WorldWideScience

Sample records for enables migration invasion

  1. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  2. Inhibition of proliferation, migration and invasion of human non ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were ...

  3. Hypoxia stimulates invasion and migration of human cervical cancer ...

    Indian Academy of Sciences (India)

    Here we show that hypoxiaincreases tumour cell invasion and migration by the modulation of Rab11, an important molecule for vesicular trafficking.In our study, we found that Rab11, together with the activation of Rac1, could stimulate invasion and migration of cervicalcancer cell lines HeLa/SiHa in hypoxia. Activation of ...

  4. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  5. Protocols for Migration and Invasion Studies in Prostate Cancer.

    Science.gov (United States)

    van de Merbel, Arjanneke F; van der Horst, Geertje; Buijs, Jeroen T; van der Pluijm, Gabri

    2018-01-01

    Prostate cancer is the most common malignancy diagnosed in men in the western world. The development of distant metastases and therapy resistance are major clinical problems in the management of prostate cancer patients. In order for prostate cancer to metastasize to distant sites in the human body, prostate cancer cells have to migrate and invade neighboring tissue. Cancer cells can acquire a migratory and invasive phenotype in several ways, including single cell and collective migration. As a requisite for migration, epithelial prostate cancer cells often need to acquire a motile, mesenchymal-like phenotype. This way prostate cancer cells often lose polarity and epithelial characteristics (e.g., expression of E-cadherin homotypic adhesion receptor), and acquire mesenchymal phenotype (for example, cytoskeletal rearrangements, enhanced expression of proteolytic enzymes and other repertory of integrins). This process is referred to as epithelial-to-mesenchymal transition (EMT). Cellular invasion, one of the hallmarks of cancer, is characterized by the movement of cells through a three-dimensional matrix, resulting in remodeling of the cellular environment. Cellular invasion requires adhesion, proteolysis of the extracellular matrix, and migration of cells. Studying the migratory and invasive ability of cells in vitro represents a useful tool to assess the aggressiveness of solid cancers, including those of the prostate.This chapter provides a comprehensive description of the Transwell migration assay, a commonly used technique to investigate the migratory behavior of prostate cancer cells in vitro. Furthermore, we will provide an overview of the adaptations to the Transwell migration protocol to study the invasive capacity of prostate cancer cells, i.e., the Transwell invasion assay. Finally, we will present a detailed description of the procedures required to stain the Transwell filter inserts and quantify the migration and/or invasion.

  6. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  7. A single ectomycorrhizal fungal species can enable a Pinus invasion.

    Science.gov (United States)

    Hayward, Jeremy; Horton, Thomas R; Pauchard, Aníbal; Nuñnez, Martin A

    2015-05-01

    Like all obligately ectomycorrhizal plants, pines require ectomycorrhizal fungal symbionts to complete their life cycle. Pines introduced into regions far from their native range are typically incompatible with local ectomycorrhizal fungi, and, when they invade, coinvade with fungi from their native range. While the identities and distributions of coinvasive fungal symbionts of pine invasions are poorly known, communities that have been studied are notably depauperate. However, it is not yet clear whether any number of fungal coinvaders is able to support a Pinaceae invasion, or whether very depauperate communities are unable to invade. Here, we ask whether there is evidence for a minimum species richness of fungal symbionts necessary to support a pine/ectomycorrhizal fungus coinvasion. We sampled a Pinus contorta invasion front near Coyhaique, Chile, using molecular barcoding to identify ectomycorrhizal fungi. We report that the site has a total richness of four species, and that many invasive trees appear to be supported by only a single ectomycorrhizal fungus, Suillus luteus. We conclude that a single ectomycorrhizal (ECM) fungus can suffice to enable a pine invasion.

  8. Migrastatin analogues inhibit canine mammary cancer cell migration and invasion.

    Directory of Open Access Journals (Sweden)

    Kinga Majchrzak

    Full Text Available BACKGROUND: Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6 on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. RESULTS: OUR RESULTS SHOWED THAT TWO OF SIX FULLY SYNTHETIC ANALOGUES OF MIGRASTATIN: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6 disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. CONCLUSION: Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6 were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs

  9. URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2018-01-01

    Full Text Available Upregulated gene 11 (URG11, a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP, compared with human prostate epithelial cell line (RWPE-1. Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.

  10. The role of drebrin in glioma migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Terakawa, Yuzo [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka (Japan); Agnihotri, Sameer; Golbourn, Brian; Nadi, Mustafa; Sabha, Nesrin; Smith, Christian A. [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Croul, Sidney E. [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Division of Neuropathology, University Health Network, Department of Laboratory Medicine and Pathobiology (Canada); Rutka, James T., E-mail: james.rutka@sickkids.ca [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Department of Surgery, University of Toronto, Toronto, Ontario (Canada)

    2013-02-15

    Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet been fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion.

  11. Molecular aspects of tumor cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2010-03-01

    Full Text Available Cell migration and invasion are crucial steps in many physiological events. However, they are also implicated in the physiopathology of many diseases, such as cancer. To spread through the tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor families, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a complex scenario. The balance of cellular signals for proliferation and survival responses also regulates migratory behaviours of tumor cells. To complicate the scene of crime drug resistance players can interfere thus worsening this delicate situation. The complete understanding of this molecular jungle is an impossible mission: some molecular aspects are reviewed in this paper.

  12. Multiple mechanisms enable invasive species to suppress native species.

    Science.gov (United States)

    Bennett, Alison E; Thomsen, Meredith; Strauss, Sharon Y

    2011-07-01

    Invasive plants represent a significant threat to ecosystem biodiversity. To decrease the impacts of invasive species, a major scientific undertaking of the last few decades has been aimed at understanding the mechanisms that drive invasive plant success. Most studies and theories have focused on a single mechanism for predicting the success of invasive plants and therefore cannot provide insight as to the relative importance of multiple interactions in predicting invasive species' success. We examine four mechanisms that potentially contribute to the success of invasive velvetgrass Holcus lanatus: direct competition, indirect competition mediated by mammalian herbivores, interference competition via allelopathy, and indirect competition mediated by changes in the soil community. Using a combination of field and greenhouse approaches, we focus on the effects of H. lanatus on a common species in California coastal prairies, Erigeron glaucus, where the invasion is most intense. We found that H. lanatus had the strongest effects on E. glaucus via direct competition, but it also influenced the soil community in ways that feed back to negatively influence E. glaucus and other native species after H. lanatus removal. This approach provided evidence for multiple mechanisms contributing to negative effects of invasive species, and it identified when particular strategies were most likely to be important. These mechanisms can be applied to eradication of H. lanatus and conservation of California coastal prairie systems, and they illustrate the utility of an integrated set of experiments for determining the potential mechanisms of invasive species' success.

  13. Microfabricated physical spatial gradients for investigating cell migration and invasion dynamics.

    Directory of Open Access Journals (Sweden)

    Michael Mak

    Full Text Available We devise a novel assay that introduces micro-architectures into highly confining microchannels to probe the decision making processes of migrating cells. The conditions are meant to mimic the tight spaces in the physiological environment that cancer cells encounter during metastasis within the matrix dense stroma and during intravasation and extravasation through the vascular wall. In this study we use the assay to investigate the relative probabilities of a cell 1 permeating and 2 repolarizing (turning around when it migrates into a spatially confining region. We observe the existence of both states even within a single cell line, indicating phenotypic heterogeneity in cell migration invasiveness and persistence. We also show that varying the spatial gradient of the taper can induce behavioral changes in cells, and different cell types respond differently to spatial changes. Particularly, for bovine aortic endothelial cells (BAECs, higher spatial gradients induce more cells to permeate (60% than lower gradients (12%. Furthermore, highly metastatic breast cancer cells (MDA-MB-231 demonstrate a more invasive and permeative nature (87% than non-metastatic breast epithelial cells (MCF-10A (25%. We examine the migration dynamics of cells in the tapered region and derive characteristic constants that quantify this transition process. Our data indicate that cell response to physical spatial gradients is both cell-type specific and heterogeneous within a cell population, analogous to the behaviors reported to occur during tumor progression. Incorporation of micro-architectures in confined channels enables the probing of migration behaviors specific to defined geometries that mimic in vivo microenvironments.

  14. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    Science.gov (United States)

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bruce J. Tromberg

    2000-01-01

    Full Text Available Frequency-domain photon migration (FDPM is a noninvasive optical technique that utilizes intensity-modulated, near-infrared (NIR light to quantitatively measure optical properties in thick tissues. Optical properties (absorption, μa, and scattering, μs′, parameters derived from FDPM measurements can be used to construct low-resolution (0.5 to 1 cm functional images of tissue hemoglobin (total, oxy-, and deoxyforms, oxygen saturation, blood volume fraction, water content, fat content and cellular structure. Unlike conventional NIR transillumination, FDPM enables quantitative analysis of tissue absorption and scattering parameters in a single non-invasive measurement. The unique functional information provided by FDPM makes it well-suited to characterizing tumors in thick tissues. In order to test the sensitivity of FDPM for cancer diagnosis, we have initiated clinical studies to quantitatively determine normal and malignant breast tissue optical and physiological properties in human subjects. Measurements are performed using a non-invasive, multi-wavelength, diode-laser FDPM device optimized for clinical studies. Results show that ductal carcinomas (invasive and in situ and benign fibroadenomas exhibit 1.25 to 3-fold higher absorption than normal breast tissue. Within this group, absorption is greatest for measurements obtained from sites of invasive cancer. Optical scattering is approximately 20% greater in pre-menopausal versus post-menopausal subjects due to differences in gland/cell proliferation and collagen/fat content. Spatial variations in tissue scattering reveal the loss of differentiation associated with breast disease progression. Overall, the metabolic demands of hormonal stimulation and tumor growth are detectable using photon migration techniques. Measurements provide quantitative optical property values that reflect changes in tissue perfusion, oxygen consumption, and cell/matrix development.

  16. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration.

    Science.gov (United States)

    Somogyi, Kálmán; Rørth, Pernille

    2004-07-01

    Cells migrating through a tissue exert force via their cytoskeleton and are themselves subject to tension, but the effects of physical forces on cell behavior in vivo are poorly understood. Border cell migration during Drosophila oogenesis is a useful model for invasive cell movement. We report that this migration requires the activity of the transcriptional factor serum response factor (SRF) and its cofactor MAL-D and present evidence that nuclear accumulation of MAL-D is induced by cell stretching. Border cells that cannot migrate lack nuclear MAL-D but can accumulate it if they are pulled by other migrating cells. Like mammalian MAL, MAL-D also responds to activated Diaphanous, which affects actin dynamics. MAL-D/SRF activity is required to build a robust actin cytoskeleton in the migrating cells; mutant cells break apart when initiating migration. Thus, tension-induced MAL-D activity may provide a feedback mechanism for enhancing cytoskeletal strength during invasive migration.

  17. Architecture-driven Migration of Legacy Systems to Cloud-enabled Software

    DEFF Research Database (Denmark)

    Ahmad, Aakash; Babar, Muhammad Ali

    2014-01-01

    of legacy systems to cloud computing. The framework leverages the software reengineering concepts that aim to recover the architecture from legacy source code. Then the framework exploits the software evolution concepts to support architecture-driven migration of legacy systems to cloud-based architectures....... The Legacy-to-Cloud Migration Horseshoe comprises of four processes: (i) architecture migration planning, (ii) architecture recovery and consistency, (iii) architecture transformation and (iv) architecture-based development of cloud-enabled software. We aim to discover, document and apply the migration...

  18. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States); Wang, Lei; Poyil, Pratheeshkumar [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: Zhuo.Zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States)

    2016-11-15

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  19. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    International Nuclear Information System (INIS)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo

    2016-01-01

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  20. Multiple biopsy probe sampling enabled minimally invasive electrical impedance tomography

    International Nuclear Information System (INIS)

    Shini, Mohanad; Rubinsky, Boris

    2008-01-01

    Biopsies are a reliable method for examining tissues and organs inside the body, in particular for detection of tumors. However, a single biopsy produces only limited information on the site from which it is taken. Therefore, tumor detection now employs multiple biopsy samplings to examine larger volumes of tissue. Nevertheless, even with multiple biopsies, the information remains discrete, while the costs of biopsy increase. Here we propose and evaluate the feasibility of using minimally invasive medical imaging as a means to overcome the limitations of discrete biopsy sampling. The minimally invasive medical imaging technique employs the biopsy probe as electrodes for measurements of electrical impedance tomography relevant data during each biopsy sampling. The data from multiple samplings are combined and used to produce an EIT image of the tissue. Two- and three-dimensional mathematical simulations confirm that the minimally invasive medical imaging technique can produce electrical impedance tomography images of the tissues between the biopsy probe insertion sites. We show that these images can detect tumors that would be missed with multiple biopsy samplings only, and that the technique may facilitate the detection of tumors with fewer biopsies, thereby reducing the cost of cancer detection

  1. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    National Research Council Canada - National Science Library

    Fathers, Kelly E

    2007-01-01

    The Crk adaptor proteins (CrkI, CrkII and CrkL) play an important role during cellular signalling by mediating the formation of protein-protein complexes and are involved in cellular migration, invasion, and adhesion...

  2. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    National Research Council Canada - National Science Library

    Fathers, Kelly E

    2008-01-01

    The Crk adaptor proteins (CrkI, CrkII and CrkL) play an important role during cellular signalling by mediating the formation of protein-protein complexes and are involved in cellular migration, invasion, and adhesion...

  3. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration

    International Nuclear Information System (INIS)

    Sloan, Kevin E; Ilag, Leodevico L; Jay, Daniel G; Eustace, Brenda K; Stewart, Jean K; Zehetmeier, Carol; Torella, Claudia; Simeone, Marina; Roy, Jennifer E; Unger, Christine; Louis, David N

    2004-01-01

    Invasion is an important early step of cancer metastasis that is not well understood. Developing therapeutics to limit metastasis requires the identification and validation of candidate proteins necessary for invasion and migration. We developed a functional proteomic screen to identify mediators of tumor cell invasion. This screen couples Fluorophore Assisted Light Inactivation (FALI) to a scFv antibody library to systematically inactivate surface proteins expressed by human fibrosarcoma cells followed by a high-throughput assessment of transwell invasion. Using this screen, we have identified CD155 (the poliovirus receptor) as a mediator of tumor cell invasion through its role in migration. Knockdown of CD155 by FALI or by RNAi resulted in a significant decrease in transwell migration of HT1080 fibrosarcoma cells towards a serum chemoattractant. CD155 was found to be highly expressed in multiple cancer cell lines and primary tumors including glioblastoma (GBM). Knockdown of CD155 also decreased migration of U87MG GBM cells. CD155 is recruited to the leading edge of migrating cells where it colocalizes with actin and αv-integrin, known mediators of motility and adhesion. Knockdown of CD155 also altered cellular morphology, resulting in cells that were larger and more elongated than controls when plated on a Matrigel substrate. These results implicate a role for CD155 in mediating tumor cell invasion and migration and suggest that CD155 may contribute to tumorigenesis

  4. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis.

    Science.gov (United States)

    Uygur, Berna; Wu, Wen-Shu

    2011-11-10

    SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  5. Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach.

