deduced from our findings. Partially defective restorations are common in dental practice. While repairs are taught and dentists are aware of the recommendation towards repairs, the actually performed proportion of repairs seems low. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Qualitative and quantitative evaluation of human dental enamel after bracket debonding: a noncontact three-dimensional optical profilometry analysis.

    Science.gov (United States)

    Ferreira, Fabiano G; Nouer, Darcy F; Silva, Nelson P; Garbui, Ivana U; Correr-Sobrinho, Lourenço; Nouer, Paulo R A

    2014-09-01

    The aim of this study was to undertake a qualitative and quantitative evaluation of changes on enamel surfaces after debonding of brackets followed by finishing procedures, using a high-resolution three-dimensional optical profiler and to investigate the accuracy of the technique. The labial surfaces of 36 extracted upper central incisors were examined. Before bonding, the enamel surfaces were subjected to profilometry, recording four amplitude parameters. Brackets were then bonded using two types of light-cured orthodontic adhesive: composite resin and resin-modified glass ionomer cement. Finishing was performed by three different methods: pumice on a rubber cup, fine and ultrafine aluminum oxide discs, and microfine diamond cups followed by silicon carbide brushes. The samples were subsequently re-analyzed by profilometry. Wilcoxon signed-rank test, Kruskal-Wallis test (p enamel roughness when diamond cups followed by silicon carbide brushes were used to finish surfaces that had remnants of resin-modified glass ionomer adhesive and when pumice was used to finish surfaces that had traces of composite resin. Enamel loss was minimal. The 3D optical profilometry technique was able to provide accurate qualitative and quantitative assessment of changes on the enamel surface after debonding. Morphological changes in the topography of dental surfaces, especially if related to enamel loss and roughness, are of considerable clinical importance. The quantitative evaluation method used herein enables a more comprehensive understanding of the effects of orthodontic bonding on teeth.

  16. Refining enamel thickness measurements from B-mode ultrasound images.

    Science.gov (United States)

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  17. Microtensile bond strength of enamel after bleaching.

    Science.gov (United States)

    Lago, Andrea Dias Neves; Garone-Netto, Narciso

    2013-01-01

    To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Twenty bovine teeth were randomly distributed into 4 groups (n = 5), 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control); G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm) area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min) 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM). There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2). There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive) failure in all groups. The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  18. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration.

    Science.gov (United States)

    Lee, M-Y; Chang, C-C; Ku, Y C

    2008-01-01

    Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century.

  19. The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention.

    Directory of Open Access Journals (Sweden)

    A A Algarni

    Full Text Available To compare the effects of stannous (Sn and fluoride (F ions and their combination on acquired enamel pellicle (AEP protein composition (proteome experiment, and protection against dental erosion (functional experiment.In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10, according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2, F (225ppm/13mM, NaF, Sn and F combination (Sn+F and deionized water (DIW, negative control. The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10 were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d. Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry.Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89%, Sn (67% and F (42% compared to DIW (all significantly different, p<0.05.This study highlighted that anti-erosion rinses (e.g. Sn+F can modify quantitatively and qualitatively the AEP formed on bovine enamel. Moreover, our study demonstrated a combinatory effect that amplified the anti-erosive protection on tooth surface.

  20. Effect of dental restorative materials on total antioxidant capacity and calcium concentration of unstimulated saliva.

    Science.gov (United States)

    Ramezani, Gholam H; Moghadam, Mona-Momeni; Saghiri, Mohammad-Ali; Garcia-Godoy, Franklin; Asatourian, Armen; Aminsobhani, Mohsen; Scarbecz, Mark; Sheibani, Nader

    2017-01-01

    To evaluate the effect of dental amalgam and composite restorations on total antioxidant capacity (TAC) and calcium (Ca) ion concentration of unstimulated saliva. Forty-eight children aged 6-10 years selected and divided into three groups of sixteen (8 males, 8 females). In group A and B, samples consisted of two class II dental composite or amalgam restorations, while in group C samples were caries-free (control group). Unstimulated saliva from all samples was collected and TAC was measured by spectrophotometry using an adaptation of 2, 2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay. The Ca ion level was estimated by an auto- analyzer. Data were analyzed with one- and two-way ANOVA test, at a p difference between groups ( p differences within and between groups ( p Gender is an effective factor in changes induced in oral cavity as females showed more emphatic reaction to dental filling materials than males. Patients who have dental restorations, especially dental composites, should pay more attention to their dental hygiene, because dental restorations can increase oxidative stress and decrease Ca ion level in saliva, which might jeopardize remineralization process of tooth structures after demineralization. Key words: Amalgam, caries, composite, saliva, total antioxidant capacity.

  1. Antibacterial agents in composite restorations for the prevention of dental caries.

    Science.gov (United States)

    Pereira-Cenci, Tatiana; Cenci, Maximiliano S; Fedorowicz, Zbys; Azevedo, Marina

    2013-12-17

    Dental caries is a multifactorial disease in which the fermentation of food sugars by bacteria from the biofilm (dental plaque) leads to localised demineralisation of tooth surfaces, which may ultimately result in cavity formation. Resin composites are widely used in dentistry to restore teeth. These restorations can fail for a number of reasons, such as secondary caries, and restorative material fracture and other minor reasons. From these, secondary caries, which are caries lesions developed adjacent to restorations, is the main cause for restorations replacement. The presence of antibacterials in both the filling material and the bonding systems would theoretically be able to affect the initiation and progression of caries adjacent to restorations. This is an update of the Cochrane review published in 2009. To assess the effects of antibacterial agents incorporated into composite restorations for the prevention of dental caries. We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 23 July 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 6), MEDLINE via OVID (1946 to 23 July 2013) and EMBASE via OVID (1980 to 23 July 2013). We searched the US National Institutes of Health Trials Register (http://clinicaltrials.gov), the metaRegister of Controlled Trials (www.controlled-trials.com) and the World Health Organization International Clinical Trials Registry platform (www.who.int/trialsearch) for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised controlled trials comparing resin composite restorations containing antibacterial agents with composite restorations not containing antibacterial agents. Two review authors conducted screening of studies in duplicate and independently, and although no eligible trials were identified, the two authors had planned to extract data independently and

  2. Understanding dental CAD/CAM for restorations - dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.

  3. Numerical Analysis of Masticatory Forces on a Lower First Molar considering the Contact between Dental Tissues

    Directory of Open Access Journals (Sweden)

    Rosa Alicia Hernández-Vázquez

    2018-01-01

    Full Text Available The aim of the present work is to identify the reactions of the dental organs to the different forces that occur during chewing and the transcendence of the union and contact maintained by the dental tissues. The study used a lower first molar biomodel with a real morphology and morphometry and consisting of the three dental tissues (enamel, dentin, and pulp each with its mechanical properties. In it, two simulations were carried out, as would the process of chewing a food. One of the simulations considers the contact between the enamel and the dentin, and the other does not take it into account. The results obtained differ significantly between the simulations that consider contact and those that do not, establishing the importance of taking this contact into account. In this way, the theories that establish horizontal and lateral occlusion forces are present during the functional chewing process which are viable to be correct. The case studies carried out present not only the reasons for the failure of enamel but also the failure of the restoration materials used. This reflection will allow the development of more adequate materials, mechanical design of prostheses, implants, and treatment.

  4. Use of digital impression systems with intraoral scanners for fabricating restorations and fixed dental prostheses.

    Science.gov (United States)

    Takeuchi, Yoshimasa; Koizumi, Hiroyasu; Furuchi, Mika; Sato, Yohei; Ohkubo, Chikahiro; Matsumura, Hideo

    2018-01-01

    Accurate impressions are essential in fabri-cating dental restorations and fixed dental prostheses. During the last decade, digital impression systems have improved substantially. This review discusses the accuracy of digital impression systems for fabrication of dental restorations and fixed dental prostheses. A literature search in PubMed was performed for the period from July 2010 through June 2017. The search keywords were Cerec, digital impression, direct digitalization, indirect digitalization, and intraoral scanner. Only relevant studies are summarized and discussed in this review. In general, the latest systems have considerably reduced the time required for impression making, and the accuracy and marginal fit of digital impression systems have recently improved. Restorations and fixed dental prostheses fabricated with currently available digital impression systems and intraoral scanners exhibit clinically acceptable ranges of marginal gap in both direct and indirect procedures.

  5. Regression of oral lichenoid lesions after replacement of dental restorations.

    Science.gov (United States)

    Mårell, L; Tillberg, A; Widman, L; Bergdahl, J; Berglund, A

    2014-05-01

    The aim of the study was to determine the prognosis and to evaluate the regression of lichenoid contact reactions (LCR) and oral lichen planus (OLP) after replacement of dental restorative materials suspected as causing the lesions. Forty-four referred patients with oral lesions participated in a follow-up study that was initiated an average of 6 years after the first examination at the Department of Odontology, i.e. the baseline examination. The patients underwent odontological clinical examination and answered a questionnaire with questions regarding dental health, medical and psychological health, and treatments undertaken from baseline to follow-up. After exchange of dental materials, regression of oral lesions was significantly higher among patients with LCR than with OLP. As no cases with OLP regressed after an exchange of materials, a proper diagnosis has to be made to avoid unnecessary exchanges of intact restorations on patients with OLP.

  6. Dental enamel Hypoplasia. Investigations on the Bones Exhumed from the Medieval Necropole of Lozova (Republic of Moldova, XIVth–XVth Centuries

    Directory of Open Access Journals (Sweden)

    Robert Daniel Simalcsik

    2014-10-01

    Full Text Available Dental hypoplasia is a developmental anomaly based on perturbations of amelogenesis. Hypoplasia defects are part of the unspecific quantitative indicators for the state of health and / or nutritional state during the formation of the dental buds. It is a response of the human organism to physiological stress. The incidence of this dysplasia in a past population can indicate its biological frailty in its attempt to adapt to the environmental changes. The osteological material was excavated in the interval 2010 – 2011 by archaeologists from the Archaeology Centre in Chisinau, from the Medieval cemetery of Lozova (Straseni County, Republic of Moldova, dated for the XIVth and XVth centuries. Fifty one skeletons from 50 inhumation graves have been excavated and analyzed so far. Only 40 individuals had most of their teeth present. The enamel hypoplasia is of linear transversal type, located on the labial surface of the dental crowns, in the median third. The canine is the most affected tooth, followed by the incisors. The incidence of dental enamel hypoplasia at population level (based on the data collected and on the number of graves excavates so far, which does not illustrate the entire population of the cemetery is 7.5%. The incidence of dental caries is 23.53%, of cribra orbitalia – 11.75%, and of cribra cranii externa – 1.96%. The results obtained for a relatively small rural community illustrate a good adaptation to the stressing environmental factors. The possible malnutrition and illness episodes suffered during early childhood were recovered along the growth and development processes.

  7. Impact of Atraumatic Restorative Treatment (ART) on the treatment profile in pilot government dental clinics in Tanzania.

    Science.gov (United States)

    Kikwilu, Emil Namakuka; Frencken, Jo; Mulder, Jan

    2009-06-08

    The predominant mode of treatment in government dental clinics in Tanzania has been tooth extraction because the economy could not support the conventional restorative care which depends on expensive equipment, electricity and piped water systems. Atraumatic Restorative Treatment (ART) was perceived as a suitable alternative. A 3.5-year study was designed to document the changes in the treatment profiles ascribed to the systematic introduction of ART in pilot government dental clinics. Dental practitioners who were working in 13 government dental clinics underwent a 7-day ART training. Treatment record data on teeth extracted and teeth restored by the conventional and ART approaches were collected from these clinics for the three study periods. The mean percentage of ART restorations to total treatment, ART restorations to total restorations, and total restorations to total treatments rendered were computed. Differences between variables were determined by ANOVA, t-test and Chi-square. The mean percentage of ART restorations to total treatment rendered was 0.4 (SE = 0.5) and 11.9 (SE = 1.1) during the baseline and second follow-up period respectively (ANOVA mixed model; P ART restorations to total restorations rendered at baseline and 2nd follow-up period was 8.4% and 88.9% respectively (ANOVA mixed model; P ART restorations, 96.6% willing to receive ART restoration again in future, and 94.9% willing to recommend ART treatment to their close relatives. ART introduction in pilot government dental clinics raised the number of teeth saved by restorative care. Countrywide introduction of the ART approach in Tanzania is recommended.

  8. Effect of Dental Restorative Material Type and Shade on Characteristics of Two-Layer Dental Composite Systems

    Directory of Open Access Journals (Sweden)

    Atefeh Karimzadeh

    Full Text Available Abstract The purpose of this study was to investigate the effects of shade and material type and shape in dental polymer composites on the hardness and shrinkage stress of bulk and two-layered restoration systems. For this purpose, some bulk and layered specimens from three different shades of dental materials were prepared and light-cured. The experiments were carried out on three types of materials: conventional restorative composite, nanohybrid composite and nanocomposite. Micro-indentation experiment was performed on the bulk and also on each layer of layered restoration specimens using a Vicker's indenter. The interface between the two layers was studied by scanning electron microscopy (SEM. The results revealed significant differences between the values of hardness for different shades in the conventional composite and also in the nanohybrid composite. However, no statistically significant difference was observed between the hardness values for different shades in the nanocomposite samples. The layered restoration specimens of different restorative materials exhibited lower hardness values with respect to their bulk specimens. The reduction in the hardness value of the layered conventional composite samples was higher than those of the nanocomposite and nanohybrid composite specimens indicating more shrinkage stresses generated in the conventional composite restorations. According to the SEM images, a gap was observed between the two layers in the layered restorations.

  9. Masking of Enamel Fluorosis Discolorations and Tooth Misalignment With a Combination of At-Home Whitening, Resin Infiltration, and Direct Composite Restorations.

    Science.gov (United States)

    Perdigão, J; Lam, V Q; Burseth, B G; Real, C

    This clinical report illustrates a conservative technique to mask enamel discolorations in maxillary anterior teeth caused by hypomineralization associated with enamel fluorosis and subsequent direct resin composite to improve the anterior esthetics. The treatment consisted of at-home whitening with 10% carbamide peroxide gel with potassium nitrate and sodium fluoride in a custom-fitted tray to mask the brown-stained areas, followed by resin infiltration to mask the white spot areas. An existing resin composite restoration in the maxillary right central incisor was subsequently replaced after completion of the whitening and resin infiltration procedures, whereas the two misaligned and rotated maxillary lateral incisors were built up with direct resin composite restorations to provide the illusion of adequate arch alignment, as the patient was unable to use orthodontic therapy.

  10. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4.......4. Three enzyme peaks were eluted using low pressure chromatography with a Bio-gel column. With a HPLC gel filtration column the separation of the enamel extract resulted in only one peak with AP activity. The fractions of this peak were used to produce an antibody against bovine AP....

  11. A quantitative light microscopic study of the odontoblast and subodontoblastic reactions to active and arrested enamel caries without cavitation

    DEFF Research Database (Denmark)

    Bjørndal, L.; Darvann, T.A.; Thylstrup, Anders

    1998-01-01

    Carious lesions, Computerized histomorphology, Dental pulp, Dentine, Enamel, Microradiography, Odontoblast......Carious lesions, Computerized histomorphology, Dental pulp, Dentine, Enamel, Microradiography, Odontoblast...

  12. Indirect veneer treatment of anterior maxillary teeth with enamel hypoplasia

    OpenAIRE

    Juniarti, Devi Eka

    2010-01-01

    Background: Nowadays, aesthetic rehabilitation becomes a necessity. It is affected by patient’s background, especially career, social and economic status. The aesthetic abnormality of anterior teeth i.e discoloration, malposition and malformation can affect patient’s appearance, especially during smile. These dental abnormalities, as a result, can decrease patient’s performance. Dental malformation, for instance, can be caused by developmental tooth defect, such as enamel hypoplasia. Enamel h...

  13. Analysis of fluorine by nuclear reactions and applications to human dental enamel

    International Nuclear Information System (INIS)

    Stroobants, J.; Bodart, F.; Deconninck, G.; Demortier, G.; Nicolas, G.

    Nuclear reactions induced on Fluorine by low energy protons are investigated, thick target excitation yield curves and tables for 19 F(p,p'γ) 19 F and 19 F(p,αγ) 16 O reactions are given between 0.3 and 2.5 MeV. Interferences from other nuclear reactions, detection limits and sensitivity for Fluorine detection are investigated. After a wide investigation of the repartition of Fluorine in tooth enamel it is concluded that there is an equilibrium of the concentrations between tooth and saliva which is rapidly restored after the perturbation introduced by the external treatments. (author)

  14. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test

    International Nuclear Information System (INIS)

    Musa, Marahaini; Ponnuraj, Kannan Thirumulu; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-01

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions. (paper)

  15. Microtensile bond strength of enamel after bleaching

    Directory of Open Access Journals (Sweden)

    Andréa Dias Neves Lago

    2013-01-01

    Full Text Available Objective: To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Materials and Methods: Twenty bovine teeth were randomly distributed into 4 groups (n = 5, 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control; G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM. Results: There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2. There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive failure in all groups. Conclusion: The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  16. How dentists diagnose and treat defective restorations: evidence from the dental practice-based research network

    DEFF Research Database (Denmark)

    Gordan, Valeria V; Garvan, Cynthia W; Richman, Joshua S

    2009-01-01

    , Norway and Sweden. METHODS: A questionnaire was sent to all DPBRN practitioner-investigators who reported doing some restorative dentistry (n = 901). Questions included clinical case scenarios that used text and clinical photographs of defective restorations. Dentists were asked what type of treatment......OBJECTIVES: To (1) identify and quantify the types of treatment that dentists use to manage defective dental restorations and (2) identify characteristics that are associated with these dentists' decisions to replace existing restorations. The Dental Practice-Based Research Network (DPBRN) consists...... of dentists in outpatient practices from five regions: AL/MS: Alabama/Mississippi; FL/GA: Florida/Georgia; MN: dentists employed by HealthPartners and private practitioners in Minnesota; PDA: Permanente Dental Associates in cooperation with Kaiser Permanente's Center for Health Research and SK: Denmark...

  17. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-03-30

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (Perosion.

  18. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.

  19. Deformation behavior of human enamel and dentin-enamel junction under compression.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  20. Enamel formation and growth in non-mammalian cynodonts

    Science.gov (United States)

    Dirks, Wendy; Martinelli, Agustín G.

    2018-01-01

    The early evolution of mammals is associated with the linked evolutionary origin of diphyodont tooth replacement, rapid juvenile growth and determinate adult growth. However, specific relationships among these characters during non-mammalian cynodont evolution require further exploration. Here, polarized light microscopy revealed incremental lines, resembling daily laminations of extant mammals, in histological sections of enamel in eight non-mammalian cynodont species. In the more basal non-probainognathian group, enamel extends extremely rapidly from cusp to cervix. By contrast, the enamel of mammaliamorphs is gradually accreted, with slow rates of crown extension, more typical of the majority of non-hypsodont crown mammals. These results are consistent with the reduction in dental replacement rate across the non-mammalian cynodont lineage, with greater rates of crown extension required in most non-probainognathians, and slower crown extension rates permitted in mammaliamorphs, which have reduced patterns of dental replacement in comparison with many non-probainognathians. The evolution of mammal-like growth patterns, with faster juvenile growth and more abruptly terminating adult growth, is linked with this reduction in dental replacement rates and may provide an additional explanation for the observed pattern in enamel growth rates. It is possible that the reduction in enamel extension rates in mammaliamorphs reflects an underlying reduction in skeletal growth rates at the time of postcanine formation, due to a more abruptly terminating pattern of adult growth in these more mammal-like, crownward species. PMID:29892415

  1. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    Science.gov (United States)

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spectrally enhanced image resolution of tooth enamel surfaces

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2012-01-01

    Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.

  3. Non-destructive evaluation of teeth restored with different composite resins using synchrotron based micro-imaging.

    Science.gov (United States)

    Fatima, A; Kulkarni, V K; Banda, N R; Agrawal, A K; Singh, B; Sarkar, P S; Tripathi, S; Shripathi, T; Kashyap, Y; Sinha, A

    2016-01-01

    Application of high resolution synchrotron micro-imaging in microdefects studies of restored dental samples. The purpose of this study was to identify and compare the defects in restorations done by two different resin systems on teeth samples using synchrotron based micro-imaging techniques namely Phase Contrast Imaging (PCI) and micro-computed tomography (MCT). With this aim acquired image quality was also compared with routinely used RVG (Radiovisiograph). Crowns of human teeth samples were fractured mechanically involving only enamel and dentin, without exposure of pulp chamber and were divided into two groups depending on the restorative composite materials used. Group A samples were restored using a submicron Hybrid composite material and Group B samples were restored using a Nano-Hybrid restorative composite material. Synchrotron based PCI and MCT was performed with the aim of visualization of tooth structure, composite resin and their interface. The quantitative and qualitative comparison of phase contrast and absorption contrast images along with MCT on the restored teeth samples shows comparatively large number of voids in Group A samples. Quality assessment of dental restorations using synchrotron based micro-imaging suggests Nano-Hybrid resin restorations (Group B) are better than Group A.

  4. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes.

    Science.gov (United States)

    Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S

    2015-10-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs. © International & American Associations for Dental Research 2015.

  5. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  6. Fluorescence properties of human teeth and dental calculus for clinical applications

    Science.gov (United States)

    Lee, Yong-Keun

    2015-04-01

    Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.

  7. Bonding strategies for MIH-affected enamel and dentin.

    Science.gov (United States)

    Krämer, Norbert; Bui Khac, Ngoc-Han Nana; Lücker, Susanne; Stachniss, Vitus; Frankenberger, Roland

    2018-02-01

    Aim of the present study was to evaluate resin composite adhesion to dental hard tissues affected by molar incisor hypomineralisation (MIH). 94 freshly extracted human molars and incisors (53 suffering MIH) were used. 68 teeth (35 with MIH) were used for μ-TBS tests in enamel and dentin, 26 (18 with MIH) for qualitative evaluation. Specimens were bonded with Clearfil SE Bond, Scotchbond Universal, and OptiBond FL. For MIH affected enamel, additional OptiBond FL groups with NaOCl and NaOCl+Icon were investigated. Beside fractographic analysis, also qualitative evaluations were performed using SEM at different magnifications as well as histological sectioning. Highest μ-TBS values were recorded with dentin specimens (ANOVA, mod. LSD, p0.05). Pre-test failures did not occur in dentin specimens. Sound enamel specimens exhibited significantly higher μ-TBS values than MIH enamel (p0.05), however, it caused less pre-test failures (pMIH enamel is the limiting factor in adhesion to MIH teeth. MIH-affected dentin may be bonded conventionally. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. The molecular basis of hereditary enamel defects in humans.

    Science.gov (United States)

    Wright, J T; Carrion, I A; Morris, C

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. © International & American Associations for

  9. Acid demineralization susceptibility of dental enamel submitted to different bleaching techniques and fluoridation regimens.

    Science.gov (United States)

    Salomão, Dlf; Santos, Dm; Nogueira, Rd; Palma-Dibb, Rg; Geraldo-Martins, Vr

    2014-01-01

    The aim of the current study was to assess the acid demineralization susceptibility of bleached dental enamel submitted to different fluoride regimens. One hundred bovine enamel blocks (6×6×3 mm) were randomly divided into 10 groups (n=10). Groups 1 and 2 received no bleaching. Groups 3 to 6 were submitted to an at-home bleaching technique using 6% hydrogen peroxide (HP; G3 and G4) or 10% carbamide peroxide (CP; G5 and G6). Groups 7 to 10 were submitted to an in-office bleaching technique using 35% HP (G7 and G8) or 35% CP (G9 and G10). During bleaching, a daily fluoridation regimen of 0.05% sodium fluoride (NaF) solution was performed on groups 3, 5, 7, and 9, while weekly fluoridation with a 2% NaF gel was performed on groups 4, 6, 8, and 10. The samples in groups 2 to 10 were pH cycled for 14 consecutive days. The samples from all groups were then assessed by cross-sectional Knoop microhardness at different depths from the outer enamel surface. The average Knoop hardness numbers (KHNs) were compared using one-way analysis of variance and Tukey tests (α=0.05). The comparison between groups 1 and 2 showed that the demineralization method was effective. The comparison among groups 2 to 6 showed the same susceptibility to acid demineralization, regardless of the fluoridation method used. However, the samples from groups 8 and 10 showed more susceptibility to acid demineralization when compared with group 2 (penamel to acid demineralization. However, the use of 35% HP and 35% CP must be associated with a daily fluoridation regimen, otherwise the in-office bleaching makes the bleached enamel more susceptible to acid demineralization.

  10. Analysis of the interface zone between the glass ionomer and enamel and dentin of primary molars

    Directory of Open Access Journals (Sweden)

    Petrović Bojan B.

    2008-01-01

    Full Text Available Restoring carious teeth is one of the major dental treatment needs of young children. Conventional glassionomer materials are frequently used as filling materials in contemporary pediatric dentistry. The objective of this study was to evaluate the restorative and prophylactic efficacy of the newly marketed glass ionomer, Fuji Triage (GC, Tokyo, Japan, through morphological analysis of the interface zone between the material and the enamel and the dentin of primary molars and to determine the extent of the ion exchange at the interface zone. The sample consisted of 5 extracted intact first primary molars in which glassionomer had been used as filling material after standard class I cavity preparation. The material was placed according to the manufacturer's instructions and teeth were placed into dionised water prior to experiment. Six sections of each tooth had been examined using scanning electron microscopic and electron dispersive spectroscopic techniques (SEM/EDS. The parameters for evaluation included: morphological characteristics of the interface zone and the extent of the ion exchange between the material and the tooth structures Results were statistically analyzed using descriptive statistical methods. SEM/EDS analysis revealed the presence of the chemical bonding between the glass ionomer and the enamel and dentin, 5 and 15 μm in width, respectively. Ion exchange has not been detected in the enamel at the EDS sensitivity level. Strontium and fluor penetration has been detected in dentin. The ion exchange and chemical bonding formation justify the usage of the conventional glass ionomer materials for restorative procedures in primary molars.

  11. Enamel hypoplasia and its role in identification of individuals: A review of literature

    Science.gov (United States)

    Kanchan, Tanuj; Machado, Meghna; Rao, Ashwin; Krishan, Kewal; Garg, Arun K.

    2015-01-01

    Identification of individuals is the mainstay of any forensic investigation especially in cases of mass disasters when mutilated remains are brought for examination. Dental examination helps in establishing the identity of an individual and thus, has played a vital role in forensic investigation process since long. In this regard, description on the role of enamel hypoplasia is limited in the literature. The present article reviews the literature on the enamel hypoplasia and discusses its utility in forensic identification. Enamel hypoplasia is a surface defect of the tooth crown caused by disturbance of enamel matrix secretion. Enamel defects can be congenital or acquired. In cases of mass disasters, or when the body is completely charred, putrefied and mutilated beyond recognition, the unique dental features can help in identification of the victims. PMID:26097340

  12. MMP20 Promotes a Smooth Enamel Surface, a Strong DEJ, and a Decussating Enamel Rod Pattern

    Science.gov (United States)

    Bartlett, John D.; Skobe, Ziedonis; Nanci, Antonio; Smith, Charles E.

    2012-01-01

    Mutations of the Matrix metalloproteinase-20 (MMP20, enamelysin) gene cause autosomal recessive amelogenesis imperfecta and Mmp20 ablated mice also have malformed dental enamel. Here we show that Mmp20 null mouse secretory stage ameloblasts maintained a columnar shape and were present as a single layer of cells. However, the null maturation stage ameloblasts covered extraneous nodules of ectopic calcified material formed at the enamel surface. Remarkably, nodule formation occurs in null mouse enamel when MMP20 is normally no longer expressed. The malformed enamel in Mmp20 null teeth was loosely attached to the dentin and the entire enamel layer tended to separate from the dentin indicative of a faulty DEJ. The enamel rod pattern was also altered in Mmp20 null mice. Each enamel rod is formed by a single ameloblast and is a mineralized record of the migration path of the ameloblast that formed it. The Mmp20 null mouse enamel rods were grossly malformed or were absent indicating that the ameloblasts do not migrate properly when backing away from the DEJ. Thus, MMP20 is required for ameloblast cell movement necessary to form the decussating enamel rod patterns, for the prevention of ectopic mineral formation, and to maintain a functional DEJ. PMID:22243247

  13. Modelling the Longevity of Dental Restorations by means of a CBR System

    Directory of Open Access Journals (Sweden)

    Ignacio J. Aliaga

    2015-01-01

    Full Text Available The lifespan of dental restorations is limited. Longevity depends on the material used and the different characteristics of the dental piece. However, it is not always the case that the best and longest lasting material is used since patients may prefer different treatments according to how noticeable the material is. Over the last 100 years, the most commonly used material has been silver amalgam, which, while very durable, is somewhat aesthetically displeasing. Our study is based on the collection of data from the charts, notes, and radiographic information of restorative treatments performed by Dr. Vera in 1993, the analysis of the information by computer artificial intelligence to determine the most appropriate restoration, and the monitoring of the evolution of the dental restoration. The data will be treated confidentially according to the Organic Law 15/1999 on 13 December on the Protection of Personal Data. This paper also presents a clustering technique capable of identifying the most significant cases with which to instantiate the case-base. In order to classify the cases, a mixture of experts is used which incorporates a Bayesian network and a multilayer perceptron; the combination of both classifiers is performed with a neural network.

  14. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    International Nuclear Information System (INIS)

    Gomez, Jorge A.; Kinoshita, Angela; Leonor, Sergio J.; Belmonte, Gustavo C.; Baffa, Oswaldo

    2011-01-01

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  15. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jorge A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Kinoshita, Angela [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Leonor, Sergio J. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Belmonte, Gustavo C. [Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Baffa, Oswaldo, E-mail: baffa@usp.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2011-09-15

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  16. Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration.

