WorldWideScience

Sample records for enabling low-carbon living

  1. Developing knowledge and strategies for enabling and governing transitions to a low carbon society

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Jørgensen, Ulrik; Lauridsen, Erik Hagelskjær

    research alliance “Enabling and governing transitions to a low carbon society” during 2010-2013. The aim of this alliance is to conceptualize the dynamics of transition processes towards a low carbon society by involving the diverse set of actors from consumers to governmental agencies, companies...... and organizations. Transition of the path-dependent, socio-technical regimes in the energy system is a governance challenge, since transitions need to occur simultaneously in different arenas without necessarily having a specific „centre‟ of co-ordination. Changes of regimes require innovative breakthroughs......, companies, cities, and national and international policy. Theoretically the research alliance builds upon a combination of theories including social practice theory, innovation economy, institutional theory, actor-network theory and governance theory. Through a combination of historical analysis, case...

  2. Facilitating Low-Carbon Living? A Comparison of Intervention Measures in Different Community-Based Initiatives

    Directory of Open Access Journals (Sweden)

    Martina Schäfer

    2018-04-01

    Full Text Available The challenge of facilitating a shift towards sustainable housing, food and mobility has been taken up by diverse community-based initiatives ranging from “top-down” approaches in low-carbon municipalities to “bottom-up” approaches in intentional communities. This paper compares intervention measures in four case study areas belonging to these two types, focusing on their potential of re-configuring daily housing, food, and mobility practices. Taking up critics on dominant intervention framings of diffusing low-carbon technical innovations and changing individual behavior, we draw on social practice theory for the empirical analysis of four case studies. Framing interventions in relation to re-configuring daily practices, the paper reveals differences and weaknesses of current low-carbon measures of community-based initiatives in Germany and Austria. Low-carbon municipalities mainly focus on introducing technologies and offering additional infrastructure and information to promote low-carbon practices. They avoid interfering into residents’ daily lives and do not restrict carbon-intensive practices. In contrast, intentional communities base their interventions on the collective creation of shared visions, decisions, and rules and thus provide social and material structures, which foster everyday low-carbon practices and discourage carbon-intensive ones. The paper discusses the relevance of organizational and governance structures for implementing different types of low-carbon measures and points to opportunities for broadening current policy strategies.

  3. Simulation and Optimization of One Live Pig Low-Carbon Industry Chain Using SD-RCCM

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2013-01-01

    Full Text Available The destruction of the natural environment has been drawing more and more attention. Developing low-carbon industry chains is an effective solution to the conflict between rapid economic growth and high CO2 emissions. Summarizing various traditional and new industry chain sustainable development, live pig industry was chosen as a typical industry chain to study low-carbon development using a system dynamics and random chance-constrained model (SD-RCCM. Leshan, a world natural and cultural heritage area in China, was selected as a typical city to analyze the low-carbon pig industry. Three different programs based on distribution ratios were selected to study this industry. The results showed that program 1, which considers both environmental and economic benefits, realizes sustainable development. In order to extend the pig industry chain and fully utilize pig ordure and other waste, introducing a Clean Development Mechanism (CDM and household biogas exploitation program is recommended.

  4. Enabling frameworks for low-carbon technology transfer to small emerging economies: Analysis of ten case studies in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana

    2013-01-01

    Technology transfer is crucial to reduce the carbon intensity of developing countries. Enabling frameworks need to be in place to allow foreign technologies to flow, to be absorbed and to bring about technological change in the recipient country. This paper contributes to identifying these enabling factors by analysing 10 case studies of low-carbon technology transfer processes based in Chile. Our findings show the importance of strong economic and institutional fundamentals, a sound knowledge base, a sizable and stable demand and a functioning local industry. Policy recommendations are derived to improve the penetration of foreign low-carbon technologies in developing countries, focusing on the particularities of small and medium emerging economies. - Highlights: ► We analyse 10 case studies of low carbon technology transfer to Chile. ► We identify enablers of technology transfer to developing countries. ► We provide policy recommendations focusing on small and medium economies.

  5. Living with low carbon technologies: An agenda for sharing and comparing qualitative energy research

    International Nuclear Information System (INIS)

    Bickerstaff, Karen; Devine-Wright, Patrick; Butler, Catherine

    2015-01-01

    Policies to reduce the carbon intensity of domestic living place considerable emphasis on the diffusion of low(er) carbon technologies-from microgeneration to an array of feedback and monitoring devices. These efforts presume that low carbon technologies (LCTs) will be accepted and integrated into domestic routines in the ways intended by their designers. This study contributes to an emerging qualitative energy research (QER) literature by deploying an analytical approach that explores comparison of data from two UK projects (‘Carbon, Comfort and Control’ and 'Conditioning Demand’) concerned, in broad terms, with householder-LCTs interactions — primarily associated with the production and maintenance of thermal comfort. In-depth, and in many cases repeat, interviews were conducted in a total of 18 households where devices such as heat pumps and thermal feedback lamps had recently been installed. We discuss this comparative process and how a reflexive reading of notions of (and strategies associated with) credibility, transferability, dependability and confirmablity enabled new ways of working and thinking with existing data. We conclude by highlighting the contrasts, conflicts, but also creativities raised by drawing these connections, and consider implications for methodologies associated with qualitative energy research. -- Highlights: •We develop a robust strategy for comparing data from Qualitative Energy Research (QER). •We apply principles of qualitative rigour to a reanalysis of two QER datasets. •We demonstrate how this approach can strengthen extant analyses as well as reveal new interpretive insights. •We highlight the academic and policy significance of developing comparative approaches to QER

  6. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions

    OpenAIRE

    McPherson, M.; Johnson, N.; Strubegger, M.

    2018-01-01

    Previous studies have noted the importance of electricity storage and hydrogen technologies for enabling large-scale variable renewable energy (VRE) deployment in long-term climate change mitigation scenarios. However, global studies, which typically use integrated assessment models, assume a fixed cost trajectory for storage and hydrogen technologies; thereby ignoring the sensitivity of VRE deployment and/or mitigation costs to uncertainties in future storage and hydrogen technology costs. Y...

  7. Smart metering and in-home energy feedback; enabling a low carbon life style

    Energy Technology Data Exchange (ETDEWEB)

    Elburg, Henk van (SenterNovem (Netherlands)). e-mail: h.van.elburg@senternovem.nl

    2009-07-01

    Backed by raising energy demands, volatile oil prices and threat of climate change, the use of automated meter management (AMM), often referred to as 'smart metering', is rapidly gaining momentum across the world. Europe is expected to become a world leading centre of this development, thanks to the European Services Directive (ESD) of the European Commission. This Directive requires energy suppliers to provide consumers with competitively priced, accurate individual (smart) meters with information on time-of-use and accurate billing. Large scale deployments of smart meters have already been decided in Italy (Sweden) and The Netherlands. Serious considerations of implementing full smart metering penetration take place in countries like France, Ireland, Denmark and Finland. Oddly enough from an energy efficient life style point of view, a residential smart metering coverage alone does not automatically mean successful consumer involvement in general and enabling a lower carbon lifestyle in particular. These advantages require additional automation technologies 'beyond the meter', such as intuitive, aesthetic and affordable in-house displays and customized applications on web pages, cell phone or TV. To accelerate the development of contemporary 'add-on' information systems to keep pace with the deployment of smart meters, the technical and commercial in-home feedback innovations are being permanently reviewed in a worldwide selection of pioneering countries. At the eceee 2009 poster session, the latest insights regarding in-home communication to facilitate a modern energy efficient lifestyle will be revealed and an appealing, trendy and above all enabling in-house device will be presented.

  8. Democratized electronics to enable smart living for all

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-12-25

    With the increased global population, smart living is an increasingly important criteria to ensure equal opportunities for all. Therefore, what is Smart Living? The first time when we tossed this terminology seven years back, we thought reducing complexities in human life. Today we believe it more. However, smart living for all complicates the technological need further. As by all, we mean any age group, any academic background and any financial condition. Although electronics are powerful today and have enabled our digital world, many as of today have not experienced that progress. Going forward while we realize more and more electronics in our daily life, the most important question would be how. Here we show, a heterogeneous integration approach to integrate low-cost high performance interactive electronic system which are physically compliant. We are redesigning electronics to redefine its purposes to reconfigure life for all to enable smart living.

  9. Democratized electronics to enable smart living for all

    KAUST Repository

    Hussain, Muhammad Mustafa; Nassar, Joanna M.; Khan, S. M.; Saikh, S. F.; Sevilla, Galo T.; Kutbee, Arwa T.; Bahabry, Rabab R.; Babatain, Wedyan; Muslem, A. S.; Nour, Maha A.; Wicaksono, I.; Mishra, Kush

    2017-01-01

    With the increased global population, smart living is an increasingly important criteria to ensure equal opportunities for all. Therefore, what is Smart Living? The first time when we tossed this terminology seven years back, we thought reducing complexities in human life. Today we believe it more. However, smart living for all complicates the technological need further. As by all, we mean any age group, any academic background and any financial condition. Although electronics are powerful today and have enabled our digital world, many as of today have not experienced that progress. Going forward while we realize more and more electronics in our daily life, the most important question would be how. Here we show, a heterogeneous integration approach to integrate low-cost high performance interactive electronic system which are physically compliant. We are redesigning electronics to redefine its purposes to reconfigure life for all to enable smart living.

  10. Robotics to Enable Older Adults to Remain Living at Home

    OpenAIRE

    Pearce, Alan J.; Adair, Brooke; Miller, Kimberly; Ozanne, Elizabeth; Said, Catherine; Santamaria, Nick; Morris, Meg E.

    2012-01-01

    Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effec...

  11. Robotics to Enable Older Adults to Remain Living at Home

    Directory of Open Access Journals (Sweden)

    Alan J. Pearce

    2012-01-01

    Full Text Available Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1 what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2 what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving.

  12. Robotics to enable older adults to remain living at home.

    Science.gov (United States)

    Pearce, Alan J; Adair, Brooke; Miller, Kimberly; Ozanne, Elizabeth; Said, Catherine; Santamaria, Nick; Morris, Meg E

    2012-01-01

    Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving.

  13. SMART-ITEM: IoT-Enabled Smart Living

    OpenAIRE

    Kor, A; Pattinson, C; Yanovsky, M; Kharchenko, V

    2017-01-01

    The main goal of this proposed project is to harness the emerging IoT technology to empower elderly population to self-manage their own health, stay active, healthy, and independent as long as possible within a smart and secured living environment. An integrated open-sourced IoT ecosystem will be developed. It will encompass the entire data lifecycle which involves the following processes: data acquisition, data transportation; data integration, processing, manipulation and computation; visua...

  14. The Future of Low-Carbon Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Jeffery B. [Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,; Brown, Nicholas R. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802; Slaybaugh, Rachel [Department of Nuclear Engineering, University of California, Berkeley, California 94720; Wilks, Theresa [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Stewart, Emma [Lawrence Livermore National Laboratory, Livermore, California 94550; McCoy, Sean T. [Global Security, E Program, Lawrence Livermore National Laboratory, Livermore, California 94550

    2017-10-17

    We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed, along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.

  15. Low carbon development. Key issues

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Frauke; Nordensvaard, Johan (eds.)

    2013-03-07

    This comprehensive textbook addresses the interface between international development and climate change in a carbon constrained world. It discusses the key conceptual, empirical and policy-related issues of low carbon development and takes an international and interdisciplinary approach to the subject by drawing on insights from across the natural sciences and social sciences whilst embedding the discussion in a global context. The first part explores the concept of low carbon development and explains the need for low carbon development in a carbon constrained world. The book then discusses the key issues of socio-economic, political and technological nature for low carbon development, exploring topics such as the political economy, social justice, financing and carbon markets, and technologies and innovation for low carbon development. This is followed by key issues for low carbon development in policy and practice, which is presented based on cross-cutting issues such as low carbon energy, forestry, agriculture and transportation. Afterwards, practical case studies are discussed from low carbon development in low income countries in Africa, middle income countries in Asia and Latin America and high income countries in Europe and North America.

  16. Guideposts for Low Carbon Finance

    International Nuclear Information System (INIS)

    Pizer, Billy

    2015-01-01

    The author proposes four guideposts for efficient low carbon finance: remove subsidies for high-carbon technologies, improve the cost-effectiveness of low-carbon subsidies, encourage private sector innovation and maintain transparent public policy tools that support cost-benefit accounting

  17. Long-Lived Digital Data Collections Enabling Research and Education in the 21st Century

    Science.gov (United States)

    2005-09-01

    Collections: Enabling Research and Education in the 21st Century40 LoNG-LiVED DiGiTAL DATA CoLLECTioNS AND LARGE FACiLiTiES Workshop participants drew...Long-Lived Digital Data Collections: Enabling Research and Education in the 21st Century NSB-05-40 Report Documentation Page Form...COVERED - 4. TITLE AND SUBTITLE Long-Lived Digital Data Collections Enabling Research and Education in the 21st Century 5a. CONTRACT NUMBER 5b

  18. Enabling healthy living: Experiences of people with severe mental illness in psychiatric outpatient services.

    Science.gov (United States)

    Blomqvist, Marjut; Sandgren, Anna; Carlsson, Ing-Marie; Jormfeldt, Henrika

    2018-02-01

    It is well known that people with severe mental illness have a reduced life expectancy and a greater risk of being affected by preventable physical illnesses such as metabolic syndrome, cardiovascular disease and type 2 diabetes. There are still, however, only a few published studies focusing on what enables healthy living for this group. This study thus aimed to describe what enables healthy living among people with severe mental illness in psychiatric outpatient services. The data were collected in qualitative interviews (n = 16) and content analysis was used to analyze the data. The interviews resulted in an overall theme "Being regarded as a whole human being by self and others", which showed the multidimensional nature of health and the issues that enable healthy living among people with severe mental illness. Three categories emerged: (i) everyday structure (ii), motivating life events and (iii) support from significant others. The results indicate that a person with severe mental illness needs to be encountered as a whole person if healthy living is to be enabled. Attaining healthy living requires collaboration between the providers of care, help and support. Health care organizations need to work together to develop and provide interventions to enable healthy living and to reduce poor physical health among people with severe mental illness. © 2017 Australian College of Mental Health Nurses Inc.

  19. Sustainable Low Carbon Transport Scenarios for India

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Mittal, Shivika

    2014-01-01

    and local air quality that can be accrued by mainstreaming climate change polices into national sustainable development goals and sectoral plans are also estimated. There is no silver bullet that would enable the transition towards low carbon transport. An optimal mix of policies that includes fuel economy...... standards, modal shifts and cleaner energy supply is required to align climate and sustainable development goals in the long-term....... are delineated that would facilitate the sustainable low carbon transformation of India’s transport sector. The long term energy and emission trajectory of India’s transport sector is assessed under alternate scenarios using the integrated assessment modelling framework. Co-benefits like energy security...

  20. Maldives Low Carbon Development Strategy

    DEFF Research Database (Denmark)

    Fenhann, Jørgen Villy; Ramlau, Marianne

    This report presents the findings of a study for low carbon development strategy for Maldives. The study was implemented under the Memorandum of Understanding between the Ministry of Environment and Energy (MEE), Maldives and URC and was financed by Danida, Denmark’s development aid agency under...

  1. Overview of Low-carbon Economy Research

    OpenAIRE

    Fu, Hui

    2010-01-01

    The paper has a detailed literature review in low-carbon economy research of academy circle in our country from three aspects that are conception and connotation of low-carbon economy, necessity and urgency of developing low-carbon economy and path choice of realizing low-carbon economy in our country. Low-carbon economy is the “green economy†that obtains the maximum output by discharging minimum greenhouse gases with the main characteristics of “three low and three high†that are low ...

  2. Have You Switched to a Low-Carbon Diet? The Ultimate Value of Low-Carbon Consumerism

    Directory of Open Access Journals (Sweden)

    Yu-Ling Lin

    2014-04-01

    Full Text Available Since the 1990s many governments around the world have been encouraging their people to participate in green or low carbon living. With the background of rising consumer awareness in environmental protection, green consumption, and green marketing are receiving growing attention from consumers and enterprises. Therefore, the purpose of this paper is to identify the goals and values of 60 Taiwanese consumers in a low-carbon diet. This study uses the theory of Mean-end chain as basis, applying the “Soft-laddering” of “Laddering” to understand the perceived value of low carbon food in depth interviews. The results revealed that the attributes of users care for green living in the, order of, Less meat more vegetables, Seasonal food, Local food, Food with minimal artificial processing, Energy-saving preparation and Carbon footprint. After classifying by content analysis, we draw the Hierarchical value map (HVM to explore that consumer’s pursuit of the final value and benefits by adopting a low-carbon diet relate to healthy living.

  3. Low Carbon Development Pathways in Indian Agriculture

    Directory of Open Access Journals (Sweden)

    Wang Sonam Wangyel

    2017-01-01

    Full Text Available Indian agriculture sector is a significant emitter of Green House Gas (GHG, which is projected to increase by 47% between 2011 and 2020. In response to this, India has committed itself to voluntarily reduce its emissions intensity (emissions per unit GDP between 20 to 25 percent below 2005 levels by 2020. This would require rapid and significant scaling up of mitigation efforts including the agriculture sector, which remains a challenge, as mitigation is not a priority in Indian agriculture. The study found out that in-spite of numerous mitigation technologies that are readily available for takeoff, the scale of adoption and deployment is far from sufficient to meet the emission targets set by the Government of India, mainly due to lack of financial incentives, capacity building of farmers, and an enabling policy at different levels. This study identified a suite of feasible interventions for promoting low carbon agriculture such as: low tillage systems as it has negative costs due to savings on tillage and fuel; introduction of superior livestock breeds to reduce numbers (especially unproductive cattle and increase yield; use of livestock wastes to produce energy for cooking and heating through bio-gas technology can not only reduce methane emission but also save electricity costs for the households and; introduction of carbon credits and exploration of domestic carbon markets. An enabling policy environment must be created for these interventions to take off.

  4. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps

    International Nuclear Information System (INIS)

    Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

    2003-01-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated

  5. Novel, Highly Specific N-Demethylases Enable Bacteria To Live on Caffeine and Related Purine Alkaloids

    Science.gov (United States)

    Summers, Ryan M.; Louie, Tai Man; Yu, Chi-Li; Gakhar, Lokesh; Louie, Kailin C.

    2012-01-01

    The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N1- and N3-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His6 fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His6 plus His6-NdmD catalyzed N1-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His6 plus His6-NdmD catalyzed N3-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N7-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste. PMID:22328667

  6. Strategies for Local Low-Carbon Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ohshita, Stephanie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Min, Hu [Energy Foundation China, Beijing (China); Xiulian, Hu [Energy Research Inst., Beijing (China)

    2012-11-14

    Cities around the world are implementing policies and programs with the goal to reduce greenhouse gas emissions, as well as save energy, reduce costs, and protect the local, regional, and global environment. In China, low-carbon development is a key element of the 12th Five Year Plan. Pilot low-carbon development zones have been initiated in five provinces and eight cities and many other locations around China also want to pursue a low-carbon development pathway. This booklet provides information for government officials, policy makers, program designers and implementers, provincial and city planners, and others who want an overview of the key options available for low-carbon development at local level. These Strategies for Local Low-Carbon Development draw from successful experiences from around the world. Information is provided for low-carbon actions that can be taken in the sectors of (1) Industry, (2) Buildings and Appliances, (3) Electric Power, (4) Consumption and Waste Management, (5) Transportation and Urban Form, and (6) Agriculture and Forestry. A description of each policy is provided along with information on the stakeholders involved in implementation, the conditions for successful implementation, the expected energy and carbon savings, and the policy cost-effectiveness. Case studies show how each policy has been implemented somewhere around the world. While there are many low-carbon options available for local implementation, this booklet aims to provide guidance on those that have been most successful, that have the largest impact, and that are cost-effective in order to support low-carbon development efforts in Chinese cities.

  7. Building a low carbon society

    International Nuclear Information System (INIS)

    Graca Carvalho, Maria da; Bonifacio, Matteo; Dechamps, Pierre

    2011-01-01

    This paper presents the strategy of the European Union in the field of energy and climate change. At the heart of the package are three commitments to be met by 2020: to reduce greenhouse gas emissions by at least 20%, to ensure that 20% of final energy consumption is met with renewable sources, and to raise energy efficiency by 20%. This strategy is based on the scientific consensus drawn by the International Panel for Climate Change, and implements the EU political strategy to limit the anthropogenic temperature rise to no more than 2 o C. A Directive for the geological storage of CO 2 is another integral part of the package. This should enable the development and subsequent deployment of zero emission power plants. From a research and technology perspective, the Strategic Energy Technology Plan (SET-Plan) lists several energy technologies which will be required to reconcile economic growth and a vision of a decarbonised society. The EU climate and energy package and the SET-Plan are part of the solution both to the climate crisis and to the current economic and financial crisis. They represent a green 'new deal' which will enhance the competitiveness of EU industry in an increasingly carbon-constrained world.

  8. Understanding and Controlling Living/Inorganic Interfaces to Enable Reconfigurable Switchable Materials

    Science.gov (United States)

    2018-03-01

    Mater Res. 2015;4:297–310. Invited. Dong H, Sarkes DA, Rice JJ , Hurley MM, Fu A, Stratis-Cullum D. Functionalization of living bacterial cells with...presentation. Dong H, Sarkes DA, Rice JJ , Hurley MM, Fu A, Stratis-Cullum D. Living composites: Viable bacteria-nanoparticle hybrids mediated through...surface- displayed peptides. Langmuir. Forthcoming 2017. Dong H, Sarkes DA, Rice JJ , Hurley MM, Fu A, Stratis-Cullum DN. Living bacteria/nanoparticle

  9. Financing low carbon energy access in Africa

    International Nuclear Information System (INIS)

    Gujba, Haruna; Thorne, Steve; Mulugetta, Yacob; Rai, Kavita; Sokona, Youba

    2012-01-01

    Modern energy access in Africa is critical to meeting a wide range of developmental challenges including poverty reduction and the Millennium Development Goals (MDGs). Despite having a huge amount and variety of energy resources, modern energy access in the continent is abysmal, especially Sub-Saharan Africa. Only about 31% of the Sub-Saharan African population have access to electricity while traditional biomass energy accounts for over 80% of energy consumption in many Sub-Saharan African countries. With energy use per capita among the lowest in the world, there is no doubt that Africa will need to increase its energy consumption to drive economic growth and human development. Africa also faces a severe threat from global climate change with vulnerabilities in several key areas or sectors in the continent including agriculture, water supply, energy, etc. Low carbon development provides opportunities for African countries to improve and expand access to modern energy services while also building low-emission and climate-resilient economies. However, access to finance from different sources will be critical in achieving these objectives. This paper sets out to explore the financial instruments available for low carbon energy access in Africa including the opportunities, markets and risks in low carbon energy investments in the continent. - Highlights: ► Access to finance will be critical to achieving low carbon energy access in Africa. ► Domestic finance will be important in leveraging private finance. ► Private sector participation in modern and clean energy in Africa is still low. ► Many financing mechanisms exist for low carbon energy access in Africa. ► The right institutional frameworks are critical to achieving low carbon energy access in Africa.

  10. The role of utilities in developing low carbon, electric megacities

    International Nuclear Information System (INIS)

    Kennedy, Chris; Stewart, Iain D.; Facchini, Angelo; Mele, Renata

    2017-01-01

    Development of electric cities, with low carbon power supply, is a key strategy for reducing global CO2 emissions. We analyze the role of electric utilities as important actors to catalyze the transition to electric cites, drawing upon data for the world's 27 megacities. Progress towards the ideal electric city is most advanced for Paris, Rio de Janeiro, Sao Paulo and Buenos Aires for low carbon electricity, while Indian megacities have relatively high use of carbon-intensive electricity as a percentage of total energy use. There is wide variety in the structure of markets for electricity provision in megacities, with a dominant, public utility being the most common model. We review literature on electricity sector business models and broadly propose future models dependent on the predominance of locally dispersed generation and the nature of the ownership of the electric grid within the city. Where a high proportion of electricity can be provided by locally distributed supply within a city, the role of utilities could predominantly become that of enabler of exchange with the grid, but new pricing structures are required. A further challenge for utilities in enabling the electric city is to provide a higher level of resilience to events that disrupt power supply. - Highlights: • Amongst 27 megacities, Paris, Rio, Sao Paulo and Buenos Aires are most progressed low carbon electric cities. • Indian megacities have relatively high use of electricity as a percentage of total energy use. • Wide variety in electricity market structure in megacities; dominant, public utility the most common model. • Utilities could become enablers of exchange with the grid, but new pricing models required.

  11. A low carbon industrial revolution? Insights and challenges from past technological and economic transformations

    International Nuclear Information System (INIS)

    Pearson, Peter J.G.; Foxon, Timothy J.

    2012-01-01

    Recent efforts to promote a transition to a low carbon economy have been influenced by suggestions that a low carbon transition offers challenges and might yield economic benefits comparable to those of the previous industrial revolutions. This paper examines these arguments and the challenges facing a low carbon transition, by drawing on recent thinking on the technological, economic and institutional factors that enabled and sustained the first (British) industrial revolution, and the role of ‘general purpose technologies’ in stimulating and sustaining this and subsequent industrial transformation processes that have contributed to significant macroeconomic gains. These revolutions involved profound, long drawn-out changes in economy, technology and society; and although their energy transitions led to long-run economic benefits, they took many decades to develop. To reap significant long-run economic benefits from a low carbon transition sooner rather than later would require systemic efforts and incentives for low carbon innovation and substitution of high-carbon technologies. We conclude that while achieving a low carbon transition may require societal changes on a scale comparable with those of previous industrial revolutions, this transition does not yet resemble previous industrial revolutions. A successful low carbon transition would, however, amount to a different kind of industrial revolution. - Highlights: ► Investigates lessons for a low carbon transition from past industrial revolutions. ► Explores the implications of ‘general purpose technologies’ and their properties. ► Examines analysis of ‘long waves’ of technological progress and diffusion. ► Draws insights for low carbon transitions and policy.

  12. Green Growth and Low Carbon Society

    DEFF Research Database (Denmark)

    Müller, Anders Riel; Tonami, Aki

    This paper ask the question of what makes Low Carbon and Green Growth and Low Carbon Society policy concepts that have not only gained foothold in their countries of origin, but also globally. Autobiography analysis is employed to discover the stories that these concepts tell about developmental...... challenges in East Asia and beyond. By building on narratives of national progress, overcoming of adversity, and societal harmony, the concepts seek to bypass the gridlock between economic growth and planetary degradation by developing new metanarratives. The paper also analyze on the fact...... that the international coalitions build around the concepts differ significantly, which we argue can be explained, in part, by their differing metanarratives. We argue that, this autobiographical and narrative approach contributes to our understanding of why these concepts have managed to spread internationally....

  13. Determination of low carbon content in uranium

    International Nuclear Information System (INIS)

    Champeix, L.; Chevilliard, H.; Ponty, J.

    1960-01-01

    The method of carbon determination previously used for low carbon steels has been applied to uranium. Carbon contents down to a few tens p.p.m. and probably to a few p.p.m., can be determined with satisfactory precision, sensibility and accuracy. Reprint of a paper published in 'Memoires Scientifiques Rev. Metallurg.', LVI, n. 7, 1959, p. 657-662 [fr

  14. Geographies of energy transition: Space, place and the low-carbon economy

    International Nuclear Information System (INIS)

    Bridge, Gavin; Bouzarovski, Stefan; Bradshaw, Michael; Eyre, Nick

    2013-01-01

    This paper makes a case for examining energy transition as a geographical process, involving the reconfiguration of current patterns and scales of economic and social activity. The paper draws on a seminar series on the ‘Geographies of Energy Transition: security, climate, governance' hosted by the authors between 2009 and 2011, which initiated a dialogue between energy studies and the discipline of human geography. Focussing on the UK Government's policy for a low carbon transition, the paper provides a conceptual language with which to describe and assess the geographical implications of a transition towards low carbon energy. Six concepts are introduced and explained: location, landscape, territoriality, spatial differentiation, scaling, and spatial embeddedness. Examples illustrate how the geographies of a future low-carbon economy are not yet determined and that a range of divergent – and contending – potential geographical futures are in play. More attention to the spaces and places that transition to a low-carbon economy will produce can help better understand what living in a low-carbon economy will be like. It also provides a way to help evaluate the choices and pathways available. - Highlights: ► Examines transition as a geographical process, reconfiguring patterns and scales of activity. ► Provides concepts for assessing geographical implications of transition to a low-carbon economy. ► Outlines location, landscape, territoriality, uneven development, scaling, and embeddedness.

  15. Possible Role of NPP in Long Term Low Carbon Development Strategy - Case Study Croatia

    International Nuclear Information System (INIS)

    Tomsic, Z.; Rajsl, I.; Filipovic, M.

    2016-01-01

    The term low - carbon development strategies (LEDS) was developed on the UN Framework Convention on Climate Change (UNFCCC) in 2008. LEDS used to describe a long-term national economic development plans or strategies that include low emissions and economic growth resistant to climate change. The concept of Low Carbon Development Strategies (LCDS) has been introduced by the Conference of Parties to the UNFCCC as a common but differentiated approach to meet the overall emissions reduction objectives: 'All countries shall prepare Low Emission Development Strategies - nationally-driven and represent[ing] the aims and objectives of individual Parties in accordance with national circumstances and capacities' (Cancun Agreement). Low Carbon Development Strategies (LCDS) in this way become an overarching framework to design and achieve Nationally Appropriate Mitigation Actions (NAMAs) reflecting the Common but Differentiated Responsibilities (CBDR) of all countries. For Long-Term National Strategy and Action Plan for Low-Carbon Development the main objective of this programme is the development of a long-term national strategy and action plan for low-carbon development to enable country to fulfil its commitment to carbon obligations. Low-carbon development strategy will become the fundamental for the development of the energy with low rate of carbon, but also for the entire economy. European Union is the leader in the effort to reduce emissions especially in the energy sector as the sector with the highest rate of emission. With the goal of reducing emissions, necessary measures are accentuated for energy in the EU Countries, as well as in Croatia. It will be presented the possibilities for realization of Croatian low-carbon development and particularly possible role and barriers for Nuclear power plants for Low carbon emissions development in the electricity sector until 2050. (author).

  16. Development strategy research of low-carbon tourist city

    Science.gov (United States)

    Dong, Xiaohong

    2017-04-01

    Construction of low-carbon tourist city has become a strategic choice for the development of city construction in our country, becoming the direction and goal of future city development in China. In this paper, the development strategy of low-carbon tourist city is put forward from the aspects of building low-carbon tourism culture, strengthening and perfecting the relevant rules and regulations, establishing and perfecting the decision-making management mechanism of low-carbon tourist city construction, establishing accurate, timely, efficient and comprehensive ecological environment monitoring and supervision network, building economical resource utilization system, strengthening science and technology supporting of low-carbon city construction, establishing low-carbon tourism scenic spot, low-carbon community or low-carbon demonstration area, etc.

  17. Key factors of low carbon development strategy for sustainable transport

    Science.gov (United States)

    Thaveewatanaseth, K.; Limjirakan, S.

    2018-02-01

    Cities become more vulnerable to climate change impacts causing by urbanization, economic growth, increasing of energy consumption and carbon dioxide (CO2) emissions. People who live in the cities have already been affected from the impacts in terms of socioeconomic and environmental aspects. Sustainable transport plays the key role in CO2 mitigation and contributes positive impacts on sustainable development for the cities. Several studies in megacities both in developed and developing countries support that mass transit system is an important transportation mode in CO2 mitigation and sustainable transport development. This paper aims to study key factors of low carbon development strategy for sustainable transport. The Bangkok Mass Rapid Transit System (MRT) located in Bangkok was the study area. Data collection was using semi-structured in-depth interview protocol with thirty respondents consisting of six groups i.e. governmental agencies, the MRT operators, consulting companies, international organizations, non-profit organizations, and experts. The research findings highlighted the major factors and supplemental elements composing of institution and technical capacity, institutional framework, policy setting and process, and plan of implementation that would support more effective strategic process for low carbon development strategy (LCDS) for sustainable transport. The study would highly recommend on readiness of institution and technical capacities, stakeholder mapping, high-level decision- makers participation, and a clear direction of the governmental policies that are strongly needed in achieving the sustainable transport.

  18. Assessing the readiness of contractors in implementing low carbon ...

    African Journals Online (AJOL)

    For the implementation of low carbon construction in our construction industry, the contractors need to be ready and have knowledge to adopt low carbon construction ... A checklist was established by summarizing the highest low carbon activities from each category which were sustainable site planning and management, ...

  19. Study on multimodal transport route under low carbon background

    Science.gov (United States)

    Liu, Lele; Liu, Jie

    2018-06-01

    Low-carbon environmental protection is the focus of attention around the world, scientists are constantly researching on production of carbon emissions and living carbon emissions. However, there is little literature about multimodal transportation based on carbon emission at home and abroad. Firstly, this paper introduces the theory of multimodal transportation, the multimodal transport models that didn't consider carbon emissions and consider carbon emissions are analyzed. On this basis, a multi-objective programming 0-1 programming model with minimum total transportation cost and minimum total carbon emission is proposed. The idea of weight is applied to Ideal point method for solving problem, multi-objective programming is transformed into a single objective function. The optimal solution of carbon emission to transportation cost under different weights is determined by a single objective function with variable weights. Based on the model and algorithm, an example is given and the results are analyzed.

  20. Eco-Self-Build Housing Communities: Are They Feasible and Can They Lead to Sustainable and Low Carbon Lifestyles?

    Directory of Open Access Journals (Sweden)

    Steffie Broer

    2010-07-01

    Full Text Available This paper concerns how sustainable and low carbon living can be enabled in new housing developments in the UK. It is here recognized that consumption of energy and resources is not just what goes into the building, but also long-term through occupancy and activities. Current approaches, which require housing developers to reduce the carbon emissions of the homes they build through a mixture of energy efficiency and renewable energy systems, do not sufficiently contribute to the carbon emission reductions which are necessary for meeting UK Government targets and to avoid dangerous climate change. Purchasing a home ties people in to not just direct consumption of energy (heating, hot water, electricity, but also effects other areas of consumption such as the embedded energy in the building and activities associated with the location and the type of development. Conventional business models for new housing development, operating under current government regulations, policies and targets have failed to develop housing which encourages the adoption of sustainable lifestyles taking whole life consumption into account. An alternative business model of eco-self-build communities is proposed as a way to foster desired behavior change. The feasibility of eco-self-build communities and their scope for supporting low carbon sustainable lifestyles is assessed through stakeholder interviews, and through quantitative assessment of costs, carbon emission reduction potential, and other sustainability impacts of technical and lifestyle options and their combinations. The research shows that eco-self-build communities are both feasible and have the ability to deliver low carbon lifestyles. In comparison to conventional approaches to building new housing, they have further advantages in terms of delivering wider social, environmental as well as economic sustainability objectives. If implemented correctly they could succeed in making sustainable lifestyles

  1. Investing for a low carbon economy. Special issue COP21

    International Nuclear Information System (INIS)

    Guez, Herve; Basselier, Clotilde; Bennani, Zineb; Coeslier, Manuel; Dufour, Mathilde; Dunand-Chatellet, Lea; Guez, Herve; Lauverjat Celine; Ostiari, Emmanuelle; Smia, Ladislas; Bonnin, Marguerite; Briand, Marc; Favier, Julien; Finidori, Esther; Wigley, Chris; Dobie, Jacqueline; Mary Ellis, Susannah; Kiernan, Shannon; Lefer, Elizabeth; Perrin, Elsa; Treadwell, Christopher; Zerner, Rachel

    2015-11-01

    Mirova, an asset management firm dedicated to responsible investment, has published today Investing in a low-carbon economy, a guide for investors to become COP21 compliant. Mirova's study provides an in-depth analysis highlighting the challenges of climate change and presents methods for investors to effectively measure their carbon footprint. Mirova offers a unique range of investment solutions promoting energy transition across all asset classes. COP21: mobilising private investors is a necessity To maintain the economy in a '2 degree' trajectory, it is vital to redirect savings towards companies and projects promoting energy transition. Philippe Zaouati, Head of Mirova explains: 'The energy transition can only succeed if we manage to mobilise private investors' savings. The success of COP21 therefore also depends on the ability of asset management firms to propose solutions in response to the climate challenge, whilst delivering the returns expected by investors'. Accurately measuring your carbon footprint. In response to growing demands on investors to make greener investments, Mirova, in partnership with the leading carbon strategy specialist consultant Carbone 4, has developed an innovative methodology to measure the carbon footprint of an investment portfolio. This decision-making tool assesses a company's contribution to the reduction of global greenhouse gas emissions (GGE). Measuring the overall impact of a business on the environment is an essential step towards acting against global warming. Assessing the carbon footprint is therefore an indispensable stage in the construction of portfolios contributing to energy transition. Low-carbon investments across all asset classes In order to redirect capital towards investments promoting energy transition, Mirova is proposing solutions involving all asset classes: - Renewable energy infrastructures: 100% low carbon allocation For more than 10 years now, Mirova has provided European institutions with access to

  2. Cohort profile: Examining Neighbourhood Activities in Built Living Environments in London: the ENABLE London-Olympic Park cohort.

    Science.gov (United States)

    Ram, Bina; Nightingale, Claire M; Hudda, Mohammed T; Kapetanakis, Venediktos V; Ellaway, Anne; Cooper, Ashley R; Page, Angie; Lewis, Daniel; Cummins, Steven; Giles-Corti, Billie; Whincup, Peter H; Cook, Derek G; Rudnicka, Alicja R; Owen, Christopher G

    2016-10-28

    The Examining Neighbourhood Activities in Built Living Environments in London (ENABLE London) project is a natural experiment which aims to establish whether physical activity and other health behaviours show sustained changes among individuals and families relocating to East Village (formerly the London 2012 Olympics Athletes' Village), when compared with a control population living outside East Village throughout. Between January 2013 and December 2015, 1497 individuals from 1006 households were recruited and assessed (at baseline) (including 392 households seeking social housing, 421 seeking intermediate and 193 seeking market rent homes). The 2-year follow-up rate is 62% of households to date, of which 57% have moved to East Village. Assessments of physical activity (measured objectively using accelerometers) combined with Global Positioning System technology and Geographic Information System mapping of the local area are being used to characterise physical activity patterns and location among study participants and assess the attributes of the environments to which they are exposed. Assessments of body composition, based on weight, height and bioelectrical impedance, have been made and detailed participant questionnaires provide information on socioeconomic position, general health/health status, well-being, anxiety, depression, attitudes to leisure time activities and other personal, social and environmental influences on physical activity, including the use of recreational space and facilities in their residential neighbourhood. The main analyses will examine the changes in physical activity, health and well-being observed in the East Village group compared with controls and the influence of specific elements of the built environment on observed changes. The ENABLE London project exploits a unique opportunity to evaluate a 'natural experiment', provided by the building and rapid occupation of East Village. Findings from the study will be generalisable to

  3. Cohort profile: Examining Neighbourhood Activities in Built Living Environments in London: the ENABLE London—Olympic Park cohort

    Science.gov (United States)

    Ram, Bina; Nightingale, Claire M; Hudda, Mohammed T; Kapetanakis, Venediktos V; Ellaway, Anne; Cooper, Ashley R; Page, Angie; Lewis, Daniel; Cummins, Steven; Giles-Corti, Billie; Whincup, Peter H; Cook, Derek G; Rudnicka, Alicja R; Owen, Christopher G

    2016-01-01

    Purpose The Examining Neighbourhood Activities in Built Living Environments in London (ENABLE London) project is a natural experiment which aims to establish whether physical activity and other health behaviours show sustained changes among individuals and families relocating to East Village (formerly the London 2012 Olympics Athletes' Village), when compared with a control population living outside East Village throughout. Participants Between January 2013 and December 2015, 1497 individuals from 1006 households were recruited and assessed (at baseline) (including 392 households seeking social housing, 421 seeking intermediate and 193 seeking market rent homes). The 2-year follow-up rate is 62% of households to date, of which 57% have moved to East Village. Findings to date Assessments of physical activity (measured objectively using accelerometers) combined with Global Positioning System technology and Geographic Information System mapping of the local area are being used to characterise physical activity patterns and location among study participants and assess the attributes of the environments to which they are exposed. Assessments of body composition, based on weight, height and bioelectrical impedance, have been made and detailed participant questionnaires provide information on socioeconomic position, general health/health status, well-being, anxiety, depression, attitudes to leisure time activities and other personal, social and environmental influences on physical activity, including the use of recreational space and facilities in their residential neighbourhood. Future plans The main analyses will examine the changes in physical activity, health and well-being observed in the East Village group compared with controls and the influence of specific elements of the built environment on observed changes. The ENABLE London project exploits a unique opportunity to evaluate a ‘natural experiment’, provided by the building and rapid occupation of East

  4. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery.

    Science.gov (United States)

    Li, He; Fan, Xinqi; Chen, Xing

    2016-02-01

    Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.

  5. ANALYSIS OF PRACTICAL EXPERIENCE OF THE FORMATION OF LOW-CARBON CITIES WITH THE SYSTEM OF THE BUILDING ECO-MINISTRUKTUR

    Directory of Open Access Journals (Sweden)

    KRIZHANOVSKAYA N. Y.

    2016-09-01

    Full Text Available Formulation of the problem. Urbanization, environmental deterioration and changes of climate have a negative impact on quality of life. Significantly reduce these negative effects may be through the creation of low-carbon cities. Purpose. To analyze the experience of formation of buildings eco-ministructures in low-carbon cities. Conclusions. The low-carbon cities with eco-ministructurescreated an ecosystem of high natural potential to create a comfortable living environment.

  6. An economic assessment of low carbon vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Summerton, P. [Cambridge Econometrics CE, Cambridge (United Kingdom); Harrison, P. [European Climate Foundation ECF, Brussels (Belgium)] (eds.)

    2013-03-15

    The study aimed to analyse the economic impacts of decarbonizing light duty vehicles. As part of the study, the impacts of the European Commissions proposed 2020 CO2 regulation for cars and vans have been assessed. The analysis showed that a shift to low-carbon vehicles would increase spending on vehicle technology, therefore generating positive direct employment impacts, but potentially adding 1,000-1,100 euro to the capital cost of the average new car in 2020. However, these additional technology costs would be offset by fuel savings of around 400 euro per year, indicating an effective break-even point for drivers of approximately three years. At the EU level, the cost of running and maintaining the European car fleet would become 33-35 billion euro lower each year than in a 'do nothing scenario' by 2030, leading to positive economic impacts including indirect employment gains. Data on the cost of low carbon vehicle technologies has largely been sourced from the auto industry itself, with the study supported by a core working group including Nissan, GE, the European Association of Automotive Suppliers (CLEPA), and the European Storage Battery Manufacturers Association (Eurobat). Fuel price projections for the study were based on the IEA's World Energy Outlook, while technical modelling was carried out using the transport policy scoping tool SULTAN (developed by Ricardo-AEA for the European Commission) and the Road Vehicle Cost and Efficiency Calculation Framework, also developed by Ricardo-AEA. Macro-economic modelling was done using the E3ME model, which has previously been used for several European Commission and EU government impact assessments. This report focuses on efficient use of fossil fuels in internal combustion- and hybrid electric vehicles. It will be followed by a second report, which will focus on further reducing the use of fossil fuels by also substituting them with domestically produced energy carriers, such as electricity and

  7. Low carbon Finland 2050. VTT clean energy technology strategies for society

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Simila, L.; Sipila, K. [and others

    2012-11-15

    The Low Carbon Finland 2050 project by VTT Technical Research Centre of Finland aims to assess the technological opportunities and challenges involved in reducing Finland's greenhouse gas emissions. A target for reduction is set as at least 80% from the 1990 level by 2050 as part of an international effort, which requires strong RD and D in clean energy technologies. Key findings of the project are presented in this publication, which aims to stimulate enlightening and multidisciplinary discussions on low-carbon futures for Finland. The project gathered together VTT's technology experts in clean energy production, smart energy infrastructures, transport, buildings, and industrial systems as well as experts in energy system modelling and foresight. VTT's leading edge 'Low Carbon and Smart Energy' enables new solutions with a demonstration that is the first of its kind in Finland, and the introduction of new energy technology onto national and global markets. (orig.)

  8. Low carbon Finland 2050. VTT clean energy technology strategies for society

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T; Simila, L; Sipila, K [and others

    2012-11-15

    The Low Carbon Finland 2050 project by VTT Technical Research Centre of Finland aims to assess the technological opportunities and challenges involved in reducing Finland's greenhouse gas emissions. A target for reduction is set as at least 80% from the 1990 level by 2050 as part of an international effort, which requires strong RD and D in clean energy technologies. Key findings of the project are presented in this publication, which aims to stimulate enlightening and multidisciplinary discussions on low-carbon futures for Finland. The project gathered together VTT's technology experts in clean energy production, smart energy infrastructures, transport, buildings, and industrial systems as well as experts in energy system modelling and foresight. VTT's leading edge 'Low Carbon and Smart Energy' enables new solutions with a demonstration that is the first of its kind in Finland, and the introduction of new energy technology onto national and global markets. (orig.)

  9. Investigating Low-Carbon City: Empirical Study of Shanghai

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2018-04-01

    Full Text Available A low-carbon economy is an inevitable choice for achieving economic and ecological sustainable development. It is of significant importance to analyze a city’s low-carbon economy development level scientifically and reasonably. In order to achieve this goal, we propose an urban low-carbon economic development level evaluation model based on the matter-element extension method. First, we select some indicators from the existing indicator system based on past research and experience. Then, a matter-element model is established on the basis of weight to evaluate the level of a city’s low-carbon, the critical value of each index is determined through the classical domain and the section domain, calculating the correlation degree of a single index and a comprehensive index. Finally, we analyze the low-carbon economy development status and future development trends according to the analysis results. In this study, we select Shanghai as an empirical study—the results show that Shanghai is a city with a low-carbon level and there is a trend of further improvement in Shanghai’s low-carbon economy. But its low carbon construction and low carbon technology investment are relatively low. In summary, this method can provide another angle for evaluating a city’s low-carbon economy.

  10. Logistics in a low carbon concept: Connotation and realization way

    Science.gov (United States)

    Zheng, Chaocheng; Qiu, Xiaoying; Mao, Jiarong

    2017-01-01

    Low-carbon logistics has become a trend for the logistics industry-as a high-energy consumption industry, continuation of its previous operating mode has been significantly behind the times. So logistics industry must release lower carbon emissions. This paper sort out the literature home and abroad from three aspects, that is, the definition of low-carbon logistics, low-carbon logistics implementation mechanisms or measures, and low carbon design quantitative models. The research shows: low-carbon logistics needed to implemented both in enterprise' macro and micro level, which means the government should provide relevant policy support and micro enterprises should be actively sought from all sectors of the logistics in energy saving. In practice, low-carbon logistics optimization models are effective tools for enterprises to implement emission reduction.

  11. Plasticity of low carbon stainless steels

    International Nuclear Information System (INIS)

    Bulat, S.I.; Fel'dgandler, Eh.G.; Kareva, E.N.

    1975-01-01

    In the temperature range 800-1200 0 C and with strain rates of from 10 -3 to 3 s -1 , austenitic (000Kh18N12) and austenitic-ferrite (000Kh26N6) very low carbon stainless steels containing 0.02-0.03% C exhibit no higher resilience than corresponding ordinary steels containing 0.10-0.12% C. However, the plasticity of such steels (particularly two-phase steels) at 900-1100 0 C is appreciably inferior owing to the development of intergranular brittle fracture. Pressure treatment preceded by partial cooling of the surface to 850 0 C yields rolled and forged products with acceptable indices but is inconvenient technically. At the Zlatoustovsk and Ashin metallurgical plants successful tests have been performed involving the forging and rolling of such steels heated to 1280-1300 0 C without partial cooling; it was necessary to improve the killing conditions, correct the chemical composition (increasing the proportion of ferrite) and take measures against heat loss. (author)

  12. Low-carbon infrastructure strategies for cities

    Science.gov (United States)

    Kennedy, C. A.; Ibrahim, N.; Hoornweg, D.

    2014-05-01

    Reducing greenhouse gas emissions to avert potentially disastrous global climate change requires substantial redevelopment of infrastructure systems. Cities are recognized as key actors for leading such climate change mitigation efforts. We have studied the greenhouse gas inventories and underlying characteristics of 22 global cities. These cities differ in terms of their climates, income, levels of industrial activity, urban form and existing carbon intensity of electricity supply. Here we show how these differences in city characteristics lead to wide variations in the type of strategies that can be used for reducing emissions. Cities experiencing greater than ~1,500 heating degree days (below an 18 °C base), for example, will review building construction and retrofitting for cold climates. Electrification of infrastructure technologies is effective for cities where the carbon intensity of the grid is lower than ~600 tCO2e GWh-1 whereas transportation strategies will differ between low urban density (~6,000 persons km-2) cities. As nation states negotiate targets and develop policies for reducing greenhouse gas emissions, attention to the specific characteristics of their cities will broaden and improve their suite of options. Beyond carbon pricing, markets and taxation, governments may develop policies and target spending towards low-carbon urban infrastructure.

  13. Low carbon manganese-nickel-niobium steel

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Hulka, K.

    1983-11-01

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 1100 0 C to 1300 0 C and of finish rolling temperatures between 710 0 C and 930 0 C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author) [pt

  14. Low-carbon energy generates public health savings in California

    Science.gov (United States)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    California's goal to reduce greenhouse gas (GHG) emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM2.5) and ozone (O3). Here we evaluate how business-as-usual (BAU) air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step). Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy-economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP) 8.5 future climate. Annual-average PM2.5 and O3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths) and mortality rate (deaths per 100 000) were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM2.5 and O3 exposure. Net emissions reductions across all sectors are -36 % for PM0.1 mass, -3.6 % for PM2.5 mass, -10.6 % for PM2.5 elemental carbon, -13.3 % for PM2.5 organic carbon, -13.7 % for NOx, and -27.5 % for NH3. Predicted deaths associated with air

  15. Low-carbon energy generates public health savings in California

    Directory of Open Access Journals (Sweden)

    C. B. Zapata

    2018-04-01

    Full Text Available California's goal to reduce greenhouse gas (GHG emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM2.5 and ozone (O3. Here we evaluate how business-as-usual (BAU air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step. Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy–economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP 8.5 future climate. Annual-average PM2.5 and O3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths and mortality rate (deaths per 100 000 were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM2.5 and O3 exposure. Net emissions reductions across all sectors are −36 % for PM0.1 mass, −3.6 % for PM2.5 mass, −10.6 % for PM2.5 elemental carbon, −13.3 % for PM2.5 organic carbon, −13.7 % for NOx, and −27.5 % for NH3

  16. A Study on Life Cycle CO2 Emissions of Low-Carbon Building in South Korea

    Directory of Open Access Journals (Sweden)

    Su-Hyun Cho

    2016-06-01

    Full Text Available There have been much interest and many efforts to control global warming and reduce greenhouse gas (GHG emissions throughout the world. Recently, the Republic of Korea has also increased its GHG reduction goal and searched for an implementation plan. In buildings, for example, there have been technology developments and deployment policies to reduce GHG emissions from a life cycle perspective, covering construction materials, building construction, use of buildings and waste disposal. In particular, Korea’s Green Standard for Energy and Environmental Design is a certification of environmentally-friendly buildings for their energy saving and reduction of environmental pollution throughout their lives. In fact, the demand and adoption of the certification are rising every year. In construction materials and buildings, as a result, an environmentally-friendly aspect has become crucial. The importance of construction material and building development technologies that can reduce environmental load by diminishing GHG emissions in buildings has emerged. Moreover, there has been a rising necessity to verify the GHG reduction effects of buildings. To assess the reduction of carbon emissions in the buildings built with low-carbon construction technologies and materials, therefore, this study estimated life cycle carbon emissions in reference buildings in which general construction materials are used and in low-carbon buildings. For this, the carbon emissions and their reduction from construction materials (especially concrete between conventional products and low-carbon materials were estimated, using Life Cycle Assessment (LCA. After estimating carbon emissions from a building life cycle perspective, their reduction in low-carbon buildings compared to the reference buildings was reviewed. The results found that compared to conventional buildings, low-carbon buildings revealed a 25% decrease in carbon emissions in terms of the reduction of Life Cycle

  17. Media discourses of low carbon housing: The marginalisation of social and behavioural dimensions within the British broadsheet press.

    Science.gov (United States)

    Cherry, Catherine; Hopfe, Christina; MacGillivray, Brian; Pidgeon, Nick

    2015-04-01

    Decarbonising housing is a key UK government policy to mitigate climate change. Using discourse analysis, we assess how low carbon housing is portrayed within British broadsheet media. Three distinct storylines were identified. Dominating the discourse, Zero carbon housing promotes new-build, low carbon houses as offering high technology solutions to the climate problem. Retrofitting homes emphasises the need to reduce emissions within existing housing, tackling both climate change and rising fuel prices. A more marginal discourse, Sustainable living, frames low carbon houses as related to individual identities and 'off-grid' or greener lifestyles. Our analysis demonstrates that technical and economic paradigms dominate media discourse on low carbon housing, marginalising social and behavioural aspects. © The Author(s) 2013.

  18. Metal supply constraints for a low-carbon economy?

    NARCIS (Netherlands)

    Koning, A. de; Kleijn, R.; Huppes, G.; Sprecher, B.; Engelen, G. van; Tukker, A.

    2018-01-01

    Low-carbon energy systems are more metal-intensive than traditional energy systems. Concerns have been expressed that this may hamper the transition to a low-carbon economy. We estimate the required extraction of Fe, Al, Cu, Ni, Cr, In, Nd, Dy, Li, Zn, and Pb until 2050 under several

  19. Contingency theory, climate change, and low-carbon operations management

    DEFF Research Database (Denmark)

    Furlan Matos Alves, Marcelo Wilson; Lopes de Sousa Jabbour, Ana Beatriz; Kannan, Devika

    2017-01-01

    of sustainability managers on the adoption of low-carbon operations management practices and their related benefits. Design/methodology/approach: To achieve this goal, this research uses NVivo software to gather evidence from interviews conducted with ten high-level managers in sustainability and related areas from...... seven leading companies located in Brazil. Findings: The authors present four primary results: a proposal of an original framework to understand the relationship between contingency theory, changes in organisational structure to embrace low-carbon management, adoption of low-carbon operations practices......-change contingencies at the supply chain level, organisational structure for low-carbon management and low-carbon operations management practices and benefits. This research also highlights evidence from an emerging economy and registers future research propositions....

  20. Low carbon transition and sustainable development path of tourism industry

    Science.gov (United States)

    Zhu, Hongbing; Zhang, Jing; Zhao, Lei; Jin, Shenglang

    2017-05-01

    The low carbon transition is as much a transformative technology shift as it represents a response to global environment challenges. The low carbon paradigm presents a new direction of change for tourism industry. However, the lack of theoretical frameworks on low carbon transformation in tourism industry context provides a significant knowledge gap. This paper firstly investigates the relationships between low carbon and sustainable development, followed by exploring the existing challenges of tourism sustainable development. At last, this paper presents a sustainable development path framework for low carbon transition of tourism industry, which include accelerating deployment of renewable energy, energy-saving green building construction, improving green growth investment, and adopting a sustainable consumption and production system, in order to promote energy and water efficiency, waste management, GHG emissions mitigation and eventually enhance its sustainability.

  1. China's Development of Low-Carbon Eco-Cities and Associated Indicator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); He, Gang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    China's urban population surpassed its rural population historically in 2011, when the number of Chinese living in towns and cities reached about 690 million1. In the years to come, cities in China will face major challenges as their rapidly increasing populations burden already crowded infrastructure systems and exacerbate environmental and climate change issues, threatening public health and quality of life. Low-carbon cities may be key to addressing those challenges, especially as regards mitigating and adapting to climate change. Government entities at both the central and local level have moved aggressively on building low-carbon eco-cities. According to statistics reported by the Chinese Society for Urban Studies, by February of 2011, China will have 230 cities at the prefecture-and-above level that have proposed to establish themselves as “eco-cities,” accounting for 80.1% of the 287 such cities nationally. Of those 230 cities, 133, or 46.3%, have established targets to develop specifically as “lowcarbon cities” (Chinese Society for Urban Studies 2011). Given the proposed scale of the effort, China’s potential success or failure in demonstrating and implementing low-carbon eco-cities could greatly affect how the world addresses both the climate change impacts of urbanization and the sustainable development of cities. Despite the multiple guidelines that have been developed, it remains unclear what defines a low-carbon eco-city. Additionally, although more than 100 indicators have been used or proposed for assessing such cities, few relate directly to energy use or carbon emissions. Nonetheless, policy makers and leaders continue to demand comprehensive toolboxes to facilitate development of low-carbon eco-cities. This paper presents the results of an extensive literature review of the development of low-carbon eco-cities in China. The paper also qualitatively and quantitatively analyzes 11 major indicator systems that researchers, planners

  2. Bridging analytical approaches for low-carbon transitions

    Science.gov (United States)

    Geels, Frank W.; Berkhout, Frans; van Vuuren, Detlef P.