    Directory of Open Access Journals (Sweden)

    Claudio G Rolli

    2010-01-01

    Full Text Available Cell migration is a fundamental feature of the interaction of cells with their surrounding. The cell's stiffness and ability to deform itself are two major characteristics that rule migration behavior especially in three-dimensional tissue. We simulate this situation making use of a micro-fabricated migration chip to test the active invasive behavior of pancreatic cancer cells (Panc-1 into narrow channels. At a channel width of 7 microm cell migration through the channels was significantly impeded due to size exclusion. A striking increase in cell invasiveness was observed once the cells were treated with the bioactive lipid sphingosylphosphorylcholine (SPC that leads to a reorganization of the cell's keratin network, an enhancement of the cell's deformability, and also an increase in the cell's migration speed on flat surfaces. The migration speed of the highly deformed cells inside the channels was three times higher than of cells on flat substrates but was not affected upon SPC treatment. Cells inside the channels migrated predominantly by smooth sliding while maintaining constant cell length. In contrast, cells on adhesion mediating narrow lines moved in a stepwise way, characterized by fluctuations in cell length. Taken together, with our migration chip we demonstrate that the dimensionality of the environment strongly affects the migration phenotype and we suggest that the spatial cytoskeletal keratin organization correlates with the tumor cell's invasive potential.

  6. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  7. Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer

    International Nuclear Information System (INIS)

    Banyard, Jacqueline; Chung, Ivy; Migliozzi, Matthew; Phan, Derek T; Wilson, Arianne M; Zetter, Bruce R; Bielenberg, Diane R

    2014-01-01

    Understanding the complex, multistep process of metastasis remains a major challenge in cancer research. Metastasis models can reveal insights in tumor development and progression and provide tools to test new intervention strategies. To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays. Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to colonize lymph nodes (DU145LN1-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin β4) and PLAU (urokinase-type plasminogen activator (uPA)). These genes all showed increased protein expression in the more metastatic DU145-LN4 cells compared to the parental DU145. SiRNA knockdown of EpCAM, integrin-β4 or uPA all significantly reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122. Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we propose that our new in vivo model system will be a powerful tool to interrogate the metastatic

  8. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  9. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  10. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  11. TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Agathe Oulidi

    Full Text Available Adrenomedullin (AM is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.

  12. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1.

    Science.gov (United States)

    He, Hang; Hao, Si-Jie; Yao, Lie; Yang, Feng; Di, Yang; Li, Ji; Jiang, Yong-Jian; Jin, Chen; Fu, De-Liang

    2014-10-01

    miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.

  13. Use of Invasion Percolation Models To Study the Secondary Migration of Oil and Related Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1997-12-31

    This thesis studies simulations of the slow displacement of a wetting fluid by a non-wetting fluid in porous media and in a single fracture. The simulations are based on the invasion percolation model. New modified versions of the model are presented that simulate migration, fragmentation and coalescence processes of the clusters of non-wetting fluid. The resulting displacement patterns are characterized by scaling laws. In particular, simulations of the secondary migration of oil through porous homogeneous rock are discussed. Fractured rocks are extreme cases of inhomogeneous porous media. Simulations of the slow displacement of a wetting fluid by a non-wetting fluid in a single fracture using the standard invasion model are presented. There is a discussion of a scenario in which a cluster of non-wetting fluid migrates through a porous medium that was saturated with a wetting fluid. The migration is driven by continuously driven buoyancy forces. Both experiments and simulations are described. The same scenario is also studied theoretically and by simulations using a simplified percolation model of fluid migration in one dimension. The migration model in two dimensions, with constant buoyancy forces, is also discussed. Simulations of fluid migration, such as the secondary migration of oil, in two- and three-dimensional media are examined, the media having multi-affine properties rather than being homogeneous. Slow immiscible displacement processes in single fractures are studied using fractal geometries to model single fractures. 167 refs., 123 figs.

  14. [The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells].

    Science.gov (United States)

    Gu, Qin; Xu, Jian-ya; Cheng, Luo-gen; Xia, Wei-jun

    2007-03-01

    To study the effect of Angelica sinensis on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and discuss its functional mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTT assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous melanoma model was used to study the effect of Angelica sinensis on metastasis in vivo. The extract of Angelica sinensis inhibited the proliferation of B16-BL6 metastatic cells and its migration capacity significantly. It regulated bidirectionally the adhesion of B16-BL6 metastatic cells to the basement component laminin while it had no effect on the invasion capacity. In the mouse spotaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extract of Angelica sinensis at the concentration of 3.67 mg/kg. The extract of Angelica sinensis can inhibit the metastasis of of B16-BL6 metastatic mouse melanoma cells and its mechanism is maybe that Angelica sinensis can inhibit the B16-BL6 cells adhering to the ECM and reduce the migration of B16-BL6 cells.

  15. PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling.

    Directory of Open Access Journals (Sweden)

    Hiroaki Ono

    Full Text Available Protein Tyrosine Kinase 6 (PTK6 is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each. In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05. Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer.

  16. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K

    2008-07-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.

  17. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927

  18. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  19. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  20. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  1. Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro.

    Science.gov (United States)

    Dorward, Hilary S; Du, Alice; Bruhn, Maressa A; Wrin, Joseph; Pei, Jinxin V; Evdokiou, Andreas; Price, Timothy J; Yool, Andrea J; Hardingham, Jennifer E

    2016-02-24

    Aquaporins (AQP) are water channel proteins that enable fluid fluxes across cell membranes, important for homeostasis of the tissue environment and for cell migration. AQP1 knockout mouse models of human cancers showed marked inhibition of tumor-induced angiogenesis, and in pre-clinical studies of colon adenocarcinomas, forced over-expression of AQP1 was shown to increase angiogenesis, invasion and metastasis. We have synthesized small molecule antagonists of AQP1. Our hypothesis is that inhibition of AQP1 will reduce migration and invasiveness of colon cancer cells, and the migration and tube-forming capacity of endothelial cells in vitro. Expression of AQP1 in cell lines was assessed by quantitative (q) PCR, western blot and immunofluorescence, while expression of AQP1 in human colon tumour tissue was assessed by immunohistochemistry. The effect of varying concentrations of the AQP1 inhibitor AqB013 was tested on human colon cancer cell lines expressing high versus low levels of AQP1, using wound closure (migration) assays, matrigel invasion assays, and proliferation assays. The effect of AqB013 on angiogenesis was tested using an endothelial cell tube-formation assay. HT29 colon cancer cells with high AQP1 levels showed significant inhibition of migration compared to vehicle control of 27.9% ± 2.6% (p migration of HCT-116 cells with low AQP1 expression. In an invasion assay, HT29 cells treated with 160 μM of AqB013, showed a 60.3% ± 8.5% decrease in invasion at 144 hours (p < 0.0001) and significantly decreased rate of invasion compared with the vehicle control (F-test, p = 0.001). Almost complete inhibition of endothelial tube formation (angiogenesis assay) was achieved at 80 μM AqB013 compared to vehicle control (p < 0.0001). These data provide good evidence for further testing of the inhibitor as a therapeutic agent in colon cancer.

  2. MiR-1254 inhibits proliferation, migration and invasion of human ...

    African Journals Online (AJOL)

    MiR-1254 inhibits proliferation, migration and invasion of human brain tumour cell lines. ... The transcripts were analysed by real-time polymerase chain reaction (RT-PCR) ... Over-expression of miR- 1254 also led to significant decrease in cell ...

  3. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  4. [Knockdown of NEDD9 inhibits the proliferation, invasion and migration of esophageal carcinoma EC109 cells].

    Science.gov (United States)

    Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie

    2016-12-01

    Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.

  5. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells.

    Science.gov (United States)

    Oh, Phil-Sun; Kim, Hyun-Soo; Kim, Eun-Mi; Hwang, Hyosook; Ryu, Hyang Hwa; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2017-12-01

    The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  6. Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1, in vitro.

    Science.gov (United States)

    Fujita, Mayumi; Otsuka, Yoshimi; Imadome, Kaori; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi

    2012-04-01

    Pancreatic cancer is an aggressive disease that responds poorly to conventional photon radiotherapy. Carbon-ion (C-ion) radiation has advantages compared with conventional radiotherapy, because it enables more accurate dose distribution and more efficient tumor cell killing. To elucidate the effects of local radiotherapy on the characteristics of metastatic tumors, it is necessary to understand the nature of motility in irradiated tumor cells; this will, in turn, facilitate the development of effective strategies to counter tumor cell motility, which can be used in combination with radiotherapy. The aim of the present study was to examine the invasiveness of pancreatic cancer cells exposed to C-ion irradiation. We found that C-ion irradiation suppressed the migration of MIAPaCa-2, BxPC-3 and AsPC-1; diminished the invasiveness of MIAPaCa-2; and tended to reduce the invasion of BxPC-3 and AsPC-1. However, C-ion irradiation increased the invasiveness of PANC-1 through the activation of plasmin and urokinase-type plasiminogen activator. Administration of serine protease inhibitor (SerPI) alone failed to reduce C-ion-induced PANC-1 invasiveness, whereas the combination of SerPI and Rho-associated coiled-coil forming protein kinase (ROCK) inhibitor suppressed it. Furthermore, PANC-1 showed mesenchymal-amoeboid transition when we treated with SerPI alone. In conclusion, C-ion irradiation is effective in suppressing the invasive potential of several pancreatic tumor cell lines, but not PANC-1; this is the first study showing that C-ion irradiation induces the invasive potential of a tumor cell line. Further in vivo studies are required to examine the therapeutic effectiveness of radiotherapy combined with inhibitors of both mesenchymal and amoeboid modes of tumor cell motility. © 2011 Japanese Cancer Association.

  7. PRAF3 induces apoptosis and inhibits migration and invasion in human esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shi, Guo-Zhen; Yuan, Yang; Jiang, Guo-Jun; Ge, Zhi-Jun; Zhou, Jian; Gong, De-Jun; Tao, Jing; Tan, Yong-Fei; Huang, Sheng-Dong

    2012-01-01

    Prenylated Rab acceptor 1 domain family member 3 (PRAF3) is involved in the regulation of many cellular processes including apoptosis, migration and invasion. This study was conducted to investigate the effect of PRAF3 on apoptosis, migration and invasion in human esophageal squamous cell carcinoma (ESCC). The expression of PRAF3 mRNA and protein in primary ESCC and the matched normal tissues (57cases) was determined by quantitative RT-PCR and Western blot. Immunohistochemical analysis of PRAF3 expression was carried out in paraffin-embedded sections of ESCC and correlated with clinical features. The role of PRAF3 in apoptosis, migration and invasion was studied in ESCC cell lines of Eca109 and TE-1 through the adenovirus mediated PRAF3 gene transfer. The effect of PRAF3 on apoptosis was analyzed by annexin V-FITC assay. The regulation of PRAF3 on migration was determined by transwell and wounding healing assay, while the cellular invasion was analyzed by matrigel-coated transwell assay. We found that the expression of PRAF3 was significantly down-regulated in ESCC tissue compared with the matched normal tissue and was correlated with the clinical features of pathological grade, tumor stage and lymph node metastasis. Moreover, overexpression of PRAF3 induced cell apoptosis through both caspase-8 and caspase-9 dependent pathways, and inhibited cell migration and invasion by suppressing the activity of both MMP-2 and MMP-9 in human ESCC cell lines. Our data suggest that PRAF3 plays an important role in the regulation of tumor progression and metastasis and serves as a tumor suppressor in human ESCC. We propose that PRAF3 might be used as a potential therapeutic agent for human ESCC

  8. Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Kharait, Sourabh; Dhir, Rajiv; Lauffenburger, Douglas; Wells, Alan

    2006-01-01

    Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cδ (PKCδ)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCδ is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCδ using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCδ and phosphorylated PKCδ protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCδ inhibition can limit migration and invasion of prostate cancer cells

  9. Use of Invasion Percolation Models To Study the Secondary Migration of Oil and Related Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1997-09-01

    In oil reservoir engineering, multi-phase displacement processes are important. This doctoral thesis describes simulations of the slow displacement of a wetting fluid by a non-wetting fluid in a complex, random porous medium and in a single fracture. The study is restricted to two-phase flow in the quasi-static limit in which viscous forces can be neglected. The secondary migration of oil takes place in this regime, however, the discussion is broader in scope. The thesis connects the problem of slow two-phase flow to percolation theory and discusses the mechanisms that control immiscible displacements. A new, modified version of the invasion percolation model is used to simulate an imbibition process in a porous medium and the migration of a cluster of non-wetting fluid through a porous medium saturated with a wetting fluid. The simulations include the secondary migration of oil through porous homogeneous rock. Fluid migration through heterogeneous porous media is simulated qualitatively. Slow displacement of a wetting fluid by a non-wetting fluid in a single rock fracture is simulated by using the standard invasion percolation model. Experiments and simulations are performed to study the fragmentation of invasion percolation-like structures of non-wetting fluid in a porous medium saturated with a wetting fluid. A scenario is studied in which a cluster of non-wettable fluid migrates through a porous medium that is saturated with a wetting fluid, the migration being driven by continuously increasing buoyancy forces. There is a simulation of the secondary migration of oil in both two- and three-dimensional media. 361 refs., 115 figs.

  10. [Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].

    Science.gov (United States)

    Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun

    2010-10-01

    To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.

  11. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    Directory of Open Access Journals (Sweden)

    Yan-fei Liu

    Full Text Available Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2, which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

  12. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yang CM

    2017-02-01

    Full Text Available Chun-ming Yang,1 Shan Ji,2 Yan Li,3 Li-ye Fu,3 Tao Jiang,3 Fan-dong Meng31Department of Urology, The First Affiliated Hospital, China Medical University, 2Department of Endocrinology, The Fifth People’s Hospital of Shenyang, 3Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, ChinaAbstract: β-Catenin (CTNNB1 gene coding protein is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC.Keywords: kidney cancer, oncogene, β-catenin, survival time, tumor migration-related protein

  13. NDRG2 inhibits hepatocellular carcinoma adhesion, migration and invasion by regulating CD24 expression

    International Nuclear Information System (INIS)

    Zheng, Jin; Guo, Hang; Tao, Yurong; Xue, Yan; Jiang, Ning; Yao, Libo; Liu, Wenchao; Li, Yan; Yang, Jiandong; Liu, Qiang; Shi, Ming; Zhang, Rui; Shi, Hengjun; Ren, Qinyou; Ma, Ji

    2011-01-01

    The prognosis of most hepatocellular carcinoma (HCC) patients is poor due to the high metastatic rate of the disease. Understanding the molecular mechanisms underlying HCC metastasis is extremely urgent. The role of CD24 and NDRG2 (N-myc downstream-regulated gene 2), a candidate tumor suppressor gene, has not yet been explored in HCC. The mRNA and protein expression of CD24 and NDRG2 was analyzed in MHCC97H, Huh7 and L-02 cells. Changes in cell adhesion, migration and invasion were detected by up- or down-regulating NDRG2 by adenovirus or siRNA. The expression pattern of NDRG2 and CD24 in HCC tissues and the relationship between NDRG2 and HCC clinical features was analyzed by immunohistochemical and western blotting analysis. NDRG2 expression was negatively correlated with malignancy in HCC. NDRG2 exerted anti-tumor activity by regulating CD24, a molecule that mediates cell-cell interaction, tumor proliferation and adhesion. NDRG2 up-regulation decreased CD24 expression and cell adhesion, migration and invasion. By contrast, NDRG2 down-regulation enhanced CD24 expression and cell adhesion, migration and invasion. Immunohistochemical analysis of 50 human HCC clinical specimens showed a strong correlation between NDRG2 down-regulation and CD24 overexpression (P = 0.04). In addition, increased frequency of NDRG2 down-regulation was observed in patients with elevated AFP serum level (P = 0.006), late TNM stage (P = 0.009), poor differentiation grade (P = 0.002), tumor invasion (P = 0.004) and recurrence (P = 0.024). Our findings indicate that NDRG2 and CD24 regulate HCC adhesion, migration and invasion. The expression level of NDRG2 is closely related to the clinical features of HCC. Thus, NDRG2 plays an important physiological role in HCC metastasis

  14. [Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells].