    Science.gov (United States)

    Krishnan, Vinod; Bhatia, Ankit; Varma, Harikrishna

    2016-05-01

    Enamel damage resulting or arising from/associated with orthodontic treatment such as white spot lesions and surface deterioration after debonding brackets along with incipient carious lesions are considered problems not amenable for routine restorations due to its invasive nature. The present study was aimed at synthesizing and characterizing nHAp and 25 and 50 mol% strontium nHAp as a surface application modality for dental enamel remineralization/repair. 25 and 50 mol% Sr nHAp was synthesized and characterized in comparison with custom made pure nHAp initially with the help of transmission and scanning electron microscopy as well as toxicological assessment. Further, comparative evaluation of these novel synthesized strontium substituted particles was assessed for its efficacy in repairing damaged enamel with the help of atomic force microscopy, scanning electron microscopy and micro indentation testing. There is increase in crystallinity and reduced particle size favoring dissolution and re-precipitation through small incipient carious lesions and soft white spot areas with 25% Sr-nHAp. Sr doped specimens showed more cell viability in comparison with pure nHAP make it less cytotoxic and hence a biologically friendly material which can be safely applied in patient's mouth. AFM images obtained from 25% and 50% Sr nHAp treated specimens clearly indicated increased roughness in surface topography and performed well with micro indentation test. The novel synthesized Sr doped nHAp forms an improved treatment modality to tackle the long standing quest for solving the problem of enamel loss with incipient carious lesions and WSL from orthodontic procedures. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Erosion and abrasion on dental structures undergoing at-home bleaching

    Directory of Open Access Journals (Sweden)

    Tarquinio SBC

    2011-07-01

    Full Text Available Flávio Fernando Demarco1, Sônia Saeger Meireles2, Hugo Ramalho Sarmento1, Raquel Venâncio Fernandes Dantas1, Tatiana Botero3, Sandra Beatriz Chaves Tarquinio11Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Brazil; 2Department of Operative Dentistry, Federal University of Paraíba, Brazil; 3Cariology, Restorative Science, and Endodontics Department, School of Dentistry, University of Michigan, MI, USAAbstract: This review investigates erosion and abrasion in dental structures undergoing at-home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled.Keywords: peroxide, tooth bleaching, enamel, dentin, erosion, abrasion

  18. Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin.

    Science.gov (United States)

    Korkmaz, Yonca; Ozel, Emre; Attar, Nuray; Ozge Bicer, Ceren

    2010-11-01

    The purpose of this study was to investigate shear bond strength (SBS) between a light-curing nano-ionomer restorative and enamel or dentin after acid etching, after erbium:yttrium-aluminum-garnet (Er:YAG) laser etching, or after combined treatment. Forty third molars were selected, the crowns were sectioned, and 80 tooth slabs were obtained. The specimens were assigned to two groups, which were divided into four subgroups(n = 10). Group 1 [enamel (e)], treated with 37% phosphoric acid (A) + Ketac nano-primer (K); group 2 [dentin (d)], (A) + (K); group 3(e), Er:YAG laser etching (L) + (A) + (K); group 4(d), (L) + (A) + (K); group 5(e), (L) + (K); group 6(d), (L) + (K); group 7(e), (K); group 8(d), (K). The SBS of the specimens was measured with a universal test machine (1 mm/min). Data were analyzed by independent samples t-test, one-way analysis of variance (ANOVA) and a post-hoc Duncan test (p 0.05). Group 7 exhibited higher SBS values than those of groups 3 and 5 (p 0.05). No difference was observed between groups 2 and 4 (p > 0.05). However, group 2 presented higher SBSs than did group 6 (p adhesion of the light-curing nano-ionomer restorative to both enamel and dentin.

  19. Dental wear, wear rate, and dental disease in the African apes.

    Science.gov (United States)

    Elgart, Alison A

    2010-06-01

    The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin-enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin-enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin-enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample.

  20. Enamel micromorphology of the tribosphenic molar

    OpenAIRE

    Hanousková, Pavla

    2014-01-01

    The tribosphenic molar is an ancestral type of mammalian teeth and a phy- lotypic stage of the mammalian dental evolution. Yet, in contrast to derived teeth types, its enamel microarchitecture attracted only little attention and the information on that subject is often restricted to statements suggesting a simple homogenous arrangement of a primitive radial prismatic enamel. The present paper tests this prediction with aid of comparative study of eight model species representing the orders Ch...

  1. [Clinical and microbiological study regarding surface antibacterial properties of bioactive dental materials].

    Science.gov (United States)

    Târcă, T; Bădescu, Aida; Topoliceanu, C; Lăcătuşu, St

    2010-01-01

    In the new era of dentistry the coronal restoration materials must possess "bio-active" features represented by fluor ions release, chemical adhesion and antibacterial agents. Our study aims to determine the surface antibacterial properties of glassionomer cements and compomers. The study group included 64 patients with high cariogenic risk with 80 teeth with acute and chronic dental caries affecting proximal and occlusal dental surfaces. The teeth with cariogenic lesions were restored with zinc-oxide-eugenol (n=20), glassionomer cement GC Fuji Triage (n=20), glassionomer cement modified with resins Fuji II LC (n=20), compomer Dyract (n=20). DENTOCULT SM test (Orion Diagnostica, Finland) was used for bacterial analyses. The samples from bacterial biofilm were collected from the restorated dental surfaces (study group) and intact enamel surfaces (control group). The recorded data were processed using non-parametrical statistical tests. The lowest mean value of bacterial indices was recorded for glassionomer cement Fuji Triage (0.4), and Fuji II LC (1.2), material with highest surface antibacterial properties. The highest value (1.5) was recorded for compomer Dyract. The Kruskal-Wallis test proves the significant statistical differences between the three bioactive materials. The materials with bioactive features have the ability to inhibate the growth of Streptococcus mutans in bacterial biofilm to the surfaces of coronal restoration.

  2. Structural changes in fluorosed dental enamel of red deer (Cervus elaphus L.) from a region with severe environmental pollution by fluorides

    International Nuclear Information System (INIS)

    Kierdorf, U.; Kierdorf, H.; Sedlacek, F.; Fejerskov, O.

    1996-01-01

    A macroscopic, microradiographic and scanning electron microscope study was performed on the structure of fluorosed dental enamel in red deer from a fluoride polluted region (North Bohemia, Czech Republic). As was revealed by analysis of mandibular bone fluoride content, the rate of skeletal fluoride accumulation in the fluorotic deer was about 6 times that in controls taken from a region not exposed to excessive fluoride deposition. In all fluorosed mandibles, the 1st molar was consistently less fluorotic than the other permanent teeth. This was related to the fact that crown formation in the M1 takes place prenatally and during the lactation period. Fluorosed teeth exhibited opaque and posteruptively stained enamel, reduction or loss of enamel ridges, moderately to grossly increased wear and, in more severe cases, also enamel surface lesions of partly posteruptive, partly developmental origin. Microradiographically, fluorosed enamel was characterised by subsurface hypomineralisation, interpreted as a result of fluoride interference with the process of enamel maturation. In addition, an accentuation of the incremental pattern due to the occurrence of alternating bands with highly varying mineral content was observed in severely fluorosed teeth, denoting fluoride disturbance during the secretory stage of amelogenesis. A corresponding enhancement of the incremental pattern was also seen in the dentine. The enamel along the more pronounced hypoplasias consisted of stacked, thin layers of crystals arranged in parallel, indicating that the ameloblasts in these locations had lost the distal (prism-forming) portions of their Tomes processes. The findings of the present study indicate that red deer are highly sensitive bioindicators of environmental pollution by fluorides

  3. Effects of fluoride and epigallocatechin gallate on soft-drink-induced dental erosion of enamel and root dentin.

    Science.gov (United States)

    Wang, Yin-Lin; Chang, Hao-Hueng; Chiang, Yu-Chih; Lu, Yu-Chen; Lin, Chun-Pin

    2018-04-01

    Fluoride and epigallocatechin gallate (EGCG) have been proven to prevent dental caries. The purpose of this study was to evaluate the effects of fluoride and EGCG on soft-drink-induced dental erosion in vitro. Forty enamel and dentin specimens were prepared from extracted human teeth. The specimens were divided into 4 groups and treated separately with distilled water (as control), 0.5 M sodium fluoride (NF), 400 μM EGCG (EG), and a solution containing 0.5 M NaF and 400 μM EGCG (FG). Cyclic erosive treatment was performed according to the experimental procedures. The specimens were analyzed using laser scanning confocal microscopy, scanning electron microscopy, and a microhardness tester. The data were analyzed using ANOVA and Bonferroni's post hoc test. The significance level was set at 5%. The amount of substance loss was lower in the NF and EG groups than in the control group (p erosion-caused substance loss was more pronounced in the dentin than in the enamel specimens. Surface microhardness loss was lower in the NF and EG groups than in the control group (p erosion compared with the control group. Fluoride and EGCG may interfere with each other. The mechanisms of the anti-erosive effect need to be explored in the future. Copyright © 2018. Published by Elsevier B.V.

  4. Understanding dental CAD/CAM for restorations--the digital workflow from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P

    2015-01-01

    As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology.

  5. Stress Response Pathways in Ameloblasts: Implications for Amelogenesis and Dental Fluorosis

    Directory of Open Access Journals (Sweden)

    John D. Bartlett

    2012-08-01

    Full Text Available Human enamel development of the permanent teeth takes place during childhood and stresses encountered during this period can have lasting effects on the appearance and structural integrity of the enamel. One of the most common examples of this is the development of dental fluorosis after childhood exposure to excess fluoride, an elemental agent used to increase enamel hardness and prevent dental caries. Currently the molecular mechanism responsible for dental fluorosis remains unknown; however, recent work suggests dental fluorosis may be the result of activated stress response pathways in ameloblasts during the development of permanent teeth. Using fluorosis as an example, the role of stress response pathways during enamel maturation is discussed.

  6. Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide.

    Science.gov (United States)

    Deng, Meng; Wen, Hai-Lin; Dong, Xiao-Li; Li, Feng; Xu, Xin; Li, Hong; Li, Ji-Yao; Zhou, Xue-Dong

    2013-06-01

    Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized water (DDW), BG, HP, BG before HP, BG after HP and BG during HP. Colorimetric and microhardness tests were performed before and after the treatment procedure. Representative specimens from each group were selected for morphology investigation after the final tests. A significant color change was observed in group HP, BG before HP, BG after HP and BG during HP. The microhardness loss was in the following order: group HP>BG before HP, BG after HP>BG during HP>DDW, BG. The most obvious morphological alteration of was observed on enamel surfaces in group HP, and a slight morphological alteration was also detected in group BG before HP and BG after HP. Our findings suggest that the combination use of BG and HP could not impede the tooth whitening efficacy. Using BG during HP brought better protective effect than pre/post-bleaching use of BG, as it could more effectively reduce the mineral loss as well as retain the surface integrity of enamel. BG may serve as a promising biomimetic adjunct for bleaching therapy to prevent/restore the enamel damage induced by bleaching agents.

  7. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel.

    Science.gov (United States)

    Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti

    2015-01-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond.

  8. Prevalence of enamel defects and MIH in non-fluoridated and fluoridated communities.

    Science.gov (United States)

    Balmer, R C; Laskey, D; Mahoney, E; Toumba, K J

    2005-12-01

    This was to study the prevalence of enamel defects and molar incisor hypomineralisation (MIH) in children attending Leeds Dental Institute (UK) and Westmead Dental Hospital, Sydney (Australia). Prospective dental examinations were carried out on 25 children referred to two orthodontic departments. A questionnaire was completed to obtain background information and about previous fluoride (F) exposure followed by an oral examination. First permanent molars and permanent incisors were examined for presence, type and severity of enamel defects using the modified DDE screening index. Chi square tests were used to compare results. Data for 24 children in Sydney and 20 in Leeds presented with at least one enamel defect. Of 300 teeth examined, 155 in Sydney and 82 in Leeds had a defect (p MIH was the same supporting the view that F is not associated with the aetiology of MIH.

  9. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merghni, Abderrahmen, E-mail: abderrahmen_merghni@yahoo.fr [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Kammoun, Dorra [Laboratoire de Biomatériaux et Biotechnologie, Faculté de Médecine Dentaire, Monastir (Tunisia); Hentati, Hajer [Laboratoire de Recherche en Santé Orale et Réhabilitation Bucco-Faciale (LR12ES11), Faculté de Médecine Dentaire de Monastir, Université de Monastir (Tunisia); Janel, Sébastien [BioImaging Center Lille-FR3642, Lille (France); Popoff, Michka [Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Lafont, Frank [BioImaging Center Lille-FR3642, Lille (France); Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Aouni, Mahjoub [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Mastouri, Maha [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Laboratoire de Microbiologie, CHU Fattouma Bourguiba de Monastir (Tunisia)

    2016-08-30

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  10. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    International Nuclear Information System (INIS)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-01-01

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  11. Enamel hypoplasia in the deciduous teeth of great apes: variation in prevalence and timing of defects.

    Science.gov (United States)

    Lukacs, J R

    2001-11-01

    The prevalence of enamel hypoplasia in the deciduous teeth of great apes has the potential to reveal episodes of physiological stress in early stages of ontogenetic development. However, little is known about enamel defects of deciduous teeth in great apes. Unresolved questions addressed in this study are: Do hypoplastic enamel defects occur with equal frequency in different groups of great apes? Are enamel hypoplasias more prevalent in the deciduous teeth of male or female apes? During what phase of dental development do enamel defects tend to form? And, what part of the dental crown is most commonly affected? To answer these questions, infant and juvenile skulls of two sympatric genera of great apes (Gorilla and Pan) were examined for dental enamel hypoplasias. Specimens from the Powell-Cotton Museum (Quex Park, UK; n = 107) are reported here, and compared with prior findings based on my examination of juvenile apes at the Cleveland Museum of Natural History (Hamman-Todd Collection; n = 100) and Smithsonian Institution (National Museum of Natural History; n = 36). All deciduous teeth were examined by the author with a x10 hand lens, in oblique incandescent light. Defects were classified using Fédération Dentaire International (FDI)/Defects of Dental Enamel (DDE) standards; defect size and location on the tooth crown were measured and marked on dental outline charts. Enamel defects of ape deciduous teeth are most common on the labial surface of canine teeth. While deciduous incisor and molar teeth consistently exhibit similar defects with prevalences of approximately 10%, canines average between 70-75%. Position of enamel defects on the canine crown was analyzed by dividing it into three zones (apical, middle, and cervical) and calculating defect prevalence by zone. Among gorillas, enamel hypoplasia prevalence increases progressively from the apical zone (low) to the middle zone to the cervical zone (highest), in both maxillary and mandibular canine teeth

  12. Recent advances and developments in composite dental restorative materials.

    Science.gov (United States)

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  13. The developmental clock of dental enamel: a test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind

    Science.gov (United States)

    Antoine, Daniel; Hillson, Simon; Dean, M Christopher

    2009-01-01

    Dental tissues contain regular microscopic structures believed to result from periodic variations in the secretion of matrix by enamel- and dentine-forming cells. Counts of these structures are an important tool for reconstructing the chronology of dental development in both modern and fossil hominids. Most studies rely on the periodicity of the regular cross-banding that occurs along the long axis of enamel prisms. These prism cross-striations are widely thought to reflect a circadian rhythm of enamel matrix secretion and are generally regarded as representing daily increments of tissue. Previously, some researchers have argued against the circadian periodicity of these structures and questioned their use in reconstructing dental development. Here we tested the periodicity of enamel cross-striations – and the accuracy to which they can be used – in the developing permanent dentition of five children, excavated from a 19th century crypt in London, whose age-at-death was independently known. The interruption of crown formation by death was used to calibrate cross-striation counts. All five individuals produced counts that were strongly consistent with those expected from the independently known ages, taking into account the position of the neonatal line and factors of preservation. These results confirm that cross-striations do indeed reflect a circadian rhythm in enamel matrix secretion. They further validate their use in reconstructing dental development and in determining the age-at-death of the remains of children whose dentitions are still forming at the time of death. Significantly they identify the most likely source of error and the common difficulties encountered in histological studies of this kind. PMID:19166472

  14. Direct composite restoration of permanent anterior teeth uncomplicated crown fractures

    Directory of Open Access Journals (Sweden)

    Ashley Evans Nicholas

    2018-01-01

    Full Text Available An uncomplicated crown fracture is a fracture that involves only the tooth enamel or the dentin and tooth enamel without any damage or exposure to the pulp. Crown fracture of the anterior teeth usually caused by traumatic forces such as falls, accidents, violence, or sports activities. Traumatic injuries of the oral region frequently involve the anterior teeth, especially maxillary incisors due to the anatomic factors which may affect the functional and aesthetical values of the teeth. The objective of this literature study was to know more about uncomplicated crown fracture of the anterior teeth and its restoration. This research was a literature study performed by researching, highlighting various interesting facts and compiling the relevant published journals. The most common and ideal direct restoration of the anterior teeth was the composite resin restoration. The anterior teeth restoration was considered to be a complex and challenging case to solves due to the fact that besides reconstructing the tooth and regaining the function, the aesthetical aspect was also becoming the main objectives. The permanent anterior teeth uncomplicated crown fracture was the most common case of tooth fractures which was mainly caused by traumatic injuries such as falls, accidents, excessive forces, violence, and also sports activities. Dental injuries of the anterior teeth also affected the aesthetical properties and the function of the tooth. Composite resin restoration was able to performed directly on the permanent anterior teeth uncomplicated crown fracture.

  15. Retrospective radiation dosimetry using electron paramagnetic resonance in canine dental enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.; Pekar, J.; Rink, W.J.; Boreham, D.R.

    2005-01-01

    Electron paramagnetic resonance (EPR) biodosimetry of human tooth enamel has been widely used for measuring radiation doses in various scenarios. We have now developed EPR dosimetry in tooth enamel extracted from canines. Molars and incisors from canines were cleaned by processing in supersaturated aqueous potassium hydroxide solution. The dosimetric signal in canine tooth enamel was found to increase linearly as a function of laboratory added dose from 0.44±0.02 to 4.42±0.22 Gy. The gamma radiation sensitivity of the canine molar enamel was found to be comparable to that of human tooth enamel. The dosimetric signal in canine enamel has been found to be stable up to at least 6 weeks after in vitro irradiation. A dosimetric signal variation of 10-25% was observed for canines ranging from in age 3 years to 16 year old

  16. Effect of a Simulation Exercise on Restorative Identification Skills of First Year Dental Hygiene Students.

    Science.gov (United States)

    Lemaster, Margaret; Flores, Joyce M; Blacketer, Margaret S

    2016-02-01

    This study explored the effectiveness of simulated mouth models to improve identification and recording of dental restorations when compared to using traditional didactic instruction combined with 2-dimensional images. Simulation has been adopted into medical and dental education curriculum to improve both student learning and patient safety outcomes. A 2-sample, independent t-test analysis of data was conducted to compare graded dental recordings of dental hygiene students using simulated mouth models and dental hygiene students using 2-dimensional photographs. Evaluations from graded dental charts were analyzed and compared between groups of students using the simulated mouth models containing random placement of custom preventive and restorative materials and traditional 2-dimensional representations of didactically described conditions. Results demonstrated a statistically significant (p≤0.0001) difference: for experimental group, students using the simulated mouth models to identify and record dental conditions had a mean of 86.73 and variance of 33.84. The control group students using traditional 2-dimensional images mean graded dental chart scores were 74.43 and variance was 14.25. Using modified simulation technology for dental charting identification may increase level of dental charting skill competency in first year dental hygiene students. Copyright © 2016 The American Dental Hygienists’ Association.

  17. Nanostructured synthetic hydroxyapatite and dental enamel heated and irradiated by ER,CR:YSGG: characterized by FTIR and XRD

    International Nuclear Information System (INIS)

    Rabelo Neto, Jose da Silva

    2009-01-01

    The study evaluate the physical changes and/or chemical that occurs in synthetic hydroxyapatite (HAP) and in enamel under action of thermal heating in oven or laser irradiation of Er,Cr:YSGG that may cause changes in its structure to make them more resistant to demineralization aiming the formation of dental caries. The synthetic HAP was produced by reaction of solutions of Ca(NO 3 ) and (NH 4 ) 2 HPO 4 with controlled temperature and pH. The enamel powder was collected from the bovine teeth. Samples of powder enamel and synthetic HAP were subjected to thermal heating in oven at temperatures of 200 deg C, 400 deg C, 600 deg C, 800 deg C and 1000 deg C. For the laser irradiation of materials, were made with 5,79 J/cm 2 of irradiation, 7,65 J/cm 2 , 10,55 J/cm 2 and 13,84 J/cm 2 for synthetic HAP and 7,53 J/cm 2 , 10,95 J/cm 2 , and 13,74 J/cm 2 for the enamel. The samples were evaluated by X-ray diffraction (XRD) for analysis of crystallographic phases and analysis by the Rietveld method, to determine their respective proportions in the material, as well as results of changes of the lattice unit cell parameters (axis-a, axis-c and volume), crystallites sizes and the occupation rate of sites of Ca and P atoms. The samples were analyzed by Fourier transform infrared spectroscopy (FTIR), which should compositional changes due to treatment related to carbonate, phosphate, adsorbed water and hydroxyl radicals content. The infrared was used to measure the surface temperature generated by the laser beam in the solid samples of enamel. Besides the major hydroxyapatite crystallographic phases, there was formations of octa calcium phosphate (OCP) and phase β of tricalcium phosphate (β-TCP ) in enamel heated at 800 deg C. There was reduction of the axis-a, volume and size of crystallites to the temperatures between 400 degree C and 600 deg C and also on laser irradiated samples. Above the temperature of 600 degree C it is observed the effect in the lattice parameters. The Ca

  18. Evaluation of human dental loss caused by carbamide peroxide bleacher compared with phosphoric acid conditioning - radioactive method; Avaliacao da perda dental humana com o uso do clareador peroxido de carbamida comparado ao condicionamento com acido fosforico - metodo radiometrico

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Eduardo Makoto; Yousseff, Michel Nicolau [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Dentistica; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica

    2002-07-01

    The radiometric method was applied to the evaluation of dental loss caused by carbamide peroxide when it is applied on the surface layers of enamel and dentin tissues. Also the dental loss caused by the etching with 37% phosphoric acid procedure used in aesthetic restoration was assessed for comparison with those results obtained. The tooth samples irradiated with a P standard in a thermal neutron flux of the nuclear reactor were placed in contact with 10% carbamide peroxide or with 37% phosphoric acid solution. The radioactivity of {sup 32} P transferred from the radioactive teeth to the bleaching gel or to etching acid was measured using a Geiger Muller detector to calculate the mass of P removed in this treatment and losses were calculated after obtaining their P concentrations. Results obtained indicated that enamel and dentin exposed to carbamide peroxide bleaching agent lose phosphorus. The extent of enamel loss was smaller than that obtained for dentin. In the case of acid etching, there was no difference between the results obtained for enamel and dentin loss. Also the dentin loss obtained after a treatment of 30 applications of 10% carbamide peroxide was the same magnitude of that one application of 37% phosphoric acid. (author)

  19. [Evaluation of shear bond strengths of self-etching and total-etching dental adhesives to enamel and dentin].

    Science.gov (United States)

    Yu, Ling; Liu, Jing-Ming; Wang, Xiao-Yan; Gao, Xue-Jun

    2009-03-01

    To evaluate the shear bond strengths of four dental adhesives in vitro. The facial surfaces of 20 human maxillary incisors were prepared to expose fresh enamel and randomly divided into four groups, in each group 5 teeth were bonded with one adhesives: group A (Clearfil Protect Bond, self-etching two steps), group B (Adper( Prompt, self-etching one step), group C (SwissTEC SL Bond, total-etching two steps), group D (Single Bond, total-etching two steps). Shear bond strengths were determined using an universal testing machine after being stored in distilled water for 24 h at 37 degrees C. The bond strengths to enamel and dentin were (25.33 +/- 2.84) and (26.07 +/- 5.56) MPa in group A, (17.08 +/- 5.13) and (17.93 +/- 4.70) MPa in group B, (33.14 +/- 6.05) and (41.92 +/- 6.25) MPa in group C, (22.51 +/- 6.25) and (21.45 +/- 7.34) MPa in group D. Group C showed the highest and group B the lowest shear bond strength to enamel and dentin among the four groups. The two-step self-etching adhesive showed comparable shear bond strength to some of the total-etching adhesives and higher shear bond strength than one-step self-etching adhesive.

  20. Enamel lesions in development, classification in Costa Rican families

    International Nuclear Information System (INIS)

    Murillo Knudsen, Gina; Berrocal Salazar, Cristina

    2013-01-01

    Enamel lesions in development were identified and classified in patients of Llano Grande de Cartago, examined at the Facultad de Odontologia of the Universidad de Costa Rica. A guide is provided over the topic. 15 children and 2 Costa Rican adults were selected. Clinical examinations, radiographs and clinical photographs were used as data collection method. Dental defects of the enamel were classified according to the possible genetic causes and without genetic causes. Imperfect Amelogenesis (IA) was diagnosed in 10 of patients. Hypoplastic IA was determined in 3 siblings with autosomal recessive inheritance, for 16% of the total sample. Hypomineralized IA was identified in an adult and two of his sons, with autosomal dominant inheritance. The remaining 4 cases of IA have been sporadic. Lesions of dental fluorosis were determined in the Horowitz index in 4 individuals, from 2 unrelated families. Other defects unspecified of the enamel or hypoplasias were found in 3 individuals. Enamel lesions in development should be classified with precision, for the purpose to inform to patients affected about their condition, origin, prognosis and appropriate treatment. The basis are established to implement reliability in the construction of family genealogy, identification and classification of enamel lesions, as well as the probabilities of future generations to express the lesions in the enamel of temporary or permanent dentition [es

  1. Novel Dental Cement to Combat Biofilms and Reduce Acids for Orthodontic Applications to Avoid Enamel Demineralization

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-05-01

    Full Text Available Orthodontic treatments often lead to biofilm buildup and white spot lesions due to enamel demineralization. The objectives of this study were to develop a novel bioactive orthodontic cement to prevent white spot lesions, and to determine the effects of cement compositions on biofilm growth and acid production. 2-methacryloyloxyethyl phosphorylcholine (MPC, nanoparticles of silver (NAg, and dimethylaminohexadecyl methacrylate (DMAHDM were incorporated into a resin-modified glass ionomer cement (RMGI. Enamel shear bond strength (SBS was determined. Protein adsorption was determined using a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU and lactic acid production. Incorporating 3% of MPC, 1.5% of DMAHDM, and 0.1% of NAg into RMGI, and immersing in distilled water at 37 °C for 30 days, did not decrease the SBS, compared to control (p > 0.1. RMGI with 3% MPC + 1.5% DMAHDM + 0.1% NAg had protein amount that was 1/10 that of control. RMGI with triple agents (MPC + DMAHDM + NAg had much stronger antibacterial property than using a single agent or double agents (p < 0.05. Biofilm CFU on RMGI with triple agents was reduced by more than 3 orders of magnitude, compared to commercial control. Biofilm metabolic activity and acid production were also greatly reduced. In conclusion, adding MPC + DMAHDM + NAg in RMGI substantially inhibited biofilm viability and acid production, without compromising the orthodontic bracket bond strength to enamel. The novel bioactive cement is promising for orthodontic applications to hinder biofilms and plaque buildup and enamel demineralization.

  2. Evaluation of human dental loss caused by carbamide peroxide bleacher compared with phosphoric acid conditioning - radioactive method

    International Nuclear Information System (INIS)

    Adachi, Eduardo Makoto; Yousseff, Michel Nicolau; Saiki, Mitiko

    2002-01-01

    The radiometric method was applied to the evaluation of dental loss caused by carbamide peroxide when it is applied on the surface layers of enamel and dentin tissues. Also the dental loss caused by the etching with 37% phosphoric acid procedure used in aesthetic restoration was assessed for comparison with those results obtained. The tooth samples irradiated with a P standard in a thermal neutron flux of the nuclear reactor were placed in contact with 10% carbamide peroxide or with 37% phosphoric acid solution. The radioactivity of 32 P transferred from the radioactive teeth to the bleaching gel or to etching acid was measured using a Geiger Muller detector to calculate the mass of P removed in this treatment and losses were calculated after obtaining their P concentrations. Results obtained indicated that enamel and dentin exposed to carbamide peroxide bleaching agent lose phosphorus. The extent of enamel loss was smaller than that obtained for dentin. In the case of acid etching, there was no difference between the results obtained for enamel and dentin loss. Also the dentin loss obtained after a treatment of 30 applications of 10% carbamide peroxide was the same magnitude of that one application of 37% phosphoric acid. (author)

  3. Effect of pretreatment with an Er:YAG laser and fluoride on the prevention of dental enamel erosion.

    Science.gov (United States)

    dos Reis Derceli, Juliana; Faraoni-Romano, Juliana Jendiroba; Azevedo, Danielle Torres; Wang, Linda; Bataglion, César; Palma-Dibb, Regina Guenka

    2015-02-01

    The aim of this study was to evaluate the effect of the Er:YAG laser and its association with fluoride (1.23% acidulate phosphate fluoride gel) on the prevention of enamel erosion. Sixty specimens were obtained from bovine enamel (4 × 4 mm), which were ground flat, polished, and randomly divided into five groups according to the preventive treatments: control-fluoride application; L--Er:YAG laser; L+F--laser + fluoride; F+L--fluoride + laser; L/F--laser/fluoride simultaneously. Half of the enamel surface was covered with nail varnish (control area), and the other half was pretreated with one of the preventive strategies to subsequently be submitted to erosive challenge. When the laser was applied, it was irradiated for 10 s with a focal length of 4 mm and 60 mJ/2 Hz. Fluoride gel was applied for 4 min. Each specimen was individually exposed to regular Coca-Cola® for 1 min, four times/day, for 5 days. Wear analysis was performed with a profilometer, and demineralization was assessed with an optical microscope. Data were analyzed using the Kruskal-Wallis test (wear)/Dunn test and ANOVA/Fisher's exact tests. The group L/F was similar to control group. The other groups showed higher wear, which did not present differences among them. In the demineralization assessment, the groups F+L and L/F showed lower demineralization in relation to the other groups. It can be concluded that none preventive method was able to inhibit dental wear. The treatments L/F and F+L showed lower enamel demineralization.