    2016-06-01

    Low-carbon transitions are long-term multi-faceted processes. Although integrated assessment models have many strengths for analysing such transitions, their mathematical representation requires a simplification of the causes, dynamics and scope of such societal transformations. We suggest that integrated assessment model-based analysis should be complemented with insights from socio-technical transition analysis and practice-based action research. We discuss the underlying assumptions, strengths and weaknesses of these three analytical approaches. We argue that full integration of these approaches is not feasible, because of foundational differences in philosophies of science and ontological assumptions. Instead, we suggest that bridging, based on sequential and interactive articulation of different approaches, may generate a more comprehensive and useful chain of assessments to support policy formation and action. We also show how these approaches address knowledge needs of different policymakers (international, national and local), relate to different dimensions of policy processes and speak to different policy-relevant criteria such as cost-effectiveness, socio-political feasibility, social acceptance and legitimacy, and flexibility. A more differentiated set of analytical approaches thus enables a more differentiated approach to climate policy making.

  3. Low carbon transport : a greener future

    Science.gov (United States)

    2009-07-01

    This strategy is intended to enable the UK to meet the requirements of the carbon budgets set under the Climate Change Act 2008. Implementation of the strategy will be taken forward in a way that recognises and respects the policy responsibilities an...

  4. Green growth: Policies for transition towards low carbon economies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Thorvald

    2012-11-01

    For the next fifty years and beyond, the world faces twin challenges: -Enhancing economic opportunities and living standards for a growing global population; -Addressing the environmental threats that, if left largely unaddressed, could undermine our abilities for longer term economic growth and development and the ability to reduce poverty. For twenty years the world community has attempted to face up to these challenges, notably global warming by a 'top down' international negotiation process under the auspices of the UN Framework Convention on Climate Change (UNFCCC). The paper discusses why this process has failed so far. To get out of this impasse, a 'bottom up' policy framework for green growth based on national preferences, possibilities and policies should be considered and is discussed in some detail. However, while green growth may enhance the transition towards low-carbon economies in the short and medium term, it is argued that a 'Global Green Deal' with regional and global rules of the game is needed to reduce the risk for unsustainable development in the longer term.(auth)

  5. corrosion response of low carbon steel in tropical road mud

    African Journals Online (AJOL)

    Dr Obe

    Corrosion Mitigation efforts using readily available anti- corrosion coatings to protect low carbon steel test coupons against the ... The following protective coating devices were effective: ..... 2 West, J.M (1986): Basic Corrosion and Oxidation,.

  6. Wood-burning stoves in low-carbon dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Afshari, Alireza

    2013-01-01

    The European climate change strategy intends to encourage the erection of low-carbon buildings and the upgrading of existing buildings to low-carbon level. At the same time, it is an EU vision to maximise the use of renewable energy resources. In this strategy, small-scale wood......-burning is an overlooked source for heating. A wood-burning stove is considered low-carbon technology since its fuel is based on local residual biomass. A field study investigating how modern wood-burning stoves operated in modern single-family houses showed that intermittent heat supply occasionally conflicted...... combustion technology and automatics, controlling the interplay between stove and house, can make wood-burning stoves suitable for low-carbon dwellings and meet the remaining heat demand during the coldest period. It was further concluded that new guidelines need to be elaborated about how to install...

  7. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  8. Distributed Leadership in a Low-Carbon City Agenda

    Directory of Open Access Journals (Sweden)

    Azalia Mohamed

    2016-07-01

    Full Text Available This paper uses Spillane’s (2001 theory and Gronn’s (2000 concerted efforts approach to examine distributed leadership in a low-carbon city agenda. The main purpose of the paper is to find empirical evidence of a relationship between distributed leadership and the achievement of the agenda. Eight constructs emerged that informed our understanding of distributed leadership dimensions within the low-carbon city framework: vision, organizational framework, organizational culture, consensus, instructional programs, expertise, team leader leadership, and team member leadership. The evidence shows that there is a positive relationship between distributed leadership and the outcome of the low-carbon city agenda, and that a dispersed pattern in distributing leadership is required to enhance community engagement. The findings also suggest that an organizational culture that facilitates multiple sources of leadership may largely contribute to the effectiveness of distributed leadership practices in realizing the low-carbon city agenda.

  9. Final technical report: Certification of low carbon farming practices

    OpenAIRE

    TUOMISTO HANNA LEENA; ANGILERI Vincenzo; DE CAMILLIS CAMILLO; LOUDJANI Philippe; PELLETIER NATHANIEL; HAASTRUP Palle; NISINI SCACCHIAFICHI Luigi

    2013-01-01

    In 2010, the European Parliament asked the European Commission to carry out a pilot project on the “certification of low-carbon farming practices in the European Union” to promote reductions of GHG emissions from farming. The overall aim of the project was to assess how efforts of European farmers to produce agricultural products with carbon-neutral or low-carbon-footprint farming practices might be incorporated into policy approaches (possibly via certification), so as to promote the reducti...

  10. Scenarios of technology adoption towards low-carbon cities

    International Nuclear Information System (INIS)

    Mohareb, Eugene A.; Kennedy, Christopher A.

    2014-01-01

    Technological change has often been presented as a readily accepted means by which long-term greenhouse gas (GHG) emission reductions can be achieved. Cities are the future centers of economic growth, with the global population becoming predominantly urban; hence, increases or reductions of GHG emissions are tied to their energy strategies. This research examines the likelihood of a developed world city (the Greater Toronto Area) achieving an 80% reduction in GHG emissions through policy-enabled technological change. Emissions are examined from 3 major sources: light duty passenger vehicles, residential buildings and commercial/institutional buildings. Logistic diffusion curves are applied for the adoption of alternative vehicle technologies, building retrofits and high performance new building construction. This research devises high, low and business-as-usual estimates of future technological adoption and finds that even aggressive scenarios are not sufficient to achieve an 80% reduction in GHG emissions by 2050. This further highlights the challenges faced in maintaining a relatively stable climate. Urban policy makers must consider that the longer the lag before this transition occurs, the greater the share of GHG emissions mitigation that must addressed through behavioural change in order to meet the 2050 target, which likely poses greater political challenges. - Highlights: • Explores policy options in a city targeting an 80% GHG emission reduction target by 2050. • Aggressive building code changes will have minimal impact on GHG mitigation. • Support of low-carbon electricity for the majority of generation necessary by 2050. • Internal combustion engine use must be mostly eliminated from the vehicle stock. • Policies supporting elimination of physical exchange space should be promoted

  11. Enabling 3D Tele-Immersion with Live Reconstructed Mesh Geometry with Fast Mesh Compression and Linear Rateless Coding

    NARCIS (Netherlands)

    R.N. Mekuria (Rufael); M. Sanna (Michele); E Izquierdo (Ebroul); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago)

    2014-01-01

    htmlabstract3D Tele-immersion enables participants in remote locations to share, in real-time, an activity. It offers users interactive and immersive experiences, but it challenges current media streaming solutions. Work in the past has mainly focused on the efficient delivery of image-based 3D

  12. Enabling 3D Tele-Immersion with Live Reconstructed Mesh Geometry with Fast Mesh Compression and Linear Rateless Coding

    NARCIS (Netherlands)

    Mekuria, R.; Sanna, M.; Izquierdo, E; Bulterman, D.; Garcia, P.

    2014-01-01

    3-D tele-immersion (3DTI) enables participants in remote locations to share, in real time, an activity. It offers users interactive and immersive experiences, but it challenges current media-streaming solutions. Work in the past has mainly focused on the efficient delivery of image-based 3-D videos

  13. Nested barriers to low-carbon infrastructure investment

    Science.gov (United States)

    Granoff, Ilmi; Hogarth, J. Ryan; Miller, Alan

    2016-12-01

    Low-carbon, 'green' economic growth is necessary to simultaneously improve human welfare and avoid the worst impacts of climate change and environmental degradation. Infrastructure choices underpin both the growth and the carbon intensity of the economy. This Perspective explores the barriers to investing in low-carbon infrastructure and some of the policy levers available to overcome them. The barriers to decarbonizing infrastructure 'nest' within a set of barriers to infrastructure development more generally that cause spending on infrastructure--low-carbon or not--to fall more than 70% short of optimal levels. Developing countries face additional barriers such as currency and political risks that increase the investment gap. Low-carbon alternatives face further barriers, such as commercialization risk and financial and public institutions designed for different investment needs. While the broader barriers to infrastructure investment are discussed in other streams of literature, they are often disregarded in literature on renewable energy diffusion or climate finance, which tends to focus narrowly on the project costs of low- versus high-carbon options. We discuss how to overcome the barriers specific to low-carbon infrastructure within the context of the broader infrastructure gap.

  14. Visualizing the application of GIS in transformation towards a sustainable development and a low carbon society

    International Nuclear Information System (INIS)

    Ahmad, M H; Ariffin, A; Malik, T A

    2014-01-01

    A strategy for sustainable development is a significant milestone on the road to a more socially, economically and environmentally responsible society. It creates a framework within which the stakeholders can make a strong contribution to a better future. Because of the merits and growing interest in sustainable development, the race is on for researchers and stakeholders in the construction sector to initiate actions to reduce the negative impacts of development and sharpen their competitive edge. The cities should be created with a vision which supports harmonious communities and living conditions through sustainable urban development. The resources must be used efficiently while reducing the development impact on human health and environment during the buildings' life cycle. Environmental auditing and pressure-state response based models to monitor sustainable development in Malaysia should be developed. A data availability and sharing system should be developed and implemented to facilitate for the use in the establishment of sustainable development and low carbon society. Ideas which affect millions of people and guide the policies of nations must be accessible to all. Only thus can they permeate the institutions from the local to the global level. Creating sustainable development and low carbon societies depends on the knowledge and involvement of all stakeholders in the industry. So what is our level of understanding of GIS and its application? The development of geospatial data in Malaysia is important because the successful implementation of sustainable development and low carbon projects depend largely on the availability of geospatial information. It would facilitate the stakeholders and resolve some of the problems regarding the availability, quality, organisation, accessibility and sharing of spatial information. The introduction of GIS may change the way for better sustainable urban development and low carbon society performance. The use of GIS

  15. Visualizing the application of GIS in transformation towards a sustainable development and a low carbon society

    Science.gov (United States)

    Ahmad, M. H.; Ariffin, A.; Malik, T. A.

    2014-02-01

    A strategy for sustainable development is a significant milestone on the road to a more socially, economically and environmentally responsible society. It creates a framework within which the stakeholders can make a strong contribution to a better future. Because of the merits and growing interest in sustainable development, the race is on for researchers and stakeholders in the construction sector to initiate actions to reduce the negative impacts of development and sharpen their competitive edge. The cities should be created with a vision which supports harmonious communities and living conditions through sustainable urban development. The resources must be used efficiently while reducing the development impact on human health and environment during the buildings' life cycle. Environmental auditing and pressure-state response based models to monitor sustainable development in Malaysia should be developed. A data availability and sharing system should be developed and implemented to facilitate for the use in the establishment of sustainable development and low carbon society. Ideas which affect millions of people and guide the policies of nations must be accessible to all. Only thus can they permeate the institutions from the local to the global level. Creating sustainable development and low carbon societies depends on the knowledge and involvement of all stakeholders in the industry. So what is our level of understanding of GIS and its application? The development of geospatial data in Malaysia is important because the successful implementation of sustainable development and low carbon projects depend largely on the availability of geospatial information. It would facilitate the stakeholders and resolve some of the problems regarding the availability, quality, organisation, accessibility and sharing of spatial information. The introduction of GIS may change the way for better sustainable urban development and low carbon society performance. The use of GIS is to

  16. Hydrogen - the answer to our prayer for low carbon transport?

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Albert; Kershaw, Ian; Vinke, Jan [Ricardo Strategic Consulting GmbH, Muenchen (Germany)

    2008-07-01

    As political, social and economic pressure mounts, the automotive industry needs low carbon solutions - but how do we get there? Despite higher fuel prices and pressure to reduce vehicle CO{sub 2} in many countries, consumers assume limited personal responsibility for reducing carbon emissions from their road transport. The automotive industry is challenged with developing low carbon vehicles without compromise on cost, performance or practicality. The options for reducing CO{sub 2} emissions from road transport range from improved traffic management and driving behaviour, to improved vehicle technologies. Incremental efficiency improvements will be the most cost-effective way of improving powertrains, while economics and availability will continue to limit use of fuel cells, hydrogen and biofuels. We propose an evolutionary route of downsized combustion engines, increasing hybrid electric capability and more biofuel blends, supplemented by lower carbon plug-in electric power for short journeys. The transition to low carbon transport will require policies to encourage consumer demand. (orig.)

  17. Low Carbon Supplier Selection in the Hotel Industry

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hsu

    2014-05-01

    Full Text Available This study presents a model for evaluating the carbon and energy management performance of suppliers by using multiple-criteria decision-making (MCDM. By conducting a literature review and gathering expert opinions, 10 criteria on carbon and energy performance were identified to evaluate low carbon suppliers using the Fuzzy Delphi Method (FDM. Subsequently, the decision-making trial and evaluation laboratory (DEMATEL method was used to determine the importance of evaluation criteria in selecting suppliers and the causal relationships between them. The DEMATEL-based analytic network process (DANP and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR were adopted to evaluate the weights and performances of suppliers and to obtain a solution under each evaluation criterion. An illustrative example of a hotel company was presented to demonstrate how to select a low carbon supplier according to carbon and energy management. The proposed hybrid model can help firms become effective in facilitating low carbon supply chains in hotels.

  18. Global low-carbon transition and China's response strategies

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2016-12-01

    Full Text Available The Paris Agreement establishes a new mechanism for post-2020 global climate governance, and sets long-term goals for global response to climate change, which will accelerate worldwide low-carbon transformation of economic development pattern, promote the revolutionary reform of energy system, boost a fundamental change in the mode of social production and consumption, and further the civilization of human society from industrial civilization to eco-civilization. The urgency of global low-carbon transition will reshape the competition situation of world's economy, trade and technology. Taking the construction of eco-civilization as a guide, China explores green and low-carbon development paths, establishes ambitious intended nationally determined contribution (INDC targets and action plans, advances energy production and consumption revolution, and speeds up the transformation of economic development pattern. These strategies and actions not only confirm to the trend of the world low-carbon transition, but also meet the intrinsic requirements for easing the domestic resources and environment constraints and realizing sustainable development. They are multi-win-win strategies for promotion of economic development and environmental protection and mitigation of carbon emissions. China should take the global long-term emission reduction targets as a guide, and formulate medium and long-term low-carbon development strategy, build the core competitiveness of low-carbon advanced technology and development pattern, and take an in-depth part in global governance so as to reflect the responsibility of China as a great power in constructing a community of common destiny for all mankind and addressing global ecological crisis.

  19. Strategies for Low-Carbon Green Growth and Urban Management in Korea

    Directory of Open Access Journals (Sweden)

    Jichung Yang

    Full Text Available ABSTRACT: National policies and strategies for low-carbon green growth in Korea are reviewed in this study. Providing standards and guidelines for urban comprehensive planning and management plans is necessary so that the series of plans can deal with possible effects from climate changes. Urban planning guidelines for management and improvements to achieve low carbon green growth were set up and implemented, focusing on institutional and regulatory foundations. These deal with climate change influences on urban planning, reduction of green house gas emissions and elevation of energy efficiency based on plans of land use units. In the case of Seoul city, transit-oriented compact development, public transportation-oriented structure, green space expansion, and pleasant living spaces are implemented in relation to urban structure and land use. We should suggest systematic and comprehensive countermeasures against greenhouse gas emissions and climate changes in terms of spatial structure, transportation systems, natural resource conservation, environment management, energy and open spaces. For the Seoul mega-city, plans show the capabilities of the policy department including many policy tools. Reflecting smart city, ubiquitous city, and U-Eco city concepts and human behavior, we should move towards increasing efficiency and maintaining sustainable economic growth. KEYWORDS: Low-carbon green growth, urban management, Korea, Seoul

  20. Possibilities and Challenges designing low-carbon-energy technologies

    DEFF Research Database (Denmark)

    Bjarklev, Araceli

    Though there is broad consensus that one of the solutions to the current environmental challenge will be based on the use of low-carbon technologies, and even though there is a big potential to turn to a more sustainable design and innovation, there are several elements that need to be taken...... as a study object and discusses the question: What are the main possibilities and challenges when designing low-carbon illumination technologies? To answer this question, we use a systemic approach including environmental, economic, energy and political issues using relevant concepts from the Ecological...

  1. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    Science.gov (United States)

    Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  2. A microfluidic-enabled mechanical microcompressor for the immobilization of live single- and multi-cellular specimens.

    Science.gov (United States)

    Yan, Yingjun; Jiang, Liwei; Aufderheide, Karl J; Wright, Gus A; Terekhov, Alexander; Costa, Lino; Qin, Kevin; McCleery, W Tyler; Fellenstein, John J; Ustione, Alessandro; Robertson, J Brian; Johnson, Carl Hirschie; Piston, David W; Hutson, M Shane; Wikswo, John P; Hofmeister, William; Janetopoulos, Chris

    2014-02-01

    A microcompressor is a precision mechanical device that flattens and immobilizes living cells and small organisms for optical microscopy, allowing enhanced visualization of sub-cellular structures and organelles. We have developed an easily fabricated device, which can be equipped with microfluidics, permitting the addition of media or chemicals during observation. This device can be used on both upright and inverted microscopes. The apparatus permits micrometer precision flattening for nondestructive immobilization of specimens as small as a bacterium, while also accommodating larger specimens, such as Caenorhabditis elegans, for long-term observations. The compressor mount is removable and allows easy specimen addition and recovery for later observation. Several customized specimen beds can be incorporated into the base. To demonstrate the capabilities of the device, we have imaged numerous cellular events in several protozoan species, in yeast cells, and in Drosophila melanogaster embryos. We have been able to document previously unreported events, and also perform photobleaching experiments, in conjugating Tetrahymena thermophila.

  3. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  4. Industrial trial to produce a low clinker, low carbon cement

    Directory of Open Access Journals (Sweden)

    Vizcaíno-Andrés, L. M.

    2015-03-01

    Full Text Available A preliminary assessment of conditions for the industrial manufacture of a new cementitious system based on clinker-calcined clay and limestone, developed by the authors, referred as “low carbon cement” is presented. The new cement enables the substitution of more than 50% of the mass of clinker without compromising performance. The paper presents the follow-up of an industrial trial carried out in Cuba to produce 130 tonnes of the new cement at a cement plant. The new material proved to fulfill national standards in applications such as the manufacture of hollow concrete blocks and precast concrete. No major differences either in the rheological or mechanical properties were found when compared with Portland cement. Environmental assessment of the ternary cement was made, which included comparison with other blended cements produced industrially in Cuba. The new cement has proven to contribute to the reduction of above 30% of carbon emissions on cement manufacture.Se presenta la evaluación preliminar de las condiciones de fabricación industrial de un nuevo sistema cementicio a partir del empleo de clínquer; arcillas calcinadas y piedra caliza; desarrollado por los autores; denominado “cemento de bajo carbono”. El nuevo cemento posibilita la reducción de más de un 50% de la masa de clínquer; sin comprometer el comportamiento del material. El presente trabajo presenta el monitoreo de la producción industrial en una planta en Cuba; de 130 t del nuevo cemento. El cemento obtenido cumple con las regulaciones nacionales de calidad y su empleo tiene similar rendimiento que el cemento Pórtland para la producción de bloques y hormigón de 25 MPa. Se realiza el análisis de impacto ambiental del cemento ternario mediante la comparación con otros cementos producidos industrialmente. El nuevo cemento puede contribuir a la reducción de más del 30% de las emisiones de CO2 asociadas a la manufactura de cemento.

  5. Developing low carbon policies for road transport in Poland

    NARCIS (Netherlands)

    Kok, R.; Rahman, S.A.

    2010-01-01

    This paper presents the results of work done for the World Bank to develop low carbon policies for road transport in Poland. Here, we outline the development of Green House Gas (GHG) emissions, develop a Business As Usual (BAU) scenario based on social-economic-, infrastructure-, car market, vehicle

  6. Renewable energy and low carbon economy transition in India

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Fujino, Junichi

    2010-01-01

    that aligns India’s emissions to an optimal 450 ppmv CO2-eq. stabilization global response. The second emissions pathway assumes an underlying sustainable development pattern. A low carbon future will be good for renewable energy under both the development pathways, though the share of renewable energy...

  7. Fusion power in a future low carbon global electricity system

    DEFF Research Database (Denmark)

    Cabal, H.; Lechón, Y.; Bustreo, C.

    2017-01-01

    Fusion is one of the technologies that may contribute to a future, low carbon, global energy supply system. In this article we investigate the role that it may play under different scenarios. The global energy model ETM (originally EFDA TIMES Model) has been used to analyse the participation...

  8. Funding pathways to a low-carbon transition

    Science.gov (United States)

    Foulds, Chris; Christensen, Toke Haunstrup

    2016-07-01

    The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low-carbon aspirations.

  9. intercritical heat treatments effects on low carbon steels quenched

    African Journals Online (AJOL)

    DR B. A. EZEKOYE

    Department of Physics and Astronomy, University of Nigeria, Nsukka. 2. E-mail: benjamin.ezekoye@unn.edu.ng; bezekoye@yahoo.com. ABSTRACT. Six low carbon steels containing carbon in the range 0.13-0.18wt%C were studied after intercritical quenching, intercritical quenching with low temperature tempering, ...

  10. Low Carbon and Climate Resilient Investments: Is South Africa ...

    African Journals Online (AJOL)

    . The aim of this paper is to review South Africa's response to climate change, with a special focus on investments in low carbon and climate resilient action. It highlights the successes to date and the challenges that still have to be addressed.

  11. Construction and applied research of low-carbon building evaluation index system

    Science.gov (United States)

    Liu, Zhongwen; Dong, Xiaohong; Gao, Pengzhao

    2017-04-01

    Energy conservation in building is a key link on alleviating energy-deficient contradiction, improving the quality of human life environment, and realizing sustainable development in our country. In this paper, we construct low-carbon building evaluation index system and evaluation method from five aspects—low-carbon structure, low-carbon materials, low-carbon energy, low-carbon technology and low-carbon management. Finally, taking “Solar Valley” in Dezhou as an example, we make the evaluation to its situation of low-carbon building.

  12. Creating a low carbon tourism community by public cognition, intention and behaviour change analysisa case study of a heritage site (Tianshan Tianchi, China

    Directory of Open Access Journals (Sweden)

    Wu Wenjie

    2017-06-01

    Full Text Available This study attempts to explore the establishment of a low-carbon tourism community by public cognition, intention, and behaviour change analysis in a case study of a heritage site, China. Low carbon tourism advocates a way of travel with low energy consumption, low pollution and low CO2 emissions during personal activities. Behaviour change is not only influenced by internal individual aspects including a person’s awareness, attitudes, and capacity to change, but is also driven by external social aspects including the culture and environments in which a person lives. In this paper, questionnaire surveys and field interviews were used to obtain basic information, and with reference to TPB, studied and analyzed the characteristics of cognition, intention and behaviour change practice by low carbon tourism community economy participants. With the help of SPSS analysis software, we found that a person’s educational level or occupation might affect cognition of low carbon tourism, and motives for participating in low carbon tourism could reflect the public’s perception of its emotional value, cognitive value and functional value. Most respondents knew about low carbon tourism; however, when putting it into practice, habitual behaviour was the main barrier for tourists while the residents were passive and followed the needs and choices of the tourists. Therefore, a comprehensive low carbon tourism community system was proposed not only for addressing the aspects of awareness, intention, and practice from individual behavior, but also for covering policy, infrastructure, institution systems and mechanisms at the community level.

  13. Creating a low carbon tourism community by public cognition, intention and behaviour change analysisa case study of a heritage site (Tianshan Tianchi, China)

    Science.gov (United States)

    Wu, Wenjie; Zhang, Xiaolei; Yang, Zhaoping; Wall, Geoffrey; Wang, Fang

    2017-06-01

    This study attempts to explore the establishment of a low-carbon tourism community by public cognition, intention, and behaviour change analysis in a case study of a heritage site, China. Low carbon tourism advocates a way of travel with low energy consumption, low pollution and low CO2 emissions during personal activities. Behaviour change is not only influenced by internal individual aspects including a person's awareness, attitudes, and capacity to change, but is also driven by external social aspects including the culture and environments in which a person lives. In this paper, questionnaire surveys and field interviews were used to obtain basic information, and with reference to TPB, studied and analyzed the characteristics of cognition, intention and behaviour change practice by low carbon tourism community economy participants. With the help of SPSS analysis software, we found that a person's educational level or occupation might affect cognition of low carbon tourism, and motives for participating in low carbon tourism could reflect the public's perception of its emotional value, cognitive value and functional value. Most respondents knew about low carbon tourism; however, when putting it into practice, habitual behaviour was the main barrier for tourists while the residents were passive and followed the needs and choices of the tourists. Therefore, a comprehensive low carbon tourism community system was proposed not only for addressing the aspects of awareness, intention, and practice from individual behavior, but also for covering policy, infrastructure, institution systems and mechanisms at the community level.

  14. FLUKA-LIVE-an embedded framework, for enabling a computer to execute FLUKA under the control of a Linux OS

    International Nuclear Information System (INIS)

    Cohen, A.; Battistoni, G.; Mark, S.

    2008-01-01

    This paper describes a Linux-based OS framework for integrating the FLUKA Monte Carlo software (currently distributed only for Linux) into a CD-ROM, resulting in a complete environment for a scientist to edit, link and run FLUKA routines-without the need to install a UNIX/Linux operating system. The building process includes generating from scratch a complete operating system distribution which will, when operative, build all necessary components for successful operation of FLUKA software and libraries. Various source packages, as well as the latest kernel sources, are freely available from the Internet. These sources are used to create a functioning Linux system that integrates several core utilities in line with the main idea-enabling FLUKA to act as if it was running under a popular Linux distribution or even a proprietary UNIX workstation. On boot-up a file system will be created and the contents from the CD will be uncompressed and completely loaded into RAM-after which the presence of the CD is no longer necessary, and could be removed for use on a second computer. The system can operate on any i386 PC as long as it can boot from a CD

  15. Mechanistic understanding of the cysteine capping modifications of antibodies enables selective chemical engineering in live mammalian cells.

    Science.gov (United States)

    Zhong, Xiaotian; He, Tao; Prashad, Amar S; Wang, Wenge; Cohen, Justin; Ferguson, Darren; Tam, Amy S; Sousa, Eric; Lin, Laura; Tchistiakova, Lioudmila; Gatto, Scott; D'Antona, Aaron; Luan, Yen-Tung; Ma, Weijun; Zollner, Richard; Zhou, Jing; Arve, Bo; Somers, Will; Kriz, Ronald

    2017-04-20

    Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Overview of Low Carbon Logistics Development in China and Foreign Countries

    Science.gov (United States)

    Cheng, Dongxiang; Zhang, Xiang

    2017-12-01

    High energy consumption is a major feature of the logistics industry. Under the current low-carbon development requirements, the low carbon development of logistics is bound to be a new direction, and more scholars will turn their attention to low-carbon logistics. This paper presents a detailed introduction to low-carbon logistics from four aspects: the definition of low-carbon logistics, the influencing factors and Countermeasures of development, and the evaluation of carbon emission efficiency.

  17. Shenzhen International Low Carbon City in Development: Practice of Low Carbon Planning Technology Strategy Based on Dynamic Demands

    Institute of Scientific and Technical Information of China (English)

    Yu; Han; Li; Caige

    2016-01-01

    Targeted at the dynamic demands in the rapid urban construction, the planning technology strategy of the Shenzhen International Low Carbon City studies the fl exible index model based on carbon emission evaluation, and adopts rolling development and micro-circulation construction mode to achieve quick returns with small investment. Meanwhile, it also evaluates the application of low carbon technology and gives feedback in time, so as to constantly optimize and complete the low carbon city planning. In detail, it involves industrial planning, ecological restoration, transport planning, energy resource planning, architectural design, etc., for which appropriate approaches are selected according to the principle of rolling development of unit cells and based on different requirements of different stages. The quick-response and fl exible technology system can help the low carbon city to choose an appropriate technology strategy in line with its own characteristics in the start-up stage and rapid development, thus realizing the sustainable leap-forward development and providing reference for other similar regions.

  18. Shenzhen International Low Carbon City in Development: Practice of Low Carbon Planning Technology Strategy Based on Dynamic Demands

    Institute of Scientific and Technical Information of China (English)

    Yu Han; Li Caige

    2016-01-01

    Targeted at the dynamic demands in the rapid urban construction,the planning technology strategy of the Shenzhen International Low Carbon City studies the flexible index model based on carbon emission evaluation,and adopts rolling development and micro-circulation construction mode to achieve quick returns with small investment.Meanwhile,it also evaluates the application of low carbon technology and gives feedback in time,so as to constantly optimize and complete the low carbon city planning.In detail,it involves industrial planning,ecological restoration,transport planning,energy resource planning,architectural design,etc.,for which appropriate approaches are selected according to the principle of rolling development of unit cells and based on different requirements of different stages.The quick-response and flexible technology system can help the low carbon city to choose an appropriate technology strategy in line with its own characteristics in the start-up stage and rapid development,thus realizing the sustainable leap-forward development and providing reference for other similar regions.

  19. The Influence of Low-carbon Economy on Global Trade Pattern

    Science.gov (United States)

    Xiao-jing, Guo

    Since global warming has seriously endangered the living environment of human being and their health and safety, the development of low-carbon economy has become an irreversible global trend. Under the background of economic globalization, low-carbon economy will surely exert a significant impact on global trade pattern. Countries are paying more and more attention to the green trade. The emission permits trade of carbon between the developed countries and the developing countries has become more mature than ever. The carbon tariff caused by the distribution of the "big cake" will make the low-cost advantage in developing countries cease to exist, which will, in turn, affect the foreign trade, economic development, employment and people's living in developing countries. Therefore, under the background of this trend, we should perfect the relevant laws and regulations on trade and environment as soon as possible, optimize trade structure, promote greatly the development of service trade, transform thoroughly the mode of development in foreign trade, take advantage of the international carbon trading market by increasing the added value of export products resulted from technological innovation to achieve mutual benefit and win-win results and promote common development.

  20. Low carbon national strategy. A macro-economical assessment

    International Nuclear Information System (INIS)

    Baiz, Adam; Monnoyer-Smith, Laurence; Callonnec, Gael

    2016-11-01

    This publication briefly reports the use of the Three-ME model (Multi-sector Macroeconomic Model for the Evaluation of Environmental and Energy) to assess the combined effect of the several instruments mobilised for the transition towards a low carbon economy within the French National Low Carbon Strategy (SNBC). It first presents the Three-ME model which has been developed since 2008 by the OFCE and the Ademe, is a neo-Keynesian and hybrid model, and which comprises 14.000 equations and 70.000 parameters dealing with prices, interest rates, investments, salaries, foreign trade, State policy, a production function, and a consumption function. Some characteristics of the SNBC scenario are indicated, as well as those of a reference trend-based scenario. Obtained results are then briefly commented in terms of positive ecological and economic impacts of a carbon tax and of sector-based measures defined within the SNBC

  1. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  2. Piloting Telepresence-Enabled Education and Outreach Programs from a UNOLS Ship - Live Interactive Broadcasts from the R/V Endeavor

    Science.gov (United States)

    Pereira, M.; Coleman, D.; Donovan, S.; Sanders, R.; Gingras, A.; DeCiccio, A.; Bilbo, E.

    2016-02-01

    The University of Rhode Island's R/V Endeavor was recently equipped with a new satellite telecommunication system and a telepresence system to enable live ship-to-shore broadcasts and remote user participation through the Inner Space Center. The Rhode Island Endeavor Program, which provides state-funded ship time to support local oceanographic research and education, funded a 5-day cruise off the Rhode Island coast that involved a multidisciplinary team of scientists, engineers, students, educators and video producers. Using two remotely operated vehicle (ROV) systems, several dives were conducted to explore various shipwrecks including the German WWII submarine U-853. During the cruise, a team of URI ocean engineers supported ROV operations and performed engineering tests of a new manipulator. Colleagues from the United States Coast Guard Academy operated a small ROV to collect imagery and environmental data around the wreck sites. Additionally, a team of engineers and oceanographers from URI tested a new acoustic sound source and small acoustic receivers developed for a fish tracking experiment. The video producers worked closely with the participating scientists, students and two high school science teachers to communicate the oceanographic research during live educational broadcasts streamed into Rhode Island classrooms, to the public Internet, and directly to Rhode Island Public Television. This work contributed to increasing awareness of possible career pathways for the Rhode Island K-12 population, taught about active oceanographic research projects, and engaged the public in scientific adventures at sea. The interactive nature of the broadcasts included live responses to questions submitted online and live updates and feedback using social media tools. This project characterizes the power of telepresence and video broadcasting to engage diverse learners and exemplifies innovative ways to utilize social media and the Internet to draw a varied audience.

  3. Health benefits, ecological threats of low-carbon electricity

    Science.gov (United States)

    Gibon, Thomas; Hertwich, Edgar G.; Arvesen, Anders; Singh, Bhawna; Verones, Francesca

    2017-03-01

    Stabilizing global temperature will require a shift to renewable or nuclear power from fossil power and the large-scale deployment of CO2 capture and storage (CCS) for remaining fossil fuel use. Non-climate co-benefits of low-carbon energy technologies, especially reduced mortalities from air pollution and decreased ecosystem damage, have been important arguments for policies to reduce CO2 emissions. Taking into account a wide range of environmental mechanisms and the complex interactions of the supply chains of different technologies, we conducted the first life cycle assessment of potential human health and ecological impacts of a global low-carbon electricity scenario. Our assessment indicates strong human health benefits of low-carbon electricity. For ecosystem quality, there is a significant trade-off between reduced pollution and climate impacts and potentially significant ecological impacts from land use associated with increased biopower utilization. Other renewables, nuclear power and CCS show clear ecological benefits, so that the climate mitigation scenario with a relatively low share of biopower has lower ecosystem impacts than the baseline scenario. Energy policy can maximize co-benefits by supporting other renewable and nuclear power and developing biomass supply from sources with low biodiversity impact.

  4. The development of low-carbon vehicles in China

    International Nuclear Information System (INIS)

    Yao Mingfa; Liu Haifeng; Feng Xuan

    2011-01-01

    Reducing CO 2 emissions from vehicles in China is crucial and will significantly alleviate the environmental burden of the Earth. Some promising technologies that make possible low-carbon vehicles are reviewed in this work, including electric vehicles, fuel cell vehicles, hybrid vehicles, biofuels vehicles, other alternative fuel vehicles, and conventional internal combustion engine vehicles with improvement. In the short term, expanding the use of mature technologies in conventional gasoline or diesel vehicles is the most realistic, effective, and timely solution for China to meeting the urgent challenges of energy saving and greenhouse gas reduction; while in the long run biofuel is a promising candidate due to their renewability and carbon neutrality. The blueprint of low-carbon vehicles for China depends on three aspects: breakthroughs in technology, awareness of public, and government guidance. - Highlights: → Reducing CO 2 emissions and saving energy from vehicles in China is crucial. → Low-carbon depends on technology breakthrough, public awareness, and government guidance. → Use of mature technologies in ICEVs is the most realistic solution for China. → Biofuels are the key to realize neutral carbon emission in the long run.

  5. Low Carbon Footprint mortar from Pozzolanic Waste Material

    Science.gov (United States)

    Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra

    2017-04-01

    Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  6. Going Clean - The Economics of China's Low-carbon Development

    Energy Technology Data Exchange (ETDEWEB)

    Hallding, Karl; Thai, Helen; Han, Guoyi; Olsson, Marie; Kartha, Sivan [Stockholm Environment Inst. (Sweden); Eklund, Klas [SEB, Stockholm (Sweden); Ming, SU [Peking Univ. (China); Jing, Cao [Tsinghua Univ. (China); Luderer, [Potsdam Inst. for Climate Impact (Germany)

    2009-11-15

    This report shows that China can achieve the transition to a low-carbon economy. China can make these emissions reductions within the tight constraints of a global 2 deg C target while still meeting development and economic growth goals over the next four decades. There are strong mitigation potentials in the building, industry, transport and electricity generation sectors. China would benefit from early mitigation, but immediate action is critical for the world to have a reasonable chance of keeping warming below the 2 deg C target. Such a transition would also be an essential part of China's modernisation. A low-carbon transition presents opportunities for China to improve its energy security and move its economy up the value chain in the production of international goods and services. A low-carbon China is a country with a larger service sector, more advanced labour skills and less environmental degradation. During this transition, new, green job opportunities will emerge, and support an overall shift to a low-carbon economy. Active labour market and social policies, vocational training and upgrading of skills are imperative to facilitate this modernisation and reduce the impact of jobs lost in resource-intensive industries. With today's low price on carbon emissions, the incentives for a low-carbon transition are not sufficiently strong. Consumption and production patterns must be steered in a more resource-sustainable direction. A first step is to phase out subsidies on fossil fuels. Another is to place a price on carbon, either through a carbon tax or a cap-and-trade system, which would create incentives for companies and individuals to produce and consume less carbon-intensive goods and services, and to undertake abatement opportunities to reduce their overall carbon footprint. Advancing technology and innovation need to be fundamental, shared policy objectives in this transition. Early investment reduces costs and paves the way for large-scale abatement

  7. An exploration of residents’ low-carbon awareness and behavior in Tianjin, China

    International Nuclear Information System (INIS)

    Bai, Yin; Liu, Yong

    2013-01-01

    This paper explores the empirical evidence of the link between residents’ low-carbon awareness and their behaviors in China. A questionnaire measuring seven dimensions (including low-carbon knowledge, low-carbon value, low-carbon attitude, private low-carbon behavior, public low-carbon behavior, barrier and motivator) was distributed to the residents of Tianjin, yielding 354 valid responses. The results indicated that there was a low-carbon awareness–behavior gap. In particular, the level of behavior was higher than awareness because the motivators were stronger than the barriers. Second, in exploring the affects of motivators versus barriers on the residents’ private and public low-carbon behaviors, we found that motivators promoted both private and public low-carbon behaviors while barriers significantly inhibited public low-carbon behaviors. Third, Chinese social and cultural factors are discussed to inform our exploration of the mechanisms forming the residents’ awareness–behavior gap. - Highlights: • There was a low-carbon awareness–behavior gap. • The level of behavior was higher than awareness. • The motivators promoted both private and public low-carbon behaviors. • The barriers significantly inhibited public low-carbon behaviors

  8. Fostering low-carbon growth initiatives in Thailand

    International Nuclear Information System (INIS)

    Criqui, Patrick; Peytral, Pierre-Olivier; Simon, Jean-Christophe; Valadier, Cecile

    2012-02-01

    The current debate on climate strategy and low-carbon economy has increased in complexity: negotiations on the international scene are lacking clear prospects, while the world economic context, international governance and growth prospects remain highly uncertain. In spite of these difficulties, contributors to this study consider that there is a major opportunity for Thailand to address climate change mitigation as part of its overall development strategy, within the 11. NESDP (2012-2016). We strongly believe that Thailand could maximize the benefits of proactive strategies to address climate change adaptation and mitigation by strengthening and expanding already substantial efforts and existing policies. It is also considered that climate policy can be seen as a relevant component of both sustainable development strategy and promotion of national competitiveness. Several key points can be stressed here regarding climate change mitigation strategies and policies in Thailand: - A set of existing policies has already been implemented, mostly focused on the energy sector. - Substantial experience of government departments and agencies has built up over the past two decades in identifying options, coordinating exchanges of views and implementing targeted policies. - A national scientific potential is already established, with a diversity of expertise and a capacity for nationwide field work. Coordinated initiatives of the private sector have been diverse and substantial in major sectors of activity. - Growing awareness in civil society, which is nevertheless combined with entrenched attitudes, resistance to change in everyday life, as in most other countries, whether developed or developing. Recent policy debate, backed by a strong corpus of scientific analysis, considers that a national strategy for Green Economy, or Low-Carbon Economy, should comprise both cross-sector policies and targeted sector-oriented policies. A preliminary analysis of the existing policy mix

  9. On the Road to HIV/AIDS Competence in the Household: Building a Health-Enabling Environment for People Living with HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Caroline Masquillier

    2015-03-01

    Full Text Available When aiming to provide chronic disease care within the context of human resource shortages, we should not only consider the responsibility of the individual person living with HIV/AIDS (PLWHA but also the capacity of the social environment to actively encourage a lifestyle that fosters health. In this social environment, extensive efforts are thus required to increase HIV/AIDS knowledge, reduce stigma, stimulate HIV testing, improve health care-seeking behavior, and encourage safe sexual practices—described in the literature as the need for AIDS competence. In accordance with socio-ecological theory, one cannot restrict the research focus to communities, as AIDS competence studies should also incorporate the intermediate household level. In responding to this research need, the aim of this article is to conceptualize an “HIV/AIDS competent household” based on qualitative interviews and focus group discussions conducted in a township on the outskirts of Cape Town, South Africa. Our results show that a household’s supportive response to disclosure allows a patient to live openly as HIV positive in the household concerned. This may mark the start of the road to HIV/AIDS competence in the household, meaning the PLWHA receives sustainable support throughout the care continuum and positive living becomes the norm for the PLWHA and his or her household. A feedback loop might also be created in which other household members are encouraged to be tested and to disclose their status, which is an important step towards a sustainable response to HIV/AIDS-related challenges. Despite the fact that this road to HIV/AIDS competence at the household level is fragile and prone to various barriers, this article shows that the household has the potential to be a health-enabling environment for PLWHA.

  10. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  11. An integrated new product development framework - an application on green and low-carbon products

    Science.gov (United States)

    Lin, Chun-Yu; Lee, Amy H. I.; Kang, He-Yau

    2015-03-01

    Companies need to be innovative to survive in today's competitive market; thus, new product development (NPD) has become very important. This research constructs an integrated NPD framework for developing new products. In stage one, customer attributes (CAs) and engineering characteristics (ECs) for developing products are collected, and fuzzy interpretive structural modelling (FISM) is applied to understand the relationships among these critical factors. Based on quality function deployment (QFD), a house of quality is then built, and fuzzy analytic network process (FANP) is adopted to calculate the relative importance of ECs. In stage two, fuzzy failure mode and effects analysis (FFMEA) is applied to understand the potential failures of the ECs and to determine the importance of ECs with respect to risk control. In stage three, a goal programming (GP) model is constructed to consider the outcome from the FANP-QFD, FFMEA and other objectives, in order to select the most important ECs. Due to pollution and global warming, environmental protection has become an important topic. With both governments and consumers developing environmental consciousness, successful green and low-carbon NPD provides an important competitive advantage, enabling the survival or renewal of firms. The proposed framework is implemented in a panel manufacturing firm for designing a green and low-carbon product.

  12. Transition pathways for a UK low carbon electricity future

    International Nuclear Information System (INIS)

    Foxon, Timothy J.

    2013-01-01

    Achieving long-term targets for greenhouse gas emissions reductions, such as the UK's legally-binding target of reducing its emissions by 80% by 2050, will require a transition in systems for meeting and shaping energy service demands, involving radical substitution to low-carbon supply technologies and improvements in end-use energy efficiency. This paper describes the development and high-level analysis of a set of transition pathways to a UK low carbon electricity system, explaining key features of the core pathways developed and the distinctiveness and value of the approach. The pathways use an ‘action space’ concept to explore the dynamic interactions between choices made by actors, which are influenced by the competing governance ‘framings’ or ‘logics’ that different actors pursue. The paper sets out three core transition pathways – Market Rules, Central Co-ordination and Thousand Flowers, in which market, government and civil society logics respectively dominate. It summarises the key technological and institutional changes in these pathways, and the roles of actors in bringing these about. This leads to an identification of the key risks to the realisation of each of the pathways, and of the challenges for individuals, businesses, social movements and policy-makers in taking action to bring them about and sustain them. - Highlights: ► Development of a set of transition pathways to a UK low carbon electricity system. ► Action space to explore the dynamic interactions between choices made by actors. ► Three core pathways in which market, government and civil society logics dominate. ► Key technological and institutional changes, and the roles of actors in pathways. ► Challenges for different actors in realising pathways.

  13. ‘Domesticating’ low carbon thermal technologies: Diversity, multiplicity and variability in older person, off grid households

    International Nuclear Information System (INIS)

    Wrapson, Wendy; Devine-Wright, Patrick

    2014-01-01

    The uptake of low carbon heating technologies forms an important part of government strategies to reduce carbon emissions. Yet our understanding of why such technologies are adopted and how they are engaged with post-adoption, particularly by older adults living in off-grid areas, is limited. Drawing on a contextualised, socio-technical approach to domestic heating, we present findings from 51 in-depth interviews with a sample of 17 older person households in the South West of England, with ages ranging from 60 to 89 years. Diverse and multiple configurations of heating devices and fuels were found that varied considerably, with some households using five different fuels. The design of the study ensured that approximately half the sample used some form of low carbon thermal technology, such as heat pumps and biomass boilers. Many factors were reported to influence the adoption of low carbon heating; environmental motives were not primary influences and the avoidance of financial risks associated with ‘peak oil’ was expressed. Low carbon thermal technologies were typically integrated into rather than replaced existing heating systems so that valued services provided by conventional technologies could be retained. Implications of the findings for policies to reduce carbon emissions, particularly in older adult, off-grid households, are discussed. - Highlights: • We interviewed 17 households with conventional/low carbon thermal technologies (LCTTs) in South West England. • Older adult, off grid households commonly use multiple, diverse and variable heating technologies and fuels. • Reducing fuel costs was a key reason for installing LCTTs. • LCTTs more commonly were integrated with, rather than replaced, conventional technologies. • Expected reductions in domestic carbon emissions due to LCTTs may not be realised

  14. Can low-carbon societies deliver on energy security?

    International Nuclear Information System (INIS)

    Jewell, Jessica

    2015-01-01

    The impact of low-carbon policies on energy security depends on both the timing and intensity of these policies, and the definition of energy security: security of what?; security for whom?; and security from which threats? The priorities of the EU’s 2030 climate/energy package and energy security show little if any alignment. Global climate stabilization policies benefit the energy security of India, China, and the EU, but may have negative impacts on export revenues of the U.S. and other energy exporters.

  15. Plasticity of low carbon steel in a hot state

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, V P; Rizol' , A I; Shram, N N [Ural' skij Nauchno-Issledovatel' skij Inst. Chernykh Metallov, Sverdlovsk (USSR)

    1977-07-01

    The hot ductility (in tapered-specimen piersing test and the in wedge-shaped specimen rolling test) is studied of the Armeo-type low carbon steel produced by vacuum induction and open hearth techniques. The variations of the chemical composition within specified ranges, particularly as regards sulphur, oxygen and the Mn/S ratio, have a marked effect on the processing ductility. The temperature range of brittle fracture and acceptable hot working reductions as functions of the chemical composition have been revealed.

  16. The Development of Low-Carbon Strategy in Croatia

    International Nuclear Information System (INIS)

    Grgasovic, V.

    2013-01-01

    United Nations Framework Convention on Climate Change and the Kyoto Protocol have initiated an awareness of the necessity to reduce greenhouse gas emissions and have provided guidelines of the energy in the world, especially within the European Union. EU sets its action within the negotiations on a new global agreement in the field of climate change, for the period after the 2020. Croatia, also, has to follow these guidelines. Therefore, Croatia conducts activities to develop low-carbon development strategy and to establish the legal and institutional framework for the successful implementation of measures to reduce greenhouse gas emissions.(author)

  17. Mixed structures in continuously cooled low-carbon automotive steels

    International Nuclear Information System (INIS)

    Khalid, F.A.; Edmonds, D.V.

    1993-01-01

    Mixed microstructures have been studied in low- carbon microalloyed steels suitable for automotive applications, after continuous cooling from the hot-rolled condition. Microstructural features such as polygonal ferrite, bainitic and acicular ferrite and microphase constituent are identified using transmission electron microscopy. The influence of these mixed structures on the tensile strength, impact toughness and fracture behaviour is examined. It is found that improvements in impact toughness as compared with microalloyed medium- carbon ferrite/pearlite steels can be achieved from these predominantly acicular structures developed by controlling alloy composition and continuous cooling of these lower carbon steels. (orig.)

  18. Plasticity of low carbon steel in a hot state

    International Nuclear Information System (INIS)

    Konovalov, V.P.; Rizol', A.I.; Shram, N.N.

    1977-01-01

    The hot ductility (in tapered-specimen piersing test and the in wedge-shaped specimen rolling test) is studied of the Armeo-type low carbon steel produced by vacuum induction and open hearth techniques. The variations of the chemical composition within specified ranges, particularly as regards sulphur, oxygen and the Mn/S ratio, have a marked effect on the processing ductility. The temperature range of brittle fracture and acceptable hot working reductions as functions of the chemical composition have been revealed

  19. Funding pathways to a low-carbon transition

    DEFF Research Database (Denmark)

    Foulds, Chris; Christensen, Toke Haunstrup

    2016-01-01

    The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low-carbon aspirat......The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low...

  20. Low Carbon-Economy Development: China's Pattern and Policy Selection

    International Nuclear Information System (INIS)

    Dou, Xiangsheng

    2013-01-01

    For a developing country such as China, it is important to select a fair pattern that is suitable for China's national conditions for low carbon-economy development, as it has a direct impact on the success (or not) of low carbon-economy development. This research shows that, under the real-life conditions of China's development, different development patterns should be practised depending on specific socioeconomic conditions. Among them, one of the most critical issues is how to make full use of natural forces, and thus the nature-oriented development pattern should be practised in full. At the same time, China should still practise either the single regional differential or the multi-regional linkage development pattern under different conditions and either the imposed or the induced development pattern at the different stages of development. - Highlights: • It is particularly important to select a suitable development pattern. • Nature-oriented development pattern should be selected. • Single regional differentiation-typed or multi-regional linkage-typed pattern should be selected. • Either the imposed pattern or the induced pattern of development will be selected

  1. Delivering a secure electricity supply on a low carbon pathway

    International Nuclear Information System (INIS)

    Boston, Andy

    2013-01-01

    The energy system can only be considered sustainable in the long term if it is low carbon, affordable and secure. These three create a complex trilemma for all stakeholders in the energy business who have to strike a careful balance without neglecting any one aspect. This discussion paper examines the issues surrounding security of supply of the power system which has received less attention than the other aspects. It looks at how threats and mitigation measures can be classified in terms of where they act on the supply chain and the timescale over which they act. Only by considering the full range of timescales from seconds to decades can the full picture emerge of the effects of new technologies on security of supply. An examination of blackouts over the past 40 years sheds light on the causes of failure to supply and the most vulnerable aspects of the supply chain. - Highlights: ► Energy systems are only sustainable if they are low carbon, affordable and secure. ► Threats to security can be classified by timescale and position in the supply chain. ► The impact of new technologies on security must be considered across all timescales. ► Recent blackouts show the network is most vulnerable and weather the leading cause

  2. A proposal to finance low carbon investment in Europe

    International Nuclear Information System (INIS)

    Aglietta, Michel; Espagne, Etienne; Perrissin Fabert, Baptiste

    2015-02-01

    This year, Europe is confronted with a critical double challenge: addressing the climate change issue and pulling itself out of a persistent low growth trap. Today these two challenges are addressed separately. On the one hand, climate negotiations must reach a historical agreement in the Paris conference in December 2015. On the other hand, the Juncker Plan of 315 billion euros of investment, and above all the ECB announcement of a massive purchase of assets for an amount of around 1100 billion euros, must help to avoid a deflationary spiral and stimulate a new flow of investments. Regarding climate policies, public regulators have essentially focused on a carbon price, which remains today at an insufficient level to trigger the financing needs of the low carbon transition. The potential of the banking and saving channels (targets of the asset purchase program of the ECB) to scale up climate finance is however neglected. This 'Note d'analyse' proposes to make private low-carbon assets eligible for the ECB asset purchase program. The carbon impact of these assets would benefit from a public guarantee that would value their carbon externality at a level sufficient to compensate the absence of an adequate carbon price. This mechanism would immediately impact the investment decisions of private actors with a positive effect on growth. It would also strongly incite governments to progressively implement carbon pricing tools to ensure that the public backing of the value of the carbon assets remains neutral with respect to public budgets. (authors)

  3. Paving the way for low-carbon development strategies

    International Nuclear Information System (INIS)

    Van Tilburg, X.; Wuertenberger, L.; De Coninck, H.; Bakker, S.

    2011-09-01

    The aim of this report is to help move forward the discussion on low-carbon development strategies (LCDS) towards a useful climate policy instrument. It does so through a historical perspective on the use of an LCDS in a national and international context in order to provide high-level guidance to governments and experts who plan the development of an LCDS. The ultimate aim of a low-carbon development strategy is to catalyse concrete actions that support development with lower emissions. Therefore the process of LCDS development should not focus narrowly on producing a strategy document. Depending on the national context, an LCDS can serve different audiences and have different purposes, adding robustness to the attainment of mitigation actions. Rather than specifying a target or producing a document, an LCDS should provide a process that, depending on the developing country's readiness, meets needs to develop and to fill capacity, knowledge and information gaps. It should bring stakeholders from government, the private sector and civil society on the same page and eventually lead to greenhouse gas emissions that are lower compared to the situation in which the LCDS process had not been undertaken. International support could be sought for an LCDS process, but should not be made obligatory.

  4. Methodological review of UK and international low carbon scenarios

    International Nuclear Information System (INIS)

    Hughes, Nick; Strachan, Neil

    2010-01-01

    Scenarios have a long history in business, politics and military planning, as a tool for strategic planning to inform protective, proactive or consensus-based decision making in the face of uncertain futures. Recent years have seen a growth in scenarios for assessing the implications of low carbon futures, but relatively little work has linked these energy scenarios to the broader literature on scenario development. This paper undertakes a methodological review of a selection of UK and international low carbon scenario studies, using a typology of 'trend based', 'technical feasibility' and 'modelling' studies. Dominant methodologies in such studies have been the 2x2 axis and the 'back-casting' approach. Strengths of the studies reviewed include technological detail, and identification of key economic and social constraints. Weaknesses include the over-reliance on constructs such as exogenous emissions constraints, and high level trends, which diminish the ability to understand how the various future scenarios could be brought about or avoided. This is compounded by the lack of depiction of specific system actors; the tendency to abstract policy from the scenarios; and the resulting failure to consider policy, technology and behaviour in an iterative, 'co-evolving' fashion.

  5. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  6. Positioning Nuclear Power in the Low-Carbon Electricity Transition

    Directory of Open Access Journals (Sweden)

    Aviel Verbruggen

    2017-01-01

    Full Text Available Addressing climate change requires de-carbonizing future energy supplies in an increasingly energy-dependent world. The IEA and the IPCC (2014 mention the following as low-carbon energy supply options: ‘renewable energy, nuclear power and fossil fuels with carbon capture and storage’. Positioning nuclear power in the decarbonization transition is a problematic issue and is overridden by ill-conceived axioms. Before probing these axioms, we provide an overview of five major, postwar energy-related legacies and some insight into who is engaged in nuclear activities. We check whether low-carbon nuclear power passes the full sustainability test and whether it is compatible with the unfettered deployment of variable renewable power sourced from the sun and from wind and water currents, which delivers two negative answers. We show that the best approach of the sustainable energy transition was Germany’s 2011 decision to phase out nuclear power for a fast development and full deployment of renewable power. This is the best approach for the sustainable energy transition. We offer five practical suggestions to strengthen and accelerate carbon- and nuclear-free transitions. They are related to institutional issues like the role of cost-benefit analysis and the mission of the International Atomic Energy Agency, to the costs of nuclear risks and catastrophes, and to the historical record of nuclear technology and business.

  7. Microstructures and mechanical properties of duplex low carbon steel

    Science.gov (United States)

    Alfirano; Eben, U. S.; Hidayat, M.