    Science.gov (United States)

    Chen, Dengyu; Chu, Yifan; Zheng, Qingwei; Xu, Zhiben; Zhou, Ping; Li, Sheng

    2017-08-01

    Objective To down-regulate the expression of zinc-finger E-box binding homeobox 1 (ZEB1) gene by shRNA, and investigate its effect on invasion, migration and proliferation, as well as the related gene expressions of lncRNA HOTAIR and E-cadherin in human gastric cancer BGC823 cells. Methods RNA interfering (RNAi) was used to knock down ZEB1 in gastric cancer BGC823 cells. The recombinant plasmid shZEB1 was constructed and transfected into the gastric cancer BGC823 cells by Lipofectamine TM 2000, and the stably transfected cells were isolated by G418 selection and limited dilution. The expression of ZEB1 mRNA and protein was detected by real-time quantitative PCR and Western blot analysis. Cell proliferation was determined by MTT assay, and the invasion and migration abilities of BGC823 cells were monitored by Transwell TM invasion assay and wound healing assay, respectively. The expressions of lncRNA HOTAIR and E-cadherin mRNA were detected by real-time quantitative PCR. Results After ZEB1 expression was successfully down-regulated in BGC823 cells by siRNA, the proliferation, invasion and migration rates in shZEB1 transfection group were significantly lower than those in control group; meanwhile, the expression of lncRNA HOTAIR was reduced and E-cadherin expression was enhanced. Conclusion Knock-down of ZEB1 expression by RNA interference can decease lncRNA HOTAIR expression and restrain cell proliferation, invasion and migration in gastric cancer BGC823 cells.

  15. Corresponding long-term shifts in stream temperature and invasive fish migration

    Science.gov (United States)

    McCann, Erin L.; Johnson, Nicholas; Pangle, Kevin

    2018-01-01

    By investigating historic trapping records of invasive sea lamprey (Petromyzon marinus) throughout tributaries to the Laurentian Great Lakes, we found that upstream spawning migration timing was highly correlated with stream temperatures over large spatial and temporal scales. Furthermore, several streams in our study exceeded a critical spring thermal threshold (i.e., 15°C) and experienced peak spawning migration up to 30 days earlier since the 1980s, whereas others were relatively unchanged. Streams exhibiting warming trends and earlier migration were spatially clustered and generally found on the leeward side of the Great Lakes where the lakes most affect local climate. These findings highlight that all streams are not equally impacted by climate change and represent, to our knowledge, the first observation linking long-term changes in stream temperatures to shifts in migration timing of an invasive fish. Earlier sea lamprey migration in Great Lakes tributaries may improve young of the year growth and survival, but not limit their spatial distribution, making sea lamprey control more challenging.

  16. miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10

    International Nuclear Information System (INIS)

    Chen, Yating; Zhang, Hongwei; Ma, Duan; Zhang, Jin; Wang, Huijun; Zhao, Jiayi; Xu, Cheng; Du, Yingying; Luo, Xin; Zheng, Fengyun; Liu, Rui

    2012-01-01

    miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. HOXA10 however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because HOXA10 is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type. Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including HOXA10. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student's t-test. Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. HOXA10, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of HOXA10 both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of HOXA10. In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. HOXA10 is a target gene for mi

  17. Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells

    DEFF Research Database (Denmark)

    Kong, Su Chii; Nøhr-Nielsen, Asbjørn; Zeeberg, Katrine

    2016-01-01

    , localization, activity, and function were explored in human PDAC cells (MIAPaCa-2, Panc-1, BxPC-3, AsPC-1) and normal human pancreatic ductal epithelial (HPDE) cells, by quantitative polymerase chain reaction, immunoblotting, immunocytochemistry, lactate flux, migration, and invasion assays. RESULTS: MCT1......, or knockdown of MCT1 or MCT4. PDAC cell migration was largely unaffected by MCT1/MCT2 inhibition or MCT1 knockdown but was reduced by 4-CIN and by MCT4 knockdown (BxPC-3). Invasion measured in Boyden chamber (BxPC-3, Panc-1) and spheroid outgrowth (BxPC-3) assays was attenuated by 4-CIN and AR-C155858...

  18. CENPI is overexpressed in colorectal cancer and regulates cell migration and invasion.

    Science.gov (United States)

    Ding, Na; Li, Rongxin; Shi, Wenhao; He, Cui

    2018-06-21

    Centromere protein I (CENPI),an important member of centromere protein family, has been suggest to serve as a oncogene in breast cancer, but the clinical significance and biological function of CENPI in colorectal cancer (CRC) is still unclear. In our results, we found CENPI was overexpressed in CRC tissues and cells, and associated with clinical stage, tumor depth, lymph node metastasis, distant metastasis and differentiation in CRC patients. However, there was no significant association between CENPI protein expression and overall survival time in colon cancer patients and rectal cancer patients through analyzing TCGA survival data. Moreover, CENPI mRNA and protein were increased in metastatic lymph nodes compared with primary CRC tissues. Down-regulation of CENPI expression suppresses CRC cell migration, invasion and epithelial mesenchymal transition process. In conclusion, CENPI is overexpressed in CRC and functions as oncogene in modulating CRC cell migration, invasion and EMT process. Copyright © 2018. Published by Elsevier B.V.

  19. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    OpenAIRE

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify...

  20. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition.

    Science.gov (United States)

    Ogunbolude, Yetunde; Dai, Chenlu; Bagu, Edward T; Goel, Raghuveera Kumar; Miah, Sayem; MacAusland-Berg, Joshua; Ng, Chi Ying; Chibbar, Rajni; Napper, Scott; Raptis, Leda; Vizeacoumar, Frederick; Vizeacoumar, Franco; Bonham, Keith; Lukong, Kiven Erique

    2017-12-22

    The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

  1. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  2. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    International Nuclear Information System (INIS)

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-01-01

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer

  3. EBP1 suppresses growth, migration, and invasion of thyroid cancer cells through upregulating RASAL expression.

    Science.gov (United States)

    Liu, Hongyan; Li, Zhenjie; Li, Liujuan; Peng, Haiying; Zhang, Zhijun

    2015-11-01

    Ebp1, a protein identified by its interactions with the ErbB3 receptor, has been characterized as a negative regulator of cancers. RAS GTPase-activating protein (RasGAP), RASAL1, was recently identified as a major tumor suppressor in thyroid cancer. In this study, we examined EBP1 expression in papillary and follicular thyroid cancer cells. We found that compared with normal thyroid cells, TPC1, WRO, and FTC133 thyroid tumor cells exhibited lower EBP1 expression at messenger RNA (mRNA) and protein levels. We then investigated the effects of forced EBP1 expression on growth, migration, and invasiveness of thyroid tumor cells. By using MTT and Boyden chamber assays, we showed that EBP1 overexpression dramatically reduced growth rate, migration, and invasiveness of K1 and FTC133 thyroid tumor cells. Furthermore, we explored the molecular mechanism underlying the effects of EBP1 on the cells by disclosing the correlation of EBP1 and RASAL1 expression. RASAL expression was elevated in thyroid tumor cells overexpressing EBP1. Knockdown RASAL by transduction of RASAL1 shRNA lentiviral particles markedly reduced RASAL levels with restoration of EBP1, and RASAL1 knockdown abrogated the effects of forced EBP1 expression on cell growth, migration, and invasiveness of thyroid tumor cells. These findings suggest that Ebp1 suppressed thyroid cancer cell lines by upregulating RASRAL expression.

  4. Gemifloxacin, a Fluoroquinolone Antimicrobial Drug, Inhibits Migration and Invasion of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jung-Yu Kan

    2013-01-01

    Full Text Available Gemifloxacin (GMF is an orally administered broad-spectrum fluoroquinolone antimicrobial agent used to treat acute bacterial exacerbation of pneumonia and bronchitis. Although fluoroquinolone antibiotics have also been found to have anti-inflammatory and anticancer effects, studies on the effect of GMF on treating colon cancer have been relatively rare. To the best of our knowledge, this is the first report to describe the antimetastasis activities of GMF in colon cancer and the possible mechanisms involved. Results have shown that GMF inhibits the migration and invasion of colon cancer SW620 and LoVo cells and causes epithelial mesenchymal transition (EMT. In addition, GMF suppresses the activation of NF-κB and cell migration and invasion induced by TNF-α and inhibits the TAK1/TAB2 interaction, resulting in decreased IκB phosphorylation and NF-κB nuclear translocation in SW620 cells. Furthermore, Snail, a critical transcriptional factor of EMT, was downregulated after GMF treatment. Overexpression of Snail by cDNA transfection significantly decreases the inhibitory effect of GMF on EMT and cell migration and invasion. In conclusion, GMF may be a novel anticancer agent for the treatment of metastasis in colon cancer.

  5. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    International Nuclear Information System (INIS)

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-01-01

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: → Baicalein inhibits several essential steps in the onset of metastasis.

  6. A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion

    Directory of Open Access Journals (Sweden)

    Yi-Chin Toh

    2018-04-01

    Full Text Available We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1 in a 3D tumor model. A chemo-attractant was incorporated to stimulate motility across the membrane. We validated the usefulness of the chip by tracking the motilities of the cancer cells in the system, showing them to be migrating or invading (akin to metastasis. It is shown that our system can monitor cell migration in real time, as compare to Boyden chambers, for example. Thus, the chip will be of interest to the drug-screening community as it can potentially be used to monitor the behavior of cancer cell motility, and, therefore, metastasis, in the presence of anti-cancer drugs.

  7. PBX3 promotes migration and invasion of colorectal cancer cells via activation of MAPK/ERK signaling pathway.

    Science.gov (United States)

    Han, Hai-Bo; Gu, Jin; Ji, Deng-Bo; Li, Zhao-Wei; Zhang, Yuan; Zhao, Wei; Wang, Li-Min; Zhang, Zhi-Qian

    2014-12-28

    To investigate the role of pre-B-cell leukemia homeobox (PBX)3 in migration and invasion of colorectal cancer (CRC) cells. We detected PBX3 expression in five cell lines and surgical specimens from 111 patients with CRC using real-time reverse transcription-polymerase chain reaction. We forced expression of PBX3 in low metastatic HT-29 and SW480 cells and knocked down expression of PBX3 in highly metastatic LOVO and HCT-8 cells. Wound healing and Boyden chamber assays were used to detect cell migration and invasion after altered expression of PBX3. Western blot was performed to detect the change of signaling molecule ERK1/2 following PBX3 overexpression. High level of PBX3 expression was correlated with the invasive potential of CRC cells, and significantly associated with lymph node invasion (P = 0.02), distant metastasis (P = 0.04), advanced TNM stage (P = 0.03) and poor overall survival of patients (P migration and invasion, while inhibited PBX3 expression in highly metastatic cells suppressed migration and invasion. Furthermore, upregulation of phosphorylated extracellular signal-regulated kinase (ERK)1/2 was found to be one of the targeted molecules responsible for PBX3-induced CRC cell migration and invasion. PBX3 induces invasion and metastasis of CRC cells partially through activation of the MAPK/ERK signaling pathway.

  8. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Braig, Simone; Stoiber, Katharina; Zahler, Stefan; Vollmar, Angelika M

    2015-01-01

    The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes. (paper)

  9. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    Science.gov (United States)

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.

  10. Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression

    International Nuclear Information System (INIS)

    Messi, Elio; Florian, Maria C; Caccia, Claudio; Zanisi, Mariarosa; Maggi, Roberto

    2008-01-01

    Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem. Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment. We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively. Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness. Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin. a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness; b

  11. MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jianjun Shen

    Full Text Available Gastric cancer is one of the most frequent malignancies in tumors in the East Asian countries. Identifying precise prognostic markers and effective therapeutic targets is important in the treatment of gastric cancer. microRNAs (miRNAs play important roles in tumorigenesis. However, the mechanisms by which miRNAs regulate gastric cancer metastasis remain poorly understood. In this study, we found that the levels of miR-410 in gastric cancer and cell lines were much lower than that in the normal control, respectively, and the lower level of miR-410 was significantly associated with lymph-node metastasis. Transfection of miR-410 mimics could significantly inhibit the cell proliferation, migration and invasion in the HGC-27 gastric cancer cell lines. In contrast, knockdown of miR-410 had the opposite effect on the cell proliferation, migration and invasion. Moreover, we also found that MDM2 was negatively regulated by miR-410 at the post-transcriptional level, via a specific target site with the 3'UTR by luciferase reporter assay. The expression of MDM2 was inversely correlated with miR-410 expression in gastric cancer tissues, and overexpression of MDM2 in miR-410-transfected gastric cancer cells effectively rescued the inhibition of cell proliferation and invasion caused by miR-410. Thus, our findings suggested that miR-410 acted as a new tumor suppressor by targeting the MDM2 gene and inhibiting gastric cancer cells proliferation, migration and invasion. The findings of this study contributed to the current understanding of these functions of miR-410 in gastric cancer.

  12. Estrogen Receptor α Is Crucial in Zearalenone-Induced Invasion and Migration of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karolina Kowalska

    2018-02-01

    Full Text Available Zearalenone (ZEA, a mycotoxin produced in the genus Fusarium, binds to estrogen receptors (ER and is therefore regarded as an endocrine disruptor. ZEA has also been found to modulate the proliferation and apoptosis of prostate cancer cells in a dose-dependent manner. This study evaluates whether the effect of a low dose of ZEA (0.1 and 0.001 nM on the invasion and migration of prostate cancer cell line PC3 is associated with ERs expression. The invasion and migration was evaluated by modified Boyden chamber assay, scratch assay, gelatin zymography, Real Time qPCR (RTqPCR and Western blot. The involvement of ERs was evaluated with the selective ER antagonists: estrogen receptor α (ERα antagonist 1,3-bis (4-hydroxyphenyl-4-methyl-5-[4-(2-piperidinylethoxy phenol]-1H-pyrazole dihydrochloride (MPP and estrogen receptor β (ERβ antagonist 4-[2–phenyl-5,7–bis (trifluoromethyl pyrazolo [1,5-a]-pyrimidin-3-yl] phenol (PHTPP. ZEA was found to modulate cell motility dependent on estrogen receptors, particularly ERα. Increased cell migration and invasion were associated with increased MMP-2 and MMP-9 activity as well as the up-regulation of the EMT-associated genes vimentin (VIM, zinc finger E-box-binding homeobox 1/2 (ZEB1/2 and transforming growth factor β 1 (TGFβ1. In conclusion, ZEA might modulate the invasiveness of prostate cancer cells dependently on ERα expression.