  4. Retention of class V restorations placed by dental students: a retrospective evaluation

    OpenAIRE

    Silva, Úrsula Aparecida Escalero; Department of Restorative Dentistry – Araçatuba Dental School – UNESP – Univ Estadual Paulista – Araçatuba – São Paulo – Brazil.; da Silva, Emílie; Department of Restorative Dentistry – Araçatuba Dental School – UNESP – Univ Estadual Paulista – Araçatuba – São Paulo – Brazil.; Okida, Ricardo; Department of Restorative Dentistry – Araçatuba Dental School – UNESP – Univ Estadual Paulista – Araçatuba – São Paulo – Brazil.; Sundefeld, Maria; Department of Biostatistics – Araçatuba Dental School – UNESP – Univ Estadual Paulista – Araçatuba – São Paulo – Brazil.; Fagundes, Ticiane Cestari; Department of Restorative Dentistry – Araçatuba Dental School – UNESP – Univ Estadual Paulista – Araçatuba – São Paulo – Brazil.

    2016-01-01

    Objective: The aim of this study was to evaluate the clinical performance of class V restorations made by undergraduate students and determine the factors that might influence retention of restorations. Material and Methods: A survey of the clinical records created between 2007 and 2009 was used to collect data on patients with dental restorations. The USPHS (United States Public Health Service) criteria were used to perform evaluations by direct clinical observation. Statistical analyses wer...

  5. Effects of fluoride and epigallocatechin gallate on soft-drink-induced dental erosion of enamel and root dentin

    Directory of Open Access Journals (Sweden)

    Yin-Lin Wang

    2018-04-01

    Full Text Available Background/Purpose: Fluoride and epigallocatechin gallate (EGCG have been proven to prevent dental caries. The purpose of this study was to evaluate the effects of fluoride and EGCG on soft-drink-induced dental erosion in vitro. Methods: Forty enamel and dentin specimens were prepared from extracted human teeth. The specimens were divided into 4 groups and treated separately with distilled water (as control, 0.5 M sodium fluoride (NF, 400 μM EGCG (EG, and a solution containing 0.5 M NaF and 400 μM EGCG (FG. Cyclic erosive treatment was performed according to the experimental procedures. The specimens were analyzed using laser scanning confocal microscopy, scanning electron microscopy, and a microhardness tester. The data were analyzed using ANOVA and Bonferroni's post hoc test. The significance level was set at 5%. Results: The amount of substance loss was lower in the NF and EG groups than in the control group (p < 0.05. The erosion-caused substance loss was more pronounced in the dentin than in the enamel specimens. Surface microhardness loss was lower in the NF and EG groups than in the control group (p < 0.05. The diameter of the dentinal tubule was wider in the control group than in the NF and EG groups (p < 0.05. No combined effects were observed in the FG group. Conclusion: Both fluoride and EGCG are effective in preventing soft-drink-induced erosion compared with the control group. Fluoride and EGCG may interfere with each other. The mechanisms of the anti-erosive effect need to be explored in the future. Keywords: Dental erosion, Fluoride, Epigallocatechin gallate, Soft drinks, Laser scanning confocal microscopy

  6. Chronic fluoride toxicity: dental fluorosis.

    Science.gov (United States)

    Denbesten, Pamela; Li, Wu

    2011-01-01

    Dental fluorosis occurs as a result of excess fluoride ingestion during tooth formation. Enamel fluorosis and primary dentin fluorosis can only occur when teeth are forming, and therefore fluoride exposure (as it relates to dental fluorosis) occurs during childhood. In the permanent dentition, this would begin with the lower incisors, which complete mineralization at approximately 2-3 years of age, and end after mineralization of the third molars. The white opaque appearance of fluorosed enamel is caused by a hypomineralized enamel subsurface. With more severe dental fluorosis, pitting and a loss of the enamel surface occurs, leading to secondary staining (appearing as a brown color). Many of the changes caused by fluoride are related to cell/matrix interactions as the teeth are forming. At the early maturation stage, the relative quantity of amelogenin protein is increased in fluorosed enamel in a dose-related manner. This appears to result from a delay in the removal of amelogenins as the enamel matures. In vitro, when fluoride is incorporated into the mineral, more protein binds to the forming mineral, and protein removal by proteinases is delayed. This suggests that altered protein/mineral interactions are in part responsible for retention of amelogenins and the resultant hypomineralization that occurs in fluorosed enamel. Fluoride also appears to enhance mineral precipitation in forming teeth, resulting in hypermineralized bands of enamel, which are then followed by hypomineralized bands. Enhanced mineral precipitation with local increases in matrix acidity may affect maturation stage ameloblast modulation, potentially explaining the dose-related decrease in cycles of ameloblast modulation from ruffle-ended to smooth-ended cells that occur with fluoride exposure in rodents. Specific cellular effects of fluoride have been implicated, but more research is needed to determine which of these changes are relevant to the formation of fluorosed teeth. As further

  7. Enamel renal syndrome with associated amelogenesis imperfecta, nephrolithiasis, and hypocitraturia: A case report

    International Nuclear Information System (INIS)

    Bhesania, Dhvani; Arora, Ankit; Kapoor, Sonali

    2015-01-01

    Numerous cases of enamel renal syndrome have been previously reported. Various terms, such as enamel renal syndrome, amelogenesis imperfecta and gingival fibromatosis syndrome, and enamel-renal-gingival syndrome, have been used for patients presenting with the dental phenotype characteristic of this condition, nephrocalcinosis or nephrolithiasis, and gingival findings. This report describes a case of amelogenesis imperfecta of the enamel agenesis variety with nephrolithiasis in a 21-year-old male patient who complained of small teeth. The imaging modalities employed were conventional radiography, cone-beam computed tomography, and renal sonography. Such cases are first encountered by dentists, as other organ or metabolic diseases are generally hidden. Hence, cases of amelogenesis imperfecta should be subjected to advanced diagnostic modalities, incorporating both dental and medical criteria, in order to facilitate comprehensive long-term management

  8. Enamel renal syndrome with associated amelogenesis imperfecta, nephrolithiasis, and hypocitraturia: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Bhesania, Dhvani; Arora, Ankit; Kapoor, Sonali [Dept. of Conservative Dentistry and Endodontics, Manubhai Patel Dental College, Maharaja Krishnakumarsinhji Bhavnagar University, Vadodara (India)

    2015-09-15

    Numerous cases of enamel renal syndrome have been previously reported. Various terms, such as enamel renal syndrome, amelogenesis imperfecta and gingival fibromatosis syndrome, and enamel-renal-gingival syndrome, have been used for patients presenting with the dental phenotype characteristic of this condition, nephrocalcinosis or nephrolithiasis, and gingival findings. This report describes a case of amelogenesis imperfecta of the enamel agenesis variety with nephrolithiasis in a 21-year-old male patient who complained of small teeth. The imaging modalities employed were conventional radiography, cone-beam computed tomography, and renal sonography. Such cases are first encountered by dentists, as other organ or metabolic diseases are generally hidden. Hence, cases of amelogenesis imperfecta should be subjected to advanced diagnostic modalities, incorporating both dental and medical criteria, in order to facilitate comprehensive long-term management.

  9. Enamel renal syndrome with associated amelogenesis imperfecta, nephrolithiasis, and hypocitraturia: A case report.

    Science.gov (United States)

    Bhesania, Dhvani; Arora, Ankit; Kapoor, Sonali

    2015-09-01

    Numerous cases of enamel renal syndrome have been previously reported. Various terms, such as enamel renal syndrome, amelogenesis imperfecta and gingival fibromatosis syndrome, and enamel-renal-gingival syndrome, have been used for patients presenting with the dental phenotype characteristic of this condition, nephrocalcinosis or nephrolithiasis, and gingival findings. This report describes a case of amelogenesis imperfecta of the enamel agenesis variety with nephrolithiasis in a 21-year-old male patient who complained of small teeth. The imaging modalities employed were conventional radiography, cone-beam computed tomography, and renal sonography. Such cases are first encountered by dentists, as other organ or metabolic diseases are generally hidden. Hence, cases of amelogenesis imperfecta should be subjected to advanced diagnostic modalities, incorporating both dental and medical criteria, in order to facilitate comprehensive long-term management.

  10. Influence of different cusp coverage methods for the extension of ceramic inlays on marginal integrity and enamel crack formation in vitro.

    Science.gov (United States)

    Krifka, Stephanie; Stangl, Martin; Wiesbauer, Sarah; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne

    2009-09-01

    No information is available to date about cusp design of thin (1.0 mm) non-functional cusps and its influence upon (1) marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and (2) crack formation of dental tissues. The aim of this in vitro study was to investigate the effect of cusp coverage of thin non-functional cusps on marginal integrity and enamel crack formation. CI and PCC preparations were performed on extracted human molars. Non-functional cusps were adjusted to 1.0-mm wall thickness and 1.0-mm wall thickness with horizontal reduction of about 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were adhesively luted with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading. Marginal integrity was assessed by evaluating dye penetration after thermal cycling and mechanical loading. Enamel cracks were documented under a reflective-light microscope. The data were statistically analysed with the Mann-Whitney U test, the Fishers exact test (alpha = 0.05) and the error rates method. PCC with horizontal reduction of non-functional cusps showed statistically significant less microleakage than PCC without such a cusp coverage. Preparation designs with horizontal reduction of non-functional cusps showed a tendency to less enamel crack formation than preparation designs without cusp coverage. Thin non-functional cusp walls of adhesively bonded restorations should be completely covered or reduced to avoid enamel cracks and marginal deficiency.

  11. Year of birth determination using radiocarbon dating of dental enamel.

    Science.gov (United States)

    Buchholz, B A; Spalding, K L

    2010-05-01

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ((14)C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, (14)C levels in the enamel represent (14)C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  12. Year of Birth Determination Using Radiocarbon Dating of Dental Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Spalding, K L

    2009-03-10

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ({sup 14}C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, {sup 14}C levels in the enamel represent {sup 14}C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  13. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    Science.gov (United States)

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  14. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 'In vitro' assessment to instrumented indentation hardness tests in enamel of bovine teeth, before and after dental bleaching by laser; Avaliacao in vitro' de ensaios instrumentados de dureza em esmalte de dente bovino, antes e apos clareamento dental a laser

    Energy Technology Data Exchange (ETDEWEB)

    Britto Junior, Francisco Meira

    2004-07-01

    The laser enamel bleaching is a common used procedure due to its satisfactory esthetic results. The possible changes on the dental structures caused by the bleaching technique are of great importance. The enamel superficial microhardness changes through instrumented indentation hardness on bovine teeth were analyzed in this present study. The samples were divided in two halves, one being the control and the other irradiated with a diode laser (808 nm) or with a Nd:YAG laser (1064 nm) to activate the Whiteness HP bleaching gel (hydrogen peroxide at 35%). It was possible to conclude that there was a statistical significant increase on the enamel superficial microhardness (Group I, sample 1 and Group II, sample 1) despite this increase did not seem to indicate a concern regarding the enamel surface resistance change. There was not a significant statistical change on the enamel microhardness on the other samples. The final conclusion is that there was no superficial enamel morphological change after these treatments. (author)

  16. Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii

    Science.gov (United States)

    Sasagawa, Ichiro; Ishiyama, Mikio; Yokosuka, Hiroyuki; Mikami, Masato

    2008-06-01

    The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light, scanning electron and transmission electron microscopy. In the enamel, slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed, suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians. Ameloblasts containing developed Golgi apparatus, rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage. In the maturation stage, a ruffled border was not seen at the distal end of the ameloblasts, while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm. The enamel organ consisted of the outer dental epithelial cells, stratum reticulum cells and ameloblasts, but there was no stratum intermedium. It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

  17. Vanadium content of human dental enamel and its relationship to caries

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, A R [Institut Jozef Stefan, Ljubljana (Yugoslavia); Vrbic, V [Ljubljana Univ. (Yugoslavia)

    1979-01-01

    A method for the determination of vanadium in dental enamel based on neutron activation analysis is described. After rapid dissolution of the irradiated sample in perchloric acid, /sup 52/V is quickly separated by solvent extraction from mixed perchloric-hydrochloric medium with N-benzoyl-N-phenyl hydroxylamine (BPHA) reagent in toluene in 95% yield. The technique was applied to samples from a low caries area of Dalmatia, Zemunik (DMFT < 2), and a normal area, Novigrad (DMFT > 5), in the same region. No significant differences in vanadium content were found between the two areas, nor between deciduous and permanent teeth. The levels in other areas of Yugoslavia were found to be similar, with a mean concentration of 3.7 +- 1.5 ngxg/sup -1/ for 37 samples, with a nearly normal distribution; a few impacted teeth gave lower values. The method can also be adapted to the analysis of bone and biological materials generally.

  18. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-01-30

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  19. Bond strength of etch-and-rinse and self-etch adhesive systems to enamel and dentin irradiated with a novel CO2 9.3 μm short-pulsed laser for dental restorative procedures.

    Science.gov (United States)

    Rechmann, Peter; Bartolome, N; Kinsel, R; Vaderhobli, R; Rechmann, B M T

    2017-12-01

    The objective of this study was to evaluate the influence of CO 2 9.3 μm short-pulsed laser irradiation on the shear bond strength of composite resin to enamel and dentin. Two hundred enamel and 210 dentin samples were irradiated with a 9.3 µm carbon dioxide laser (Solea, Convergent Dental, Inc., Natick, MA) with energies which either enhanced caries resistance or were effective for ablation. OptiBond Solo Plus [OptiBondTE] (Kerr Corporation, Orange, CA) and Peak Universal Bond light-cured adhesive [PeakTE] (Ultradent Products, South Jordan, UT) were used. In addition, Scotchbond Universal [ScotchbondSE] (3M ESPE, St. Paul, MN) and Peak SE self-etching primer with Peak Universal Bond light-cured adhesive [PeakSE] (Ultradent Products) were tested. Clearfil APX (Kuraray, New York, NY) was bonded to the samples. After 24 h, a single plane shear bond test was performed. Using the caries preventive setting on enamel resulted in increased shear bond strength for all bonding agents except for self-etch PeakSE. The highest overall bond strength was seen with PeakTE (41.29 ± 6.04 MPa). Etch-and-rinse systems achieved higher bond strength values to ablated enamel than the self-etch systems did. PeakTE showed the highest shear bond strength with 35.22 ± 4.40 MPa. OptiBondTE reached 93.8% of its control value. The self-etch system PeakSE presented significantly lower bond strength. The shear bond strength to dentin ranged between 19.15 ± 3.49 MPa for OptiBondTE and 43.94 ± 6.47 MPa for PeakSE. Etch-and-rinse systems had consistently higher bond strength to CO 2 9.3 µm laser-ablated enamel. Using the maximum recommended energy for dentin ablation, the self-etch system PeakSE reached the highest bond strength (43.9 ± 6.5 MPa).

  20. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    Science.gov (United States)

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.

  1. Dental caries, restorations and extractions by dental caries in first permanent molars. Clinical and radiographic study

    International Nuclear Information System (INIS)

    Aguiar, Sandra Maria H.C. Avila de; Santos Pinto, Ruy dos

    1996-01-01

    This research analyse by clinical and radiographic study, dental caries, restorations and extractions in 1.600 first permanent molars, from 400 children, both sexes, aged 5 to 13 years old, assisted in the Children's Clinic, Faculdade de Odontologia de Aracatuba, UNESP, in 1994. (author)

  2. Assessment of Dental Fluorosis in Mmp20+/− Mice

    OpenAIRE

    Sharma, R.; Tye, C.E.; Arun, A.; MacDonald, D.; Chatterjee, A.; Abrazinski, T.; Everett, E.T.; Whitford, G.M.; Bartlett, J.D.

    2011-01-01

    The molecular mechanisms that underlie dental fluorosis are poorly understood. The retention of enamel proteins hallmarking fluorotic enamel may result from impaired hydrolysis and/or removal of enamel proteins. Previous studies have suggested that partial inhibition of Mmp20 expression is involved in the etiology of dental fluorosis. Here we ask if mice expressing only one functional Mmp20 allele are more susceptible to fluorosis. We demonstrate that Mmp20+/− mice express approximately half ...

  3. Photoacoustic imaging of teeth for dentine imaging and enamel characterization

    Science.gov (United States)

    Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit

    2018-02-01

    Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.

  4. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes.

    Science.gov (United States)

    Wassel, Mariem O; Khattab, Mona A

    2017-07-01

    Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans ( S. mutans ) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.

  5. Concentração de chumbo, defeitos de esmalte e cárie em dentes decíduos Lead level, enamel defects and dental caries in deciduous teeth

    Directory of Open Access Journals (Sweden)

    Viviane Elisângela Gomes

    2004-10-01

    Full Text Available OBJETIVO: Verificar a relação da concentração de chumbo no esmalte de dentes decíduos com a presença de defeitos de esmalte e sua relação com cárie dental em pré-escolares. MÉTODOS: A amostra foi de 329 crianças de pré-escolas municipais de uma área próxima de indústrias (N=132 e outra não industrial (N=197 da cidade de Piracicaba, Estado de São Paulo. Essa amostra pertencente a um estudo inicial realizado entre 2000 e 2001 no qual o chumbo foi analisado por meio de biópsia de esmalte. Foram realizados exames clínicos bucais para verificação da prevalência de defeitos de esmalte (Developmental Defects of Enamel Index - DDE, da Federação Dentária Internacional - FDI e cárie (Índice ceos, Organização Mundial da Saúde, em ambas regiões. Foram utilizados teste de qui-quadrado e cálculo do risco relativo ao nível de significância de 5%, considerando cada região separadamente. RESULTADOS: Houve maior proporção de crianças com cárie entre aquelas com maiores concentrações de chumbo nos decíduos na região não industrial (p=0,02, o que não se observou na região industrial (p=0,89. Houve risco relativo (RR aumentado de cárie nas crianças da região não industrial o que não foi verificado nas crianças da região industrial. Não se observou relação entre a presença de chumbo e os defeitos de esmalte. CONCLUSÕES: Não foram encontados dados que evidenciassem a relação entre concentração de chumbo e defeitos no esmalte em nenhuma das regiões pesquisadas. Não foi encontrada relação entre chumbo e cárie na região industrial, ressaltando a necessidade de mais estudos dessas relações.OBJECTIVE: To verify the relationship between lead concentration in the enamel of deciduous teeth and the presence of enamel defects and, consequently, with dental caries among preschool children. METHODS: The sample consisted of 329 preschool children in Piracicaba, State of São Paulo: 132 attending municipal

  6. Fluorine uptake into human enamel around a fluoride-containing dental material during cariogenic pH cycling

    International Nuclear Information System (INIS)

    Komatsu, H.; Yamamoto, H.; Nomachi, M.; Yasuda, K.; Matsuda, Y.; Murata, Y.; Kijimura, T.; Sano, H.; Sakai, T.; Kamiya, T.

    2007-01-01

    the enamel adjacent to the material remained a caries inhibition zone due to low rate of demineralization. With caries progression, fluorine accumulated in the subsurface of the caries lesion, while the outermost surface of the caries lesion gradually dissolved under increasing pH cycling. The data obtained using PIGE (TIARA, JAPAN) technique were useful to understand the fluorine benefit for preventing dental caries by means of fluoride-containing dental materials

  7. Fluorine uptake into human enamel around a fluoride-containing dental material during cariogenic pH cycling

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, H. [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan)]. E-mail: kom@den.hokudai.ac.jp; Yamamoto, H. [Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Nomachi, M. [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043 (Japan); Yasuda, K. [Wakasa wan Energy Research Center, 64-52-1 Hase, Tsuruga 914-0192 (Japan); Matsuda, Y. [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan); Murata, Y. [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan); Kijimura, T. [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan); Sano, H. [Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586 (Japan); Sakai, T. [Takasaki Advanced Radiation Research Institute, JAEA, 1233 Watanuki-machi, Takasaki 370-1292 (Japan); Kamiya, T. [Takasaki Advanced Radiation Research Institute, JAEA, 1233 Watanuki-machi, Takasaki 370-1292 (Japan)

    2007-07-15

    duration of pH cycling, although the enamel adjacent to the material remained a caries inhibition zone due to low rate of demineralization. With caries progression, fluorine accumulated in the subsurface of the caries lesion, while the outermost surface of the caries lesion gradually dissolved under increasing pH cycling. The data obtained using PIGE (TIARA, JAPAN) technique were useful to understand the fluorine benefit for preventing dental caries by means of fluoride-containing dental materials.

  8. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2015-01-01

    Full Text Available Background: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Materials and Methods: Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P 0.05. In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. Conclusion: CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond.

  9. The vanadium content of human dental enamel and its relationship to caries

    International Nuclear Information System (INIS)

    Byrne, A.R.; Vrbic, V.

    1979-01-01

    A method for the determination of vanadium in dental enamel based on neutron activation analysis is described. After rapid dissolution of the irradiated sample in perchloric acid, 52 V is quickly separated by solvent extraction from mixed perchloric-hydrochloric medium with N-benzoyl-N-phenyl hydroxylamine (BPHA) reagent in toluene in 95% yield. The technique was applied to samples from a low caries area of Dalmatia, Zemunik (DMFT 5), in the same region. No significant differences in vanadium content were found between the two areas, nor between deciduous and permanent teeth. The levels in other areas of Yugoslavia were found to be similar, with a mean concentration of 3.7 +- 1.5 ngxg -1 for 37 samples, with a nearly normal distribution; a few impacted teeth gave lower values. The method can also be adapted to the analysis of bone and biological materials generally. (author)

  10. Synchrotron-radiation-based X-ray micro-computed tomography reveals dental bur debris under dental composite restorations.

    Science.gov (United States)

    Hedayat, Assem; Nagy, Nicole; Packota, Garnet; Monteith, Judy; Allen, Darcy; Wysokinski, Tomasz; Zhu, Ning

    2016-05-01

    Dental burs are used extensively in dentistry to mechanically prepare tooth structures for restorations (fillings), yet little has been reported on the bur debris left behind in the teeth, and whether it poses potential health risks to patients. Here it is aimed to image dental bur debris under dental fillings, and allude to the potential health hazards that can be caused by this debris when left in direct contact with the biological surroundings, specifically when the debris is made of a non-biocompatible material. Non-destructive micro-computed tomography using the BioMedical Imaging & Therapy facility 05ID-2 beamline at the Canadian Light Source was pursued at 50 keV and at a pixel size of 4 µm to image dental bur fragments under a composite resin dental filling. The bur's cutting edges that produced the fragment were also chemically analyzed. The technique revealed dental bur fragments of different sizes in different locations on the floor of the prepared surface of the teeth and under the filling, which places them in direct contact with the dentinal tubules and the dentinal fluid circulating within them. Dispersive X-ray spectroscopy elemental analysis of the dental bur edges revealed that the fragments are made of tungsten carbide-cobalt, which is bio-incompatible.

  11. The CuHBr laser in hard dental tissues

    International Nuclear Information System (INIS)

    Miyakawa, Walter

    2004-01-01

    In this work, it was verified the viability of characterization of laser-irradiated dental tissues in two extreme conditions: high and low absorption by the dental tissue. Comparison with light microscopy and scanning electronic microscopy revealed that these techniques are complementary each other: quantitative topographic information is directly extracted from the atomic force microscopy, while morphological aspects can be imaged by light microscopy or scanning electronic microscopy. A cavity generated by Cu-HyBrID laser in human dental enamel was also evaluated by atomic force microscopy. Structural and morphological differences between the fused and resolidified enamel from the cavity walls and the enamel from the natural tis sue were analyzed. A model, based on the Monte Carlo method described the propagation of CuHBr laser radiation and the absorbed energy distribution in dental tissues. Experimental measures with a CCD camera were used to semiquantitatively characterize the scattered light distribution in the tooth and they corroborated the model. It was observed that Rayleigh scattering and diffuse scattered radiation is predominant. The absorbed energy distribution map and the temperature variation along the beam propagation axis presented strong dependence with the absorption coefficient of the dental enamel and they cannot be deduced from the light distribution profile. The exposure time threshold for dental enamel melting and evaporation, irradiated by a specific condition of the green line of the Cu-HyBrID laser, was determined and a phenomenological model was discussed for the laser-matter interaction, based on pulse accumulation effect. Theoretical temperature calculations associated with experimental evidences strongly suggest that optical and thermal parameters should vary with temperature. The obtained exposure time threshold should correspond to the time necessary to the sample reach the critical temperature, at which the increase of absorption

  12. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.; Daiee, E.; Yazdi, A.; Khiabani, K.; Kavousi, A.; Vazirinejad, R.; Behnejad, B.; Ghasemi, M.; Mood, M. Balali

    2008-01-01

    Background: Mercury or Hydrargyrum (Hg) is the most non-radioactive toxic element. Dental amalgam is made up of 50% mercury. Exposure to electromagnetic fields of magnetic resonance imaging (MRI) and microwave radiation emitted from mobile phone use may increase the emission of mercury from dental amalgam fillings. It was thus aimed to study the effects of exposure to MRI and mobile phone use on the mercury release from dental amalgam restorations. Materials and Methods: Following approval of the University Medical Ethics Committee and the informed consents of the subjects, two different studies were undertaken. A-MRI: - Thirty patients (27 F, 3 M) aged 18 to 48 years who had been referred to MRI department of Ali-ebn Abitaleb Teaching Hospital and had at least four amalgam restorated teeth, were investigated. Five ml stimulated saliva was collected just before and after MRI. The magnetic flux density was 0.23 T, and the duration of exposure of patients to magnetic field was 30 minutes. B-Mobile phone Use: Fourteen female healthy University students aged 19-23 years, who had not used mobile phones before the study and did not have any previous amalgam restorations but had decays in at least four teeth were investigated. Their urine samples were collected before amalgam restoration, and at days 1, 2, 3 and 4 after restoration. Dental amalgam restoration was performed for all 14 students (2 molars on one side, one class I and one class II restorations with identical volume and surface area of the amalgam fillings). The students randomly divided into two equal groups. The test group students were exposed to microwave radiation emitted from a Nokia 3310 mobile phone (SAR=0.96 W kg -1 ) that was operated in talk mode for 15 min every day at days 1-4 after restoration. The other seven female age matched students who served as controls sham exposed to microwave radiation. For each subject, a questionnaire regarding their possible sources of exposure to electromagnetic

  13. [Differential diagnosis of dental enamel focal demineralization and fluorosis by means of spectrophotometry].

    Science.gov (United States)

    Makarova, N E; Vinnichenko, Yu A

    2018-01-01

    The article presents the results of spectrophotometric tooth enamel scanning for differential diagnosis of focal enamel demineralization and fluorosis. Research was conducted in vivo on teeth affected by these diseases. VITA EasyShade spectrophotometer measurements were made on the affected area and on the visually healthy part of enamel. The lightness appeared as the only one differential significant optical characteristics of tooth enamel. Lightness metrics were higher in the case of initial caries than on the healthy part of enamel when these metrics were lower in the case of fluorosis than on the healthy part of enamel.

  14. Occlusal considerations for dental implant restorations.

    Science.gov (United States)

    Bergmann, Ranier H

    2014-01-01

    When placed, dental implants are put into an ever-changing oral environment in which teeth can continue to migrate. Yet, the implants themselves are ankylosed. This can lead to occlusal instability. Teeth may continue to erupt, leaving the implants in infraocclusion. Teeth may move mesially away from an implant, requiring modification to close an open contact point. Friction in the connection between teeth and implants can lead to intrusion of teeth and damage to the periodontal attachment apparatus. Implant occlusion with shallow incisal guidance minimizes lateral and tipping forces. Cross-arch stabilization allows the best distribution of occlusal forces. The choice of restorative materials influences long-term occlusal stability.

  15. Effects of hydrogen peroxide bleaching strip gels on dental restorative materials in vitro: surface microhardness and surface morphology.

    Science.gov (United States)

    Duschner, Heinz; Götz, Hermann; White, Donald J; Kozak, Kathleen M; Zoladz, James R

    2004-01-01

    This study examined the effects of peroxide tooth bleaching, including Crest Whitestrips hydrogen peroxide gel treatments, on the surface hardness and morphology of common dental restorative treatments. American Dental Association (ADA) recommended dental restorative materials, including amalgam, dental gold, porcelain, glass ionomer, and composites, were prepared according to manufacturers' instructions. A cycling treatment methodology was employed which alternated ex vivo human salivary exposures with bleaching treatments under conditions of controlled temperature and durations of treatment. Bleaching treatments included commercial Crest Whitestrips bleaching gels, which utilize hydrogen peroxide as the in situ bleaching source, and several commercial carbamide peroxide bleaching gels. Control treatments included placebo gels and an untreated group. Crest Whitestrips bleaching included treatment exposures simulating recommended clinical exposures (14 hours), along with excess bleaching simulating exposure to five times suggested Crest Whitestrips use. At the conclusion of treatments, surface microhardness measures and surface morphological assessments with standard and variable pressure (VP-) SEMs were conducted to assess the effects of bleaching exposure on the surface morphology and structural integrity of the restoratives. Surface microhardness and SEM measures revealed no significant deleterious effects on the restoration surfaces from Whitestrips gels. These results confirm that tooth bleaching from the selected commercial hydrogen peroxide or carbamide peroxide bleaching systems does not produce changes in surface morphology or microhardness of common dental restorative materials. These results support the clinical safety of the selected commercial bleaching systems to the oral environment, matching results obtained from long-term use of these ingredients applied in dental offices and available in commercial formulations.