    2018-04-01

    The microstructures behavior of duplex cold-rolled low carbon steel for automotive applications has been investigated. Intercritical annealing treatment is commonly used to develop a duplex low carbon steel containing ferrite and martensite. To get a duplex phase ferrite and martensite, the specimens were heated at inter-critical annealing temperature of 775°C - 825°C, for heating time up to 20 minutes, followed by water-quenched. The hardness of specimens was studied. The optical microscopy was used to analyze the microstructures. The optimal annealing conditions (martensite volume fraction approaching 20%) at 775°C with a heating time of 10 minutes was achieved. The highest hardness value was obtained in cold-rolled specimens of 41% in size reduction for intercritical annealing temperature of 825°C. In this condition, the hardness value was 373 HVN. The correlation between intercritical annealing temperature and time can be expressed in the transformation kinetics as fγ/fe = 1-exp(-Ktn) wherein K and n are grain growth rate constant and Avrami’s exponent, respectively. From experiment, the value of K = 0.15 and n = 0.461. Using the relationship between temperatures and heating time, activation energy (Q) can be calculated that is 267 kJ/mol.

  8. Technology scale and supply chains in a secure, affordable and low carbon energy transition

    International Nuclear Information System (INIS)

    Hoggett, Richard

    2014-01-01

    Highlights: • Energy systems need to decarbonise, provide security and remain affordable. • There is uncertainty over which technologies will best enable this to happen. • A strategy to deal with uncertainty is to assess a technologies ability to show resilience, flexibility and adaptability. • Scale is important and smaller scale technologies are like to display the above characteristics. • Smaller scale technologies are therefore more likely to enable a sustainable, secure, and affordable energy transition. - Abstract: This research explores the relationship between technology scale, energy security and decarbonisation within the UK energy system. There is considerable uncertainty about how best to deliver on these goals for energy policy, but a focus on supply chains and their resilience can provide useful insights into the problems uncertainty causes. Technology scale is central to this, and through an analysis of the supply chains of nuclear power and solar photovoltaics, it is suggested that smaller scale technologies are more likely to support and enable a secure, low carbon energy transition. This is because their supply chains are less complex, show more flexibility and adaptability, and can quickly respond to changes within an energy system, and as such they are more resilient than large scale technologies. These characteristics are likely to become increasingly important in a rapidly changing energy system, and prioritising those technologies that demonstrate resilience, flexibility and adaptability will better enable a transition that is rapid, sustainable, secure and affordable

  9. Research of low-carbon transition path of star hotels--A case study of Guilin

    Directory of Open Access Journals (Sweden)

    Tang Fengling

    2016-01-01

    Full Text Available A general trend of the world economic development is the low-carbon economic transition. With a wide influencing range and rapid development, the hotel industry has prominent problems in the energy con-sumption, resources occupancy and environmental unfriendliness, so it is imperative to develop low-carbon ho-tels. This paper proposes the low-carbon transition of the star hotels in Guilin in terms of constructing the energy conservation and innovative management mode, adopting new technologies and ways, developing low-carbon hotel products and guiding low-carbon consumption through analysis about the inevitability of establishing low-carbon hotels in Guilin, the running status of the existing star hotels and the situation of energy consumption, thus further promoting the development of low-carbon tourism in Guilin.

  10. Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Zheming Yan

    2017-04-01

    Full Text Available This paper aims to investigate the impact of low-carbon innovation on CO2 emissions. Using patent statistics, we measured low-carbon innovations for 15 major economies during the period of 1992–2012. Then, we classified low-carbon technology into clean and gray technology according to the patent classification system. Following the empirical Environmental Kuznets Curve (EKC framework, we explored the effects of low-carbon innovation and its components on CO2 emissions. We did not find any evidence of significant influence of low-carbon innovation. Through further estimations, a significantly negative effect of clean innovation was found while the effect of gray innovation is not clear. Heterogeneous impacts within low-carbon technology provide an explanation for the insignificant impact of low-carbon innovation.

  11. Energy modelling towards low carbon development of Beijing in 2030

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Jiang, Kejun

    2017-01-01

    Beijing, as the capacity capital of China, is under the pressure of climate change and pollution. Nonrenewable energy generation and consumption is one of the most important sources of CO2 emissions, which cause climate changes. This paper presents a study on the energy system modeling towards...... scenario 2030, (ii) BAU (business as usual) scenario 2030 and (iii) RES (renewable energies) scenario 2030. The results shows that the share of renewables can increase to 100% of electricity and heat production in the RE scenario. The primary fuel consumption is reduced to 155.9 TWh, which is 72 % of fuel...... renewable energy and low carbon development for the city of Beijing. The analysis of energy system modeling is organized in two steps to explore the potential renewable energy alternative in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The Energy...

  12. Quantifying the UK's incentives for low carbon investment

    International Nuclear Information System (INIS)

    Wordsworth, Andrew; Grubb, Michael

    2003-01-01

    The UK climate change programme has introduced a range of instruments to foster investment in low carbon technologies and markets. We estimate the total value of these interventions, in terms of the redirection of financial flows and directly foregone tax income, to be about 1.3 billion pounds per year (Euro or US$: 2 billion per year), as from 2002 to 2003 when the renewable obligation certificates (ROCs) first take effect. About 20% of this consists of direct expenditure, the remaining 80% is in the form of indirect expenditures contained within sectors (ROCs, the energy efficiency commitments), and foregone tax revenues. Most of the energy-efficiency investment is estimated to recoup expenditure within normal life-cycles and may thus be considered profitable; the profitability of the supply-side interventions is predicated mostly upon expected cost reductions associated with the build up of the associated industries

  13. Assessment of technologies to meet a low carbon fuel standard.

    Science.gov (United States)

    Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C

    2009-09-15

    California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada.

  14. Quantifying the UK's incentives for low carbon investment

    International Nuclear Information System (INIS)

    Wordworth, A.; Grubb, M.

    2003-01-01

    The UK climate change programme has introduced a range of instruments to foster investment in low carbon technologies and markets. We estimate the total value of these interventions, in terms of the redirection of financial flows and directly foregone tax income, to be about 1.3 billion English pounds per year (c. Euro or US$ 2 billion per year), as from 2002 to 2003 when the renewable obligation certificates (ROCs) first take effect. About 20% of this consists of direct expenditure, the remaining 80% is in the form of indirect expenditures contained within sectors (ROCs, the energy efficiency commitments), and foregone tax revenues. Most of the energy-efficiency investment is estimated to recoup expenditure within normal life-cycles and may thus be considered profitable; the profitability of the supply-side interventions is predicated mostly upon expected cost reductions associated with the build up of the associated industries

  15. Barriers and possibilities for low-carbon-energy consuming technologies

    DEFF Research Database (Denmark)

    Bjarklev, Araceli

    consensus that one of the solutions to the current environmental challenge will be based on low-carbon-technologies, there are many issues that set a barrier for its adequate development and still many actors in these sectors are sceptical about the possibilities. Illumination is a very interesting sector...... to target, since it uses 19% of the total electricity produced in the world. Consequently, this paper takes the Danish office lighting sector as a study object and discusses the question: What are the main barriers and possibilities for the energy saving illumination technologies to efficiently reduce...... their ecological footprint. The discussion is supported by using relevant elements of the cradle-to-grave, eco-design and environmental-innovation theories. It is based on active participation in interdisciplinary projects and face-to-face in-depth interviews with relevant actors along the entire Danish...

  16. Extension classification method for low-carbon product cases

    Directory of Open Access Journals (Sweden)

    Yanwei Zhao

    2016-05-01

    Full Text Available In product low-carbon design, intelligent decision systems integrated with certain classification algorithms recommend the existing design cases to designers. However, these systems mostly dependent on prior experience, and product designers not only expect to get a satisfactory case from an intelligent system but also hope to achieve assistance in modifying unsatisfactory cases. In this article, we proposed a new categorization method composed of static and dynamic classification based on extension theory. This classification method can be integrated into case-based reasoning system to get accurate classification results and to inform designers of detailed information about unsatisfactory cases. First, we establish the static classification model for cases by dependent function in a hierarchical structure. Then for dynamic classification, we make transformation for cases based on case model, attributes, attribute values, and dependent function, thus cases can take qualitative changes. Finally, the applicability of proposed method is demonstrated through a case study of screw air compressor cases.

  17. Status and outlook for Thailand's low carbon electricity development

    International Nuclear Information System (INIS)

    Sawangphol, Narumitr; Pharino, Chanathip

    2011-01-01

    Thailand is facing an urgency to enhance its energy security and capacity to cope with global warming impacts, as demands on fossil fuel consumption keep rising. This paper reviewed the latest situation on renewable powers and developmental strategies toward low carbon electricity generation in Thailand. Government recently has spent tremendous financial and legislative supports to promote the uses of indigenous renewable energy resources and fuel diversification while contributing in reduction of global greenhouse gas. Major policy challenge is on which types of renewable energy should be more pronounced to ensure sustainable future of the country. Regions in Thailand present different potentials for renewable supply on biomass, municipal wastes, hydropower, and wind. To maximize renewable energy development in each area, location is matter. Currently, energy-derived biomass is widely utilized within the country, however if droughts happen more often and severe, it will not only affect food security but also energy security. Life cycle of biomass energy production may cause other social issues on land and chemical uses. Meanwhile, deployment of wind and solar energy has been slow and needs to speed up to the large extent in comparison with energy proportion from biomass. Nuclear power has already been included in the Thai power development plan 2010 (PDP-2010). However, public acceptance is a major issue. Setting up strategic renewable energy zone to support power producer according to pre-determined potential location may assist development direction. Furthermore, government has to strongly subsidize research and development to lower technology cost and promote private investment on renewable energy industry. In the future, revision of electricity price is needed to allow fair competition between non-renewable and renewable energy once subsidy programs are ended. Environmental tax according to fuel types could help government progressing toward low carbon

  18. Critical Metals in Strategic Low-carbon Energy Technologies

    Science.gov (United States)

    Moss, R. L.

    2012-04-01

    Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, shortages of materials could be a potential bottleneck to the deployment of low-carbon energy technologies. Consequently, an assessment has been carried out to ascertain whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), especially in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The assessment identified 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. Following a more critical examination, based on the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers, 5 of the 14 metals were pinpointed to be at high risk, namely: the rare earth metals neodymium and dysprosium (for wind technology), and the by-products (from the processing of other metals) indium, tellurium and gallium (for photovoltaic technologies). In addition, the work has explored potential mitigation strategies, ranging from expanding European output, increasing recycling and reuse to reducing waste and finding substitutes for these metals in their main applications. Furthermore, recommendations are provided which include closely working with the EU's Raw Materials Initiative; supporting efforts to ensure reliable supply of ore concentrates at competitive prices; promoting R&D and demonstration projects on new lower cost separation processes; and promoting the further development of recycling technologies and increasing end-of-life collection

  19. Gauging citizen support for a low carbon fuel standard

    International Nuclear Information System (INIS)

    Rhodes, Ekaterina; Axsen, Jonn; Jaccard, Mark

    2015-01-01

    Since 2007, several variations of a low carbon fuel standard (LCFS) have been implemented around the world. While emerging research tends to focus on greenhouse gas emission reductions from an LCFS, no studies have assessed the policy's political acceptability—a critical component of implementation. We elicit public support for an existing LCFS in British Columbia and a hypothetical (proposed) LCFS for the rest of Canada using survey data collected from a representative sample of Canadian citizens (n=1306). Specifically, we assess: (1) citizen awareness of British Columbia's LCFS, (2) stated citizen support for the LCFS, and (3) how individual characteristics relate to levels of citizen support. We find that British Columbia's LCFS is almost unknown among British Columbia respondents, but once explained, 90% of respondents support it. We refer to this combination of low knowledge and high support as “passive support.” We find similarly broad support in all other Canadian provinces, implying that citizen opposition is unlikely in jurisdictions considering an LCFS. Statistical analysis identifies some individual characteristics associated with LCFS support, including attitudes, demographics, and contextual factors. Results indicate where policymakers might anticipate opposition if it arises due to increased policy stringency or media coverage. - Highlights: • Most citizens are unaware of British Columbia's low carbon fuel standard (LCFS). • We observe passive support: low awareness and high support of the policy. • An LCFS achieves broad support among British Columbia's and Canadian citizens. • Households relying on single occupancy vehicles are less likely to support an LCFS

  20. Innovative financing models for low carbon transitions: Exploring the case for revolving funds for domestic energy efficiency programmes

    International Nuclear Information System (INIS)

    Gouldson, Andy; Kerr, Niall; Millward-Hopkins, Joel; Freeman, Mark C.; Topi, Corrado; Sullivan, Rory

    2015-01-01

    The IEA has estimated that over the next four decades US$31 trillion will be required to promote energy efficiency in buildings. However, the opportunities to make such investments are often constrained, particularly in contexts of austerity. We consider the potential of revolving funds as an innovative financing mechanism that could reduce investment requirements and enhance investment impacts by recovering and reinvesting some of the savings generated by early investments. Such funds have been created in various contexts, but there has never been a formal academic evaluation of their potential to contribute to low carbon transitions. To address this, we propose a generic revolving fund model and apply it using data on the costs and benefits of domestic sector retrofit in the UK. We find that a revolving fund could reduce the costs of domestic sector retrofit in the UK by 26%, or £9 billion, whilst also making such a scheme cost-neutral, albeit with significant up-front investments that would only pay for themselves over an extended period of time. We conclude that revolving funds could enable countries with limited resources to invest more heavily and more effectively in low carbon development, even in contexts of austerity. - Highlights: • Examines the need for substantially higher levels of low carbon investment. • Explores the need for innovative financing mechanisms such as revolving funds. • Shows that revolving a fund could reduce the cost of UK retrofit by £9 billion or 26%. • Also shows that a revolving fund could make retrofit cost-neutral in the long term. • Concludes that revolving funds could dramatically increase low carbon investment.

  1. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  2. Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies.

    Science.gov (United States)

    Moreno, Rodrigo; Street, Alexandre; Arroyo, José M; Mancarella, Pierluigi

    2017-08-13

    Electricity grid operators and planners need to deal with both the rapidly increasing integration of renewables and an unprecedented level of uncertainty that originates from unknown generation outputs, changing commercial and regulatory frameworks aimed to foster low-carbon technologies, the evolving availability of market information on feasibility and costs of various technologies, etc. In this context, there is a significant risk of locking-in to inefficient investment planning solutions determined by current deterministic engineering practices that neither capture uncertainty nor represent the actual operation of the planned infrastructure under high penetration of renewables. We therefore present an alternative optimization framework to plan electricity grids that deals with uncertain scenarios and represents increased operational details. The presented framework is able to model the effects of an array of flexible, smart grid technologies that can efficiently displace the need for conventional solutions. We then argue, and demonstrate via the proposed framework and an illustrative example, that proper modelling of uncertainty and operational constraints in planning is key to valuing operationally flexible solutions leading to optimal investment in a smart grid context. Finally, we review the most used practices in power system planning under uncertainty, highlight the challenges of incorporating operational aspects and advocate the need for new and computationally effective optimization tools to properly value the benefits of flexible, smart grid solutions in planning. Such tools are essential to accelerate the development of a low-carbon energy system and investment in the most appropriate portfolio of renewable energy sources and complementary enabling smart technologies.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  3. An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy

    International Nuclear Information System (INIS)

    Trappey, Amy J.C.; Trappey, Charles; Hsiao, C.T.; Ou, Jerry J.R.; Li, S.J.; Chen, Kevin W.P.

    2012-01-01

    Conserving energy and reducing carbon emissions have become the common responsibility of the international community. During the year 2010, the Taiwan government planned a four-year project budgeted at 300 million US dollars, called “The Penghu Low Carbon Island Development Project.” The policy objective is to use Penghu Island (population 85,000) as a test platform to evaluate new ways to conserve energy and reduce carbon emissions before attempting to replicate the policies on Taiwan Island. For Taiwan, a zero carbon island green transportation policy will regulate the total number of electric scooters, the total number of gasoline motorcycles, influence government subsidy incentives, and create the need for new motorcycle license issuing and control. These factors interact with each other to form a complex and dynamic system that impacts policy as well as the current way of life. In this study, a system dynamics approach is designed to construct a model for evaluating the green transportation policy on Penghu Island. Simulations are conducted to model green transportation system behavior and related policy effects in a smaller, controlled environment before creating policies for Taiwan Island that will impact the lives of over 23 million people. - Highlights: ► Provides an overview of Taiwan's Penghu Low Carbon Island Development Project. ► Develops a systems dynamics approach for green transportation policy assessment. ► Provides causal analysis of social, economic, and environmental factors. ► Demonstrates that the proposed policy cannot meet the CO 2 reduction goals. ► Alternative policies can be evaluated using the proposed approach.

  4. A Low Carbon EU Energy System and Unconventional Sources

    International Nuclear Information System (INIS)

    Gracceva, F.; Kanudia, A.; Tosato, GC.

    2013-01-01

    The paper investigates the potential role of unconventional fossil fuels in a global low carbon energy system. Making use of a systemic approach, the paper presents an original application of a global partial equilibrium energy system model (TIAM-JET). In order to give a worldwide perspective with higher detail on European energy systems, the model links a set of extra-European macro-regions to the 30 European countries. First, a review of the most recent estimates of the available stocks of unconventional hydrocarbon resources is used to build the set of assumption for the scenario analysis. Secondly, a set of scenarios assuming different availability and cost of unconventional fuels are added to both a Current Trend scenario and a Carbon Constrained (CC) scenario, to explore the perspectives of unconventional gas and oil in a scenario halving CO 2 emissions by 2050, which is consistent with a 2 degree temperature increase. The results show if/how unconventional sources can contribute to the robustness of the European energy system with respect to the stress of a strong carbon constraint. We define this robustness as the capacity of the energy system to adapt its evolution to long-term constraints and keep delivering energy services to end users. In our approach robustness represents the long-term dimension of energy security. Assessing this ''system property'' requires analysing the wide range of factors that can exercise a stabilizing influence on the energy services delivery system, together with their relations, actual interactions and synergies. The energy system approach used for the analysis seeks to take into account as much of this complexity as possible. We assess the robustness of the EU system to the carbon constraint by looking at how the CC scenario affects energy system costs and energy prices under scenarios with different deployment of unconventional sources. This provides insights on the synergies and/or trade-offs between energy security and

  5. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  6. The US Electricity Industry and the Low-Carbon Transition

    International Nuclear Information System (INIS)

    Mathieu, Carole

    2016-04-01

    While the wave of liberalisation produced a fragmented, but now stabilised, industrial landscape, the US power sector is about to undergo another major transformation with the low-carbon transition. Against a background of combined weak demand for electricity, a boom in distributed solar PV power and a decline in the profitability of merchant assets, incumbent stakeholders are currently dealing with further questions about the future of their business models. Driven as much by market forces as by government support mechanisms, these destabilising factors have an impact, which is still difficult to assess, but the need to control future transformation is already at the heart of debate. In areas where output is priced on the wholesale markets, new tools are being studied to secure compensation for some power stations, with the issue of possible excessive dependency on natural gas in the background. At the same time, an increasing number of states are questioning the design of their support mechanisms for distributed energy. If net metering, the main support mechanism for distributed solar PV power, has been a resounding success because of its simplicity, it is now criticised because of the problems of covering grid costs and the cross-subsidies it leads to. Although reforms are always difficult to implement, since they involve a conflict of increasingly organised interests, consensus is beginning to emerge regarding the structure of retail sales tariffs. Nevertheless, calls for an assessment of distributed generation according to its actual value for the system are increasing, without any real convergence of views on the methodology to be adopted to date. Conventional stakeholders are also looking to adapt in order to find growth opportunities where primarily only challenges appear. The diversification of activities is an important lever for transformation, even if the case of NRG Energy illustrates the difficulty in making strategic shifts while maintaining

  7. On the Market Failures during the Development of Low-Carbon Economy

    Institute of Scientific and Technical Information of China (English)

    LU Xian-xiang; KE Zan-xian; ZHANG Yi

    2014-01-01

    Greenhouse gas emissions and the development of low-carbon economy are the biggest market failures,which are mainly manifested in such problems as the low-carbon economy being the world's largest externality,the low-carbon economy being the global public goods,and the free-rider along the development of low-carbon economy.The major reason for the market failures during the development of low-carbon economy is lacking of secured property ownership as well as the greenhouse effect.Thus,in order to establish secured property rights through institutional innovation,it is necessary not only to reduce the exploitation of fossil fuels from the source,but also to allocate the emission rights fairly.To develop the low-carbon economy is faced with market failures,but we can not therefore deny the basic roles of the market mechanism in the development of low-carbon economy,rather to correct and adjust the market through institutional innovations,so as to facilitate the establishment and operation of the low-carbon economy.For the sake of the sustainable development of human society,we have to adjust or change the rules of the resource allocation in the market economy,embedding such factors as emission reduction,low-carbon,environmental protection,etc.into the institutional framework of the market via rules,systems and policies.

  8. China in the transition to a low-carbon economy

    International Nuclear Information System (INIS)

    Zhang Zhongxiang

    2010-01-01

    China, from its own perspective cannot afford to and, from an international perspective, is not allowed to continue on the conventional path of encouraging economic growth at the expense of the environment. Instead, China needs to transform its economy to effectively address concern about a range of environmental problems from burning fossil fuels and steeply rising oil import and international pressure on it to exhibit greater ambition in fighting global climate change. This paper first discusses China's own efforts towards energy saving and pollutants cutting, the widespread use of renewable energy and participation in clean development mechanism, and puts carbon reductions of China's unilateral actions into perspective. Given that that transition to a low carbon economy cannot take place overnight, the paper then discusses China's policies on promoting the use of clean coal technologies and nuclear power. Based on these discussions, the paper provides some recommendations on issues related to energy conservation and pollution control, wind power, nuclear power and clean coal technologies and articulates a roadmap for China regarding its climate commitments to 2050.

  9. Challenges to China's transition to a low carbon electricity system

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Williams, Jim; Ding Jianhua; Hu Junfeng

    2011-01-01

    We examine the challenges to China's transition to a low carbon electricity system, in which renewable energy would play a significant role. China's electricity system currently lacks the flexibility in planning, operations, and pricing to respond to conflicting pressures from demand growth, rising costs, and environmental mandates in a way that simultaneously maintains reliability, decarbonizes the system, and keeps prices within acceptable bounds. Greater flexibility crucially requires the ability to more systematically and transparently manage and allocate costs. This will require re-orientating sector institutions still rooted in central planning, and strengthening independent regulation. Some of the necessary changes require fundamental political and legal reforms beyond the scope of energy policy. However, the system's flexibility can still be increased through the development of traditional planning and regulatory tools and approaches, such as an avoided cost basis for energy efficiency investments, more integrated planning to improve the coordination of generation, transmission, and demand-side investments, and a transparent ratemaking process. The judicious application of OECD electricity sector experience and skills can support these developments. - Research highlights: → China's electricity system currently lacks the flexibility to integrate renewables and reduce CO 2 emissions on a large scale at an acceptable cost and level of reliability. → The challenges to increased flexibility are more institutional than technological. → Chinese government agencies need new approaches to basic power system planning and ratemaking. → OECD countries can help address these challenges through the transfer of 'soft' technologies.

  10. Nuclear energy for a low-carbon France

    International Nuclear Information System (INIS)

    Faudon, Valerie; Jouette, Isabelle; Le Ngoc, Boris

    2015-01-01

    This publication states the opinion of the SFEN (the French Society of Nuclear Energy) about the implementation of the French Multi-year Energy Programming (PPE). The authors first outline that the PPE must firstly aim at reducing greenhouse gas emissions. As a second point, they outline that the PPE must remain flexible in order to be able to face uncertainties related to supply (growth of renewable energies) and demand (economic recovery, pace of energetic installation renewal), and to guard against energy-related events (oil shocks, Russian-Ukrainian crisis, and so on) through a right planning of the energy mix diversification with taking the improvement of economic and technological performance of renewable energies into account. As a third point, they outline that nuclear energy is the base of a low-carbon France. They finally discuss perspectives to strengthen this base by a sustained investment in the nuclear fleet, in the fuel recycling sector, and in research for the development of a new generation of reactors

  11. Kinetics of electrochemical boriding of low carbon steel

    International Nuclear Information System (INIS)

    Kartal, G.; Eryilmaz, O.L.; Krumdick, G.; Erdemir, A.; Timur, S.

    2011-01-01

    In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2 B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.

  12. Investigation of the pitting corrosion of low carbon steel containers

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Sullivan, T.M.

    1988-01-01

    The present study was undertaken because the prediction of the degradation rate of low carbon steel contains over long time frames is one of the crucial elements in the development of a source term model for low-level shallow land burial. The principal data base considered is that of the NBS corrosion measurements of ferrous materials buried in the ground for periods of up to 18 years. In this investigation, the maximum penetration in mils, hm, due to pitting corrosion was found to conform closely to the relation h m = kt n where it is the exposure time of the sample in years, κ is the pitting parameter in mil/(years) n , and n > O is a parameter related to the aeration property of the soil. The central objective of the present investigation is the determination of the dependence of the pitting parameters κ and n on the soil properties. The result of a detailed linear correlation analysis of κ on one hand, the pH value and the resistivity of the soil on the other hand revealed that κ is principally influenced by the pH value of the soil. The resistivity of the soil is found to play a minor role

  13. California's Low-Carbon Fuel Standard - Compliance Trends

    Science.gov (United States)

    Witcover, J.; Yeh, S.

    2013-12-01

    Policies to incentivize lower carbon transport fuels have become more prevalent even as they spark heated debate over their cost and feasibility. California's approach - performance-based regulation called the Low Carbon Fuel Standard (LCFS) - has proved no exception. The LCFS aims to achieve 10% reductions in state transport fuel carbon intensity (CI) by 2020, by setting declining annual CI targets, and rewarding fuels for incremental improvements in CI beyond the targets while penalizing those that fail to meet requirements. Even as debate continues over when new, lower carbon fuels will become widely available at commercial scale, California's transport energy mix is shifting in gradual but noticeable ways under the LCFS. We analyze the changes using available data on LCFS fuels from the California Air Resources Board and other secondary sources, beginning in 2011 (the first compliance year). We examine trends in program compliance (evaluated through carbon credits and deficits generated), and relative importance of various transport energy pathways (fuel types and feedstocks, and their CI ratings, including new pathways added since the program's start). We document a roughly 2% decline in CI for gasoline and diesel substitutes under the program, with compliance achieved through small shifts toward greater reliance on fuels with lower CI ratings within a relatively stable amount of transport energy derived from alternatives to fossil fuel gasoline and diesel. We also discuss price trends in the nascent LCFS credit market. The results are important to the broader policy debate about transportation sector response to market-based policies aimed at reducing the sector's greenhouse gas emissions.

  14. Ultra low carbon bainitic (ULCB) steels after quenching and tempering

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Kolan, C.; Jeziorski, L.

    1998-01-01

    The mechanical and Charpy V impact strength properties of new advanced ultra low carbon bainitic (ULBC) steels after water quenching and tempering (WQT) have been investigated. Their chemical compositions are given. The nine continuous cooling transformation diagrams (CCT) of the new ULCB steel grades have been established. The CCT diagrams for ULCB N i steels containing 9% Ni - grade 10N9 and 5% Ni - grade HN5MVNb are given. The comparison between CCT diagrams of 3.5%Ni + 1.5%Cu containing steels grade HSLA 100 and HN3MCu is shown. The effect of the increase in carbon and titanium contents in the chemical composition of ULCB M n steels 04G3Ti, 06G3Ti and 09G3Ti on the kinetics of phase transformations during continuous cooling is presented by the shifting CCT diagrams. The Charpy V impact strength and brittle fracture occurence curves are shown. The effect of tempering temperature on tensile properties of WQT HN3MCu steel is shown and Charpy V impact strength curves after different tempering conditions are shown. The optimum tempering temperatures region of HN3MCu steel for high Charpy V impact toughness at law temperatures - 80 o C(193 K) and -120 o C(153 K) is estimated. The effect of tempering temperature on mechanical properties of HN5MVNb steel is given. The low temperature impact Charpy V toughness of HN5MVNb steel is shown. The optimum range of tempering temperature during 1 hour for high toughness of WQT HN5MVNb steel is given. HN3MCu and HN5MVNb steels after WQT have high yield strength YS≥690 MPa and high Charpy V impact toughness KV≥80 J at -100 o C (173K) and KCV≥50 J/cm 2 at - 120 o C (153K) so they may be used for cryogenic applications

  15. Analysis and study of low-carbon clothing design and fashion lifestyle

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-10-01

    Full Text Available Low-carbon is not only a slogan, but also a global action to protect the environment. In the clothing industry, low-carbon clothing design has drawn public focus and it also conveyed the notion that we should respect for nature and advocate the concept of conservation. Through the analysis and study of low-carbon clothing design, it comes to two conclusions: On the subjective aspect, low-carbon design consciousness of designers which humanization of costume design, design clothing beyond beauty, thinking and caring about people; on the objective aspects, low-carbon clothing design is analyzed in three main aspects: fabric, color and styling. It is necessary to put low-carbon concept into people’s behavior consciousness and let the slow fashion environmental concept return back to people’s fashion lifestyle, so that consumers can look for their self-positioning and rational thinking. Therefore, the design of low-carbon clothing should be raised to the design of humanistic care to ensure that low-carbon concept is a global need and responsibility.

  16. Designing trust: how strategic intermediaries choreograph homeowners’ low-carbon retrofit experience

    NARCIS (Netherlands)

    Wilde, de M.; Spaargaren, G.

    2018-01-01

    In the Netherlands, as in other European countries, the uncertain, fragmented character of the low-carbon retrofit market hampers a transition towards sustainable housing. Connecting homeowners to supply-side actors of low-carbon retrofit procedures, products and technologies in ways satisfactory to

  17. Impact assessment of the carbon reduction strategy for transport, low carbon transport : a greener future

    Science.gov (United States)

    2009-07-01

    This is an impact assessment for the Carbon Reduction Strategy for Transport (DfT, 2009), Low Carbon Transport: A Greener Future, which is part of the UK Governments wider UK Low Carbon Transition Plan (DECC, 2009), Britains path to ta...

  18. The Role of Consumers in the Transition toward Low-Carbon Living

    Directory of Open Access Journals (Sweden)

    Anna Claudelin

    2017-06-01

    Full Text Available Improvements in energy efficiency and production of renewable energy hold significant potential for reducing greenhouse gas emissions of housing, which accounts for 14% of global greenhouse gas emissions. In our research, we focused on the willingness of owners of detached houses to adopt renewable energy production systems of their own, and we examined perceived barriers to adopting these systems. The research was conducted using a survey and a life cycle assessment model. The survey covered three residential areas in Lahti, Finland, and the potential reductions in greenhouse gas emissions were estimated using a life cycle assessment model based on the survey results. The barriers to transformation were identified as a lack of knowledge in the following three areas: (1 the possible annual savings attained; (2 the costs of implementing energy efficiency and renewable energy production solutions; and (3 the technologies used in renewable energy production. The greenhouse gas emission reductions in the residential areas surveyed would amount to approximately 15% if the consumers implemented the solutions they considered.

  19. Low carbon society scenario 2050 in Thai industrial sector

    International Nuclear Information System (INIS)

    Selvakkumaran, Sujeetha; Limmeechokchai, Bundit; Masui, Toshihiko; Hanaoka, Tatsuya; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Thai industrial sector has been modelled using AIM/Enduse model. • Potential mitigation of CO 2 for 2050 is approximately 20% from Baseline scenario. • Abatement cost curves show that varied counter measures are practical in the industrial sector. • Energy security is enhanced due to CO 2 mitigation in the LCS scenario. - Abstract: Energy plays a dominant role in determining the individual competitiveness of a country and this is more relevant to emerging economies. That being said, energy also plays an important and ever expanding role in carbon emissions and sustainability of the country. As a developing country Thailand’s industrial sector is vibrant and robust and consumes majority of the energy. In addition, it also has the highest CO 2 emissions, provided the emissions of power generation are taken into account. Industry also accounts for the highest consumption of electricity in Thailand. The objective of this study is to model the Thai industrial energy sector and estimate the mitigation potential for the timeframe of 2010–2050 using the principles of Low Carbon Society (LCS). In addition, the paper would also evaluate emission tax as a key driver of Greenhouse Gas (GHG) mitigation along with Marginal Abatement Cost (MAC) analysis. Another secondary objective is to analyse the impact of mitigation on energy security of the industrial sector. The Thai industrial sector was modelled using AIM/Enduse model, which is a recursive dynamic optimisation model belonging to the Asia–Pacific Integrated Model (AIM) family. Thai industrial sector was divided into nine sub-sectors based on national economic reporting procedures. Results suggest that the mitigation potential in 2050, compared to the Baseline scenario, is around 20% with positive impacts on energy security. The Baseline emission will approximately be 377 Mt-CO 2 in the industrial sector. All four indicators of energy security, Primary Energy Intensity, Carbon Intensity, Oil

  20. Scenario analysis of China's emissions pathways in the 21st century for low carbon transition

    International Nuclear Information System (INIS)

    Wang Tao; Watson, Jim

    2010-01-01

    China's growing demand for energy - and its dependence on coal - has seen its carbon emissions increase more than 50% since 2000. Within the debate about mitigating global climate change, there is mounting pressure for emerging economies like China to take more responsibility for reducing their carbon emissions within a post-2012 international climate change policy framework. For China, this leads to fundamental questions about how feasible it is for the country to shift away from its recent carbon intensive pattern of growth. This paper presents some general results of scenarios that have been developed to investigate how China might continue to develop within a cumulative carbon emissions budget. The results show how changes in the key sectors of the Chinese economy could enable China to follow four different low carbon development pathways, each of which complies with a cumulative emissions constraint. Each scenario reflects different priorities for governmental decision making, infrastructure investments and social preferences. Having compared the key features of each scenario, the paper concludes with some implications for Chinese government policy.

  1. Community action for sustainable housing: Building a low-carbon future

    International Nuclear Information System (INIS)

    Seyfang, Gill

    2010-01-01

    This paper presents a new analytical framework of 'grassroots innovations' which views community-led initiatives for sustainable development as strategic green niches with the potential for wider transformation of mainstream society. This framework is applied to a low-carbon, low-impact, community-based sustainable housing initiative in the USA that pioneers straw bale housing techniques within a strong community-building ethos. The project is evaluated according to New Economics criteria of sustainable consumption, and is found to be successful at localising the construction supply chain, reducing ecological footprints, community-building, enabling collective action and building new institutions and systems of provision around housebuilding. However, viewing it as a strategic niche with aim to influence wider society, it is clear that it faces significant challenges in diffusing its ideas and practices beyond the niche. Its model is not necessarily suitable for scaling up or widespread replication; however, the scope for niche lessons to be adopted by mainstream builders is greater, given a supportive policy environment. Recognising the innovative nature of green niches at the policy level could lead to new approaches to governance of bottom-up community action for sustainable development.

  2. An Empirical Study on Low-Carbon: Human Resources Performance Evaluation

    Science.gov (United States)

    Chen, Quan; Tsai, Sang-Bing; Zhou, Jie; Yu, Jian; Chang, Li-Chung; Li, Guodong; Zheng, Yuxiang; Wang, Jiangtao

    2018-01-01

    Low-carbon logistics meets the requirements of a low-carbon economy and is the most effective operating model for logistic development to achieve sustainability by coping with severe energy consumption and global warming. Low-carbon logistics aims to reduce carbon intensity rather than simply reduce energy consumption and carbon emissions. Human resources are an important part of the great competition in the logistics market and significantly affect the operations of enterprises. Performance evaluations of human resources are particularly important for low-carbon logistics enterprises with scarce talents. Such evaluations in these enterprises are of great significance for their strategic development. This study constructed a human resource performance evaluation system to assess non-managerial employees’ low-carbon job capacity, job performance, and job attitude in the low-carbon logistics sector. The case study results revealed that the investigated company enjoyed initial success after having promoted low-carbon concepts and values to its non-managerial employees, and the success was demonstrated by excellent performance in its employees’ job attitude and knowledge. This study adopts the AHP method to reasonably determine an indicator system of performance evaluation and its weight to avoid certain human-caused bias. This study not only fills the gap in the related literature, but can also be applied to industrial practice. PMID:29301375

  3. An Empirical Study on Low-Carbon: Human Resources Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Quan Chen

    2018-01-01

    Full Text Available Low-carbon logistics meets the requirements of a low-carbon economy and is the most effective operating model for logistic development to achieve sustainability by coping with severe energy consumption and global warming. Low-carbon logistics aims to reduce carbon intensity rather than simply reduce energy consumption and carbon emissions. Human resources are an important part of the great competition in the logistics market and significantly affect the operations of enterprises. Performance evaluations of human resources are particularly important for low-carbon logistics enterprises with scarce talents. Such evaluations in these enterprises are of great significance for their strategic development. This study constructed a human resource performance evaluation system to assess non-managerial employees’ low-carbon job capacity, job performance, and job attitude in the low-carbon logistics sector. The case study results revealed that the investigated company enjoyed initial success after having promoted low-carbon concepts and values to its non-managerial employees, and the success was demonstrated by excellent performance in its employees’ job attitude and knowledge. This study adopts the AHP method to reasonably determine an indicator system of performance evaluation and its weight to avoid certain human-caused bias. This study not only fills the gap in the related literature, but can also be applied to industrial practice.

  4. An Empirical Study on Low-Carbon: Human Resources Performance Evaluation.

    Science.gov (United States)

    Chen, Quan; Tsai, Sang-Bing; Zhai, Yuming; Zhou, Jie; Yu, Jian; Chang, Li-Chung; Li, Guodong; Zheng, Yuxiang; Wang, Jiangtao

    2018-01-03

    Low-carbon logistics meets the requirements of a low-carbon economy and is the most effective operating model for logistic development to achieve sustainability by coping with severe energy consumption and global warming. Low-carbon logistics aims to reduce carbon intensity rather than simply reduce energy consumption and carbon emissions. Human resources are an important part of the great competition in the logistics market and significantly affect the operations of enterprises. Performance evaluations of human resources are particularly important for low-carbon logistics enterprises with scarce talents. Such evaluations in these enterprises are of great significance for their strategic development. This study constructed a human resource performance evaluation system to assess non-managerial employees' low-carbon job capacity, job performance, and job attitude in the low-carbon logistics sector. The case study results revealed that the investigated company enjoyed initial success after having promoted low-carbon concepts and values to its non-managerial employees, and the success was demonstrated by excellent performance in its employees' job attitude and knowledge. This study adopts the AHP method to reasonably determine an indicator system of performance evaluation and its weight to avoid certain human-caused bias. This study not only fills the gap in the related literature, but can also be applied to industrial practice.

  5. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    International Nuclear Information System (INIS)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.; Simonsen, Christian G.; Astrup, Thomas

    2014-01-01

    Highlights: • Environmental impact of a power system with a high share of wind power assessed. • LCI data for electricity supply in Denmark in 2010 and 2030 (low carbon) provided. • Focus on GHG reduction may lead to increase in other impact categories. • Imported biomass might cause high GHG emissions form Land Use Change. • Need for guidelines for LCA of electricity supply (cogeneration and power import). - Abstract: The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed. The results showed that consumption of fossil resources and global warming impacts from the Danish electricity sector could be reduced significantly compared with 2010. Nevertheless, a reduction in GHG may be at the expense of other environmental impacts, such as the increased depletion of abiotic resources. Moreover, the results were very dependent upon biomass origin: when agricultural land was affected by biomass import, and land use changes and transportation were included, GHG emissions from imported biomass were comparable to those from fossil fuels. The results were significantly influenced by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants in 2010 and 2030 (including corresponding

  6. Building low carbon communities in China: The role of individual’s behaviour change and engagement

    International Nuclear Information System (INIS)

    Jiang, Ping; Chen, Yihui; Xu, Bin; Dong, Wenbo; Kennedy, Erin

    2013-01-01

    Low carbon sustainability has been addressed in China’s national development strategies. This research explores individual behaviour change and engagement in building low carbon communities in China through a case study looking at the building of a low carbon campus at Fudan University, Shanghai. Individual behaviour directly influences the overall energy consumption and carbon emissions on Fudan University’s campus. Even though relevant polices have been issued for energy conservation, the energy consumption increased by 5% every year, which suggests that the “top-down” approach telling students and staff “what to do” does not work effectively. Based on a comprehensive method which includes the individual and social aspects related to the energy behaviour, the research analyses the promotion of individual engagement in building a low carbon campus through behaviour change based on four main aspects: (1) awareness raising and behaviour forming; (2) approaches to encourage behaviour change; (3) beyond the barriers and the constraints; and (4) systems and mechanisms for the long-term engagement. A low carbon management system is proposed for not only addressing management and technical solutions at the university level, but also based on the contributions from behaviour changes in establishing a low carbon campus at Fudan University at the individual level. - Highlights: • The “top-down” approach is not an effective way to building low carbon communities in China. • Individuals’ behaviour change and engagement play a key role in low carbon sustainability. • Awareness raising, proper approaches and sound mechanisms are necessary to encourage long-term behaviour changes. • An integrated management system is developed for comprehensibly establishing a low carbon campus at Fudan University

  7. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  8. Iceland as a demonstrator for a transition to low carbon economy?

    Science.gov (United States)

    Asbjornsson, Einar Jon; Stefansson, Hlynur; Finger, David Christian

    2017-04-01

    The energy supply in Iceland is quite unique, about 85% of the total primary energy is coming from renewable resources. Nevertheless, the ecological footprint of an average Icelander is with 6.5 worlds, one of the highest worldwide and the energy consumption per capita is about 7 times higher than the European average. Recent developments have shown that there is a great potential to reduce the footprint and develop towards low carbon economy. With its small population, well educated and governed society and clear system boundaries to the outside world, Iceland is a good research laboratory and an ideal demonstrator for a transition towards a low carbon economy. This presentation will outline how several innovative research projects at Reykjavik University could lead Iceland towards a sustainable and low carbon economy. The presentations will conclude with a visionary outlook how Iceland can become a demonstration nation towards a prosperous, low carbon and sustainable economy, helping stabilize global warming at an acceptable level.

  9. Scenarios for low carbon and low water electric power plant operations: implications for upstream water use

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset includes all data used in the creation of figures and graphs in the paper: "Scenarios for low carbon and low water electric power plant operations:...

  10. Low carbon thermal technologies in an ageing society – What are the issues?

    International Nuclear Information System (INIS)

    Day, Rosie

    2015-01-01

    This paper is a commentary on the theme of this special issue, low carbon thermal technologies and older age, and the Conditioning Demand project. Drawing on the project findings, I discuss some key aspects of ageing that are relevant to the roll-out of low carbon technologies in domestic settings in ageing, developed societies. These include biological, cognitive, institutional and social dimensions. I conclude with some suggestions for ways of working to maximise the potential benefits of low carbon thermal technologies for older people. -- Highlights: •The specific needs of older people must be considered in low carbon transitions. •The vulnerability discourse however dominates in a way which is unhelpful. •Some physiological aspects of ageing affect person-technology fit. •Cultural aspects influence the success of integration of LCTs into domestic settings. •More inclusive design is needed if older people are to benefit from LCTs

  11. Trading scheme 'key' to low-carbon economy

    International Nuclear Information System (INIS)

    2006-01-01

    Federal Opposition Leader Kim Beazley has emphasised the importance of getting the economics of environmental policy right by introducing market-based mechanisms for pricing emissions. 'Market-based mechanisms such as emissions trading are central to moving to a low-carbon economy,' he said in his latest blueprint. 'A functioning carbon market will deliver a price signal, so there is a long-term incentive to cut emissions further, and a mechanism for trading, so that energy can be allocated efficiently in the economy. It will also encourage greater private investment in clean energy technology.' Mr Beazley said the new market would also reward the many companies who were already adapting to a carbon-constrained world. 'This includes those global companies in Australia that already operate in emissions trading markets overseas. An effective price signal for carbon in Australia will allow these companies to benefit directly from their good corporate citizenship and long-term vision.' Mr Beazley has committed a federal Labor government to work with state governments and business to establish the national trading scheme. He also criticised the Federal Government for refusing to ratify the Kyoto Protocol, which he argued excluded Australian businesses from participating in the emerging global carbon trade. This made it harder for businesses to break into the market for cleaner production technologies overseas. While again admitting Kyoto was not perfect, Mr Beazley said ratification would see Australia part of what would potentially be 'the biggest market in the world by 2020'. He said the recent Asia Pacific Climate Change Pact was a positive step but was not an alternative to Kyoto. 'Above all, it has no economic mechanisms to drive further change. 'Without ratifying Kyoto some of our businesses are missing out on effective participation in international schemes that offer substantial financial rewards for greenhouse gas reductions. 'By ratifying Kyoto and adopting

  12. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    OpenAIRE

    Guo, Hong-xia; Shao, Ming

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products, we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent. We apply the development idea of low-carbon economy, introduce the third-party logistics companies, establish distribution center of cold chain logistics of agricultural products, and strengthen information sharing, to reengineer the process of cold chain logistics of agricultural produc...

  13. Low-carbon building assessment and multi-scale input-output analysis

    Science.gov (United States)

    Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.

    2011-01-01

    Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.

  14. Win-win strategies in directing low-carbon resilient development path

    International Nuclear Information System (INIS)

    Masui, Toshihiko; Kainuma, Mikiko

    2015-01-01

    This section explores big win-win strategies in directing low carbon resilient development path. There are lots of “leapfrog” development possibilities in developing countries, which go directly from a status of under-development through to efficient and environmentally benign lifestyle. To achieve low carbon resilient paths, not only technology development but also institutional and behavioral changes are required. Science-policy nexus is also discussed.

  15. Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment

    Directory of Open Access Journals (Sweden)

    Daming You

    2018-02-01

    Full Text Available This study introduces a time factor into a low-carbon context, and supposes the contamination control state of local government and the ability of polluting enterprise to abate emissions as linear increasing functions in a regional low-carbon emission abatement cooperation chain. The local government effectuates and upholds the low-carbon development within the jurisdiction that is primarily seeking to transform regional economic development modes, while the polluting enterprise abates the amounts of emitted carbon in the entire period of product through simplifying production, facilitating decontamination, and adopting production technology, thus leading to less contamination. On that basis, we infer that the coordinated joint carbon reduction model and two decentralization contracts expound the dynamic coordination strategy for a regional cooperation chain in terms of vertical carbon abatement. Furthermore, feedback equilibrium strategies that are concerned with several diverse conditions are compared and analyzed. The main results show that a collaborative centralized contract is able to promote the regional low-carbon cooperation chain in order to achieve a win–win situation in both economic and environmental performance. Additionally, the optimal profits of the entire regional low-carbon cooperation channel under an integration scenario evidently outstrip that of two non-collaborative decentralization schemes. Eventually, the validity of the conclusions is verified with a case description and numerical simulation, and the sensitivity of the relevant parameters is analyzed in order to lay a theoretical foundation and thus facilitate the sustainable development of a regional low-carbon environment.

  16. Quantitative Study on the Dynamic Mechanism of Smart Low-Carbon City Development in China

    Directory of Open Access Journals (Sweden)

    Bo Pang

    2016-05-01

    Full Text Available With the development of new generation technology and the low-carbon economy, the smart low-carbon city has become one of the academic hotspots. Many studies on it have begun; however, the dynamic mechanism is rarely involved. Therefore, this paper uses the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS method to creatively take a quantitative study on a Chinese smart low-carbon city’s dynamic mechanism. The results show that: (1 the three main dynamics of smart low-carbon city development in China are institutional and cultural conditions, facilities and functions conditions and economy and industry conditions, but the overall utility is relatively low; (2 the level of the dynamic operation mechanism of the Chinese smart low-carbon city is distinct between regions, indicating a diminishing spatial law from east to west and differences within regions; (3 the imbalance of the comprehensive dynamic mechanism and the operation status between smart low-carbon cities is prominent, showing a decreasing urban scale law of from big to small and differences within each scale, and a descending administration hierarchy law from high to low and differences within each class; (4 seven basic development patterns can be obtained, and most of the cities belong to the external strong/internal weak mode, which basically matches with its development realities. Finally, general policy recommendations and countermeasures of optimization and improvement are proposed.

  17. Approach and practices of district energy planning to achieve low carbon outcomes in China

    International Nuclear Information System (INIS)

    Xu, Baoping; Zhou, Shaoxiang; Hao, Lin

    2015-01-01

    District energy planning is an important methodology to assist in realizing a lower carbon target. However, district energy planning has not yet been incorporated into the statutory planning system in China, primarily because there are no clear standards and specifications for these plans. In this paper, we propose a general framework and low carbon estimation method for district energy planning, which is based on evaluating the low carbon energy planning practices of several new districts in China. In addition, several key points of concern in the planning process are extracted and discussed: overall infrastructure planning; co-operation between city planning and other special low carbon eco-planning; investment, financing and profitable operation; planning management mechanisms; and the management of the construction of the energy system to coincide with the project schedule. We carried out a case study of a low carbon energy plan for a new district of Beijing to evaluate our framework. Finally, we conclude that to realize the low carbon target, regional energy planning covering technologies, the market and management should be standardized as soon as possible. -- Highlights: •A general framework for district energy planning is proposed. •A case study of a low carbon energy plan for a new district is carried out. •District energy planning should be standardized as soon as possible. •The most suitable spatial scale for energy planning is at the municipal level

  18. Optimal Strategies for Low Carbon Supply Chain with Strategic Customer Behavior and Green Technology Investment

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    2016-01-01

    Full Text Available Climate change is mainly caused by excessive emissions of carbon dioxide and other greenhouse gases. In order to reduce carbon emissions, cap and trade policy is implemented by governments in many countries, which has significant impacts on the decisions of companies at all levels of the low carbon supply chain. This paper investigates the decision-making and coordination of a low carbon supply chain consisting of a low carbon manufacturer who produces one product and is allowed to invest in green technology to reduce carbon emissions in production and a retailer who faces stochastic demands formed by homogeneous strategic customers. We investigate the optimal production, pricing, carbon trading, and green technology investment strategies of the low carbon supply chain in centralized (including Rational Expected Equilibrium scenario and quantity commitment scenario and decentralized settings. It is demonstrated that quantity commitment strategy can improve the profit of the low carbon supply chain with strategic customer behavior. We also show that the performance of decentralized supply chain is lower than that of quantity commitment scenario. We prove that the low carbon supply chain cannot be coordinated by revenue sharing contract but by revenue sharing-cost sharing contract.

  19. Extending roGFP Emission via Förster-Type Resonance Energy Transfer Relay Enables Simultaneous Dual Compartment Ratiometric Redox Imaging in Live Cells.

    Science.gov (United States)

    Norcross, Stevie; Trull, Keelan J; Snaider, Jordan; Doan, Sara; Tat, Kiet; Huang, Libai; Tantama, Mathew

    2017-11-22

    Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.

  20. Sulfur X-Ray Absorption Spectroscopy of Living Mammalian Cells: An Enabling Tool for Sulfur Metabolomics. in Situ Observation of Uptake of Taurine Into MDCK Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gnida, M.; Sneeden, E.Yu; Whitin, J.C.; Prince, R.C.; Pickering, I.J.; Korbas, M.; George, G.N.

    2009-06-01

    Sulfur is essential for life, with important roles in biological structure and function. However, because of a lack of suitable biophysical techniques, in situ information about sulfur biochemistry is generally difficult to obtain. Here, we present an in situ sulfur X-ray absorption spectroscopy (S-XAS) study of living cell cultures of the mammalian renal epithelial MDCK cell line. A great deal of information is retrieved from a characteristic sulfonate feature in the X-ray absorption spectrum of the cell cultures, which can be related to the amino acid taurine. We followed the time and dose dependence of uptake of taurine into MDCK cell monolayers. The corresponding uptake curves showed a typical saturation behavior with considerable levels of taurine accumulation inside the cells (as much as 40% of total cellular sulfur). We also investigated the polarity of uptake of taurine into MDCK cells, and our results confirmed that uptake in situ is predominantly a function of the basolateral cell surface.

  1. Scientific Assessment in support of the Materials Roadmap enabling Low Carbon Energy Technologies: Hydrogen and Fuel Cells

    DEFF Research Database (Denmark)

    Cerri, I.; Lefebvre-Joud, F.; Holtappels, Peter

    A group of experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European...

  2. Emissions Scenario Portal for Visualization of Low Carbon Pathways

    Science.gov (United States)

    Friedrich, J.; Hennig, R. J.; Mountford, H.; Altamirano, J. C.; Ge, M.; Fransen, T.

    2016-12-01

    This proposal for a presentation is centered around a new project which is developed collaboratively by the World Resources Institute (WRI), Google Inc., and Deep Decarbonization Pathways Project (DDPP). The project aims to develop an online, open portal, the Emissions Scenario Portal (ESP),to enable users to easily visualize a range of future greenhouse gas emission pathways linked to different scenarios of economic and energy developments, drawing from a variety of modeling tools. It is targeted to users who are not modelling experts, but instead policy analysts or advisors, investment analysts, and similar who draw on modelled scenarios to inform their work, and who can benefit from better access to, and transparency around, the wide range of emerging scenarios on ambitious climate action. The ESP will provide information from scenarios in a visually appealing and easy-to-understand manner that enable these users to recognize the opportunities to reduce GHG emissions, the implications of the different scenarios, and the underlying assumptions. To facilitate the application of the portal and tools in policy dialogues, a series of country-specific and potentially sector-specific workshops with key decision-makers and analysts, supported by relevant analysis, will be organized by the key partners and also in broader collaboration with others who might wish to convene relevant groups around the information. This project will provide opportunities for modelers to increase their outreach and visibility in the public space and to directly interact with key audiences of emissions scenarios, such as policy analysts and advisors. The information displayed on the portal will cover a wide range of indicators, sectors and important scenario characteristics such as macroeconomic information, emission factors and policy as well as technology assumptions in order to facilitate comparison. These indicators have been selected based on existing standards (such as the IIASA AR5

  3. Effect of B and B + Nb on the bainitic transformation in low carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Kangying, E-mail: kangying.zhu@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France); Oberbillig, Carla, E-mail: carla.oberbillig@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France); Musik, Celine, E-mail: celine.musik@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France); Loison, Didier, E-mail: didier.loison@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France); Iung, Thierry, E-mail: thierry.iung@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France)

    2011-05-15

    Research highlights: {yields} B retards slightly the bainite transformation kinetics. {yields} Combined addition of B + Nb delayed dramatically bainite transformation kinetics. {yields} B refines the microstructure and promotes lath morphology of bainite. {yields} Larger packets of laths and longer laths are observed in the B + Nb steel. {yields} More free boron/finer borocarbide precipitates on {gamma} grain boundaries in B + Nb steel. - Abstract: Development of new, advanced high and ultra-high strength bainitic steels requires the selection of the optimum balance of bainite promoting elements allowing the production of the desired bainitic microstructure over a wide range of cooling rates. The addition of boron or a combined addition of boron and niobium is well known to retard strongly the polygonal ferrite formation but very little knowledge has been acquired on the bainitic transformation. Therefore, the purpose of this study is to investigate the influence of boron and boron plus niobium on the bainite transformation kinetics, microstructural evolution and mechanical properties in a low carbon steel (Fe-0.05C-1.49Mn-0.30Si). Isothermal and continuous cooling transformation diagrams were determined and followed by a detailed quantitative characterisation of the bainite microstructure and morphology using complementary advanced metallographic techniques (FEG-SEM-EBSD, SIMS and TEM). The relationship between microstructure and hardness has been evaluated. Finally, results of SIMS and TEM analyses coupled with microstructural investigations enable to propose a mechanism to explain the effect of the synergy between boron and niobium on the bainitic transformation and the resultant microstructure.

  4. Effect of B and B + Nb on the bainitic transformation in low carbon steels

    International Nuclear Information System (INIS)

    Zhu Kangying; Oberbillig, Carla; Musik, Celine; Loison, Didier; Iung, Thierry

    2011-01-01

    Research highlights: → B retards slightly the bainite transformation kinetics. → Combined addition of B + Nb delayed dramatically bainite transformation kinetics. → B refines the microstructure and promotes lath morphology of bainite. → Larger packets of laths and longer laths are observed in the B + Nb steel. → More free boron/finer borocarbide precipitates on γ grain boundaries in B + Nb steel. - Abstract: Development of new, advanced high and ultra-high strength bainitic steels requires the selection of the optimum balance of bainite promoting elements allowing the production of the desired bainitic microstructure over a wide range of cooling rates. The addition of boron or a combined addition of boron and niobium is well known to retard strongly the polygonal ferrite formation but very little knowledge has been acquired on the bainitic transformation. Therefore, the purpose of this study is to investigate the influence of boron and boron plus niobium on the bainite transformation kinetics, microstructural evolution and mechanical properties in a low carbon steel (Fe-0.05C-1.49Mn-0.30Si). Isothermal and continuous cooling transformation diagrams were determined and followed by a detailed quantitative characterisation of the bainite microstructure and morphology using complementary advanced metallographic techniques (FEG-SEM-EBSD, SIMS and TEM). The relationship between microstructure and hardness has been evaluated. Finally, results of SIMS and TEM analyses coupled with microstructural investigations enable to propose a mechanism to explain the effect of the synergy between boron and niobium on the bainitic transformation and the resultant microstructure.