  13. Dynamic Outsourced Proofs of Retrievability Enabling Auditing Migration for Remote Storage Security

    Directory of Open Access Journals (Sweden)

    Lu Rao

    2018-01-01

    Full Text Available Remote data auditing service is important for mobile clients to guarantee the intactness of their outsourced data stored at cloud side. To relieve mobile client from the nonnegligible burden incurred by performing the frequent data auditing, more and more literatures propose that the execution of such data auditing should be migrated from mobile client to third-party auditor (TPA. However, existing public auditing schemes always assume that TPA is reliable, which is the potential risk for outsourced data security. Although Outsourced Proofs of Retrievability (OPOR have been proposed to further protect against the malicious TPA and collusion among any two entities, the original OPOR scheme applies only to the static data, which is the limitation that should be solved for enabling data dynamics. In this paper, we design a novel authenticated data structure called bv23Tree, which enables client to batch-verify the indices and values of any number of appointed leaves all at once for efficiency. By utilizing bv23Tree and a hierarchical storage structure, we present the first solution for Dynamic OPOR (DOPOR, which extends the OPOR model to support dynamic updates of the outsourced data. Extensive security and performance analyses show the reliability and effectiveness of our proposed scheme.

  14. MIIP, a cytoskeleton regulator that blocks cell migration and invasion, delays mitosis, and suppresses tumorogenesis.

    Science.gov (United States)

    Wang, Yingmei; Wen, Jing; Zhang, Wei

    2011-02-01

    The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). Recent studies have shown that MIIP not only modulates IGFBP2 but also regulates microtubule by binding to and inhibiting HDAC6, a class 2 histone deacetylase that deacetylates α-tubulin, heat-shock protein 90 (HSP90), and cortactin. In addition, MIIP also regulates the mitosis checkpoint, another microtubule-associated process. The location of the MIIP gene in chromosomal region 1p36, a commonly deleted region in a broad spectrum of human cancers, and the observation that MIIP attenuates tumorigenesis in a mouse model suggest that it functions as a tumor-suppressor gene. This review summarizes the recent progress in characterizing this novel protein, which regulates cell migration and mitosis, two processes that rely on the highly coordinated dynamics of the microtubule and cytoskeleton systems.

  15. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway.

    Science.gov (United States)

    Pan, Dongmei; Li, Nan; Liu, Yanyan; Xu, Qiang; Liu, Qingping; You, Yanting; Wei, Zhenquan; Jiang, Yubao; Liu, Minying; Guo, Tianfeng; Cai, Xudong; Liu, Xiaobao; Wang, Qiang; Liu, Mingling; Lei, Xujie; Zhang, Mingying; Zhao, Xiaoshan; Lin, Changsong

    2018-02-01

    In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLSs) play an essential role in cartilage destruction. Aggressive migration and invasion by FLSs significantly affect RA pathology. Kaempferol has been shown to inhibit cancer cell migration and invasion. However, the effects of kaempferol on RA FLSs have not been investigated. Our study aimed to determine the effects of kaempferol on RA both in vitro and in vivo. In vitro, cell migration and invasion were measured using scratch assays and the Boyden chamber method, respectively. The cytoskeletal reorganization of RA FLSs was evaluated by immunofluorescence staining. Matrix metalloproteinase (MMP) levels were measured by real-time PCR, and protein expression levels were measured by western blotting. In vivo, the effects of kaempferol were evaluated in mice with CIA. The results showed that kaempferol reduced migration, invasion and MMP expression in RA FLSs. In addition, we demonstrated that kaempferol inhibited reorganization of the actin cytoskeleton during cell migration. Moreover, kaempferol dramatically suppressed tumor necrosis factor (TNF)-α-induced MAPK activation without affecting the expression of TNF-α receptors. We also demonstrated that kaempferol attenuated the severity of arthritis in mice with CIA. Taken together, these results suggested that kaempferol inhibits the migration and invasion of FLSs in RA by blocking MAPK pathway activation without affecting the expression of TNF-α receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  17. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  18. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    Directory of Open Access Journals (Sweden)

    Boying Dun

    Full Text Available Mycophenolic acid (MPA is the metabolized product and active element of mycophenolate mofetil (MMF that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA and proteins (PRKCA, AKT, SRC, CD147 and MMP1 with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1. However, a few genes that may promote migration (CYR61 and NOS3 were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.

  19. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines

    DEFF Research Database (Denmark)

    Viticchiè, Giuditta; Lena, Anna Maria; Latina, Alessia

    2011-01-01

    Prostate cancers show a slow progression from a local lesion (primary tumor) to a metastatic and hormone-resistant phenotype. After an initial step of hyperplasia, in a high percentage of cases a neoplastic transformation event occurs that, less frequently, is followed by epithelial to mesenchymal...... cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2...

  20. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Wu Qian

    2012-01-01

    Full Text Available Abstract Background Carcinoma cells must circumvent the normally suppressive signals to disseminate. While often considered 'stop' signals for adherent cells, CXCR3-binding chemokines have recently been correlated positively with cancer progression though the molecular basis remains unclear. Results Here, we examined the expression and function of two CXCR3 variants in human prostate cancer biopsies and cell lines. Globally, both CXCR3 mRNA and protein were elevated in localized and metastatic human cancer biopsies compared to normal. Additionally, CXCR3A mRNA level was upregulated while CXCR3B mRNA was downregulated in these prostate cancer specimens. In contrast to normal prostate epithelial cells (RWPE-1, CXCR3A was up to half the receptor in the invasive and metastatic DU-145 and PC-3 prostate cancer cells, but not in the localized LNCaP cells. Instead of inhibiting cell migration as in RWPE-1 cells, the CXCR3 ligands CXCL4/PF4 and CXCL10/IP10 promoted cell motility and invasiveness in both DU-145 and PC-3 cells via PLCβ3 and μ-calpain activation. CXCR3-mediated diminution of cell motility in RWPE-1 cells is likely a result of cAMP upregulation and m-calpain inhibition via CXCR3B signal transduction. Interestingly, overexpression of CXCR3B in DU-145 cells decreased cell movement and invasion. Conclusion These data suggest that the aberrant expression of CXCR3A and down-regulation of CXCR3B may switch a progression "stop" to a "go" signal to promote prostate tumor metastasis via stimulating cell migration and invasion.

  1. Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Michiyuki Miyamoto

    2018-01-01

    Full Text Available Bone marrow stromal cell (BMSC transplantation has the therapeutic potential for ischemic stroke. However, it is unclear which delivery routes would yield both safety and maximal therapeutic benefits. We assessed whether a novel recombinant peptide (RCP sponge, that resembles human collagen, could act as a less invasive and beneficial scaffold in cell therapy for ischemic stroke. BMSCs from green fluorescent protein-transgenic rats were cultured and Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAo. A BMSC-RCP sponge construct was transplanted onto the ipsilateral intact neocortex 7 days after MCAo. A BMSC suspension or vehicle was transplanted into the ipsilateral striatum. Rat motor function was serially evaluated and histological analysis was performed 5 weeks after transplantation. The results showed that BMSCs could proliferate well in the RCP sponge and the BMSC-RCP sponge significantly promoted functional recovery, compared with the vehicle group. Histological analysis revealed that the RCP sponge provoked few inflammatory reactions in the host brain. Moreover, some BMSCs migrated to the peri-infarct area and differentiated into neurons in the BMSC-RCP sponge group. These findings suggest that the RCP sponge may be a promising candidate for animal protein-free scaffolds in cell therapy for ischemic stroke in humans.

  2. Scutellarin suppresses migration and invasion of human hepatocellular carcinoma by inhibiting the STAT3/Girdin/Akt activity.

    Science.gov (United States)

    Ke, Yang; Bao, Tianhao; Wu, Xuesong; Tang, Haoran; Wang, Yan; Ge, Jiayun; Fu, Bimang; Meng, Xu; Chen, Li; Zhang, Cheng; Tan, Yuqi; Chen, Haotian; Guo, Zhitang; Ni, Fan; Lei, Xuefen; Shi, Zhitian; Wei, Dong; Wang, Lin

    2017-01-29

    Scutellarin is an active flavone from Erigeron breviscapine (vant) Hand Mass. This study aimed to investigate the potential role of scutellarin in migration and invasion of human hepatocellular carcinoma (HCC) cells and its possible mechanism. In comparison with the vehicle-treated controls, treatment with scutellarin (50 mg/kg/day) for 35 days significantly mitigated the lung and intrahepatic metastasis of HCC tumors in vivo. Scutellarin treatment significantly reduced HepG2 cell viability in a dose-dependent manner, and inhibited migration and invasion of HCC cells in vitro. Scutellarin treatment significantly reduced STAT3 and Girders of actin filaments (Girdin) expression, STAT3 and Akt phosphorylation in HCC cells. Introduction of STAT3 overexpression restored the scutellarin-downregulated Girdin expression, Akt activation, migration and invasion of HCC cells. Furthermore, induction of Girdin overexpression completely abrogated the inhibition of scutellarin on the Akt phosphorylation, migration and invasion of HCC cells. Scutellarin can inhibit HCC cell metastasis in vivo, and migration and invasion in vitro by down-regulating the STAT3/Girdin/Akt signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Total glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Zhang

    Full Text Available Previous studies demonstrated that inflammatory microenvironment promoted prostate cancer progression. This study investigated whether total glucosides of paeony (TGP, the active constituents extracted from the root of Paeonia Lactiflora Pall, suppressed lipopolysaccharide (LPS-stimulated proliferation, migration and invasion in androgen insensitive prostate cancer cells. PC-3 cells were incubated with LPS (2.0 μg/mL in the absence or presence of TGP (312.5 μg /mL. As expected, cells at S phase and nuclear CyclinD1, the markers of cell proliferation, were increased in LPS-stimulated PC-3 cells. Migration activity, as determined by wound-healing assay and transwell migration assay, and invasion activity, as determined by transwell invasion assay, were elevated in LPS-stimulated PC-3 cells. Interestingly, TGP suppressed LPS-stimulated PC-3 cells proliferation. Moreover, TGP inhibited LPS-stimulated migration and invasion of PC-3 cells. Additional experiment showed that TGP inhibited activation of nuclear factor kappa B (NF-κB and mitogen-activated protein kinase (MAPK/p38 in LPS-stimulated PC-3 cells. Correspondingly, TGP attenuated upregulation of interleukin (IL-6 and IL-8 in LPS-stimulated PC-3 cells. In addition, TGP inhibited nuclear translocation of signal transducer and activator of transcription 3 (STAT3 in LPS-stimulated PC-3 cells. These results suggest that TGP inhibits inflammation-associated STAT3 activation and proliferation, migration and invasion in androgen insensitive prostate cancer cells.

  4. RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Chen, ChengShi; Liu, Rong; Wang, JianHua; Yan, ZhiPing; Qian, Sheng; Zhang, Wei

    2015-04-01

    The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.

  5. Pancreatic endoplasmic reticulum kinase activation promotes medulloblastoma cell migration and invasion through induction of vascular endothelial growth factor A.

    Directory of Open Access Journals (Sweden)

    Stephanie Jamison

    Full Text Available Evidence is accumulating that activation of the pancreatic endoplasmic reticulum kinase (PERK in response to endoplasmic reticulum (ER stress adapts tumor cells to the tumor microenvironment and enhances tumor angiogenesis by inducing vascular endothelial growth factor A (VEGF-A. Recent studies suggest that VEGF-A can act directly on certain tumor cell types in an autocrine manner, via binding to VEGF receptor 2 (VEGFR2, to promote tumor cell migration and invasion. Although several reports show that PERK activation increases VEGF-A expression in medulloblastoma, the most common solid malignancy of childhood, the role that either PERK or VEGF-A plays in medulloblastoma remains elusive. In this study, we mimicked the moderate enhancement of PERK activity observed in tumor patients using a genetic approach and a pharmacologic approach, and found that moderate activation of PERK signaling facilitated medulloblastoma cell migration and invasion and increased the production of VEGF-A. Moreover, using the VEGFR2 inhibitor SU5416 and the VEGF-A neutralizing antibody to block VEGF-A/VEGFR2 signaling, our results suggested that tumor cell-derived VEGF-A promoted medulloblastoma cell migration and invasion through VEGFR2 signaling, and that both VEGF-A and VEGFR2 were required for the promoting effects of PERK activation on medulloblastoma cell migration and invasion. Thus, these findings suggest that moderate PERK activation promotes medulloblastoma cell migration and invasion through enhancement of VEGF-A/VEGFR2 signaling.

  6. Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion.

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    Full Text Available Gremlin-1, a bone morphogenetic protein (BMP antagonist, is overexpressed in various cancerous tissues but its role in carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor receptor-2 (VEGFR2 expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1 transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation.

  7. Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin.

    Science.gov (United States)

    Chen, Hsin-Yi; Shen, Che-Hung; Tsai, Yuh-Tyng; Lin, Feng-Chi; Huang, Yuan-Ping; Chen, Ruey-Hwa

    2004-12-01

    Brk (for breast tumor kinase) is a nonreceptor tyrosine kinase containing SH3, SH2, and tyrosine kinase catalytic domains. Brk was originally identified from a human metastatic breast tumor, and its overexpression is frequently observed in breast cancer and several other cancer types. However, the molecular mechanism by which this kinase participates in tumorigenesis remains poorly characterized. In the present study, we not only identified paxillin as the binding partner and substrate of Brk but also discovered a novel signaling pathway by which Brk mediates epidermal growth factor (EGF)-induced paxillin phosphorylation. We show that EGF stimulation activates the catalytic activity of Brk, which in turn phosphorylates paxillin at Y31 and Y118. These phosphorylation events promote the activation of small GTPase Rac1 via the function of CrkII. Through this pathway, Brk is capable of promoting cell motility and invasion and functions as a mediator of EGF-induced migration and invasion. In accordance with these functional roles, Brk translocates to membrane ruffles, where it colocalizes with paxillin during cell migration. Together, our findings identify novel signaling and biological roles of Brk and indicate the first potential link between Brk and metastatic malignancy.

  8. Pleiotrophin Exerts Its Migration and Invasion Effect through the Neuropilin-1 Pathway

    Directory of Open Access Journals (Sweden)

    Rania Elahouel

    2015-08-01

    Full Text Available Pleiotrophin (PTN is a pleiotropic growth factor that exhibits angiogenic properties and is involved in tumor growth and metastasis. Although it has been shown that PTN is expressed in tumor cells, few studies have investigated its receptors and their involvement in cell migration and invasion. Neuropilin-1 (NRP-1 is a receptor for multiple growth factors that mediates cell motility and plays an important role in angiogenesis and tumor progression. Here we provide evidence for the first time that NRP-1 is crucial for biological activities of PTN. We found that PTN interacted directly with NRP-1 through its thrombospondin type-I repeat domains. Importantly, binding of PTN to NRP-1 stimulated the internalization and recycling of NRP-1 at the cell surface. Invalidation of NRP-1 by RNA interference in human carcinoma cells inhibited PTN-induced intracellular signaling of the serine-threonine kinase, mitogen-activated protein MAP kinase, and focal adhesion kinase pathways. Accordingly, NRP-1 silencing or blocking by antibody inhibited PTN-induced human umbilical vein endothelial cell migration and tumor cell invasion. These results suggest that NRP-1/PTN interaction provides a novel mechanism for controlling the response of endothelial and tumoral cells to PTN and may explain, at least in part, how PTN contributes to tumor angiogenesis and cancer progression.