  16. Cutting efficiency of a mid-infrared laser on human enamel.

    Science.gov (United States)

    Levy, G; Koubi, G F; Miserendino, L J

    1998-02-01

    In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.

  17. Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.

    Science.gov (United States)

    Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P

    2008-05-01

    To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.

  18. Nanoindentation mapping of the mechanical properties of human molar tooth enamel.

    Science.gov (United States)

    Cuy, J L; Mann, A B; Livi, K J; Teaford, M F; Weihs, T P

    2002-04-01

    The mechanical behavior of dental enamel has been the subject of many investigations. Initial studies assumed that it was a more or less homogeneous material with uniform mechanical properties. Now it is generally recognized that the mechanical response of enamel depends upon location, chemical composition, and prism orientation. This study used nanoindentation to map out the properties of dental enamel over the axial cross-section of a maxillary second molar (M(2)). Local variations in mechanical characteristics were correlated with changes in chemical content and microstructure across the entire depth and span of a sample. Microprobe techniques were used to examine changes in chemical composition and scanning electron microscopy was used to examine the microstructure. The range of hardness (H) and Young's modulus (E) observed over an individual tooth was found to be far greater than previously reported. At the enamel surface H>6GPa and E>115GPa, while at the enamel-dentine junction H<3GPa and E<70GPa. These variations corresponded to the changes in chemistry, microstructure, and prism alignment but showed the strongest correlations with changes in the average chemistry of enamel. For example, the concentrations of the constituents of hydroxyapatite (P(2)O(5) and CaO) were highest at the hard occlusal surface and decreased on moving toward the softer enamel-dentine junction. Na(2)O and MgO showed the opposite trend. The mechanical properties of the enamel were also found to differ from the lingual to the buccal side of the molar. At the occlusal surface the enamel was harder and stiffer on the lingual side than on the buccal side. The interior enamel, however, was softer and more compliant on the lingual than on the buccal side, a variation that also correlated with differences in average chemistry and might be related to differences in function.

  19. p38α MAPK Is Required for Tooth Morphogenesis and Enamel Secretion*

    Science.gov (United States)

    Greenblatt, Matthew B.; Kim, Jung-Min; Oh, Hwanhee; Park, Kwang Hwan; Choo, Min-Kyung; Sano, Yasuyo; Tye, Coralee E.; Skobe, Ziedonis; Davis, Roger J.; Park, Jin Mo; Bei, Marianna; Glimcher, Laurie H.; Shim, Jae-Hyuck

    2015-01-01

    An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678–27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38αK14 mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and β4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel. PMID:25406311

  20. Comparison Of Bond Strength Of Orthodontic Molar Tubes Using Different Enamel Etching Techniques And Their Effect On Enamel

    International Nuclear Information System (INIS)

    Abd el Rahman, H.Y.

    2013-01-01

    outer 10 micrometers on the enamel surface. The purpose of acid etching is to remove the smear layer and create an irregular surface by preferentially dissolving hydroxyapatite crystals on the outer surface. This topography will facilitate penetration of the fluid adhesive components into the irregularities. After polymerization, the adhesive is locked as proved by Dr. Bounocore into the surface and contributes to micromechanical retention. Sandblasting was introduced in orthodontics in an attempt to achieve proper etching for the enamel surface which would result in a better bond strength through aluminum oxide particles that are emitted from a specific hand piece at a high speed which produce roughness in enamel surfaces. Another method of increasing bond strength is by using an adhesion promoter. The expression 'adhesion promoter' was first used in connection with certain molecules which could achieve chemical bonding in dental structures. The word laser is an acronym for Light Amplification by Stimulated Emission of Radiation. The introduction of laser has revolutionized the bonding procedure. The first laser introduced was the helium-neon laser followed by Nd;YAG and CO 2 laser. Then the erbium family(Er;YAG and Er;Cr;YSSG) was introduced to dentistry. It has some advantages such as having no vibration or heat and producing a surface which is acid resistant by altering the calcium to phosphor ratio and formation of less soluble compounds. These characteristics make the erbium family more popular in orthodontics. If laser can achieve the above-mentioned function of acid etching, and even produce a favorable surface for bonding to a restorative material, it may be a viable alternative to acid etching. Although there are studies that have evaluated the effect of laser etching on bond strength, still further studies are needed for evaluating the shear bond strength of orthodontic molar tubes bonded to enamel prepared by the new Er;Cr;YSSG laser, sandblasting

  1. Repair or replacement of defective restorations by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Gordan, Valeria V; Riley, Joseph L; Geraldeli, Saulo

    2012-01-01

    The authors aimed to determine whether dentists in practices belonging to The Dental Practice-Based Research Network (DPBRN) were more likely to repair or to replace a restoration that they diagnosed as defective; to quantify dentists' specific reasons for repairing or replacing restorations......; and to test the hypothesis that certain dentist-, patient- and restoration-related variables are associated with the decision between repairing and replacing restorations....

  2. Colour Change of Enamel after Application of Averrhoa bilimbi

    Directory of Open Access Journals (Sweden)

    Cut Fauziah

    2013-07-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Teeth discoloration is mainly treated with dental bleaching. Use of chemical bleaching has side effects, so it is important to find an alternative natural dental bleaching agent. Averrhoa bilimbi contains peroxide and oxalate acid that possess tooth whitening properties. Objective: To determine the change in color of dental enamel after the application of Averrhoa bilimbi and 10% carbamide peroxide. Methods: Samples were 20 post-extracted of the two tested materials premolars (10 specimens each for Averrhoa bilimbi and carbamide peroxide application. After the application, the specimens were incubated at 37ºC for 2 hours, washed and soaked in aquadest before further incubated for another 14 days. The colour changed was observed by 5 independent observers using shade guide. Results: Quantitative and qualitative analyzes were performed. Qualitatively, A3 color has changed into C1, A2, D2, B2 and B1 in the Averrhoa bilimbi group. A more significant color change in the 10% carbamide peroxide group (p=0.005 compared to Averrhoa bilimbi group (p=0.005 were observed. The difference of resulted enamel colour change was statistically significant (p=0.002. Conclusion: Averrhoa bilimbi had a good prospect as dental bleaching agent since its application effectively resulted in a slight enamel colour change although its whitening properties was still lower than 10% carbamide peroxide.DOI: 10.14693/jdi.v19i3.134

  3. Evaluating the Reasons of Amalgam Restoration Replacement in Esthetic and Restorative Department of Babol Dental School in 2013-14

    Directory of Open Access Journals (Sweden)

    F Abolghasemzade

    2015-08-01

    Results: Within 263 patients, there were 81(30.8% men and 182(69.2% women. Most patients aged 30-40(42.2%, and were reported to suffer from class Ι dental occlusion(92.4%.The mean DMF was 9.7±2.4 . Lower molars were demonstrated as the most frequent teeth group for replacing amalgam restorations as well as causing secondary caries. Furthermore, secondary caries involved the major causes of amalgam restoration replacement. The most prevalent class for amalgam restoration replacement was class II restorations. It should be noted that secondary caries were most prevalent within class II MO / DO(25 cases(44.6%. Conclusion: The study findings revealed that the most common cause of the restoration replacement involved the secondary caries which was most observed in the Class II restorations.

  4. Influence of immediate loading on provisional restoration in dental implant stability

    Science.gov (United States)

    Ikbal, M.; Odang, R. W.; Indrasari, M.; Dewi, R. S.

    2017-08-01

    The success of dental implant treatment is determined by the primary stability at placement. One factor that could influence this stability is occlusal loading through provisional restoration. Two types of loading protocols are usually used: immediate and delayed loading. However, some controversies remain about the influence of occlusal loading on implant stability. Therefore, the influence of immediate loading on implant stability must be studied. An animal study was conducted by placing nine dental implants in the mandibular jaw of three Macaca fascicularis. Provisional restorations with various occlusal contacts (no, light, and normal contact) were placed on the implant. The implant stability was measured using the Ostell ISQ three times: immediately (baseline) and at the first and second months after implant placement. The implant stability between implants with no and normal occlusal contact as well as light and normal occlusal contact showed significant differences (p implant placement. However, no significant increase (p > 0.05) in implant stability was seen at the baseline and the first and second months after implant placement for all occlusal contact groups. Immediate loading influenced the implant stability, and provisional restoration of implant without occlusal contact showed the highest implant stability.

  5. Study in vitro of dental enamel irradiated with a high power diode laser operating at 960 nm: morphological analysis of post-irradiation dental surface and thermal effect analysis in pulp chamber due to laser application

    International Nuclear Information System (INIS)

    Quinto Junior, Jose

    2001-01-01

    Objectives: This study examines the structural and thermal modifications induced in dental enamel under dye assisted diode laser irradiation. The aim of this study is to verify if this laser-assisted treatment is capable to modify the enamel surface by causing fusion of the enamel surface layer. At the same time, the pulpal temperature rise must be kept low enough in order not to cause pulpar necrosis. To achieve this target, it is necessary to determine suitable laser parameters. As is known, fusion of the enamel surface followed by re-solidification produce a more acid resistant layer. This surface treatment is being researched as a new method for caries prevention. Method and Materials: A series of fourteen identically prepared enamel samples of human teeth were irradiated with a high power diode laser operating at 960 nm and using fiber delivery. Prior to irradiation, a fine layer of cromophorous ink was applied to the enamel surface. In the first part of the experiment the best parameter for pulse duration was determined. In the second part of the experimental phase the same energy density was used but with different repetition rates. During irradiation we monitored the temperature rise in the pulpal cavity. The morphology of the treated samples was analysed under SEM. Results: The morphology of the treated samples showed a homogeneously re-solidified enamel layer. The results of the temperature analysis showed a decrease of the pulpal temperature rise with decreasing repetition rate. Conclusion: With the diode laser it is possible to cause morphological alterations of the enamel surface, which is known to increase the enamel resistance against acid attack, and still maintain the temperature rise in the pulpar chamber below damage threshold. (author)

  6. [Effects of surface treatment and adhesive application on shear bond strength between zirconia and enamel].

    Science.gov (United States)

    Li, Yinghui; Wu, Buling; Sun, Fengyang

    2013-03-01

    To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (Padhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.

  7. Effects of probiotic fermented milk on biofilms, oral microbiota, and enamel

    OpenAIRE

    Lodi, Carolina Simonetti; Oliveira, Lidiane Viana; Brighenti, Fernanda Lourenção [UNESP; Delbem, Alberto Carlos Botazzo; Martinhon, Cleide Cristina Rodrigues

    2015-01-01

    The aim of this study was to evaluate in vitro and in vivo the effects of 2 brands of probiotic fermented milk on biofilms, oral microbiota, and enamel. For the in situ experiment, ten volunteers wore palatine devices containing four blocks of bovine dental enamel over 3 phases, during which 20% sucrose solution, Yakult® (Treatment A), and Batavito® (Treatment B) were dropped on the enamel blocks. Salivary microbial counts were obtained and biofilm samples were analyzed after each phase. For ...

  8. Further morphological evidence on South African earliest Homo lower postcanine dentition: Enamel thickness and enamel dentine junction.

    Science.gov (United States)

    Pan, Lei; Dumoncel, Jean; de Beer, Frikkie; Hoffman, Jakobus; Thackeray, John Francis; Duployer, Benjamin; Tenailleau, Christophe; Braga, José

    2016-07-01

    The appearance of the earliest members of the genus Homo in South Africa represents a key event in human evolution. Although enamel thickness and enamel dentine junction (EDJ) morphology preserve important information about hominin systematics and dietary adaptation, these features have not been sufficiently studied with regard to early Homo. We used micro-CT to compare enamel thickness and EDJ morphology among the mandibular postcanine dentitions of South African early hominins (N = 30) and extant Homo sapiens (N = 26), with special reference to early members of the genus Homo. We found that South African early Homo shows a similar enamel thickness distribution pattern to modern humans, although three-dimensional average and relative enamel thicknesses do not distinguish australopiths, early Homo, and modern humans particularly well. Based on enamel thickness distributions, our study suggests that a dietary shift occurred between australopiths and the origin of the Homo lineage. We also observed that South African early Homo postcanine EDJ combined primitive traits seen in australopith molars with derived features observed in modern human premolars. Our results confirm that some dental morphological patterns in later Homo actually occurred early in the Homo lineage, and highlight the taxonomic value of premolar EDJ morphology in hominin species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Rubber dam may increase the survival time of dental restorations.

    Science.gov (United States)

    Keys, William; Carson, Susan J

    2017-03-01

    Data sourcesCochrane Oral Health's Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase, LILACS, SciELO, Chinese BioMedical Literature Database, VIP, China National Knowledge Infrastructure, ClinicalTrials.gov, World Health Organization International Clinical Trials Registry Platform, OpenGrey and Sciencepaper Online databases. Handsearches in a number of journals.Study selectionRandomised controlled trials, including split-mouth studies assessing the effects of rubber dam isolation for restorative treatments in dental patients.Data extraction and synthesisTwo review authors independently screened the results of the electronic searches, extracted data and assessed the risk of bias of the included studies.ResultsFour studies involving a total of 1,270 patients were included. The studies were at high risk of bias. One trial was excluded from the analysis due to inconsistencies in the presented data. Restorations had a significantly higher survival rate in the rubber dam isolation group compared to the cotton roll isolation group at six months in participants receiving composite restorative treatment of non-carious cervical lesions (risk ratio (RR) 1.19, 95% confidence interval (CI) 1.04 to 1.37, very low-quality evidence). The rubber dam group had a lower risk of failure at two years in children undergoing proximal atraumatic restorative treatment in primary molars (hazard ratio (HR) 0.80, 95% CI 0.66 to 0.97, very low-quality evidence). One trial reported limited data showing that rubber dam usage during fissure sealing might shorten the treatment time. None of the included studies mentioned adverse effects or reported the direct cost of the treatment, or the level of patient acceptance/satisfaction. There was also no evidence evaluating the effects of rubber dam usage on the quality of the restorations.ConclusionsWe found some very low-quality evidence, from single studies, suggesting that rubber dam usage in dental direct

  10. Evaluation of effects of ionizing radiation on materials used in dental restorations

    International Nuclear Information System (INIS)

    Maio, Mireia Florencio

    2009-01-01

    This work consisted of quantitative studies of the effects caused by ionizing radiation on materials used in dental restorations (Titanium, Amalgam, Resin Composite and Glass Ionomer) aiming the deleterious effects of radiotherapy when patients with tumors in head and neck, arising when the teeth are restored within in the field of radiation. Samples were submitted to X-ray beams of 6 MV from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. The sample were submitted to Geiger-Mueller detectors and the ionization chambers in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a Germanium detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  11. Effect of acidity upon attrition-corrosion of human dental enamel.

    Science.gov (United States)

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.

    Science.gov (United States)

    Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi

    2010-04-01

    Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.

  13. Effect of thickener agents on dental enamel microhardness submitted to at-home bleaching Efeito de agentes espessantes na microdureza do esmalte submetido ao clareamento dental caseiro

    Directory of Open Access Journals (Sweden)

    José Augusto Rodrigues

    2007-06-01

    Full Text Available Dental bleaching occurs due to an oxidation reaction between the bleaching agents and the macromolecules of pigments in the teeth. This reaction is unspecific and the peroxides can also affect the dental matrix causing mineral loss. On the other hand, recent studies have suggested that the thickener agent carbopol can also cause mineral loss. Thus, the objective of this study was to evaluate in vitro the effect of at-home dental bleaching on dental enamel microhardness after the use of bleaching agents with and without carbopol as a thickener agent. Bovine dental slabs with 3 x 3 x 3 mm were obtained, sequentially polished, and randomly divided into 4 groups according to the experimental treatment: G1: 2% carbopol; G2: 10% carbamide peroxide with carbopol; G3: carbowax; G4: 10% carbamide peroxide with poloxamer. Bleaching was performed daily for 4 weeks, immersed in artificial saliva. Enamel microhardness values were obtained before the treatment (T0 and 7 (T1, 14 (T2, 21 (T3, 28 (T4, and 42 (T5 days after the beginning of the treatment. ANOVA and Tukey's test revealed statistically significant differences only for the factor Time (F = 5.48; p O clareamento dental ocorre devido a uma reação de oxidação entre o agente clareador e as macromoléculas de pigmentos presentes nos dentes. Esta reação é inespecífica e o peróxido pode agir na matriz dental causando perdas de mineral. Por outro lado, estudos recentes sugerem que o agente espessante carbopol também pode causar perda mineral. Assim, o objetivo deste trabalho foi avaliar in vitro o efeito do clareamento caseiro sobre a microdureza do esmalte após o uso de agentes clareadores com e sem carbopol como espessante. Fragmentos de esmalte bovino de 3 x 3 x 3 mm foram obtidos, polidos seqüencialmente e aleatoriamente divididos em 4 grupos de acordo com o tratamento experimental: G1: carbopol a 2%; G2: peróxido de carbamida a 10% com carbopol; G3: carbowax; G4: peróxido de carbamida a

  14. Sub-10-micrometer toughening and crack tip toughness of dental enamel

    OpenAIRE

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A.

    2011-01-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip toughness (KI0, KIII0), the crack closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine en...

  15. A retrospective evaluation of traumatic dental injury in children who applied to the dental hospital, Turkey.

    Science.gov (United States)

    Sari, M E; Ozmen, B; Koyuturk, A E; Tokay, U; Kasap, P; Guler, D

    2014-01-01

    The purpose of this study was to analyze traumatic dental injuries in children visiting the dental hospital emergency department in Samsun of Turkey, in the period from 2007 to 2011. Data of age, gender, causes of dental trauma, injured teeth, type of dental injuries, the application period, the dental treatments, and traumatic dental injuries according to the seasons were obtained from the records at dental hospital. Of all 320 patients with traumatic dental injury, 205 were boys and 115 were girls with a boys/girls ratio 1.78:1. Traumatic dental injury was observed more frequently in the 7-12 age groups: 52.5% in girls and 67.8% in boys. Falls are the major cause of traumatic dental injury in the age group 6-12 (51.4%). Sport activities are a common cause of traumatic dental injury in the 7-12 age group (34.2%). Patients visited a dentist within approximately 2 h (57.1%). The upper anterior teeth were subjected to trauma more frequently than the lower anterior teeth. The maxillary central incisors were the most commonly affected teeth, and the mandibular canins were the least affected teeth. In primary teeth, avulsion was the most common type of dental injury (23%); on the other hand, enamel fractures were the most common type of dental injury (30.6%) observed in permanent teeth. In the primary dentition, the most commonly performed treatments were dental examination and prescribing (70%). The most common treatment choices in permanent teeth were restoration and dental examination (49.7 and 15.8%, respectively). The results of the study show that the emergency intervention to traumatized teeth is important for good prognosis of teeth and oral tissues. Therefore, the parents should be informed about dental trauma in schools, and dental hospital physicians should be subjected to postgraduate training.

  16. Crystallite size and lattice distortion of human dental enamel estimated from the integral width of x-ray diffraction peak profile

    International Nuclear Information System (INIS)

    Maruyama, Fumiaki; Sakae, Toshiro

    2000-01-01

    Crystallite size and lattice distortion of human dental enamel were estimated by peak profile analysis using x-ray diffraction pattern. Firstly, noises were removed from x-ray diffraction pattern, and deconvolution of overlapping peaks and determination of baseline level were carried out. Then, the instrumental peak broadening and effect of overlapping Kα1 and Kα2 were eliminated to obtain pure peak profile using the Stokes's Fourier method. The integral width method was applied for estimation of crystallite size and 'upper-limit of distortion', assuming the peak profile as Cauchy function. The estimated crystallite size and distortion were ca. 210 A and ca. 0.4% in the a-axis direction and ca. 550 A and ca. 0.7% in the c-axis direction, respectively. The crystallite size value along the a-axis was almost the same to the previously reported values, but the value for along the c-axis was nearly half of the reported values. The crystallite size in this study means the size of coherent domain in contrast to the size of particle which may contain several domains in the case of enamel crystals. The results suggest that human enamel crystals grow in their size along the c-axis by multiplication, fusion of crystallites. It was notable that the distortion value was larger in the c-axis direction. The phenomenon may partly be due to the high carbonate ion content of enamel crystals and partly due to crystal growth mechanism. (author)

  17. Backscattering from dental restorations and splint materials during therapeutic radiation

    International Nuclear Information System (INIS)

    Farman, A.G.; Sharma, S.; George, D.I.; Wilson, D.; Dodd, D.; Figa, R.; Haskell, B.

    1985-01-01

    Models were constructed to simulate as closely as possible the human oral cavity. Radiation absorbed doses were determined for controls and various test situations involving the presence of dental restorative and splint materials during cobalt-60 irradiation of the models. Adjacent gold full crowns and adjacent solid dental silver amalgam cores both increased the dose to the interproximal gingivae by 20%. Use of orthodontic full bands for splinting the jaws increased the dose to the buccal tissues by an average of 10%. Augmentation of dose through backscatter radiation was determined to be only slight for intracoronal amalgam fillings and stainless steel or plastic bracket splints

  18. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use.

    Science.gov (United States)

    Mortazavi, S M J; Daiee, E; Yazdi, A; Khiabani, K; Kavousi, A; Vazirinejad, R; Behnejad, B; Ghasemi, M; Mood, M Balali

    2008-04-15

    In the 1st phase of this study, thirty patients were investigated. Five milliliter stimulated saliva was collected just before and after MRI. The magnetic flux density was 0.23 T and the duration of exposure of patients to magnetic field was 30 minutes. In the 2nd phase, fourteen female healthy University students who had not used mobile phones before the study and did not have any previous amalgam restorations were investigated. Dental amalgam restoration was performed for all 14 students. Their urine samples were collected before amalgam restoration and at days 1, 2, 3 and 4 after restoration. The mean +/- SD saliva Hg concentrations of the patients before and after MRI were 8.6 +/- 3.0 and 11.3 +/- 5.3 microg L(-1), respectively (p mobile phone. The mean +/- SE urinary Hg concentrations of the students who used mobile phones were 2.43 +/- 0.25, 2.71 +/- 0.27, 3.79 +/- 0.25, 4.8 +/- 0.27 and 4.5 +/- 0.32 microg L(-1) before the amalgam restoration and at days 1, 2, 3 and 4, respectively. Whereas the respective Hg concentrations in the controls, were 2.07 +/- 0.22, 2.34 +/- 0.30, 2.51 +/- 0.25, 2.66 +/- 0.24 and 2.76 +/- 0.32 microg L(-1). It appears that MRI and microwave radiation emitted from mobile phones significantly release mercury from dental amalgam restoration. Further research is needed to clarify whether other common sources of electromagnetic field exposure may cause alterations in dental amalgam and accelerate the release of mercury.

  19. Laser diagnostic and therapy of dental caries: the clinic point of view; Laser diagnostico e tratamento da carie dental: uma visao clinica

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Priscila Faria

    2001-07-01

    Dental caries's diagnosis is a major dentistry problem from the clinic point of view. The laser beam on the region of 655 nm induces the fluorescence of the compounds present in the hard tissue, quantifying differences between sound and carious enamel and dentine. Diagnodent (Kavo, Germany), showed to be effective regarding dental caries's diagnosis in the present research sampling. The Er:YAG laser (Kavo Key Laser 2, Germany) performed efficient cavity preparations in caries lesions of I and V class type, using up energies that ranged from 300 mJ to 350 mJ with 4 Hz repetition rate for the enamel; and from 250 mJ to 300 mJ with 4 Hz repetition rate for the dentine, and with 80 mJ with 6 Hz of repetition rate for laser conditioning. In the Er:YAG laser preparations no patient was anesthetized even when there were deeper cavities, and the maximum degree of pain ( which ranged from 0 to 10) was 4. In the control group with conventional high-speed drill two patients were anesthetized and the maximum degree of pain was 7. Restorations performed by conventional method of composite were equally satisfying both in caries groups of I and V class type and in the control group. The laser application in the operative dentistry office as a new method of diagnosis and dental preparations should be a good alternative to the use of the conventional dental drill. Nevertheless, dentistry practice has a lot to improve from technology progress, as well as new researches on laser dentistry are necessary in a long term. New types of lasers will come about and will increasingly improve the dental practice assistance and procedures quality. (author)

  20. Laser diagnostic and therapy of dental caries: the clinic point of view; Laser diagnostico e tratamento da carie dental: uma visao clinica

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Priscila Faria

    2001-07-01

    Dental caries's diagnosis is a major dentistry problem from the clinic point of view. The laser beam on the region of 655 nm induces the fluorescence of the compounds present in the hard tissue, quantifying differences between sound and carious enamel and dentine. Diagnodent (Kavo, Germany), showed to be effective regarding dental caries's diagnosis in the present research sampling. The Er:YAG laser (Kavo Key Laser 2, Germany) performed efficient cavity preparations in caries lesions of I and V class type, using up energies that ranged from 300 mJ to 350 mJ with 4 Hz repetition rate for the enamel; and from 250 mJ to 300 mJ with 4 Hz repetition rate for the dentine, and with 80 mJ with 6 Hz of repetition rate for laser conditioning. In the Er:YAG laser preparations no patient was anesthetized even when there were deeper cavities, and the maximum degree of pain ( which ranged from 0 to 10) was 4. In the control group with conventional high-speed drill two patients were anesthetized and the maximum degree of pain was 7. Restorations performed by conventional method of composite were equally satisfying both in caries groups of I and V class type and in the control group. The laser application in the operative dentistry office as a new method of diagnosis and dental preparations should be a good alternative to the use of the conventional dental drill. Nevertheless, dentistry practice has a lot to improve from technology progress, as well as new researches on laser dentistry are necessary in a long term. New types of lasers will come about and will increasingly improve the dental practice assistance and procedures quality. (author)

  1. Mammalian enamel maturation: Crystallographic changes prior to tooth eruption

    Czech Academy of Sciences Publication Activity Database

    Kallistová, Anna; Horáček, I.; Šlouf, Miroslav; Skála, Roman; Fridrichová, Michaela

    2017-01-01

    Roč. 12, č. 2 (2017), č. článku e0171424. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:67985831 ; RVO:61389013 Keywords : resolution electron-microscopy * atomic-force microscopy * dental enamel * vertebrate dentition * rat enamel * protein * evolution * crystals * shape * ameloblastin Subject RIV: EH - Ecology, Behaviour; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Other biological topics; Polymer science (UMCH-V) Impact factor: 2.806, year: 2016

  2. Association and comparison between visual inspection and bitewing radiography for the detection of recurrent dental caries under restorations.

    Science.gov (United States)

    Lino, José R; Ramos-Jorge, Joana; Coelho, Valéria Silveira; Ramos-Jorge, Maria L; Moysés, Marcos R; Ribeiro, José C R

    2015-08-01

    The aim of the present study was to investigate, in posterior teeth, the association between the characteristics of the margins of a restoration visually inspected and the presence, under restorations, of recurrent or residual dental caries detected by radiographic examination. Furthermore, the agreement between visual inspection and radiographs to detect dental caries was assessed. Eighty-five permanent molars and premolars with resin restorations on the interproximal and/or occlusal faces, from 18 patients, were submitted for visual inspection and radiographic examination. The visual inspection involved the criteria of the International Caries Detection and Assessment System (ICDAS). Bitewing radiographs were used for the radiographic examination. Logistic regression was used to analyse the association between the characteristics of the margins of a restoration assessed by visual inspection (absence of dental caries, or early, established, inactive and active lesions) and the presence of recurrent caries detected by radiographs. Kappa coefficients were calculated for determining agreement between the two methods. The Kappa coefficient for agreement between visual inspection and radiographic examination was 0.19. Established lesions [odds ratio (OR) = 9.89; 95% confidence interval (95% CI): 2.94-33.25; P caries detected by radiographs. Restorations with established and active lesions at the margins had a greater chance of exhibiting recurrent or residual lesions in the radiographic examination. The present findings demonstrate that restorations with established and active lesions at the margins when visually inspected often require removal and retreatment. © 2015 FDI World Dental Federation.

  3. COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO DENTAL ENAMEL CONDITIONED WITH PHOSPHORIC ACID OR Nd: YAG LASER

    Directory of Open Access Journals (Sweden)

    EDUARDO Carlos de Paula

    1997-01-01

    Full Text Available This study has been focused on a comparison between the shear bond strength of a composite resin attached to dental enamel surface, after a 35% phosphoric acid etching and after a Nd:YAG laser irradiation with 165.8 J/cm2 of energy density per pulse. After etching and attaching resin to these surfaces, the specimens were thermocycled and then underwent the shearing bond strength tests at a speed of 5 mm/min. The results achieved, after statistical analysis with Student's t-test, showed that the adhesion was significantly greater in the 35% phosphoric acid treated group than in the group treated with the Nd:YAG laser, thus demonstrating the need for developing new studies to reach the ideal parameters for an effective enamel surface conditioning as well as specific adhesives and composite resins when Nd:YAG laser is used

  4. On the critical parameters that regulate the deformation behaviour of tooth enamel.

    Science.gov (United States)

    Xie, Zonghan; Swain, Michael; Munroe, Paul; Hoffman, Mark

    2008-06-01

    Tooth enamel is the hardest tissue in the human body with a complex hierarchical structure. Enamel hypomineralisation--a developmental defect--has been reported to cause a marked reduction in the mechanical properties of enamel and loss of dental function. We discover a distinctive difference in the inelastic deformation mechanism between sound and hypomineralised enamels that is apparently controlled by microstructural variation. For sound enamel, when subjected to mechanical forces the controlling deformation mechanism was distributed shearing within nanometre thick protein layer between its constituent mineral crystals; whereas for hypomineralised enamel microcracking and subsequent crack growth were more evident in its less densely packed microstructure. We develop a mechanical model that not only identifies the critical parameters, i.e., the thickness and shear properties of enamels, that regulate the mechanical behaviour of enamel, but also explains the degradation of hypomineralised enamel as manifested by its lower resistance to deformation and propensity for catastrophic failure. With support of experimental data, we conclude that for sound enamel an optimal microstructure has been developed that endows enamel with remarkable structural integrity for durable mechanical function.