  5. Climate consequences of low-carbon fuels: The United States Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Hill, Jason; Tajibaeva, Liaila; Polasky, Stephen

    2016-01-01

    A common strategy for reducing greenhouse gas (GHG) emissions from energy use is to increase the supply of low-carbon alternatives. However, increasing supply tends to lower energy prices, which encourages additional fuel consumption. This “fuel market rebound effect” can undermine climate change mitigation strategies, even to the point where efforts to reduce GHG emissions by increasing the supply of low-carbon fuels may actually result in increased GHG emissions. Here, we explore how policies that encourage the production of low-carbon fuels may result in increased GHG emissions because the resulting increase in energy use overwhelms the benefits of reduced carbon intensity. We describe how climate change mitigation strategies should follow a simple rule: a low-carbon fuel with a carbon intensity of X% that of a fossil fuel must displace at least X% of that fossil fuel to reduce overall GHG emissions. We apply this rule to the United States Renewable Fuel Standard (RFS2). We show that absent consideration of the fuel market rebound effect, RFS2 appears to reduce GHG emissions, but once the fuel market rebound effect is factored in, RFS2 actually increases GHG emissions when all fuel GHG intensity targets are met. - Highlights: • Low-carbon fuels partially displace petroleum via fuel market rebound effect. • Synthesis of recent analyses shows incomplete petroleum displacement by biofuels. • Fuel market rebound effect can reduce or reverse climate benefit of low-carbon fuels. • Fossil fuel displacement must exceed relative carbon footprint of a low-carbon fuel. • The Renewable Fuel Standard increases greenhouse gas emissions when mandate is met.

  6. Key policy considerations for facilitating low carbon technology transfer to developing countries

    International Nuclear Information System (INIS)

    Ockwell, David G.; Watson, Jim; MacKerron, Gordon; Pal, Prosanto; Yamin, Farhana

    2008-01-01

    Based on Phase I of a UK-India collaborative study, this paper analyses two case studies of low carbon technologies-hybrid vehicles and coal-fired power generation via integrated gasification combined cycle (IGCC). The analysis highlights the following six key considerations for the development of policy aimed at facilitating low carbon technology transfer to developing countries: (1) technology transfer needs to be seen as part of a broader process of sustained, low carbon technological capacity development in recipient countries; (2) the fact that low carbon technologies are at different stages of development means that low carbon technology transfer involves both vertical transfer (the transfer of technologies from the R and D stage through to commercialisation) and horizontal transfer (the transfer from one geographical location to another). Barriers to transfer and appropriate policy responses often vary according to the stage of technology development as well as the specific source and recipient country contexts; (3) less integrated technology transfer arrangements, involving, for example, acquisition of different items of plant from a range of host country equipment manufacturers, are more likely to involve knowledge exchange and diffusion through recipient country economies; (4) recipient firms that, as part of the transfer process, strategically aim to obtain technological know-how and knowledge necessary for innovation during the transfer process are more likely to be able to develop their capacity as a result; (5) whilst access to Intellectual Property Rights (IPRs) may sometimes be a necessary part of facilitating technology transfer, it is not likely to be sufficient in itself. Other factors such as absorptive capacity and risks associated with new technologies must also be addressed; (6) there is a central role for both national and international policy interventions in achieving low carbon technology transfer. The lack of available empirical analysis

  7. Past performance and future needs for low carbon climate resilient infrastructure– An investment perspective

    International Nuclear Information System (INIS)

    Kennedy, Christopher; Corfee-Morlot, Jan

    2013-01-01

    This article explores the investment implications of moving to low-carbon, climate-resilient infrastructure. It begins with analysis of gross fixed capital formation and decarbonisation trends to examine past performance of OECD countries in reducing GHG emissions from 1997 to 2007. Many OECD countries made progress in decoupling GHG emissions from infrastructure investment in residential buildings, and to a lesser extent from power and industry, but increased efforts are required, especially in the transportation sector. The analysis highlights the need to accelerate the pace and scale of change to reverse GHG emission trends to bring into reach ambitious climate policy goals. It then assesses future global infrastructure needs under low-carbon and business-as-usual (BAU) global warming scenarios, and the incremental costs of going “low-carbon” are estimated to be small relative to the magnitude of the BAU infrastructure investment needs. Global infrastructure needs for 2015–2020, including buildings and transportation vehicles, are approximately 6.7 trillion USD/year under BAU. Incremental costs of low-carbon infrastructure are of the order −70 to +450 billion USD/year. Achieving climate resilient infrastructure may add costs, but there is potentially synergistic overlap with low-carbon attributes. Although estimates are incomplete, the technical and financial inter-dependency between infrastructure systems suggests the potential to generate infrastructure investment to support a “virtuous cycle” of low-carbon growth. - Highlights: • Conceptualisation of interactions between low carbon and climate resilient infrastructure (Fig. 1). • New performance measures of national GHG emissions vs. capital formation (Section 2). • Comparion of global infrastructure costs under low and high carbon scenarios (Table 1). • Understanding of infrastructures that support virtuous cycles of low carbon growth (Fig. 8)

  8. On-chip cellomics assay enabling algebraic and geometric understanding of epigenetic information in cellular networks of living systems. 1. Temporal aspects of epigenetic information in bacteria.

    Science.gov (United States)

    Yasuda, Kenji

    2012-01-01

    A series of studies aimed at developing methods and systems of analyzing epigenetic information in cells and in cell networks, as well as that of genetic information, was examined to expand our understanding of how living systems are determined. Because cells are minimum units reflecting epigenetic information, which is considered to map the history of a parallel-processing recurrent network of biochemical reactions, their behaviors cannot be explained by considering only conventional DNA information-processing events. The role of epigenetic information on cells, which complements their genetic information, was inferred by comparing predictions from genetic information with cell behaviour observed under conditions chosen to reveal adaptation processes, population effects and community effects. A system of analyzing epigenetic information was developed starting from the twin complementary viewpoints of cell regulation as an "algebraic" system (emphasis on temporal aspects) and as a "geometric" system (emphasis on spatial aspects). Exploiting the combination of latest microfabrication technology and measurement technologies, which we call on-chip cellomics assay, we can control and re-construct the environments and interaction of cells from "algebraic" and "geometric" viewpoints. In this review, temporal viewpoint of epigenetic information, a part of the series of single-cell-based "algebraic" and "geometric" studies of celluler systems in our research groups, are summerized and reported. The knowlege acquired from this study may lead to the use of cells that fully control practical applications like cell-based drug screening and the regeneration of organs.

  9. Public financial institutions and the low carbon transition: five case studies on low-carbon infrastructure and project investment. Environment working paper No. 72:

    International Nuclear Information System (INIS)

    Cochran, Ian; Hubert, Romain; Marchal, Virginie; Youngman, Robert; Rus, Katerina; Baker, Jade; Kynaston, Jane

    2014-01-01

    Public financial institutions (PFIs) are well-positioned to act as a key leverage point for governments' efforts to mobilise private investment in low-carbon projects and infrastructure. The study identifies the tools, instruments and approaches used by five PFIs to directly support and scale-up domestic private sector investment in sustainable transport, energy-efficiency and renewable energy in OECD countries. Between 2010-2012, these five institutions - Group Caisse des Depots in France, KfW Bankengruppe in Germany, the UK Green Investment Bank, the European Investment Bank, and the European Bank for Reconstruction and Development - have provided over 100 billion euros of equity investment and financing for energy efficiency, renewable energy and sustainable transport projects. They use both traditional and innovative approaches to link low-carbon projects with finance through enhancing access to capital; facilitating risk reduction and sharing; improving the capacity of market actors; and shaping broader market practices and conditions. (authors)

  10. Healthy living

    Science.gov (United States)

    ... living URL of this page: //medlineplus.gov/ency/article/002393.htm Healthy living To use the sharing features on this page, please enable JavaScript. Good health habits can allow you to avoid illness and improve your quality of life. The following steps will help you ...

  11. Benefits of Low Carbon Development Strategies in Emerging Cities of Developing Country: a Case of Kathmandu

    Directory of Open Access Journals (Sweden)

    Shree Raj Shakya

    2016-06-01

    Full Text Available Kathmandu is one of the fastest growing cities in South Asia facing various challenges related to climate change, local pollutants emissions and energy security of supply. This study analysed the greenhouse gas mitigation potential in different economic sectors of the city by using Long-range Energy Planning (LEAP frame work. It shows that the effect of implementing various low carbon development strategy options can reduce 35.2% of total greenhouse gas emission from energy use as compared to the base case scenario in 2030. This indicates the need for exploring the possibility of utilizing the global climate funds and adopting voluntary mechanisms for greenhouse gas mitigation. The estimated demand side technology investment cost of low carbon measures for different sectors ranges from less than US$ 1/tonne CO2e for residential sector to US$ 99/tonne CO2e for transport sector. The low carbon options also results co-benefits in terms of significant reduction in emission of local pollutants and improvement of energy security. As Government of Nepal has envisioned following low carbon economic development path on the long run, there is the need of establishment of regulatory framework, institutional framework and development of clear action plans for realizing the implementation of low carbon development strategy measures in the country.

  12. Comprehensive evaluation on low-carbon development of coal enterprise groups.

    Science.gov (United States)

    Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu

    2017-12-19

    Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.

  13. Evolutionary pattern, operation mechanism and policy orientation of low carbon economy development

    Directory of Open Access Journals (Sweden)

    X. Dou

    2016-10-01

    Full Text Available The essence of low carbon economy development is a continuous evolution and innovation process of socio-economic system from traditional high carbon economy to new sustainable green low carbon economy to achieve a sustainable dynamic balance and benign interactive development of various elements between society, economy and natural ecosystem. At the current stage, China’s socio-economy is showing the feature of "three high" (high energy consumption, high emissions and high pollution. In this case, quickly to promote the development of green low carbon economy is necessary and urgent. This research indicates that, low carbon economy development is achieved by micro-economic agents such as households, businesses and social intermediary organizations through Government’s guidance and the role of market mechanism. In low carbon economy development, the state (government is a leader and markets are core, while economic agents (e.g., households, businesses and social intermediary organizations are basis. For this reason, it is necessary to build an effective cleaner development and incentive-compatible policy system oriented to end-users.

  14. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  15. Operation management for a low-carbon economy: a literature review on stakeholders, barriers and motivations

    Directory of Open Access Journals (Sweden)

    Daniela Andriani Ribeiro

    2017-03-01

    Full Text Available The aim of this study is to identify stakeholders acting as barriers and/or motivations for the adoption of low- -carbon operation management practices through the lens of the stakeholder theory. Stakeholders have a strong influence on companies to adopt environmental practices due to the climate change context and its consequences on the economic, environmental and social scenario. Thus, this study conducts a literature review in the Scopus database with searches that relate stakeholder theory and low-carbon practices to identify stakeholders. As a result, Customers and Government are the most active stakeholders as drivers or barriers to the adoption of environmental practices. Therefore, it is important to understand the different attributes of each stakeholder and their demands in order to trace hierarchy strategies of adopting any low-carbon operation management practices and creating mechanisms of collaboration with those stakeholders who drive the adoption of those practices.

  16. The Impact of Transport Mode and Carbon Policy on Low-Carbon Retailer

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Low-carbon retail has become a strategic target for many developed and developing economies. This study discusses the impact of transport mode and carbon policy on achieving this objective. We investigated the retailer transportation mode, pricing, and ordering strategy, which all consider carbon-sensitive demand under the carbon cap-and-trade policy. We analyzed the optimal decision of retailer and their maximum profit affected by transport mode and cap-and-trade policy parameters. Results show that the two elements (cap-and-trade policy and consumer low-carbon awareness could encourage the retailer to choose low-carbon transportation. The two elements also influence the profit and optimal decision of retailer. Finally, a numerical example is presented to illustrate the applicability of the model.

  17. Effect of Cr and Mo on strain ageing behaviour of low carbon steel

    International Nuclear Information System (INIS)

    Pereloma, E.V.; Bata, V.; Scott, R.I.; Smith, R.M.

    2010-01-01

    This work explores the effects of Cr (0.26-0.74 wt%) and Mo (0.09-0.3 wt%) additions on the kinetics of strain ageing process in low carbon steel. The strain ageing behaviour of the steels was investigated by using tensile tests and transmission electron microscopy. The results have shown that Mo-alloyed steels undergo the same four stages of ageing as unalloyed low carbon steel, whereas Cr-alloyed steels exhibit only three stages of ageing. At the same time, the addition of Mo accelerates the ageing response, while alloying with Cr reduces the rate of strain ageing by ∼3 times in comparison with non-alloyed low carbon steel. It especially delays the offset of Stage III. This is explained by the reduction of carbon content in ferrite due to the enrichment of cementite with Cr leading to the reduction of its equilibrium solubility in ferrite.

  18. Effect of Cr and Mo on strain ageing behaviour of low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Pereloma, E.V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Bata, V. [Department of Materials Engineering, Monash University (Australia); Scott, R.I.; Smith, R.M. [BlueScope Steel Limited, Port Kembla (Australia)

    2010-04-25

    This work explores the effects of Cr (0.26-0.74 wt%) and Mo (0.09-0.3 wt%) additions on the kinetics of strain ageing process in low carbon steel. The strain ageing behaviour of the steels was investigated by using tensile tests and transmission electron microscopy. The results have shown that Mo-alloyed steels undergo the same four stages of ageing as unalloyed low carbon steel, whereas Cr-alloyed steels exhibit only three stages of ageing. At the same time, the addition of Mo accelerates the ageing response, while alloying with Cr reduces the rate of strain ageing by {approx}3 times in comparison with non-alloyed low carbon steel. It especially delays the offset of Stage III. This is explained by the reduction of carbon content in ferrite due to the enrichment of cementite with Cr leading to the reduction of its equilibrium solubility in ferrite.

  19. A Low-Carbon-Based Bilevel Optimization Model for Public Transit Network

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2013-01-01

    Full Text Available To satisfy the demand of low-carbon transportation, this paper studies the optimization of public transit network based on the concept of low carbon. Taking travel time, operation cost, energy consumption, pollutant emission, and traffic efficiency as the optimization objectives, a bilevel model is proposed in order to maximize the benefits of both travelers and operators and minimize the environmental cost. Then the model is solved with the differential evolution (DE algorithm and applied to a real network of Baoji city. The results show that the model can not only ensure the benefits of travelers and operators, but can also reduce pollutant emission and energy consumption caused by the operations of buses, which reflects the concept of low carbon.

  20. Low-Carbon Transportation Oriented Urban Spatial Structure: Theory, Model and Case Study

    Directory of Open Access Journals (Sweden)

    Yuyao Ye

    2017-12-01

    Full Text Available Optimising the spatial structure of cities to promote low-carbon travel is a primary goal of urban planning and construction innovation in the low-carbon era. There is a need for basic research on the structural characteristics that help to reduce motor traffic, thereby promoting energy conservation. We first review the existing literature on the influence of urban spatial structure on transport carbon dioxide emissions and summarise the influence mechanisms. We then present two low-carbon transportation oriented patterns of urban spatial structure including the traditional walking city and the modern transit metropolis, illustrated by case studies. Furthermore, we propose an improved model Green Transportation System Oriented Development (GTOD, which is an extension of traditional transit-oriented development (TOD and includes the additional features of a walking city and an emphasis on the integration of land use with a green transportation system, consisting of the public transportation and non-auto travel system. A compact urban form, effective mix of land use and appropriate scale of block are the basic structural features of a low-carbon transportation city. However, these features are only effective at promoting low-carbon transportation when integrated with the green traffic systems. Proper integration of the urban structural system with the green space system is also required. The optimal land use/transportation integration strategy is to divide traffic corridors with wedge-shaped green spaces and limit development along the transit corridors. This strategy forms the basis of the proposed urban structural model to promote low-carbon transportation and sustainable urban growth management.

  1. A qualitative and quantitative design of low-carbon development in Cambodia: Energy policy

    International Nuclear Information System (INIS)

    Hak, Mao; Matsuoka, Yuzuru; Gomi, Kei

    2017-01-01

    The formulation of a policy for a low-carbon development plan is one of the most important steps to help Cambodia achieve sustainable development objectives, promote a greener development path, and contribute to the global effort to reducing CO 2 emissions. This study is designed to propose some low-carbon energy strategies and quantitatively to assess CO 2 emissions and reductions. The Extended Snapshot (ExSS) tool is used to quantify socioeconomic assumptions and to estimate CO 2 emissions and reduction potentials. The results show that CO 2 emissions are projected to increase to about 23,277 (by about 5.5 times) and 91,325 ktCO 2 /year (by about 21.6 times) in 2030BaU and 2050BaU, respectively, from 4,221 ktCO 2 /year in 2010. This study proposes five strategies for low-carbon development plan towards 2050 which are expected to reduce CO 2 emissions by about 12,826 (about 55%) and 52,153 ktCO 2 /year (about 57%) in 2030CM and 2050CM, respectively. The present results should help researchers and experts gain a better understanding of CO 2 emissions and reduction potentials by applying a number of low-carbon measures in Cambodia. While the results should be counted as a preliminary study because of limited available country information, they are expected to provide useful insights for the government in formulating a concrete climate change mitigation policy for the country. - Highlights: • Low-carbon development is a win-win approach for socioeconomic development. • Cambodia has significant opportunities to reduce CO 2 emissions in the energy sector. • Five low-carbon energy strategies can limit CO 2 emissions by around 50% in Cambodia. • Green transport strategy contributes the highest CO 2 emissions reduction.

  2. Study on China's low carbon development in an Economy-Energy-Electricity-Environment framework

    International Nuclear Information System (INIS)

    Hu Zhaoguang; Yuan Jiahai; Hu Zheng

    2011-01-01

    Emissions mitigation is a major challenge for China's sustainable development. We summarize China's successful experiences on energy efficiency in past 30 years as the contributions of Energy Usage Management and Integrated Resource Strategic Planning, which are essential for low-carbon economy. In an Economy-Energy-Electricity-Environment (E4) framework, the paper studies the low-carbon development of China and gives an outlook of China's economy growth, energy-electricity demand, renewable power generation and energy conservation and emissions mitigation until 2030. A business-as-usual scenario is projected as baseline for comparison while low carbon energy and electricity development path is studied. It is defined as low carbon energy/electricity when an economy body manages to realize its potential economic growth fueled by less energy/electricity consumption, which can be characterized by indexes of energy/electricity intensity and emissions per-unit of energy consumption (electricity generation). Results show that, with EUM, China, could save energy by 4.38 billion ton oil equivalences (toes) and reduce CO 2 emission by 16.55 billion tons; with IRSP, China, could save energy by 1.5 Btoes and reduce CO 2 emission by 5.7 Btons, during 2010-2030. To realize the massive potential, China has to reshape its economic structure and rely much on technology innovation in the future. - Research highlights: → In an E4 framework China's low-carbon development is compared with BAU scenario. → Low carbon energy/electricity and their related measuring indexes are discussed. → China's successful experiences on energy efficiency are summarized as EUM and IRSP. → With them China could save energy by 5.8 Btoe and reduce CO 2 by 22.2 Bton until 2030. → China must restructure its economy and rely on technology innovation for them.

  3. Techno-economic and environmental analysis of low carbon energy technologies: Indian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Vijay Prakash; Kumar, Rahul; Kumar, Manish; Deswal, Surinder; Chandna, Pankaj

    2010-09-15

    In this paper, techno-economic and an environmental investigation and analysis of Low Carbon Technologies (LCTs) has been presented, with special emphasis on India. The paper identify, analyze and recommend, on the basis of available and collected / collated information and data, the promising and potential low carbon energy technology options suited to Indian conditions for grid connected power generation. The evaluation criteria adopted include - emission reduction potential, technological feasibility, and economic viability; and on its basis recommend a detailed action plan and strategy for guiding future research and development with a more focused approach considering current Indian policy framework.

  4. Financing the low-carbon transition in a fragile world economy

    International Nuclear Information System (INIS)

    Hourcade, Jean-Charles

    2015-01-01

    An unfavorable economic situation will hinder the launching of the 'low-carbon transition' in compliance with an increase of approximately 2 deg. C - the official goal set by the international community for global warming. Reversing the perspective, this transition is seen, herein, as the grounds for a 'sustainable' growth based on a monetary policy that ties the emission of liquidities to investments in low-carbon facilities. 'Climate remediation [sic] assets' with a social value set by an agreement in the framework of the Convention on the Climate are discussed

  5. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    OpenAIRE

    Mejía, Ignacio; Bedolla Jacuinde, Arnoldo; Maldonado, Cuauhtémoc; Cabrera Marrero, José M.

    2011-01-01

    The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 ◦C) at a constant true strain rate of 0.001 s−1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless,...

  6. Digital earth for manipulating urban greens towards achieving a low carbon urban society

    International Nuclear Information System (INIS)

    Tripathi, N G; Bedi, P

    2014-01-01

    Urban greens are integral components of urban ecosystem, contributing towards quality of life and sustainable urban development. Urban greens can help in creating Low Carbon Society (LCS) by playing an integral role through sequestering carbon. India is undergoing significant change in the process and pace of its urbanization. As the growing population becomes more urban, the importance of the way urban areas are developed and managed will be a central point of intervention for addressing climate change and maintaining low carbon trajectories in Indian cities

  7. Opportunities for A Low Carbon Future——China's Clean Revolution Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Audrey GUO

    2009-01-01

    @@ Despite economic downturn,China's domestic markets continue to scale up low carbon technology.A new report that was released in Beijing in August by the Climate Group shows that in an incredibly short time China has taken the lcad in the race to develop and commercialize a range of low carbon technologies.On the back of ambitious government policies and a new breed of entrepreneurs,Chinese businesses are amongst the top producers of electric vehicles,wind turbines,solar panels and energy efficient appliances.

  8. Evidence and future scenarios of a low-carbon energy transition in Central America: a case study in Nicaragua

    Science.gov (United States)

    Barido, Diego Ponce de Leon; Johnston, Josiah; Moncada, Maria V.; Callaway, Duncan; Kammen, Daniel M.

    2015-10-01

    The global carbon emissions budget over the next decades depends critically on the choices made by fast-growing emerging economies. Few studies exist, however, that develop country-specific energy system integration insights that can inform emerging economies in this decision-making process. High spatial- and temporal-resolution power system planning is central to evaluating decarbonization scenarios, but obtaining the required data and models can be cost prohibitive, especially for researchers in low, lower-middle income economies. Here, we use Nicaragua as a case study to highlight the importance of high-resolution open access data and modeling platforms to evaluate fuel-switching strategies and their resulting cost of power under realistic technology, policy, and cost scenarios (2014-2030). Our results suggest that Nicaragua could cost-effectively achieve a low-carbon grid (≥80%, based on non-large hydro renewable energy generation) by 2030 while also pursuing multiple development objectives. Regional cooperation (balancing) enables the highest wind and solar generation (18% and 3% by 2030, respectively), at the least cost (US127 MWh-1). Potentially risky resources (geothermal and hydropower) raise system costs but do not significantly hinder decarbonization. Oil price sensitivity scenarios suggest renewable energy to be a more cost-effective long-term investment than fuel oil, even under the assumption of prevailing cheap oil prices. Nicaragua’s options illustrate the opportunities and challenges of power system decarbonization for emerging economies, and the key role that open access data and modeling platforms can play in helping develop low-carbon transition pathways.

  9. Sustainable Low-Carbon Expansion for the Power Sector of an Emerging Economy: The Case of Kenya.

    Science.gov (United States)

    Carvallo, Juan-Pablo; Shaw, Brittany J; Avila, Nkiruka I; Kammen, Daniel M

    2017-09-05

    Fast growing and emerging economies face the dual challenge of sustainably expanding and improving their energy supply and reliability while at the same time reducing poverty. Critical to such transformation is to provide affordable and sustainable access to electricity. We use the capacity expansion model SWITCH to explore low carbon development pathways for the Kenyan power sector under a set of plausible scenarios for fast growing economies that include uncertainty in load projections, capital costs, operational performance, and technology and environmental policies. In addition to an aggressive and needed expansion of overall supply, the Kenyan power system presents a unique transition from one basal renewable resource-hydropower-to another based on geothermal and wind power for ∼90% of total capacity. We find geothermal resource adoption is more sensitive to operational degradation than high capital costs, which suggests an emphasis on ongoing maintenance subsidies rather than upfront capital cost subsidies. We also find that a cost-effective and viable suite of solutions includes availability of storage, diesel engines, and transmission expansion to provide flexibility to enable up to 50% of wind power penetration. In an already low-carbon system, typical externality pricing for CO 2 has little to no effect on technology choice. Consequently, a "zero carbon emissions" by 2030 scenario is possible with only moderate levelized cost increases of between $3 and $7/MWh with a number of social and reliability benefits. Our results suggest that fast growing and emerging economies could benefit by incentivizing anticipated strategic transmission expansion. Existing and new diesel and natural gas capacity can play an important role to provide flexibility and meet peak demand in specific hours without a significant increase in carbon emissions, although more research is required for other pollutant's impacts.

  10. Hong Kong New Town Sustainability Analysis from the Perspective of Low-Carbon Eco-City—Taking Tseung Kwan O New Town as an Example

    Science.gov (United States)

    Liu, Siqi; Huang, Guanqi

    2018-01-01

    Recent years, people have paid more attentions to environmental issues involving air pollution, urban heat island effect and accessibility of green space. Hong Kong is a representative high-density city. The mission of Hong Kong New Town Development is to scatter the densely urban centre population and to improve living quality. Based on the ArcGIS and CFD scientific simulation, this paper focus on the sustainability analysis of Hong Kong new town from the view of Low-Carbon Eco-City, taking Tseung Kwan O new town as the research object.

  11. Non-nuclear, low-carbon, or both? The case of Taiwan

    International Nuclear Information System (INIS)

    Chen, Yen-Heng Henry

    2013-01-01

    The Fukushima nuclear accident in Japan has renewed debates on the safety of nuclear power, possibly hurting the role of nuclear power in efforts to limit CO 2 emissions. I develop a dynamic economy-wide model of Taiwan with a detailed set of technology options in the power sector to examine the implications of adopting different carbon and nuclear power policies on CO 2 emissions and the economy. Without a carbon mitigation policy, limiting nuclear power has a small economic cost for Taiwan, but CO 2 emissions may increase by around 4.5% by 2050 when nuclear is replaced by fossil-based generation. With a low-carbon target of a 50% reduction from year 2000 levels by 2050, the costs of cutting CO 2 emissions are greatly reduced if both carbon sequestration and nuclear expansion were viable. This study finds that converting Taiwan's industrial structure into a less energy-intensive one is crucial to carry out the non-nuclear and low-carbon environment. - Highlights: • This study provides an analysis for Taiwan under a low-carbon policy with or without the nuclear option. • A new approach that improves the modeling of non-dispatchable generation is presented. • Emission reduction costs are greatly reduced if both carbon sequestration and nuclear expansion were viable. • A less energy-intensive industrial structure is crucial in pursuing a non-nuclear and low carbon environment

  12. Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model

    International Nuclear Information System (INIS)

    Dong, Liang; Fujita, Tsuyoshi; Zhang, Hui; Dai, Ming; Fujii, Minoru; Ohnishi, Satoshi; Geng, Yong; Liu, Zhu

    2013-01-01

    China launched low-carbon city strategy to respond global climate change. Industrial symbiosis (IS) could generate both economic and environmental benefits in clustered industries and communities. This research shed light on how industrial symbiosis contributes to city's low-carbon development. An urban-level hybrid physical input and monetary output (HPIMO) model which covers physical energy inputs and air pollutants emissions, is established for addressing case study in a Chinese typical industrial city (Liuzhou). Based on current energy consumption and industrial symbiosis and the application of HPIMO model, scenarios related to industrial symbiosis, including waste plastics recycling, scrap tires recycling, flying ash recycling and biomass utilization are explored. Results show that compared with business-as-usual (BAU) scenario, IS can reduce solid wastes and further contribute to the co-benefits of energy saving, CO 2 emissions reduction and air pollutants reduction. The finding is critical for national low-carbon strategy. Finally, policy implications to support the ever-improvement of IS promotion in China are proposed and discussed. - Highlights: • Industrial symbiosis could contribute to low-carbon city in terms of co-benefit. • Co-benefit of IS was in terms of waste reduction and air pollutants reduction. • Waste plastics recycling and biomass utilization generated large co-benefit. • Coal fly ash recycling reduced the solid waste while increased air pollutants. • The prices of wastes and facilities investment affected the total cost-benefit

  13. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado 10400, La Habana (Cuba); Caleyo, F. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)], E-mail: fcaleyo@gmail.com; Rivas, D.; Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2010-03-15

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  14. Developing and Using Green Skills for the Transition to a Low Carbon Economy

    Science.gov (United States)

    Brown, Mike

    2015-01-01

    One of the strategies being advocated in response to climate change is the need to transition to a low carbon economy. Current projections show that within this transition, new jobs will be created, some eliminated and most others subjected to change. This article reports findings from interviews with a selection of twenty participants who are…

  15. Operational flexibility and economics of power plants in future low-carbon power systems

    NARCIS (Netherlands)

    Brouwer, Anne Sjoerd; van den Broek, Machteld; Seebregts, Ad; Faaij, André

    2015-01-01

    Future power systems will require large shares of low-carbon generators such as renewables and power plants with Carbon Capture and Storage (CCS) to keep global warming below 2. °C. Intermittent renewables increase the system-wide demand for flexibility and affect the operation of thermal power

  16. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to

  17. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    International Nuclear Information System (INIS)

    Valor, A.; Caleyo, F.; Rivas, D.; Hallen, J.M.

    2010-01-01

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  18. Electrochemical Performance of Low-Carbon Steel in Alkaline Model Solutions Containing Hybrid Aggregates

    NARCIS (Netherlands)

    Koleva, D.A.; Hu, J.; De Wit, J.H.W.; Boshkov, N.; Radeva, T.; Milkova, V.; Van Breugel, K.

    2010-01-01

    This work reports on the electrochemical performance of low-carbon steel electrodes in model alkaline solutions in the presence of 4.9.10-4 g/l hybrid aggregates i.e. cement extract, containing PDADMAC (poly (diallyl, dimethyl ammonium chloride) / PAA (Poly (acrylic acid)/ PDADMAC over a CaO core.

  19. A Guidebook for Low-Carbon Development at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Price, Lynn; Ohshita, Stephanie; Zheng, Nina; Min, Hu

    2011-10-31

    This report aims to provide a manual with a menu of the successful policies and measures for local governments in China to create low carbon plan or climate action plans. This manual includes a comprehensive list of successful policies and best practices.

  20. Exploring a low carbon development in rural China : the role of households

    NARCIS (Netherlands)

    Liu Wenling, Wenling

    2013-01-01

    As the largest emitter of greenhouse gasses in the world, China is facing great pressure to reduce these emissions in order to mitigate global climate change. Developing a low carbon economy has been initiated in many countries, including China, as a means to tackle this issue. China’s actions

  1. Simulation and Prediction of Decarbonated Development in Tourist Attractions Associated with Low-carbon Economy

    Directory of Open Access Journals (Sweden)

    Yuyan Luo

    2014-04-01

    Full Text Available In the field of tourism, the development of tourist attractions is gradually playing a crucial role in tourism economy, regional economy and national economy. While tourism economy is stimulated by growing demand, tourist attractions have been facing the situation that ecological environment is becoming fragile and environmental protection is increasingly difficult in China. As low-carbon economy is highlighted more than ever before, how to develop green economy, how to apply theories and technologies, which are related to low-carbon economy, to push forward decarbonation, to protect the ecological environment, and to boost the development of tourism economy have become the core problems for the sustainable development of tourist attractions system. In addition, this system has drawn the attention of scholars and practitioners in recent years. On the basis of low-carbon economy, this paper tries to define the decarbonated development goals and the connotation of tourist attractions system. In addition, it also discusses system structure associated with system dynamics and system engineering, and constructs system simulation model. In the end, a case study is conducted, that is, to predict the development trend of Jiuzhai Valley by adopting the constructed system so as to extend the previous research on low-carbon tourism and to guide the decarbonated development in tourist attractions.

  2. Informed public choices for low-carbon electricity portfolios using a computer decision tool.

    Science.gov (United States)

    Mayer, Lauren A Fleishman; Bruine de Bruin, Wändi; Morgan, M Granger

    2014-04-01

    Reducing CO2 emissions from the electricity sector will likely require policies that encourage the widespread deployment of a diverse mix of low-carbon electricity generation technologies. Public discourse informs such policies. To make informed decisions and to productively engage in public discourse, citizens need to understand the trade-offs between electricity technologies proposed for widespread deployment. Building on previous paper-and-pencil studies, we developed a computer tool that aimed to help nonexperts make informed decisions about the challenges faced in achieving a low-carbon energy future. We report on an initial usability study of this interactive computer tool. After providing participants with comparative and balanced information about 10 electricity technologies, we asked them to design a low-carbon electricity portfolio. Participants used the interactive computer tool, which constrained portfolio designs to be realistic and yield low CO2 emissions. As they changed their portfolios, the tool updated information about projected CO2 emissions, electricity costs, and specific environmental impacts. As in the previous paper-and-pencil studies, most participants designed diverse portfolios that included energy efficiency, nuclear, coal with carbon capture and sequestration, natural gas, and wind. Our results suggest that participants understood the tool and used it consistently. The tool may be downloaded from http://cedmcenter.org/tools-for-cedm/informing-the-public-about-low-carbon-technologies/ .

  3. Numerical predictions of dry oxidation of iron and low-carbon steel at moderately elevated temperatures

    International Nuclear Information System (INIS)

    Henshall, G.A.

    1996-11-01

    Wrought and cast low-carbon steel are candidate materials for the thick (e.g. 10 cm) outer barrier of nuclear waste packages being considered for use in the potential geological repository at Yucca Mountain. Dry oxidation is possible at the moderately elevated temperatures expected at the container surface (323-533 K or 50-260 C). Numerical predictions of dry oxidation damage were made based on experimental data for iron and low-carbon steel and parabolic oxidation theory. The Forward Euler method was implemented to integrate the parabolic rate law for arbitrary, complex temperature histories. Assuming growth of a defect-free, adherent oxide, the surface penetration of a low-carbon steel barrier following 5000 years of exposure to a severe, but repository-relevant, temperature history is predicted to be only about 0.127 mm, less than 0.13% of the expected container thickness of 10 cm. Allowing the oxide to spall upon reaching a critical thickness increases the predicted metal penetration values, but degradation is still computed to be negligible. Thus, dry oxidation is not expected to significantly degrade the performance of thick, corrosion allowance barriers constructed of low-carbon steel

  4. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    Science.gov (United States)

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  5. The green economy mirage? Examining the environmental implications of low-carbon growth plans in Taiwan

    NARCIS (Netherlands)

    Chao, C.-W.; Heijungs, R.; Ma, H.-W.

    2013-01-01

    Taiwan is attempting to implement the concept of a green economy through a Low Carbon Growth Plan (LCGP). However, the existing decision support tools for this measure have three key limitations: ignorance regarding the open economy; a lack of life cycle thinking; and limited categories of

  6. Energy white paper: Our energy future - Creating a low carbon economy

    International Nuclear Information System (INIS)

    2003-02-01

    Energy is vital to a modern economy. We need energy to heat and light our homes, to help us travel and to power our businesses. Our economy has also benefited hugely from our country's resources of fossil fuels - coal, oil and gas. However, our energy system faces new challenges. Energy can no longer be thought of as a short-term domestic issue. Climate change - largely caused by burning fossil fuels - threatens major consequences in the UK and worldwide, most seriously for the poorest countries who are least able to cope. Our energy supplies will increasingly depend on imported gas and oil from Europe and beyond. At the same time, we need competitive markets to keep down costs and keep energy affordable for our businesses, industries, and households. This white paper addresses those challenges. It gives a new direction for energy policy. We need urgent global action to tackle climate change. We are showing leadership by putting the UK on a path to a 60% reduction in its carbon dioxide emissions by 2050. And, because this country cannot solve this problem alone, we will work internationally to secure the major cuts in emissions that will be needed worldwide. Our analysis suggests that, by working with others, the costs of action will be acceptable - and the costs of inaction are potentially much greater. And as we move to a new, low carbon economy, there are major opportunities for our businesses to become world leaders in the technologies we will need for the future - such as fuel cells, offshore wind and tidal power. Science and technology are vital, and we will be supporting further research and development in these areas. In parallel, we need access to a wide range of energy sources and technologies and a robust infrastructure to bring the energy to where we want to use it. We will maintain competitive markets in the UK and press for further liberalisation in Europe. And we renew our commitment that no household in Britain should be living in fuel poverty by

  7. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing.

    Science.gov (United States)

    Wang, Qinpeng; He, Longfei

    2018-02-21

    Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG) emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers' low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV) model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier's concerning range. Although the manufacturer's risk aversion has a positive impact on the wholesale price, interestingly, the supplier's impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel.

  8. Prioritizing low-carbon energy sources to enhance China’s energy security

    International Nuclear Information System (INIS)

    Ren, Jingzheng; Sovacool, Benjamin K.

    2015-01-01

    Highlights: • Four dimensions and ten metrics are used for energy security assessment. • Both qualitative and quantitative metrics are considered for energy security. • AHP has been used to quantify qualitative metrics. • TOPSIS method has been used for prioritize the low-carbon energy sources. • Sensitivity analysis and integrated ranking have been carried out. - Abstract: This paper explores how low-carbon systems compare to each other in terms of their net effect on Chinese energy security, and how they ought to be ranked and strategized into an optimal and integrated resource plan. The paper utilizes Analytic Hierarchy Process (AHP) to first determine the relative performances of hydroelectricity, wind energy, solar energy, biomass energy, and nuclear power with respect to the energy security dimensions of availability, affordability, accessibility, and acceptability. Both qualitative and quantitative metrics are considered. It relies on AHP to calculate the relative weights of the qualitative metrics attached to these dimensions of energy security for each of our five low carbon energy sources. Then, energy security performance is determined by aggregating multiple, weighted metrics into a generic index based on the method of TOPSIS and then tweaked with a sensitivity analysis. Finally, an integrated method has been developed to rank the low-carbon energy systems from most to least important, with major implications for Chinese decision-makers and stakeholders. We conclude that hydroelectricity and wind power are the two low-carbon energy sources with the most potential to enhance China’s energy security. By contrast, nuclear and solar power have the least potential

  9. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing

    Science.gov (United States)

    Wang, Qinpeng; He, Longfei

    2018-01-01

    Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG) emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers’ low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV) model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier’s concerning range. Although the manufacturer’s risk aversion has a positive impact on the wholesale price, interestingly, the supplier’s impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel. PMID:29466281

  10. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing

    Directory of Open Access Journals (Sweden)

    Qinpeng Wang

    2018-02-01

    Full Text Available Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers’ low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier’s concerning range. Although the manufacturer’s risk aversion has a positive impact on the wholesale price, interestingly, the supplier’s impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel.

  11. Carbon Impact Analytics - Designing low carbon indices based on Carbon Impact Analytics indicators

    International Nuclear Information System (INIS)

    2016-01-01

    Investors are increasingly exposed to carbon risks and now face the challenge of managing these risks and developing climate-resilient investment strategies. Carbon Impact Analytics (CIA), an innovative methodology for analyzing the full carbon impact of a portfolio or index, equips investors and asset managers with the tools necessary to reduce their climate-related risks but also to seize the opportunities offered by the ongoing energy transition. Investors, asset managers and other financial institutions may use CIA results to: - measure and manage risks, - optimize their contribution to the energy transition, - seize opportunities associated with climate change mitigation, - report on GHG emissions and savings (for regulatory purposes or voluntarily), - engage in dialogue with companies, - reallocate investment portfolios, - and build new low-carbon indices. In this report, Carbone 4 offers a detailed look into how CIA indicators can be used to either 1) reallocate an existing portfolio or index to achieve maximal carbon performance or 2) build new low carbon indices from the ground up, drawn from Carbone 4's ever-growing database of CIA-analyzed firms. Two main levers were used to optimize CIA output: 1. Sectorial reallocation: exclusion of fossil fuel-related sectors or insertion of low carbon pure players; 2. Intra-sectorial reallocation: best-in-class approach within a sector. Sectorial and intra-sectorial methods may be applied in conjunction with one another to maximize results. For example, a best-in-class + fossil fuel-free index may be constructed by first excluding the fossil fuel sector and then applying a CIA best-in-class approach to all remaining sectors. This report offers a detailed look into how CIA indicators can be used to rework portfolios or indices to maximize carbon performance or to build low carbon indices from the ground up. These methods are illustrated via two preliminary examples of indices designed by Carbone 4: the reallocated

  12. Low-Carbon City Policy Databook: 72 Policy Recommendations for Chinese Cities from the Benchmarking and Energy Savings Tool for Low Carbon Cities

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Ohshita, Stephanie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Hong, Lixuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; He, Gang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Min, Hu [Energy Foundation China, Beijing (China)

    2016-07-01

    This report is designed to help city authorities evaluate and prioritize more than 70 different policy strategies that can reduce their city’s energy use and carbon-based greenhouse gas emissions of carbon dioxide (CO2) and methane (CH4). Local government officials, researchers, and planners can utilize the report to identify policies most relevant to local circumstances and to develop a low carbon city action plan that can be implemented in phases, over a multi-year timeframe. The policies cover nine city sectors: industry, public and commercial buildings, residential buildings, transportation, power and heat, street lighting, water & wastewater, solid waste, and urban green space. See Table 1 for a listing of the policies. Recognizing the prominence of urban industry in the energy and carbon inventories of Chinese cities, this report includes low carbon city policies for the industrial sector. The policies gathered here have proven effective in multiple locations around the world and have the potential to achieve future energy and carbon savings in Chinese cities.

  13. Capturing low-carbon power system dynamics : Interactions between intermittent renewables and power plants with CO2 capture and storage

    NARCIS (Netherlands)

    Brouwer, Anne-Sjoerd

    2015-01-01

    Low-carbon power systems are needed by the year 2050 to meet climate change mitigation targets. This dissertation investigates the operational and economic feasibility of such future low-carbon power systems by simulating the Dutch and European power systems. Particular attention is paid to the

  14. Tendances Carbone no. 77 'Low-carbon innovation is up, but not because of the EU ETS'

    International Nuclear Information System (INIS)

    Calel, Raphael; Dechezlepretre, Antoine

    2013-01-01

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO 2 allowances. This issue addresses the following points: The EU ETS is the main instrument of European climate policy, and many policy-makers envisage it as a driving force of the EU's transition to a low-carbon economy. By putting a price on emissions, the scheme is expected to encourage heavy polluters to develop new low-carbon technologies. At first glance it is encouraging to notice, then, that patenting for low-carbon technologies has surged in Europe since 2005. When analysing new data we find compelling evidence that the EU ETS has indeed encouraged regulated companies to develop new low-carbon technologies, but this effect is concentrated among too few companies to account for the surge in low-carbon patenting

  15. An Optimal Allocation Model of Public Transit Mode Proportion for the Low-Carbon Transportation

    Directory of Open Access Journals (Sweden)

    Linjun Lu

    2015-01-01

    Full Text Available Public transit has been widely recognized as a potential way to develop low-carbon transportation. In this paper, an optimal allocation model of public transit mode proportion (MPMP has been built to achieve the low-carbon public transit. Optimal ratios of passenger traffic for rail, bus, and taxi are derived by running the model using typical data. With different values of traffic demand, construction cost, travel time, and accessibilities, MPMP can generate corresponding optimal ratios, benefiting decision impacts analysis and decision makers. Instead of considering public transit as a united system, it is separated into units in this paper. And Shanghai is used to test model validity and practicality.

  16. Developing nuclear power to realize low-carbon and economic sustainable development of China

    International Nuclear Information System (INIS)

    Zhang Xingfa

    2012-01-01

    Thermal power is the primary power energy of China, whose basic primary energy consumption is mostly burning coal. And thereby carbon dioxide emission reduction becomes much difficult in China. Seeking low-carbon discharge power energy is the necessary trend in China electric power development. Among the new energy, wind power, hydropower and solar energy have some distinctive shortcoming, which can not make up the energy growth demand with the rapid growth of the economy. Comparing to other kinds of electric energy, the nuclear power possesses the evident advantages, it will become the basis energy to carry out the goal of energy conservation and emission reduction in China and developing nuclear power can realize the sustainable development of China economy under low-carbon condition. (author)

  17. Study on Chinese model of low carbon economy-energy-electricity-environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhaoguang

    2010-09-15

    With the successful experience on energy efficiency in the past 30 years in China, it can be summarized as Energy Usage Management(EUM) and Integrated Resource Strategic Planning(IRSP). They will play essential role in Low Carbon Economy. The model of Low Carbon Economy-Energy-Electricity-Environment and an outlook of Chinese economic growth, energy-electricity demand, and renewable energy generation have been studied in this paper. It has been shown that China would save energy 4.38 billion toe and reduce CO2 emission 16.55 billion ton by EUM, and would save energy 1.5 billion toe and reduce CO2 emission 5.7 Btons by IRSP during 2010-2030.

  18. Analysis of responses to the microgeneration strategy and low carbon buildings programme consultation

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, J.; Long, S.; McCartney, K.; Rushton, K.

    2005-10-15

    This report summarises and analyses the written responses to the consultation document, 'Microgeneration Strategy and Low Carbon Buildings Programme', issued by the Department of Trade and Industry (DTI) in June 2005. Responses were received from 204 different organisations representing 29 stakeholder groups. The consultation document contained 41 core questions divided into eight sections: general; product development and deployment; communications; economics; installation; Low Carbon Buildings Programme; physical infrastructure; and local authorities and regional bodies. In the analysis, the responses to these questions were categorised according to whether they represented a 'clear consensus', a 'majority view', 'supporting themes' and 'divergent themes'. Using these categories, stakeholder agreement on the eight strategic issues is summarised in a matrix. The report is divided into three sections: introduction; summary of responses; and key findings. The respondents are listed in an appendix. Another appendix reproduces the consultation questions.

  19. A monetary plan for upgrading climate finance and support the low-carbon transition

    International Nuclear Information System (INIS)

    Hourcade, Jean Charles; Cassen, Christophe

    2015-01-01

    This article examines how carbon finance can be part of a general reform of the financial system. Climate policies can indeed stimulate a sustainable and inclusive climate finance, in line with the call of the Cancun Agreement for a paradigm shift in climate negotiations. The mechanism described in this article is based on the adoption by Parties to the negotiations of a social value of carbon to trigger a wave of low-carbon investments in the world. Central banks offer credit lines for commercial banks backed by this social value of carbon, which are then used to cut the risk to invest in low- carbon investments. A future agreement in Paris next year should support this type of mechanisms.

  20. Low Carbon Design Research on the Space Layout Types of Office Buildings

    Science.gov (United States)

    Xia, Bing

    2018-01-01

    It is beneficial to find out the relationship of the spatial layout and low-carbon design in order to reduce buildings’ carbon emissions in the conceptual design phase. This paper analyzes and compares shape coefficient values, annual energy consumption and lighting performance of office buildings of different space layout types in Shanghai. Based on morphological characteristics of different types, the study also analyzes and presents low-carbon design strategies for each single type. This study assumes that architects should conduct passive and active design according to the specific building space layout, so that to make best use of the advantages and bypassing the disadvantages, in order to maximally reduce buildings’ carbon emissions.

  1. The study of the corrosion protection of the low-carbon steel using film-products

    International Nuclear Information System (INIS)

    Aiancului, L.; Millet, Jean-Pierre

    2001-01-01

    The paper reports studies on the efficiency of the film-inhibitors that covered low-carbon steel placed in a humid medium, and also, the optimization of the working conditions to improve the resistance to corrosion. The analyzes were done in the Industrial Physical - Chemical Laboratories of INSA - Lyon by electrochemical stationary techniques. The experimental device was a potentiometer of type EGG PAR (Princeton Applied Research). It was connected with a computer and three potential electrodes introduced in a cell with NaCl 30 g/l solution to acquire the data and to process the information. The film-products used were organic hydrosoluble polymers with diphosphonic 'heads' that permit a very good absorption at the metallic surface. This research is used to protect the installations of low-carbon steel against the atmospheric and high temperature corrosion. (authors)

  2. Research of System Building Basing on the Low Carbon Economy About Carbon Accounting for the Enterprise

    Directory of Open Access Journals (Sweden)

    Yao Liqiong

    2016-01-01

    Full Text Available As global warming has become truth, is developing as a new economic model, The new economic development model has given rise to an important branch of environmental accounting, namely carbon accounting. At first, this paper discusses the carbon accounting theoretical foundation comprehensively, and then analyzes the environment of the construction of the carbon accounting system. The focus of the article is to build enterprise carbon accounting system, it covers the confirmation and measurement, record and information disclosure of the enterprise carbon accounting on the way of low carbon economy, its core is the processing of carbon emission rights, information disclosure mode and content, etc.; The purpose of this paper is to build enterprise carbon accounting system which is suitable for China’s national conditions, in order to provide certain reference and theoretical support for the low carbon economy development of our country.

  3. Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ehlen, Ali [Center for Energy Efficiency and Renewable Technologies, Sacramento, CA (United States); Caldwell, James H. [Center for Energy Efficiency and Renewable Technologies, Sacramento, CA (United States)

    2016-01-07

    The California 2030 Low Carbon Grid Study (LCGS) analyzes the grid impacts of a variety of scenarios that achieve 50% carbon emission reductions from California's electric power sector. Impacts are characterized based on several key operational and economic metrics, including production costs, emissions, curtailment, and impacts on the operation of gas generation and imports. The modeling results indicate that achieving a low-carbon grid (with emissions 50% below 2012 levels) is possible by 2030 with relatively limited curtailment (less than 1%) if institutional frameworks are flexible. Less flexible institutional frameworks and a less diverse generation portfolio could lead to higher curtailment (up to 10%), operational costs (up to $800 million higher), and carbon emissions (up to 14% higher).

  4. Analysis of responses to the microgeneration strategy and low carbon buildings programme consultation

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, J; Long, S; McCartney, K; Rushton, K

    2005-10-15

    This report summarises and analyses the written responses to the consultation document, 'Microgeneration Strategy and Low Carbon Buildings Programme', issued by the Department of Trade and Industry (DTI) in June 2005. Responses were received from 204 different organisations representing 29 stakeholder groups. The consultation document contained 41 core questions divided into eight sections: general; product development and deployment; communications; economics; installation; Low Carbon Buildings Programme; physical infrastructure; and local authorities and regional bodies. In the analysis, the responses to these questions were categorised according to whether they represented a 'clear consensus', a 'majority view', 'supporting themes' and 'divergent themes'. Using these categories, stakeholder agreement on the eight strategic issues is summarised in a matrix. The report is divided into three sections: introduction; summary of responses; and key findings. The respondents are listed in an appendix. Another appendix reproduces the consultation questions.

  5. A low-carbon future: Spatial planning's role in enhancing technological innovation in the built environment

    International Nuclear Information System (INIS)

    Crawford, Jenny; French, Will

    2008-01-01

    The scope of spatial planning activity includes issues of governance, corporate organisation, policy integration, statutory and regulatory frameworks, and technical analysis and design. The nature of its potential contribution to achieving low-carbon built environments will vary according to the resolution of tensions between pressures for leadership, consistent decision making and speed of change and the value placed on diversity, flexibility and innovation. A planning system that can support technological innovation will be characterised by high levels of organisational and institutional capacity and high-quality knowledge systems that support a focus on delivering place-based objectives. The paper reflects on further aspects of such a system and the issues that spatial planning needs to address in delivering low-carbon energy systems

  6. Bringing the Low-Carbon Agenda to China: A Study in Transnational Policy Diffusion

    Directory of Open Access Journals (Sweden)

    Andreas Hofem

    2013-01-01

    Full Text Available This study traces the transnational interactions that contributed to introducing the low-carbon economy agenda into Chinese policymaking. A microprocessual two-level analysis (outside-in as well as inside-access is employed to analyse transnational and domestic exchanges. The study provides evidence that low-carbon agenda-setting – introduced by transnational actors, backed by foreign funding, promoted by policy entrepreneurs from domestic research institutes, propelled by top-level attention, but only gradually and cautiously adopted by the government bureaucracy – can be considered a case of effective transnational diffusion based on converging perceptions of novel policy challenges and options. Opinion leaders and policy-brokers from the government-linked scientific community functioned as effective access points to the Chinese government’s policy agenda.

  7. An ethical assessment of low carbon vehicles using cost benefit analysis

    OpenAIRE

    Thomopoulos, Nikolas; Harrison, Gillian

    2016-01-01

    Global concerns about climate change, as confirmed at COP21, have led to lower carbon emissions environmental policies, particularly in the road transport sector. Through an empirical analysis of low carbon vehicle (LCV) policies in California, this paper contrasts the findings from diverse distribution theories between income quintiles - used as a proxy for societal groups - to address vertical equity concerns and offer an overview of impact distribution to policy makers. Thus, it contribute...

  8. The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment

    International Nuclear Information System (INIS)

    Mo, Jian-Lei; Agnolucci, Paolo; Jiang, Mao-Rong; Fan, Ying

    2016-01-01

    China is planning to introduce emission trading scheme (ETS) to decrease CO_2 emission. As low carbon energy (LCE) will play a pivotal role in reducing CO_2 emissions, our paper is to assess the extent and the conditions under which a carbon ETS can deliver LCE investment in China. We chose wind technology as a case study and a real-option based model was built to explore the impact of a number of variables and design features on investment decisions, e.g. carbon and electricity price, carbon market risk, carbon price floor and ceiling and on-grid ratio. We compute critical values of these variables and features and explore trade-offs among them. According to our work, a carbon ETS has a significant effect on wind power plant investment although it cannot support investment in wind power on its own. Carbon price stabilization mechanisms such as carbon price floor can significantly improve the effect of carbon ETS but the critical floor to support investment is still much higher than the carbon price in China pilot ETSs. Our results show that other policy measures will be needed to promote low-carbon energy development in China. - Highlights: • The impact of Chinese emission trading scheme on low carbon energy investment is assessed. • A real-option based investment decision model under uncertainty is built and employed. • Key variables and features of ETS influencing wind power investment are explored. • Chinese carbon ETS cannot support low carbon energy investment on its own. • Other policy measures complementing ETS are still needed and should be coordinated.

  9. Safety and effective developing nuclear power to realize green and low-carbon development

    OpenAIRE

    Ye, Qi-Zhen

    2016-01-01

    This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety, environmental protection, enhancement of nuclear power technology, nuclear waste trea...

  10. Ferrite morphology and residual phases in continuously cooled low carbon steels

    International Nuclear Information System (INIS)

    Dunne, D.P.

    1999-01-01

    Although much research has been conducted on the isothermal transformation products of medium to high carbon hardenable steels, relatively little has been reported for transformation of low carbon structural steels under continuous cooling conditions. The trend towards reduced carbon levels (less than about 0.1 wt% C) has been driven by demands for formability and weldability, challenging steel designers to maintain strength by microalloying and/or thermomechanical controlled processing. Although control of the ferritic products formed in low carbon steels after hot rolling, normalising and welding is essential in order to ensure adequate strength and toughness, understanding of the microstructures formed on continuous cooling is still limited. In addition, transformation mechanisms remain controversial because of polarisation of researchers into groups championing diffusional and displacive theories for the transformation of austenite over a wide range of cooling rates. The present review compares and draws together the main ferrite classification schemes, and discusses some critical issues on kinetics and mechanisms, in an attempt to rationalise the effects of cooling rate, prior austenite structure and composition on the resulting ferrite structure and its mechanical properties. It is concluded that with increasing cooling rate the ferritic product becomes finer, more plate-like, more dislocated, more carbon supersaturated, more likely to be formed by a displacive mechanism, harder and stronger. Other conclusions are that: (i) 'bainitic ferrite', which is a pervasive form of ferrite in continuously cooled low carbon steels, is different from the conventional upper and lower bainites observed in higher carbon steels, insofar as the co-product 'phase' is typically martensite-austenite islands rather than cementite; and (ii) low carbon bainite rather than martensite is the dominant product at typical fast cooling rates (<500K/s) associated with commercial

  11. Identifying and explaining framing strategies of low carbon lifestyle movement organisations

    OpenAIRE

    Buechs, M.; Saunders, C.; Wallbridge, R.; Smith, G.; Bardsley, N.