  9. Siegesbeckia orientalis Extract Inhibits TGFβ1-Induced Migration and Invasion of Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2016-08-01

    Full Text Available Type II endometrial carcinoma typically exhibits aggressive metastasis and results in a poor prognosis. Siegesbeckia orientalis Linne is a traditional Chinese medicinal herb with several medicinal benefits, including the cytotoxicity against various cancers. This study investigates the inhibitory effects of S. orientalis ethanol extract (SOE on the migration and invasion of endometrial cancer cells, which were stimulated by transforming growth factor β (TGFβ. The inhibitory effects were evaluated by determining wound healing and performing the Boyden chamber assay. This study reveals that SOE can inhibit TGFβ1-induced cell wound healing, cell migration, and cell invasion in a dose-dependent manner in RL95-2 and HEC-1A endometrial cancer cells. SOE also reversed the TGFβ1-induced epithelial-mesenchymal transition, including the loss of the cell-cell junction and the lamellipodia-like structures. Western blot analysis revealed that SOE inhibited the phosphorylation of ERK1/2, JNK1/2, and Akt, as well as the expression of MMP-9, MMP-2, and u-PA in RL95-2 cells dose-dependently. The results of this investigation suggest that SOE is a potential anti-metastatic agent against human endometrial tumors.

  10. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  11. Suppression of Human Liver Cancer Cell Migration and Invasion via the GABAA Receptor

    International Nuclear Information System (INIS)

    Chen, Zhi-ao; Bao, Mei-yan; Xu, Yong-fen; Zha, Ruo-peng; Shi, Hai-bing; Chen, Tao-yang; He, Xiang-huo

    2012-01-01

    To investigate the roles of the γ-aminobutyric acid (GABA) in the metastasis of hepatocellular carcinoma (HCC) and to explore the potential of a novel therapeutic approach for the treatment of HCC. The expression levels of GABA receptor subunit genes in various HCC cell lines and patients‘ tissues were detected by quantitative real-time polymerase chain reaction and Western blot analysis. Transwell cell migration and invasion assays were carried out for functional analysis. The effects of GABA on liver cancer cell cytoskeletal were determined by immunofluorescence staining. And the effects of GABA on HCC metastasis in nude mice were evaluated using an in vivo orthotopic model of liver cancer. The mRNA level of GABA receptor subunits varied between the primary hepatocellular carcinoma tissue and the adjacent non-tumor liver tissue. GABA inhibited human liver cancer cell migration and invasion via the ionotropic GABA A receptor as a result of the induction of liver cancer cell cytoskeletal reorganization. Pretreatment with GABA also significantly reduced intrahepatic liver metastasis and primary tumor formation in vivo. These findings introduce a potential and novel therapeutic approach for the treatment of cancer patients based on the modulation of the GABAergic system

  12. BAG3 regulates cell proliferation, migration, and invasion in human colorectal cancer.

    Science.gov (United States)

    Shi, Huiyong; Xu, Haidong; Li, Zengjun; Zhen, Yanan; Wang, Bin; Huo, Shoujun; Xiao, Ruixue; Xu, Zhongfa

    2016-04-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be elevated in various tumors. However, it is unclear whether BAG3 has a functional role in the initiation and progression of colorectal cancer (CRC). Here, we collected CRC samples and cell lines to validate the pathway by using gene and protein assays. RT-PCR showed that the expression of BAG3 mRNA in CRC tissues was obviously higher than that in non-tumor tissues (p BAG3 was found in most CRC tissues and strongly correlated with TNM stage (p = 0.001), differentiation (p = 0.003), and metastasis (p = 0.010). Low expression of BAG3 in HCT-8 significantly reduced cellular proliferation, migration, and invasion. The analysis of in vitro cell showed that HCT-8 cells were exposed to si-BAG3, and its growth was inhibited depending on modulation of cell cycle G1/S checkpoints and cell cycle regulators, involving cyclin D1, cyclin A2, and cyclin B1. Furthermore, suppression of the epithelial-mesenchymal transition (EMT) by si-BAG3 is linked to the decreased expression of E-cadherin and the increased expression of N-cadherin, vimentin, and MMP9. In conclusion, in the present study, we demonstrated that BAG3 overexpression plays a critical role in cell proliferation, migration, and invasion of colorectal cancer. Our data suggests targeted inhibition of BAG3 may be useful for patients with CRC.

  13. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  14. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity.

    Science.gov (United States)

    Liu, Hongyu; Jiang, Yue; Jin, Xiaoyan; Zhu, Lihua; Shen, Xiaoyue; Zhang, Qun; Wang, Bin; Wang, Junxia; Hu, Yali; Yan, Guijun; Sun, Haixiang

    2013-07-15

    Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2.

  15. Effect of NeuroD gene silencing on the migration and invasion of human pancreatic cancer cells PANC-1.

    Science.gov (United States)

    Wang, Yang; Su, Dong Wei; Gao, Li; Ding, Gui Ling; Ni, Can Rong; Zhu, Ming Hua

    2014-07-01

    The aim of this study is to investigate the influence of Lenti-EGFP-NeuroD-miR, RNAi lentiviral expression vector, on the expression level of NeuroD and migration, and invasion of PANC-1 cell line. PANC-1 cells were cultured and cotransfected with Lenti-EGFP-NeuroD-miR and Lenti-GFP. The infection rate of lentivirus was determined by fluorescence. The interfering effection by the expression of NeuroD mRNA in PANC-1 cells was analyzed by real-time PCR after transfected. Biological behavior of PANC-1 cells transinfected was observed, and the migration and invasion were studied by transwell assay. Intrapancreatic allografts model in nude mice was established to observe the effects of NeuroD on tumorigenesis, tumor growth, and invasion in vivo. The expression of NeuroD mRNA decreased significantly after RNAi lentivirus transinfecting PANC-1 cell. The cell's migration and invasion ability decreased obviously as soon as down regulate of NeuroD in PANC-1 cells. Comparing with control group, the tumors were smaller in size and the invasiveness was inhibited after 8 weeks intrapancreatic allografts in nude mice. Lenti-EGFP-NeuroD-miR transfected into PANC-1 cells shows a stable, effective, and especial blocking expression of NeuroD in mRNA level. The RNAi of lentiviral vector target NeuroD can reduce the migration and invasion abilities of PANC-1 cells.

  16. Role of ErbB receptors in cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Aline eAppert-Collin

    2015-11-01

    Full Text Available Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival by binding to and activating cell-surface receptors with intrinsic protein kinase activity named Receptor Tyrosine Kinases (RTKs. About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1, ErbB2 (neu, HER2, ErbB3 (HER3 and ErbB4 (HER4. ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix components. Recent findings indicate that extracellular matrix components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation.

  17. Suppression of actopaxin impairs hepatocellular carcinoma metastasis through modulation of cell migration and invasion.

    Science.gov (United States)

    Ng, Lui; Tung-Ping Poon, Ronnie; Yau, Simon; Chow, Ariel; Lam, Colin; Li, Hung-Sing; Chung-Cheung Yau, Thomas; Law, Wai-Lun; Pang, Roberta

    2013-08-01

    Early reports suggested that actopaxin, a member of the focal adhesion proteins, regulates cell migration. Here we investigated whether actopaxin is involved in hepatocellular carcinoma (HCC) progression and metastasis. We examined actopaxin expression in human HCC samples using immunohistochemistry and western blotting. The functional and molecular effect of actopaxin was studied in vitro by overexpression in a nonmetastatic HCC cell line, as well as repression in a metastatic cell line. The in vivo effect of actopaxin repression was studied in nonobese diabetic and severe combined immunodeficient mice. We found that actopaxin was frequently overexpressed in human HCC patients and its overexpression positively correlated with tumor size, stage, and metastasis. Actopaxin expression also correlated with the metastatic potential of HCC cell lines. Actopaxin overexpression induced the invasion and migration ability of nonmetastatic HCC cells, whereas down-regulation of actopaxin reverted the invasive phenotypes and metastatic potential of metastatic HCC cells through regulating the protein expression of certain focal adhesion proteins including ILK, PINCH, paxillin, and cdc42, as well as regulating the epithelial-mesenchymal transition pathway. Furthermore, there was a close association between actopaxin and CD29. HCC cells with stronger CD29 expression showed a higher actopaxin level, whereas actopaxin repression attenuated CD29 activity. Finally, actopaxin down-regulation enhanced the chemosensitivity of HCC cells towards oxaliplatin treatment by way of a collective result of suppression of survivin protein, β-catenin, and mammalian target of rapamycin pathways and up-regulation of p53. This study provides concrete evidence of a significant role of actopaxin in HCC progression and metastasis, by way of regulation of cell invasiveness and motility, an epithelial-mesenchymal transition process, and chemosensitivity to cytotoxic drugs. Copyright © 2013 by the

  18. Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells

    International Nuclear Information System (INIS)

    Wu, Bin; Li, Ji; Huang, Damao; Wang, Weiwei; Chen, Yu; Liao, Youxiang; Tang, Xiaowei; Xie, Hongfu; Tang, Faqing

    2011-01-01

    migration and invasiveness of A431 cells through the inhibition of Ezrin expression, which leads to the suppression of tumor metastasis

  19. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1).

    Science.gov (United States)

    Zhu, Xiang-Yu; Liu, Ning; Liu, Wei; Song, Shao-Wei; Guo, Ke-Jian

    2012-04-01

    Integrin-linked kinase (ILK) is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1) cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  20. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Zhu

    2012-01-01

    Full Text Available Integrin-linked kinase (ILK is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1 cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  1. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroki [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Nakamura, Seikou [Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto (Japan); Chisaki, Yugo [Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto (Japan); Takada, Tetsuya [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Toda, Yuki [Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Kyoto (Japan); Murata, Hiroaki [Department of Orthopedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopedic Surgery, Matsushita Memorial Hospital, Osaka (Japan); Itoh, Kazuyuki [Department of Biology, Osaka Medical Center of Cancer and Cardiovascular Diseases, Osaka (Japan); Yano, Yoshitaka [Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto (Japan); Takata, Kazuyuki [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Ashihara, Eishi, E-mail: ash@mb.kyoto-phu.ac.jp [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan)

    2016-02-26

    Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer. - Highlights: • Daphnetin, a coumarin-derivative, inhibited invasion and migration of LM8 cells. • Stress fibers and filopodia were decreased by daphnetin treatment. • Daphnetin decreased RhoA and Cdc42 protein expression.

  2. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression

    International Nuclear Information System (INIS)

    Fukuda, Hiroki; Nakamura, Seikou; Chisaki, Yugo; Takada, Tetsuya; Toda, Yuki; Murata, Hiroaki; Itoh, Kazuyuki; Yano, Yoshitaka; Takata, Kazuyuki; Ashihara, Eishi

    2016-01-01

    Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer. - Highlights: • Daphnetin, a coumarin-derivative, inhibited invasion and migration of LM8 cells. • Stress fibers and filopodia were decreased by daphnetin treatment. • Daphnetin decreased RhoA and Cdc42 protein expression.

  3. Helicobacter pylori induces cell migration and invasion through casein kinase 2 in gastric epithelial cells.

    Science.gov (United States)

    Lee, Yeo Song; Lee, Do Yeon; Yu, Da Yeon; Kim, Shin; Lee, Yong Chan

    2014-12-01

    Chronic infection with Helicobacter pylori (H. pylori) is causally linked with gastric carcinogenesis. Virulent H. pylori strains deliver bacterial CagA into gastric epithelial cells. Induction of high motility and an elongated phenotype is considered to be CagA-dependent process. Casein kinase 2 plays a critical role in carcinogenesis through signaling pathways related to the epithelial mesenchymal transition. This study was aimed to investigate the effect of H. pylori infection on the casein kinase 2-mediated migration and invasion in gastric epithelial cells. AGS or MKN28 cells as human gastric epithelial cells and H. pylori strains Hp60190 (ATCC 49503, CagA(+)) and Hp8822 (CagA(-)) were used. Cells were infected with H. pylori at multiplicity of infection of 100 : 1 for various times. We measured in vitro kinase assay to examine casein kinase 2 activity and performed immunofluorescent staining to observe E-cadherin complex. We also examined β-catenin transactivation through promoter assay and MMP7 expression by real-time PCR and ELISA. H. pylori upregulates casein kinase 2 activity and inhibition of casein kinase 2 in H. pylori-infected cells profoundly suppressed cell invasiveness and motility. We confirmed that casein kinase 2 mediates membranous α-catenin depletion through dissociation of the α-/β-catenin complex in H. pylori-infected cells. We also found that H. pylori induces β-catenin nuclear translocation and increases MMP7 expressions mediated through casein kinase 2. We show for the first time that CagA(+) H. pylori upregulates cellular invasiveness and motility through casein kinase 2. The demonstration of a mechanistic interplay between H. pylori and casein kinase 2 provides important insights into the role of CagA(+) H. pylori in the gastric cancer invasion and metastasis. © 2014 John Wiley & Sons Ltd.