  5. The Chernobyl accident: EPR dosimetry on dental enamel of children

    International Nuclear Information System (INIS)

    Gualtieri, G.; Colacicchi, S.; Sgattoni, R.; Giannoni, M.

    2001-01-01

    The radiation dose on tooth enamel of children living close to Chernobyl has been evaluated by EPR. The sample preparation was reduced to a minimum of mechanical steps to remove a piece of enamel. A standard X-ray tube at low energy was used for additive irradiation. The filtration effect of facial soft tissue was taken into account. The radiation dose for a group of teeth slightly exceeds the annual dose, whereas for another group the dose very much exceeds the annual dose. Since the higher dose is found in teeth whose enamel have much lower EPR sensitivity to the radiation, it can be suggested that for these teeth the native signal could alter the evaluation of the smaller radiation signal

  6. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    Science.gov (United States)

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  7. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography.

    Science.gov (United States)

    Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu

    2014-08-01

    This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Application of the ultrashort pulses in bovine dental enamel

    International Nuclear Information System (INIS)

    Todescan, Carla de Rago

    2003-01-01

    The interaction of lasers with the hard structures of the teeth, has found the excess of heat as a problem for its utilization. This study analyzes, in vitro, the interaction of the ultrashort pulse laser of Ti:safire (830 nm) with the bovine dental enamel. The system consisted in one main oscillator integrated with an amplifier (CPA). The pulses extracted before the temporal compression inside the amplifier had 30 ps, 1000 Hz and ∼1 mJ. The pulses extracted after the compression had 60 fs, 1000 Hz and ∼0,7 mJ. The M 2 was 1,3, the focal lens 2,5 cm, the focal distance 29,7 and a computerized translation stage x,y,z. We evaluated the amount of tissue removed per pulse,the resulting cavities and the surrounding tissues not irradiated, under OM and SEM. The fluency was the major factor for differentiating the two regimens studied, therefore, the intensity was not so important as we expected in this process. We found: one ablation region in 'cat tongue', one ablation length, one fluency ∼0,7 J/cm 2 for 30 ps and ∼0,5 J/cm 2 for 60 fs (50% of high speed burr), smooth edge for 30 ps and high precision of the sharp edge cut of submicrometric order for 60 fs. (author)

  9. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    Science.gov (United States)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  10. Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration

    Science.gov (United States)

    Juntavee, Niwut; Juntavee, Apa; Plongniras, Preeyarat

    2018-01-01

    Objective This study investigates the effects of nano-hydroxyapatite (NHA) gel and Clinpro (CP) on remineralization potential of enamel and cementum at the cavosurface area of computer-aided design and computer-aided manufacturing ceramic restoration. Materials and methods Thirty extracted human mandibular third molars were sectioned at 1 mm above and below the cemento–enamel junction to remove the cemento–enamel junction portions and replaced them with zirconia ceramic disks by bonding them to the crown and root portions with resin cement. The enamel and cementum with an area of 4×4 mm2 surrounding the ceramic disk was demineralized with carbopol. The demineralized surfaces were treated with either NHA or CP, while 1 group was left with no treatment. Vickers microhardness of enamel and cementum were determined before demineralization, after demineralization, and after remineralization. Analysis of variance and Tukey multiple comparisons were used to determine statistically significant differences at 95% level of confidence. Scanning electron microscopy and X-ray diffraction were used to evaluate for surface alterations. Results The mean ± SD of Vickers microhardness for before demineralization, after demineralization, and after remineralization for enamel and cementum were 377.37±22.99, 161.95±10.54, 161.70±5.92 and 60.37±3.81, 17.65±0.91, 17.04±1.00 for the no treatment group; 378.20±18.76, 160.72±8.38, 200.08±8.29 and 62.58±3.37, 18.38±1.33, 27.99±2.68 for the NHA groups; and 380.53±25.14, 161.94±5.66, 193.16±7.54 and 62.78±4.75, 19.07±1.30, 24.46±2.02 for the CP groups. Analysis of variance indicated significant increase in microhardness of demineralized enamel and cementum upon the application of either NHA or CP (pmanufacturing ceramic. PMID:29780246

  11. Developmental and Post-Eruptive Defects in Molar Enamel of Free-Ranging Eastern Grey Kangaroos (Macropus giganteus) Exposed to High Environmental Levels of Fluoride

    Science.gov (United States)

    Kierdorf, Uwe; Death, Clare; Hufschmid, Jasmin; Witzel, Carsten; Kierdorf, Horst

    2016-01-01

    Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus) from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface) enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species. PMID:26895178

  12. Developmental and Post-Eruptive Defects in Molar Enamel of Free-Ranging Eastern Grey Kangaroos (Macropus giganteus Exposed to High Environmental Levels of Fluoride.

    Directory of Open Access Journals (Sweden)

    Uwe Kierdorf

    Full Text Available Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species.

  13. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    Science.gov (United States)

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  14. Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations

    Science.gov (United States)

    Chityala, Ravishankar; Vidal, Carola; Jones, Robert

    Optical Coherence Tomography (OCT) has seen broad application in dentistry including early carious lesion detection and imaging defects in resin composite restorations. This study investigates expanding the clinical usefulness by investigating methods to use OCT for obtaining three-dimensional (3D) digital impressions, which can be integrated to CAD/CAM manufacturing of indirect restorations. 3D surface topography `before' and `after' a cavity preparation was acquired by an intraoral cross polarization swept source OCT (CP-OCT) system with a Micro-Electro-Mechanical System (MEMS) scanning mirror. Image registration and segmentation methods were used to digitally construct a replacement restoration that modeled the original surface morphology of a hydroxyapatite sample. After high resolution additive manufacturing (e.g. polymer 3D printing) of the replacement restoration, micro-CT imaging was performed to examine the marginal adaptation. This study establishes the protocol for further investigation of integrating OCT with CAD/CAM of indirect dental restorations.

  15. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, S M.J., [Shiraz Univ. of Medical Sciences (Iran, Islamic Republic of). School of Paramedical Sciences; Daiee, E; Yazdi, A; Khiabani, K; Kavousi, A [Rafsanjan Univ. of Medical Sciences (Iran, Islamic Republic of). Dentistry School; Vazirinejad, R [Rafsanjan Univ. of Medical Sciences (Iran, Islamic Republic of). School of Medicine, Community Medicine Dept.; Behnejad, B [Rafsanjan Univ. of Medical Sciences (Iran, Islamic Republic of). School of Paramedical Sciences, Radiologic Technology Dept.; Ghasemi, M [Mashad University of Medical Science (Iran, Islamic Republic of). Imam Reza Hospital, Toxicology Laboratory; Mood, M Balali [Mashad Univ. of Medical Science (Iran, Islamic Republic of). Imam Reza Hospital, Medical Toxicology Research Center

    2008-07-01

    Background: Mercury or Hydrargyrum (Hg) is the most non-radioactive toxic element. Dental amalgam is made up of 50% mercury. Exposure to electromagnetic fields of magnetic resonance imaging (MRI) and microwave radiation emitted from mobile phone use may increase the emission of mercury from dental amalgam fillings. It was thus aimed to study the effects of exposure to MRI and mobile phone use on the mercury release from dental amalgam restorations. Materials and Methods: Following approval of the University Medical Ethics Committee and the informed consents of the subjects, two different studies were undertaken. A-MRI: - Thirty patients (27 F, 3 M) aged 18 to 48 years who had been referred to MRI department of Ali-ebn Abitaleb Teaching Hospital and had at least four amalgam restorated teeth, were investigated. Five ml stimulated saliva was collected just before and after MRI. The magnetic flux density was 0.23 T, and the duration of exposure of patients to magnetic field was 30 minutes. B-Mobile phone Use: Fourteen female healthy University students aged 19-23 years, who had not used mobile phones before the study and did not have any previous amalgam restorations but had decays in at least four teeth were investigated. Their urine samples were collected before amalgam restoration, and at days 1, 2, 3 and 4 after restoration. Dental amalgam restoration was performed for all 14 students (2 molars on one side, one class I and one class II restorations with identical volume and surface area of the amalgam fillings). The students randomly divided into two equal groups. The test group students were exposed to microwave radiation emitted from a Nokia 3310 mobile phone (SAR=0.96 W kg{sup -1}) that was operated in talk mode for 15 min every day at days 1-4 after restoration. The other seven female age matched students who served as controls sham exposed to microwave radiation. For each subject, a questionnaire regarding their possible sources of exposure to electromagnetic

  16. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  17. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  18. Enamel softening with Coca-Cola and rehardening with milk or saliva.

    Science.gov (United States)

    Gedalia, I; Dakuar, A; Shapira, L; Lewinstein, I; Goultschin, J; Rahamim, E

    1991-06-01

    Rehardening effects by cow's milk and by secreted saliva were investigated, in situ, following softening of human enamel with an acidic beverage (Coca-Cola). Volunteers wearing orthodontic removable appliances participated in the study. The intra-oral test was chosen for measuring microhardness of enamel slabs inserted into the dental appliance. The softening and the rehardening degrees were defined as the alterations between initial- and experimental-microhardness value at the enamel surface. In addition, SEM photos were prepared from the initial and experimental stages. Exposure of enamel slabs to the acidic beverage during 1 hour had a softening effect as expressed by the hardness decrease and visualized by the SEM photo. Rehardening effects following milk or saliva exposures respectively were evident, presumably due to deposited organic and mineral material on the enamel surface.

  19. Effects of moisture conditions of dental enamel surface on bond strength of brackets bonded with moisture-insensitive primer adhesive system.

    Science.gov (United States)

    Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi

    2008-07-01

    The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.

  20. Effect of antioxidant agents on bond strength of composite to bleached enamel with 38% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Juliane Marcela Guimaraes da Silva

    2011-01-01

    Full Text Available This study evaluated the effect of antioxidant agents on microtensile bond strengths (mTBS of composite to bleached enamel. Fifteen freshly extracted human third molars were selected and randomly assigned to 6 groups (n = 5: (NB enamel not bleached, (B bleached enamel, (BR7 bleached enamel and restored 7 days later, (BSA bleached enamel+sodium ascorbate, (BMC bleached enamel+malvidin chloride, (BPC bleached enamel+pelargonidin chloride. The groups were bleached with 38% hydrogen peroxide (HP - Opalescence Xtra Boost and restored with Single Bond+Filtek Z350. The specimens were thermocycled and submitted to a microtensile load at 1 mm/min crosshead speed. The data were evaluated by ANOVA and Tukey test at 5% of significance. The mean and standard-deviation for all groups were: NB: 30.95(±11.97a; BSA: 30.34(±8.73a, BPC: 22.81(6.00b, BR7: 21.41(±6.12b, B: 14.10(±4.45c, BMC: 13.25(±6.02c. Sodium ascorbate reversed the bond strengths to enamel immediately after bleaching.

  1. Trace Elements in Human Tooth Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, G. S. [Turner Dental School, University Of Manchester, Manchester (United Kingdom); Smith, H.; Livingston, H. D. [Department of Forensic Medicine, University Of Glasgow, Glasgow (United Kingdom)

    1967-10-15

    The trace elements are considered to play a role in the resistance of teeth to dental caries. The exact mechanism by which they act has not yet been fully established. Estimations of trace elements have been undertaken in sound human teeth. By means of activation analysis it has been possible to determine trace element concentrations in different layers of enamel in the same tooth. The concentrations of the following elements have been determined: arsenic, antimony, copper, zinc, manganese, mercury, molybdenum and vanadium. The distribution of trace elements in enamel varies from those with a narrow range, such as manganese, to those with a broad range, such as antimony. The elements present in the broad range are considered to be non-essential and their presence is thought to result from a chance incorporation into the enamel. Those in the narrow range appear to be essential trace elements and are present in amounts which do not vary unduly from other body tissues. Only manganese and zinc were found in higher concentrations in the surface layer of enamel compared with the inner layers. The importance of the concentration of trace elements on this surface layer of enamel is emphasized as this layer is the site of the first attack by the carious process. (author)

  2. Effect of whitening toothpastes on bonding of restorative materials to ...

    African Journals Online (AJOL)

    2015-03-26

    Mar 26, 2015 ... Materials and Methods: Eighty labial enamel surfaces of primary ... Introduction ... recommended further research of dental whitening agents ... and/or enamel); or mixed failure (partial cohesive failure ..... A concise review.

  3. EFFECT OF SURFACE CONDTIONINGON BOND STRENGTH TO ENAMEL AND DENTIN

    Directory of Open Access Journals (Sweden)

    M MOUSAVINASAB

    2002-09-01

    Full Text Available Introduction. Compoglass is a trade mark of dental compomers and because of its partially resinus structure, surface conditioning of dental surfaces is needed for a better bonding process. In this study, the effect of enamel and dentin conditioning procedure on shear bond strength (SBS of compoglass to tooth surfaces was studied. Methods. four groups each one including 11 sound premolars were chosen and their surfaces were prepared as following groups: group1, unconitioned dentin; group 2, dentin conditioning with phosphoric acid 35%; group 3, dentin conditioning with polyacrylic acid 20% group 4, unconditioning enamel; group 5, enamel conditioning with phosphoric acid 35%; and group 6, enamel conditioning with polyacrylic acid 20%. Compoglass was bonded to prepared surfaces and after fixation of the samples in acrylic molds, all samples were tested under shear force of instron testing machine at a rate of 1 mm/min speed. Results. The mean SBS obtained in these 6 groups were 6.207, 8.057, 10.146, 25.939 and 11.827 mpa. the mode of fracture also studied using a streomicroscope. Statistical analysis of the results showed that the maximum SBS obtained in group 5 and the lowest SBS about 6.207 mpa obtained in group 1. Despite increase in SBS group 2 and 3, there was no statistical differncies between group 1, 2 and 3. Discussion. Based on results of this study, conditioning of enamel and dentin surface due to improve SBS is recommeneded.

  4. Enamel subsurface damage due to tooth preparation with diamonds.

    Science.gov (United States)

    Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D

    1997-10-01

    In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.

  5. Dosimetry of accidents using thermoluminescence of dental restorative porcelains

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.; Rosa, L.A.R. da; Cunha, P.G. da

    1986-01-01

    The thermoluminescence (TL) properties of dental restorative porcelain were investigated with the aim of using this material as a TL dosemeter to estimate high doses in radiological accidents. The irradiations were carried out with a 60 Co gamma source and X rays with effective energies from 29 to 95 KeV. The samples have a limit of detection at about 50R and their reproducibility is better than 15%. Linearity was observed from 50 to 5000R. (Author) [pt

  6. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology

    NARCIS (Netherlands)

    Alharbi, N.; Osman, R.B.; Wismeijer, D.

    2016-01-01

    Purpose: The aim of the present study was to evaluate the effect of the build angle and the support configuration (thick versus thin support) on the dimensional accuracy of 3D-printed full-coverage dental restorations. Materials and Methods: A full-coverage dental crown was digitally designed and

  7. Treatment modalities in children with teeth affected by molar-incisor enamel hypomineralisation (MIH): A systematic review.

    Science.gov (United States)

    Lygidakis, N A

    2010-04-01

    This was to review the literature concerning the treatment of permanent teeth with molar-incisor hypomineralised enamel (MIH), comment about possible shortcomings and propose areas of future research. A search of MedLine, Scopus, ResearchGate, Isis and Google Scholar databases was conducted using all terms relevant to the subject. Relevant papers published in English were identified after a review of their titles, abstracts or full reading of the papers. Of 189 references initially found, 66 papers were included; 34 directly relevant to the subject. From the latter, only 14 concerned laboratory or clinical studies dealing with treatment for MIH. Since 2000 11 reviews evaluated, to a certain extent, treatment options for affected teeth. Analysis of the proposed treatment modalities indicated options for prevention, restorations, and adhesion to hypomineralised enamel, full coronal coverage and extraction followed by orthodontics. Based on these findings, a treatment decision plan is proposed. Although treatment approaches for MIH have started to be clearer, long-term clinical trials, supported by laboratory studies, should be conducted to further facilitate the clinical management of this dental defect.

  8. [In vivo retention of KOH soluble and firmly bound fluoride in demineralized dental enamel].

    Science.gov (United States)

    Hellwig, E; Klimek, J; Albert, G

    1989-03-01

    Cylindrical enamel blocks with initial carious lesions were treated for one hour with Duraphat or Fluor-Protector. After removal of the fluoride varnishes the enamel blocks were kept in the mouths of 3 probands for 5 days. Plaque was allowed to accumulate on half of the enamel cylinders, while the other half was kept clean. Part of the enamel cylinders were retained as fluoridated controls. Compared with Duraphat the application of Fluor-Protector resulted in a significantly higher uptake of KOH soluble and firmly bound fluoride. During the 5 days of the experiment the amount of KOH soluble fluorides decreased in both groups. In the presence of plaque the fluoride loss was higher. The amount of firmly bound fluoride increased both in the plaque covered and in the clean enamel. The durable cariostatic effect of fluoridated varnishes seems to be due to the slow dissolution of Ca F2-like precipitates on the enamel surface and the concomitant fluoride uptake in the underlying demineralized enamel.

  9. Effect of a New Surface Treatment Solution on the Bond Strength of Composite to Enamel

    Science.gov (United States)

    2016-06-01

    Bond Strength of Composite to Enamel " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner...Solution on the Bond Strength of Composite to Enamel ABSTRACT Clean & Boost (Apex Dental Materials) is a novel surface treatment solution...designed to be used in place of phosphoric acid to increase the bond strength of self-etch adhesives to enamel and more effectively remove contaminants

  10. Determination of thermal diffusivity of dental enamel and dentin as a function of temperature, using infrared thermography

    International Nuclear Information System (INIS)

    Pereira, Thiago Martini

    2009-01-01

    In this work it was developed a software that calculates automatically, the thermal diffusivity value as a function of temperature in materials. The infrared thermography technique was used for data acquisition of temperature distribution as a function of time. These data were used to adjust a temperature function obtained from the homogeneous heat equation with specific boundary conditions. For that, an infrared camera (detecting from 8 μm to 9 μm) was calibrated to detect temperature ranging from 185 degree C up to 1300 degree C at an acquisition rate of 300 Hz. It was used, 10 samples of dental enamel and 10 samples of dentin, with 4 mm x 4 mm x 2 mm, which were obtained from bovine lower incisor teeth. These samples were irradiated with an Er:Cr:YSGG pulsed laser (λ = 2,78 μm). The resulting temperature was recorded 2 s prior, 10 s during irradiation and continuing for 2 more seconds after it. After each irradiation, all obtained thermal images were processed in the software, creating a file with the data of thermal diffusivity as a function of temperature. Another file with the thermal diffusivity values was also calculated after each laser pulse. The mean result of thermal diffusivity obtained for dental enamel was 0,0084 ± 0,001 cm2/s for the temperature interval of 220-550 degree C. The mean value for thermal diffusivity obtained for dentin was 0,0015 0,0004 cm2/s in temperatures up to 360 degree C; however, this value increases for higher temperatures. According to these results, it was possible to conclude that the use of infrared thermography, associated with the software developed in this work, is an efficient method to determine the thermal diffusivity values as a function of temperature in different materials. (author)

  11. AFM analysis of bleaching effects on dental enamel microtopography

    Energy Technology Data Exchange (ETDEWEB)

    Pedreira de Freitas, Ana Carolina, E-mail: anacarolfreitas@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Cardoso Espejo, Luciana, E-mail: luespejo@hotmail.com [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Brossi Botta, Sergio, E-mail: sbbotta@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Sa Teixeira, Fernanda de, E-mail: nandast@if.usp.br [Laboratorio de Filmes Finos, Instituto de Fisica da Universidade de Sao Paulo, Rua do Matao, Travessa R, 187 - Cidade Universitaria, CEP 05314-970, Sao Paulo (Brazil); Cerqueira, Luz Maria Aparecida A., E-mail: maacluz@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Garone-Netto, Narciso, E-mail: ngarone@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Bona Matos, Adriana, E-mail: bona@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Barbosa da Silveira Salvadori, Maria Cecilia, E-mail: mcsalva@if.usp.br [Laboratorio de Filmes Finos, Instituto de Fisica da Universidade de Sao Paulo, Rua do Matao, Travessa R, 187 - Cidade Universitaria, CEP 05314-970, Sao Paulo (Brazil)

    2010-02-15

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 {mu}m x 15 {mu}m area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  12. AFM analysis of bleaching effects on dental enamel microtopography

    International Nuclear Information System (INIS)

    Pedreira de Freitas, Ana Carolina; Cardoso Espejo, Luciana; Brossi Botta, Sergio; Sa Teixeira, Fernanda de; Cerqueira, Luz Maria Aparecida A.; Garone-Netto, Narciso; Bona Matos, Adriana; Barbosa da Silveira Salvadori, Maria Cecilia

    2010-01-01

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm x 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  13. Effect of 10% Strontium Chloride and 5% Potassium Nitrate with Fluoride on Bleached Bovine Enamel.

    Science.gov (United States)

    Alencar, Cristiane de Melo; Pedrinha, Victor Feliz; Araújo, Jesuína Lamartine Nogueira; Esteves, Renata Antunes; Silva da Silveira, Ana Daniela; Silva, Cecy Martins

    2017-01-01

    Dental whitening has been increasingly sought out to improve dental aesthetics, but may cause chemical and morphological changes in dental enamel surfaces. This study evaluated in vitro the effect of 10% strontium chloride and 5% potassium nitrate with fluoride on bovine enamel, through tristimulus colorimetry, Knoop microhardness (KHN), and roughness after bleaching with 35% hydrogen peroxide (HP). The specimens were divided into three groups (n=15): GControl received bleaching treatment with 35% HP; GNitrate received bleaching with 35% HP followed by the application of 5% potassium nitrate with 2% sodium fluoride; and GStrontium received bleaching with 35% HP followed by the application of 10% strontium chloride on the enamel. Next, five specimens of each experimental group were subjected to KHN and tristimulus colorimetry tests, and 10 specimens were subjected to surface roughness (SR) tests. The values obtained for the different groups were compared through analysis of variance (ANOVA) followed by a post-hoc Tukey-Kramer test in addition to Student's T-test for paired data. In the intergroup comparison, KHN final differed statistically ( p 0.05). 10% strontium chloride and 5% potassium nitrate combined with 2% fluoride downplayed morphological changes to the enamel, without interfering with the effectiveness of the bleaching process.

  14. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    Science.gov (United States)

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  15. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.

    Science.gov (United States)

    Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V

    2015-07-01

    This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration.

    Science.gov (United States)

    Cao, Danfeng; Zhang, Yingchao; Li, Yao; Shi, Xiaoyu; Gong, Haihuan; Feng, Dan; Guo, Xiaowei; Shi, Zuosen; Zhu, Song; Cui, Zhanchen

    2017-09-01

    Superhydrophobic coatings were successfully fabricated by photo-crosslinked polyurethane (PU) and organic fluoro group-functionalized SiO 2 nanoparticles (F-SiO 2 NPs), and were introduced for preventing microleakage in a dental composite restoration. The F-SiO 2 NPs possessed low surface energy and the PU can not only improve the mechanical stability but also promote F-SiO 2 NPs to form multiscale structure, which could facilitate the properties of the as-prepared superhydrophobic coating by synergetic effect. The morphology and properties of the resulted superhydrophobic coatings with different PU/F-SiO 2 ratios were studied using 1 H NMR spectrum, fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy and UV-vis spectrophotometry. The results showed that the superhydrophobic coatings with low PU/F-SiO 2 ratio (1:3) possessed excellent hierarchical papillae structure with trapped air pockets, high contact angle (160.1°), low sliding angle (superhydrophobic property, the as-prepared superhydrophobic coatings effectively prevented water permeation in resin composite restoration evaluation. This research may provide an effective method to solve the problem of microleakage and will efficiently increase the success rate of dental composite restorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Morphological characterization of ceramic fillers made from Indonesian natural sand as restorative dental materials

    Science.gov (United States)

    Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.

    2018-02-01

    Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.

  18. Ca2+ transport and signalling in enamel cells

    Science.gov (United States)

    Nurbaeva, Meerim K.; Eckstein, Miriam; Feske, Stefan

    2016-01-01

    Abstract Dental enamel is one of the most remarkable examples of matrix‐mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage‐dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up‐dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ. PMID:27510811

  19. Bio-inspired dental fillings

    Science.gov (United States)

    Deyhle, Hans; Bunk, Oliver; Buser, Stefan; Krastl, Gabriel; Zitzmann, Nicola U.; Ilgenstein, Bernd; Beckmann, Felix; Pfeiffer, Franz; Weiger, Roland; Müller, Bert

    2009-08-01

    Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small angle X-ray scattering (SAXS) with a spatial resolution in the 10 μm range allows determining the size and orientation of the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings with superior resistance to thermal and mechanical shocks.

  20. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    Science.gov (United States)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.

  1. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials

    DEFF Research Database (Denmark)

    Ajlan, S. A.; Ashri, N. Y.; Aldahmash, Abdullah M.

    2015-01-01

    Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples of materi......Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples...

  2. Surface variations affecting human dental enamel studied using nanomechanical and chemical analysis

    Science.gov (United States)

    Dickinson, Michelle Emma

    The enamel surface is the interface between the tooth and its ever changing oral environment. Cavity (caries) formation and extrinsic tooth staining are due, respectively, to degradation of the enamel structure under low pH conditions and interactions between salivary pellicle and dietary elements. Both of these occur at the enamel surface and are caused by the local environment changing the chemistry of the surface. The results can be detrimental to the enamel's mechanical integrity and aesthetics. Incipient carious lesions are the precursor to caries and form due to demineralisation of enamel. These carious lesions are a reversible structure where ions (e.g. Ca2+, F -) can diffuse in (remineralisation) to preserve the tooth's structural integrity. This investigation used controlled in vitro demineralisation and remineralisation to study artificial carious lesion formation and repair. The carious lesions were cross-sectioned and characterised using nanoindentation, electron probe micro-analysis and time of flight secondary ion mass spectrometry. Mechanical and chemical maps showed the carious lesion had a significantly reduced hardness and elastic modulus, and the calcium and phosphate content was lower than in sound enamel. Fluoride based remineralisation treatments gave a new phase (possibly fluorohydroxyapatite) within the lesion with mechanical properties higher than sound enamel. The acquired salivary pellicle is a protein-rich film formed by the physisorption of organic molecules in saliva onto the enamel surface. Its functions include lubrication during mastication and chemical protection. However, pellicle proteins react with dietary elements such as polyphenols (tannins in tea) causing a brown stain. This study has used in vitro dynamic nanoindentation and atomic force microscopy to examine normal and stained pellicles formed in vivo. The effects of polyphenols on the pellicle's mechanical properties and morphology have been studied. It was found that the

  3. Evaluation of effects of ionizing radiation on the titanium used in dental restorations

    International Nuclear Information System (INIS)

    Maio, Mireia Florencio; Santos, Adimir dos; Fernandes, Marco A.R.

    2009-01-01

    The purpose of this work consisted of quantitative studies of the effects caused by ionizing radiation on titanium, a material used in dental restorations. Titanium is used to mitigate the deleterious effects of radiotherapy when patients with tumors in head and neck, seen when the teeth are restored within in the field of radiation. Samples were submitted to X-radiation beams from 6 and 10 Mega - Volt (MV) from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. Sample dose measurements were performed employing Geiger-Mueller detectors and the ionization chamber in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a HPGe detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  4. Mediator 1 contributes to enamel mineralization as a coactivator for Notch1 signaling and stimulates transcription of the alkaline phosphatase gene.

    Science.gov (United States)

    Yoshizaki, Keigo; Hu, Lizhi; Nguyen, Thai; Sakai, Kiyoshi; Ishikawa, Masaki; Takahashi, Ichiro; Fukumoto, Satoshi; DenBesten, Pamela K; Bikle, Daniel D; Oda, Yuko; Yamada, Yoshihiko

    2017-08-18

    Tooth enamel is mineralized through the differentiation of multiple dental epithelia including ameloblasts and the stratum intermedium (SI), and this differentiation is controlled by several signaling pathways. Previously, we demonstrated that the transcriptional coactivator Mediator 1 (MED1) plays a critical role in enamel formation. For instance, conditional ablation of Med1 in dental epithelia causes functional changes in incisor-specific dental epithelial stem cells, resulting in mineralization defects in the adult incisors. However, the molecular mechanism by which Med1 deficiency causes these abnormalities is not clear. Here, we demonstrated that Med1 ablation causes early SI differentiation defects resulting in enamel hypoplasia of the Med1 -deficient molars. Med1 deletion prevented Notch1-mediated differentiation of the SI cells resulting in decreased alkaline phosphatase (ALPL), which is essential for mineralization. However, it does not affect the ability of ameloblasts to produce enamel matrix proteins. Using the dental epithelial SF2 cell line, we demonstrated that MED1 directly activates transcription of the Alpl gene through the stimulation of Notch1 signaling by forming a complex with cleaved Notch1-RBP-Jk on the Alpl promoter. These results suggest that MED1 may be essential for enamel matrix mineralization by serving as a coactivator for Notch1 signaling regulating transcription of the Alpl gene.