    2015-01-01

    Over the last decade we have seen the growth and development of low carbon lifestyle movement organisations, which seek to encourage members of the public to reduce their personal energy use and carbon emissions. As a first step to assess the transformational potential of such organisations, this paper examines the ways in which they frame their activities. This reveals an important challenge they face: in addressing the broader public, do they promote ‘transformative’ behaviours or do they l...

  12. Yttrium implantation effects on extra low carbon steel and pure iron

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Clermont-Ferrand-2 Univ., Le Puy en Velay (France). Lab. Vellave d`Elaboration; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Advanced Materials, Joint Research Center, The European Commission, 21020, Ispra (Vatican City State, Holy See) (Italy); Josse-Courty, C. [Laboratoire de Recherche sur la Reactivite des Solides, UMR 56-13 CNRS, UFR Sciences et Techniques, 9 Avenue A. Savary, B.P. 400, 21011, Dijon Cedex (France)

    1999-05-25

    Extra low carbon steel and pure electrolytic iron samples were yttrium implanted using ion implantation technique. Compositions and structures of pure iron and steel samples were investigated before and after yttrium implantation by several analytical and structural techniques (RBS, SIMS, RHEED and XRD) to observe the yttrium implantation depth profiles in the samples. This paper shows the different effects of yttrium implantations (compositions and structures) according to the implanted sample nature. (orig.) 23 refs.

  13. Breaking the climate deadlock. A Global Deal for Our Low-Carbon Future

    International Nuclear Information System (INIS)

    Beinhocker, E.; Howard, S.; Kenber, M.; Morgan, J.; Oppenheim, J.

    2008-06-01

    This report outlines the 10 building blocks for an agreement that will create a prosperous low carbon climate-resilient world. The report is targeted at G8 + 5 leaders, policy makers, business leaders, and opinion formers from key countries. It identifies the actions and questions that need to be resolved by political and business leaders over the next 18 months to achieve a successful outcome to the UN climate change negotiations in Copenhagen in December 2009

  14. Effect of Boron on the Hot Ductility of Resulfurized Low-Carbon Free-Cutting Steel

    Science.gov (United States)

    Liu, Hai-tao; Chen, Wei-qing

    2015-09-01

    The hot ductility of resulfurized low-carbon free-cutting steel with boron additives is studied in the temperature range 850 - 1200°C with the help of a Gleeble-1500 thermomechanical simulator. The introduction of boron increases hot ductility, especially at 900 - 1050°C. In the single-phase austenitic region, this effect is caused by segregation of boron over grain boundaries, acceleration of dynamic recrystallization, and solid-solution softening of deformed austenite.

  15. Stress state evaluation in low carbon and TRIP steels by magnetic permeability

    International Nuclear Information System (INIS)

    Kouli, M.-E.; Giannakis, M

    2016-01-01

    Magnetic permeability is an indicative factor for the steel health monitoring. The measurements of magnetic permeability lead to the evaluation of the stress state of any ferromagnetic steel. The magnetic permeability measurements were conducted on low carbon and TRIP steel samples, which were subjected to both tensile and compressive stresses. The results indicated a direct correlation of the magnetic permeability with the mechanical properties, the stress state and the microstructural features of the examined samples. (paper)

  16. Understanding the development trends of low-carbon energy technologies: A patent analysis

    International Nuclear Information System (INIS)

    Albino, Vito; Ardito, Lorenzo; Dangelico, Rosa Maria; Messeni Petruzzelli, Antonio

    2014-01-01

    Highlights: • Governments’ strategies set important frameworks to develop and sustain low-carbon energy technologies. • Commercial activities play a key role in the low-carbon energy technologies’ development. • The number of patents that are based upon basic research is growing. - Abstract: Eco-innovations are being recognized as fundamental means to foster sustainable development, as well as to create new business opportunities. Nowadays, the eco-innovation concept is gaining ground within both academic and practitioner studies with the attempt to better understand the main dynamics underlying its nature and guide policymakers and companies in supporting its development. This paper contributes to the extant literature on eco-innovation by providing a comprehensive overview of the evolution of a specific type of eco-innovations that are playing a crucial role in the current socio-economic agenda, namely low-carbon energy technologies. Accordingly, we focus our attention on the related patenting activity of different countries and organizations over time, as well as on influencing policy initiatives and events. Hence, we collected 131,661 patents granted at the United States Patent and Trademark Office (U.S.PTO.) between 1971 and 2010, and belonging to the “Nuclear power generation”, “Alternative energy production”, and “Energy conservation” technological classes, as indicated by the International Patent Classification (IPC) Green Inventory. Our findings report the development trends of low-carbon energy technologies, as well as identify major related environmental programs, historical events, and private sector initiatives explaining those trends, hence revealing how these different circumstances have significantly influenced their development over time

  17. Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity

    International Nuclear Information System (INIS)

    Roelich, Katy; Dawson, David A.; Purnell, Phil; Knoeri, Christof; Revell, Ruairi; Busch, Jonathan; Steinberger, Julia K.

    2014-01-01

    Highlights: • We present a method to analyse material criticality of infrastructure transitions. • Criticality is defined as the potential for, and exposure to, supply disruption. • Our method is dynamic reducing the probability of lock-in to at-risk technologies. • We show that supply disruption potential is reducing but exposure is increasing. - Abstract: Decarbonisation of existing infrastructure systems requires a dynamic roll-out of technology at an unprecedented scale. The potential disruption in supply of critical materials could endanger such a transition to low-carbon infrastructure and, by extension, compromise energy security more broadly because low carbon technologies are reliant on these materials in a way that fossil-fuelled energy infrastructure is not. Criticality is currently defined as the combination of the potential for supply disruption and the exposure of a system of interest to that disruption. We build on this definition and develop a dynamic approach to quantifying criticality, which monitors the change in criticality during the transition towards a low-carbon infrastructure goal. This allows us to assess the relative risk of different technology pathways to reach a particular goal and reduce the probability of being ‘locked in’ to currently attractive but potentially future-critical technologies. To demonstrate, we apply our method to criticality of the proposed UK electricity system transition, with a focus on neodymium. We anticipate that the supply disruption potential of neodymium will decrease by almost 30% by 2050; however, our results show the criticality of low carbon electricity production increases ninefold over this period, as a result of increasing exposure to neodymium-reliant technologies

  18. Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Haijiang Hu

    2016-07-01

    Full Text Available In this work, three low-carbon bainitic steels, with different Mo contents, were designed to investigate the effects of Mo addition on microstructure and mechanical properties. Two-step cooling, i.e., initial accelerated cooling and subsequent slow cooling, was used to obtain the desired bainite microstructure. The results show that the product of strength and elongation first increases and then shows no significant change with increasing Mo. Compared with Mo-free steel, bainite in the Mo-containing steel tends to have a lath-like morphology due to a decrease in the bainitic transformation temperature. More martensite transformation occurs with the increasing Mo, resulting in greater hardness of the steel. Both the strength and elongation of the steel can be enhanced by Mo addition; however, the elongation may decrease with a further increase in Mo. From a practical viewpoint, the content of Mo could be ~0.14 wt. % for the composition design of low-carbon bainitic steels in the present work. To be noted, an optimal scheme may need to consider other situations such as the role of sheet thickness, toughness behavior and so on, which could require changes in the chemistry. Nevertheless, these results provide a reference for the composition design and processing method of low-carbon bainitic steels.

  19. Microstructure and mechanical properties of internal crack healing in a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ruishan [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Ma, Qingxian, E-mail: maqxdme@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Li, Weiqi [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The behavior of internal crack healing in a low carbon steel at elevated temperatures was investigated. The internal cracks were introduced into low carbon steel samples via the drilling and compression method. The microstructure of crack healing zone was observed using optical microscopy and scanning electron microscopy. The mechanical properties of crack healing zone at room temperature were tested. The results show that there are two mechanisms of crack healing in the low carbon steel. Crack healing is caused by atomic diffusion at lower temperatures, and mainly depends on recrystallization and grain growth at higher temperatures. The microstructural evolution of crack healing zone can be divided into four stages, and the fracture morphology of crack healing zone can be classified into five stages. At the initial healing stage, the fracture exhibits brittle or low ductile dimple fracture. The ultimate fracture mode is dimple and quasi-cleavage mixed fracture. Fine grain microstructures improve the ultimate tensile strength of crack healing zone, which is even higher than that of the matrix. The strength recovery rate is higher than that of the plasticity.

  20. Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets

    International Nuclear Information System (INIS)

    Kannan, R.

    2009-01-01

    The UK government's economy-wide 60% carbon dioxide reduction target by 2050 requires a paradigm shift in the whole energy system. Numerous analytical studies have concluded that the power sector is a critical contributor to a low carbon energy system, and electricity generation has dominated the policy discussion on UK decarbonisation scenarios. However, range of technical, social and market challenges, combined with alternate market investment strategies mean that large scale deployment of key classes of low carbon electricity technologies is fraught with uncertainty. The UK MARKAL energy systems model has been used to investigate these long-term uncertainties in key electricity generation options. A range of power sector specific parametric sensitivities have been performed under a 'what-if' framework to provide a systematic exploration of least-cost energy system configurations under a broad, integrated set of input assumptions. In this paper results of six sensitivities, via restricted investments in key low carbon technologies to reflect their technical and political uncertainties, and an alternate investment strategies from perceived risk and other barriers, have been presented. (author)

  1. A Low Carbon Development Guide for Local Government Actions in China

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Zhou, Nan; Price, Lynn; Ohshita, Stephanie

    2011-05-01

    Local level actions are crucial for achieving energy-saving and greenhouse gas emission reduction targets. Yet it is challenging to implement new policies and actions due to a lack of information, funding, and capacity. This is particularly the case in developing countries such as China. Even though national energy intensity and carbon intensity targets have been set, most local governments do not have the knowledge regarding actions to achieve the targets, the cost-effectiveness of policies, the possible impact of policies, or how to design and implement a climate action plan. This paper describes a guidebook that was developed to motivate and provide local governments in China with information to create an action plan to tackle climate change and increase energy efficiency. It provides a simple step-by-step description of how action plans can be established and essential elements to be included - from preparing a GHG emission inventory to implementation of the plan. The guidebook also provides a comprehensive list of successful policies and best practices found internationally and in China to encourage low carbon development in industry, buildings, transportation, electric power generation, agriculture and forestry. This paper also presents indicators that can be used to define low-carbon development, as well as to evaluate the effectiveness of actions taken at an aggregated (city) level, and at a sectoral or end use level. The guidebook can also be used for low carbon development by local governments in other developing countries.

  2. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  3. Informed public preferences for electricity portfolios with CCS and other low-carbon technologies.

    Science.gov (United States)

    Fleishman, Lauren A; De Bruin, Wändi Bruine; Morgan, M Granger

    2010-09-01

    Public perceptions of carbon capture and sequestration (CCS) and other low-carbon electricity-generating technologies may affect the feasibility of their widespread deployment. We asked a diverse sample of 60 participants recruited from community groups in Pittsburgh, Pennsylvania to rank 10 technologies (e.g., coal with CCS, natural gas, nuclear, various renewables, and energy efficiency), and seven realistic low-carbon portfolios composed of these technologies, after receiving comprehensive and carefully balanced materials that explained the costs and benefits of each technology. Rankings were obtained in small group settings as well as individually before and after the group discussions. The ranking exercise asked participants to assume that the U.S. Congress had mandated a reduction in carbon dioxide emissions from power plants to be built in the future. Overall, rankings suggest that participants favored energy efficiency, followed by nuclear power, integrated gasification combined-cycle coal with CCS and wind. The most preferred portfolio also included these technologies. We find that these informed members of the general public preferred diverse portfolios that contained CCS and nuclear over alternatives once they fully understood the benefits, cost, and limitations of each. The materials and approach developed for this study may also have value in educating members of the general public about the challenges of achieving a low-carbon energy future. © 2010 Society for Risk Analysis.

  4. The future of Japan's power business in a low-carbon society

    International Nuclear Information System (INIS)

    Toyoda, Masakazu

    2016-01-01

    This paper examines the implication and detail of the agreement of COP 21, and clarifies the task for electric power companies and the direction of development based on this. In face of the formulation of energy mix policy for 2030, in July 2015, Japan established a greenhouse gas reduction target of 25% compared to 2013, and registered it. Although the goal for achieving a low-carbon society has been completed by setting energy saving target and energy mix policy, how to realize it during the progress of power system innovation is important and it is not easy. As the energy policy, the following are important: (1) steady realization of energy saving, (2) cost reduction and balancing of introduction of renewable energy, (3) clean use of fossil fuels, and (4) ensuring the safety of nuclear power and steady restart. This study discusses what will be made for each item, and what will be needed. To make Japan's efforts toward a low-carbon society a reality, the securement of zero-emission power sources of 44% is indispensable, and 20% to 22% (a little less of half of it) is expectedly depending on nuclear power. With the Paris Agreement at COP 21, the buildup of a low-carbon society in Japan is now an urgent issue. However, there are various hurdles for realizing it, and in addition, the system innovation of electric power business has entered a full-fledged stage, making the task further complicated. (A.O.)

  5. Low carbon technology performance vs infrastructure vulnerability: analysis through the local and global properties space.

    Science.gov (United States)

    Dawson, David A; Purnell, Phil; Roelich, Katy; Busch, Jonathan; Steinberger, Julia K

    2014-11-04

    Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. The evolution of these technologies has progressed based on the enhancement of technology-specific performance criteria, without explicitly considering the wider system (global) impacts. This paper presents a methodology for simultaneously assessing local (technology) and global (infrastructure) performance, allowing key technological interventions to be evaluated with respect to their effect on the vulnerability of wider infrastructure systems. We use exposure of low carbon infrastructure to critical material supply disruption (criticality) to demonstrate the methodology. A series of local performance changes are analyzed; and by extension of this approach, a method for assessing the combined criticality of multiple materials for one specific technology is proposed. Via a case study of wind turbines at both the material (magnets) and technology (turbine generators) levels, we demonstrate that analysis of a given intervention at different levels can lead to differing conclusions regarding the effect on vulnerability. Infrastructure design decisions should take a systemic approach; without these multilevel considerations, strategic goals aimed to help meet low-carbon targets, that is, through long-term infrastructure transitions, could be significantly jeopardized.

  6. Research on Price of Railway Freight Based on Low-Carbon Economy

    Directory of Open Access Journals (Sweden)

    Fenling Feng

    2016-01-01

    Full Text Available Transportation is one of the major energy consumption and carbon emission industries. Railway transport is a typical low-carbon transport. To accelerate the green low-carbon transportation development and improve the railway market share, this paper defines the concept of carbon saving profit to study the price of railway freight after the government functions were separated from railway enterprise management. First, taking full account of market factors and on the principle of utility maximization and maximum likelihood method, the sharing ratio model of transportation modes is established. Then consideration is given to both the profit of railway enterprises and social benefits, and income maximization model of railway freight based on low-carbon economy is established. The model can scientifically guide the transportation users who prefer to use resource-saving and environmental-friendly transportation modes, optimize transportation structure, and comprehensively improve the efficiency of transportation system. Finally, case analysis is conducted to verify the rationality and validity of the model, and reference for the rail freight pricing is provided.

  7. Towards low carbon business park energy systems: Classification of techno-economic energy models

    International Nuclear Information System (INIS)

    Timmerman, Jonas; Vandevelde, Lieven; Van Eetvelde, Greet

    2014-01-01

    To mitigate climate destabilisation, human-induced greenhouse gas emissions urgently need to be curbed. A major share of these emissions originates from the industry and energy sectors. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by maximal exploitation of local renewable energy production, enhanced energy efficiency, and inter-firm heat exchange, combined in a collective energy system. The holistic approach of techno-economic energy models facilitates the design of such systems, while yielding an optimal trade-off between energetic, economic and environmental performances. However, no models custom-tailored for industrial park energy systems are detected in literature. In this paper, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of models are selected and described. Subsequently, a practical typology is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, and key model features are compared. Finally, important features for a business park energy model are identified. - Highlights: • A holistic perspective on (low carbon) business park energy systems is introduced. • A new categorisation of techno-economic energy models is proposed. • Model characteristics are described per model category. • Essential model features for business park energy system modelling are identified. • A strategy towards a techno-economic energy model for business parks is proposed

  8. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  9. Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel

    International Nuclear Information System (INIS)

    Deva, Anjana; Jha, B.K.; Mishra, N.S.

    2011-01-01

    Highlights: → Unique feature of low strain hardening exponent (n) with high total elongation has been discussed in industrially produced low carbon boron containing steel. → n has been correlated with the micro structural changes occurring during deformation of steel. → This feature of low n and high % elongation has potential for higher cold reducibility. → The work is being reported for the first time on industrially produced low carbon boron containing steel. - Abstract: The beneficial effect of boron on mechanical properties of low carbon Al-killed steel has been reported in recent past. However, the effect of boron on strain hardening exponent (n) and ductility has not been fully understood. This aspect has been discussed in present work. The results of mill trials with reference to n and ductility with boron added steel are compared to those for commercial grade. The lowering of 'n' with increased total elongation in boron bearing steel has been related to the microstructural evolution as a result of boron addition.

  10. Corrosion Behaviour of Nickel Plated Low Carbon Steel in Tomato Fluid

    Directory of Open Access Journals (Sweden)

    Oluleke OLUWOLE

    2010-12-01

    Full Text Available This research work investigated the corrosion resistance of nickel plated low carbon steel in tomato fluid. It simulated the effect of continuous use of the material in a tomato environment where corrosion products are left in place. Low carbon steel samples were nickel electroplated at 4V for 20, 25, 30 and 35 mins using Watts solution.The plated samples were then subjected to tomato fluid environment for for 30 days. The electrode potentials mV (SCE were measured every day. Weight loss was determined at intervals of 5 days for the duration of the exposure period. The result showed corrosion attack on the nickel- plated steel, the severity decreasing with the increasing weight of nickel coating on substrate. The result showed that thinly plated low carbon steel generally did not have any advantage over unplated steel. The pH of the tomato solution which initially was acidic was observed to progress to neutrality after 4 days and then became alkaline at the end of the thirty days test (because of corrosion product contamination of the tomatocontributing to the reduced corrosion rates in the plated samples after 10 days. Un-plated steel was found to be unsuitable for the fabrication of tomato processing machinery without some form of surface treatment - thick nickel plating is suitable as a protective coating in this environment.

  11. Ecological network analysis for a low-carbon and high-tech industrial park.

    Science.gov (United States)

    Lu, Yi; Su, Meirong; Liu, Gengyuan; Chen, Bin; Zhou, Shiyi; Jiang, Meiming

    2012-01-01

    Industrial sector is one of the indispensable contributors in global warming. Even if the occurrence of ecoindustrial parks (EIPs) seems to be a good improvement in saving ecological crises, there is still a lack of definitional clarity and in-depth researches on low-carbon industrial parks. In order to reveal the processes of carbon metabolism in a low-carbon high-tech industrial park, we selected Beijing Development Area (BDA) International Business Park in Beijing, China as case study, establishing a seven-compartment- model low-carbon metabolic network based on the methodology of Ecological Network Analysis (ENA). Integrating the Network Utility Analysis (NUA), Network Control Analysis (NCA), and system-wide indicators, we compartmentalized system sectors into ecological structure and analyzed dependence and control degree based on carbon metabolism. The results suggest that indirect flows reveal more mutuality and exploitation relation between system compartments and they are prone to positive sides for the stability of the whole system. The ecological structure develops well as an approximate pyramidal structure, and the carbon metabolism of BDA proves self-mutualistic and sustainable. Construction and waste management were found to be two active sectors impacting carbon metabolism, which was mainly regulated by internal and external environment.

  12. Building capacity for low-carbon communities: The role of grassroots initiatives

    International Nuclear Information System (INIS)

    Middlemiss, Lucie; Parrish, Bradley D.

    2010-01-01

    Grassroots initiatives for change rely on people with limited power, limited resources and limited ability to influence others. From this position, people acting from the bottom up can change their own actions, seek to influence others around them and seek to change the social structures that they inhabit. These acts are invariably conceived, initiated and enacted within communities, and there is an emerging interest from practitioner, policy and academic circles in the importance of community as a space for realising pro-environmental change. In this paper, we ask what role grassroots initiatives can have in creating low-carbon communities. Using a theoretical framework from work on community-based practice change initiatives, we discuss the interplay between grassroots action and community capacity. We then present two cases of grassroots low-carbon community initiatives in light of this theoretical work. We conclude by discussing key themes emerging from the cases, including the potential for grassroots initiatives to build community capacity for low-carbon practices, and the importance of locally crafted solutions according to the structures specific to place.

  13. Self-evaluation System for Low carbon Industrial Park--A Case Study of TEDA Industrial Park in Tianjin

    Science.gov (United States)

    Wenyan, W.; Fanghua, H.; Ying, C.; Ouyang, W.; Yuan, Q.

    2013-12-01

    Massive fossil fuel burning caused by industrialization development is one major reason of global climate change. After Copenhagen climate summit, the studies of low-carbon city gain attentions from many countries. On 25th Nov. 2009, the State Council executive meeting announced that by 2020 China will reduce the carbon dioxide emissions per unit of GDP by 40% to 45% compared with the level of 2005. Industrial Park as an important part of city, has developed rapidly in recent years, and turns into a key element and an alternative mechanism to achieve emission reduction target. Thus, establishing a low carbon development model for industrial park is one of the most effective ways to build sustainable low carbon cities. By adopting the self-evaluation system of low carbon industrial park, this research aims to summarize the low carbon concept in industrial park practice. According to The Guide for Low Carbon Industrial Development Zones, the quantitative evaluation system is divided into 4 separate categories with 23 different quantitative indicators. The 4 categories include: 1) energy and GHG management (weigh 60%), 2) circular economy and environmental protection (weigh 15%), 3) administration and incentive mechanisms of industrial parks (weigh 15%), and 4) planning and urban forms (weigh 10%). By going through the necessary stages and by leading continuous improvements low carbon development goals can be achieved. Tianjin TEDA industrial park is selected as one case study to conduct an assessment on TEDA low-carbon development condition. Tianjin TEDA Industrial Park is already an ecological demonstration industrial park in China, with good foundations on environmental protection, resource recycling, etc. Based on the self-evaluation system, the indicators, such as the energy using efficiency and the degree of land intensive utilization, are also analyzed and assessed. Through field survey and data collection, in accordance with the quantitative self

  14. Availability, usage, and threats to freshwater resources on low carbonate islands in Micronesia

    Science.gov (United States)

    Taboroši, Danko; Jenson, John W.; Sánchez Collazo, Maricruz; Zega, Mojca

    2010-05-01

    Federated States of Micronesia (FSM) is an insular nation in the western Pacific. It consists of 4 high volcanic islands and 37 low carbonate units, mostly coral atolls. The high islands are relatively large, and are developing socioeconomic centers of the country, whereas low islands are small and remote outposts of traditional subsistence lifestyle. The latter are inhabited by a fifth of the nation's population of 107,000 people. Total land area of a typical low island is a fraction of a km2, yet may be home to hundreds of people, creating some of the highest population densities in the Pacific. The resultant extreme pressures on natural resources are exacerbated by severe weather hazards, especially typhoons and unusually high tides which have recently flooded some islands in entirety, damaging homes and food sources. Freshwater resources are particularly sensitive. Crowded low islands have some of the world's most unfavorable relationships between population density and freshwater availability. As there are no communal or municipal facilities and government operated infrastructure, people have only two sources of water available for consumption: rainwater and groundwater. Rain is captured by individual households' thatch or corrugated iron roofs and transferred by gutters to concrete or fiberglass tanks. It is used for drinking, cooking, and dishwashing, and depending on availability, for laundry and showering. Such arrangement are highly unreliable, because they depend on sufficient rainfall and islanders' ability to capture and store it. Some communities have actually run out of water in the past, as a result of prolonged droughts or typhoons' damage to the catchment systems. In addition, tropical climate and pervasive organic matter and microorganisms make the tanks' maintenance difficult, because even most conscientious cleaning cannot ensure that stored water remains potable. Stomach problems and more serious health complications are common. Groundwater

  15. Going Clean - The Economics of China's Low-carbon Development

    Energy Technology Data Exchange (ETDEWEB)

    Hallding, Karl; Thai, Helen; Han, Guoyi; Olsson, Marie; Kartha, Sivan (Stockholm Environment Inst. (Sweden)); Eklund, Klas (SEB, Stockholm (Sweden)); SU Ming (Peking Univ. (China)); Cao Jing (Tsinghua Univ. (China)); Luderer (Potsdam Inst. for Climate Impact (Germany))

    2009-11-15

    This report shows that China can achieve the transition to a low-carbon economy. China can make these emissions reductions within the tight constraints of a global 2 deg C target while still meeting development and economic growth goals over the next four decades. There are strong mitigation potentials in the building, industry, transport and electricity generation sectors. China would benefit from early mitigation, but immediate action is critical for the world to have a reasonable chance of keeping warming below the 2 deg C target. Such a transition would also be an essential part of China's modernisation. A low-carbon transition presents opportunities for China to improve its energy security and move its economy up the value chain in the production of international goods and services. A low-carbon China is a country with a larger service sector, more advanced labour skills and less environmental degradation. During this transition, new, green job opportunities will emerge, and support an overall shift to a low-carbon economy. Active labour market and social policies, vocational training and upgrading of skills are imperative to facilitate this modernisation and reduce the impact of jobs lost in resource-intensive industries. With today's low price on carbon emissions, the incentives for a low-carbon transition are not sufficiently strong. Consumption and production patterns must be steered in a more resource-sustainable direction. A first step is to phase out subsidies on fossil fuels. Another is to place a price on carbon, either through a carbon tax or a cap-and-trade system, which would create incentives for companies and individuals to produce and consume less carbon-intensive goods and services, and to undertake abatement opportunities to reduce their overall carbon footprint. Advancing technology and innovation need to be fundamental, shared policy objectives in this transition. Early investment reduces costs and paves the way for large

  16. National Low-Carbon Strategy. France in action. The energy transition for green growth

    International Nuclear Information System (INIS)

    2016-01-01

    The National Low-Carbon Strategy (SNBC), introduced by the energy transition for green growth act, outlines the approach to be adopted in order to reduce greenhouse gas emissions. It sets in motion the transition to a low-carbon economy. France, with its energy transition act for green growth, has committed to reduce its greenhouse gas emissions by 40% between 1990 and 2030 and fourfold between 1990 and 2050. France's greenhouse gas emissions per person are already among the lowest in the developed world, but more needs to be done. The act introduces tools designed to promote a low-carbon economy, namely 'carbon budgets' and the National Low-Carbon Strategy (SNBC), in order to achieve these new goals. These have been set for the 2015-2018, 2019-2023 and 2024-2028 periods. 'Carbon budgets' are caps on greenhouse gas emissions established for successive five-year periods, designed to set the downward trend in emissions. They are broken down into major sectors of activity (transport, housing, industry, agriculture, energy and waste). The SNBC outlines strategic guidelines for implementing the transition to a sustainable, low-carbon economy across all sectors of activity. It has been jointly developed with civil society by means of a broad public consultation and the close involvement of the National Council for Ecological Transition (CNTE). The SNBC comprises a series of overarching and sector-specific recommendations that outline the pathway to a low-carbon economy that will improve well-being, growth and employment. It sets a target for reducing the national carbon footprint, which remained stable between 1990 and 2012 owing to an increase in emissions linked to imports. It is important that we work together to ensure that we are not simply out-sourcing our emissions but actually reducing them. It will help raise both public and private funding for the energy transition. An 'energy transition for climate' label will help identify investment funds that are funding

  17. Is ecological personality always consistent with low-carbon behavioral intention of urban residents?

    International Nuclear Information System (INIS)

    Wei, Jia; Chen, Hong; Long, Ruyin

    2016-01-01

    In the field of low-carbon economics, researchers have become interested in residential consumption as a potential means for reducing carbon emissions. By analyzing and expanding the fundamental concept of personality, a type of personality, namely ecological personality (EP), was defined and a structural model of EP was constructed based on a five-factor model. The study surveyed 890 urban residents to examine the relationship between EP and low-carbon behavioral intention (LCBI). Ecological personality is a five-dimensional concept comprising eco-neuroticism, eco-agreeableness, eco-openness, eco-extraversion, and eco-conscientiousness. Ecological personality traits were positively correlated with the LCBI. However, a quadrifid graph model showed that the EP is not always consistent with LCBI, and respondents fell into two groups: one group comprised ecological residents with consistent traits (positive EP and high LCBI) and non-ecological residents with consistent traits (negative EP and low LCBI), and their EP was consistent with LCBI; the other group comprised ecological residents with gap traits (positive EP and low LCBI) and non-ecological residents with gap traits (negative EP and high LCBI), and neither showed any consistency between personality and intentions. A policy to guide the conversion of different groups into ecological residents with consistent traits is discussed. - Highlights: • The structural model of ecological personality was constructed. • The relationship between personality and behavioral intention was examined. • Ecological personality and low-carbon behavioral intention donot always match up. • A policy urging residents to be ecological was discussed.

  18. Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China

    International Nuclear Information System (INIS)

    Cheng, Beibei; Dai, Hancheng; Wang, Peng; Xie, Yang; Chen, Li; Zhao, Daiqing; Masui, Toshihiko

    2016-01-01

    This paper analyzes the impacts of the low-carbon policy in the power sector of Guangdong Province in China on its energy and carbon emission targets by 2020, as well as their costs and co-benefits, using a regional CGE model with seven scenarios: business as usual (BaU), renewable energy (RE), renewable energy and natural gas (RE–NG), CAP only (CAP), CAP and RE–NG (CAP–RE–NG), carbon emission trading (ETS), and ETS with RE–NG (ETS–RE–NG). Analysis results reveal that provincial energy and carbon intensity targets can be achieved in the assumed carbon mitigation scenarios with carbon cap, ETS, and clean energy development policies. While the carbon constraint exerts negative impacts on the economy, GDP loss could be lowered by the ETS and RE policies. The RE scenario is more economically efficient than the ETS scenario, and coupling the RE and ETS scenarios appears to be the most economically efficient scenario to achieve the desired carbon and energy intensity targets. One of the benefits of the low-carbon policy is its improvement of the energy security of Guangdong in terms of reduced reliance on external coal and oil; in particular, Guangdong coal consumption could peak in 2017–2019. - Highlights: • This study analyzes the low carbon policy in the power sector in Guangdong of China. • The role of power sector in achieving carbon and energy intensity target is shown. • Renewable energy and natural gas are very important for Guangdong Province. • Additional efforts in other sectors are needed to achieve the intensity targets. • The mitigation cost and economic impacts are assessed under various policy settings.

  19. Mapping and Measuring European Local Governments’ Priorities for a Sustainable and Low-Carbon Energy Future

    Directory of Open Access Journals (Sweden)

    Stelios Grafakos

    2015-10-01

    Full Text Available The main objective of this article is to assess the priorities of local governments (LGs in Europe regarding climate change mitigation technologies evaluation in the electricity sector and to provide important insights for energy policy design. The study applies a hybrid weighting methodology to elicit LGs’ preferences in a constructive and iterative way regarding the evaluation criteria of low-carbon energy technologies. Furthermore, the study employs three data collection and preference elicitation methods, namely: survey, workshop, and webinar. The study was conducted across thirty one (31 European LGs that were categorized according to three variables: population size, geographical region and gross domestic product (GDP per capita. The analysis shows that “CO2 emissions” is the most important criterion among European LGs, followed by “mortality and morbidity” and “ecosystem damages”. The results illustrate the potential synergies of climate and energy policies for addressing both CO2 emissions and air pollution. It was also found, based on a correlation analysis, that LGs with higher GDP per capita tend to provide higher weights to criteria related to security of energy supply and technological innovation. The current study provides insights on the actual LGs’ priorities that are important to consider during low-carbon energy technologies evaluation and energy policy design. Interestingly, the results of the European LGs’ preferences clearly show that the EU climate policy objectives have reached different levels of governance—and at this particular case, the local level. Furthermore, the developed methodology could be applied at different geographical regions to map other regions’ LG priorities, but also at a group decision making context to elicit relevant stakeholders’ preferences regarding low-carbon energy technologies and policy objectives.

  20. Alpine hydropower in a low carbon economy: Assessing the local implication of global policies

    Science.gov (United States)

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    In the global transition towards a more efficient and low-carbon economy, renewable energy plays a major role in displacing fossil fuels, meeting global energy demand while reducing carbon dioxide emissions. In Europe, Variable Renewable Sources (VRS), such as wind and solar power sources, are becoming a relevant share of the generation portfolios in many countries. Beside the indisputable social and environmental advantages of VRS, on the short medium term the VRS-induced lowering energy prices and increasing price's volatility might challenge traditional power sources and, among them, hydropower production, because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. In this study, we focus on the Swiss hydropower sector analysing how different low-carbon targets and strategies established at the Swiss and European level might affect energy price formation and thus impact - through hydropower operation - water availability and ecosystems services at the catchment scale. We combine a hydrological model to simulate future water availability and an electricity market model to simulate future evolution of energy prices based on official Swiss and European energy roadmaps and CO2 price trends in the European Union. We use Multi-Objective optimization techniques to design alternative hydropower reservoir operation strategies, aiming to maximise the hydropower companies' income or to provide reliable energy supply with respect to the energy demand. This integrated model allows analysing to which extent global low-carbon policies impact reservoir operation at the local scale, and to gain insight on how to prioritise compensation measures and/or adaptation strategies to mitigate the impact of VRS on hydropower companies in increasingly water constrained settings. Numerical results are shown for a real-world case study in the Swiss Alps.

  1. Rethinking the role of scenarios: Participatory scripting of low-carbon scenarios for France

    International Nuclear Information System (INIS)

    Mathy, Sandrine; Fink, Meike; Bibas, Ruben

    2015-01-01

    This article considers the usefulness of low-carbon scenarios in public decision-making. They may be useful as a product-oriented trajectory. The scenarios on the agenda of the 2013 Energy Debate in France belong to this category. But a scenario may also be process-oriented, in the sense that its scripting process helps build consensus and a minimum level of agreement. We have scripted scenarios using a codevelopment method, involving about 40 stakeholders from the private and public sectors, and from the state: NGOs, consumer groups, trade unions, banks and local authorities. They selected policies they considered acceptable for achieving 75% greenhouse gases emission reductions in 2050. These policies were then integrated in the Imaclim-R-France technico-economic simulation model, as part of a high or moderate acceptability scenario. In the first case emissions were cut by between 58% and 72% by 2050; in the second case by between 68% and 81%, depending on the energy price assumptions. All these measures benefited jobs and economic growth, swiftly and durably cutting household spending on energy services. This offers a solid basis for gaining acceptability for low carbon trajectories; the process constitutes also a framework for consolidating collective learning centering on the acceptability of climate policies. - Highlights: • The article develops a ‘process-oriented’ low carbon scenario for France. • Stakeholders define a set of sectoral and fiscal ‘acceptable’ climate policies. • These policies are integrated within a technico-economic model Imaclim-R-France. • Economic impacts and CO 2 emission reductions are computed. •The co-development methodology favors joint production of solutions and shared vision-building

  2. Scenario analysis of energy-based low-carbon development in China.

    Science.gov (United States)

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. Copyright © 2014. Published by Elsevier B.V.

  3. Transitioning to low carbon communities-from behaviour change to systemic change: Lessons from Australia

    International Nuclear Information System (INIS)

    Moloney, Susie; Horne, Ralph E.; Fien, John

    2010-01-01

    Transitioning to low carbon communities requires an understanding of community practices and resultant emissions, as well as the technologies, infrastructures and institutions associated with and accessed by communities. Moreover, it requires an understanding of the connections between these integrated system components, its dynamics, a defined transition and potential 'levers' involved in 'transitioning'. This paper accepts the notion that 'levers' include programmes designed to achieve practice or behaviour change in households which result in less carbon intensive lifestyles, and focuses on the factors that shape human behaviour and influence householder energy consumption. Research to date by the authors and others indicates that a comprehensive socio-technical framework that considers both individual psychological factors as well as the systems, standards and norms under which individuals operate is fundamental to the development of successful strategies to shift towards low carbon communities. A database has been compiled of over one hundred local programmes aimed at realising carbon neutral communities across Australia largely through approaches to behaviour change. This paper presents the findings of an analysis of these programmes, particularly with regard to the extent to which they take account of a socio-technical framework or understanding of domestic consumption behaviours and whether they are aware of or aim to influence changing standards and expectations around consumption practices within the home. While a number of exemplary community-based programmes adopt an integrated approach to addressing both technical and behavioural dimensions in the shift to low carbon communities, it was found that most fail to take sufficient account of the systems, standards and norms shaping consumption. Conclusions include directions for policy and programme design based on the study findings.

  4. Diverse and uneven pathways towards transition to low carbon development: The case of diffusion of solar PV technology in China

    NARCIS (Netherlands)

    Iizuka, M.

    2014-01-01

    Transition towards low carbon development (LCD) is an urgent challenge for the global community. As increased economic activities usually result in more carbon emissions, this challenge is particularly crucial for rapidly growing emerging countries. For these countries, reducing carbon emissions

  5. Strengthening the European Union Climate and Energy Package. To build a low carbon, competitive and energy secure European Union

    International Nuclear Information System (INIS)

    Guerin, E.; Spencer, Th.

    2011-01-01

    As the EU's climate and energy goals defined in its Climate and Energy Package (CEP) are to protect the climate, to protect EU economic competitiveness, and to protect EU energy security, the authors first define these notions (time consistency, competitiveness, energy security) and stress the importance of strengthening the CEP, notably by fostering low carbon technology investment and low carbon products and services innovation. They discuss several policy recommendations for the development of a low carbon, competitive and energy secure EU. These recommendations are notably based on the strengthening of current instruments and on the implementation of new tools to reach the 20% energy efficiency target, on an increase stringency and predictability of the EU ETS, and on the use of direct public financial support to facilitate the transition towards a EU low carbon economy

  6. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Steward, Darlene [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vimmerstedt, Laura [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Webster, Karen W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-04-01

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  7. Variations of microstructure and properties of 690 MPa grade low carbon bainitic steel after tempering

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Rui [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan Shandong 250061 (China); Li, Shengli, E-mail: lishengli@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan Shandong 250061 (China); Li, Zhenshun; Tian, Lei [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan Shandong 250061 (China)

    2012-12-15

    The variations of microstructure, mechanical properties and electrical resistivity of 690 MPa grade low carbon bainitic steel tempered at different temperatures were investigated with Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and double-arm Bridge. The results show that the appearance of granular bainite, decomposition of retained austenite, variations of dislocation density and solid solution of microalloying elements are the main reasons for variations of mechanical properties and electrical resistivity. Electrical resistivity reflects the solution content of microalloying elements and variations of dislocation density, which can be used as a fast and effective way to analyze the microstructure of materials.

  8. Transformation Stasis Phenomenon of Bainite Formation in Low-Carbon, Multicomponent Alloyed Steel

    Science.gov (United States)

    Lan, Liangyun; Kong, Xiangwei

    2017-11-01

    The transformation stasis phenomenon of bainite formation in low-carbon steel was detected using a high-resolution dilatometer. The phenomenon occurred at different stages for different isothermal temperatures. In combination with microstructural observation, the calculated overall activation energy of transformation and interface migration velocity shed new light on the cause of formation of the stasis phenomenon. The temporary stasis formed at the initial stage of phase transformation for high isothermal temperature was attributed to the drag effect of substitutional atoms, which leads to low-interface migration velocity and large overall activation energy.

  9. Effect of High-Temperature Thermomechanical Treatment on the Brittle Fracture of Low-Carbon Steel

    Science.gov (United States)

    Smirnov, M. A.; Pyshmintsev, I. Yu.; Varnak, O. V.; Mal'tseva, A. N.

    2018-02-01

    The effect of high-temperature thermomechanical treatment (HTMT) on the brittleness connected with deformation-induced aging and on the reversible temper brittleness of a low-carbon tube steel with a ferrite-bainite structure has been studied. When conducting an HTMT of a low-alloy steel, changes should be taken into account in the amount of ferrite in its structure and relationships between the volume fractions of the lath and the acicular bainite. It has been established that steel subjected to HTMT undergoes transcrystalline embrittlement upon deformation aging. At the same time, HTMT, which suppresses intercrystalline fracture, leads to a weakening of the development of reversible temper brittleness.

  10. Shared and Contested Elements in Climate Plans towards a Danish Low Carbon Society

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    The industrialized countries must make efforts to reduce their climate impact through increased renewable energy capacity and energy saving efforts. The Danish government's vision about a society independent of fossil energy has initiated several Danish energy and climate plans describing visions...... should be addressed in order to align future transition efforts towards a low carbon Danish society. The renewable energy NGO plan is an energy plan, while the other plans are climate plans including non-energy related greenhouse gasses from land use changes and agricultural practices. The plans differ...

  11. Electric vehicles and India's low carbon passenger transport: A long-term co-benefits assessment

    DEFF Research Database (Denmark)

    Dhar, Subash; Pathak, Minal; Shukla, Priyadarshi

    2017-01-01

    Electric vehicles have attracted the attention of India's policy makers as clean technology alternatives due to their multiple advantages like higher efficiency and lower air pollution in short to medium term and reduced CO2 emissions as electricity gets decarbonized in the long-run under low...... carbon scenarios. This paper uses an energy system model ANSWER-MARKAL to analyse the role of electric vehicles (EV) in India. The modelling assessment spans the period 2010 to 2050 and analyses future EV demand in India under three scenarios: i) a ‘Reference’ scenario which includes the continuation...

  12. Stress and Strain Gradients in a Low Carbon Steel Deformed under Heavy Sliding

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Huang, Xiaoxu

    A recent study [1] has shown that a microstructure can be refined to a record low of 5 nm and that dislocation glide is still a controlling mechanism at this length scale. In this study, by heavy rotatory sliding of a low carbon steel a gradient structure has been produced extending to about 2.5 mm...... on the deformation microstructure using the classic stress-structure relationship. Computational and materials modelling has been advanced from bulk to gradient structures leading to dissemination of constitutive stress-strain equations in gradient structures....

  13. Analysis of recrystallization and grain growth in ultra low carbon steels using EBSD

    International Nuclear Information System (INIS)

    Novillo, E.; Petite, M. M.; Bocos, J. L.; Gutierrez, I.

    2004-01-01

    This work is focused on the study of recrystallization texture and micro texture in a cold rolled ultra low carbon steel and its relationship with the global texture. Aspects like nucleation, evolution of the volume fraction and grain size were considered. An important grain selection associated with a significant size and number advantages of the recrystallized grains is observed. This grain selection gives rise to the development, at the latest stages of recrystallization, of a strong γ-fibre associated to good drawing properties. (Author) 24 refs

  14. Low carbon scenarios for transport in India: Co-benefits analysis

    DEFF Research Database (Denmark)

    Dhar, Subash; Shukla, P.R.

    2015-01-01

    Dependence on oil for transport is a concern for India's policymakers on three counts – energy security, local environment and climate change. Rapid urbanisation and accompanying motorisation has created some of the most polluting cities in India and rising demand for oil is leading to higher...... imports, besides causing more CO2 emissions. The government of India wants to achieve the climate goals through a sustainability approach that simultaneously addresses other environment and developmental challenges. This paper analyses a sustainable low carbon transport (SLCT) scenario based...

  15. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejia, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M.

    2011-01-01

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  16. Causes of the fissure formation with shrinkage of metal on low carbon steel slabs

    International Nuclear Information System (INIS)

    Ksenzuk, F.A.; Khudas, A.L.; Zelenskaya, D.P.

    1977-01-01

    The causes have been investigated underlying the formation of fissures with spread of metal on low-carbon steel slabs during hot rolling. Metallographic investigations of templates from various sections of work pieces from 15-ton ingots of 08 ps (kp) steels have indicated that the fissures on the slabs are formed after the metal spreads along the small plane and the work piece thins out in the course of rolling because of the opening of large thin-walled honeycomb bubbles. The phenomenon was confirmed schematically on a model in the form of a slab-shaped lead specimen with longitudinal hole of a variable diameter close to one of the edges

  17. Substructural evolution during cyclic torsion of drawn low carbon steel bars

    International Nuclear Information System (INIS)

    Correa, E.C.S.; Aguilar, M.T.P.; Monteiro, W.A.; Cetlin, P.R.

    2006-01-01

    Strain softening effects have been previously observed in drawn low carbon steel bars as a result of cyclic torsion experiments. In this paper, the substructural aspects related to the phenomenon have been investigated. Single pass drawn bars were subjected to a quarter, to a half, to a full torsion cycle and to 10 such cycles. Transmission electron microscopy revealed the development of extended microbands crossing the former dislocation arrangement of the drawn metal, which evolves to a rectangular shaped subgrains structure as torsion deformation is conducted

  18. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Bedolla-Jacuinde, A.; Maldonado, C. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metal.lurgica, ETSEIB - Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. de las Bases de Manresa 1, 08240 Manresa (Spain)

    2011-05-25

    Research highlights: {yields} Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. {yields} Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. {yields} Hot ductility improvement is associated with segregation/precipitation of boron. {yields} Typical hot ductility recovery at lower temperatures does not appear in this steel. {yields} Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s{sup -1}. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of

  19. The Strategy of Creating a Virtual Interactive Platform for the Low-Carbon Open Innovations Relay

    OpenAIRE

    Mykola S. Shestavin

    2013-01-01

    A strategy for the creation of a Virtual Interactive Platform (or Networking Platform) to combine the four web-baseness of expert systems on the transfer and diffusion of low-carbon technologies. It used the concept of “Open Innovation” and “Triple Helix” with regard to theories of “Green Growth” and “Carbon Footprint”. Interpreters expert systems operate on the basis of models of the “Predator-Prey” for the process of transfer and diffusion of technologies, taking into account the features c...

  20. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  1. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    OpenAIRE

    Carreño, J. A.; Uribe, I.; Carrillo, J. C.

    2003-01-01

    A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in t...

  2. Energy outlook to 2035 in Asia and its pathways towards a low carbon energy system

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Ryoichi

    2010-09-15

    This report analyzes energy outlook in Asia and the world to 2035. In Technologically Advanced Scenario, advanced low-carbon technology yields, in 2035, 2,305 Mtoe or 14% of the saving in world primary energy demand and 12.3 Gt or 30% of the reduction in global CO2 emissions compared with the Reference Scenario. In these savings, Asia will account for 58% in the world primary energy reduction and 55% of the world CO2 mitigation, emphasizing immense potential of energy and CO2 saving in Asia and the importance of the deployment of clean energy technology through technology transfer to Asian region.

  3. Effect of quenching techniques on the mechanical properties of low carbon structural steel

    Directory of Open Access Journals (Sweden)

    K. Miernik

    2010-07-01

    Full Text Available The paper presents the results of the impact of incomplete quenching technique on the mechanical properties of low carbon structural steel.Significant influence of the heating method to the α + γ field was observed on the strength and plasticity after hardening process. The best combination of mechanical properties was obtained for the 3th technique consisting of pre-heating the material to the austenite field, next cooling to the appropriate temperature in the α + γ and hardening from that dual phase region. The high level of toughness with relatively high strength were observed, compared to the properties obtained for the two other ways to quench annealing (incomplete hardening.

  4. Pathways of low carbon transition at the lowest cost. Pathways of low carbon transition in France at the lowest cost - Dynamics and average abatement costs (MACC)

    International Nuclear Information System (INIS)

    Perrissin Fabert, Baptiste; Foussard, Alexis

    2016-11-01

    The objective to divide greenhouse gas emissions in France by a factor four by 2050 implies the mobilisation at the lowest cost of the whole set of known sources of reduction of emissions in all economic sectors. In this context, this report is based on a methodology (D-CAM in French for dynamics - average abatement costs, MACC in English for Medium Abatement Cost Curves) which relies on a theoretical business-as-usual scenario, on a database on the potential, rate of development, and cost of mobilizable sources, and on a dynamic model of cost minimisation. The MACC tool is used to explore, for each sector, scenarios of de-carbonation which allow objectives of reduction of greenhouse gas emissions to be reached at different time horizons. An aggregated approach of this tool modifies the distribution of efforts of emission reduction between sectors with respect to a sector-based approach. Thus, a macro-assessment of low carbon transition does not reveal any obvious over-cost with respect to the business-as-usual scenario. A second document is a Power Point presentation which contains the same information, curves and graphs

  5. The transition of Germany's energy production, green economy, low-carbon economy, socio-environmental conflicts, and equitable society

    OpenAIRE

    Weber, Gabriel; Cabras, Ignazio

    2017-01-01

    Low carbon transitions have been predominantly analysed using quantitative methods, mostly building on present and forecasted data of social metabolism. This paper addresses both the economic and social dimensions of low carbon emissions by analysing the presence of socio-environmental conflicts in Germany. These conflicts appear to be a consequence of unsustainable policies targeting firms' planning and behaviour, mainly based on neoclassical economic thinking and various stakeholder groups ...

  6. Media and carbon literacy: shaping opportunities for cognitive engagement with low carbon transition in Irish media 2000-2013

    OpenAIRE

    McNally, Brenda

    2015-01-01

    This paper sheds light on the challenges facing communication praxis for transition by reporting on an exploratory, thematic analysis of media reports about reducing carbon emissions. It maps the deployment of ideas about the rationale and multi-faceted processes for moving to a low carbon society in the Irish press. The aim is to show whether and how media reports prioritize or marginalize specific conceptualizations of low carbon transition and decarbonisation. The findings shed light on th...

  7. Barriers to the Transfer of Low-carbon Electricity Generation Technologies in Four Latin American Countries

    DEFF Research Database (Denmark)

    Desgain, Denis DR; Haselip, James Arthur

    2015-01-01

    This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low-carbon ene......This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low......-carbon energy technologies. While many electricity markets in Latin America were liberalized during the 1990s and 2000s, such market-driven reform policies were far from uniform and in reality there exist a diversity of governance frameworks for national electricity markets, exemplified here by Argentina, Cuba...... to the debate about the relationship between financial and economic barriers to technology transfer and electricity market structures, based on a new round of country-driven priorities and analysis, in support of the UNFCCC process on climate change mitigation....

  8. Policy delivery for low carbon energy infrastructure in the UK, april 5th 2013: Conference overview

    International Nuclear Information System (INIS)

    Heffron, Raphael J.; Johnston, Angus; McCauley, Darren; Jenkins, Kirsten

    2013-01-01

    The ambition of this conference was to deliver a first examination of how policy is delivered in the context of low-carbon energy infrastructure in the UK. The UK has been developing policy in this area since 2002 (Heffron, 2013). Finally, as the decade passed, in November 2012 an Energy Bill was put before the UK Parliament. One of the chief purposes of this Energy Bill is to establish the right environment for new electricity generation infrastructure in the low-carbon sector. There is significant debate on how this will be achieved and, indeed, whether this piece of legislation will actually deliver this outcome. This conference aimed to examine the dynamics of policy delivery. Throughout the day, there was entertaining discussion as a variety of conference presenters provided interesting contributions on how to deliver such policy goals. In total, there were twelve speakers throughout the day representing the UK (University of Oxford, Pinsent Masons Law Firm, University of Stirling, University of Dundee and University of Aberdeen), and also those who provided lessons from abroad from the University of Copenhagen, Central European University, Milieu Ltd., Pillsbury Law Firm (Washington DC, US) and the Conservation Law Foundation (MA, US)

  9. Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition

    Directory of Open Access Journals (Sweden)

    Mingxing Zhou

    2017-07-01

    Full Text Available Two low carbon carbide-free bainitic steels (with and without Cr addition were designed, and each steel was treated by two kinds of heat treatment procedure (austempering and continuous cooling. The effects of Cr addition on bainitic transformation, microstructure, and properties of low carbon bainitic steels were investigated by dilatometry, metallography, X-ray diffraction, and a tensile test. The results show that Cr addition hinders the isothermal bainitic transformation, and this effect is more significant at higher transformation temperatures. In addition, Cr addition increases the tensile strength and elongation simultaneously for austempering treatment at a lower temperature. However, when the austempering temperature is higher, the strength increases and the elongation obviously decreases by Cr addition, resulting in the decrease in the product of tensile strength and elongation. Meanwhile, the austempering temperature should be lower in Cr-added steel than that in Cr-free steel in order to obtain better comprehensive properties. Moreover, for the continuous cooling treatment in the present study, the product of tensile strength and elongation significantly decreases with Cr addition due to more amounts of martensite.

  10. Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C—or well below—through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, `energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget.

  11. intensifying and reorienting transfer of low carbon technologies for climate change prevention

    International Nuclear Information System (INIS)

    Pisani-Ferry, Jean; Monange, Herve; Gorges, Delphine; Senne, Valerie; Roulle, Jean-Michel

    2013-10-01

    The transfer of 'low carbon' technologies is crucial in order to moderate greenhouse gas (GHG) emissions by developing countries, which are set to rise significantly. Their implementation will determine the success of a global agreement on climate change in 2015, and this is the task of the Technology Mechanism, created in 2010. This policy brief sets out the principal results of a study commissioned from the Mines ParisTech Industrial Economics Centre (CERNA). The study shows that, unlike China, Mexico, South Africa and, to a lesser extent, Brazil, India is currently left out of international flows of low carbon technologies transfer - it is therefore a top priority, as is the rest of developing Asia, Africa and Eastern Europe. To intensify these transfers, ambitious greenhouse gas emissions reduction policies need to be implemented and absorptive capacities need to be created in countries that receive such technologies. In emerging countries, which possess a genuine capacity for innovation, and which are involved in international trade, the strengthening of intellectual property rights and the lowering of barriers to trade and investment are to be recommended. However, in the least developed countries, emphasis must be placed on technology absorptive capacities and in particular on the development of a qualified labour force

  12. The main problems faced Ukraine in case of low-carbon economy

    Directory of Open Access Journals (Sweden)

    Artemenko L. P.

    2015-05-01

    Full Text Available The article presents main thoughts covering the process of implementation of low-carbon economy principles in Ukraine, presented main problems towards this aim and proposes one of the main steps to be taken on this long-term way. In case of the damaged limit of the natural recourses to be developed in Ukraine nowadays (especially gas, oil, coil, etc., lost of competitive position on international market to be always placed by Ukrainian manufactories, disability to cut the value of carbon gases and then, as a result, disability to ensure Ukrainian obligations by the Kyoto protocol, Ukrainian Government needs to find better solution for solving the problems mentioned above. In this case we should take into account that the main part of these problems appeared in case of the low-carbon economy movement in the world. As we declare our desire to be next to the leaders countries, than we have to find solutions for our problems based on the main international best practices.

  13. Secure and Efficient Electricity Supply. During the Transition to Low Carbon Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Electricity shortages can paralyse our modern economies. All governments fear rolling black-outs and their economic consequences, especially in economies increasingly based on digital technologies. Over the last two decades, the development of markets for power has produced cost reduction, technological innovation, increased cross border trade and assured a steady supply of electricity. Now, IEA countries face the challenge of maintaining security of electricity supply during the transition to low-carbon economies. Low-carbon policies are pushing electricity markets into novel territories at a time when most of the generation and network capacity will have to be replaced. Most notably, wind and solar generation, now an integral part of electricity markets, can present new operating and investment challenges for generation, networks and the regional integration of electricity markets. In addition, the resilience of power systems facing more frequent natural disasters is also of increasing concern. IEA Ministers mandated the Secretariat to work on the Electricity Security Action Plan (ESAP), expanding to electricity the energy security mission of the IEA. This paper outlines the key conclusions and policy recommendations to ''keep the lights on'' while reducing CO2 emissions and increasing the efficiency.