  4. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Ye, Shuangmei; Chen, Yin; You, Lanying; Zhang, Yiqun; Xu, Gang; Zhou, Jianfeng; Ma, Ding; Wang, Shixuan; Hao, Xing; Zhou, Ting; Wu, Mingfu; Wei, Juncheng; Wang, Yongjun; Zhou, Li; Jiang, Xuefeng; Ji, Li

    2010-01-01

    Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKT Ser473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell proliferation was not

  5. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Lin, Tseng-Hsi; Kuo, Hsing-Chun; Chou, Fen-Pi; Lu, Fung-Jou

    2008-01-01

    Arsenic trioxide (As 2 O 3 ) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As 2 O 3 -mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As 2 O 3 or berberine, and after co-treatment with As 2 O 3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As 2 O 3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As 2 O 3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As 2 O 3 -mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As 2 O 3 . The latter effect was even more pronounced in the presence of 10 μM berberine. The As 2 O 3 -mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As 2 O 3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also

  6. Magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway

    International Nuclear Information System (INIS)

    Lee, Cheol-Jung; Lee, Mee-Hyun; Yoo, Sun-Mi; Choi, Kyung-Il; Song, Ji-Hong; Jang, Jeong-Hoon; Oh, Sei-Ryang; Ryu, Hyung-Won; Lee, Hye-Suk; Surh, Young-Joon; Cho, Yong-Yeon

    2015-01-01

    Magnolin is a natural compound abundantly found in Magnolia flos, which has been traditionally used in oriental medicine to treat headaches, nasal congestion and anti-inflammatory reactions. Our recent results have demonstrated that magnolin targets the active pockets of ERK1 and ERK2, which are important signaling molecules in cancer cell metastasis. The aim of this study is to evaluate the effects of magnolin on cell migration and to further explore the molecular mechanisms involved. Magnolin-mediated signaling inhibition was confirmed by Western blotting using RSK2 +/+ and RSK2 −/− MEFs, A549 and NCI-H1975 lung cancer cells, and by NF-κB and Cox-2 promoter luciferase reporter assays. Inhibition of cell migration by magnolin was examined by wound healing and/or Boyden Chamber assays using JB6 Cl41 and A549 human lung cancer cells. The molecular mechanisms involved in cell migration and epithelial-to-mesenchymal transition were determined by zymography, Western blotting, real-time PCR and immunocytofluorescence. Magnolin inhibited NF-κB transactivation activity by suppressing the ERKs/RSK2 signaling pathway. Moreover, magnolin abrogated the increase in EGF-induced COX-2 protein levels and wound healing. In human lung cancer cells such as A549 and NCI-H1975, which harbor constitutive active Ras and EGFR mutants, respectively, magnolin suppressed wound healing and cell invasion as seen by a Boyden chamber assay. In addition, it was observed that magnolin inhibited MMP-2 and −9 gene expression and activity. The knockdown or knockout of RSK2 in A549 lung cancer cells or MEFs revealed that magnolin targeting ERKs/RSK2 signaling suppressed epithelial-to-mesenchymal transition by modulating EMT marker proteins such as N-cadherin, E-cadherin, Snail, Vimentin and MMPs. These results demonstrate that magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway. The online version of this article (doi:10.1186/s12885-015-1580-7) contains

  7. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression

    Directory of Open Access Journals (Sweden)

    Yan QY

    2016-03-01

    Full Text Available Qiuyue Yan,1,2 Guohua Lou,3 Ying Qian,1 Bo Qin,1 Xiuping Xu,1,2 Yanan Wang,1,2 Yanning Liu,3 Xuejun Dong1 1Shaoxing People’s Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, 2The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 3State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China Background: Sperm-associated antigen 9 (SPAG9 is upregulated in several malignancies and its overexpression is positively correlated with cancer cell malignancies. However, the specific biological roles of SPAG9 in hepatocellular carcinoma (HCC are less understood. Methods: We analyzed SPAG9 and ETS-like gene 1, tyrosine kinase (ELK1 expression in 50 paired HCC specimens and adjacent noncancerous liver specimens using immunohistochemistry. SPAG9 small interfering RNA (siRNA was used to knockdown SPAG9 expression in HCCLM3 and HuH7 cell lines. We used plasmids to upregulate ELK1 expression and siRNA to downregulate ELK1 expression in HuH7 cells. Quantitative real-time polymerase chain reaction and Western blot were used to evaluate the expression of SPAG9 and ELK1 at the mRNA and protein level, respectively. Wound healing, matrigel migration, and invasion analyses were performed to determine the effect of SPAG9 and ELK1 on HCC metastasis. Results: SPAG9 and ELK1 were overexpressed in HCC tissue specimens and their expressions were higher in HCCLM3 and HuH7 cells compared to the low-metastatic HepG2 cells. Overexpression of SPAG9 was positively associated with tumor-node-metastasis staging (P=0.032, metastasis parameters (P=0.018 of HCC patients, and ELK1 expression (r=0.422, P<0.001 in HCC tissue specimens. In addition

  8. ITGBL1 promotes migration, invasion and predicts a poor prognosis in colorectal cancer.

    Science.gov (United States)

    Qiu, Xiao; Feng, Jue-Rong; Qiu, Jun; Liu, Lan; Xie, Yang; Zhang, Yu-Peng; Liu, Jing; Zhao, Qiu

    2018-05-14

    Colorectal cancer (CRC) is one of the most common malignancies worldwide; its progression and prognosis are associated with oncogenes. The present study aimed to identify differentially expressed genes (DEGs) and explore the role and potential mechanism of integrin subunit β like 1 (ITGBL1) in CRC. The microarray dataset GSE41258 was used to screen DEGs involved in CRC. Survival analysis was performed to predict the prognosis of CRC patients. To validate ITGBL1 expression, immunohistochemistry, quantitative real-time PCR and western blotting were performed in CRC tissues and cells. Subsequently, the effects of ITGBL1 were evaluated through colony formation, cell proliferation, migration and invasion assays. Finally, we took advantage of Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) to explore potential function and mechanism of ITGBL1 in CRC. In our study, 182 primary CRC tissues and 54 normal colon tissues were contained in GSE41258 dataset. A total of 318 DEGs were screened, among which ITGBL1 was found to be significantly up-regulated in CRC, and its high expression was associated with shortened survival of CRC patients. Moreover, knockdown of ITGBL1 promoted CRC cell proliferation, migration and invasion. Finally, GO analysis revealed that ITGBL1 was associated with cell adhesion. GSEA indicated that ITGBL1 was enriched in ECM receptor interaction and focal adhesion. In conclusion, a novel oncogene ITGBL1 was identified and demonstrated to be associated with the progression and prognosis of CRC, which might be a potential therapeutic target and prognostic biomarker for CRC patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis

    Science.gov (United States)

    Billard, Matthew J.; Fitzhugh, David J.; Parker, Joel S.; Brozowski, Jaime M.; McGinnis, Marcus W.; Timoshchenko, Roman G.; Serafin, D. Stephen; Lininger, Ruth; Klauber-Demore, Nancy; Sahagian, Gary; Truong, Young K.; Sassano, Maria F.; Serody, Jonathan S.; Tarrant, Teresa K.

    2016-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis. PMID:27049755

  10. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis.

    Directory of Open Access Journals (Sweden)

    Matthew J Billard

    Full Text Available Triple negative breast cancer (TNBC is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3 is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.

  11. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration

    Directory of Open Access Journals (Sweden)

    Elena Rainero

    2015-01-01

    Full Text Available Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.

  12. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    Science.gov (United States)

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  13. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    Science.gov (United States)

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  14. Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Valdivia, Natalia; Bravo, Denisse; Huerta, Hernán; Henriquez, Soledad; Gabler, Fernando; Vega, Margarita; Romero, Carmen; Calderon, Claudia; Owen, Gareth I.; Leyton, Lisette; Quest, Andrew F. G.

    2015-01-01

    Caveolin-1 (CAV1) has been implicated both in tumor suppression and progression, whereby the specific role appears to be context dependent. Endometrial cancer is one of the most common malignancies of the female genital tract; however, little is known about the role of CAV1 in this disease. Here, we first determined by immunohistochemistry CAV1 protein levels in normal proliferative human endometrium and endometrial tumor samples. Then using two endometrial cancer cell lines (ECC: Ishikawa and Hec-1A) we evaluated mRNA and protein levels of CAV1 by real time qPCR and Western blot analysis, respectively. The role of CAV1 expression in ECC malignancy was further studied by either inducing its expression in endometrial cancer cells with the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (4β-TPA) or decreasing expression using short-hairpin RNA constructs, and then evaluating the effects of these changes on ECC proliferation, transmigration, matrigel invasion, and colony formation in soft agar. Immunohistochemical analysis of endometrial epithelia revealed that substantially higher levels of CAV1 were present in endometrial tumors than the normal proliferative epithelium. Also, in Ishikawa and Hec-1A endometrial cancer cells CAV1 expression was readily detectable. Upon treatment with 4β-TPA CAV1 levels increased and coincided with augmented cell transmigration, matrigel invasion, as well as colony formation in soft agar. Reduction of CAV1 expression using short-hairpin RNA constructs ablated these effects in both cell types whether treated or not with 4β-TPA. Alternatively, CAV1 expression appeared not to modulate significantly proliferation of these cells. Our study shows that elevated CAV1, observed in patients with endometrial cancer, is linked to enhanced malignancy of endometrial cancer cells, as evidenced by increased migration, invasion and anchorage-independent growth. The online version of this article (doi:10.1186/s12885-015-1477-5) contains

  15. Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells.

    Science.gov (United States)

    Zhang, G-Y; Yang, W-H; Chen, Z

    2016-05-01

    We aimed to reveal the expression and activation of signal transducers and activators of transcription 3 (STAT3) and RhoA/Rho-associated coiled-coil forming kinase 1 (ROCK1) signaling in CRC tissues, and to investigate the regulatory role of STAT3 and RhoA signaling in the invasion and migration of colorectal cancer cells. We examined the expression of STAT3, RhoA and ROCK1 in CRC tissues with real-time PCR and Western blotting methods. And then we examined the interaction between STAT3 and RhoA/ROCK1 signaling in CRC HT-29 cells with gain-of-function and loss-of-function strategies. In addition, we determined the regulation by STAT3 and RhoA/ROCK1 on the invasion and migration of CRC HT-29 cells. Our study demonstrated a significant upregulation of RhoA and ROCK1 expression and STAT3-Y705 phosphorylation in 32 CRC specimens, compared to the 17 normal CRC tissues. Further study demonstrated there was a coordination between STAT3 and RhoA/Rock signaling in the HT-29 cells. Moreover, STAT3 knockdown or RhoA knockdown significantly repressed the migration and invasion in HT-29 cells and vice versa. STAT3 and RhoA signaling regulate the invasion and migration of CRC cells, implying the orchestrated and oncogenic roles of STAT3 and RhoA/ROCK1 signaling in CRC.

  16. Stattic Enhances Radiosensitivity and Reduces Radio-Induced Migration and Invasion in HCC Cell Lines through an Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2017-01-01

    Full Text Available Purpose. Signal transducer and activator of transcription factor 3 (STAT3 is involved in tumorigenesis, development, and radioresistance of many solid tumors. The aim of this study is to investigate the effects of stattic (an inhibitor of STAT3 on the radiosensitivity and radio-induced migration and invasion ability in hepatocellular carcinoma (HCC cell lines. Methods. HCC cells were treated with stattic, and cell survival rate was analyzed through CCK-8 assay. Radiosensitivity was evaluated using cloning formation analysis; STAT3, p-STAT3, and apoptosis related proteins were detected by western blot. Radio-induced migration and invasion ability in HCC cells were analyzed by wound-healing assay and transwell test. Results. Stattic inhibits the expression of p-STAT3 and reduces cell survival in a dose-dependent manner in HCC cell lines, and the IC50 values for Hep G2, Bel-7402, and SMMC-7721 are 2.94 μM, 2.5 μM, and 5.1 μM, respectively. Cloning formation analysis shows that stattic enhances the radiosensitivity of HCC cells. Wound-healing assay and transwell test show that stattic inhibits radio-induced migration and invasion. Further study indicates that stattic promotes radio-induce apoptosis through regulating the expression of apoptosis related proteins in HCC cells. Conclusion. Stattic enhances radiosensitivity and reduces radio-induced migration and invasion ability in HCC cells probably through apoptosis pathway.

  17. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Wei; Qian, Sheng; Yang, Guowei; Zhu, Liang; Zhou, Bo; Wang, Jianhua; Liu, Rong; Yan, Zhiping; Qu, Xudong

    2018-06-15

    Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17. Published by Elsevier B.V.

  18. Inhibition of IGF-1-Mediated Cellular Migration and Invasion by Migracin A in Ovarian Clear Cell Carcinoma Cells.

    Science.gov (United States)

    Ukaji, Tamami; Lin, Yinzhi; Banno, Kouji; Okada, Shoshiro; Umezawa, Kazuo

    2015-01-01

    Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.

  19. Hyaluronic acid enhances cell migration and invasion via the YAP1/TAZ-RHAMM axis in malignant pleural mesothelioma.

    Science.gov (United States)

    Shigeeda, Wataru; Shibazaki, Masahiko; Yasuhira, Shinji; Masuda, Tomoyuki; Tanita, Tatsuo; Kaneko, Yuka; Sato, Tatsuhiro; Sekido, Yoshitaka; Maesawa, Chihaya

    2017-11-07

    Most malignant mesotheliomas (MPMs) frequently show activated forms of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which transcriptionally regulates the receptor for hyaluronic acid-mediated motility (RHAMM). As RHAMM is involved in cell migration and invasion in various tumors, we speculated that hyaluronic acid (HA) in pleural fluid might affect the progression of mesothelioma by stimulating cell migration and invasion through RHAMM. The level of RHAMM expression was decreased by YAP1/TAZ knockdown, and conversely increased by forced expression of the active form of YAP1, suggesting that RHAMM was regulated by YAP1/TAZ in MPM cells. Cell migration and invasion were also decreased by YAP1/TAZ or RHAMM knockdown. Notably, HA treatment increased cell motility and invasion, and this was abolished by RHAMM knockdown, suggesting that HA may augment local progression of MPM cells via RHAMM. Furthermore, treatment with fluvastatin, which regulates RHAMM transcription by modulating YAP1/TAZ activity, decreased the motility and invasion of MPM cells. Collectively, these data suggest that HA is an "unfavorable" factor because it promotes malignancy in mesothelioma and that the YAP1/TAZ-RHAMM axis may have potential value as a therapeutic target for inhibition of disease progression in MPM.

  20. MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2.

    Directory of Open Access Journals (Sweden)

    Jie Ding

    Full Text Available Our study was approved by the Medical Ethics Committee of Tang Du Hospital, Fourth Military Medical University and complied strictly with national ethical guidelines. Preeclampsia (PE is a specific clinical disorder characterized by gestational hypertension and proteinuria and is a leading cause of maternal and perinatal mortality worldwide. The miR-519d-3p is upregulated in the maternal plasma of patients with PE which indicates a possible association between this microRNA and the pathogenesis of PE. No studies to date have addressed the effect of miR-519d-3p on the invasion and migration of trophoblast cells. In our study, we found that miR-519d-3p expression was elevated in placental samples from patients with PE. In vitro, overexpression of miR-519d-3p significantly inhibited trophoblast cell migration and invasion, whereas transfection of a miR-519d-3p inhibitor enhanced trophoblast cell migration and invasion. Luciferase assays confirmed that matrix metalloproteinase-2 (MMP-2 is a direct target of miR-519d-3p. Quantitative real-time PCR and western blot assays showed that overexpression of miR-519d-3p downregulated MMP-2 mRNA and protein expression. Knockdown of MMP-2 using a siRNA attenuated the increased trophoblast migration and invasion promoted by the miR-519d-3p inhibitor. In placentas from patients with PE or normal pregnancies, a negative correlation between the expression of MMP-2 and miR-519d-3p was observed using the Pearson correlation and linear regression analysis. Our present findings suggest that upregulation of miR-519d-3p may contribute to the development of PE by inhibiting trophoblast cell migration and invasion via targeting MMP-2; miR-519d-3p may represent a potential predictive and therapeutic target for PE.

  1. Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, O Yeon; Hwang, Hye Sook; Lee, Bok Soon; Oh, Young Taek; Kim, Chul Ho; Chun, Mi Son [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2015-12-15

    Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

  2. ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α.