  5. Evaluation of the effect of different food media on the marginal integrity of class v compomer, conventional and resin-modified glass-ionomer restorations: an in vitro study.

    Science.gov (United States)

    Dinakaran, Shiji

    2015-03-01

    Cervical lesions of anterior and posterior teeth are a common finding in routine dental practice. They are of much concern to the patient, if present in esthetically sensitive regions. Adhesive tooth-colored restorative materials are generally recommended for treating such lesions. The aim of the present study was to evaluate and compare the effect of various food media (lime juice, tea, coffee, and Coca-Cola) on the marginal integrity of Class V compomer (Dyract(®)), conventional glass-ionomer (Fuji II) and resin-modified glass-ionomer (Fuji II LC improved) restorations along their cemental and enamel margins with saline as control media. After restoration of prepared Class V cavities in human premolars with the three different materials (n = 8), they were immersed in the test media for 7 days and then stained with methylene blue dye. Buccolingual sections were prepared and examined under stereomicroscope and scores (0-2) were given. Data were analyzed statistically using one-way analysis of variance in SPSS version 16.0. P Coca-Cola) compared to saline. Enamel margins showed more marginal adaptation than cemental margins.

  6. The Molecular Basis of Hereditary Enamel Defects in Humans

    Science.gov (United States)

    Carrion, I.A.; Morris, C.

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. PMID:25389004

  7. Inaccurate Dental Charting in an Audit of 1128 General Dental Practice Records.

    Science.gov (United States)

    Brown, Nathan L; Jephcote, Victoria E L

    2017-03-01

    Fourteen dentists at different practices in the UK assessed the dental charts of 1128 patients who were new to the dentist but not new to the practice; 44% of the dental charts were found to be inaccurate. Inaccuracy of the individual practice-based charts ranged between 16% for the best performing practices to 83% for the worst: 5% of dental charts had too many teeth charted and 5% had too few teeth charted; 13% of charts had missed amalgam restorations and 18% had missed tooth-coloured restorations; 5% of charts had amalgam restorations recorded but with the surfaces incorrect (eg an MO restoration charted but a DO restoration actually present); 9% of charts had tooth-coloured restoration surfaces incorrectly recorded. For 7.5% of charts, amalgams were charted but not actually present. Other inaccuracies were also noted. The authors reinforce the requirements of the GDC, the advice of defence organizations, and the forensic importance of accurate dental charts. Clinical relevance: Dental charting forms part of the patient’s dental records, and the GDC requires dentists to maintain complete and accurate dental records.

  8. Evaluation of effects of ionizing radiation on the glass ionomer used in dental restorations

    International Nuclear Information System (INIS)

    Maio, F.M.; Santos, A.; Fernandes, M.A.R.

    2009-01-01

    The purpose of this work consisted of quantitative studies of the effects caused by ionizing radiation on glass ionomer, a material used in dental restorations. Glass ionomer is used to mitigate the deleterious effects of radiotherapy when patients with tumors in head and neck, seen when the teeth are restored within in the field of radiation. Samples were submitted to X-radiation beams from 6 MV from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. Sample dose measurements were performed employing Geiger-Mueller detectors and the ionization chamber in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a HPGe detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  9. Two-year Randomized Clinical Trial of Self-etching Adhesives and Selective Enamel Etching.

    Science.gov (United States)

    Pena, C E; Rodrigues, J A; Ely, C; Giannini, M; Reis, A F

    2016-01-01

    The aim of this randomized, controlled prospective clinical trial was to evaluate the clinical effectiveness of restoring noncarious cervical lesions with two self-etching adhesive systems applied with or without selective enamel etching. A one-step self-etching adhesive (Xeno V(+)) and a two-step self-etching system (Clearfil SE Bond) were used. The effectiveness of phosphoric acid selective etching of enamel margins was also evaluated. Fifty-six cavities were restored with each adhesive system and divided into two subgroups (n=28; etch and non-etch). All 112 cavities were restored with the nanohybrid composite Esthet.X HD. The clinical effectiveness of restorations was recorded in terms of retention, marginal integrity, marginal staining, caries recurrence, and postoperative sensitivity after 3, 6, 12, 18, and 24 months (modified United States Public Health Service). The Friedman test detected significant differences only after 18 months for marginal staining in the groups Clearfil SE non-etch (p=0.009) and Xeno V(+) etch (p=0.004). One restoration was lost during the trial (Xeno V(+) etch; p>0.05). Although an increase in marginal staining was recorded for groups Clearfil SE non-etch and Xeno V(+) etch, the clinical effectiveness of restorations was considered acceptable for the single-step and two-step self-etching systems with or without selective enamel etching in this 24-month clinical trial.

  10. Dental calculus image based on optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-03-01

    In this study, the dental calculus was characterized and imaged by means of swept-source optical coherence tomography (SSOCT). The refractive indices of enamel, dentin, cementum and calculus were measured as 1.625+/-0.024, 1.534+/-0.029, 1.570+/-0.021 and 1.896+/-0.085, respectively. The dental calculus lead strong scattering property and thus the region can be identified under enamel with SSOCT imaging. An extracted human tooth with calculus was covered by gingiva tissue as in vitro sample for SSOCT imaging.

  11. In vitro study of morphological and chemical modification threshold of bovine dental enamel irradiated by the holmium laser

    International Nuclear Information System (INIS)

    Eduardo, Patricia Lerro de Paula

    2001-01-01

    The aim of this study is to investigate the Ho:YLF laser effects on the dental enamel surface with regards to its morphology, thermal variations during its irradiation in the pulp chamber and its increased resistance to demineralization through quantitative analysis of calcium and phosphorous atoms reactive concentrations in samples. Twenty samples of bovine enamel were used and divided in four groups: control - acidulated phosphate fluoride (APF) application followed by demineralization treatment with lactic acid; irradiation with Ho:YLF laser (100 J/cm 2 ) followed by APF topic application and demineralization treatment with lactic acid; irradiation with Ho:YLF laser (350 J/cm 2 ) followed by APF topic application and demineralization treatment with lactic acid: and irradiation with Ho:YLF laser ( 450 J/cm 2 ) followed by APF topic application and demineralization treatment with lactic acid. Ali samples were quantified according to their calcium and phosphorous atoms relative concentrations before and after the treatments above. X-Ray fluorescence spectrochemical analysis and scanning electron microscopy were carried out. It was observed an increase on the calcium and phosphorous atoms concentration ratio and therefore the enamel demineralization reduction as a result of the lactic acid treatment in the samples irradiated with the holmium laser followed by the APF application. In order to evaluate the feasibility of this study for clinical purposes, morphological changes caused by the holmium laser irradiation were analyzed. Such modifications were characterized by melted and re-solidified regions of the enamel with consequent changes on its permeability and solubility. Temperature changes of ten human pre-molars teeth irradiated with 350 J/cm 2 and 450 J/cm 2 were also monitored in the pulp chamber in real time. Temperature increases over 4,20 C did not occur. The results obtained from this study along with the results from previous researches developed at

  12. Laser diagnostic and therapy of dental caries: the clinic point of view

    International Nuclear Information System (INIS)

    Paiva, Priscila Faria

    2001-01-01

    Dental caries's diagnosis is a major dentistry problem from the clinic point of view. The laser beam on the region of 655 nm induces the fluorescence of the compounds present in the hard tissue, quantifying differences between sound and carious enamel and dentine. Diagnodent (Kavo, Germany), showed to be effective regarding dental caries's diagnosis in the present research sampling. The Er:YAG laser (Kavo Key Laser 2, Germany) performed efficient cavity preparations in caries lesions of I and V class type, using up energies that ranged from 300 mJ to 350 mJ with 4 Hz repetition rate for the enamel; and from 250 mJ to 300 mJ with 4 Hz repetition rate for the dentine, and with 80 mJ with 6 Hz of repetition rate for laser conditioning. In the Er:YAG laser preparations no patient was anesthetized even when there were deeper cavities, and the maximum degree of pain ( which ranged from 0 to 10) was 4. In the control group with conventional high-speed drill two patients were anesthetized and the maximum degree of pain was 7. Restorations performed by conventional method of composite were equally satisfying both in caries groups of I and V class type and in the control group. The laser application in the operative dentistry office as a new method of diagnosis and dental preparations should be a good alternative to the use of the conventional dental drill. Nevertheless, dentistry practice has a lot to improve from technology progress, as well as new researches on laser dentistry are necessary in a long term. New types of lasers will come about and will increasingly improve the dental practice assistance and procedures quality. (author)

  13. Dental Glass Ionomer Cements as Permanent Filling Materials? – Properties, Limitations and Future Trends

    Directory of Open Access Journals (Sweden)

    Ulrich Lohbauer

    2009-12-01

    Full Text Available Glass ionomer cements (GICs are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  14. NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse

    NARCIS (Netherlands)

    Jalali, R.; Guo, J.; Zandieh-Doulabi, B.; Bervoets, T.J.M.; Paine, M.L.; Boron, W.F.; Parker, M.D.; Bijvelds, M.J.C.; Medina, J.F.; DenBesten, P.K.; Bronckers, A.L.J.J.

    2014-01-01

    During the formation of dental enamel, maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by cotransporting HCO3 − with Na+. Mutation in SLC4A4 (coding for the sodium-bicarbonate

  15. Keratins as components of the enamel organic matrix

    Science.gov (United States)

    Duverger, Olivier; Beniash, Elia; Morasso, Maria I.

    2016-01-01

    Dental enamel is a hardest tissue in the human body, and although it starts as a tissue rich in proteins, by the time of eruption of the tooth in the oral cavity only a small fraction of the protein remains. While this organic matrix of enamel represents less than 1% by weight it plays essential roles in improving both toughness and resilience to chemical attacks. Despite the fact that the first studies of the enamel matrix began in the 19th century its exact composition and mechanisms of its function remain poorly understood. It was proposed that keratin or a keratin-like primitive epithelial component exists in mature enamel, however due to the extreme insolubility of its organic matrix the presence of keratins there was never clearly established. We have recently identified expression of a number of hair keratins in ameloblasts, the enamel secreting cells, and demonstrated their incorporation into mature enamel. Mutation in epithelial hair keratin KRT75 leads to a skin condition called pseudofollicularis barbae. Carriers of this mutation have an altered enamel structure and mechanical properties. Importantly, these individuals have a much higher prevalence of caries. To the best of our knowledge, this is the first study showing a direct link between a mutation in a protein-coding region of a gene and increased caries rates. In this paper we present an overview of the evidence of keratin-like material in enamel that has accumulated over the last 150 years. Furthermore, we propose potential mechanisms of action of KTR75 in enamel and highlight the clinical implications of the link between mutations in KRT75 and caries. Finally, we discuss the potential use of keratins for enamel repair. PMID:26709044

  16. Optical properties of composite restorations influenced by dissimilar dentin restoratives.

    Science.gov (United States)

    Marjanovic, Jovana; Veljovic, Djordje N; Stasic, Jovana N; Savic-Stankovic, Tatjana; Trifkovic, Branka; Miletic, Vesna

    2018-05-01

    To evaluate optical properties (color and translucency) of 'sandwich' restorations of resin-based composites and esthetically unfavorable dentin restoratives. Cylindrical 'dentin' specimens (8mm in diameter and 2mm thick, N=5/group) were prepared using EverX Posterior (GC), Biodentine (Septodont), experimental hydroxyapatite (HAP) or conventional composites (Gradia Direct Posterior, GC; Filtek Z250 and Filtek Z500, 3M ESPE). Capping 'enamel' layers were prepared using composites (Gradia Direct Posterior, Filtek Z250 or Z550) of A1 or A3 shade and the following thickness: 0.6, 1 or 2mm. Color (ΔE) and translucency parameter (TP) were determined using a spectrophotometer (VITA Easyshade Advance 4.0, VITA Zahnfabrik). Data were statistically analyzed using analysis of variance with Tukey's post-hoc tests (α=0.05). TP was greatly affected by layer thickness, whilst ΔE depended on shade and layer thickness of the capping composite. HAP and Biodentine showed significantly lower TP and higher ΔE (deviation from 'ideal white') than composites (p<0.05). Greater TP was seen in EverX_composite groups than in corresponding control groups of the same shade and thickness. TP of composites combined with Biodentine or HAP was below 2, lower than the corresponding control groups (p<0.05). Within-group differences of ΔE were greatest in HAP_composite groups. EverX_Gradia and EverX_FiltekZ250 combinations showed the most comparable ΔE with the control groups. A 2mm thick layer of composite covering dentin restoratives with unfavorable esthetics is recommended for a final 'sandwich' restoration that is esthetically comparable to a conventional, mono-composite control restoration. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  17. Hen's teeth with enamel cap: from dream to impossibility

    Directory of Open Access Journals (Sweden)

    Girondot Marc

    2008-09-01

    Full Text Available Abstract Background The ability to form teeth was lost in an ancestor of all modern birds, approximately 100-80 million years ago. However, experiments in chicken have revealed that the oral epithelium can respond to inductive signals from mouse mesenchyme, leading to reactivation of the odontogenic pathway. Recently, tooth germs similar to crocodile rudimentary teeth were found in a chicken mutant. These "chicken teeth" did not develop further, but the question remains whether functional teeth with enamel cap would have been obtained if the experiments had been carried out over a longer time period or if the chicken mutants had survived. The next odontogenetic step would have been tooth differentiation, involving deposition of dental proteins. Results Using bioinformatics, we assessed the fate of the four dental proteins thought to be specific to enamel (amelogenin, AMEL; ameloblastin, AMBN; enamelin, ENAM and to dentin (dentin sialophosphoprotein, DSPP in the chicken genome. Conservation of gene synteny in amniotes allowed definition of target DNA regions in which we searched for sequence similarity. We found the full-length chicken AMEL and the only N-terminal region of DSPP, and both are invalidated genes. AMBN and ENAM disappeared after chromosomal rearrangements occurred in the candidate region in a bird ancestor. Conclusion These findings not only imply that functional teeth with enamel covering, as present in ancestral Aves, will never be obtained in birds, but they also indicate that these four protein genes were dental specific, at least in the last toothed ancestor of modern birds, a specificity which has been questioned in recent years.

  18. Developmental enamel and anatomical tooth defects in dogs – Experience from veterinary dental referral practice and review of the literature

    Directory of Open Access Journals (Sweden)

    Sonja Catharina Boy

    2016-02-01

    Full Text Available Developmental tooth abnormalities in dogs are uncommon in general veterinary practice but understanding thereof is important for optimal management in order to maintain gnathic function through conservation of the dentition. The purpose of this review is to discuss abnormalities of enamel structure and macroscopic tooth anatomy in dogs encountered in veterinary dental referral practice in South Africa and the United Kingdom. The basis of the pathogenesis, resultant clinical appearance and the management principles of each anomaly will be considered. Future research should aim to provide a detailed individual tooth mineralization schedule for dogs.

  19. Restoration of noncarious tooth defects by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Nascimento, Marcelle M; Gordan, Valeria V; Qvist, Vibeke

    2011-01-01

    The authors conducted a study to quantify the reasons for restoring noncarious tooth defects (NCTDs) by dentists in The Dental Practice-Based Research Network (DPBRN) and to assess the tooth, patient and dentist characteristics associated with those reasons....

  20. Influence of Cavity Margin Design and Restorative Material on Marginal Quality and Seal of Extended Class II Resin Composite Restorations In Vitro.

    Science.gov (United States)

    Soliman, Sebastian; Preidl, Reinhard; Karl, Sabine; Hofmann, Norbert; Krastl, Gabriel; Klaiber, Bernd

    2016-01-01

    To investigate the influence of three cavity designs on the marginal seal of large Class II cavities restored with low-shrinkage resin composite limited to the enamel. One hundred twenty (120) intact human molars were randomly divided into 12 groups, with three different cavity designs: 1. undermined enamel, 2. box-shaped, and 3. proximal bevel. The teeth were restored with 1. an extra-low shrinkage (ELS) composite free of diluent monomers, 2. microhybrid composite (Herculite XRV), 3. nanohybrid composite (Filtek Supreme XTE), and 4. silorane-based composite (Filtek Silorane). After artificial aging by thermocycling and storage in physiological saline, epoxy resin replicas were prepared. To determine the integrity of the restorations' approximal margins, two methods were sequentially employed: 1. replicas were made of the 120 specimens and examined using SEM, and 2. the same 120 specimens were immersed in AgNO3 solution, and the dye penetration depth was observed with a light microscope. Statistical analysis was performed using the Kruskal-Wallis and the Dunn-Bonferroni tests. After bevel preparation, SEM observations showed that restorations did not exhibit a higher percentage of continuous margin (SEM-analysis; p>0.05), but more leakage was found than with the other cavity designs (pcomposite restorations and is no longer recommended. However, undermined enamel should be removed to prevent enamel fractures.

  1. Type 1 diabetes mellitus effects on dental enamel formation revealed by microscopy and microanalysis.

    Science.gov (United States)

    Silva, Bruna Larissa Lago; Medeiros, Danila Lima; Soares, Ana Prates; Line, Sérgio Roberto Peres; Pinto, Maria das Graças Farias; Soares, Telma de Jesus; do Espírito Santo, Alexandre Ribeiro

    2018-03-01

    Type 1 diabetes mellitus (T1DM) largely affects children, occurring therefore at the same period of deciduous and permanent teeth development. The aim of this work was to investigate birefringence and morphology of the secretory stage enamel organic extracellular matrix (EOECM), and structural and mechanical features of mature enamel from T1DM rats. Adult Wistar rats were maintained alive for a period of 56 days after the induction of experimental T1DM with a single dose of streptozotocin (60 mg/kg). After proper euthanasia of the animals, fixed upper incisors were accurately processed, and secretory stage EOECM and mature enamel were analyzed by transmitted polarizing and bright field light microscopies (TPLM and BFLM), energy-dispersive x-ray (EDX) analysis, scanning electron microscopy (SEM), and microhardness testing. Bright field light microscopies and transmitted polarizing light microscopies showed slight morphological changes in the secretory stage EOECM from diabetic rats, which also did not exhibit statistically significant alterations in birefringence brightness when compared to control animals (P > .05). EDX analysis showed that T1DM induced statistically significant little increases in the amount of calcium and phosphorus in outer mature enamel (P  .05). T1DM also caused important ultrastructural alterations in mature enamel as revealed by SEM and induced a statistically significant reduction of about 13.67% in its microhardness at 80 μm from dentin-enamel junction (P enamel development, leading to alterations in mature enamel ultrastructure and in its mechanical features. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Histological structures and acidic etching sensitivities of the enamels at the occlusal pit parts in the deciduous and permanent teeth

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Zheng, Jinhua; Mori, Kazuhisa; Mataga, Izumi; Kobayashi, Kan

    2006-01-01

    The purpose of this study is to compare the histological structures and acidic etching sensitivities of the enamels at the occlusal pit parts between the deciduous molars and permanent molars. They were observed by the polarizing and scanning electron microscopies. The enamel rods were less made slender by EDTA etching and the outlines of the apatite crystals, constituting the enamel rods, were clearer at the occlusal pit part of the deciduous molar than that of the permanent molar in reverse of that at the cusp part. It is thought that the enamel at the occlusal pit part of the permanent molar is more easily decayed by the dental caries than that of the deciduous molar because the former is more easily decayed by the acidic etching than the latter in reverse at the cusp part. It is considered that the thin superficialmost layer of the enamel at the occlusal pit part of the permanent molar has originally higher degree of resistance to the dental caries

  3. Histological structures and acidic etching sensitivities of the enamels at the occlusal pit parts in the deciduous and permanent teeth

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi [Department of Dental Hygiene, Nippon Dental University College at Niigata, Niigata 951-8580 (Japan)]. E-mail: masashi@ngt.ndu.ac.jp; Zheng, Jinhua [Department of Oral Anatomy, School of Dentistry at Niigata, Nippon Dental University, Niigata 951-8580 (Japan); Mori, Kazuhisa [Department of Oral Surgery, School of Dentistry at Niigata, Nippon Dental University, Niigata 951-8580 (Japan); Mataga, Izumi [Department of Oral Surgery, School of Dentistry at Niigata, Nippon Dental University, Niigata 951-8580 (Japan); Kobayashi, Kan [Department of Oral Anatomy, School of Dentistry at Niigata, Nippon Dental University, Niigata 951-8580 (Japan)

    2006-05-15

    The purpose of this study is to compare the histological structures and acidic etching sensitivities of the enamels at the occlusal pit parts between the deciduous molars and permanent molars. They were observed by the polarizing and scanning electron microscopies. The enamel rods were less made slender by EDTA etching and the outlines of the apatite crystals, constituting the enamel rods, were clearer at the occlusal pit part of the deciduous molar than that of the permanent molar in reverse of that at the cusp part. It is thought that the enamel at the occlusal pit part of the permanent molar is more easily decayed by the dental caries than that of the deciduous molar because the former is more easily decayed by the acidic etching than the latter in reverse at the cusp part. It is considered that the thin superficialmost layer of the enamel at the occlusal pit part of the permanent molar has originally higher degree of resistance to the dental caries.

  4. Effect of Storage Time on Bond Strength and Nanoleakage Expression of Universal Adhesives Bonded to Dentin and Etched Enamel.

    Science.gov (United States)

    Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M

    2016-01-01

    To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, padhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.

  5. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART)

    NARCIS (Netherlands)

    Molina, G.F.; Cabral, R.J.; Mazzola, I.; Lascano, L.B.; Frencken, J.E.F.M.

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. OBJECTIVE: To test the

  6. Behavioural and physiological outcomes of biofeedback therapy on dental anxiety of children undergoing restorations: a randomised controlled trial.

    Science.gov (United States)

    Dedeepya, P; Nuvvula, S; Kamatham, R; Nirmala, S V S G

    2014-04-01

    To explore the efficacy of biofeedback as possible alternative means of psychological behaviour guidance in children receiving dental restorations. Randomised clinical trial with a cross over design carried out on 40 children (19 boys and 21 girls) to determine the efficacy of biofeedback in reducing the dental anxiety through subjective and objective measures during restorative treatments under cotton roll isolation without administration of local analgesia. Highly anxious children with a minimum of five carious lesions were trained to lower their anxiety using biofeedback in five sessions within a 4-week interval, each session lasting for 45 min. After initial training, children were randomly divided into two groups and restorations were placed in four sequential therapeutic sessions with a 1-week interval and a follow-up visit 3 months later. First group received biofeedback in the second and third sessions; whereas the second group received biofeedback in the first and third sessions. Biofeedback therapy in children led to lower levels of anxiety in the initial appointments when assessed objectively, however the subjective methods of evaluation could not depict any statistically significant difference. Biofeedback can be used in the initial visits for dentally anxious children and the usage of simpler biofeedback machines for these appointments in dental setup is suggested.

  7. Reasons for placement of restorations on previously unrestored tooth surfaces by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Nascimento, Marcelle M; Gordan, Valeria V; Qvist, Vibeke

    2010-01-01

    The authors conducted a study to identify and quantify the reasons used by dentists in The Dental Practice-Based Research Network (DPBRN) for placing restorations on unrestored permanent tooth surfaces and the dental materials they used in doing so....

  8. A tissue-dependent hypothesis of dental caries.

    Science.gov (United States)

    Simón-Soro, A; Belda-Ferre, P; Cabrera-Rubio, R; Alcaraz, L D; Mira, A

    2013-01-01

    Current understanding of dental caries considers this disease a demineralization of the tooth tissues due to the acid produced by sugar-fermenting microorganisms. Thus, caries is considered a diet- and pH-dependent process. We present here the first metagenomic analysis of the bacterial communities present at different stages of caries development, with the aim of determining whether the bacterial composition and biochemical profile are specific to the tissue affected. The data show that microbial composition at the initial, enamel-affecting stage of caries is significantly different from that found at subsequent stages, as well as from dental plaque of sound tooth surfaces. Although the relative proportion of Streptococcus mutans increased from 0.12% in dental plaque to 0.72% in enamel caries, Streptococcus mitis and Streptococcus sanguinis were the dominant streptococci in these lesions. The functional profile of caries-associated bacterial communities indicates that genes involved in acid stress tolerance and dietary sugar fermentation are overrepresented only at the initial stage (enamel caries), whereas other genes coding for osmotic stress tolerance as well as collagenases and other proteases enabling dentin degradation are significantly overrepresented in dentin cavities. The results support a scenario in which pH and diet are determinants of the disease during the degradation of enamel, but in dentin caries lesions not only acidogenic but also proteolytic bacteria are involved. We propose that caries disease is a process of varying etiology, in which acid-producing bacteria are the vehicle to penetrate enamel and allow dentin degrading microorganisms to expand the cavity. © 2013 S. Karger AG, Basel.

  9. The effect of acidulated phosphate fluoride application on dental enamel surfaces hardness

    Directory of Open Access Journals (Sweden)

    Edhie Arief P

    2007-09-01

    Full Text Available Enamel demineralization by acid is the first step of caries process. It has recently been shown that acidulated phosphate fluoride (APF can maintain the hardness of enamel surface. The aim of this study was examine the effect of APF application in the hardest of enamel surface. Fifty extracted teeth were cut at their crown, 40 teeth were taken randomly then divided into 4 groups, group 1 as the control, group 2 was treated with APF for 1 minute, group 3 for 4 minutes and group 4 for 7 minutes, then all the samples were washed with demineralized water. To see the effect of APF, all of the samples were soaked in lactic acid demineralization solution with pH 4,5 for 72 hours., the hardness of the surfaces of those samples before and after the treatment was measured by Micro Vickers Hardness Tester. The data were analyzed using One-Way ANOVA and LSD tests. In conclusion, 1.23% APF gel can reduce higher enamel demineralization.

  10. Use of radioisotopes in the study of permeability of hard dental tissue

    International Nuclear Information System (INIS)

    Tarjan, I.

    1978-01-01

    A literature survey. According to in vivo experiments 32 P, 131 I and 45 Ca penetrate dental enamel and dentine. In vitro studies revealed that the healthy enamel and that damaged by caries and dentine are penetrable by 22 Na and 24 Na both in centripetal and in centrifugal directions. 32 P, 18 F and urea, labelled with 14 C penetrate healthy hard dental tissue. 45 CaCl 2 , 110 AgNO 3 , 111 AgNO 3 , 103 PdCl 2 , 64 Cu(NO 3 ) 2 , 63 ZnCl 2 , 65 ZnCl 2 and glucose, labelled with 14 C penetrate enamel defects, lamellas and caries areas. 239 Pu citrate complex links to the surface of enamel and cement, but does not penetrate them. (author)

  11. Near-IR imaging of thermal changes in enamel during laser ablation

    Science.gov (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  12. Effect of white tea and xylitol on structure and properties of demineralized enamel and jawbone

    Science.gov (United States)

    Auerkari, EI; Kiranahayu, R.; Emerita, D.; Sumariningsih, P.; Sarita, D.; Adiwirya, MS; Suhartono, AW

    2018-05-01

    White tea and xylitol have been suggested as potential agents to combat dental caries and osteoporosis through enhanced remineralization. This investigation aimed to determine the effects of exposure to white tea with and without xylitol on the structure, composition and hardness of demineralized human dental enamel. For control, samples of untreated and demineralized enamel and samples of untreated rat jawbone were subjected to similar measurements. For demineralization, the enamel samples were immersed for two days at 50°C in an acetate solution (pH 4.0). All samples were then soaked for two weeks at 37°C in a solution containing three different concentrations of white tea, xylitol or both, and an optional addition of the remineralization ingredients including Ca, P and F. For enamel samples without preceding demineralization and without added remineralization ingredients, the results showed highest mean hardness after immersion in a solution containing both white tea and xylitol, practically independently of their applied concentration level. However, for demineralized enamel samples with added remineralization ingredients, the resulting mean hardness was also dependent on concentration of white tea and xylitol. With sufficient concentration, hardness was again higher for combined white tea and xylitol than for either of these used alone.

  13. Dental Anomalies: An Update

    Directory of Open Access Journals (Sweden)

    Fatemeh Jahanimoghadam

    2016-01-01

    Full Text Available Dental anomalies are usual congenital malformation that can happen either as isolated findings or as a part of a syndrome. Developmental anomalies influencing the morphology exists in both deciduous and permanent dentition and shows different forms such as gemination, fusion, concrescence, dilaceration, dens evaginatus (DE, enamel pearls, taurodontism or peg-shaped laterals. All These anomalies have clinical significance concerning aesthetics, malocclusion and more necessary preparing of the development of dental decays and oral diseases. Through a search in PubMed, Google, Scopus and Medline, a total of eighty original research papers during 1928-2016 were found with the keywords such as dental anomaly, syndrome, tooth and hypodontia. One hundred review titles were identified, eighty reviews were retrieved that were finally included as being relevant and of sufficient quality. In this review, dental anomalies including gemination, fusion, concrescence, dilaceration, dens invaginatus, DE, taurodontism, enamel pearls, fluorosis, peg-shaped laterals, dentinal dysplasia, regional odontodysplasia and hypodontia are discussed. Diagnosing dental abnormality needs a thorough evaluation of the patient, involving a medical, dental, familial and clinical history. Clinical examination and radiographic evaluation and in some of the cases, specific laboratory tests are also needed. Developmental dental anomalies require careful examination and treatment planning. Where one anomaly is present, clinicians should suspect that other anomalies may also be present. Moreover, careful clinical and radiographical examination is required. Furthermore, more complex cases need multidisciplinary planning and treatment.

  14. General characteristics of dental morbidity in children against orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Kovach I.V.