  14. Simulation of a dynamical ecotourism system with low carbon activity: A case from western China.

    Science.gov (United States)

    He, Yuan; Huang, Ping; Xu, Hong

    2018-01-15

    Currently, sustainable tourism is becoming more and more important in developing ecological economies. To achieve low-carbon development, some industries, such as logistics and municipal solid waste, have already taken action, but tourism has not attached sufficient importance to this issue. This paper designs an ecotourism system including tourism, carbon waste (solid waste and sewage), and ecology (water supply and green areas) to simulate low-carbon ecotourism through a quantitative approach. This paper explores the tourism system as well as some interactive factors and studies their quantitative relationship based on historical data. A feedback-loop dynamical system model is designed to simulate tourism, waste carbon, and ecology simultaneously. Finally, a case study applying the feedback-loop dynamical system model to Leshan City, a typical travel destination with colorful natural resources in western China, is conducted to indicate the development of ecotourism in an environmentally friendly economy, which verifies the positive effects of the model. Results show a coordinating upward tendency of tourism, solid waste carbon, and ecology from the dynamical model. When tourism increases, solid waste accumulation increases; however, the amount of sewage dumped directly into nature decreases sharply. After analysis of investment policy scenarios, the research indicates that more funds for sewage treatment will attract more tourists. To maintain the equilibrium of carbon waste, more funds shall be invested in solid waste treatment in the long term. Some discussions about local policy are included. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Greenhouse Gas Emission Accounting and Management of Low-Carbon Community

    Directory of Open Access Journals (Sweden)

    Dan Song

    2012-01-01

    Full Text Available As the major source of greenhouse gas (GHG emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO2 emissions mitigation at a subcity level. Based on life-cycle analysis (LCA, a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water, and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO2 emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities.

  16. Energy at the Frontier: Low Carbon Energy System Transitions and Innovation in Four Prime Mover Countries

    Science.gov (United States)

    Araujo, Kathleen M.

    All too often, discussion about the imperative to change national energy pathways revolves around long timescales and least cost economics of near-term energy alternatives. While both elements certainly matter, they don't fully reflect what can drive such development trajectories. This study explores national energy transitions by examining ways in which four prime mover countries of low carbon energy technology shifted away from fossil fuels, following the first global oil crisis of 1973. The research analyzes the role of readiness, sectoral contributions and adaptive policy in the scale-up and innovations of advanced, alternative energy technologies. Cases of Brazilian biofuels, Danish wind power, French nuclear power and Icelandic geothermal energy are analyzed for a period of four decades. Fundamentally, the research finds that significant change can occur in under 15 years; that technology complexity need not necessarily impede change; and that countries of different governance approaches and consumption levels can effectuate such transitions. This research also underscores that low carbon energy technologies may be adopted before they are competitive and then become competitive in the process. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  17. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  18. Joint Decisions on Emission Reduction and Inventory Replenishment with Overconfidence and Low-Carbon Preference

    Directory of Open Access Journals (Sweden)

    Shoufeng Ji

    2018-04-01

    Full Text Available This paper presents a game-theoretical analysis of joint decisions on carbon emission reduction and inventory replenishment with overconfidence and consumer’s low-carbon preference for key supply chain players when facing effort-dependent demand. We consider respectively the overconfidence of a supplier who overestimates the impacts of his emission reduction efforts on product demand and the overconfidence of a retailer who underestimates the variability of the stochastic demand. We find, surprisingly, that the supplier’s overconfidence can mitigate “double marginalization” but hurt self-profit, while the retailer’s overconfidence can be an irrelevant factor for self-profit. The retailer aiming at short-term trading should actively seek an overconfident supplier, while the supplier should actively seek a rational retailer for whom the critical fractile is more than 0.5, whereas for an overconfident retailer, the critical fractile is less than or equal to 0.5. The study also underlines the effect of regulation parameters as an important contextual factor influencing low-carbon operations.

  19. Market influence on the low carbon energy refurbishment of existing multi-residential buildings

    International Nuclear Information System (INIS)

    Atkinson, Jonathan G.B.; Jackson, Tim; Mullings-Smith, Elizabeth

    2009-01-01

    This paper explores the relationship between the energy market; the political and regulatory context; and energy design decisions for existing multi-residential buildings, to determine what form the energy market landscape would take if tailored to encourage low carbon solutions. The links between market dynamics, Government strategies, and building designs are mapped to understand the steps that achieve carbon reduction from building operation. This is achieved using a model that takes financial and energy components with market and design variables to provide net present cost and annual carbon outputs. The financial component applies discounted cash flow analysis over the building lifespan, with discount rates reflecting contractual characteristics; the carbon component uses Standard Assessment Procedure (SAP) 2005. A scenario approach is adopted to test alternative strategies selected to encourage low carbon solutions in two residential and two office designs. The results show that the forward assumption of energy price escalation is the most influential factor on energy investment, together with the expected differentiation between the escalation of gas and electricity prices. Using this, and other influencing factors, the research reveals trends and strategies that will achieve mainstream application of energy efficiency and microgeneration technologies, and reduce carbon emissions in the existing multi-residential sector.

  20. Transport and low-carbon fuel: A study of public preferences in Spain

    International Nuclear Information System (INIS)

    Loureiro, Maria L.; Labandeira, Xavier; Hanemann, Michael

    2013-01-01

    Transport is essential for the control of future greenhouse gas (GHG) emissions and thus a target for active policy intervention in the future. Yet, social preferences for policies are likely to play an important role. In this paper we first review the existing literature on preferences regarding low-GHG car fuels, but also covering policy instruments and strategies in this area. We then present the results of a survey of Spanish households aimed at measuring preferences for climate change policies. We find a positive willingness to pay (WTP) (in the form of higher car fuel prices) for a policy to reduce GHG emissions through biofuels. There is, however, significant heterogeneity in public preferences due to personal motivations (accounted for via factor analysis of responses to attitudinal questions) and to socio-demographic variables. - Highlights: • Road transport is the cause of important energy-related problems, particularly the emission of greenhouse gases and local pollution. • This paper explores public attitudes and preferences towards low-carbon fuel policies in Spain via contingent valuation. • A factor analysis is performed, showing the existence of pro-social and economic factors related to preferences for policies. • Drivers were willing to pay an extra of 115.5 Euros per year for low-carbon fuels, roughly an extra 0.07 (0.08) Euros/liter for gasoline (diesel). • The results encourage the use of these low-GHG policies as feasible alternatives for climate policies in the transport area

  1. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  2. Engaging the public with low-carbon energy technologies: Results from a Scottish large group process

    International Nuclear Information System (INIS)

    Howell, Rhys; Shackley, Simon; Mabon, Leslie; Ashworth, Peta; Jeanneret, Talia

    2014-01-01

    This paper presents the results of a large group process conducted in Edinburgh, Scotland investigating public perceptions of climate change and low-carbon energy technologies, specifically carbon dioxide capture and storage (CCS). The quantitative and qualitative results reported show that the participants were broadly supportive of efforts to reduce carbon dioxide emissions, and that there is an expressed preference for renewable energy technologies to be employed to achieve this. CCS was considered in detail during the research due to its climate mitigation potential; results show that the workshop participants were cautious about its deployment. The paper discusses a number of interrelated factors which appear to influence perceptions of CCS; factors such as the perceived costs and benefits of the technology, and people's personal values and trust in others all impacted upon participants’ attitudes towards the technology. The paper thus argues for the need to provide the public with broad-based, balanced and trustworthy information when discussing CCS, and to take seriously the full range of factors that influence public perceptions of low-carbon technologies. - Highlights: • We report the results of a Scottish large group workshop on energy technologies. • There is strong public support for renewable energy and mixed opinions towards CCS. • The workshop was successful in initiating discussion around climate change and energy technologies. • Issues of trust, uncertainty, costs, benefits, values and emotions all inform public perceptions. • Need to take seriously the full range of factors that inform perceptions

  3. Corrosion Inhibition of Cold-rolled Low Carbon Steel with Pulse Fiber Laser Ablation in Water

    Science.gov (United States)

    Chan, Sze Ney; Wong, Wai Yin; Walvekar, Rashmi; Kadhum, Abdul Amir H.; Khalid, Mohammad; Lim, Kean Long

    2018-04-01

    This study aims at the use of a fiber laser for modifying the surface properties of cold-rolled low carbon steel via a pulse laser ablation technique in water. The effect on the corrosion behavior of the fiber laser-treated metal surface was investigated in NaCl and HCl environments. Electrochemical tests showed significant improvement in the corrosion resistance of the laser-treated sample in NaCl, with an increase in open-circuit potential (OCP) from - 0.65 to - 0.60 V and an inhibition efficiency of 89.22% as obtained from the impedance study. Such improvement was less significant in an acidic environment. Lower corrosion rates of 20.9 mpy and 5.819 × 103 mpy were obtained for the laser-treated samples in neutral and acidic electrolytes, respectively, than the corrosion rates obtained for the as-received samples (33.2 mpy and 11.98 × 103 mpy). Morphological analysis indicated a passive film built by spherical grains of regular size on the metal surface after laser treatment. The corrosion inhibition effects in NaCl were evident by the nonexistence of the common corrosion products of lepidocrocite and crystalline structures that were seen on as-received samples; only polyhedral crystals with micrograins grown on them were seen covering the laser-treated surface. Therefore, the laser treatment using a fiber laser source improved the corrosion resistance of cold-rolled low carbon steel.

  4. Upstream-Downstream Joint Carbon Reduction Strategies Based on Low-Carbon Promotion

    Directory of Open Access Journals (Sweden)

    Xiqiang Xia

    2018-06-01

    Full Text Available A differential game model is established to analyze the impact of emissions reduction efforts and low-carbon product promotion on the reduction strategies of low-carbon product manufacturers (subsequently referred to as manufacturers and the retailers of such products in a dynamic environment. Based on this model, changes in emissions reduction efforts and promotional efforts are comparatively analyzed under three scenarios (retailers bearing the promotional cost, manufacturers bearing the promotional cost, and centralized decision-making. The results are as follows: (1 the trajectory of carbon emissions reduction per product unit is the highest when the supply chain is under centralized decision-making, followed by when manufacturers bear the promotional cost, and lastly when retailers bear the cost; (2 when manufacturers bear the promotional cost, the market demand, emissions reduction effort, and promotional effort are higher, although the unit retail price is higher than when retailers bear the promotional cost; and (3 under centralized decision-making, the unit retail price is the lowest; however, sales volume, the emissions reduction effort, and the promotional effort are all higher than those in the other scenarios.

  5. The Geography of Solar Photovoltaics (PV and a New Low Carbon Urban Transition Theory

    Directory of Open Access Journals (Sweden)

    Peter Newton

    2013-06-01

    Full Text Available This paper examines the early phases of a 21st century energy transition that involves distributed generation technologies employing low or zero carbon emission power sources and their take-up within Australia, with particular reference to the major cities and solar photovoltaics (PV. This transition is occurring in a nation with significant path dependency to overcome in relation to fossil fuel use. Tracking the diffusion of solar PV technology within Australia over the past decade provides a basis for assessing those factors underpinning its exponential growth and its associated geography of diffusion. Positive evidence that there are pathways for cities to decarbonise is apparent but there appear to be different pathways for different city forms with lower density suburban areas showing the biggest take-up of household-based energy technologies. This suggests a model for the low carbon urban transition involving combinations of simple technological changes and harder structural changes, depending upon which parts of the urban fabric are in focus. This is being called a New Low Carbon Urban Transition Theory.

  6. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  7. Green certification, e-commerce, and low-carbon economy for international tourist hotels.

    Science.gov (United States)

    Chen, Long-Fei

    2018-05-22

    Increasing population and over-consumption are placing unprecedented demands on agriculture and natural resources. The Earth is suffering from global warning and environmental destruction while our agricultural systems are concurrently degrading land, water, biodiversity, and climate on a global scale. For a sustainable future, green certification, e-commerce, and environment education can boost low-carbon economy with decreasing carbon emissions, but very few researches address them for the hotel industry. This research studies the performance impact of e-commerce, international hotel chain, local hotel chain, and green certification for carbon emission reductions of international tourist hotels of Taiwan. It reveals that, after a sufficiently long time, there is an improvement in the environmental and economic performance of the green-certified hotel group. In addition, it reveals that, as recommended by the operation policy, the international hotel chain group together with e-commerce has better performance than local hotel chain. It is also discussed how to sustain the continuing improvement in low-carbon performance of the hotel industry.

  8. Climate Change in Central and West Asia. Routes to a More Secure, Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    ADB's Central and West Asian countries are Afghanistan, Armenia, Azerbaijan, Georgia, Kazakhstan, the Kyrgyz Republic, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan. Geoclimatic and environmental factors make this region highly vulnerable to the risks and hazards of climate change. For example, accelerated glacial melt has serious implications for agriculture, water supply, and energy generation - problems exacerbated by overexploitation of natural resources. Countries may find it difficult to shift to low-carbon growth, since many have abundant fossil fuel and tend to use energy inefficiently. ADB is responding to these climate hazards and low-carbon pathways with a comprehensive strategy that strengthens policies, governance, and capacity support; expands the use of clean and renewable energy; encourages sustainable transport and urban development; promotes development that will be more resilient to climate change, especially in water-dependent sectors; and manages land use and forests for carbon sequestration. ADB's support is helping its developing member countries face the challenges of climate change and, with partners, is providing innovative solutions, while continuing to work to reduce poverty.

  9. Low-carbon communities as a context for individual behavioural change

    International Nuclear Information System (INIS)

    Heiskanen, Eva; Johnson, Mikael; Robinson, Simon; Vadovics, Edina; Saastamoinen, Mika

    2010-01-01

    Previous attempts to change energy-related behaviour were targeted at individuals as consumers of energy. Recent literature has suggested that more focus should be placed on the community level and that energy users should be engaged in the role of citizens, and not only that of consumers. This article analyses different types of emerging low-carbon communities as a context for individual behavioural change. The focus is on how these communities offer solutions to problems in previous attempts to change individual behaviour. These problems include social dilemmas, social conventions, socio-technical infrastructures and the helplessness of individuals. Different community types are examined, including geographical communities as well as sector-based, interest-based and smart mob communities. Through four case studies representing each of these community types, we examine how different communities reframe problems on the individual level to reduce carbon emissions. On the basis of an analysis of the strengths and weaknesses of various community solutions, implications are drawn for further research and for the design and support of low-carbon communities.

  10. Failure prediction of low-carbon steel pressure vessel and cylindrical models

    International Nuclear Information System (INIS)

    Zhang, K.D.; Wang, W.

    1987-01-01

    The failure loads predicted by failure assessment methods (namely the net-section stress criterion; the EPRI engineering approach for elastic-plastic analysis; the CEGB failure assessment route; the modified R6 curve by Milne for strain hardening; and the failure assessment curve based on J estimation by Ainsworth) have been compared with burst test results on externally, axially sharp notched pressure vessel and open-ended cylinder models made from typical low-carbon steel St45 seamless tube which has a transverse true stress-strain curve of straight-line and parabola type and a high value of ultimate strength to yield. It was concluded from the comparison that whilst the net-section stress criterion and the CEGB route did not give conservative predictions, Milne's modified curve did give a conservative and good prediction; Ainsworth's curve gave a fairly conservative prediction; and EPRI solutions also could conditionally give a good prediction but the conditions are still somewhat uncertain. It is suggested that Milne's modified R6 curve is used in failure assessment of low-carbon steel pressure vessels. (author)

  11. The hot working characteristics of a boron bearing and a conventional low carbon steel

    International Nuclear Information System (INIS)

    Stumpf, Waldo; Banks, Kevin

    2006-01-01

    Constitutive hot working constants were determined for an 11 ppm boron low carbon strip steel and compared from 875 to 1140 deg. C and strain rates of 0.001-2.5 s -1 to a high nitrogen low carbon strip steel. The boron steel showed a different hot working behaviour than the conventional steel with the steady state flow stress about 50-60% higher, the peak strain more than 50% higher and the eventual ferrite grain size about 40% smaller, if compared at the same temperature compensated strain rates or Z values. This difference persisted where the soaking temperature before compression was varied between 1140 and 1250 deg. C, proving that undissolved AlN in the boron-bearing steel was not responsible. With systematically varied linear cooling rates after hot working, the final ferrite grain size in the boron steel is finer and is independent of the two Z values applied during hot working. Retarded softening by dynamic recrystallisation during hot working in the boron containing steel is probably caused by boron solute drag of moving grain boundaries

  12. The Location-Routing Problem with Full Truckloads in Low-Carbon Supply Chain Network Designing

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2018-01-01

    Full Text Available In recent years, low-carbon supply chain network design has been the focus of studies as the development of low-carbon economy. The location-routing problem with full truckloads (LRPFT is investigated in this paper, which extends the existing studies on the LRP to full truckloads problem within the regional many-to-many raw material supply network. A mathematical model with dual objectives of minimizing total cost and environmental effects simultaneously is developed to determine the number and locations of facilities and optimize the flows among different kinds of nodes and routes of trucks as well. A novel multiobjective hybrid approach named NSGA-II-TS is proposed by combining a known multiobjective algorithm, NSGA-II, and a known heuristics, Tabu Search (TS. A chromosome presentation based on natural number and modified partially mapping crossover operator for the LRPFT are designed. Finally, the computational effectiveness of the hybrid approach is validated by the numerical results and a practical case study is applied to demonstrate the tradeoff between total cost and CO2 emission in the LRPFT.

  13. Transforming cities towards sustainable low-carbon energy systems using emergy synthesis for support in decision making

    International Nuclear Information System (INIS)

    Lugaric, Luka; Krajcar, Slavko

    2016-01-01

    Recognized as implementation actors of operative measures for transition towards a low carbon economy, cities must establish a development roadmap integrating local resources with local energy development plans. A systematic approach does not exist yet and cities develop their plans individually, which is difficult for small and medium sized cities due to limited development capacities. Conventional city planning approaches do not integrate considerations on energy, economy and environment in transition plans in an easily comparable way, yet making decisions with regards to these parameters is vital to determine outcomes of planned developments on future sustainability of the city. The paper presents a framework model based on emergy synthesis which integrates energy, economic and environmental city systems in the decision making process, examining associated theoretical challenges and application limitations. The method is applied on the city of Sisak in Croatia which has developed plans to implement several initiatives geared towards creating a smart energy city. The model enables simulation and assessment of impacts of individual projects targeting the development of a smart energy city on city sustainability expressed through emergy performance, used as a tool for evaluating local development alternatives within the boundary of local resources. - Highlights: • Key concepts of present city development trends towards sustainability are examined. • Emergy synthesis is examined and applied as a tool for policy and decision makers. • Emergy model of a small city is developed, along with submodels for renewable energy sources and buildings. • Simulation of 5 different projects shows impacts on overall city sustainability in a comparable manner. • Increase in emergy sustainability index is confirmed after presumed implementation of simulated projects.

  14. National trajectories of carbon emissions: analysis of proposals to foster the transition to low-carbon economies

    International Nuclear Information System (INIS)

    Kinzig, A.P.; Kammen, D.M.

    1998-01-01

    In this paper we develop a framework for analyzing carbon dioxide (CO 2 ) emissions trajectories from the energy and industrial sectors of the world's nations under various policy options. A robust conclusion of our analysis is that early action by both developed and developing nations will be required to hold atmospheric CO 2 at or below doubled pre-industrial levels and incentives for renewed investments in energy-sector technologies are a required component of early action. We therefore develop and examine an international emissions regime that: (a) in the short-term 'jump starts' the political and project-implementation process by providing incentives to exploit profitable or low-cost carbon reduction opportunities; (b) in the near- and medium-term addresses the inequities resulting from historic imbalances in greenhouse-gas emissions while promoting efficient pathways for carbon reduction; and (c) in the long-term recognizes the equal rights of individuals to exploit the services of the atmosphere and pursue a reasonable standard of living in a low-carbon economy. We present and analyze a proposal to promote near-term activity in carbon reduction and energy innovation through a revitalized program of international joint implementation (JI) projects for carbon emissions reduction or carbon sequestration projects. Under our proposal, JI partner nations both receive full credit for carbon reductions that can be 'banked' and applied at a later date toward national emissions quotas in the climate convention. A finite program lifetime provides further impetus counting' of credits results in only modest additional cumulative carbon emissions relative to a similar scenario without cooperative partnerships. This 'JI banking' plan promotes critically needed scientific and institutional experience and innovation, initiates cost-effective carbon reductions, and provides vital national flexibility in meeting eventual targets. (author)

  15. Corrosion of low-carbon steel under environmental conditions at Hanford: Two-year soil corrosion test results

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Divine, J.R.

    1995-11-01

    At the Hanford Site, located in southeastern Washington state, nuclear production reactors were operated from 1944 to 1970. The handling and processing of radioactive nuclear fuels produced a large volume of low-level nuclear wastes, chemical wastes, and a combination of the two (mixed wastes). These materials have historically been packaged in US Department of Transportation (DOT) approved drums made from low-carbon steel, then handled in one of three ways: (A) Before 1970, the drums were buried in the dry desert soil. It was assumed that chemical and radionuclide mobility would be low and that the isolated, government-owned site would provide sufficient protection for employees and the public. (B) After 1970, the drums containing long-lived transuranic radionuclides were protected from premature failure by stacking them in an ordered array on an asphalt concrete pad in the bottom of a burial trench. The array was then covered with a large, 0.28-mm- (011-in.-) thick polyethylene tarp and the trench was backfilled with 1.3 m (4 ft) of soil cover. This burial method is referred to as soil-shielded burial . Other configurations were also employed but the soil-shielded burial method contains most of the transuranic drums. (C) Since 1987, US Department of Energy sites have complied with the Resource Conservation and Recovery Act of 1976 (RCRA) regulations. These regulations require mixed waste drums to be stored in RCRA compliant large metal sheds with provisions for monitoring. These sheds are provided with forced ventilation but are not heated or cooled

  16. The EU's roadmap to a low-carbon economy. Aspirations and realities for refiners

    Energy Technology Data Exchange (ETDEWEB)

    Lichtscheidl, Josef; Buchsbaum, Alexander; Maly, Markus [OMV Refining and Marketing GmbH, Vienna (Austria)

    2013-06-15

    We live in a fast moving world, and energy is of one the main agents of change. Prosperity is closely linked to the use of affordable energy for consumers and companies. Global energy demand has risen by almost 50% in the past 20 years and is forecast to continue to grow rapidly [1]. Experts warn of soaring CO2 emissions - a negative effect of fossil fuels. The Intergovernmental Panel on Climate Change (IPCC) publishes regular Assessment Reports on global warming which include policy recommendations. The political target is clear - to replace fossil fuels with renewables, and do it quick. The EU has decided to aim for world leadership, and has adopted a road map for moving to a low-carbon economy by 2050. However, it should be emphasised that international agreements hold the key both to successfully combating globalwarming and to maintaining the competitiveness of European industry. The refining industry must respond to this challenge. After the early years of expansion and prosperity (up to the mid-1980s), and a mid-life phase of fierce competition and continuous improvement, refiners now looking ahead to a period of painful consolidation. According to expert opinion European refining capacity needs to be pruned by about 20% in the near future and another 20% by 2030. About 35% of all European refineries have changed hands or shut down in the past four years. Bad news for European refiners also comes from the USA, which is transmuting from a large importer of oil products - especially gasoline - into a net exporter. Where can Europe find markets for its surplus gasoline? Converting European refineries to maximise diesel production will cost a lot of money - perhaps more than it will bring in, at today's depressed margins. (orig.)

  17. Evaluating the efficacy of the ‘Support for Life’ program for people with dementia and their families and carers’ to enable them to live well: A protocol for a cluster stepped wedge randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Dianne Patricia Goeman

    2016-10-01

    Full Text Available Assistance provided to support people living with dementia and carers is highly valued by them. However current support systems in Australia are disjointed, inaccessible to all, poorly co-ordinated and focus on dysfunction rather than ability. Support workers are in short supply and there is little consistency in their roles. To address this large service gap and unmet need we have developed an evidence-based optimised model of holistic support for people with dementia and their carers and families. This article describes the ‘Support for Life’ model intervention. A stepped wedge cluster randomized controlled trial (SWCRCT will be conducted over three years across three Australian states. One hundred participants with dementia and/or their carers/family members will be randomly selected from community health centre client lists in each state to receive either the dementia ‘Support for Life’ intervention (Group A or routine care (Group B. Group A participants will have access to the intervention from year one. Group B participants will continue to receive usual care and will not be denied information on dementia or dementia services in year one. In year two Group B participants will have access to the intervention. A highly trained expert dementia support worker will provide the ‘Support for Life’ intervention, which is a flexible, individually tailored, holistic support that is relationship-centred, focused on enablement as opposed to dysfunction and facilitate participants continued engagement in their community and the workforce. Additionally, dementia education, information resources, advocacy and practical support to navigate and access dementia services and healthcare will be provided. The mode of support will include face to face, telephone and internet, interaction on an ‘as needed basis’ for 12 months. The primary hypothesis is that the intervention will improve the quality of life of people with dementia and the health

  18. Kenya's Climate Change Action Plan. Low Carbon Climate Resilient Development Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, D.; Sawyer, D.; Stiebert, S.; McFatridge, S. [International Institute for Sustainable Development IISD, Winnipeg, Manitoba (Canada); Wuertenberger, L.; Van Tilburg, X.; Hekkenberg, M. [Energy research Centre of the Netherlands ECN, Policy Studies, Amsterdam (Netherlands); Owino, T.; Battye, W. [ClimateCare, Nairobi (Kenya); Mutia, T. [Regional Institute for Social Enterprise Kenya RISE, Nairobi (Kenya); Olum, P. [Climate Change Consultant (Kenya)

    2012-12-15

    Kenya Vision 2030 - the long-term development blueprint for the country - aims to transform Kenya into 'a newly industrialising, middle-income country providing a high quality of life to all its citizens in a clean and secure environment'. A low carbon climate resilient development pathway, as set out in this Climate Change Action Plan, can help meet Vision 2030 goals through actions that address both sustainable development and climate change. This pathway can also help the Government achieve the Millennium Development Goals and other internationally agreed development goals without compromising the environment and its natural resources. As Kenya realizes its development aspirations, there will be gains and risks. A growing population and economy with migration to cities will mean increases in greenhouse gas (GHG) emissions. Resulting environmental and social conditions, including increased competition over resources, could intensify vulnerability to climate risks. Transitioning to a low carbon climate resilient development pathway can address future risks thereby improving Kenya's ability to prosper under a changing climate while reducing the emissions intensity of a growing economy. Moving forward on the 2010 National Climate Change Response Strategy will help Kenya transition to a low carbon climate resilient development pathway that puts people and livelihoods at the forefront. The strategy recognized the importance of climate change and development, and this Climate Change Action Plan is the logical next step. A yearlong multistakeholder participatory process involving the public sector, private sector and civil society resulted in this Action Plan that identifies priority climate change actions for Kenya for the short, medium and long term. The Government of Kenya takes climate change and its impact on development seriously. Climate change is considered a crosscutting issue that will be mainstreamed in the planning process both at the national

  19. Propositions of public policy measures for a low-carbon scenario. Study synthesis

    International Nuclear Information System (INIS)

    Vincent, Isabelle; Bodiguel, Aude; Callonnec, Gael; Ransquin, Johan; Marchal, David; Cheverry, Marc; Guermont-Bernardi, Catherine; Nauleau, Marie-Laure; Parrouffe, Jean-Michel; Mousset, Jerome; Bardinal, Marc; Marion, Roland; Gourdon, Thomas; Streiff, Frederic; Barbusse, Stephane; Dore, Nicolas; Sanna, Daniela; Eglin, Thomas; Cairey-Remonnay, Michel; Bastide, Guillaume; Paulou, Julien; Leblanc, Clement; Suaud, Charlotte; Cabanne, Isabelle; Doudnikoff, Marjorie; Vergez, Antonin; Domergue, Silvano; Fragnol, Ludovic; Brender, Pierre; Perrissin Fabert, Baptiste; Bringault, Anne; Jedliczka, Marc; Duffes, Thomas; Bureau, Dominique; Perrissin Fabert, Baptiste; Dumas, Gerald; Lepee, Jerome; Bailly, Boris; Sudries, Laura; Mairet, Nicolas; Remontet, Lucas; Correia, Leslie; Briand-Boucher, Vincent

    2017-08-01

    As three scenarios had been elaborated in view of the Paris COP21, this report more particularly addresses the third of them, i.e. the so-called AMS2 scenario which contains a set of additional measures, including those defined in the French law on energy transition for a green growth (LTECV). A first part analyses this scenario: objectives related to the residential sector, to the tertiary sector, to the transport sector, to the industrial sector, to the agriculture sector, and to the electric power sector, carbon component of consumption domestic taxes. The report then outlines that this adjusted version of the AMS2 scenario does not fit France's low carbon trajectory any longer, and thus needs additional measures. It discusses the assessment of greenhouse gas emission benefits, and identifies and discusses clusters of measures for the different sectors (residential, tertiary, transport, industrial, agriculture, energy)

  20. Nondestructive characterization of recovery and recrystallization in cold rolled low carbon steel by magnetic hysteresis loops

    International Nuclear Information System (INIS)

    Martinez-de-Guerenu, A.; Gurruchaga, K.; Arizti, F.

    2007-01-01

    How structure sensitive parameters derived from hysteresis loops can provide nondestructive information about the evolution of the microstructure of cold rolled low carbon steel as a result of recovery and recrystallization processes during the annealing is shown. The coercive field, remanent induction and hysteresis losses can be used to monitor the decrease in the dislocation density during recovery. These parameters are also influenced by the average grain refinement that takes place during recrystallization, which compensates the variation produced by the annihilation of dislocations during recrystallization. The maximum of the induction and of the relative differential permeability are shown to be very sensitive to the onset and to the monitoring of the recrystallization, respectively. The correlations between coercive field and remanent induction and hysteresis losses can also be used to distinguish between recovery and recrystallization

  1. A Group Decision Framework with Intuitionistic Preference Relations and Its Application to Low Carbon Supplier Selection.

    Science.gov (United States)

    Tong, Xiayu; Wang, Zhou-Jing

    2016-09-19

    This article develops a group decision framework with intuitionistic preference relations. An approach is first devised to rectify an inconsistent intuitionistic preference relation to derive an additive consistent one. A new aggregation operator, the so-called induced intuitionistic ordered weighted averaging (IIOWA) operator, is proposed to aggregate individual intuitionistic fuzzy judgments. By using the mean absolute deviation between the original and rectified intuitionistic preference relations as an order inducing variable, the rectified consistent intuitionistic preference relations are aggregated into a collective preference relation. This treatment is presumably able to assign different weights to different decision-makers' judgments based on the quality of their inputs (in terms of consistency of their original judgments). A solution procedure is then developed for tackling group decision problems with intuitionistic preference relations. A low carbon supplier selection case study is developed to illustrate how to apply the proposed decision model in practice.

  2. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Jun, H.J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kang, J.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Seo, D.H. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Kang, K.B. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Park, C.G. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)]. E-mail: cgpark@postech.ac.kr

    2006-04-25

    The continuous-cooling-transformation (CCT) diagram and continuous cooled microstructure were investigated for low carbon (0.05 wt.% C) high strength low alloy steels with/without boron. Microstructures observed in continuous cooled specimens were composed of pearlite, quasi-polygonal ferrite, granular bainite, acicular ferrite, bainitic ferrite, lower bainite, and martensite depending on cooling rate and transformation temperature. A rapid cooling rate depressed the formation of pearlite and quasi-polygonal ferrite, which resulted in higher hardness. However, hot deformation slightly increased transformation start temperature, and promoted the formation of pearlite and quasi-polygonal ferrite. Hot deformation also strongly promoted the acicular ferrite formation which did not form under non-deformation conditions. Small boron addition effectively reduced the formation of pearlite and quasi-polygonal ferrite and broadened the cooling rate region for bainitic ferrite and martensite.

  3. Our struggle for climate - a low carbon world with growth is possible

    International Nuclear Information System (INIS)

    Chalendar, Pierre-Andre de

    2015-01-01

    In order to avoid an irreversible climate catastrophe, and as the will and commitments of States are not enough, the mobilisation of companies and enterprises is essential. This book aims to show that enterprises, which have been for long considered as responsible of greenhouse gas emissions, are now at the forefront of the struggle against climate change. The author describes the various challenges faced by French companies regarding climate and the environment. He thinks that the world will always need more energy, more steel, more aluminium, more building materials, more cars, more chemistry, more machines, more tubes and cables. The solution is then a technological one to transform industrial activities for a low carbon or zero carbon and growing economy

  4. Experience with LEDS and NAMA Low Carbon Strategies: The Case of Georgia

    Directory of Open Access Journals (Sweden)

    Kakhaberi Mdivani

    2016-06-01

    Full Text Available Low Emission Development Strategies (LEDS and National Appropriate Mitigation Actions (NAMAs have the potential to support developing countries in attaining low carbon goals. In spite of the evident potential, there is a need to learn from practice. This paper explores the case of Georgia. The main research question discussed is: What experience has been gained with the development of LEDS and NAMAs in Georgia? The study reveals that both LEDS and NAMAs are subject to barriers that considerably slow development processes: there is a lack of institutional capacity, little inter-governmental goal alignment and poor coordination of actions, a lack of experienced staff and insufficient, substantial, earmarked funding. Capacity building depends on support from organizations in donor countries. This paper contributes to a growing body of knowledge of the implementation of LEDS and NAMA.

  5. Opportunities and challenges for innovation in the design of low-carbon energy technologies

    DEFF Research Database (Denmark)

    Bjarklev, Araceli; Kjær, Tyge; Andersen, Jan

    2012-01-01

    into account to be able to achieve efficient reductions of energy and CO2 emissions and at the same time design a product attractive for the consumer, in terms of price, level of service and aesthetical demands, to ensure its strategic implementation. This paper takes the Danish office lighting sector......-psychological aspects such as consumers’ demands (aesthetic disposition, habits and different light tastes and needs). This is done by integrating relevant elements from eco-innovation and Service –Product System frameworks. Our empirical material is based on iterative interviews with relevant actors and experts within......Though there is broad consensus that one of the solutions to the current environmental challenge will be based on the use of low-carbon technologies, and even though there is a big potential to turn to a more sustainable design and innovation, there are several elements that need to be taken...

  6. An Empirical Study on Transit-Oriented Low-Carbon Urban Land Use Planning

    DEFF Research Database (Denmark)

    Dou, Yi; Luo, Xiao; Dong, Liang

    2016-01-01

    Low-carbon urban development is a hot spot of global concerns for fighting against climate change for China, transportation sector has a significant contribution to urban CO2 emissions, while the emissions are still increasing. Transit-Oriented Development (TOD) strategies provide a novel approach...... for urban planners to facilitate the urban carbon mitigation from transportation sector in long-term. While TOD strategies are emerging cases, they are merely qualitatively discussed in China, lacking practical indicators and quantitative verification for supporting the real urban plan...... population and transportation accessibility with Geographic Weighted Regression model. Results highlight that TOD can effectively improve the transportation network with higher accessibility and lower urban carbon emissions. The outcomes of this study provide critical insights to the recent practice...

  7. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  8. Effect of Asymmetric Rolling on Plastic Anisotropy of Low Carbon Steels during Simple Shear Tests

    International Nuclear Information System (INIS)

    Gracio, J. J.; Vincze, G.; Panigrahi, B. B.; Kim, H. J.; Barlat, F.; Rauch, E. F.; Yoon, J. W.

    2010-01-01

    Simple shear tests are performed on low carbon steel pre-deformed in conventional, asymmetric and orthogonal-asymmetric rolling. The simple-shear tests were carried out at 0 deg. , 45 deg. and 135 deg. with respect to the previous rolling direction. For a reduction ratio of 15%, a transient stagnation in the hardening rate is observed at reloading for all changes in strain path. The shear stress level, the hardening rate and extent of the plateau appear to be insensitive to the preliminary applied rolling conditions. After a reduction ratio of 50%, plastic instability was detected at reloading for all the changes of strain path and rolling conditions studied. A specific heat treatment was then designed allowing the material to become ductile after rolling while retaining the fine microstructure and therefore the high strength. Promising results were obtained essentially for 45 deg. shear tests.

  9. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  10. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer

    International Nuclear Information System (INIS)

    Atasoy, Evren; Kahraman, Nizamettin

    2008-01-01

    Titanium and low carbon steel plates were joined through diffusion bonding using a silver interlayer at various temperatures for various diffusion times. In order to determine the strength of the resulting joints, tensile-shear tests and hardness tests were applied. Additionally, optical, scanning electron microscopy examinations and energy dispersive spectrometry elemental analyses were carried out to determine the interface properties of the joint. The work showed that the highest interface strength was obtained for the specimens joined at 850 deg. C for 90 min. It was seen from the hardness results that the highest hardness value was obtained for the interlayer material and the hardness values on the both sides of the interlayer decreased gradually as the distance from the joint increased. In energy dispersive spectrometry analyses, it was seen that the amount of silver in the interlayer decreased markedly depending on the temperature rise. In addition, increasing diffusion time also caused some slight decrease in the amount of silver

  11. The Investments in Renewable Energy Sources: Do Low Carbon Economies Better Invest in Green Technologies?

    Directory of Open Access Journals (Sweden)

    Antonio Angelo Romano

    2011-01-01

    Full Text Available The aim of this study is to analyse the driving of investment in renewable energy sources in low carbon and high carbon economies. To address these issues, a dynamic panel analysis of the renewable investment in a sample of 29 countries was proposed. Results demonstrate that the dynamic of investments in renewable sources is similar in the two panels, and depends by nuclear power generation, GDP and technological efficiency. Results show that countries try to reduce their environmental footprint, decreasing the CO2 intensity. Based on the estimation results, we think that energy sustainability passes through the use of renewable resources that can complement the nuclear technology on condition that both exceed their limits.

  12. An Evaluation of the Low-Carbon Effects of Urban Rail Based on Mode Shifts

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2017-03-01

    Full Text Available Urban rail is widely considered to be a form of low-carbon green transportation, but there is a lack of specific quantitative research to support this. By comparing the mode, distance, and corresponding energy consumption of residents before and after the opening of rail transit, this paper establishes a carbon reduction method for rail transit. A measurement model takes the passenger carbon emissions before the line is opened as the baseline and compares them with the standard after the opening, determining the carbon emissions reduction. The model requires a combination of a large amount of research data, transit smart card data, and GIS network measurement tools as measured data and parameters. The model is then applied to rail transit lines that have opened in Beijing in recent years. The emissions reductions of four different routes are estimated and the carbon emissions reduction effect of rail transit is evaluated.

  13. The kinetics of dynamic recrystallization of a low carbon vanadium-nitride microalloyed steel

    International Nuclear Information System (INIS)

    Zhao, Baochun; Zhao, Tan; Li, Guiyan; Lu, Qiang

    2014-01-01

    Single-pass compression tests were performed on a Gleeble-3800 thermo-mechanical simulator to study the dynamic recrystallization behavior of a low carbon vanadium-nitride microalloyed steel at the temperature in the range from 900 °C to 1050 °C and strain rate in the range from 0.1 s −1 to 10 s −1 . Based on the flow curves from the tests, the effects of temperature and strain rate on the dynamic recrystallization behavior were analyzed. With the assistance of the process parameters, constitutive equations were used to obtain the activation energy and hot working equation. The strain hardening rate versus stress curves were used to determine the critical stress (strain) or the peak stress (strain). The dependence of the characteristic values on Zener–Hollomon was found. The dynamic recrystallization kinetics model of the tested steel was constructed and the validity was confirmed based on the experimental results

  14. Tailoring the gradient ultrafine-grained structure in low-carbon steel during drawing with shear

    Directory of Open Access Journals (Sweden)

    G. I. Raab

    2016-04-01

    Full Text Available Conventional drawing and drawing with shear were conducted on the rods of low-carbon steel. Deformation by simple drawing forms basically a homogenous structure and leads to a uniform change in microhardness along the billet volume. A comparative analysis of the models of these processes showed that shear drawing of steel at room temperature reduces energy characteristics in half, normal forces on the die – by 1,8, and enhances the strain intensity from 0,5 to 1,6. During drawing with shear, strain-induced cementite dissolution occurs and a gradient structure is formed, which increases the microhardness of the surface layer up to values close to 7 000 MPa.

  15. Austenite reversion in low-carbon martensitic stainless steels – a CALPHAD-assisted review

    DEFF Research Database (Denmark)

    Niessen, Frank

    2018-01-01

    Low-carbon martensitic stainless steels with 11.5–16 wt-% Cr and martensite upon inter-critical annealing. The review treats...... the mechanisms governing the formation and stabilisation of reverted austenite and is assisted by the computation of phase equilibria. Literature data on Cr and Ni concentrations of the reverted austenite/martensite dual-phase microstructure are assessed with respect to predicted concentrations. Reasonable...... agreement was found for concentrations in martensite. Systematic excess of Cr in austenite of approx. 2 wt-% relative to calculations was suspected to originate from the growth of M23C6 with a coherent interface to austenite. Within large scatter, measured values of Ni in austenite were on average 2 wt...

  16. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.

    Science.gov (United States)

    Qiao, Jinli; Liu, Yuyu; Hong, Feng; Zhang, Jiujun

    2014-01-21

    This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO(-), CH2O, CH4, H2C2O4/HC2O4(-), C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution-electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.

  17. An X-ray diffraction study of corrosion products from low carbon steel

    International Nuclear Information System (INIS)

    Morales, A. L.

    2003-01-01

    It was found in earlier work a decrease in the corrosion rate from low carbon steel when it was subjected to the action of a combined pollutant concentration (SO 4 ''2-=10''-4 M+Cl=1.5x 10''-3 M). It was also found that large magnetic content of the rust was related to higher corrosion rates. In the present study corrosion products are further analyzed by means of X-ray diffraction to account for composition changes during the corrosion process. it is found that lepidocrocite and goethite are the dominant components for the short-term corrosion in all batches considered while for log-term corrosion lepidocrite and goethite dominates if the corrosion rates is low and magnetite dominates if the corrosion rate is high. The mechanism for decreasing the corrosion rate is related to the inhibition of magnetite production at this particular concentration. (Author) 15 refs

  18. Developing pathways to low carbon land-based passenger transport in Great Britain by 2050

    International Nuclear Information System (INIS)

    Bristow, Abigail L.; Tight, Miles; Pridmore, Alison; May, Anthony D.

    2008-01-01

    The key aim of this paper is to examine strategic pathways to low carbon personal transport in Britain and to compare these with the current trajectory of transport policy. A 2050 baseline was established using trend information, forecasts and best evidence from the literature on response to policy intervention. A range of strategies are tested including: technological development, pricing, public transport and soft measures. We conclude that even dramatic technological advance cannot meet the more stringent targets for carbon reduction in the absence of considerable behavioural change. The most promising combinations of measures involve clear price signals to encourage both a reduction in the use of motorised transport and the development and purchase of more efficient vehicles; decarbonisation of public transport and facilitating measures to enhance access whilst reducing the need for motorised travel

  19. Option of operating speed for vessels under low-carbon economy

    Directory of Open Access Journals (Sweden)

    Gang Li

    2013-03-01

    Full Text Available Purpose: To find out ships' optimum operating speed under low-carbon economy. Approach: First, it analyzes the relations between ship’s carbon emission and the operating speed, gets the optimum speed under which the entire fleet emit minimum carbon, then establishes the relations between the ship owner’s profit and the speed, extracts the speed under which the ship owner can gain the maximum profit and founds out it’s different from the speed under which the entire fleet emit minimum carbon. Findings: The government must take effective measures to make the ship owner slowdown and reduce emission. Originality: It first works out a balance point between the decrease of carbon emission brought by a lower operating speed and the increase of that caused by more vessels putting into service in a mathematical method.

  20. Climate policy and the optimal extraction of high- and low-carbon fossil fuels

    International Nuclear Information System (INIS)

    Smulders, S.; Van der Werf, E.

    2005-01-01

    We study how restricting CO2 emissions affects resource prices and depletion over time. We use a Hotelling-style model with two non- renewable fossil fuels that differ in their carbon content (e.g. coal and natural gas) and that are imperfect substitutes in final good production. We study both an unexpected constraint and an anticipated constraint. Both shocks induce intertemporal substitution of resource use. When emissions are unexpectedly restricted, it is cost-effective to use high-carbon resources relatively more (less) intensively on impact if this resource is relatively scarce (abundant). If the emission constraint is anticipated, it is cost-effective to use relatively more (less) of the low-carbon input before the constraint becomes binding, in order to conserve relatively more (less) of the high-carbon input for the period when climate policy is active in case the high-carbon resource is relatively scarce (abundant)

  1. Design and Macroeconomic Analysis of an 'Acceptable' Low-Carbon Scenario

    International Nuclear Information System (INIS)

    Bibas, Ruben; Mathy, Sandrine; Fink, Meike

    2016-01-01

    Two observations motivate our research: the lack of acceptability of climate policies and the deficit of credibility, legitimacy and ownership of low-carbon scenarios. Both constitute a barrier to decision-making and slow the energy transition. To overcome these limitations, we have scripted a scenario using a co-development method involving 30 stakeholders from civil society and the private and public sectors. Stakeholders contributed significantly to the methodology by requesting data transparency, sensitivity tests and the clarification of economic and financial impacts. We incorporated the set of policies regarded as acceptable into the Imaclim-R model. The resulting scenario cuts CO_2 emissions by 68 % in 2050, an outcome close to the 75 % reduction target. The measures are beneficial to employment and economic growth, except in the short term. These findings provide solid foundations to build acceptable decarbonization pathways

  2. Application of Moessbauer effect to the study of austenite retained in low carbon steels

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de; Silva, E.G. da

    1979-01-01

    Moessbauer effect measurements were performed in two samples of low carbon, low alloy steels, one with a bainite granular microstructure and the other a martensitic one. The concentration of the retained austenite was determined in both samples by Moessbauer spectrometry and X radiation, a very good agreement for the sample with a greater austenite content having been observed. From the assumption that the carbon atoms in the f.c.c. matrix repel one another due to Coulomb interactions, giving origin to quadrupolar interactions, it was possible to determine carbon concentration in the MA (Martensite Austenite) components of bainite, the results being in good agreement with the one obtained from metallographic considerations. (I.C.R.) [pt

  3. Application of Moessbauer effect in the study of austenite retained in low carbon steel

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de; Silva, E.G. da

    1979-01-01

    Moessbauer effect measurements of two samples of low carbon alloy having micro-structure of granular bainite type and martensite type have been done. The concentration of the retained austenite in both samples was determined by Moessbauer effect and x-rays there, being agreement for the higher austenite content sample. Concentration of carbon in the MA (Martensite - Austenite) constituents of bainite is also ditermined, the results being in agreement with metallographic considerations. Carbon enrichments are shown as responsible by the stabilization of the austenite in the granular bainite. Spectra of both samples present three magnetic configurations for α-iron with medium magnetic fields iqual to 335, 307 and 280 KOe. (A.R.H.) [pt

  4. Barriers to the adoption of low carbon production: A multiple-case study of Chinese industrial firms

    International Nuclear Information System (INIS)

    Liu, Yong

    2014-01-01

    This study employs a multiple-case study method, identifies barriers to the adoption of low carbon production, and categorizes these barriers into four domains: structural, regulatory, cultural, and contextual. The two most frequently mentioned barriers were “lack of financial incentives to stimulate low carbon innovation” and “lack of a common definition of low carbon production”. The two least frequently mentioned barriers were “silos exist between planning and production” and “operational staff are often physically separated from planning staff, which isolates them from planning decisions”. Furthermore, contextual barriers were significantly related to structural and regulatory barriers, while regulatory barriers were significantly related to structural barriers. Larger firms tend to have a more structured organization and lower perceptions of the employment term barrier. However, larger structured organizations have been affected by a long history of a planning-oriented economy and hence tend to have inflexible hierarchical systems. In contrast, small firms have hierarchical systems with less effect on low carbon production than those of large enterprises. Another interesting trend is the direct size effect on cultural barriers, which is evident in a culture of risk aversion, as well as the lack of low carbon technology and the existence of silos between planning and production. - Highlights: • Barriers were categorized as structural, regulatory, cultural and contextual. • Contextual barriers were significantly related to structural and regulatory barriers. • Regulatory barriers were significantly related to structural barriers. • Firm size directly affected firm hierarchical systems and cultural barriers

  5. Coupled gamma/alpha phase transformations in low-carbon steels

    Science.gov (United States)

    Mizutani, Yasushi

    Since steels have been the most prevalently utilized materials for many years, the desire for steels with low alloying components with a well-balanced combination of high strength and toughness is increasing. Low carbon steels consisting of bainitic microstructures are ideally suited to meeting such technological and economic requirements. Thus it is extremely important to fully clarify the mechanism of bainite formation in order to produce this type of engineering steel by optimized alloy and process design. This research focuses on understanding the mechanism of coupled displacive/diffusional gamma/alpha transformation in low-carbon steels including bainitic and martensitic transformation, and establishing a more comprehensive and physically rational computational model for predictive control of coupled gamma/alpha transformation phenomena. Models for coupled gamma/alpha phase transformation proposed in this study are based on a mechanistic and unified theory and the following assumptions: (1) The energy dissipation due to interface motion can be linearly combined with the energy dissipation due to carbon diffusion. (2) The carbon concentrations at the interface in both gamma and alpha phases are constrained by an interface solute trapping law. (3) Interface motion during nucleation is also governed by the carbon diffusion field velocity. (4) The response function of glissile interface motion can be expressed in the form of thermally activated dislocation glide. In contrast to the conventional semi-empirical models of the previous literature, the computational model proposed in this study is demonstrated to successfully provide a comprehensive and quantitative prediction of the effects of temperature, composition, microstructure, and the interactions among them. This includes the effects of substitutional solutes, morphology of the parent gamma phase, density of nucleation sites, temperature dependent variation of flow stress of matrix, and dynamic recovery of

  6. Trends and Issues in California's Low Carbon Fuel Standard - Learning from Response to Existing Climate Policy

    Science.gov (United States)

    Witcover, J.

    2015-12-01

    Debate over lower greenhouse gas (GHG) emissions from transportation has included heated discussion about appropriate policies and their cost and feasibility. One prominent policy mechanism, a carbon intensity standard, rates transport fuels based on analysis of lifecycle GHG emissions, and targets lower fuel pool carbon intensity through a market mechanism that uses a system of tradable, bankable credits and deficits. California instituted such a policy -- the Low Carbon Fuel Standard (LCFS) - in 2010, which targets a 10% carbon intensity (CI) reduction by 2020. The program rolled out amid concerns over slow development of new fuels expected to be very low carbon (such as cellulosic) and has faced court challenges that added considerable policy uncertainty. Since the program's start, state transport energy mix has shifted modestly but noticeably. Looking ahead, emerging issues for the program include amendments and re-adoption in response to a court ruling, potential interaction with California's multi-sector cap on carbon emissions (which started covering transport fuels in 2015), and impacts from similar CI standards in other jurisdictions. This study provides an analysis of fuel mix changes since the LCFS was implemented in 2011, and a discussion of emerging issues focusing on policy interaction. Descriptive statistics on alternative fuel use, available fuel pathways, and CI ratings are presented based on data from the California Air Resources Board (which runs the program). They document a shift towards more alternative fuels in a more diverse mix, with lower average CI ratings for most alternative fuel types. Financial incentives for various fuels are compared under the LCFS and the US federal Renewable Fuel Standard; disincentives from conceptually different carbon pricing schemes under the LCFS and the Cap-and-Trade are also outlined. The results provide important information on response to an existing market-based policy mechanism for addressing GHG

  7. ECO-EFFICIENCY ANALYSIS OF LOW-CARBON CEMENT PRODUCTION BY REPLACING CLINKER

    Directory of Open Access Journals (Sweden)

    Yanay Ruíz Rosa

    2017-04-01

    Full Text Available This work carries out the environmental evaluation of the cement production in Siguaney Factory as well as the calculation of the Eco-efficiency indicators according to the ISO 14045 norms; the Recipe methodology was used including 18 impact categories and the SimaPro 8.1 software was also used. In order to evaluate the eco-efficiency indicators according to the ISO 14045 norm, the results of the impact categories are related to the monetary value indicators, allowing the evaluation of the current situation as well as the consequences of the suggested modifications. As a result, the environmental profiles of P-35 cement (base case were obtained as well as those of the low carbon ones (LC3-35 y LC3-50 resulting from the clinker substitution by kaolinitic clay after some studies carried out by CIDEM researchers; and the eco-efficiency profiles. The comparison made between P-35 cement and the low-carbon cements showed positive results in eight weather impact categories, however, toxicity-related ones rise due to the increase in electricity consumption connected to the grinding of materials to obtain burnt clay bringing about a greater amount of emissions of volatile organic compounds to the air. An improvement in the eco-efficiency of 6 out of 8 calculated indicators is observed due to a simultaneous decrease in the production costs and the environmental impacts. LC3-50 cement shows the best results. The methodology used permits to evaluate alternatives related to the material substitution in the construction sector.

  8. Low carbon scenarios for transport in India: Co-benefits analysis

    International Nuclear Information System (INIS)

    Dhar, Subash; Shukla, Priyadarshi R.

    2015-01-01

    Dependence on oil for transport is a concern for India's policymakers on three counts – energy security, local environment and climate change. Rapid urbanisation and accompanying motorisation has created some of the most polluting cities in India and rising demand for oil is leading to higher imports, besides causing more CO 2 emissions. The government of India wants to achieve the climate goals through a sustainability approach that simultaneously addresses other environment and developmental challenges. This paper analyses a sustainable low carbon transport (SLCT) scenario based on sustainable strategies for passenger and freight mobility, vehicle technologies and fuel using global CO 2 prices that correspond to 2 °C global stabilisation target. The scenarios span from years 2010 to 2050 and are analysed using the energy system model-ANSWER MARKAL. The SLCT scenario has improved energy security (cumulative oil demand lower by 3100 Mtoe), improved air quality (PM 2.5 emissions never exceed the existing levels) and the cumulative CO 2 emissions are lower by 13 billion t CO 2 thereby showing that achieving development objectives with CO 2 co-benefits is feasible. -- Highlights: •India's BAU transitions pose challenges for energy security and climate change. •Sustainable transport policies deliver benefits for air quality and energy security. •Sustainable transport policies fall short of mitigation needed for 2 °C stabilisation. •Transport sector becomes increasingly dependent on electricity. •Low carbon policies are essential to clean transport and electricity generation

  9. Mobilizing cities towards a low-carbon future: Tambourines, carrots and sticks

    International Nuclear Information System (INIS)

    Azevedo, Isabel; Delarue, Erik; Meeus, Leonardo

    2013-01-01

    In the transition towards a low-carbon future in Europe, cities' actions are of major importance due to the prominence of urbanization, both in terms of population and in terms of greenhouse gas (GHG) emissions. As a result, we need city authorities to act, by using their competences as policy makers as well as energy users. However, cities are still not moving as fast as one might expect, indicating the need for additional incentives to prompt local action. Therefore, the aim of this paper is to present an overview of external incentives that might prompt cities to act and to highlight good practices that could be used in future initiatives. This paper first discusses how to evaluate the climate and energy performance of a city and how local authorities can contribute to its improvements. Moreover, it analyses the disincentives that local governments are confronted with, categorizing them as simple market failures, institutional failures and multi-agent failures. The paper then presents a survey of initiatives at national and EU levels to promote local action towards a low-carbon future; grouping them into tambourines, carrots and sticks. We focus on Austria, Germany, the Netherlands and Sweden because they are pioneering countries regarding energy policies for cities. - Highlights: • CO 2 and energy consumption could be used to evaluate the performance of cities. • Simple market, institutional and multi-agent failures are hampering local action. • National and EU actions use mainly tambourines and carrots, rather than sticks. • Covenant of Mayors is one of the most noteworthy tambourine type of instruments. • Carrots notable features are: use of competition and involvement of third-parties

  10. Potential impact of transition to a low-carbon transport system in Iceland

    International Nuclear Information System (INIS)

    Shafiei, Ehsan; Davidsdottir, Brynhildur; Leaver, Jonathan; Stefansson, Hlynur; Asgeirsson, Eyjolfur Ingi

    2014-01-01

    This paper develops a system dynamics model of Iceland's energy sector (UniSyD I S) that is based on the UniSyD N Z model of New Zealand's energy economy. The model focuses on the energy supply sector with endogenous representation of road transport energy demand. Equilibrium interactions are performed across electricity, hydrogen, biofuels, and road transport sectors. Possible transition paths toward a low-carbon transport in Iceland are explored with implications for fuel demand, greenhouse gas (GHG) emissions and associated costs. The consumer sector simulates the long-term evolution of light and heavy-duty vehicles through a vehicle choice algorithm that accounts for social influences and consumer preferences. Through different scenarios, the influences of four fundamental driving factors are examined. The factors are oil price, carbon tax, fuel supply-push, and government incentives. The results show that changes in travel demand, vehicle technologies, fuel types, and efficiency improvements can support feasible transition paths to achieve sufficient reduction in GHG for both 4 °C and 2 °C climate scenarios of the Nordic Energy Technology Perspectives study. Initial investment in supply infrastructure for alternative fuels will not only mitigate GHG emissions, but also could provide long-term economic benefits through fuel cost saving for consumers and reduced fuel import costs for government. - Highlights: • UniSyD I S is an energy system model with endogenous road transport energy demand. • Possible transition paths to low-carbon road transport system in Iceland are explored. • Vehicle choice sector accounts for social influences and consumers’ preferences. • Supply-push costs can be offset by mitigation benefits and fuel cost savings

  11. Low carbon and clean energy scenarios for India: Analysis of targets approach

    International Nuclear Information System (INIS)

    Shukla, Priyadarshi R.; Chaturvedi, Vaibhav

    2012-01-01

    Low carbon energy technologies are of increasing importance to India for reducing emissions and diversifying its energy supply mix. Using GCAM, an integrated assessment model, this paper analyzes a targets approach for pushing solar, wind, and nuclear technologies in the Indian electricity generation sector from 2005 to 2095. Targets for these technologies have been constructed on the basis of Indian government documents, policy announcements, and expert opinions. Different targets have been set for the reference scenario and the carbon price scenario. In the reference scenario, wind and nuclear technologies exceed respective targets in the long run without any subsidy push, while solar energy requires subsidy push throughout the century in order to meet its high targets. In the short run, nuclear energy also requires significant subsidy, including a much higher initial subsidy relative to solar power, which is a result of its higher targets. Under a carbon price scenario, the carbon price drives the penetration of these technologies. Still, subsidy is required — especially in the short run when the carbon price is low. We also found that pushing solar, wind, and nuclear technologies leads to a decrease in share of CCS under the carbon price scenario and biomass under both the reference and carbon price scenarios. This is because low carbon technologies compete among themselves and substitute each other, thereby enhancing the need for subsidy or carbon price, highlighting that proposed targets are not set at efficient levels. In light of contemporary debate on external costs of nuclear energy, we also assess the sensitivity of the results to nuclear technology cost. We find that higher cost significantly decreases the share of nuclear power under both the reference and carbon price scenarios.