    Science.gov (United States)

    Lee, Joon Ho; Hur, Wonhee; Hong, Sung Woo; Kim, Jung-Hee; Kim, Sung Min; Lee, Eun Byul; Yoon, Seung Kew

    2017-02-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid cancer and the third most common cause of cancer-related mortality. HCC develops via a multistep process associated with genetic aberrations that facilitate HCC invasion and migration and promote metastasis. A growing body of evidence indicates that cancer stem cells (CSCs) are responsible for tumorigenesis, cancer cell invasion and metastasis. Despite the extremely small proportion of cancer cells represented by this subpopulation of HCC cells, CSCs play a key role in cancer metastasis and poor prognosis. ELK3 (Net/SAP-2/Erp) is a transcription factor that is activated by the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. It plays several important roles in various physiological processes, including cell migration, invasion, wound healing, angiogenesis and tumorigenesis. In the present study, we investigated the role of ELK3 in cancer cell invasion and metastasis in CD133+/CD44+ liver cancer stem cells (LCSCs). We isolated LCSCs expressing CD133 and CD44 from Huh7 HCC cells and evaluated their metastatic potential using invasion and migration assays. We found that CD133+/CD44+ cells had increased metastatic potential compared with non-CD133+/CD44+ cells. We also demonstrated that ELK3 expression was upregulated in CD133+/CD44+ cells and that this aberration enhanced cell migration and invasion. In addition, we identified the molecular mechanism by which ELK3 promotes cancer cell migration and invasion. We found that silencing of ELK3 expression in CD133+/CD44+ LCSCs attenuated their metastatic potential by modulating the expression of heat shock-induced factor-1α (HIF-1α). Collectively, the results of the present study demonstrated that ELK3 overexpression promoted metastasis in CD133+/CD44+ cells by regulating HIF-1α expression and that silencing of ELK3 expression attenuated the metastatic potential of CD133+/CD44+ LCSCs. In conclusion, modulation of ELK3 expression may

  3. Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells.

    Science.gov (United States)

    Zhou, Kairui; Shi, Xiaoli; Huo, Jinling; Liu, Weihua; Yang, Dongxiao; Yang, Tengjiao; Qin, Tiantian; Wang, Cong

    2017-08-01

    Drug resistance and metastasis significantly hinder chemotherapy and worsen prognoses in cancer. Bone morphogenetic protein 4 (BMP4) belongs to the TGF-β superfamily, has broad biological activities in cell proliferation and cartilage differentiation and is also able to induce migration and invasion. Herein, we investigated the role of BMP4 in the regulation of metastasis in paclitaxel-resistant human esophageal carcinoma EC109 cells (EC109/Taxol) and docetaxel-resistant human gastric cancer MGC803 cells (MGC/Doc). In these drug-resistant cell lines, we found the cell motility was enhanced and BMP4 was up-regulated relative to their respective parental cell lines. Consistent with in vitro assays, migration potential and BMP4 expression were increased in EC109/Taxol nude mice. Furthermore, to address whether BMP4 was required to enhance the metastatic in EC109/Taxol cells, the pharmacological inhibitor of BMP signaling dorsomorphin was used; meanwhile, we found that the migration and invasion abilities were inhibited. Moreover, the canonical Smad signaling pathway was investigated. Overall, our studies demonstrated that BMP4 participates in the regulation of invasion and migration by EC109/Taxol cells, and inhibition of BMP4 may be a novel strategy to interfere with metastasis in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparative Analysis of Dynamic Cell Viability, Migration and Invasion Assessments by Novel Real-Time Technology and Classic Endpoint Assays

    Science.gov (United States)

    Limame, Ridha; Wouters, An; Pauwels, Bea; Fransen, Erik; Peeters, Marc; Lardon, Filip; De Wever, Olivier; Pauwels, Patrick

    2012-01-01

    Background Cell viability and motility comprise ubiquitous mechanisms involved in a variety of (patho)biological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions. Methodology/Principal Findings Dynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB) assay in a series of four cell concentrations, yielding fair to good correlations (Spearman's Rho 0.688 to 0.964). Cytotoxic action by paclitaxel (0–100 nM) correlated well with SRB (Rho>0.95) with similar IC50 values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90) and optical density (OD) measurement of extracted dye (Rho>0.95). Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95). Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method. Conclusions/Significance The xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on different

  5. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays.

    Directory of Open Access Journals (Sweden)

    Ridha Limame

    Full Text Available BACKGROUND: Cell viability and motility comprise ubiquitous mechanisms involved in a variety of (pathobiological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions. METHODOLOGY/PRINCIPAL FINDINGS: Dynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer and A549 (lung cancer cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB assay in a series of four cell concentrations, yielding fair to good correlations (Spearman's Rho 0.688 to 0.964. Cytotoxic action by paclitaxel (0-100 nM correlated well with SRB (Rho>0.95 with similar IC(50 values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90 and optical density (OD measurement of extracted dye (Rho>0.95. Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95. Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method. CONCLUSIONS/SIGNIFICANCE: The xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on

  6. [Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells].

    Science.gov (United States)

    Li, Shuai; Guo, Lianyi

    2018-01-01

    Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.

  7. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    Ramakrishnan, Swathi; Ku, ShengYu; Ciamporcero, Eric; Miles, Kiersten Marie; Attwood, Kris; Chintala, Sreenivasulu; Shen, Li; Ellis, Leigh; Sotomayor, Paula; Swetzig, Wendy; Huang, Ray; Conroy, Dylan; Orillion, Ashley; Das, Gokul; Pili, Roberto

    2016-01-01

    Class I histone deacetylases (HDACs) have been reported to be overexpressed in clear cell renal cell carcinoma (ccRCC), whereas the expression of class II HDACs is unknown. Four isogenic cell lines C2/C2VHL and 786-O/786-OVHL with differential VHL expression are used in our studies. Cobalt chloride is used to mimic hypoxia in vitro. HIF-2α knockdowns in C2 and 786-O cells is used to evaluate the effect on HDAC 1 expression and activity. Invasion and migration assays are used to investigate the role of HDAC 1 and HDAC 6 expression in ccRCC cells. Comparisons are made between experimental groups using the paired T-test, the two-sample Student’s T-test or one-way ANOVA, as appropriate. ccRCC and the TCGA dataset are used to observe the clinical correlation between HDAC 1 and HDAC 6 overexpression and overall and progression free survival. Our analysis of tumor and matched non-tumor tissues from radical nephrectomies showed overexpression of class I and II HDACs (HDAC6 only in a subset of patients). In vitro, both HDAC1 and HDAC6 over-expression increased cell invasion and motility, respectively, in ccRCC cells. HDAC1 regulated invasiveness by increasing matrix metalloproteinase (MMP) expression. Furthermore, hypoxia stimulation in VHL-reconstituted cell lines increased HIF isoforms and HDAC1 expression. Presence of hypoxia response elements in the HDAC1 promoter along with chromatin immunoprecipitation data suggests that HIF-2α is a transcriptional regulator of HDAC1 gene. Conversely, HDAC6 and estrogen receptor alpha (ERα) were co-localized in cytoplasm of ccRCC cells and HDAC6 enhanced cell motility by decreasing acetylated α-tubulin expression, and this biological effect was attenuated by either biochemical or pharmacological inhibition. Finally, analysis of human ccRCC specimens revealed positive correlation between HIF isoforms and HDAC. HDAC1 mRNA upregulation was associated with worse overall survival in the TCGA dataset. Taking together, these results

  8. [Regulation of microRNA-199a on adhesion, migration and invasion ability of human endometrial stromal cells].

    Science.gov (United States)

    Dai, Lan; Gu, Li-ying; Zhu, Jie; Shi, Jun; Wang, Yao; Ji, Fang; Di, Wen

    2011-11-01

    To study the regulation of microRNA 199a (miR-199a) on adhesion, migration and invasion ability of human eutopic endometrial stromal cells (ESC) from patients with endometriosis. ESC were transfected with miR-199a mimics or negative control (NC) RNA by lipofectamine 2000. The adhesion, migration and invasion ability of ESC were detected by cell adhesion assay, scratch assay, cell migration assay and matrigel invasion assay, respectively. Luciferase reporter assay was used to evaluate whether IKKβ was the target gene of miR-199a. The expression of ikappa B kinase beta (IKKβ), inhibitory kappa B alpha (IκB-α), phospho-IκB-α(p-IκB-α) and nuclear factor-kappa B (NF-κB) protein were measured by western blot. (1) Adhesion potential: the adhesion inhibitory rates were (14 ± 4)% in miR-199a group and 0 in control group, which showed significant difference (P scratch assay, ESC transfected with miR-199a exhibited a lower scratch closure rate than that of controls. In migration and invasion assays, the migration and invasion ability of miR-199a group were significantly decreased compared with those of NC group [130 ± 31 vs. 247 ± 36 (P < 0.01); 63 ± 15 vs. 133 ± 17 (P < 0.01), respectively]. (3) The luciferase activity of miR-199a group was significantly lowered than that of control group [0.160 ± 0.006 vs. 0.383 ± 0.083 (P < 0.01)]. The protein levels of IKKβ, p-IκB-α, IκB-α and NF-κB of 0.350 ± 0.195, 0.443 ± 0.076, 1.970 ± 0.486 and 0.454 ± 0.147 in miR-199a group were significantly different compared with the NC group in which the protein levels were set at 1.000 (P < 0.01). miR-199a can inhibit the adhesion, migration and invasion of the ESC. IKKβ is the target gene of miR-199a in ESC. One of the mechanisms of the inhibition effect is probably that miR-199a inhibits the activation of NF-κB signaling pathway by targeting IKKβ gene.

  9. Downregulation of connective tissue growth factor reduces migration and invasiveness of osteosarcoma cells.

    Science.gov (United States)

    Huang, Yinjun; Zhao, Shichang; Zhang, Changqing; Li, Xiaolin

    2016-02-01

    As one of the most serious types of primary bone tumor, osteosarcoma (OSA) features metastatic lesions, and resistance to chemotherapy is common. The underlying mechanisms of these characteristics may account for the failure of treatments and the poor prognosis of patients with OSA. It has been reported that inhibition of Cyr61 suppresses OSA cell proliferation as it represents a target of statins. In addition to cystein‑rich protein 61 (Cyr61) and nephroblastoma overexpression, connective tissue growth factor (CTGF) is a member of the CCN family and may therefore exhibit effects on human OSA cells similar to those of Cyr61. In the current study, acridine orange/ethidium bromide staining were used to determine the rate of apoptosis. The present study demonstrated that small interfering RNA‑mediated silencing of CTGF promoted cell death and suppressed OSA cell migration and invasion, as indicated by wound healing and Transwell assays, while lentivirus‑mediated overexpression of CTGF reversed these effects. Furthermore, a colorimetric caspase assay demonstrated that CTGF knockdown enhanced the efficacy of chemotherapeutic drugs. The results of the present study provided a novel molecular target which may be utilized for the treatment of metastatic OSA.

  10. NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF

    Directory of Open Access Journals (Sweden)

    Mitchell E. Fane

    2017-02-01

    Full Text Available While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis.

  11. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion.

    Science.gov (United States)

    Zhou, Yang; Wu, Bo; Li, Jiang-Hua; Nan, Gang; Jiang, Jian-Li; Chen, Zhi-Nan

    2017-08-01

    Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  12. ErbB receptors and cell polarity: New pathways and paradigms for understanding cell migration and invasion

    International Nuclear Information System (INIS)

    Feigin, Michael E.; Muthuswamy, Senthil K.

    2009-01-01

    The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression

  13. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  14. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  15. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway

    Directory of Open Access Journals (Sweden)

    Jinhui Wu

    2017-05-01

    Full Text Available Chondrosarcomas (CS is the second most frequent tumors of cartilage origin. A small compound extracted from Thunder God Vine (Tripterygium wilfordii Hook. F. called celastrol can directly bound CIP2A protein and effectively inhibit cell proliferation and induce apoptosis in several cancer cells. However, little knowledge is concern about the important role of CIP2A in CS patients and the therapeutic value of celastrol on CS. Our results showed that CIP2A and c-MYC were verified to be oncoproteins by detecting their mRNA and protein expression in 10 human CS tissues by qRT-PCR and Western blots. After treatment of celastrol, the proliferation, migration and invasion were significantly inhibited; whereas the apoptosis was largely induced in human CS cell lines. In addition, celastrol inhibited the expression of CIP2A, c-MYC, and suppressed apoptotic proteins BAX and caspase-8 in human CS cells, on the other hand, it induced the expression of antiapoptotic protein Bcl-2. Finally, knockdown of CIP2A also inhibited the migration and invasion and induced apoptosis of human CS cells. To sum up, we found that celastrol had effects on inhibiting proliferation, migration, invasion and inducing apoptosis through suppression CIP2A/c-MYC signaling pathway in vitro, which may provide a new therapeutic regimen for CS.

  16. Connective tissue growth factor is activated by gastrin and involved in gastrin-induced migration and invasion.

    Science.gov (United States)

    Bhandari, Sabin; Bakke, Ingunn; Kumar, J; Beisvag, Vidar; Sandvik, Arne K; Thommesen, Liv; Varro, Andrea; Nørsett, Kristin G

    2016-06-17

    Connective tissue growth factor (CTGF) has been reported in gastric adenocarcinoma and in carcinoid tumors. The aim of this study was to explore a possible link between CTGF and gastrin in gastric epithelial cells and to study the role of CTGF in gastrin induced migration and invasion of AGS-GR cells. The effects of gastrin were studied using RT-qPCR, Western blot and assays for migration and invasion. We report an association between serum gastrin concentrations and CTGF abundancy in the gastric corpus mucosa of hypergastrinemic subjects and mice. We found a higher expression of CTGF in gastric mucosa tissue adjacent to tumor compared to normal control tissue. We showed that gastrin induced expression of CTGF in gastric epithelial AGS-GR cells via MEK, PKC and PKB/AKT pathways. CTGF inhibited gastrin induced migration and invasion of AGS-GR cells. We conclude that CTGF expression is stimulated by gastrin and involved in remodeling of the gastric epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cancer-suppressive potential of extracts of endemic plant Helichrysum zivojinii: effects on cell migration, invasion and angiogenesis.

    Science.gov (United States)

    Matić, Ivana Z; Aljancić, Ivana; Vajs, Vlatka; Jadranin, Milka; Gligorijević, Nevenka; Milosavljević, Slobodan; Juranić, Zorica D

    2013-09-01

    Helichrysum zivojinii Cernjavski & Soska is an endemic plant species that grows in the National Park Galicica in Macedonia. Five extracts were isolated as fractions from the aerial parts of the plant: a n-hexane extract (1), a dichloromethane extract (2), an ethyl-acetate extract (3), a n-butanol extract (4) and a methanol extract (5). A dose-dependent cytotoxic activity of the extracts on MDA-MB-231 and EA.hy926 cells was observed. Extracts exhibited more pronounced cytotoxic actions on MDA-MB-231 cells than on EA.hy926 cells. The n-hexane extract (1), at a non-toxic concentration, exhibited an inhibitory effect on the migration as well the invasiveness of MDA-MB-231 cells. The dichloromethane extract (2), at a non-toxic concentration, demonstrated inhibition of MDA-MB-231 cells invasion. Each of the five extracts applied at non-toxic concentrations inhibited migration of EA.hy926 cells. The prominent inhibitory effect of the n-hexane extract on EA.hy926 cells migration was associated with a notable anti-angiogenic action of this extract. The other four tested extracts demonstrated mild anti-angiogenic activity. Our data highlight the prominent anticancer potential of n-hexane (1) and dichloromethane (2) extracts, which could be attributed to their very pronounced and selective cytotoxic activities as well as their anti-invasive and anti-angiogenic properties.