    2016-03-01

    Full Text Available A wide spread of orthodontic treatment showed a fairly high risk of complications developed from the use of various devices. The aim of our study was to determine the general characteristics of dental morbidity in children with orthodontic treatment. According to the survey the most common pathologies in children with orthodontic problems are dental caries (87,8-92,9% and chronic catarrhal gingivitis (81.2-84.1%. The prevalence of different types of diseases of the mucous membrane and soft tissues of the oral cavity in children surveyed was 30.5-32.9%. Non-caries lesions of dental hard tissues occurred in 39.5-40.9% of the children surveyed, local enamel hypoplasia was observed in 42.9%, systemic enamel hypoplasia made up 17.8%, signs of hypersensitivity of enamel were found in 9.6%, and the wedge defects – in two children.

  15. Restoring proximal caries lesions conservatively with tunnel restorations

    Directory of Open Access Journals (Sweden)

    Chu CH

    2013-07-01

    Full Text Available Chun-Hung Chu1, May L Mei,1 Chloe Cheung,1 Romesh P Nalliah2 1Faculty of Dentistry, The University of Hong Kong, Hong Kong, People's Republic of China; 2Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, USA Abstract: The tunnel restoration has been suggested as a conservative alternative to the conventional box preparation for treating proximal caries. The main advantage of tunnel restoration over the conventional box or slot preparation includes being more conservative and increasing tooth integrity and strength by preserving the marginal ridge. However, tunnel restoration is technique-sensitive and can be particularly challenging for inexperienced restorative dentists. Recent advances in technology, such as the contemporary design of dental handpieces with advanced light-emitting diode (LED and handheld comfort, offer operative dentists better vision, illumination, and maneuverability. The use of magnifying loupes also enhances the visibility of the preparation. The advent of digital radiographic imaging has improved dental imaging and reduced radiation. The new generation of restorative materials has improved mechanical properties. Tunnel restoration can be an option to restore proximal caries if the dentist performs proper case selection and pays attention to the details of the restorative procedures. This paper describes the clinical technique of tunnel restoration and reviews the studies of tunnel restorations. Keywords: operative, practice, tunnel preparation, composite, amalgam, glass ionomer

  16. Potential of sub-ablative pulsed CO2 laser irradiation on inhibition of artificial caries-like lesion progress in bovine dental enamel

    International Nuclear Information System (INIS)

    Oliveira, Marcella Esteves

    2005-01-01

    The aim of this study was to investigate whether sub-ablative pulsed C0 2 laser (1 0,6 μm) irradiation is capable of reducing the susceptibility of the dental enamel to demineralization, and thus achieving a potential caries-protective effect. The crowns of 51 bovine front teeth, embedded in acrylic resin and polished until exposure of flat enamel surface, were used. The samples were cut in cubes of 10x10 mm, and totally coated with acid-resistant nail varnish, except for an enamel exposed window of 16 mm square. Three groups (n=17) were obtained: control group (CG) not irradiated; group laser A (LA) and group laser B (LB) where the samples were irradiated. The conditions were 60 mJ, 100 Hz, 0,3 J/cm 2 for LA and 135 mJ, 10 Hz, 0,7 J/cm 2 for LB. Two samples of each group were submitted to SEM analysis and fifteen to demineralization in 3 ml acetate buffer solution (0,1 mol/L) with pH 4,5 for 24h at 37 deg C, with regular agitation. After the specimens were removed from the solution, the calcium and phosphorous content were measured with an inductively coupled plasma optical emission spectrometer and 2 more samples of each were submitted to SEM analysis. The obtained Ca and P means in μg/ml and the calculated Ca/P molar ratio were: CG (367,88 ± 33,47; 168,91 ± 14,55; 1,70 ± 0,07) ; LA (372,70 ± 41,70; 161,46 ± 15,26; 1,79 ± 0,07) and LB (328,87 ± 24,91; 145,02 ± 11,04; 1,77 ± 0,05). The ANOVA statistical test revealed statistically significant difference for [Ca], [P] e Ca/P content between the groups (p 2 pulsed CO 2 laser irradiation of bovine enamel was capable of reducing the enamel acid solubility without causing damage to the surface and therefore is a potential method of caries prevention. (author)

  17. Comparative evaluation of enamel abrasivity of different commercially available dentifrices – An In vitro Study

    Directory of Open Access Journals (Sweden)

    Rupali Athawale

    2018-01-01

    Full Text Available Background: Toothbrushing with toothpaste is a major contributor to dental abrasion. A number of factors such as abrasivity and concentration of the toothpaste, brushing frequency, brushing duration, force of brushing, and toothbrush bristle stiffness have a potential impact on the abrasion process of dental hard tissue. However, the abrasivity of the toothpaste is the most important parameter that affects the abrasion process of dental hard tissue. Aims: This study aims to evaluate the maximum and mean enamel abrasivity of commercially available dentifrices such as Colgate total®, Pepsodent whitening®, Vicco vajradanti®, Dabur red® in primary and permanent teeth. Materials and Methods: Human extracted 60 primary and 60 permanent teeth were randomly selected based on the inclusion criteria. Teeth were sectioned at cementoenamel junction using diamond disc and mounted in an acrylic resin blocks. Baseline profilometric measurements were recorded for all the samples. Four commonly used dentifrices were selected and labeled as Group A (Colgate Total®, B (Pepsodent Whitening®, C (Vicco Vajradanti®, and D (Dabur Red®. Toothpaste slurry was prepared. Tooth specimens were brushed in vitro using a customized brushing machine. After toothbrushing, profilometric measurements were obtained, and the differences in readings served as proxy measure to assess surface abrasion. Data were collected and analyzed using student t-test and ANOVA test. Student t-test was used to compare the enamel abrasivity prebrushing and postbrushing, and ANOVA was used to compare the enamel abrasivity among the four different commercially available toothpastes. Results: In permanent teeth, all the toothpastes were found to cause significant enamel abrasion (P = 0.000 and a significant variation was observed when maximum (P = 0.008 and mean (P = 0.036 enamel abrasivity of these toothpastes were compared. In primary teeth also, all the toothpastes caused significant abrasion

  18. Knowledge and Awareness among Parents and General Dental Practitioners regarding Rehabilitation with Full Coverage Restoration in Children: A Multi-centric Trial.

    Science.gov (United States)

    Moda, Aman; Saroj, Gyanendra; Sharma, Swati; Gupta, Basant

    2016-01-01

    The aim of this study was to evaluate the knowledge and awareness among parents and general dental practitioners regarding rehabilitation with full coverage restoration in children following pulp therapy. A multiple choice questionnaire was given to 1,000 parents and 400 general practitioners in this multicentric trial. The questionnaire assessed their beliefs, knowledge regarding care of primary teeth, assessment of treating children, and knowledge regarding importance of primary teeth. All the questionnaires were then compiled and statistically analyzed using Statistical Package for Social Sciences (SPSS) software. 53% parents did not know the importance of primary teeth and 73% parents also thought that no treatment is possible for pulpally involved primary teeth. 20% parents believed that root canal treatment can be possible for children and only 10% knew about full coverage restorations. 40% of the general dentists felt that the best treatment in the case of primary necrotic teeth is extraction and only 13% knew about stainless steel crowns. 62% of general dental practitioners pointed out patients' noninterest in providing crowns whereas 68% parents reported non-information by dentists. Both parents and general dental practitioners have incomplete and inadequate knowledge regarding full coverage restorations, and we need to improve the knowledge and dental awareness of the parents and the general dental practitioners. How to cite this article: Moda A, Saroj G, Sharma S, Gupta B. Knowledge and Awareness among Parents and General Dental Practitioners regarding Rehabilitation with Full Coverage Restoration in Children: A Multi-centric Trial. Int J Clin Pediatr Dent 2016;9(2):177-180.

  19. Diagnóstico y epidemiología de erosión dental Diagnosis and epidemiology of dental erosion

    Directory of Open Access Journals (Sweden)

    Maria Claudia Fajardo Santacruz

    2011-08-01

    Full Text Available La erosión dental es la pérdida localizada, crónica y patológica de tejido duro dental. Ésta es causada por soluciones químicas las cuales entran en contacto con los dientes. La apariencia de los dientes erosionados es suave, sedosa y brillante, a veces mate, la superficie del esmalte tiene una ausencia de periquimatíes y esmalte intacto en el margen gingival. Se ha hipotetizado que la banda de esmalte preservado a lo largo del margen vestibular y lingual pudiera ser debido a que algunos remanentes de placa podían actuar como una barrera de difusión para los ácidos. Un diagnóstico temprano de este daño del tejido duro dental es de importancia clínica. El objetivo de este artículo es mostrar algunos aspectos básicos de erosión dental en términos de diagnóstico y epidemiología. Este documento enfatiza sobre factores de riesgo extrínsecos los cuales son discutidos con respecto a su relevancia para el desarrollo de erosión dental. Salud UIS 2011; 43 (2: 179-189Dental erosion is a pathologic, chronic, localized loss of dental hard tissue. It is caused by chemical solutions which come into contact with the teeth. The appearance of eroded teeth is smoothing, silky-glazed, sometimes dull, the enamel surface has an absence of perikymata and intact enamel on the gingival margin. It has been hypothesized that the preserved enamel band along the oral and facial gingival margin could be due to some plaque remnants could act as a diffusion barrier for acids. Early diagnosis of this damage of dental hard tissue is of clinical importance. The aim of this article is to show some basic aspects of dental erosion in terms of diagnosis and epidemiology. This paper emphasize on extrinsic risk factors which are discussed with respect to their relevance for the development of dental erosion. Salud UIS 2011; 43 (2: 179-189

  20. Evaluation of dental restorations: a comparative study between clinical and digital photographic assessments.

    Science.gov (United States)

    Moncada, G; Silva, F; Angel, P; Oliveira, O B; Fresno, M C; Cisternas, P; Fernandez, E; Estay, J; Martin, J

    2014-01-01

    The aim of this study was to compare the efficacy of a direct clinical evaluation method with an indirect digital photographic method in assessing the quality of dental restorations. Seven parameters (color, occlusal marginal adaptation, anatomy form, roughness, occlusal marginal stain, luster, and secondary caries) were assessed in 89 Class I and Class II restorations from 36 adults using the modified US Public Health Service/Ryge criteria. Standardized photographs of the same restorations were digitally processed by Adobe Photoshop software, separated into the following four groups and assessed by two calibrated examiners: Group A: The original photograph displayed at 100%, without modifications (IMG100); Group B: Formed by images enlarged at 150% (IMG150); Group C: Formed by digital photographs displayed at 100% (mIMG100), with digital modifications (levels adjustment, shadow and highlight correction, color balance, unsharp Mask); and Group D: Formed by enlarged photographs displayed at 150% with modifications (mIMG150), with the same adjustments made to Group C. Photographs were assessed on a calibrated screen (Macbook) by two calibrated clinicians, and the results were statistically analyzed using Wilcoxon tests (SSPS 11.5) at 95% CI. The photographic method produced higher reliability levels than the direct clinical method in all parameters. The evaluation of digital images is more consistent with clinical assessment when restorations present some moderate defect (Bravo) and less consistent when restorations are clinically classified as either satisfactory (Alpha) or in cases of severe defects (Charlie). The digital photographic method is a useful tool for assessing the quality of dental restorations, providing information that goes unnoticed with the visual-tactile clinical examination method. Additionally, when analyzing restorations using the Ryge modified criteria, the digital photographic method reveals a significant increase of defects compared to those

  1. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    Science.gov (United States)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-01-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 ≥ −0.86) as well as calcium release (r2 ≥ −0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42–0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364

  2. Mathematical model governing laser-produced dental cavity

    Science.gov (United States)

    Yilbas, Bekir S.; Karatoy, M.; Yilbas, Z.; Karakas, Eyup S.; Bilge, A.; Ustunbas, Hasan B.; Ceyhan, O.

    1990-06-01

    Formation of dental cavity may be improved by using a laser beam. This provides nonmechanical contact, precise location of cavity, rapid processing and increased hygienity. Further examination of interaction mechanism is needed to improve the application of lasers in density. Present study examines the tenperature rise and thermal stress development in the enamel during Nd YAG laser irradiation. It is found that the stresses developed in the enamel is not sufficiently high enough to cause crack developed in the enamel.

  3. Er:YAG Laser and Fractured Incisor Restorations: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    C. Fornaini

    2012-01-01

    Full Text Available Introduction. The aim of this study was to analyse the effects of an Er:YAG laser on enamel and dentine in cases of dental restorations involving fractured teeth, utilizing the dental fragment. Materials and Methods. Seventy-two freshly extracted bovine incisors were fractured at the coronal level by using a hammer applied with a standardized method, and the fragment was reattached by using three different methods: Er:YAG laser, orthophosphoric acid, and laser plus acid. The different groups were evaluated by a test realized with the dynamometer to know the force required to successfully detach the reattached fragment and by a microinfiltration test by using a 0.5% methylene blue solution followed by the optic microscope observation. Results. The compression test showed only a slight difference between the three groups, without any statistical significance. The infiltration test used to evaluate the marginal seal between the fracture fragment and the tooth demonstrated that etching with Er:YAG laser alone or in combination with orthophosphoric acid gives better results than orthophosphoric acid alone, with a highly significant statistical result. Discussion. Reattaching a tooth fragment represents a clinically proven methodology, in terms of achieving resistance to detachment, and the aim of this work was to demonstrate the advantages of Er:YAG laser on this procedure. Conclusion. This “in vitro” study confirms that Er:YAG laser can be employed in dental traumatology to restore frontal teeth after coronal fracture.

  4. Characterization of enamel caries lesions in rat molars using synchrotron X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Free, R.D.; DeRocher, K.; Stock, S.R.; Keane, D.; Scott-Anne, K.; Bowen, W.H.; Joester, D. (Rochester); (NWU)

    2017-08-18

    Dental caries is a ubiquitous infectious disease with a nearly 100% lifetime prevalence. Rodent caries models are widely used to investigate the etiology, progression and potential prevention or treatment of the disease. To explore the suitability of these models for deeper investigations of intact surface zones during enamel caries, the structures of early-stage carious lesions in rats were characterized and compared with previous reports on white spot enamel lesions in humans. Synchrotron X-ray microcomputed tomography non-destructively mapped demineralization in carious rat molar specimens across a range of caries severity, identifying 52 lesions across the 30 teeth imaged. Of these lesions, 13 were shown to have intact surface zones. Depth profiles of fractional mineral density were qualitatively similar to lesions in human teeth. However, the thickness of the surface zone in the rat model ranges from 10 to 58 µm, and is therefore significantly thinner than in human enamel. These results indicate that a fraction of lesions in rat caries possess an intact surface zone and are qualitatively similar to human lesions at the micrometer scale. This suggests that rat caries models may be a suitable analog through which to investigate the structure of surface zone enamel and its role during dental caries.

  5. Validation of assessment of intraoral digital photography for evaluation of dental restorations in clinical research.

    Science.gov (United States)

    Signori, Cácia; Collares, Kauê; Cumerlato, Catarina B F; Correa, Marcos B; Opdam, Niek J M; Cenci, Maximiliano S

    2018-04-01

    The aim of this study was to investigate the validity of assessment of intraoral digital photography in the evaluation of dental restorations. Intraoral photographs of anterior and posterior restorations were classified based on FDI criteria according to the need for intervention: no intervention, repair and replacement. Evaluations were performed by an experienced expert in restorative dentistry (gold standard evaluator) and 3 trained dentists (consensus). The clinical inspection was the reference standard method. The prevalence of failures was explored. Cohen's kappa statistic was used. Validity was accessed by sensitivity, specificity, likelihood ratio and predictives values. Higher prevalence of failed restorations intervention was identified by the intraoral photography (17.7%) in comparison to the clinical evaluation (14.1%). Moderate agreement in the diagnosis of total failures was shown between the methods for the gold standard evaluator (kappa = 0.51) and consensus of evaluators (kappa = 0.53). Gold standard evaluator and consensus showed substantial and moderate agreement for posterior restorations (kappa = 0.61; 0.59), and fair and moderate agreement for anterior restorations (kappa = 0.36; 0.43), respectively. The accuracy was 84.8% in the assessment by intraoral photographs. Sensitivity and specificity values of 87.5% and 89.3% were found. Under the limits of this study, the assessment of digital photography performed by intraoral camera is an indirect diagnostic method valid for the evaluation of dental restorations, mainly in posterior teeth. This method should be employed taking into account the higher detection of defects provided by the images, which are not always clinically relevant. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Evaluation of temperature variation in pulp chamber after high power diode laser irradiation (λ=830 nm) on dental enamel: 'in vitro' study

    International Nuclear Information System (INIS)

    Macri, Rodrigo Teixeira

    2001-01-01

    The aim of this study was to observe the variation of temperature in the pulp chamber caused by irradiation of a commercial diode laser operating in continuous wave with wavelength 830 nm over the dental enamel. In the first part of this study, two types of tooth models were tested: 3,5 mm slice and whole tooth. In the second part, we irradiated the buccal si de of the enamel in 2 primary lower incisors from cattle with Opus 10 diode laser for 10 s with power levels of 1 W and 2 W, always using an absorber. Two thermocouples were used. The first one was inserted in the dentin wall closest to the irradiation site, while the second was inserted in the middle of the pulp chamber. It was observed that the thermocouples registered different temperatures. Always, the dentin thermocouple registered higher temperatures. Considering the dentin records, the irradiation of 1 W for 10 s can be safe for the pulp. Further studies must be developed related to the correct positioning of the thermocouples inside the pulp chamber. This was a first step of using diode laser in enamel, and in this study, we concluded that the Opus 10 diode laser shown to be safe for this use, with 1 W power for 10 S. (author)

  7. The cariogenic dental biofilm: good, bad or just something to control?

    Directory of Open Access Journals (Sweden)

    Mark Steven Wolff

    2009-06-01

    Full Text Available This paper discusses the role of dental biofilm and adjunctive therapies in the management of dental caries. Dental biofilm is a site of bacterial proliferation and growth, in addition to being a location of acid production. It also serves as a reservoir for calcium exchange between the tooth and saliva. The salivary pellicle, a protein-rich biofilm layer, regulates the reaction between tooth surface, saliva and erosive acids. The protective effects of this pellicle on enamel are well established. However, understanding the effects of the pellicle/biofilm interaction in protecting dentin from erosive conditions requires further research. Saliva interacts with the biofilm, and is important in reducing the cariogenic effects of dental plaque as acidogenic bacteria consume fermentable carbohydrates producing acids that may result in tooth demineralization. Adequate supplies of healthy saliva can provide ingredients for successful remineralization. Strategies for managing the cariogenic biofilm are discussed with emphasis on the effectiveness of over-the-counter (OTC products. However, since many toothpaste components have been altered recently, new clinical trials may be required for true validation of product effectiveness. A new generation of calcium-based remineralizing technologies may offer the ability to reverse the effects of demineralization. Nevertheless, remineralization is a microscopic subsurface phenomenon, and it will not macroscopically replace tooth structure lost in a cavitated lesion. Optimal management of cavitations requires early detection. This, coupled with advances in adhesive restorative materials and microsurgical technique, will allow the tooth to be restored with minimal destruction to nearby healthy tissue.

  8. Effects of different black mediators on the shear strength of orthodontic bracket to the enamel treated with Nd-Yag laser

    Science.gov (United States)

    Huang, Shun-Te; Lin, I.-Shueng; Tsai, Chi-Cheng

    1995-04-01

    The Nd:YAG laser has ablation, crack, and crater effects on the dental enamel through black mediators which are very similar to the acid etching effects of phosphoric acid. This study was designed for searching how the different black mediators influence the shear strengths of the brackets bound to the enamel surfaces which were treated with the Nd:YAG laser. 90 bovine enamels divided into 5 groups were painted with 5 kinds of black mediators including Chinese ink, oil ink, black ball pen, water ink and black transfer paper. The enamel surfaces painted with black mediators were then radiated by Nd:YAG laser (ADL; American Dental Laser 300dl, power: 20 pps, 87.5 mj). Orthodontic brackets were bonded to the radiated surfaces. Then the shear strengths of the brackets to the enamels were measured by Instron. The results showed that the Chinese ink group and oil ink group has the strongest shear strength, ball pen group and water ink group showed the second strength, and the transfer paper group has the lowest shear strength. In addition, scanning electronic microscope also was used to observe the topographic changes of the enamel surfaces induced by the laser ablation.

  9. A laser-abrasive method for the cutting of enamel and dentin.

    Science.gov (United States)

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  10. Effects of enamel fluorosis and dental caries on quality of life.

    Science.gov (United States)

    Onoriobe, U; Rozier, R G; Cantrell, J; King, R S

    2014-10-01

    The objectives of this study were to determine the impact of enamel fluorosis and dental caries on oral health-related quality of life (OHRQoL) in North Carolina schoolchildren and their families. Students (n = 7,686) enrolled in 398 classrooms in grades K-12 were recruited for a onetime survey. Parents of students in grades K-3 and 4-12 completed the Early Childhood Oral Health Impact Scale (ECOHIS) and Family Impact Scale (FIS), respectively. Students in grades 4-12 completed the Child Perceptions Questionnaire (CPQ8-10 in grades 4-5; CPQ11-14 in grades 6-12). All students were examined for fluorosis (Dean's index) and caries experience (d2-3fs or D2-3MFS indices). OHRQoL scores (sum response codes) were analyzed for their association with fluorosis categories and sum of d2-3fs and D2-3MFS according to ordinary least squares regression with SAS procedures for multiple imputation and analysis of complex survey data. Differences in OHRQoL scores were evaluated against statistical and minimal important difference (MID) thresholds. Of 5,484 examined students, 71.8% had no fluorosis; 24.4%, questionable to very mild fluorosis; and 3.7%, mild, moderate, or severe fluorosis. Caries categories were as follows: none (43.1%), low (28.6%), and moderate to high (28.2%). No associations between fluorosis and any OHRQoL scales met statistical or MID thresholds. The difference (5.8 points) in unadjusted mean ECOHIS scores for the no-caries and moderate-to-high caries groups exceeded the MID estimate (2.7 points) for that scale. The difference in mean FIS scores (1.5 points) for the no-caries and moderate-to-high groups exceeded the MID value (1.2 points). The sum of d2-3fs and D2-3MFS scores was positively associated with CPQ11-14 (B = 0.240, p caries experience negatively affects OHRQoL, while fluorosis has little impact. © International & American Associations for Dental Research.

  11. Effect of cow and soy milk on enamel hardness of immersed teeth

    Science.gov (United States)

    Widanti, H. A.; Herda, E.; Damiyanti, M.

    2017-08-01

    Cow milk and soy milk have different mineral contents and this can affect the tooth remineralization process. The aim of this study was to determine the effect of cow and soy milk on immersed teeth after demineralization. Twenty-one specimens, of human maxillary premolars, were measured for enamel hardness before immersion and demineralization in orange juice. The teeth were divided into three groups (n = 7) with each group immersed in either distilled water, cow milk, or soy milk. There was a significant increase in enamel hardness in all groups (p Cow milk provided the highest increase in enamel hardness, of all the three groups, but was not able to restore the initial enamel hardness.

  12. In vitro study of 960 nm high power diode laser applications in dental enamel, aided by the presence of a photoinitiator dye: scanning electron microscopy analysis

    International Nuclear Information System (INIS)

    Oliveira, Marcelo Vinicius de

    2002-06-01

    The objective of this study is to verify if a high power diode laser can effectively modify the morphology of an enamel surface, and if this can be done in a controlled fashion by changing the lasers parameters. Previous studies using SEM demonstrated that through irradiation with Nd:YAG laser (1064 nm) it is possible to modify the morphology of the dental surface in such way as to increase its resistance against caries decays. The desired procedures that should achieve a decrease of the index of caries decays and of its sequels are on a primary level, which means that action is necessary before the disease installs itself. In this study it was used for the first time a prototype of a high power diode laser operating at 960 nm, produced by the Laboratory of Development of Lasers of the Center for Lasers and Applications of the IPEN. This equipment can present several advantages as reliability, reduced size and low cost. The aim was establish parameters of laser irradiation that produce the desired effects wanted in the enamel and protocols that guarantee its safety during application in dental hard tissues, protecting it of heating effects such as fissures and carbonization. (author)

  13. Fast XRF analysis of mineral elements in dental composites

    International Nuclear Information System (INIS)

    Preoteasa, E. A.; Constantinescu, B.; Preoteasa, E.

    2001-01-01

    Dental composites, made of particles of glass, ceramics or quartz embedded in an organic polymer matrix, extensively replaced silver amalgam in tooth fillings and enabled new applications for restorative dentistry. Long-term alteration of dental fillings together with market pressure motivates the development of composites at a high rate, largely by progress of materials forming their mineral phase. Therefore, dental composites constantly bring at the interface with enamel and dentine new elements foreign to the organism, whose biological action has not been studied. Atomic and nuclear methods for surface multielemental analysis have been used in dental research but not for composites. X-ray fluorescence (XRF) is suited for the fast microanalytical screening of the elements and of their changes at the biomaterial's surface. The potential of radioisotope-excited XRF for the analysis of dental composites has been examined. Flat disk-shaped samples of composites have been prepared and polymerized chemically or by irradiation with intense 420-500 nm light. The measurements were performed with a spectrometric chain containing a 30 mCi source of 241 Am, a Si(Li) detector, and a multichannel analyzer. The spectra were built up for 2000-6000 sec. The characteristic X lines were integrated and normalized to source lines. The following Z ≥ 20 elements were detected in the studied composites: Ba only in Charisma (Kulzer) and Pekafill (Bayer); Zr, Ba, Yb in Tetric Ceram, and Ca, Ba, Yb together with traces of possibly Ti and Fe in Ariston (both from Vivadent); Zr, Hf in Valux Plus (3M Dental); and Sr, Ba together with some trace element, seemingly Cu, in F2000 Compomer (3M Dental) and with other trace elements like Ca, Fe in Surefil (Dentsply). Among older materials, Concise (3M Dental) contained only light (Z 3 that releases F for protection of enamel and dentine. Yb, Zr, Ba, Hf improve the radiological opacity of the materials. Some elements may accompany others as

  14. The effect of gastric juice on the development of erosive changes in hard dental tissue

    Directory of Open Access Journals (Sweden)

    Stojšin Ivana

    2014-01-01

    Full Text Available Introduction. Gastroesophageal reflux disease (GERD is an esophageal disorder where the refluxed gastric contents enters first into the esophagus followed by the pharynx, oral cavity, larynx, airway and middle ear, causing a range of disorders and symptoms. Hydrochloric acid from the gastric contents is responsible for the demineralization of dental hard tissues and release of matrix metalloproteinase from the dentin. Objective. The aim of this study was to verify the SEM (scanning electron microscopy analysis of the surface enamel, the enamel-dentin border and dentine after the exposure of intact teeth to filtrate of gastric contents obtained during routine endoscopy. Methods. Material used in the research was 10 extracted human impacted third molars. The coronal part of the tooth was divided into two parts, and then the two halves of teeth were exposed to the filtrate of gastric juice obtained during routine gastroscopy, which had been frozen until the moment of the experiment initiation. All samples of teeth were immersed in the filtrate of the content at a temperature of 20°C for 60 minutes. The prepared samples were observed by the SEM in the area of the enamel, the enamel-dentin border and in the area of dentin at different magnification. Results. The SEM analysis showed that both enamel and dentin had a significant demineralization of these tissues. Enamel surface resembled a demineralization similar to that of acid conditioning before the application of composite restorations. The degree of mineralization was more intense towards the enamel - dentin border, and at this area the enamel prisms were not fully recognizable. The dentin had a complete loss of peritubular dentin, the entry points of the dentin tubules were expanded and intertubular dentin demineralization was also registered. Conclusion. SEM analysis showed a significant degree of destruction of enamel and dentin. Significant changes in the surface structure of enamel and

  15. Evaluation of crystalline changes and resistance to demineralization of the surface of human dental enamel treated with Er:YAG laser and fluoride using x-ray diffraction analysis and Vickers microhardness

    Science.gov (United States)

    Behroozibakhsh, Marjan; Shahabi, Sima; Ghavami-Lahiji, Mehrsima; Sadeghian, Safura; Sadat Faal Nazari, Neda

    2018-06-01

    This study aimed to investigate the changes in crystalline structure and resistance to demineralization of human dental surface enamel treated with erbium-doped yttrium aluminium garnet laser (Er:YAG) laser and fluoride. The enamel surfaces were divided into four groups according to the treatment process including, (L): irradiated with Er:YAG; (F): treated with acidulated phosphate fluoride gel (LF): Pre-irradiated surfaces with Er:YAG subjected to acidulated phosphate fluoride gel and (FL): laser irradiation was performed on the fluoridated enamel surface. Before and after the treatment procedure, the samples were evaluated using X-ray diffraction, scanning electron microscope (SEM) and the Vickers microhardness test. The surface microhardness values also were measured after a pH-cycling regime and acid challenge. The a-axis of all lased groups was contracted after treatment procedure. Measurement of the area under the peaks showed the highest crysallinity in the FL group. The hardness values of all laser treated samples significantly reduced after treatment procedure compared to the F group (p  ⩽  0.001). The morphological observations showed remarkable changes on the lased enamel surfaces including cracks, craters and exposed prisms. These findings suggest, irradiation of the Er:YAG laser accompanying with fluoride application can induce some beneficial crystalline changes regarding the acid-resistance properties of enamel, however, the craters and cracks produced by laser irradiation can promote enamel demineralization and consequently the positive effects of the Er:YAG laser will be eliminated.