  12. Impact of transition to a low carbon power system on the GB gas network

    International Nuclear Information System (INIS)

    Qadrdan, Meysam; Chaudry, Modassar; Jenkins, Nick; Baruah, Pranab; Eyre, Nick

    2015-01-01

    Highlights: • Availability and cost of gas are crucial factors in power system planning. • CGEN+ was developed to analyse expansion of combined gas and electricity systems. • Performance of various low carbon strategies were assessed. • Electrification of heat and transport requires large investment in power sector. • Despite declining demand for gas, peak gas demand will almost remain unchanged. - Abstract: The reliance of Great Britain power generation on the gas network makes it critical to consider the future availability and cost of gas in planning the expansion of the power system. A combined gas and electricity network planning model was used to investigate impacts of various low carbon strategies on regional expansion of the Great Britain gas network out to the 2050s. A number of long term energy supply and demand strategies covering a range of plausible investment policies for Great Britain gas and electricity systems were explored. Reliance of Great Britain on gas imports was projected to vary from 84%, in an energy system with significant electrification of heat and transport sectors and large capacity of nuclear generation, to 94% in a business as usual case. Extensive investment in Liquefied Natural Gas import facilities at Milford Haven and the Isle of Grain was shown to compensate for reduction of indigenous gas supplies. Exploitation of shale gas in north England was shown to reduce the gas dependency of Great Britain in the business as usual case to 74%. Electrification of the heat and transport sectors combined with exploitation of shale gas in Great Britain could reduce import dependency to below 10% by 2050

  13. Low-carbon-oriented dynamic optimization of residential energy pricing in China

    International Nuclear Information System (INIS)

    He, Yongxiu; Liu, Yangyang; Wang, Jianhui; Xia, Tian; Zhao, Yushan

    2014-01-01

    In China, the energy pricing mechanism has an insufficient linkage with other energy prices. As a result of the unreasonable price level, it is impossible to exploit fully the substitution elasticity among energy resources and there is a negative impact on achieving energy conservation and energy efficiency. This paper proposes an optimized mechanism for residential energy prices in China, which maximizes the total social surplus subject to some related constraints. Three types of energy pricing mechanisms are designed based on China's low-carbon targets and the optimization of residential energy price policies through the dynamic CGE model. Compared with the energy price linkage method, the results show that the market netback value mechanism has a greater impact on the total social surplus. In order to achieve further low-carbon targets, the proportion of second and third tier residents can be expanded, while the energy prices could be deregulated to some degree. In addition, considering residential affordability, the government may take into account different electricity pricing mechanisms for different tiers of residents. Electricity pricing for the first tier, the second tier and the third tier should be based respectively on cost, the integration of energy price linkage and the market netback value mechanism. - Highlights: • Residential energy price mechanisms can be considered in the D-CGE model. • The maximization of total social surplus is the optimized objective. • The market netback value mechanism has a greater impact on the total social surplus. • Production cost and energy price conduction should be considered in price mechanisms. • Government should take the energy system as a whole to optimize energy prices

  14. Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Indian cement industry is one of the most efficient in the world. Its efforts to reduce its carbon footprint by adopting the best available technologies and environmental practices are reflected in the achievement of reducing total CO2 emissions to an industrial average of 0.719 tCO2/t cement in 2010 from a substantially higher level of 1.12 tCO2/t cement in 1996. However, because the manufacturing process relies on the burning of limestone, it still produced 137 MtCO2 in 2010 – approximately 7% of India’s total man-made CO2 emissions. Yet opportunity for improvement exists, particularly in relation to five key levers that can contribute to emissions reductions: alternative fuel and raw materials; energy efficiency; clinker substitution; waste heat recovery and newer technologies. This roadmap sets out one pathway by which the Indian cement industry can reach its targets to improve energy efficiency and reduce CO2 emissions by 2050, thereby laying the foundation for low-carbon growth in the years beyond. The Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry builds on the global IEA technology roadmap for the cement sector developed by the IEA and the World Business Council for Sustainable Development’s Cement Sustainability Initiative. It outlines a possible transition path for the Indian cement industry to reduce its direct CO2 emissions intensity to 0.35 tCO2/t cement and support the global goal of halving CO2 emissions by 2050.

  15. Catchment scale water resource constraints on UK policies for low-carbon energy system transition

    Science.gov (United States)

    Konadu, D. D.; Fenner, R. A.

    2017-12-01

    Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.

  16. The role of actor-networks in the early stage mobilisation of low carbon heat networks

    International Nuclear Information System (INIS)

    Ambrose, Aimee; Eadson, Will; Pinder, James

    2016-01-01

    Low carbon heat networks (LCHNs) offer great potential for carbon and heating cost reduction. Despite these benefits, LCHNs provide for just two per cent of heat demand in the UK, when estimates suggest they have the potential to provide for around 43 per cent. These low levels of LCHN provision are in stark contrast to the Nordic nations which exemplify some of the highest quality and most extensive heat networks in the world. It is within this context that the Pioneer Cities project (the project) was launched by the UK government to help local authorities overcome barriers to the deployment of LCHNs. This paper reports the findings of an evaluation of this project, drawing on 86 interviews across five local authorities, analysed using elements of Actor Network Theory (ANT). The evaluation found that the project’s success has been limited. Participating local authorities have encountered challenges regarding marketisation, public sector retrenchment and inexperience in mobilising LCHNs. These factors militate against the formation of the robust actor-networks required to deploy LCHNs. Analysis using ANT reveals insights into why LCHNs remain elusive in the UK and suggests that policy makers need to strengthen local authorities’ ability to lead and deliver complex infrastructure projects. - Highlights: •Low carbon heat networks (LCHNs) reduce carbon emissions from heat production and reduce costs. •Yet market issues and local government cut backs undermine successful delivery of LCHNs. •Local authorites are charged by government with deploying LCHNS but are not well placed to do so. •Policy makers need to ‘prepare the ground’ for LCHN deployment through policy and incentives.

  17. Xanthium strumarium leaves extracts as a friendly corrosion inhibitor of low carbon steel in hydrochloric acid: Kinetics and mathematical studies

    Directory of Open Access Journals (Sweden)

    Anees A. Khadom

    2018-06-01

    Full Text Available Corrosion inhibition of low carbon steel in 1 M HCl was investigated in absence and presence of Xanthium strumarium leaves (XSL extracts as a friendly corrosion inhibitor. The effect of temperature and inhibitor concentration was studied using weight loss method. The result obtained shown that Xanthium strumarium leaves extracts act as an inhibitor for low carbon steel in HCl and reduces the corrosion rate. The inhibition efficiency was found to increases with increase in inhibitor concentration and temperature. Higher inhibition efficiency was 94.82% at higher level of inhibitor concentration and temperature. The adsorption of Xanthium strumarium leaves extracts was found to obey Langmuir adsorption isotherm model. The values of the free energy of adsorption was more than −20 kJ/mol, which is indicative of mixed mode of physical and chemical adsorption. Keywords: Corrosion, Green inhibitor, Natural extracts, Low carbon steel, Acid, Adsorption

  18. Nb(C,N) precipitation kinetics in the bainite region of a low-carbon Nb-microalloyed steel

    International Nuclear Information System (INIS)

    Park, J.S.; Lee, Y.K.

    2007-01-01

    Nb(C,N) precipitation in the bainite region (580-660 deg. C) of a low-carbon Nb-microalloyed steel was investigated by electrical resistivity and transmission electron microscopy. Nb(C,N) particles started precipitating after 100-200 s at isothermal temperatures after bainite transformation and cementite formation, and precipitation finished in 1000-2000 s. The precipitation-time-temperature diagram of Nb(C,N) in the bainite region of a low-carbon microalloyed steel was a type of C-curve, with a nose temperature of about 615 deg. C

  19. Conversion electron Moessbauer study of low carbon steel polarized in aqueous sulfate solution containing sulfite in low concentration

    International Nuclear Information System (INIS)

    Vertes, Cs.; Lakatos-Varsanyi, M.; Vertes, A.; Kuzmann, E.; Meisel, W.; Guetlich, P.

    1992-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5 M Na 2 SO 4 +0.001 M NaHSO 3 at pH=3.5 and 6.5. The found major components at pH=3.5 were: γ-FeOOH and Fe 3 C, and also FeSO 4 .H 2 O could be identified on the surface of the low carbon steel as a minor component. At pH=6.5, the passive film contained only amorphous iron(III)-oxide or oxyhydroxide. (orig.)

  20. Modes of Governing and Policy of Local and Regional Governments Supporting Local Low-Carbon Energy Initiatives; Exploring the Cases of the Dutch Regions of Overijssel and Fryslân

    Directory of Open Access Journals (Sweden)

    Beau Warbroek

    2017-01-01

    Full Text Available Recent scholarly attention shows increasing involvement of local low-carbon energy initiatives (LLCEIs in governance and policy, in particular in relation to innovations regarding low-carbon energy and energy efficiency. The future perspective of active citizenship in the production of locally generated low-carbon energy is largely dependent on the existing institutional and policy frameworks and settings. Subnational governments, in particular, can have a prominent role in this process by engaging in institutional adaptation and policy innovation. The central research question of this paper is: In what ways do local and regional governments innovate in governing to respond to the emergence of LLCEIs? The research question is answered by comparing two case studies: the Dutch regions of Overijssel and Fryslân. We have conceptualized a meta-governing approach of experimentation, characterizing the innovations in governing that emerge when governments respond to the emergence of LLCEIs. We specifically focus on two capacities that subnational governments can use to enhance their governing capacity vis-à-vis LLCEIs and which substantiate the experimental meta-governance mode: institutional adaptation and policy innovation. We then formulated hypotheses that specify the expected policy innovations and institutional adaptations employed vis-à-vis LLCEIs. Data collection involved in-depth interviews and use of secondary data. The results show that a balancing process of authoritative and enabling modes of governing particularly characterized the type of policy innovations that were developed and the institutional adaptations that took place. Both provinces govern LLCEIs at arm’s length and issue significant capacity-building strategies that vary in terms of their conditions. Municipalities, however, incline towards impromptu and opportunistic responses, some of them having lasting effects by patching up existing institutional settings, others

  1. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  2. A decision support model for waste management in support of developing low carbon, eco regions. Case studies of densely populated kampung settlements in urban areas in Jakarta

    International Nuclear Information System (INIS)

    Candra Dewi, Ova

    2013-01-01

    Due to the various types of waste disposal, treatment, utilization and technologies, decision support model for waste management is needed to assist planners and decision makers in finding most suitable way to manage municipal solid waste efficiently. Many planners and decision makers in the area of municipal solid waste have a lack of thorough understanding of the complex chains of waste management system. Therefore the impact for the environment quality and the public health can only be judged at the rudimentary level. However, most existing models are primarily focusing on cost or environmental analysis. Only few consider other crucial factors such as the demographic condition, the characteristics of urban form and urban infrastructure, land transformation aspects due to urban development. Consequently, such models often meet difficulties to cope with cultural requirement. Based on those reasons, a decision support model to set up alternatives of most appropriate technology for sustainable waste management towards a low carbon eco-city on a regional basis is developed in this PhD study. The Low Carbon- and Eco-Region, in particular the contribution of waste management sector, is a vision of living in low rate of carbon generation, using fewer natural resources, and encouraging energy recovery and/or waste reduction at source by improving the used material quality (up-cycling). This decision support model is constructed mainly based on the cultural requirement and local context of a region and synergize the geographic, environmental, social capital and economics aspects in order to fulfill the needs of the respective region and its society. The method employed in this model is not solely a new developed model, but also an advanced model in material flow analysis (STAN), and life cycle assessment on solid waste system (EASEWASTE) and Geographic Information System (GIS). At the same time the model also assists the stakeholders in improving the environmental quality

  3. A decision support model for waste management in support of developing low carbon, eco regions. Case studies of densely populated kampung settlements in urban areas in Jakarta

    Energy Technology Data Exchange (ETDEWEB)

    Candra Dewi, Ova

    2013-06-14

    Due to the various types of waste disposal, treatment, utilization and technologies, decision support model for waste management is needed to assist planners and decision makers in finding most suitable way to manage municipal solid waste efficiently. Many planners and decision makers in the area of municipal solid waste have a lack of thorough understanding of the complex chains of waste management system. Therefore the impact for the environment quality and the public health can only be judged at the rudimentary level. However, most existing models are primarily focusing on cost or environmental analysis. Only few consider other crucial factors such as the demographic condition, the characteristics of urban form and urban infrastructure, land transformation aspects due to urban development. Consequently, such models often meet difficulties to cope with cultural requirement. Based on those reasons, a decision support model to set up alternatives of most appropriate technology for sustainable waste management towards a low carbon eco-city on a regional basis is developed in this PhD study. The Low Carbon- and Eco-Region, in particular the contribution of waste management sector, is a vision of living in low rate of carbon generation, using fewer natural resources, and encouraging energy recovery and/or waste reduction at source by improving the used material quality (up-cycling). This decision support model is constructed mainly based on the cultural requirement and local context of a region and synergize the geographic, environmental, social capital and economics aspects in order to fulfill the needs of the respective region and its society. The method employed in this model is not solely a new developed model, but also an advanced model in material flow analysis (STAN), and life cycle assessment on solid waste system (EASEWASTE) and Geographic Information System (GIS). At the same time the model also assists the stakeholders in improving the environmental quality

  4. The Emissions Scenarios Portal: Visualizing Low-Carbon Pathways for the 21st Century

    Science.gov (United States)

    Hennig, R. J.; Friedrich, J.; Ge, M.; Mountford, H.; Fransen, T.; Altamirano, J. C.; Thanawala, Z.; Arcipowska, A.

    2017-12-01

    The Emissions Scenarios Portal (ESP) is a newly developed exploration tool for 21st century low-carbon pathways and investigation of the Nationally Determined Contributions (NDC's) that countries have put forward under the Paris Agreement. It is open to the public and aims to help achieve the goal of limiting global temperature increase to well below 2 degrees Celsius above pre-industrial levels by enhancing access to high-quality, up-to-date scenario information. It can guide users to set ambitious, realistic emission mitigation goals and understand what these goals imply for different sectors of the economy. Data will be integrated from a wide variety of economic and energy-system models with results from both national models as well as globally integrated assessment models (IAM's) and countries biennial update reports (BUR's). This information can support policy and investment decision making that will lead to a low carbon future. It is designed to help find answers to questions such as "Are the NDC's enough to put the world on a 2DC track?", "What do NDC's imply for different sectors of the economy under different assumptions?" or "What are good ways to increase ambition beyond NDC's?". The portal strives to achieve both inter-comparability across a wide range of different models and nationally reported scenarios, as well as flexibility to allow modelers to bring out the strengths and purpose of their model on the platform. Furthermore, it aims to enhance standardized and transparent reporting of emissions scenarios and relevant metadata, assumptions and results to improve understanding, accessibility and impact of the scenarios. On the data side, these rivaling objectives present interesting challenges for both the collection and communication of the data and in this presentation we will present some of our ideas for tackling these. This project will be part of Climate Watch, a new data platform developed jointly by the World Resources Institute and the NDC

  5. Optimising the road to a low carbon competitive energy sector in Europe. An essay

    International Nuclear Information System (INIS)

    Van Dril, A.W.N.

    2011-10-01

    In the strategy for competitive, sustainable and secure energy the European Commission stressed the urgency of far-reaching changes in energy production, use, and supply. The stated priorities are energy efficiency, integrated markets, energy security, innovation and external actions. In March 2011, an energy efficiency plan was proposed with measures leading to 20% efficiency improvement in 2020. The Commission also launched the Roadmap for a Low Carbon Economy in 2050. In December 2011, the European Commission launched its Energy Roadmap 2050. This paper will evaluate their optimality for the three basic goals: competitive, sustainable and secure. The key question addressed in this essay is: Do current and envisaged EU energy and climate policies allow for optimal introduction of new energy technologies towards a globally competitive, sustainable and secure energy system? The key findings are: (1) To ensure an affordable future energy supply and combat climate change, a global transition of the energy sector is needed. Europe has to make its choices in that global context. This process will take several decades and will be surrounded with many uncertainties; (2) Reinforcing and expanding the European emission trading scheme (ETS) to include other sectors and regions in coming decades is the preferred element in a robust regulatory framework. Stable and higher carbon prices are an essential condition for low carbon investment planning and many other Member State policies. When prices are high and stable the market will seek the most cost efficient mix; (3) Renewables and energy efficiency are important solutions for the long run. Assuming the ETS will be significantly strengthened overall EU targets and policies for renewable and efficiency beyond 2020 have to fit within the ETS framework; (4) If renewable energy and energy efficiency targets for separate MS and sectors are set, they need to be flexible in order to avoid suboptimal economic outcomes. After 2020 a

  6. INFLUENCE OF STRUCTURAL PARAMETERS OF LOW-CARBON STEEL ON ELECTRIC ARC BURNING

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2017-10-01

    Full Text Available Purpose. The article is aimed to evaluate the influence of structural parameters of low-carbon steel on arcing process. Methodology. The values of the micro- and substructure characteristics of the electrode wire metal were changed by varying the parameters of heat treatment and cold deformation by drawing. The degree of plastic deformation was obtained by drawing blanks from different initial diameter to final dimension of 1 mm. The thermal treatment was carried out in electric chamber furnace of the SNOL-1,6.2,5.1/11-IZ type. The temperature was measured by chromel-alumel thermocouple and the electromotive force was determined using the DC potentiometer. In order to obtain the substructure of different dispersion degree the steel (after quenching from temperatures and tempering at 650°C for 1 hour was subjected to cold drawing to reduction 17 – 80%. To form structure with different ferrite grain size the steel after drawing was annealed at 680°C for 1 hour. The microstructure was examined under a light and electron transmission microscope UEMV-100K at the accelerating voltage 100 kV. The grain and subgrain sizes were evaluated using the methodologies of quantitative metallography. A welding converter of the PSG-500 type was used to study the arc welding process of direct and reverse polarities. Findings. The experimentally detected value of the welding current, which depends on the degree of deformation during wire drawing, under conditions of stable arc burning of direct polarity is about an order of magnitude lower than the calculated value. Similar difference was found for the arc of reverse polarity: the experimental value of the welding current is 5...6 times less than the calculated value. Dependence analysis shows that, regardless of the polarity of the welding arc, a good enough agreement between the calculated and experimental values of the welding current is limited to deformations of 60%. For deformation degrees of more than 60

  7. Study of the potential of low carbon energy development and its contribution to realize the reduction target of carbon intensity in China

    International Nuclear Information System (INIS)

    Li Hongqiang; Wang Limao; Shen Lei; Chen Fengnan

    2012-01-01

    Appraising low carbon energy potential in China and studying its contribution to China's target of cutting CO 2 emissions by 40–45% per unit of GDP by 2020 is crucial for taking countermeasures against climate change and identifying low carbon energy development strategies. This paper presents two scenarios and evaluates the development potential for low carbon energy and its various sources. Based on the evaluation, we analyze how low carbon energy contributes to achieving China's national target of carbon intensity reduction. We draw several conclusions from the analysis. First, low carbon energy will contribute 9.74% (minimum) to 24.42% (maximum) toward the 2020 carbon intensity target under three economic development schemes. Second, the contribution will decrease when the GDP growth rate increases. Third, to maintain the same contribution with high GDP growth rates, China should not only strengthen its investment and policy stimulation for low carbon energy but also simultaneously optimize economic structures and improve carbon productivity. - Highlights: ► Low carbon energy can substitute at least 659.5 Mtce of fossil energy in 2020. ► Potential of hydropower ranks first among all low carbon energy sources in 2020. ► Low carbon energy will contribute at least 9.47% to reach carbon target in 2020. ► China should formulate and implement comprehensive measures to cut carbon emission.

  8. Identifying key factors for mobilising under-utilised low carbon land resources : A case study on Kalimantan

    NARCIS (Netherlands)

    Goh, Chun Sheng; Junginger, Martin; Potter, Lesley; Faaij, André; Wicke, Birka

    2018-01-01

    Mobilising under-utilised low carbon (ULC) land for future agricultural expansion helps minimising further carbon stock loss. This study examined the regency cases in Kalimantan, a carbon loss hotspot, to understand the key factors for mobilising ULC land via narrative interviews with a range of

  9. A Study of The Effect of Demand Uncertainty for Low-Carbon Products Using a Newsvendor Model.

    Science.gov (United States)

    Qu, Shaojian; Zhou, Yongyi

    2017-10-25

    This paper studies the effect of uncertain demand on a low-carbon product by using a newsvendor model. With two different kinds of market scales, we examine a game whereby a manufacturer produces and delivers a single new low-carbon product to a single retailer. The retailer observes the demand information and gives an order before the selling season. We find in the game that if the retailer shares truthful (or in contrast unreal or even does not share) forecast information with the manufacturer, the manufacturer will give a low (high) wholesale price through the sequence of events. In addition, as a policy-maker, the government posts a subsidy by selling the low-carbon product per unit. The manufacturer creates a new contract with a rebate for the retailer. We also take the consumer aversion coefficient and truth coefficient as qualitative variables into our model to study the order, pricing, and expected profit for the members of supply chain. The research shows that uncertain demand causes a the major effect on the new low-carbon product. Thereby, we suggest the retailer should share more truthful information with the manufacturer.

  10. Do Kenya's climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?

    NARCIS (Netherlands)

    Dalla Longa, F.; van der Zwaan, B.

    2017-01-01

    In this paper Kenya's climate change mitigation ambitions are analysed from an energy system perspective, with a focus on the role of renewable and other low-carbon energy technologies. At COP-21 in 2015 in Paris, Kenya has committed to a `nationally determined contribution' of reducing domestic

  11. Low-carbon energy policy and ambient air pollution in Shanghai, China: A health-based economic assessment

    International Nuclear Information System (INIS)

    Chen Changhong; Chen Bingheng; Wang Bingyan; Huang Cheng; Zhao Jing; Dai Yi; Kan Haidong

    2007-01-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM 10 -related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis

  12. Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development

    NARCIS (Netherlands)

    Liu Wenling, Wenling; Spaargaren, G.; Heerink, N.; Mol, A.P.J.; Wang, C.

    2013-01-01

    Reducing the climate impact of rural household energy consumption in China is complicated since it is bound up with deeply routinized daily practices and dependent from existing infrastructural systems of energy supply. To assess the potential for low carbon development we first estimate the overall

  13. Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment.

    Science.gov (United States)

    Chen, Changhong; Chen, Bingheng; Wang, Bingyan; Huang, Cheng; Zhao, Jing; Dai, Yi; Kan, Haidong

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis.

  14. Scenario analysis and path selection of low-carbon transformation in China based on a modified IPAT model.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU, energy efficiency improvement scenario (EEI, low carbon scenario (LC and enhanced low carbon scenario (ELC. The results show that carbon intensity will be reduced by 40-45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China's low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance.

  15. A Study of The Effect of Demand Uncertainty for Low-Carbon Products Using a Newsvendor Model

    Directory of Open Access Journals (Sweden)

    Shaojian Qu

    2017-10-01

    Full Text Available This paper studies the effect of uncertain demand on a low-carbon product by using a newsvendor model. With two different kinds of market scales, we examine a game whereby a manufacturer produces and delivers a single new low-carbon product to a single retailer. The retailer observes the demand information and gives an order before the selling season. We find in the game that if the retailer shares truthful (or in contrast unreal or even does not share forecast information with the manufacturer, the manufacturer will give a low (high wholesale price through the sequence of events. In addition, as a policy-maker, the government posts a subsidy by selling the low-carbon product per unit. The manufacturer creates a new contract with a rebate for the retailer. We also take the consumer aversion coefficient and truth coefficient as qualitative variables into our model to study the order, pricing, and expected profit for the members of supply chain. The research shows that uncertain demand causes a the major effect on the new low-carbon product. Thereby, we suggest the retailer should share more truthful information with the manufacturer.

  16. A study on coupling and coordinating development mechanism of China's low-carbon development and environmental resources system

    NARCIS (Netherlands)

    Cong, H.; Zou, D.; Wu, F.; Zhang, Qiufang

    2015-01-01

    With the rapid development of China’s modern industry, human beings have consumed enormous amounts of high-carbon energy resources. This has caused huge destruction to the systems of environmental resources. Low-carbon development is the best solution to the irrational demand for natural resources,

  17. The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India

    Directory of Open Access Journals (Sweden)

    Stefan Nabernegg

    2017-03-01

    Full Text Available Industrial processes currently contribute 40% to global CO2 emissions and therefore substantial increases in industrial energy efficiency are required for reaching the 2 °C target. We assess the macroeconomic effects of deploying low carbon technologies in six energy intensive industrial sectors (Petroleum, Iron and Steel, Non-metallic Minerals, Paper and Pulp, Chemicals, and Electricity in Europe, China and India in 2030. By combining the GAINS technology model with a macroeconomic computable general equilibrium model, we find that output in energy intensive industries declines in Europe by 6% in total, while output increases in China by 11% and in India by 13%. The opposite output effects emerge because low carbon technologies lead to cost savings in China and India but not in Europe. Consequently, the competitiveness of energy intensive industries is improved in China and India relative to Europe, leading to higher exports to Europe. In all regions, the decarbonization of electricity plays the dominant role for mitigation. We find a rebound effect in China and India, in the size of 42% and 34% CO2 reduction, respectively, but not in Europe. Our results indicate that the range of considered low-carbon technology options is not competitive in the European industrial sectors. To foster breakthrough low carbon technologies and maintain industrial competitiveness, targeted technology policy is therefore needed to supplement carbon pricing.

  18. Examining the patterns of innovation in low carbon energy science and technology: Publications and patents of Asian emerging economies

    International Nuclear Information System (INIS)

    Wong, Chan-Yuan; Fatimah Mohamad, Zeeda; Keng, Zi-Xiang; Ariff Azizan, Suzana

    2014-01-01

    This paper focuses on selected Asian emerging economies. The study employs publications and patents as proxies for science and technology, and its analysis is divided into three main parts: production trends, catching-up trends and patterns of convergence. The findings resulted in four salient points to be considered by policy makers: (1) ASEAN-4 lagged significantly behind the more advanced economies (Korea, Taiwan and China) even though their performance was identical in the early 1990s. China has forged ahead in terms of scientific publications and patents production, but lags behind in patents quality; (2) compared to the world average, the region as a whole has high potential to forge ahead in low carbon energy scientific production. (3) Advanced economies in Asia kicked off their low carbon energy science and technology development more from technological rather than scientific production, with no straightforward co-evolution between the two competencies. This demonstrates the need for a strong science-based technological foundation and a high level of dynamism for low carbon energy technology development; and (4) the economies demonstrated contrasting development trends in their focus between the supply and demand sides of energy technology development. The performance of the advanced economies is higher in ‘demand-side’ low carbon energy innovations

  19. Governing low-carbon energy transitions in sustainable ways: Potential synergies and conflicts between climate and environmental policy objectives

    International Nuclear Information System (INIS)

    Hildingsson, Roger; Johansson, Bengt

    2016-01-01

    Climate change is a central sustainability concern, but is often treated separately from other policy areas in environmental governance. In this article we study how low-carbon energy transitions might be governed in line with broader sustainability goals. We identify conflicts and synergies between low-carbon strategies and the attainment of longer-term environmental objectives by examining the Swedish environmental quality objectives as a governance arrangement. Our analysis indicates that low-carbon strategies might be compatible with preserving other aspects of ecological sustainability. However, this requires relevant flanking policies and measures for non-climate objectives, e.g. systems that control the expansion of biomass and ensure the use of sustainable methods. For such a governance system to be credible and capable, it needs to be flexible in terms of adapting to specific and changing contexts, and reflexive enough to factor in new knowledge on requirements for sustainable development and potentially changing values of future generations. - Highlights: • We identify synergies and conflicts between climate and environmental objectives. • Low-carbon energy transitions can be compatible with other sustainability goals. • This demands relevant flanking policies, e.g. on sustainable biomass harvesting. • This requires policy measures to take different local contexts into account. • Governance systems need to respond to new knowledge and changing values.

  20. Inducing low-carbon investment in the electric power industry through a price floor for emissions trading

    International Nuclear Information System (INIS)

    Brauneis, Alexander; Mestel, Roland; Palan, Stefan

    2013-01-01

    Uncertainty about long-term climate policy is a major driving force in the evolution of the carbon market price. Since this price enters the investment decision process of regulated firms, this uncertainty increases the cost of capital for investors and might deter investments into new technologies at the company level. We apply a real options-based approach to assess the impact of climate change policy in the form of a constant or growing price floor on investment decisions of a single firm in a competitive environment. This firm has the opportunity to switch from a high-carbon “dirty” technology to a low-carbon “clean” technology. Using Monte Carlo simulation and dynamic programming techniques for real data, we determine the optimal CO 2 price floor level and growth rate in order to induce investments into the low-carbon technology. We find that a carbon price floor can be used to induce earlier low-carbon technology investment and show this result to be robust to a large variety of input parameter settings. - Highlights: ► We model the investment decision of an electricity generating company. ► The company can invest in low and high carbon technologies. ► We investigate different carbon price floor designs. ► A carbon price floor leads to earlier investment into low-carbon technology.

  1. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  2. Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm

    Science.gov (United States)

    Balan, A. V.; Shivasankaran, N.; Magibalan, S.

    2018-04-01

    Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.

  3. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  4. Studying on tempering transformation and internal friction for low carbon bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weijuan, E-mail: liweijuan826@163.com; Cai, Mingyu; Wang, Dong; Zhang, Junwei; Zhao, Shengshi; Shao, Peiying

    2017-01-02

    The changes of microstructure during the process of tempering transformation were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction and internal friction (IF) for low carbon bainite steel. The yield strength of the steel was tested after tempering transformation. The results showed that the microstructures of the experimental steel in rolled state were composed of lath bainite and granular bainite with a little Mo{sub 2}C and NbC precipitates. The lath width of bainite increased continuously with the tempering time. More cell structures with different orientations were formed in bainite laths. Furthermore, poly-gonization gradually began in some laths. The microstructure of granular bainite increased and was coarsened when it devoured the lath bainite continuously. The dislocation density of the bainitic ferrite decreased continuously as Mo{sub 2}C and NbC precipitations were further increasing. The peak value of Snoek decreased continuously in internal friction-temperature spectrum. The peak value of SKK at the surface decreased at first and then increased. The peak value of SKK at the center decreased firstly and then had little change. Besides, the yield strength of the steel increased firstly and then decreased.

  5. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Liangyun, E-mail: lanly@me.neu.edu.cn [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Kong, Xiangwei [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 (China); Qiu, Chunlin [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2015-07-15

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t{sub 8/5} is 30 s), the main mode of variant grouping at the scale of individual prior austenite grains changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary.

  6. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    International Nuclear Information System (INIS)

    Lan, Liangyun; Kong, Xiangwei; Qiu, Chunlin

    2015-01-01

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t 8/5 is 30 s), the main mode of variant grouping at the scale of individual prior austenite grains changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary

  7. Characterization of thin Zn-Ni alloy coatings electrodeposited on low carbon steel

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Pommier, N.; Starck, B.; Remy, P.

    2007-01-01

    The characteristics of initial layer formation in alkaline bath for Zn-Ni (12-15%) alloy electrodeposition on low carbon steel plates are detected in a nanometric thickness range by electron probe microanalysis (EPMA), with both bulk sample and thin film on substrate correction procedure, glow discharge optical emission spectroscopy (GDOES) and gracing incidence X-ray diffraction (GIXRD). The Zn-Ni coatings were elaborated using either intensiostatic or potentiostatic mode. A preferential deposition of Ni, in the initial thin layer, is detected by these analyses; according to EPMA and GDOES measurements, a layer rich in nickel at the interface substrate/deposit is observed (90 wt.% Ni) and approved by GIXRD; the thin layer of Ni formed in the first moments of electrolysis greatly inhibits the Zn deposition. The initial layer depends upon the relative ease of hydrogen and metal discharge and on the different substrate surfaces involved. The electrodeposition of zinc-nickel alloys in the first stage is a normal phenomenon of codeposition, whereby nickel - the more noble metal - is deposited preferentially

  8. Texture evolution during the recrystallization of a warm-rolled low-carbon steel

    International Nuclear Information System (INIS)

    Sanchez-Araiza, M.; Godet, S.; Jacques, P.J.; Jonas, J.J.

    2006-01-01

    The texture changes taking place during the recrystallization of a warm-rolled low-carbon steel were examined using electron backscattered diffraction. The deformation textures of the warm-rolled material are similar in shape to those of cold-rolled materials, but are somewhat more intense. The recrystallization textures resemble the deformation textures but with a more extended α fibre that includes the {1 1 3} orientation; the γ fibre extends to the {5 5 4} orientation. These two orientations are related to the {1 1 2} deformed grains by near 26 deg, rotations about selected axes. Nevertheless, both orientations appear in the early stages of recrystallization, an observation that does not support the oriented growth theory. The {1 1 1} orientations are the first to recrystallize while the α fibre is present until the end of recrystallization. It is finally consumed by all types of grains as well as by subgrain coalescence. The similarities in the growth rates for the {1 1 1} and random orientations and the late disappearance of the α fibre suggest that recrystallization takes place according to the high stored energy oriented nucleation concept

  9. Influence of refining time on nonmetallic inclusions in a low-carbon, silicon-killed steel

    International Nuclear Information System (INIS)

    Fernandes, Marcolino; Pires, Jose Carlos; Cheung, Noe; Garcia, Amauri

    2003-01-01

    Nonmetallic inclusions are harmful to the mechanical properties of every kind of steel produced worldwide. The greater the size of the inclusion present in the structure of a determined kind of steel, the greater its negative effect on the quality of the steel. Therefore, the objective of this work was to investigate the size, the quantity, the shape and the chemical composition of nonmetallic inclusions formed throughout the refining process of silicon-killed, low-carbon steel, as a function of the treatment time in a ladle furnace, trying to ensure the flotation of inclusions bigger than 25 μm. This investigation was carried out using a scanning electron microscope (SEM), with an analysis system using energy dispersive spectometry (EDS). Based on this work, it was possible to know more precisely the nature of the inclusions, the necessary time to ensure flotation of large inclusions, the efficiency of the slag to capture the inclusions, and the inclusion level of the steel throughout its refining process to try to obtain a higher quality steel product

  10. Experiment on relationship between the magnetic gradient of low-carbon steel and its stress

    International Nuclear Information System (INIS)

    Jian Xingliang; Jian Xingchao; Deng Guoyong

    2009-01-01

    In geomagnetic field, a series of tensile experiments on the low-carbon steel sticks were carried out. A special homemade detector was used to measure the magnetic gradient on the material surface. The results showed that the relationship between the magnetic gradient and the stress varied with different conditions of measurement. There was no obvious correlation between the magnetic gradient and the tensile stress if the sample remained on the material test machine. If the sample was taken off from the machine, the measured magnetic gradient was linear with the prior maximum stress. In Nanjing, PR China, a place of 32 o N latitude, the slope of the linear relationship was about 67 (uT/m)/MPa. This offered a new method of non-destructive stress testing by measuring the magnetic gradient on the ferromagnetic component surface. The prior maximum applied stress of the sample could be tested by measuring the present surface magnetic gradient. Actually this phenomenon was the metal magnetic memory (MMM). The magnetic gradient near the stress concentration zone of the sample, the necking point, was much larger than other area. Thus, the hidden damage in the ferromagnetic component could be detected early by measuring the magnetic gradient distribution on its surface. In addition, the magnetic memory signal gradually weakened as the sample was taken off and laid aside. Therefore, it was effective for a given period of time to detect the stress or stress concentration based on the MMM testing.

  11. Incorporating land-use requirements and environmental constraints in low-carbon electricity planning for California.

    Science.gov (United States)

    Wu, Grace C; Torn, Margaret S; Williams, James H

    2015-02-17

    The land-use implications of deep decarbonization of the electricity sector (e.g., 80% below 1990 emissions) have not been well-characterized quantitatively or spatially. We assessed the operational-phase land-use requirements of different low-carbon scenarios for California in 2050 and found that most scenarios have comparable direct land footprints. While the per MWh footprint of renewable energy (RE) generation is initially higher, that of fossil and nuclear generation increases over time with continued fuel use. We built a spatially explicit model to understand the interactions between resource quality and environmental constraints in a high RE scenario (>70% of total generation). We found that there is sufficient land within California to meet the solar and geothermal targets, but areas with the highest quality wind and solar resources also tend to be those with high conservation value. Development of some land with lower conservation value results in lower average capacity factors, but also provides opportunity for colocation of different generation technologies, which could significantly improve land-use efficiency and reduce permitting, leasing, and transmission infrastructure costs. Basing siting decisions on environmentally-constrained long-term RE build-out requirements produces significantly different results, including better conservation outcomes, than implied by the current piecemeal approach to planning.

  12. Transition to low carbon energy policies in China-from the Five-Year Plan perspective

    International Nuclear Information System (INIS)

    Yuan Xueliang; Zuo Jian

    2011-01-01

    Energy policy plays a critical role not only in the energy development, but also in the social and environmental aspects of a nation. Five-Year Plan for National Economic and Social Development is one of the most important government plans, which documents the national strategy during that period. This study presents a critical review of 12 Five-Year Plans that have been released by the Chinese central government in last 58 years. In particular, the recently released Twelfth Five-Year Plan is reviewed. The results clearly show a pattern of increasingly level of attention of Chinese government to energy efficiency improvement, air pollutant emission reduction, new and renewable energy development, carbon dioxide emission and climate change. - Highlights: → Critical review of the energy related contents in the 12 Five-Year Plans. → Energy policy of China is focusing on energy efficiency, new and renewable energy. → China is improving the capability of dealing with CO 2 emission and climate change. → China is on transition to low carbon energy policies for a sustainable development.

  13. Quenching and partitioning treatment of a low-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiyama, Toshihiro, E-mail: toshi@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tobata, Junya; Tao, Teruyuki [Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Nakada, Nobuo; Takaki, Setsuo [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The amount of retained austenite was increased by Q and P treatment in 12Cr-0.1C steel. Black-Right-Pointing-Pointer Ideal carbon concentrations in austenite and ferrite were calculated assuming CCE condition. Black-Right-Pointing-Pointer The optimum partitioning treatment condition for 12Cr-0.1C steel was found. Black-Right-Pointing-Pointer The strength-ductility balance of 12Cr-0.1C steel was improved by TRIP effect. - Abstract: Quenching and partitioning (Q and P) treatment was applied to a commercial low-carbon martensitic stainless steel, AISI Type 410 (Fe-12Cr-0.1C). The quench interruption temperature was optimized with consideration of the ideal carbon concentration in untransformed austenite after partitioning to lower the Ms temperature to room temperature. After partitioning at an appropriate temperature, a significant fraction of austenite was retained through the enrichment of carbon into the untransformed austenite. It was also suggested that the addition of silicon is not necessarily required for the Q and P treatment of 12Cr steel because of the retardation of carbide precipitation at the partitioning temperature owing to the large amount of chromium. Tensile testing revealed that the Q and P-treated material exhibited a significantly improved strength-ductility balance compared with conventional quench-and-tempered materials due to the transformation-induced plasticity (TRIP) effect by the retained austenite.

  14. Quenching and partitioning treatment of a low-carbon martensitic stainless steel

    International Nuclear Information System (INIS)

    Tsuchiyama, Toshihiro; Tobata, Junya; Tao, Teruyuki; Nakada, Nobuo; Takaki, Setsuo

    2012-01-01

    Highlights: ► The amount of retained austenite was increased by Q and P treatment in 12Cr–0.1C steel. ► Ideal carbon concentrations in austenite and ferrite were calculated assuming CCE condition. ► The optimum partitioning treatment condition for 12Cr–0.1C steel was found. ► The strength–ductility balance of 12Cr–0.1C steel was improved by TRIP effect. - Abstract: Quenching and partitioning (Q and P) treatment was applied to a commercial low-carbon martensitic stainless steel, AISI Type 410 (Fe–12Cr–0.1C). The quench interruption temperature was optimized with consideration of the ideal carbon concentration in untransformed austenite after partitioning to lower the Ms temperature to room temperature. After partitioning at an appropriate temperature, a significant fraction of austenite was retained through the enrichment of carbon into the untransformed austenite. It was also suggested that the addition of silicon is not necessarily required for the Q and P treatment of 12Cr steel because of the retardation of carbide precipitation at the partitioning temperature owing to the large amount of chromium. Tensile testing revealed that the Q and P-treated material exhibited a significantly improved strength–ductility balance compared with conventional quench-and-tempered materials due to the transformation-induced plasticity (TRIP) effect by the retained austenite.

  15. Studying on tempering transformation and internal friction for low carbon bainitic steel

    International Nuclear Information System (INIS)

    Li, Weijuan; Cai, Mingyu; Wang, Dong; Zhang, Junwei; Zhao, Shengshi; Shao, Peiying

    2017-01-01

    The changes of microstructure during the process of tempering transformation were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction and internal friction (IF) for low carbon bainite steel. The yield strength of the steel was tested after tempering transformation. The results showed that the microstructures of the experimental steel in rolled state were composed of lath bainite and granular bainite with a little Mo 2 C and NbC precipitates. The lath width of bainite increased continuously with the tempering time. More cell structures with different orientations were formed in bainite laths. Furthermore, poly-gonization gradually began in some laths. The microstructure of granular bainite increased and was coarsened when it devoured the lath bainite continuously. The dislocation density of the bainitic ferrite decreased continuously as Mo 2 C and NbC precipitations were further increasing. The peak value of Snoek decreased continuously in internal friction-temperature spectrum. The peak value of SKK at the surface decreased at first and then increased. The peak value of SKK at the center decreased firstly and then had little change. Besides, the yield strength of the steel increased firstly and then decreased.

  16. Incentives of carbon dioxide regulation for investment in low-carbon electricity technologies in Texas

    International Nuclear Information System (INIS)

    Castillo, Anya; Linn, Joshua

    2011-01-01

    This paper compares the incentives a carbon dioxide emissions price creates for investment in low carbon dioxide-emitting technologies in the electricity sector. We consider the extent to which operational differences across generation technologies - particularly, nuclear, wind and solar photovoltaic - create differences in the incentives for new investment, which is measured by the operating profits of a potential entrant. First, astylized model of an electricity system demonstrates that the composition of the existing generation system may cause electricity prices to increase by different amounts over time when a carbon dioxide price is imposed. Differences in operation across technologies therefore translate to differences in the operating profits of a potential entrant. Then, a detailed simulation model is used to consider a hypothetical carbon dioxide price of $10-$50 per metric ton for the Electric Reliability Council of Texas (ERCOT) market. The simulations show that, for the range of prices considered, the increase in electricity prices is positively correlated with output from a typical wind unit, but the correlation is much weaker for nuclear and photovoltaic. Consequently, a carbon dioxide price creates much stronger investment incentives for wind than for nuclear or photovoltaic technologies in the Texas market. - Highlights: → Compare incentives for new investment in low-emission electricity technologies created by carbon dioxide price. → Focus on ERCOT power system using stochastic unit commitment model. →Find a greater incentive for wind than solar or nuclear because of correlation between wind generation and increase in electricity prices.

  17. Production of Low-Carbon Magnetic Steel for the LHC Superconducting Dipole and Quadrupole Magnets

    CERN Document Server

    Bertinelli, F; Harlet, P; Peiro, G; Russo, A; Taquet, A

    2006-01-01

    In 1996 CERN negotiated a contract with Cockerill Sambre – ARCELOR Group for the supply of 50 000 tonnes of low-carbon steel for the LHC main magnets: this was the first contract to be placed for the project, and one of the single largest. In 2005 – after nine years of work – the contract is being successfully completed. This paper describes the steel specifically developed, known as MAGNETIL™, its manufacturing and quality control process, organization of production, logistics and contract follow-up. Extensive statistics have been collected relating to physical, mechanical and technological parameters. Specific attention is dedicated to magnetic measurements (coercivity and permeability) performed at both room and cryogenic temperatures, the equipment used and statistical results. Reference is also made to the resulting precision of the fineblanked laminations used for the magnet yoke. The technology transfer from the particle accelerator domain to industry is ongoing, for example for ...

  18. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    Science.gov (United States)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  19. Reforming performance of a plasma-catalyst hybrid converter using low carbon fuels

    International Nuclear Information System (INIS)

    Horng, R.-F.; Lai, M.-P.; Huang, H.-H.; Chang, Y.-P.

    2009-01-01

    The reforming performance of a plasma-catalyst hybrid converter using different low carbon fuels was investigated. The methodology was to use arc from spark discharge combined with an appropriate oxygen/carbon molar ratio (O 2 /C) and feeding rate of the supplied mixture. To enhance the mixing and reforming reaction, a gas intake swirl was generated by inducing the mixture tangentially into the reaction chamber. The required energy for fuel processing was provided by heat released through the oxidation of the air-fuel mixture. The reforming temperature as well as the effect of steam addition on the hydrogen production was studied. The results showed that reformate gas temperature had a profound effect on the overall reaction. The H 2 /(CO + CO 2 ) ratio reformed by both methane and propane was shown to increase with temperature and that the optimum ratio was obtained when reforming methane under 650 deg. C. The conversion efficiency of the fuel was also shown to increase with increasing temperature. The best thermal efficiency of 72.01% was obtained near 750 deg. C. The theoretical equilibrium calculations and the experimental results were compared.

  20. Debates of the Vista 2011 Colloquium 'Towards a low carbon energy mix: which role for nuclear?'

    International Nuclear Information System (INIS)

    Barre, Bertrand; Garribba, Massimo; ); Poyer, Luc; Bigot, Bernard; Ducre, Henri; Giraud, Yves; Wehrling, Yann

    2011-12-01

    During two debates (the first one addresses stakes and challenges at the international level, and the second one addresses the French context), the interveners discuss the evolution of energy mixes at the international level and the share of nuclear energy. They address the conditions under which several energy types are being or can be used within the frame of energy transition, and in a context where the growth of energy consumption is mainly due the development of emerging countries. They discuss how western countries will be able to finance huge investments required by the climate challenge for the development of low carbon energies and energy efficiency in a context of economic recession. They discuss the issue of nuclear energy safety after Fukushima, how the share of nuclear energy could be decreased and whether it is possible, which will be the role of renewable energies, how energy mixes are organised at the international level (different approaches in different countries, differences between France and Germany in a European context). They also address the issues related to the EPR (costs, perspectives)

  1. Safety and effective developing nuclear power to realize green and low-carbon development

    Directory of Open Access Journals (Sweden)

    Qi-Zhen Ye

    2016-03-01

    Full Text Available This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety, environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.

  2. Opportunities for low carbon sustainability in large commercial buildings in China

    International Nuclear Information System (INIS)

    Jiang Ping; Keith Tovey, N.

    2009-01-01

    China's building sector consumes one quarter of total energy consumption in the country and plays an important role in long-term ability of the country to achieve sustainable development. This paper discusses a comprehensive approach to achieving low carbon sustainability in large commercial buildings in China incorporating both energy and carbon-reduction strategies. The approach concentrates primarily on three complementary aspects: (a) the introduction of an effective energy management system; (b) the incorporation of relevant advanced energy saving technologies and measures and (c) the promotion of awareness among occupants to make changes in their behaviour towards a more environmental-friendly behaviour. However, reference is also made to the role that renewable energy and offsetting may have in the effective management and environmental performance of buildings. Nine examples of large commercial buildings in Beijing and Shanghai were studied and the average electricity consumption of around 153 kWh/m 2 per annum is about 5 times higher than average electricity use in residential buildings. At the same time the associated green house gas (GHG) emissions are around 158 kg/m 2 per annum.

  3. Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, W.R.; Peixoto, L.C.; Garcia, L.R.; Garcia, A. [Department of Materials Engineering, State University of Campinas, SP (Brazil)

    2009-10-15

    Dual-phase (DP) steels are produced from a specific heat treatment procedure and have recently emerged as a potential class of engineering materials for a number of structural and automobile applications. Such steels have high strength-to-weight ratio and reasonable formability. The present study aims to investigate the effects of four different and conventional heat treatments (i.e., hot rolling, normalizing, annealing, and intercritical annealing) on the resulting microstructural patterns and on the electrochemical corrosion behavior. Electrochemical impedance spectroscopy (EIS) and Tafel plots were carried out on heat treated steel samples in a 0.5 M NaCl solution at 25 C with neutral pH. An equivalent circuit analysis was also used to provide quantitative support for the discussions. The normalizing and the annealing heat treatments have provided the highest and the lowest corrosion resistances, respectively. The intercritical annealing and as-received (hot rolled) low carbon steel samples have shown similar corrosion behavior. Although a deleterious effect on the corrosion resistance has been verified for DP steel due to the residual stress from the martensite formation, it combines good mechanical properties with intermediate electrochemical corrosion resistance. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Scenarios for Low Carbon and Low Water Electric Power Plant Operations: Implications for Upstream Water Use.

    Science.gov (United States)

    Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H

    2016-11-01

    Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.

  5. Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province

    Directory of Open Access Journals (Sweden)

    Min Su

    2017-12-01

    Full Text Available Developing low-carbon agriculture requires investigating the trajectory, decoupling statuses, and driving forces of agricultural carbon emissions. This study explored the evolution of agricultural carbon emissions based on 18 kinds of major carbon emission sources in Henan Province of China, which produces approximately one-tenth of China’s total grain output. We then analyzed the relationship between carbon emissions and economic growth using the decoupling elasticity model, and identified the factors driving the decoupling status. This analysis was done with a decoupling elasticity model, using the Logarithmic Mean Divisia Index technique. There were three key results: (1 Agricultural carbon emissions totaled 16.61 million tons in 1999, and increased by 7.99% to 17.93 million tons in 2014, with an average growth rate of approximately 0.65%; (2 The decoupling relationship between agricultural carbon emissions and economic output was dominated by weak decoupling during the study period; (3 Agricultural labor productivity was the leading contributor to changes in agricultural carbon emissions, followed by farming-animal husbandry carbon intensity, labor, and agricultural structure.

  6. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wang, Bin; Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Jin, Xiaoyue; Du, Jiancheng; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-12-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10{sup 22} m{sup −3}–1.4 × 10{sup 23} m{sup −3}. The atomic ionization degrees of iron, carbon and boron are 10{sup −16}–10{sup −3}, and 10{sup −23}–10{sup −6}, 10{sup −19}–10{sup −4}, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.

  7. Whole through processing understanding of rolling and recrystallization textures in low carbon steels

    International Nuclear Information System (INIS)

    Roatta, A; Fourty, A; Bolmaro, R.E

    2008-01-01

    Processing steels to achieve particular useful properties is a science as well as an art. Many of the properties of modern steels are a successful combination of empiric and scientific knowledge. Deep drawing low carbon steels have been used and improved through many decades of research and technological advance. However the micro mechanisms involved in the development of particular microstructures and properties are still under discussion. The current paper shows an integrated attempt to obtain consistent microscopical data from micromechanical simulations coupled with recrystallization and phase transformation codes. The simulations are performed in a way such that the information obtained from certain temperature, level or process is used in the next step to proceed further. The goal is not avoiding experiments but having a whole through scale and time integration for judging the validity of similar parameters and assumptions during the different processing steps. The simulations include high and low temperature deformation and recrystallization in the austenite region, phase transformation to room temperature, low temperature deformation and recrystallization in the ferrite phase region. The results are compared with experiments available in the literature

  8. Co-Generation and Renewables: Solutions for a Low-Carbon Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Co-generation and renewables: solutions for a low-carbon energy future shows that powerful synergies exist when co-generation and renewables work together. The report documents, for the first time, some of the little-known complementary aspects of the two technologies. It also re-emphasises the stand-alone benefits of each technology. Thus, decision makers can use the report as a 'one-stop shop' when they need credible information on co-generation, renewables and the possible synergies between the two. It also provides answers to policy makers' questions about the potential energy and environmental benefits of an increased policy commitment to both co-generation and renewables. Secure, reliable, affordable and clean energy supplies are fundamental to economic and social stability and development. Energy and environmental decision-makers are faced with major challenges that require action now in order to ensure a more sustainable future. More efficient use of, and cleaner primary energy sources can help to achieve this goal. Co-generation -- also known as combined heat and power (CHP) -- represents a proven, cost-effective and energy-efficient solution for delivering electricity and heat. Renewable sources provide clean and secure fuels for producing electricity and heat.

  9. Surface Modification by Friction Stir Processing of Low-Carbon Steel: Microstructure Investigation and Wear Performance

    Science.gov (United States)

    Sattari, Behnoosh; Shamanian, Morteza; Salimijazi, Farshid; Salehi, Mehdi

    2018-02-01

    A low-carbon steel sheet with a thickness of 5 mm was subjected to friction stir processing (FSP) by one to four different passes. The microstructures of different regions were characterized using the optical microscopy and electron backscatter diffraction. The Vickers micro-harness was measured at the distance of 200 μm below the processed surfaces. The influence of pass numbers (PNs) on wear resistance was studied in terms of coefficients of friction (CoFs), weight losses and wear rates. SEM topographies of the worn surfaces were also studied to evaluate the wear mechanisms. Microstructure observations showed that Widmänstatten ferrite plates were formed in stir zones (SZs) and heat affected zones. As PN increased, these grains were widened due to the increment of the carbon diffusivity and lengthened because of the high heat input and microstructure anisotropy. Besides, increasing the PN causes increasing of the hardness and wear resistance, simultaneously. Specifically, the wear rate in the SZ was reduced from 2.8 × 10-2 mm3 m-1 in base metal to 0.3 × 10-2 mm3 m-1 in sample which was subjected to 4 FSP passes. However, variation in PN had no considerable effect on CoFs. Oxidative wear mechanism was observed on the worn surface of the steel and the FSPed samples while more debris was formed by increasing the PNs.