  16. Effects of tooth whitening and orange juice on surface properties of dental enamel.

    Science.gov (United States)

    Ren, Yan-Fang; Amin, Azadeh; Malmstrom, Hans

    2009-06-01

    To study the effects of 6% H2O2 activated with LED light on surface enamel as compared to orange juice challenges in vitro. A total of 40 human enamel discs were incubated in saliva overnight to allow pellicle formation and then divided into three groups: 15 for whitening treatments, 15 for orange juice immersions and 10 for normal saline controls. Baseline microhardness was measured with a microhardness Knoop indenter (50g, 10s) and surface topography was evaluated with a focus-variation 3D scanning microscopy. Enamel discs were treated with H2O2 or orange juice for 20 min each cycle for five cycles to simulate daily treatment with the products for 5 days. The discs were stored in saliva between treatment cycles. Microhardness and surface topography were evaluated again after treatments. Changes in microhardness and in surface area roughness (Sa), mean maximum peak-to-valley distance (Sz) and the developed surface area ratio (Sdr) were compared before and after treatments (t-test) and among groups (ANOVA). Enamel surface hardness decreased by 84% after orange juice immersion but no statistically significant changes were observed in the whitening and control groups. Surface topography changed significantly only in the orange juice group as shown by increased Sa (1.2 microm vs. 2.0 microm), Sz (7.7 microm vs. 10.2 microm) and Sdr (2.8% vs. 6.0%). No such changes were observed in the whitening and control groups. In comparison to orange juice challenges, the effects of 6% H2O2 on surface enamel are insignificant. Orange juice erosion markedly decreased hardness and increased roughness of enamel.

  17. Synergistic effects of sodium 
ascorbate and acetone to restore compromised bond strength 
after enamel bleaching.

    Science.gov (United States)

    Boruziniat, Alireza; Manafi, Safa; Cehreli, Zafer C

    To evaluate the effect of a new experimental solution containing sodium ascorbate (SA) and acetone on reversing compromised bonding to enamel immediately after bleaching. The buccal surface of intact, extracted human premolars (n = 60) was bleached. The teeth were then randomly assigned to 6  groups according to the type of pretreatment applied prior to adhesive procedures: 10% SA in acetone-water solution applied for 1 and 5 min (groups 1 and 2, respectively); aqueous solution of 10% SA applied for 10 min (group 3); 100% acetone applied for 10 min (group 4); no pretreatment (negative control; group 5). An additional group (positive control; group 6) comprised unbleached teeth (n = 12). Two composite microcylinders were bonded on each specimen for evaluation of microshear bond strength (MBS) and failure modes. Data were analyzed using the one-way ANOVA and Tukey's post-hoc and chi-square tests at P = 0.05. Groups 1 and 2 yielded similar MBS values to groups 4 and 6 (positive control). The mean MBS of groups 3 and 5 (negative control) were similar, and significantly lower than that of the positive control group. The application of 10% SA in an acetone-water solution prior to bonding procedures can restore compromised enamel bond strength to its unbleached state within a clinically acceptable time of 1 min.

  18. Micro-indentation fracture behavior of human enamel.

    Science.gov (United States)

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  19. [Dental enamel prisms of Mesopithecus pentelicus Wagner, 1839, compared with recent cercopithecids (Primates: Cercopithecidae)].

    Science.gov (United States)

    Dostal, A; Zapfe, H

    1986-01-01

    The dental enamel prisms of Cercopithecidae were examined by scanning electron microscopy. The main task of this study was to show the prism morphology representatives of different genera as well as their comparison with the fossil Mesopithecus pentelicus Wagner, 1839. The method used to show the enamel prisms was to etch the tooth surface with hydrochloric acid. In this way the outlines of the prisms were better contrasted for the descriptive morphology of the prisms than in etching with phosphoric acid. Two types were determined, in accord with the systematic division into subfamilies. In the subfamily Cercopithecinae elongated slender prisms were dominating, some with pointed, others with truncated tops. Most characteristic of this type were Macaca and Cercopithecus. An exception was Papio hamadryas which had broader, rounded prisms. In this way it differed largely from P. anubis whose prisms were short and mostly triangular. A very interesting fact was that very different patterns were found in P. anubis and P. hamadryas, although these two species are regarded as only one species by many authors. The second subfamily, the Colobinae, was characterized by broader prisms with a rounded shape, nearly as long as wide. Exceptions of the 'Colobine type' were at first Colobus with prisms little longer than wide and secondly Nasalis, with mostly parallel sides and truncated tops of the prisms. The prism outlines of Mesopithecus showed the greatest similarity to those of Presbytis which represents the characteristic 'Colobine type'. This fact confirmed the actual systematic position of the fossil Mesopithecus within the subfamily Colobinae. In addition to previously known primitive features of Mesopithecus within the subfamily of Colobinae, we present here a further concrete, common feature with asiatic Colobines.

  20. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    Science.gov (United States)

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  1. Calcium release rates from tooth enamel treated with dentifrices containing whitening agents and abrasives.

    Science.gov (United States)

    Araujo, Danilo Barral; Silva, Luciana Rodrigues; de Araujo, Roberto Paulo Correia

    2010-01-01

    Tooth whitening agents containing hydrogen peroxide and carbamide peroxide are used frequently in esthetic dental procedures. However, lesions on the enamel surface have been attributed to the action of these products. Using conventional procedures for separating and isolating biological structures, powdered enamel was obtained and treated with hydrogen peroxide, carbamide peroxide, and sodium bicarbonate, ingredients typically found in dentifrices. The enamel was exposed to different pH levels, and atomic emission spectrometry was used to determine calcium release rates. As the pH level increased, the rate of calcium release from enamel treated with dentifrices containing whitening agents decreased. Carbamide peroxide produced the lowest amount of decalcification, while sodium bicarbonate produced the highest release rates at all pH levels.

  2. Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite.

    Science.gov (United States)

    Peterson, Jana; Rizk, Marta; Hoch, Monika; Wiegand, Annette

    2018-04-01

    This study aimed to analyze bond strengths of self-adhesive flowable composites on enamel, dentin and nano-hybrid composite. Enamel, dentin and nano-hybrid composite (Venus Diamond, Heraeus Kulzer, Germany) specimens were prepared. Three self-adhesive composites (Constic, DMG, Germany; Fusio Liquid Dentin, Pentron Clinical, USA; Vertise Flow, Kerr Dental, Italy) or a conventional flowable composite (Venus Diamond Flow, Heraeus Kulzer, Germany, etch&rinse technique) were applied to enamel and dentin. Nano-hybrid composite specimens were initially aged by thermal cycling (5000 cycles, 5-55 °C). Surfaces were left untreated or pretreated by mechanical roughening, Al 2 O 3 air abrasion or silica coating/silanization. In half of the composite specimens, an adhesive (Optibond FL, Kerr Dental, Italy) was used prior to the application of the flowable composites. Following thermal cycling (5000 cycles, 5-55 °C) of all specimens, shear bond strengths (SBS) and failure modes were analyzed (each subgroup n = 16). Statistical analysis was performed by ANOVAs/Bonferroni post hoc tests, Weibull statistics and χ 2 -tests (p composites on enamel and dentin were significantly lower (enamel: composite (enamel: 13.0 ± 5.1, dentin: 11.2 ± 6.3), and merely adhesive failures could be observed. On the nano-hybrid composite, SBS were significantly related to the pretreatment. Adhesive application improved SBS of the conventional, but not of the self-adhesive composites. The self-adhesive composite groups showed less cohesive failures than the reference group; the occurence of cohesive failures increased after surface pretreatment. Bonding of self-adhesive flowable composites to enamel and dentin is lower than bonding to a nano-hybrid composite.

  3. Satisfaction with Dental Appearance and Attitude toward improving Dental Esthetics among Patients attending a Dental Teaching Center.

    Science.gov (United States)

    Maghaireh, Ghada A; Alzraikat, Hanan; Taha, Nessrin A

    2016-01-01

    The aim of this study was to evaluate the factors influencing the satisfaction of dental appearance and attitude toward treatments to improve dental esthetics among patients attending a dental teaching center. A questionnaire was used to collect data of four background variables among 450 patients attended a dental teaching center in the city of Irbid in Jordan. The questionnaire enclosed self-reported questions about the appearance of anterior teeth, received esthetic treatment and desired treatment for improving esthetics. Descriptive, multiple logistic regression and Chi-square tests were used for data analysis (p ≤ 0.05). The 450 participants consisted of (66.2%) male and (33.8%) female. Of these, 69.3% were satisfied with their dental appearance and 58.0% with the color of their teeth. Esthetic restorations were the most received treatment (39.8%) and whitening of teeth was the most desired treatment (55.3%). The patients' satisfaction with dental appearance was influenced by teeth color, crowding and receiving whitening (p < 0.05. r = 0.561, r(2) = 0.315). The most desired esthetic treatments influenced by the satisfaction with dental appearance were esthetic restorations and orthodontics (p < 0.05. r = 0.223, r(2) = 0.05). Significantly more female reported having esthetic restorations and orthodontics (p = 0.008, 0.000) and desired to have orthodontic, crowns or veneers and esthetic restorations (p = 0.000, 0.015, 0.028). Satisfaction with dental appearance was affected by teeth color, feeling teeth are crowded, desire for esthetic restorations and orthodontic treatment. A high percentage of patients were not satisfied with the color of their teeth. Recognizing the factors that affect patients' satisfaction with their present dental appearance and attitude toward treatments to improve dental esthetic can guide clinicians to strategies to improve esthetics.

  4. Molecular analysis of tooth enamel by Raman spectroscopy after treatment with bleaching agents at different concentrations; Analisis molecular del esmalte dental por medio de espectroscopia Raman despues del tratamiento con agentes blanqueadores a diferentes concentraciones

    Energy Technology Data Exchange (ETDEWEB)

    Duran Sedo, Randall; Obando Rosabal, Sofia; Saenz Bonilla, Paola; Soto Aguilar, Calendy; Vasquez Rodriguez, Amaya

    2014-07-01

    The changes in the concentration of the v1 phosphate molecule of the surface of dentin enamel are treated and researched with bleaching agents of chemical activation to basis of hydrogen peroxide than 9,5% and 14% and carbamide peroxide than 38%, for a period of 28 days. Raman spectroscopy was used and 30 dental pieces extracted, of which, were to be free of blemishes and pigmentations, without possessing fractures of the enamel, decay nor any other type of defect. The Raman spectrum was obtained of each dental piece prior to the application of bleaching agents. The specimens were separated into three experimental groups according to the concentration of whitening. The concentration of the v1 phosphate molecule was measured in the tooth enamel to the second and fourth week of treatment. In addition, ANOVA was performed for respective measurements (p≤0.05). A reduction of the v1 phosphate molecule were observed during and after the bleaching process in the experimental groups that have used of hydrogen peroxide to 14% and carbamide peroxide 38%. In the group of hydrogen peroxide to 9,5% has remained unproven a significant reduction. Within the limitations of this study is concluded that the bleaching agent causes a loss of v1 phosphate. This loss has been greater in the whitening of higher concentration. In spite, that the possible effect remineralizing of the saliva on a teeth whitening process has been unevaluated, it is recommended using during and after the treatment, toothpastes, mouthwashes, chewing gums, dental floss, among others, that contain ACP to help to cushion the potential loss of phosphate from tooth enamel. (author) [Spanish] Los cambios en la concentracion de la molecula de fosfato v1 de la superficie del esmalte dental son tratados e investigados con agentes blanqueadores de activacion quimica a base de peroxido de hidrogeno al 9,5% y 14% y peroxido de carbamida al 38%, por un periodo de 28 dias. Espectroscopia Raman fue utilizada y 30 piezas

  5. In Vitro Comparative Study of Two Different Bleaching Agents on Micro-hardness Dental Enamel.

    Science.gov (United States)

    Fatima, Nazish; Ali Abidi, Syed Yawar; Meo, Ashraf Ali

    2016-02-01

    To evaluate the effect of home-use bleaching agent containing 16% Carbamide Peroxide (CP) and in-office bleaching agent containing 38% Hydrogen Peroxide (HP) on enamel micro-hardness. An in vitroexperimental study. Department of Operative Dentistry and Science of Dental Materials at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences and Material Engineering Department of NED University of Engineering and Technology, Karachi, from July to December 2014. Atotal of 90 enamel slabs from 45 sound human 3rd molar were randomly divided into 3 groups. Each group contained 30 specimens (n=30). Group 1 was kept in artificial saliva at 37°C in incubator during the whole experiment. However, Groups 2 and 3 were treated with power whitening gel and tooth whitening pen respectively. After bleaching session, specimens were thoroughly rinsed with deionized water again for 10 seconds and then stored in artificial saliva at 37°C in incubator. Artificial saliva was changed after every 2 days. The Vickers hardness tester (Wolpert 402 MVD, Germany) was adjusted to a load of 0.1 kg (100 gm) and dwell time of 5 seconds. Three Vickers were performed on each specimen using a hardness tester according to the ISO 6507-3:1998 specification. Micro-hardness measurements were performed before and after bleaching at day 1, 7 and 14. In the control group, the baseline micro-hardness was 181.1 ±9.3 which was reduced after the storage on day 1, 7 and 14 (p = 0.104). In Group 2, baseline micro-hardness was 180.4 ±10.1 which was reduced to 179.79 ±10.0 units after day 1. Whereas, on day 7 and 14, the values of micro-hardness were 179.8 ±10 and 179.7 ±10.29, respectively (p=0.091). Furthermore, the baseline micro-hardness in Group 3 was 174.0 ±22.9 units which was reduced to 173 ±23 on day 1, 170 ±30 on day 7 and 173 ±23 on day 14 (p = 0.256). The statistically insignificant difference was found among micro-hardness values of different bleaching

  6. In Vitro Comparative Study of Two Different Bleaching Agents on Micro-hardness Dental Enamel

    International Nuclear Information System (INIS)

    Fatima, N.; Abidi, S. Y. A.; Meo, A. A.

    2016-01-01

    Objective: To evaluate the effect of home-use bleaching agent containing 16 percentage Carbamide Peroxide (CP) and in-office bleaching agent containing 38 percentage Hydrogen Peroxide (HP) on enamel micro-hardness. Study Design: An in vitro experimental study. Place and Duration of Study: Department of Operative Dentistry and Science of Dental Materials at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences and Material Engineering Department of NED University of Engineering and Technology, Karachi, from July to December 2014. Methodology: A total of 90 enamel slabs from 45 sound human 3rd molar were randomly divided into 3 groups. Each group contained 30 specimens (n=30). Group 1 was kept in artificial saliva at 37 Degree C in incubator during the whole experiment. However, Groups 2 and 3 were treated with power whitening gel and tooth whitening pen respectively. After bleaching session, specimens were thoroughly rinsed with deionized water again for 10 seconds and then stored in artificial saliva at 37 Degree C in incubator. Artificial saliva was changed after every 2 days. The Vickers hardness tester (Wolpert 402 MVD, Germany) was adjusted to a load of 0.1 kg (100 gm) and dwell time of 5 seconds. Three Vickers were performed on each specimen using a hardness tester according to the ISO 6507-3:1998 specification. Micro-hardness measurements were performed before and after bleaching at day 1, 7 and 14. Results: In the control group, the baseline micro-hardness was 181.1 ± 9.3 which was reduced after the storage on day 1, 7 and 14 (p = 0.104). In Group 2, baseline micro-hardness was 180.4 ±10.1 which was reduced to 179.79 ± 10.0 units after day 1. Whereas, on day 7 and 14, the values of micro-hardness were 179.8 ±10 and 179.7 ±10.29, respectively (p=0.091). Furthermore, the baseline micro-hardness in Group 3 was 174.0 ±22.9 units which was reduced to 173 ± 23 on day 1, 170 ±30 on day 7 and 173 ± 23 on day 14 (p = 0

  7. Local viscoelastic response of direct and indirect dental restorative composites measured by AFM.

    Science.gov (United States)

    Grattarola, Laura; Derchi, Giacomo; Diaspro, Alberto; Gambaro, Carla; Salerno, Marco

    2018-06-08

    We investigated the viscoelastic response of direct and indirect dental restorative composites by the novel technique of AM-FM atomic force microscopy. We selected four composites for direct restorations (Adonis, Optifil, EPH, CME) and three composites for indirect restorations (Gradia, Estenia, Signum). Scanning electron microscopy with micro-analysis was also used to support the results. The mean storage modulus of all composites was in the range of 10.2-15.2 GPa. EPH was the stiffest (pcomposites but Adonis and Estenia), while no significant difference was observed between direct and indirect group (p≥0.05). For the loss tangent, Gradia had the highest value (~0.3), different (pcomposites showed higher loss tangent (pcomposites. All composites exhibited minor contrast at the edge of fillers, showing that these are pre-polymerized, as confirmed by EDS.

  8. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    Science.gov (United States)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  9. Innovative Approaches to Regenerate Enamel and Dentin

    Directory of Open Access Journals (Sweden)

    Xanthippi Chatzistavrou

    2012-01-01

    Full Text Available The process of tooth mineralization and the role of molecular control of cellular behavior during embryonic tooth development have attracted much attention the last few years. The knowledge gained from the research in these fields has improved the general understanding about the formation of dental tissues and the entire tooth and set the basis for teeth regeneration. Tissue engineering using scaffold and cell aggregate methods has been considered to produce bioengineered dental tissues, while dental stem/progenitor cells, which can differentiate into dental cell lineages, have been also introduced into the field of tooth mineralization and regeneration. Some of the main strategies for making enamel, dentin, and complex tooth-like structures are presented in this paper. However, there are still significant barriers that obstruct such strategies to move into the regular clinic practice, and these should be overcome in order to have the regenerative dentistry as the important mean that can treat the consequences of tooth-related diseases.

  10. Esthetic management of anterior dental anomalies: A clinical case.

    Science.gov (United States)

    Chafaie, Amir

    2016-09-01

    Many types of dental abnormality can be observed in the anterior sectors, where they can cause genuine esthetic problems for our patients. While conventional prosthetic treatments offer the best solutions in terms of esthetic result and durability, they involve the sacrifice of significant quantities of mineralized dental material and cannot be undertaken before the periodontal tissues are mature. Other less invasive alternatives should be envisaged as transitional, or sometimes even permanent, solutions for the management of these anomalies in children and adolescents. This article discusses these options and presents a clinical case where composite resin veneers and microabrasion of the enamel were used to treat dental agenesis and enamel dysplasia. Copyright © 2016 CEO. Published by Elsevier Masson SAS. All rights reserved.

  11. Dental pain and dental treatment of young children attending the general dental service.

    Science.gov (United States)

    Milsom, K M; Tickle, M; Blinkhorn, A S

    2002-03-09

    The objective was to examine the relationship between dental pain (and its sequelae), and the extent of restorative care provided for primary molars, amongst children who regularly attend a general dental practitioner. A retrospective review of the clinical case notes of 677 children with caries who attended 50 general dental practitioners on a regular basis. Analyses were performed at the subject level. Logistic regression models were fitted for the dependent variables whether or not pain, a dental extraction for pain or sepsis and a course of antibiotics was recorded, after taking into account the proportion of carious teeth that were restored, the total number of carious teeth, the age caries was first recorded, gender and the clustering of the subjects within dental practices. Almost half of the children in the study (48%) were recorded as having at least one episode of pain. Total decay experience in the primary molars was a significant predictor of pain, extraction due to pain or sepsis and prescription of antibiotics. There was no significant association between the proportion of carious teeth restored and each of the three dependent variables. For those children who regularly attend their general dental practitioner and who have decay in their primary molars, dental pain is a common finding. Total decay experience in primary molars is the principal predictor of pain, extraction due to pain and the need for antibiotics, whilst the level of restorative care in the primary dentition is less important. In order to reduce the incidence of dental pain in young children, effective methods of preventing caries at the individual and public health levels need to be expanded.

  12. The effect of bleaching agents on the microhardness of dental aesthetic restorative materials.

    Science.gov (United States)

    Türker, S B; Biskin, T

    2002-07-01

    This study investigated the effects of three home bleaching agents on the microhardness of various dental aesthetic restorative materials. The restorative materials were: feldspatic porcelain, microfilled composite resin and light-cured modified glass-ionomer cement and the bleaching agents Nite-White (16% carbamide peroxide), Opalescence (10% carbamide peroxide and carbapol jel) and Rembrandt (10% carbamide peroxide jel). A total of 90 restorative material samples were prepared 1 cm diameter and 6 mm thick and kept in distilled water for 24 h before commencing bleaching which was carried out for 8 h day-1 for 4 weeks. Microhardness measurements were then made using a Tukon tester. Statistically significant differences with respect to unbleached controls were found only for the feldspatic porcelain and microfilled composite resins (P light cured modified glass-ionomer cement. For the composite resin, whereas Nite-White increased its microhardness, the other bleaching agents decreased it. There were no significant differences between the bleaching agents for any of the restorative materials.

  13. Dental enamel defects predict adolescent health indicators: A cohort study among the Tsimane' of Bolivia.

    Science.gov (United States)

    Masterson, Erin E; Fitzpatrick, Annette L; Enquobahrie, Daniel A; Mancl, Lloyd A; Eisenberg, Dan T A; Conde, Esther; Hujoel, Philippe P

    2018-05-01

    Bioarchaeological findings have linked defective enamel formation in preadulthood with adult mortality. We investigated how defective enamel formation in infancy and childhood is associated with risk factors for adult morbidity and mortality in adolescents. This cohort study of 349 Amerindian adolescents (10-17 years of age) related extent of enamel defects on the central maxillary incisors (none, less than 1/3, 1/3 to 2/3, more than 2/3) to adolescent anthropometrics (height, weight) and biomarkers (hemoglobin, glycated hemoglobin, white blood cell count, and blood pressure). Risk differences and 95% confidence intervals were estimated using multiple linear regression. Enamel defects and stunted growth were compared in their ability to predict adolescent health indicators using log-binomial regression and receiver operating characteristics (ROCs). Greater extent of defective enamel formation on the tooth surface was associated with shorter height (-1.35 cm, 95% CI: -2.17, -0.53), lower weight (-0.98 kg, 95% CI: -1.70, -0.26), lower hemoglobin (-0.36 g/dL, 95% CI: -0.59, -0.13), lower glycated hemoglobin (-0.04 %A 1c , 95% CI: -0.08, -0.00008), and higher white blood cell count (0.74 10 9 /L, 95% CI: 0.35, 1.14) in adolescence. Extent of enamel defects and stunted growth independently performed similarly as risk factors for adverse adolescent outcomes, including anemia, prediabetes/type II diabetes, elevated WBC count, prehypertension/hypertension, and metabolic health. Defective enamel formation in infancy and childhood predicted adolescent health outcomes and may be primarily associated with infection. Extent of enamel defects and stunted growth may be equally predictive of adverse adolescent health outcomes. © 2018 Wiley Periodicals, Inc.

  14. Study in vitro of dental enamel irradiated with a high power diode laser operating at 960 nm: morphological analysis of post-irradiation dental surface and thermal effect analysis in pulp chamber due to laser application; Estudo in vitro do esmalte dental irradiado com laser de diodo de alta potencia em 960 nm: analise morfologica da superficie dental pos-irradiada e analise do comportamento termico na camara pulpar devido a aplicacao laser

    Energy Technology Data Exchange (ETDEWEB)

    Quinto Junior, Jose

    2001-07-01

    Objectives: This study examines the structural and thermal modifications induced in dental enamel under dye assisted diode laser irradiation. The aim of this study is to verify if this laser-assisted treatment is capable to modify the enamel surface by causing fusion of the enamel surface layer. At the same time, the pulpal temperature rise must be kept low enough in order not to cause pulpar necrosis. To achieve this target, it is necessary to determine suitable laser parameters. As is known, fusion of the enamel surface followed by re-solidification produce a more acid resistant layer. This surface treatment is being researched as a new method for caries prevention. Method and Materials: A series of fourteen identically prepared enamel samples of human teeth were irradiated with a high power diode laser operating at 960 nm and using fiber delivery. Prior to irradiation, a fine layer of cromophorous ink was applied to the enamel surface. In the first part of the experiment the best parameter for pulse duration was determined. In the second part of the experimental phase the same energy density was used but with different repetition rates. During irradiation we monitored the temperature rise in the pulpal cavity. The morphology of the treated samples was analysed under SEM. Results: The morphology of the treated samples showed a homogeneously re-solidified enamel layer. The results of the temperature analysis showed a decrease of the pulpal temperature rise with decreasing repetition rate. Conclusion: With the diode laser it is possible to cause morphological alterations of the enamel surface, which is known to increase the enamel resistance against acid attack, and still maintain the temperature rise in the pulpar chamber below damage threshold. (author)

  15. Fiber optic-based optical coherence tomography (OCT) for dental applications

    Science.gov (United States)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  16. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  17. Application of the ultrashort pulses in bovine dental enamel; Aplicacao de pulsos ultracurtos em esmalte dental bovino

    Energy Technology Data Exchange (ETDEWEB)

    Todescan, Carla de Rago

    2003-07-01

    The interaction of lasers with the hard structures of the teeth, has found the excess of heat as a problem for its utilization. This study analyzes, in vitro, the interaction of the ultrashort pulse laser of Ti:safire (830 nm) with the bovine dental enamel. The system consisted in one main oscillator integrated with an amplifier (CPA). The pulses extracted before the temporal compression inside the amplifier had 30 ps, 1000 Hz and {approx}1 mJ. The pulses extracted after the compression had 60 fs, 1000 Hz and {approx}0,7 mJ. The M{sup 2} was 1,3, the focal lens 2,5 cm, the focal distance 29,7 and a computerized translation stage x,y,z. We evaluated the amount of tissue removed per pulse,the resulting cavities and the surrounding tissues not irradiated, under OM and SEM. The fluency was the major factor for differentiating the two regimens studied, therefore, the intensity was not so important as we expected in this process. We found: one ablation region in 'cat tongue', one ablation length, one fluency {approx}0,7 J/cm{sup 2} for 30 ps and {approx}0,5 J/cm{sup 2} for 60 fs (50% of high speed burr), smooth edge for 30 ps and high precision of the sharp edge cut of submicrometric order for 60 fs. (author)

  18. Application of the ultrashort pulses in bovine dental enamel; Aplicacao de pulsos ultracurtos em esmalte dental bovino

    Energy Technology Data Exchange (ETDEWEB)

    Todescan, Carla de Rago

    2003-07-01

    The interaction of lasers with the hard structures of the teeth, has found the excess of heat as a problem for its utilization. This study analyzes, in vitro, the interaction of the ultrashort pulse laser of Ti:safire (830 nm) with the bovine dental enamel. The system consisted in one main oscillator integrated with an amplifier (CPA). The pulses extracted before the temporal compression inside the amplifier had 30 ps, 1000 Hz and {approx}1 mJ. The pulses extracted after the compression had 60 fs, 1000 Hz and {approx}0,7 mJ. The M{sup 2} was 1,3, the focal lens 2,5 cm, the focal distance 29,7 and a computerized translation stage x,y,z. We evaluated the amount of tissue removed per pulse,the resulting cavities and the surrounding tissues not irradiated, under OM and SEM. The fluency was the major factor for differentiating the two regimens studied, therefore, the intensity was not so important as we expected in this process. We found: one ablation region in 'cat tongue', one ablation length, one fluency {approx}0,7 J/cm{sup 2} for 30 ps and {approx}0,5 J/cm{sup 2} for 60 fs (50% of high speed burr), smooth edge for 30 ps and high precision of the sharp edge cut of submicrometric order for 60 fs. (author)

  19. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Full Text Available Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm were prepared on buccal and palatal aspects of 49 human maxillary premolars, randomly divided into 7 groups (N=14. The cavities in groups 1, 2 and 3 were restored using a composite resin (APX. The cavities in groups 4, 5, 6 and 7 were restored using a resin-modified glass-ionomer (Fuji II LC. Before restoring, adhesive systems (Optibond FL = OFL, three-step etch-and-rinse; One Step Plus = OSP, two-step etch-and-rinse; Clearfil Protect Bond = CPB, two-step self-etch were used as bonding agents in groups 1-6 as follow: OFL in groups 1 and 4, OSP in groups 2 and 5, and CPB in groups 3 and 6, respectively. The specimens in group 7 were restored with GC cavity conditioner and Fuji II LC. All the specimens were thermo-cycled for 1000 cycles. Microleakage scores were determined using dye penetration method. Statistical analyzes were carried out with Kruskal-Wallis and Mann-Whitney U tests (α=0.05. Results: There were significant differences in microleakage scores at both enamel and dentinal margins between the study groups (P<0.05. The lowest microleakage scores at enamel and dentin margins of RMGI restorations were observed in group 6. Conclusion: Use of two-step self-etch adhesive, prior to restoring cervical cavities with RMGIC, seems to be more efficacious than the conventional cavity conditioner in decreasing marginal microleakage.

  20. Implications of gluten exposure period, CD clinical forms, and HLA typing in the association between celiac disease and dental enamel defects in children. A case-control study.

    Science.gov (United States)

    Majorana, Alessandra; Bardellini, Elena; Ravelli, Alberto; Plebani, Alessandro; Polimeni, Antonella; Campus, Guglielmo

    2010-03-01

    The association between coeliac disease (CD) and dental enamel defects (DED) is well known. The aim of this study was to investigate the prevalence of DED in children with CD and to specifically find the association of DED and gluten exposure period, CD clinical forms, HLA class II haplotype. This study was designed as a matched case-control study: 250 children were enrolled (125 coeliac children - 79 female and 46 male, 7.2 +/- 2.8 years and 125 healthy children). Data about age at CD diagnosis, CD clinical form, and HLA haplotype were recorded. Dental enamel defects were detected in 58 coeliac subjects (46.4%) against seven (5.6%) controls (P < 0.005). We found an association between DED and gluten exposure period, as among CD subjects the mean age at CD diagnosis was significantly (P = 0.0004) higher in the group with DED (3.41 +/- 1.27) than without DED (1.26 +/- 0.7). DED resulted more frequent (100%) in atypical and silent CD forms than in the typical one (30.93%). The presence of HLA DR 52-53 and DQ7antigens significantly increased the risk of DED (P = 0.0017) in coeliac children. Our results confirmed a possible correlation between HLA antigens and DED.