  10. Nuclear Energy and Renewables interaction: System Effects in Low-carbon Electricity Systems

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Cometto, Marco

    2013-01-01

    This report presents a synthesis of the OECD/NEA study 'Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems'. It addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems

  11. Interactions between California's Low Carbon Fuel Standard and the National Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt; Meyer, Seth

    2017-01-01

    This study investigates the economic interactions between a national renewable fuel policy, namely the Renewable Fuel Standard (RFS) in the United States, and a sub-national renewable fuel policy, the Low Carbon Fuel Standard (LCFS) in California. The two policies have a similar objective of reducing greenhouse gas emissions, but the policies differ in the manner in which those objectives are met. The RFS imposes a hierarchical mandate of renewable fuel use for each year whereas the LCFS imposes a specific annual carbon-intensity reduction with less of a fuel specific mandate. We model the interactions using a partial-equilibrium structural model of agricultural and energy markets in the US and Rest-of-World regions. Our results suggest the policies are mutually reinforcing in that the compliance costs of meeting one of the requirements is lower in the presence of the other policy. In addition, the two policies combine to create a spatial shift in renewable fuel use toward California even though overall renewable fuel use remains relatively unchanged. - Highlights: • Results suggest the RFS and LCFS are mutually reinforcing. • Overall level of renewable fuel use is similar across scenarios. • Renewable fuel use shifts toward California in the presence of the LCFS. • Higher ethanol blend (e.g. E85) use also shifts toward California.

  12. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-04-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C.

  13. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    International Nuclear Information System (INIS)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-01-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C

  14. Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Kumar, Amit, E-mail: chaudhary65amit@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, Satish K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2016-11-01

    In the present investigation, ultra low carbon steel samples were deformed in plane strain compression mode in a deformation simulator. The deformation was carried out at four different temperatures in the warm rolling region (293, 473, 673 and 873 K) upto 70% strain at two different strain rates (0.1/s and 1/s). Subsequently, all the deformed samples were fully recrystallized at 1073 K. Afterwards, all the deformed and fully recrystallized samples were subjected to detailed microstructural characterization using optical microscope, scanning electron microscope and electron backscattered diffraction. Bulk texture was measured for all the samples by X-ray diffraction. In-grain misorientation developments (kernel average misorientations) were estimated for the deformed γ-fibre (ND//<111>) and α-fibre (RD//<110>). Deformed γ-fibre showed an increase in in-grain misorientation at intermediate deformation temperatures. This increase was explained by using the plastic instability criterion. After complete recrystallization, the γ-fibre strengthened for deformation at lower temperatures (293 K and 473 K), while Goss texture developed for samples deformed at higher temperatures (673 K and 873 K). - Highlights: • ULC steel samples were deformed in near plane strain condition. • Microstructural developments were characterized using EBSD. • Increase in in-grain misorientation at intermediate deformation temperatures. • γ-fibre strengthened for low temperature deformation. • Goss texture developed for high temperature deformation.

  15. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    International Nuclear Information System (INIS)

    Liu, Run; Wang, Bin; Wu, Jie; Xue, Wenbin; Jin, Xiaoyue; Du, Jiancheng; Hua, Ming

    2014-01-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10 22 m −3 –1.4 × 10 23 m −3 . The atomic ionization degrees of iron, carbon and boron are 10 −16 –10 −3 , and 10 −23 –10 −6 , 10 −19 –10 −4 , respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed

  16. Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates

    Science.gov (United States)

    Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J. M.; Uranga, P.

    2018-03-01

    The use of microalloyed steels in the production of thick plates is expanding due to the possibility of achieving attractive combinations of strength and toughness. As market requirements for high strength plates are increasing and new applications require reduced weight and innovative designs, novel approaches to attaining cost-effective grades are being developed. The mechanism of precipitation strengthening has been widely used in thin strip products, since the optimization of the coiling strategy offers interesting combinations in terms of final properties and microalloying additions. Precipitation strengthening in thick plates, however, is less widespread due to the limitation of interphase precipitation during continuous cooling after hot rolling. With the main objective of exploring the limits of this strengthening mechanism, laboratory thermomechanical simulations that reproduced plate hot rolling mill conditions were performed using low carbon steels microalloyed with Nb, NbMo, and TiMo additions. After continuous cooling to room temperature, a set of heat treatments using fast heating rates were applied simulating the conditions of induction heat treatments. An important increase of both yield and tensile strengths was measured after induction treatment without any important impairment in toughness properties. A significant precipitation hardening is observed in Mo-containing grades under specific heat treatment parameters.

  17. Transition towards a low carbon economy: A computable general equilibrium analysis for Poland

    International Nuclear Information System (INIS)

    Böhringer, Christoph; Rutherford, Thomas F.

    2013-01-01

    In the transition to sustainable economic structures the European Union assumes a leading role with its climate and energy package which sets ambitious greenhouse gas emission reduction targets by 2020. Among EU Member States, Poland with its heavy energy system reliance on coal is particularly worried on the pending trade-offs between emission regulation and economic growth. In our computable general equilibrium analysis of the EU climate and energy package we show that economic adjustment cost for Poland hinge crucially on restrictions to where-flexibility of emission abatement, revenue recycling, and technological options in the power system. We conclude that more comprehensive flexibility provisions at the EU level and a diligent policy implementation at the national level could achieve the transition towards a low carbon economy at little cost thereby broadening societal support. - Highlights: ► Economic impact assessment of the EU climate and energy package for Poland. ► Sensitivity analysis on where-flexibility, revenue recycling and technology choice. ► Application of a hybrid bottom-up, top-down CGE model

  18. Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?

    International Nuclear Information System (INIS)

    Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; Hultman, Nathan E.

    2016-01-01

    National-level policies to promote deployment of low-carbon technologies have been suggested and used as a means to reduce greenhouse gas emissions in the context of international climate change mitigation. The long-term benefits of such policies in the context of international climate change mitigation depend on their effects on near-term emissions abatement and resultant long-term technological change that will reduce abatement costs of achieving global mitigation goals. There is also an argument that these policies might foster early-mover advantages in international low-carbon technology markets. We first review the factors that could influence such benefits and use a global integrated assessment model to present an illustrative example to understand the potential magnitude of these benefits. We find that reductions in long-term abatement costs might not provide sufficient incentives to justify policies to promote the deployment of low-carbon technologies, in particular, the emerging, higher-risk, and currently expensive alternatives. We also find that early-mover advantages can potentially provide substantial benefits, but only if these advantages are both strong and persistent. Our results suggest a role for international cooperation in low-carbon technology deployment to address the existence of free-riding opportunities in the context of global climate change mitigation. - Highlights: • Study long-term benefits of low-carbon deployment in climate mitigation context. • Focus on reduced long-term abatement costs and early-mover advantage benefits . • Benefits depend on interactions among country, sector and technology factors. • Reduced long-term costs may not sufficiently incentivize expensive investments. • Early-mover advantages may incentivize such investments if strong and persistent.

  19. Decarbonizing the Global Economy - An Integrated Assessment of Low Carbon Emission Scenarios proposed in Climate Policy

    Science.gov (United States)

    Hokamp, Sascha; Khabbazan, Mohammad Mohammadi

    2017-04-01

    In 2015, the Conference of the Parties (COP 21) reaffirmed to targeting the global mean temperature rise below 2 °C in 2100 while finding no consent on decarbonizing the global economy, and instead, the final agreement called for enhanced scientific investigation of low carbon emission scenarios (UNFCC, 2015). In addition, the Climate Action Network International (CAN) proposes Special Reports to address decarbonization and low carbon development including 1.5 °C scenarios (IPCC, 2016). In response to these developments, we investigate whether the carbon emission cuts, in accordance with the recent climate policy proposals, may reach the climate target. To tackle this research question, we employ the coupled climate-energy-economy integrated assessment Model of INvestment and endogenous technological Development (MIND, cf. Edenhofer et al., 2005, Neubersch et al. 2014). Extending MIND's climate module to the two-box version used in the Dynamic Integrated model of Climate and the Economy (DICE, cf. Nordhaus and Sztorc, 2013, Nordhaus 2014), we perform a cost-effectiveness analysis with constraints on anthropogenic carbon emissions. We show that a climate policy scenario with early decarbonization complies with the 2° C climate target, even without Carbon Capturing and Storage (CCS) or negative emissions (see van Vuuren et al., 2013, for negative emissions). However, using emission inertia of 3.7 percent annually, reflecting the inflexibility on transforming the energy sector, we find a climate policy with moderately low emissions from 2100 onwards at a cost in terms of Balanced Growth Equivalents (BGE, cf. Anthoff and Tol, 2009) of 0.764 % that requires an early (2035 vs. 2120) peak of investments in renewable energy production compared to a business-as-usual scenario. Hence, decarbonizing the global economy and achieving the 2 °C target might still be possible before 2100, but the window of opportunity is beginning to close. References: Anthoff, D., and Tol, R

  20. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  1. “Investments and public finance in a green, low carbon, economy”

    International Nuclear Information System (INIS)

    Carraro, Carlo; Favero, Alice; Massetti, Emanuele

    2012-01-01

    The paper evaluates the impacts on investments and public finance of a transition to a green, low carbon, economy induced by carbon taxation. Four global tax scenarios are examined using the integrated assessment model WITCH. Taxes are levied on all greenhouse gases (GHGs) and lead to global GHG concentrations equal to 680, 560, 500 and 460 ppm CO 2 -eq in 2100. Investments in the power sector increase with respect to the Reference scenario only with the two highest taxes. Investments in energy-related R and D increase in all tax scenarios, but they are a small fraction of GDP. Investments in oil upstream decline in all scenarios. As a result, total investments decline with respect to the Reference scenario. Carbon tax revenues are high in absolute terms and as share of GDP. With high carbon taxes, tax revenues follow a “carbon Laffer” curve. The model assumes that tax revenues are flawlessly recycled lump-sum into the economy. In all scenarios, the power sector becomes a net recipient of subsidies to support the absorption of GHGs. In some regions, with high carbon taxes, subsidies to GHG removal are higher than tax revenues at the end of the century. - Highlights: ► Costs, investments and tax revenues induced by carbon taxes are only loosely related. ► Investments in power generation increase only with stabilization targets below 550 ppm CO 2 -eq. ► The carbon taxes induce an overall contraction of investments. ► Tax revenues can be as high as 20% of GDP and follow a “carbon” Laffer curve. ► Subsidies for absorption of GHG may be higher than carbon taxes at the end of the century.

  2. Meeting carbon budgets - ensuring a low-carbon recovery. 2nd progress report to Parliament

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    This is our second annual report to Parliament on progress reducing emissions and meeting carbon budgets as required under the Climate Change Act. It follows our first report to Parliament in October 2009. In this report, we consider latest trends in annual emissions relative to current budget limits, and we assess progress against our forward indicators which determine whether we are on track to meet future budgets. The UK's greenhouse gas emissions fell 8.6% from 2008 to 2009 with reductions of 9.7% in CO{sub 2} and 1.9% in non-CO{sub 2} emissions. But the reduction was largely due to the recession and other exogenous factors, which we estimate could reduce emissions by up to 6% over the first budget period. Underlying progress, which we assess by looking at the impact of specific policy measures, was limited relative to that needed to put the UK on the path towards the 2050 target, implying that a step change in the pace of emissions reduction is still required. We therefore reiterate our recommendation (set out in our first annual report) that outperformance in the first budget period should not be banked. We raise the issue of whether the second and third budgets should be tightened in the face of the easier short term challenge - for instance by moving to the Commmitee's 'Intended budget' even in the absence of a new global agreement. And we recommend that new policies are introduced to strengthen incentives for energy efficiency improvement, investment in low-carbon power generation, development of an electric car market, and introduction of new practices in agriculture. 56 figs., 8 tabs.

  3. Stochastic Pricing and Order Model with Transportation Mode Selection for Low-Carbon Retailers

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2016-01-01

    Full Text Available More and more enterprises have begun to pay attention to their carbon footprint in the supply chain, of which transportation has become the second major source of carbon emissions. This paper aims to study both optimum pricing and order quantities, considering consumer demand and the selection of transportation modes by retailers, in terms of carbon emissions sensitivity and price sensitivity under the conditions of a cap-and-trade policy and uncertain market demand. Firstly, we analyze the effects of transportation mode (including transportation costs and transportation-induced carbon emissions, initial emissions allowances, carbon emissions trading price and consumer sensitivity to carbon emissions on the optimum decisions and profits of retailers. The results demonstrate that when consumers are less sensitive to price, the optimum retail price and the optimum order quantity of products are proportional to the transportation cost and transportation-induced carbon emissions of retailers per unit product, the carbon emissions trading price as well as consumer sensitivity to carbon emissions. However, when consumers are highly sensitive to price, the optimum order quantity of products is inversely proportional to the transportation costs and transportation-induced carbon emissions of retailers per unit product, the carbon emissions trading price and consumer sensitivity to carbon emissions. In addition, the optimum retail price of products is inversely proportional to consumer sensitivity to carbon emissions. We also find that retailers prefer a low-carbon transportation mode when the carbon emissions trading price is high. Meanwhile, the carbon emissions trading price influences the carbon emissions trading volume of retailers. These theoretical findings are further validated by some numerical analysis.

  4. Contestation, contingency, and justice in the Nordic low-carbon energy transition

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2017-01-01

    The five Nordic countries have aggressive climate and energy policies in place and have already emerged to be leaders in renewable energy and energy efficiency. Denmark is renowned for its pioneering use of wind energy, Finland and Sweden bioenergy, Norway hydroelectricity and Iceland geothermal energy. All countries aim to be virtually “fossil free” by 2050. This study explores the Nordic energy transition through the lens of three interconnected research questions: How are they doing it? What challenges exist? And what broader lessons result for energy policy? The study firstly investigates the pathways necessary for these five countries to achieve their low-carbon goals. It argues that a concerted effort must be made to (1) promote decentralized and renewable forms of electricity supply; (2) shift to more sustainable forms of transport; (3) further improve the energy efficiency of residential and commercial buildings; and (4) adopt carbon capture and storage technologies for industry. However, the section that follows emphasizes some of the empirical barriers the Nordic transition must confront, namely political contestation, technological contingency, and social justice and recognition concerns. The study concludes with implications for what such historical progress, and future transition pathways, mean for both energy researchers and energy planners. - Highlights: • Nordic countries have strong energy and climate policies to be practically “fossil free” by 2050. • Decarbonization and transition pathways depend on renewable energy, efficiency, transport, and industry. • The Nordic transition remains contingent on further technological innovations and policy commitments. • It also raises energy justice issues concerning employment, public knowledge, and embodied emissions.

  5. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel

    International Nuclear Information System (INIS)

    Mulholland, Michael D.; Seidman, David N.

    2011-01-01

    Nanoscale co-precipitation in a novel high-strength low-carbon steel is studied in detail after isothermal aging. Atom-probe tomography is utilized to quantify the co-precipitation of co-located Cu precipitates and M 2 C (M is any combination of Cr, Mo, Fe, or Ti) carbide strengthening precipitates. Coarsening of Cu precipitates is offset by the nucleation and growth of M 2 C carbide precipitate, resulting in the maintenance of a yield strength of 1047 ± 7 MPa (152 ± 1 ksi) for as long as 320 h of aging time at 450 deg. C. Impact energies of 153 J (113 ± 6 ft-lb) and 144 J (106 ± 2 ft-lb) are measured at -30 deg. C and -60 deg. C, respectively. The co-location of Cu and M 2 C carbide precipitates results in non-stationary-state coarsening of the Cu precipitates. Synchrotron-source X-ray diffraction studies reveal that the measured 33% increase in impact toughness after aging for 80 h at 450 deg. C is due to dissolution of cementite, Fe 3 C, which is the source of carbon for the nucleation and growth of M 2 C carbide precipitates. Less than 1 vol.% austenite is observed for aging treatments at temperatures less than 600 deg. C, suggesting that transformation-induced plasticity does not play a significant role in the toughness of specimens aged at temperatures less than 600 deg. C. Aging treatments at temperatures greater than 600 deg. C produce more austenite, in the range 2-7%, but at the expense of yield strength.

  6. Strategic siting and regional grid interconnections key to low-carbon futures in African countries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Grace C. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). International Energy Studies Group; Deshmukh, Ranjit [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). International Energy Studies Group; Ndhlukula, Kudakwashe [Namibia Univ. of Science and Technology, Windhoek, (Namibia). Southern Africa Development Community (SADC) Centre for Renewable Energy and Energy Efficiency; Radojicic, Tijana [International Renewable Energy Agency, Masdar City, Abu Dhabi (United Arab Emirates); Reilly-Moman, Jessica [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). International Energy Studies Group; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). International Energy Studies Group; Kammen, Daniel M. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Callaway, Duncan S. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group

    2017-03-27

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental– impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with “no-regrets” options—or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6–20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. In conclusion, the overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.

  7. Evaluation of creep-fatigue life prediction methods for low-carbon/nitrogen-added SUS316

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1998-01-01

    Low-carbon/medium nitrogen 316 stainless steel called 316FR is a principal candidate for the high-temperature structural materials of a demonstration fast reactor plant. Because creep-fatigue damage is a dominant failure mechanism of the high-temperature materials subjected to thermal cycles, it is important to establish a reliable creep-fatigue life prediction method for this steel. Long-term creep tests and strain-controlled creep-fatigue tests have been conducted at various conditions for two different heats of the steel. In the constant load creep tests, both materials showed similar creep rupture strength but different ductility. The material with lower ductility exhibited shorter life under creep-fatigue loading conditions and correlation of creep-fatigue life with rupture ductility, rather than rupture strength, was made clear. Two kinds of creep-fatigue life prediction methods, i.e. time fraction rule and ductility exhaustion method were applied to predict the creep-fatigue life. Accurate description of stress relaxation behavior was achieved by an addition of 'viscous' strain to conventional creep strain and only the latter of which was assumed to contribute to creep damage in the application of ductility exhaustion method. The current version of the ductility exhaustion method was found to have very good accuracy in creep-fatigue life prediction, while the time fraction rule overpredicted creep-fatigue life as large as a factor of 30. To make a reliable estimation of the creep damage in actual components, use of ductility exhaustion method is strongly recommended. (author)

  8. Towards low carbon society in Iskandar Malaysia: Implementation and feasibility of community organic waste composting.

    Science.gov (United States)

    Bong, Cassendra Phun-Chien; Goh, Rebecca Kar Yee; Lim, Jeng-Shiun; Ho, Wai Shin; Lee, Chew-Tin; Hashim, Haslenda; Abu Mansor, Nur Naha; Ho, Chin Siong; Ramli, Abdul Rahim; Takeshi, Fujiwara

    2017-12-01

    Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Strategic siting and regional grid interconnections key to low-carbon futures in African countries.

    Science.gov (United States)

    Wu, Grace C; Deshmukh, Ranjit; Ndhlukula, Kudakwashe; Radojicic, Tijana; Reilly-Moman, Jessica; Phadke, Amol; Kammen, Daniel M; Callaway, Duncan S

    2017-04-11

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental-impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with "no-regrets" options-or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6-20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.

  10. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    Directory of Open Access Journals (Sweden)

    Carreño, J. A.

    2003-12-01

    Full Text Available A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in the steel and to quantify the roughness effect. Simultaneously, bipotentiostatic hydrogen permeation test were performed to evaluate the coefficient of mass transfer.

    El presente trabajo modela el efecto de la rugosidad y el perfil de concentración de hidrógeno en un acero, tomando como punto de partida la segunda ley de Fick para explicar el transporte de hidrógeno en el acero. El problema se trata como un problema variacional y su solución espacial se hace numéricamente por el Método de Elementos Finitos, mientras que la temporal por el Método de Diferencias Finitas, siendo estas las herramientas utilizadas para determinar los perfiles de concentración y cuantificar el efecto superficial presentado en este tipo de fenómeno. Además, a partir de la teoría se obtienen ecuaciones algebraicas que determinan el efecto que tiene la preparación superficial y el coeficiente de transferencia de masa con la permeación y concentración de hidrógeno en el acero.

  11. Determination of aluminium nitride or free nitrogen in low carbon steel

    International Nuclear Information System (INIS)

    Guetaz, V.; Soler, M.; Massardier, V.; Merlin, J.; Ravaine, D.

    2001-01-01

    As the aluminium nitrides play an important role in the manufacturing of steel sheets, a specific methodology was developed based on the thermoelectric power (TEP) technique, in order to determine the AIN nitrogen by an indirect method. The free nitrogen was determined and then the AIN nitrogen was calculated by the difference between the total nitrogen and the free nitrogen. Indeed, it is easier to determine the dissolved nitrogen, the content of which gradually decreases during the AIN precipitation, than the AIN nitrogen. A low carbon aluminium killed steel was employed with 580 ppm of aluminium and 50 ppm of nitrogen. A comparison of the results obtained by TEP with those obtained by other techniques (hot hydrogen extraction, electrochemical dissolution followed by a mineralization, electrochemical dissolution followed by a sodic decomposition and the Beeghly method) was conducted, in order to determine a reliable technique likely to quantify the amount of aluminium nitrides in aluminium killed steels. With these techniques, it is possible to determine either free nitrogen or precipitated nitrogen. From an experimental point of view, the precipitation kinetics of AIN was followed during an annealing performed at 973 K (700 C) by TEP and then different precipitation states of AIN were investigated to compare the different techniques: three annealing states (when no nitrogen, half the nitrogen and the total nitrogen has precipitated) and two soaking states (1403 and 1523 K). Thus, it was possible to compare states where the AIN precipitates are in various forms (different shapes, crystallographic structures, sizes, distributions in the matrix). This work showed that the quantification by TEP, hot hydrogen extraction and electrochemical dissolution followed by a mineralization seem reliable whereas the Beeghly method gives good results only for the precipitates formed at high temperatures. In contrast, the quantification by electrochemical dissolution followed by

  12. A Significant Role for Renewables in a Low-Carbon Energy Economy?

    Science.gov (United States)

    Newmark, R. L.

    2015-12-01

    Renewables currently make up a small (but growing) fraction of total U.S. electricity generation. In some regions, renewable growth has resulted in instantaneous penetration levels of wind and solar in excess of 60% of demand. With decreasing costs, abundant resource potential and low carbon emissions and water requirements, wind and solar are increasingly becoming attractive new generation options. However, factors such as resource variability and geographic distribution of prime resources raise questions regarding the extent to which our power system can rely on variable generation resources. Here, we describe scenario analyses designed to tackle engineering and economic challenges associated with variable generation, along with insights derived from research results. These analyses demonstrate the operability of high renewable systems and quantify some of the engineering challenges (and solutions) associated with maintaining reliability. Key questions addressed include the operational and economic impacts of increasing levels of variable generation on the U.S. power system. Since reliability and economic efficiency are measured across a variety of time frames, and with a variety of metrics, a suite of tools addressing different system impacts are used to understand how new resources affect incumbent resources and operational practices. We summarize a range of modeled scenarios, focusing on ones with 80% RE in the United States and >30% variable wind and solar in the East and the West. We also summarize the environmental impacts and benefits estimated for these and similar scenarios. Results provide key insights to inform the technical, operational and regulatory evolution of the U.S. power system. This work is extended internationally through the 21st Century Power Partnership's collaborations on power system transformation, with active collaboration in Canada, Mexico, India, China and South Africa, among others.

  13. A review of low carbon fuel policies: Principles, program status and future directions

    International Nuclear Information System (INIS)

    Yeh, Sonia; Witcover, Julie; Lade, Gabriel E.; Sperling, Daniel

    2016-01-01

    A low carbon fuel standard (LCFS) is a market-based policy that specifies declining standards for the average lifecycle fuel carbon intensity (AFCI) of transportation fuels sold in a region. This paper: (i) compares transportation fuel carbon policies in terms of their economic efficiency, fuel price impacts, greenhouse gas emission reductions, and incentives for innovation; (ii) discusses key regulatory design features of LCFS policies; and (iii) provides an update on the implementation status of LCFS policies in California, the European Union, British Columbia, and Oregon. The economics literature finds that an intensity standard implicitly taxes emissions and subsidizes output. The output subsidy results in an intensity standard being inferior to a carbon tax in a first-best world, although the inefficiency can be corrected with a properly designed consumption tax (or mitigated by a properly designed carbon tax or cap-and-trade program). In California, from 2011 to 2015 the share of alternative fuels in the regulated transportation fuels pool increased by 30%, and the reported AFCI of all alternative fuels declined 21%. LCFS credit prices have varied considerably, rising to above $100/credit in the first half of 2016. LCFS programs in other jurisdictions share many features with California's, but have distinct provisions as well. - Highlights: • LCFS is a market-based policy that sets standards for carbon intensity of fuels. • We compare efficiency, price impacts, GHG emissions, and innovation of C policies. • In California, reported carbon intensity of alternative fuels declined 21% 2011–2015. • LCFS credit prices have varied considerably, rising to above $100/credit in the first half of 2016. • Other LCFS programs share many features with CA's and have distinct provisions.

  14. Challenges to China's transition to a low carbon electricity system

    Energy Technology Data Exchange (ETDEWEB)

    Kahrl, Fredrich, E-mail: fkahrl@berkeley.edu [Energy and Resources Group, University of California, Berkeley, 310 Barrows Hall, Berkeley, CA 94720 (United States); Williams, Jim [Energy and Environmental Economics, Inc., 101 Montgomery Street, 16th Floor, San Francisco, CA 94104 (United States); Monterey Institute of International Studies, 460 Pierce Street, Monterey, CA 93940 (United States); Ding Jianhua [Energy and Environmental Economics, Inc., 101 Montgomery Street, 16th Floor, San Francisco, CA 94104 (United States); Hu Junfeng [School of Economics and Business Administration, North China Electric Power University, Beijing 102206 (China)

    2011-07-15

    We examine the challenges to China's transition to a low carbon electricity system, in which renewable energy would play a significant role. China's electricity system currently lacks the flexibility in planning, operations, and pricing to respond to conflicting pressures from demand growth, rising costs, and environmental mandates in a way that simultaneously maintains reliability, decarbonizes the system, and keeps prices within acceptable bounds. Greater flexibility crucially requires the ability to more systematically and transparently manage and allocate costs. This will require re-orientating sector institutions still rooted in central planning, and strengthening independent regulation. Some of the necessary changes require fundamental political and legal reforms beyond the scope of energy policy. However, the system's flexibility can still be increased through the development of traditional planning and regulatory tools and approaches, such as an avoided cost basis for energy efficiency investments, more integrated planning to improve the coordination of generation, transmission, and demand-side investments, and a transparent ratemaking process. The judicious application of OECD electricity sector experience and skills can support these developments. - Research Highlights: > China's electricity system currently lacks the flexibility to integrate renewables and reduce CO{sub 2} emissions on a large scale at an acceptable cost and level of reliability. > The challenges to increased flexibility are more institutional than technological. > Chinese government agencies need new approaches to basic power system planning and ratemaking. > OECD countries can help address these challenges through the transfer of 'soft' technologies.

  15. Carbon markets and low-carbon investment in emerging economies: A synthesis of parallel workshops in Brazil and India

    International Nuclear Information System (INIS)

    Hultman, Nathan E.; Pulver, Simone; Pacca, Sergio; Saran, Samir; Powell, Lydia; Romeiro, Viviane; Benney, Tabitha

    2011-01-01

    While policy experiments targeted at energy and innovation transitions have not been deployed consistently across all countries, market mechanisms such as carbon pricing have been tested over the past decade in disparate development contexts, and therefore provide some opportunities for analysis. This brief communication reports on two parallel workshops recently held in Sao Paulo, Brazil and New Delhi, India to address questions of how well these carbon pricing policies have worked in affecting corporate decisions to invest in low-carbon technology. Convening practitioners and scholars from multiple countries, the workshops elicited participants' perspectives on business investment decisions under international carbon markets in emerging economies across multiple energy-intensive sectors. We review the resulting perspectives on low-carbon policies and present guidance on a research agenda that could clarify how international and national policies could help encourage both energy transitions and energy innovations in emerging economies.

  16. Identifying shared and contested elements in climate plans as part of shaping transitions towards a Danish low carbon society

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2011-01-01

    The Danish government's vision about Denmark as a society independent of fossil energy has initiated several Danish energy and climate action plans during 2009-2010 with visions and measures for a 30-40 year time perspective. The paper analyses differences and similarities in action plans from....... The analyses are conducted as part of a project about sustainable transitions towards a low carbon society. The plan from the renewable energy NGO is an energy plan, while the other plans are climate plans, which include non-energy related greenhouse gasses from land use changes and use of fertilizers...... in agriculture. The plans differ with respect to whether and how agricultural production and Danish food consumption should change as part of transitions towards a low carbon society. All four plans agree about a significant increase in Danish wind turbine capacity and stronger energy saving efforts in Danish...

  17. Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel

    International Nuclear Information System (INIS)

    Fu Hanguang; Xiao Qiang; Kuang Jiacai; Jiang Zhiqiang; Xing Jiandong

    2007-01-01

    A new type of wear resistant low carbon Fe-B cast steel with granular borides can be obtained by alloying with titanium and cerium rare earth (RE). As a result, the as-cast eutectic boride structures of Fe-B cast steel are greatly refined and a blocky, less interconnected boride network is obtained from continuous ledeburite. After heat treatment, the boride eutectic in the modified Fe-B cast steel is in the form of a granular boride structure that appears to be isolated particles The guide rollers made of modified low carbon Fe-B cast steel show excellent wear resistance and thermal fatigue resistance in high speed wire mills

  18. DEVELOPMENT OF A METHOD TO DESIGN A LOW-CARBON SOCIETY IN SMALL COMMUNITY AND ITS APPLICATION TO PUTRAJAYA, MALAYSIA

    Science.gov (United States)

    Hayashi, Yuri; Simson, Janice. J.; Gomi, Kei; Matsuoka, Yuzuru

    In this study, we developed the method to design Low-carbon society for small communities almost without industry, with regarding of costs for countermeasures. Then we applied it to Putrajaya, Malaysia, and estimate Socio-economic indicators, energy demand, CO2 emission in year 2007 and 2025. For countermeasure case in 2025, we set three cases according to their priority; Transport, Renewable energy, Building, and calculated costs for countermeasures also. As a result, it was shown that it is possible to reduce 45% of CO2 emission by 2025 compared to 2007 level. Renewable energy priority case needs the highest cost, and Building and Transport was estimated to be the second and third highest. C-ExSS will help more realistic discussion on the policy and countermeasures for developing low-carbon society based on their costs.

  19. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    DEFF Research Database (Denmark)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.

    2014-01-01

    by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants......The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark...... was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed...

  20. Blueprint for the development of low carbon society scenarios for Asian regions- case study of Iskandar Malaysia

    International Nuclear Information System (INIS)

    Ho, C S; Chau, L W; Teh, B T; Matsuoka, Y; Simson, J J; Gomi, K

    2013-01-01

    Malaysian government aims to reduce 40% reduction of carbon emission intensity by the year 2020 using 2005 as the base year. Several mitigation and adaptation strategies in addressing environmental and climate change are formulated at national, regional and local level to mitigate greenhouse gases. This paper aims to examine local and regional resilient policy actions to reduce greenhouse gases using the empirical case of Iskandar Malaysia. The study case is selected because it is one of the fast developing economic corridor regions in Malaysia. In this study, a low carbon society blueprint is initiated to guide the rapid development of this economic corridor towards low carbon green growth. The blueprint provides the sustainable green growth roadmap with major 12 actions for the region. It is done through a bottom-up approach where stakeholder discussions are carried out to allow local communities participation in the plan formulation.

  1. Blueprint for the development of low carbon society scenarios for Asian regions- case study of Iskandar Malaysia

    Science.gov (United States)

    Ho, C. S.; Matsuoka, Y.; Chau, L. W.; Teh, B. T.; Simson, J. J.; Gomi, K.

    2013-06-01

    Malaysian government aims to reduce 40% reduction of carbon emission intensity by the year 2020 using 2005 as the base year. Several mitigation and adaptation strategies in addressing environmental and climate change are formulated at national, regional and local level to mitigate greenhouse gases. This paper aims to examine local and regional resilient policy actions to reduce greenhouse gases using the empirical case of Iskandar Malaysia. The study case is selected because it is one of the fast developing economic corridor regions in Malaysia. In this study, a low carbon society blueprint is initiated to guide the rapid development of this economic corridor towards low carbon green growth. The blueprint provides the sustainable green growth roadmap with major 12 actions for the region. It is done through a bottom-up approach where stakeholder discussions are carried out to allow local communities participation in the plan formulation.

  2. DES/CCHP: The best utilization mode of natural gas for China’s low carbon economy

    International Nuclear Information System (INIS)

    Li, Yajun; Xia, Yan

    2013-01-01

    In this paper, through the analysis of the great challenges faced by China’s energy industry in the development of low carbon economy, it is advisable that China increase the proportion of natural gas (NG) in primary energy as the main strategy of energy conservation and CO 2 reduction in the advancement of industrialization and urbanization. In the near future, NG will become one of the major energy suppliers for new towns and industrial parks, and work for electric peak shaving when used in distributed energy system/combined cold, heat and power (DES/CCHP). However, as an efficient approach to improve the energy utilization efficiency, DES/CCHP cannot only increase the current energy efficiency from 33% to 50.3% (the world’s average), but also reduce the cost of terminal supplies of power, cold, steam and hot water. It will become one of the most important means to control CO 2 emissions in the next 20 years, and is essential to China’s low carbon industrialization and urbanization. - Highlights: ► China’s high economic growth has lead to a huge amount of carbon emissions. ► Climate change calls for a low carbon economy in China. ► The pressure of carbon emission reduction requires China reduce the excessive dependency on coal and oil. ► Natural gas used in distributed energy system/combined cold, heat and power (NG DES/CCHP) is low in carbon emission. ► NG DES/CCHP is the optimal energy supplier for a low carbon economy in China.

  3. TEM Study of the Orientation Relationship Between Cementite and Ferrite in a Bainitic Low Carbon High Strength Low Alloy Steel

    OpenAIRE

    Illescas Fernandez, Silvia; Brown, A.P.; He, K.; Fernández, Javier; Guilemany Casadamon, Josep Maria

    2005-01-01

    Two different bainitic structures are observed in a steel depending on the sample heat treatment. The different types of bainitic structures exhibit different orientation relationships between cementite and the ferrite matrix. Upper bainite presents a Pitsch orientation relationship and lower bainite presents a Bagaryatski orientation relationship. Different heat treatments of low carbon HSLA steel samples have been studied using TEM in order to find the orientation relationshi...

  4. Eco-efficient based logistics network design in hybrid manufacturing/ remanufacturing system in low-carbon economy

    Directory of Open Access Journals (Sweden)

    Yacan Wang

    2013-03-01

    Full Text Available Purpose: Low-carbon economy requires the pursuit of eco-efficiency, which is a win-win situation between economic and environmental efficiency. In this paper the question of trading off the economic and environmental effects embodied in eco-efficiency in the hybrid manufacturing/remanufacturing logistics network design in the context of low-carbon economy is examined.Design/methodology/approach: A multi-objective mixed integer linear programming model to find the optimal facility locations and materials flow allocation is established. In the objective function, three minimum targets are set: economic cost, CO2 emission and waste generation. Through an iterative algorithm, the Pareto Boundary of the problem is obtained.Findings: The results of numeric study show that in order to achieve a Pareto improvement over an original system, three of the critical rates (i.e. return rate, recovery rate, and cost substitute rate should be increased.Practical implications: To meet the need of low-carbon dioxide, an iso- CO2 emission curve in which decision makers have a series of optimal choices with the same CO2 emission but different cost and waste generation is plotted. Each choice may have different network design but all of these are Pareto optimal solutions, which provide a comprehensive evaluation of both economics and ecology for the decision making.Originality/value: This research chooses carbon emission as one of the three objective functions and uses Pareto sets to analyze how to balance profitability and environmental impacts in designing remanufacturing closed-loop supply chain in the context of low-carbon economy.

  5. Prevention of burn-on defect on surface of hydroturbine blade casting of ultra-low-carbon refining stainless steel

    Directory of Open Access Journals (Sweden)

    Li Ling

    2008-08-01

    Full Text Available The burn-on sand is common surface defect encountered in CO2-cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel, its feature, causes and prevention measures are presented in this paper. Experiments showed that the burn-on defect is caused by oxidization of chromium in the molten steel at high temperature and can be effectively eliminated by using chromium-corundum coating.

  6. Monetary or environmental appeals for saving electricity? –Potentials for spillover on low carbon policy acceptability

    International Nuclear Information System (INIS)

    Steinhorst, Julia; Matthies, Ellen

    2016-01-01

    The acceptability of low carbon policies is an important precondition for energy system transitions, such as the German Energiewende. This long-term experimental study examines the potential for behavioural spillover on the acceptability of low carbon policies, caused by a framed intervention to promote electricity saving behaviour. Clients of a German energy provider were randomly assigned to continuously receive electricity saving tips with either monetary framing (saving potential in €) or environmental framing (saving potential in CO_2). The control group did not receive any information. In two follow-up surveys, four (N=333) and nine months (N=258) later, participants rated the acceptability of several low carbon policies. A pre-survey assessed the personal ecological norm for saving electricity. Participants with strong personal ecological norms reported generally higher policy acceptability. After environmental framing they also indicated higher acceptability compared to the monetary framing or control group. These results indicate that information campaigns should be designed carefully in order to promote positive spillover effects. Environmental framing of private-sphere behaviour can increase the disposition for further pro-environmental behaviour in the public sphere, e.g. policy acceptability. When appealing to monetary benefits in pro-environmental behaviour, there is a risk of inhibiting positive spillover effects. - Highlights: •Policy acceptability may be influenced by type of framing and individual factors. •We examined long-term spillover effects in association with type of framing. •Framing (environmental vs. monetary) interacts with personal ecological norms. •For strong personal ecological norms, environmental framing increases acceptability. •Also, strong personal ecological norms increase low carbon policy acceptability.

  7. Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems : Method comments to a NEA report

    OpenAIRE

    Söder, Lennart

    2012-01-01

    OECD Nuclear Energy Agency (NEA) released a new report on 29 November 2012. The study recommends that decision-makers should take full electricity system costs into account in energy choices and that such costs should be internalised according to a “generator pays” principle. The study, entitled Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems, addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as ...

  8. The economic case for low-carbon development in rapidly growing developing world cities: A case study of Palembang, Indonesia

    International Nuclear Information System (INIS)

    Colenbrander, Sarah; Gouldson, Andy; Sudmant, Andrew Heshedahl; Papargyropoulou, Effie

    2015-01-01

    Where costs or risks are higher, evidence is lacking or supporting institutions are less developed, policymakers can struggle to make the case for low-carbon investment. This is especially the case in developing world cities where decision-makers struggle to keep up with the pace and scale of change. Focusing on Palembang in Indonesia, this paper considers the economic case for proactive investment in low-carbon development. We find that a rapidly growing industrial city in a developing country can reduce emissions by 24.1% in 2025, relative to business as usual levels, with investments of USD405.6 million that would reduce energy expenditure in the city by USD436.8 million. Emissions from the regional grid could be reduced by 12.2% in 2025, relative to business as usual trends, with investments of USD2.9 billion that would generate annual savings of USD175 million. These estimates understate the savings from reduced expenditure on energy subsidies and energy infrastructure. The compelling economic case for mainstreaming climate mitigation in this developing country city suggests that the constraints on climate action can be political and institutional rather than economic. There is therefore a need for more effective energy governance to drive the transition to a low-carbon economy. - Highlights: • We evaluate the economic case for low carbon investment in a developing world city. • Cost-effective measures could reduce emissions by 24.1% relative to BAU levels. • These pay for themselves in <1 year and generate savings throughout their lifetime. • Further savings come from reduced expenditure on energy infrastructure, subsidies. • Limitations on climate action seem to be political/institutional – not economic

  9. The role of research community in facilitating the implementation of the low-carbon Society Blueprint in Malaysia

    International Nuclear Information System (INIS)

    Ho, Chin Siong

    2015-01-01

    The Malaysian government recognises that climate change and the adverse consequences arising from it are real, and has taken positive policy actions to address climate change. Researchers are working together with regional policy-makers to prepare a baseline study and formulate 12 Action Plan to promote a low-carbon society for the fast growing regional economic corridor to reduce GHG emissions, while pursuing the national goal of economic growth towards a high income nation status.

  10. Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models

    Directory of Open Access Journals (Sweden)

    Jiefang Dong

    2016-12-01

    implications for future efforts to reduce the growth of transportation-based carbon dioxide emissions in Xinjiang and for any effort to construct low-carbon and sustainable environments.

  11. Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working

    International Nuclear Information System (INIS)

    Lauprecht, W.; Imgrund, H.; Coldren, P.

    1975-01-01

    A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm 2 the transition temperature T 50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm 2 . As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm 2 . On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm 2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm 2 . Because of low carbon content, this steel is characterized by good

  12. Dynamic analysis of the urban-based low-carbon policy using system dynamics: Focused on housing and green space

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Taehoon, E-mail: hong7@yonsei.ac.kr [Associate Professor, Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of); Kim, Jimin, E-mail: cookie6249@yonsei.ac.kr; Jeong, Kwangbok, E-mail: kbjeong7@yonsei.ac.kr [Research Assistant and Ph.D. Student, Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of); Koo, Choongwan, E-mail: cwkoo@yonsei.ac.kr [Postdoctoral Fellow, Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of)

    2015-02-09

    To systematically manage the energy consumption of existing buildings, the government has to enforce greenhouse gas reduction policies. However, most of the policies are not properly executed because they do not consider various factors from the urban level perspective. Therefore, this study aimed to conduct a dynamic analysis of an urban-based low-carbon policy using system dynamics, with a specific focus on housing and green space. This study was conducted in the following steps: (i) establishing the variables of urban-based greenhouse gases (GHGs) emissions; (ii) creating a stock/flow diagram of urban-based GHGs emissions; (iii) conducting an information analysis using the system dynamics; and (iv) proposing the urban-based low-carbon policy. If a combined energy policy that uses the housing sector (30%) and the green space sector (30%) at the same time is implemented, 2020 CO{sub 2} emissions will be 7.23 million tons (i.e., 30.48% below 2020 business-as-usual), achieving the national carbon emissions reduction target (26.9%). The results of this study could contribute to managing and improving the fundamentals of the urban-based low-carbon policies to reduce greenhouse gas emissions.

  13. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    International Nuclear Information System (INIS)

    Cui, W.F.; Zhang, S.X.; Jiang, Y.; Dong, J.; Liu, C.M.

    2011-01-01

    Highlights: → Mechanical properties and microstructures of low carbon bainite steel are examined. → Cu-P alloying promotes strengthening and uniform plastic deformation. → Cu-P alloying delays recovery process during rolling interval. → Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  14. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: wenfangcui@yahoo.com.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Zhang, S.X. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Jiang, Y. [School of Chemical Engineering, University of Queensland, Brisbane 4072 (Australia); Dong, J. [Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Liu, C.M. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2011-08-15

    Highlights: {yields} Mechanical properties and microstructures of low carbon bainite steel are examined. {yields} Cu-P alloying promotes strengthening and uniform plastic deformation. {yields} Cu-P alloying delays recovery process during rolling interval. {yields} Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  15. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    International Nuclear Information System (INIS)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun

    2016-01-01

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  16. A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city

    International Nuclear Information System (INIS)

    Gomi, Kei; Shimada, Kouji; Matsuoka, Yuzuru

    2010-01-01

    On May 2008, Kyoto city government set up a low-carbon target of a 50% GHG reduction by 2030 compared to the 1990 level. To contribute to these discussions, we developed a local (city-scale) low-carbon scenario creation method. An estimation model was developed to show a quantitative and consistent future snapshot. The model can explicitly treat the uncertainty of future socio-economic situations, which originate from the openness of local economy. The method was applied to Kyoto city, and countermeasures to achieve the low-carbon target were identified. Without countermeasures, emissions would increase 12% from 2000. Among the measures, the reduction potential of energy efficiency improvements to residential and commercial sectors was found to be relatively large (15% and 18% of total reductions, respectively). The reduction potential of the passenger transport sector, in which the city government's policy is especially important, was 17% of the total amount. A sensitivity analysis showed that a 10% increase in exports leads to an 8.5% increase in CO 2 emissions, and a 20% increase in the share of the commuters from outside the city leads to a 3.5% decrease of CO 2 emissions because of the smaller number of residents in the city.

  17. Air pollution co-benefits of low carbon policies in road transport: a sub-national assessment for India

    Science.gov (United States)

    Mittal, Shivika; Hanaoka, Tatsuya; Shukla, Priyadarshi R.; Masui, Toshihiko

    2015-08-01

    This letter assesses low carbon scenarios for India at the subnational level in the passenger road transport sector. We estimate the future passenger mobility demand and assess the impact of carbon mitigation policies using the Asia-Pacific Integrated Assessment/Enduse models. This letter focuses on the transitions of energy and emissions of passenger transport in India in alternate scenarios i.e. the business-as-usual scenario and a low carbon scenario that aligns to the 2 °C temperature stabilization target agreed under the global climate change negotiations. The modelling results show that passenger mobility demand will rise in all sub-national regions of India in the coming few decades. However, the volume and modal structure will vary across regions. Modelling assessment results show that aligning global low carbon policies with local policies has potential to deliver significant air quality co-benefits. This analysis provides insights into the comparative dynamics of environmental policymaking at sub-national levels.

  18. Urban partnerships in low-carbon development: Opportunities and challenges of an emerging trend in global climate politics

    Directory of Open Access Journals (Sweden)

    Jan Beermann

    2014-05-01

    Full Text Available This study explores the linkages between two recent trends in global climate governance. The first trend is the growing focus on cities in the multi-level governance of climate change. Whereas international climate change negotiations often end in deadlock, many urban centers across the world are taking the lead. Industrialized cities from the Global North and increasingly cities from the emerging Southern economies are experimenting with innovative and ambitious programs to reduce their local carbon footprints. A second trend is the expan¬ding urban North-South cooperation in the area of low-carbon development. This cooperation takes various forms, such as city twinning, transnational municipal networks and trans-local development cooperation. A key target of these initiatives is to develop joint projects and exchange knowledge to foster low-carbon development pathways. This study analyzes the conditions of success and failure in selected Indo-German urban low-carbon partnerships with a particular focus on institutional arrangements. The paper presents evidence from three initiatives and argues that successful trans-local cooperation depends largely on the interplay between institutional forms and the development of social capital. Building on these findings, the paper discusses what lessons may be drawn from the emergence of urban North-South cooperation for the future development of global climate governance.

  19. INCOME AND ENERGY SOURCES AMONG AGRARIAN HOUSEHOLDS IN NIGERIA: IMPLICATIONS FOR LOW CARBON ENERGY DEVELOPMENT IN LESS DEVELOPED COUNTRIES

    Directory of Open Access Journals (Sweden)

    M. Mkpado

    2012-07-01

    Full Text Available Low-carbon power comes from sources that produce fewer greenhouse gases than do traditional means of power generation. It includes zero carbon power generation sources, such as wind power, solar power, geothermal power and (except for fuel preparation nuclear power, as well as sources with lower-level emissions such as natural and petroleum gas, and also technologies that prevent carbon dioxide from being emitted into the atmosphere, such as carbon capture and storage. This article correlated value of income from different sources to energy sources used by agrarian households in Nigeria and drew implications for low carbon development in Africa. It analysis included use of wind power for irrigation purposes, harnessing solar energy for lightening and possible cost implications. Secondary data were collected from Community Based Monitoring System Nigeria Project. Descriptive statistics, correlation and qualitative analysis were employed. The average annual income of agrarian households from different sources such as crop farming, livestock farming, petty trading, forest exploitation, remittance and labour per day was below the poverty line of $1 per day. The source of energy that had the highest number of significant correlation was electrical energy (low carbon electrical energy. It showed the possibility of pooling resources as farmers group to attract grants or equity financing to build wind mills for irrigation. The study recommended use of energy efficient bulbs to reduce CO2 emissions. This requires creating awareness among rural dwellers of the need to make such change.

  20. Financial risk and the transition to a low-carbon economy. Towards a carbon stress testing framework - Working Paper

    International Nuclear Information System (INIS)

    Chenet, Hugues; Thomae, Jakob; Janci, Didier; Dupre, Stan; Hubert, Romain; Robins, Nick; Cruickshank, Peter

    2015-07-01

    On July 27 at Moody's in New York, 2 deg. Investing Initiative launched the report 'Financial risk and the transition to a low-carbon economy' in partnership with UNEP Inquiry and I4CE. The report reviews the main approaches to assessing carbon risk along the investment chain and discusses barriers to its integration in decision making. The report identifies two categories of climate-related financial risks to financial institutions: risks arising from physical climate change and 'carbon risk' which arise from the transition to a low-carbon economy following one of the possible decarbonization pathways. The authors show that to date, risk factors resulting from climate change and the transition to a low-carbon economy are generally not taken into consideration by mainstream risk assessment and management frameworks; there are multiple reasons for this. The report reviews a number of 'climate and carbon stress test' initiatives that suggest the materiality of these risks along the investment chain. The materiality of these risks for financial institutions and the financial system remains unclear. Financial regulators and policy makers, notably in France, the United Kingdom, and at the G20 level have nevertheless started responding to the issue

  1. Linguistic Multi-Attribute Group Decision Making with Risk Preferences and Its Use in Low-Carbon Tourism Destination Selection

    Science.gov (United States)

    Lin, Hui; Wang, Zhou-Jing

    2017-01-01

    Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice. PMID:28926985

  2. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  3. Linguistic Multi-Attribute Group Decision Making with Risk Preferences and Its Use in Low-Carbon Tourism Destination Selection.

    Science.gov (United States)

    Lin, Hui; Wang, Zhou-Jing

    2017-09-17

    Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice.

  4. A Fuzzy-Grey Multicriteria Decision Making Approach for Green Supplier Selection in Low-Carbon Supply Chain

    Directory of Open Access Journals (Sweden)

    Qinghua Pang

    2017-01-01

    Full Text Available Due to the increasing awareness of global warming and environmental protection, many practitioners and researchers have paid much attention to the low-carbon supply chain management in recent years. Green supplier selection is one of the most critical activities in the low-carbon supply chain management, so it is important to establish the comprehensive criteria and develop a method for green supplier selection in low-carbon supply chain. The paper proposes a fuzz-grey multicriteria decision making approach to deal with these problems. First, the paper establishes 4 main criteria and 22 subcriteria for green supplier selection. Then, a method integrating fuzzy set theory and grey relational analysis is proposed. It uses the membership function of normal distribution to compare each supplier and uses grey relation analysis to calculate the weight of each criterion and improves fuzzy comprehensive evaluation. The proposed method can make the localization of individual green supplier more objectively and more accurately in the same trade. Finally, a case study in the steel industry is presented to demonstrate the effectiveness of the proposed approach.

  5. Dynamic analysis of the urban-based low-carbon policy using system dynamics: Focused on housing and green space

    International Nuclear Information System (INIS)

    Hong, Taehoon; Kim, Jimin; Jeong, Kwangbok; Koo, Choongwan

    2015-01-01

    To systematically manage the energy consumption of existing buildings, the government has to enforce greenhouse gas reduction policies. However, most of the policies are not properly executed because they do not consider various factors from the urban level perspective. Therefore, this study aimed to conduct a dynamic analysis of an urban-based low-carbon policy using system dynamics, with a specific focus on housing and green space. This study was conducted in the following steps: (i) establishing the variables of urban-based greenhouse gases (GHGs) emissions; (ii) creating a stock/flow diagram of urban-based GHGs emissions; (iii) conducting an information analysis using the system dynamics; and (iv) proposing the urban-based low-carbon policy. If a combined energy policy that uses the housing sector (30%) and the green space sector (30%) at the same time is implemented, 2020 CO 2 emissions will be 7.23 million tons (i.e., 30.48% below 2020 business-as-usual), achieving the national carbon emissions reduction target (26.9%). The results of this study could contribute to managing and improving the fundamentals of the urban-based low-carbon policies to reduce greenhouse gas emissions

  6. Air pollution co-benefits of low carbon policies in road transport: a sub-national assessment for India

    International Nuclear Information System (INIS)

    Mittal, Shivika; Hanaoka, Tatsuya; Masui, Toshihiko; Shukla, Priyadarshi R

    2015-01-01

    This letter assesses low carbon scenarios for India at the subnational level in the passenger road transport sector. We estimate the future passenger mobility demand and assess the impact of carbon mitigation policies using the Asia–Pacific Integrated Assessment/Enduse models. This letter focuses on the transitions of energy and emissions of passenger transport in India in alternate scenarios i.e. the business-as-usual scenario and a low carbon scenario that aligns to the 2 °C temperature stabilization target agreed under the global climate change negotiations. The modelling results show that passenger mobility demand will rise in all sub-national regions of India in the coming few decades. However, the volume and modal structure will vary across regions. Modelling assessment results show that aligning global low carbon policies with local policies has potential to deliver significant air quality co-benefits. This analysis provides insights into the comparative dynamics of environmental policymaking at sub-national levels. (letter)

  7. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.

    Science.gov (United States)

    Lanzafame, Paola; Centi, Gabriele; Perathoner, Siglinda

    2014-11-21

    The use of biomass, bio-waste and CO2 derived raw materials, the latter synthesized using H2 produced using renewable energy sources, opens new scenarios to develop a sustainable and low carbon chemical production, particularly in regions such as Europe lacking in other resources. This tutorial review discusses first this new scenario with the aim to point out, between the different possible options, those more relevant to enable this new future scenario for the chemical production, commenting in particular the different drivers (economic, technological and strategic, environmental and sustainability and socio-political) which guide the selection. The case of the use of non-fossil fuel based raw materials for the sustainable production of light olefins is discussed in more detail, but the production of other olefins and polyolefins, of drop-in intermediates and other platform molecules are also analysed. The final part discusses the role of catalysis in establishing this new scenario, summarizing the development of catalysts with respect to industrial targets, for (i) the production of light olefins by catalytic dehydration of ethanol and by CO2 conversion via FTO process, (ii) the catalytic synthesis of butadiene from ethanol, butanol and butanediols, and (iii) the catalytic synthesis of HMF and its conversion to 2,5-FDCA, adipic acid, caprolactam and 1,6-hexanediol.

  8. Mainstreaming Low-Carbon Climate-Resilient growth pathways into Development Finance Institutions' activities. A research project on the standards, tools and metrics to support transition to the low-carbon climate-resilient development models. Paper 1 - Climate and development finance institutions: linking climate finance, development finance and the transition to low-carbon, climate-resilient economic models

    International Nuclear Information System (INIS)

    Eschalier, Claire; Cochran, Ian; Deheza, Mariana; Risler, Ophelie; Forestier, Pierre

    2015-10-01

    Development finance institutions (DFIs) are in a position to be key actors in aligning development and the 2 deg. challenge. One of the principal challenges today is to scale-up the financial flows to the trillions of dollars per year necessary to achieve the 2 deg. C long-term objectives. Achieving this transition to a low-carbon, climate resilient (LCCR) economic model requires the integration or 'mainstreaming' of climate issues as a prism through which all investment decisions should be made. This paper presents an overview of the opportunities and challenges of linking a LCCR transition with the objectives of development finance. It first presents the two-fold challenge of climate change and development for countries around the world. Second, the paper explores the role of development finance institutions and their support for the transition to a low-carbon, climate-resilient economic model. Finally, it examines a necessary paradigm shift to integrate climate and development objectives to establish a 'LCCR development model' able to simultaneously tackling development priorities and needs for resilient, low-carbon growth. This will necessitate a move from focusing on a 'siloed' vision of climate finance to a means of aligning activities across the economy with the LCCR objectives to ensure that the majority of investments are coherent with this long-term transition. (authors)

  9. Supplier Selection Study under the Respective of Low-Carbon Supply Chain: A Hybrid Evaluation Model Based on FA-DEA-AHP

    Directory of Open Access Journals (Sweden)

    Xiangshuo He

    2018-02-01

    Full Text Available With the development of global environment and social economy, it is an indispensable choice for enterprises to achieve sustainable growth through developing low-carbon economy and constructing low-carbon supply chain. Supplier is the source of chain, thus selecting excellent low-carbon supplier is the foundation of establishing efficient low-carbon supply chain. This paper presents a novel hybrid model for supplier selection integrated factor analysis (FA, data envelopment analysis (DEA, with analytic hierarchy process (AHP, namely FA-DEA-AHP. First, an evaluation index system is built, incorporating product level, qualification, cooperation ability, and environmental competitiveness. FA is utilized to extract common factors from the 18 pre-selected indicators. Then, DEA is applied to establish the pairwise comparison matrix and AHP is employed to rank these low-carbon suppliers comprehensively and calculate the validity of the decision-making units. Finally, an experiment study with seven cement suppliers in a large industrial enterprise is carried out in this paper. The results reveal that the proposed technique can not only select effective suppliers, but also realize a comprehensive ranking. This research has enriched the methodology of low-carbon supplier evaluation and selection, as well as owns theoretical value in exploring the coordinated development of low-carbon supply chain to some extent.