  18. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    International Nuclear Information System (INIS)

    Tian, Yuan; Hao, Shaobo; Ye, Minhua; Zhang, Anling; Nan, Yang; Wang, Guangxiu; Jia, Zhifan; Yu, Kai; Guo, Lianmei; Pu, Peiyu; Huang, Qiang; Zhong, Yue

    2015-01-01

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE

  19. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Hao, Shaobo [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Ye, Minhua [Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006 (China); Zhang, Anling [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Nan, Yang [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wang, Guangxiu; Jia, Zhifan [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Yu, Kai; Guo, Lianmei [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Pu, Peiyu [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Huang, Qiang, E-mail: huangqiang209@163.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhong, Yue, E-mail: zhongyue2457@sina.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2015-03-06

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.

  20. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.

    Science.gov (United States)

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-04-15

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.

  1. Virtual and augmented medical imaging environments: enabling technology for minimally invasive cardiac interventional guidance.

    Science.gov (United States)

    Linte, Cristian A; White, James; Eagleson, Roy; Guiraudon, Gérard M; Peters, Terry M

    2010-01-01

    Virtual and augmented reality environments have been adopted in medicine as a means to enhance the clinician's view of the anatomy and facilitate the performance of minimally invasive procedures. Their value is truly appreciated during interventions where the surgeon cannot directly visualize the targets to be treated, such as during cardiac procedures performed on the beating heart. These environments must accurately represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical tracking, and visualization technology in a common framework centered around the patient. This review begins with an overview of minimally invasive cardiac interventions, describes the architecture of a typical surgical guidance platform including imaging, tracking, registration and visualization, highlights both clinical and engineering accuracy limitations in cardiac image guidance, and discusses the translation of the work from the laboratory into the operating room together with typically encountered challenges.

  2. Density-dependent quiescence in glioma invasion: instability in a simple reaction–diffusion model for the migration/proliferation dichotomy

    KAUST Repository

    Pham, Kara; Chauviere, Arnaud; Hatzikirou, Haralambos; Li, Xiangrong; Byrne, Helen M.; Cristini, Vittorio; Lowengrub, John

    2012-01-01

    Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated. Our work is motivated by the migration

  3. MicroRNA‑10b suppresses the migration and invasion of chondrosarcoma cells by targeting brain‑derived neurotrophic factor.

    Science.gov (United States)

    Aili, Abudunaibi; Chen, Yong; Zhang, Hongqi

    2016-01-01

    MicroRNAs (miRs) can lead to mRNA degradation or inhibit protein translation through directly binding to the 3'‑untranslational region (UTR) of their target mRNAs. Deregulation of miR‑10b has been reported to be associated with chondrosarcoma. However, the role of miR‑10b in chondrosarcoma cell migration and invasion, as well as the underlying mechanisms, has not been investigated. In the present study, it was demonstrated that miR‑10b was notably downregulated in the JJ012 and SW1353 chondrosarcoma cell lines compared with the TC28a2 normal chondrocyte line. Treatment with DNA demethylating agent 5‑aza‑2'‑deoxycytidine and histone deacetylase inhibitor 4‑phenylbutyric acid, or transfection with miR‑10b mimics promoted the expression of miR‑10b, which further suppressed the migratory and invasive capacities of JJ012 chondrosarcoma cells. Moreover, brain‑derived neurotrophic factor (BDNF) was identified as a novel target of miR‑10b, and its protein expression level was negatively regulated by miR‑10b in JJ012 cells. Furthermore, overexpression of BDNF reversed the inhibitory effect of miR‑10b upregulation on the migration and invasion of JJ012 cells. In addition, the data suggest that matrix metalloproteinase 1 (MMP1) may be involved in the miR‑10b/BDNF‑mediated chondrosarcoma cell migration and invasion in JJ012 cells. In conclusion, these findings suggest that miR‑10b/BDNF may serve as a potential therapeutic target for chondrosarcoma.

  4. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Youyi [Department of Oncology, Xiangya Hospital Central South University (China); Duan, Huaxin [Department of Oncology, Hunan Provincial People' s Hospital (China); The First Affiliated Hospital of Hunan Normal University (China); Duan, Chaojun [Cental Lab of Xiangya Hospital Central South University (China); Zhou, Rongrong; He, Yuxiang; Tu, Qingsong [Department of Oncology, Xiangya Hospital Central South University (China); Shen, Liangfang, E-mail: 3153559525@qq.com [Department of Oncology, Xiangya Hospital Central South University (China)

    2016-01-15

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  5. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.

    Directory of Open Access Journals (Sweden)

    Pin-Shern Chen

    Full Text Available BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum, was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2 was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt, extracellular signal regulating kinase (ERK and c-Jun N-terminal kinase (JNK. In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB, suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.

  6. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    International Nuclear Information System (INIS)

    Dai, Youyi; Duan, Huaxin; Duan, Chaojun; Zhou, Rongrong; He, Yuxiang; Tu, Qingsong; Shen, Liangfang

    2016-01-01

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  7. Non-invasive biomedical research and diagnostics enabled by innovative compact lasers

    Science.gov (United States)

    Litvinova, Karina S.; Rafailov, Ilya E.; Dunaev, Andrey V.; Sokolovski, Sergei G.; Rafailov, Edik U.

    2017-11-01

    For over half a century, laser technology has undergone a technological revolution. These technologies, particularly semiconductor lasers, are employed in a myriad of fields. Optical medical diagnostics, one of the emerging areas of laser application, are on the forefront of application around the world. Optical methods of non- or minimally invasive bio-tissue investigation offer significant advantages over alternative methods, including rapid real-time measurement, non-invasiveness and high resolution (guaranteeing the safety of a patient). These advantages demonstrate the growing success of such techniques. In this review, we will outline the recent status of laser technology applied in the biomedical field, focusing on the various available approaches, particularly utilising compact semiconductor lasers. We will further consider the advancement and integration of several complimentary biophotonic techniques into single multimodal devices, the potential impact of such devices and their future applications. Based on our own studies, we will also cover the simultaneous collection of physiological data with the aid a multifunctional diagnostics system, concentrating on the optimisation of the new technology towards a clinical application. Such data is invaluable for developing algorithms capable of delivering consistent, reliable and meaningful diagnostic information, which can ultimately be employed for the early diagnosis of disease conditions in individuals from around the world.

  8. Wogonin suppresses melanoma cell B16-F10 invasion and migration by inhibiting Ras-medicated pathways.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available The patients diagnosed with melanoma have a bad prognosis for early regional invasion and distant metastases. Wogonin (5,7-dihydroxy-8-methoxyflavone is one of the active components of flavonoids that extracts from Scutellariae radix. Several previous studies reported that wogonin possesses antitumor effect against leukemia, gastrointestinal cancer and breast cancer. In this study, we used melanoma cell B16-F10 to further investigate the anti-invasive and anti-migratory activity of wogonin. Our date showed that wogonin caused suppression of cell migration, adhesion, invasion and actin remodeling by inhibiting the expression of matrix metalloproteinase-2 and Rac1 in vitro. Wogonin also reduced the number of the tumor nodules on the whole surface of the lung in vivo. Furthermore, the examination of mechanism revealed that wogonin inhibited Extracellular Regulated protein Kinases and Protein Kinase B pathways, which are both medicated by Ras. Insulin-like growth factor-1-induced or tumor necrosis factor-α-induced invasion was also inhibited by wogonin. Therefore, the inhibitory mechanism of melanoma cell invasion by wogonin might be elucidated.

  9. LPA, HGF, and EGF utilize distinct combinations of signaling pathways to promote migration and invasion of MDA-MB-231 breast carcinoma cells

    International Nuclear Information System (INIS)

    Harrison, Susan MW; Knifley, Teresa; Chen, Min; O’Connor, Kathleen L

    2013-01-01

    Various pathways impinge on the actin-myosin pathway to facilitate cell migration and invasion including members of the Rho family of small GTPases and MAPK. However, the signaling components that are considered important for these processes vary substantially within the literature with certain pathways being favored. These distinctions in signaling pathways utilized are often attributed to differences in cell type or physiological conditions; however, these attributes have not been systematically assessed. To address this question, we analyzed the migration and invasion of MDA-MB-231 breast carcinoma cell line in response to various stimuli including lysophosphatidic acid (LPA), hepatocyte growth factor (HGF) and epidermal growth factor (EGF) and determined the involvement of select signaling pathways that impact myosin light chain phosphorylation. LPA, a potent stimulator of the Rho-ROCK pathway, surprisingly did not require the Rho-ROCK pathway to stimulate migration but instead utilized Rac and MAPK. In contrast, LPA-stimulated invasion required Rho, Rac, and MAPK. Of these three major pathways, EGF-stimulated MDA-MB-231 migration and invasion required Rho; however, Rac was essential only for invasion and MAPK was dispensable for migration. HGF signaling, interestingly, utilized the same pathways for migration and invasion, requiring Rho but not Rac signaling. Notably, the dependency of HGF-stimulated migration and invasion as well as EGF-stimulated invasion on MAPK was subject to the inhibitors used. As expected, myosin light chain kinase (MLCK), a convergence point for MAPK and Rho family GTPase signaling, was required for all six conditions. These observations suggest that, while multiple signaling pathways contribute to cancer cell motility, not all pathways operate under all conditions. Thus, our study highlights the plasticity of cancer cells to adapt to multiple migratory cues

  10. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    International Nuclear Information System (INIS)

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-01-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton

  11. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor because the molecular mechanisms underlying hepatocarcinogenesis are not well understood. In the study, we focused on identifying the role of miRNAs in HCC progression. miRNA microarray was used to analyze the differentially expressed miRNAs, and the results were validated by qPCR. We found that the miR-150-5p expression is down-regulated in HCC tissues compared with pair non-tumor tissues. miR-150-5p expression is also decreased in metastatic cancer tissues compared with pair primary tissues, indicating that miR-150-5p may be involved in HCC metastasis. Functionally, miR-150-5p inhibition significantly promotes hepatoma cell migration and invasion, whereas miR-150-5p overexpression suppresses cancer cell migration and invasion in vitro. The matrix metalloproteinase 14 (MMP14 is identified as a new target gene of miR-150-5p. miR-150-5p markedly inhibits MMP14 expression in hepatoma cells, and miR-150-5p expression is negative correlation with MMP14 expression in vivo. More important, re-expression of MMP14 in hepatoma cells partially reverses the effect of miR-150-5p in inhibiting cell invasion.

  12. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  13. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer.

    Science.gov (United States)

    Wang, Yingying; Tian, Yongjie

    2018-01-02

    miR-206 and bcl2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. Here, we investigated the expressions and mechanisms of miR-206 and BAG3 in cervical cancer using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEEC cells. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration and invasion in vitro, and the 3'-untranslated region (3'-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2 and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 over-expression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Thus, miR-206-BAG3 can be used as a useful target for cervical cancer.

  14. BCORL1 is an independent prognostic marker and contributes to cell migration and invasion in human hepatocellular carcinoma.

    Science.gov (United States)

    Yin, Guozhi; Liu, Zhikui; Wang, Yufeng; Dou, Changwei; Li, Chao; Yang, Wei; Yao, Yingmin; Liu, Qingguang; Tu, Kangsheng

    2016-02-15

    The deregulation of E-cadherin has been considered as a leading cause of hepatocellular carcinoma (HCC) metastasis. BCL6 corepressor-like 1 (BCORL1) is a transcriptional corepressor and contributes to the repression of E-cadherin. However, the clinical significance of BCORL1 and its role in the metastasis of HCC remain unknown. Differentially expressed BCORL1 between HCC and matched tumor-adjacent tissues, HCC cell lines and normal hepatic cell line were detected by Western blot. The expression of BCORL1 was altered by siRNAs or lentivirus-mediated vectors. Transwell assays were performed to determine HCC cell invasion and migration. Increased expression of BCORL1 protein was detected in HCC specimens and cell lines. Clinical association analysis showed that BCORL1 protein was expressed at significant higher levels in HCC patients with multiple tumor nodes, venous infiltration and advanced TNM tumor stage. Survival analysis indicated that high expression of BCORL1 protein conferred shorter overall survival (OS) and recurrence-free survival (RFS) of HCC patients. Multivariate Cox regression analysis disclosed that BCORL1 expression was an independent prognostic marker for predicting survival of HCC patients. Our in vitro studies demonstrated that BCORL1 prominently promoted HCC cell migration and invasion. Otherwise, an inverse correlation between BCORL1 and E-cadherin expression was observed in HCC tissues. BCORL1 inversely regulated E-cadherin abundance and subsequently facilitated epithelial-mesenchymal transition (EMT) in HCC cells. Notably, the effect of BCORL1 knockdown on HCC cells was abrogated by E-cadherin silencing. BCORL1 may be a novel prognostic factor and promotes cell migration and invasion through E-cadherin repression-induced EMT in HCC.

  15. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis.

    Science.gov (United States)

    Wang, Bo; Zhang, XueBin; Wang, Wei; Zhu, ZhiZhong; Tang, Fan; Wang, Dong; Liu, Xi; Zhuang, Hao; Yan, XiaoLing

    2018-01-01

    Forkhead box K2 (FOXK2) is a member of the forkhead box family of transcription factors. Recently, researchers discovered that overexpression of FOXK2 inhibits the proliferation and metastasis of breast cancer, non-small cell lung cancer, and colorectal cancer, and is related to the clinical prognosis. However, in hepatocellular carcinoma, FOXK2 results in the opposite phenotypes. Currently, the contribution of FOXK2 to glioma pathogenesis is not clear. We evaluated the expression of FOXK2 in 151 glioma patients using immunohistochemistry assays. The associations among the expression of FOXK2, clinicopathological parameters, and the prognosis of glioma patients were statistically analyzed. We downregulated and upregulated the level of FOXK2 in glioma cells by transfections with small interfering RNA and plasmids. Then, we investigated the effects on tumor cell behavior in vitro by Cell Counting Kit-8 assays, colony-formation assay, transwell assay, and the epithelial-to-mesenchymal transition (EMT) biomarker levels. The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO) grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O -6-methylguanine-DNA methyltransferase, and glutathione S -transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process. Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process.

  16. miR-367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells.

    Science.gov (United States)

    Cai, Wei; Jiang, Haitao; Yu, Yifan; Xu, Yong; Zuo, Wenshan; Wang, Shouguo; Su, Zhen

    2017-11-01

    Recently, miR-367 is reported to exert either oncogenic or tumor suppressive effects in human malignancies. Recent study reports that miR-367 is up-regulated in OS tissues and cell lines, and abrogates adriamycin-induced apoptosis. The clinical significance of miR-367 and its function in OS need further investigation. In our study, miR-367 expression in OS was markedly elevated compared with corresponding non-tumor tissues. High miR-367 expression was associated with malignant clinical features and poor prognosis of OS patients. In accordance, the levels of miR-367 were dramatically up-regulated in OS cells. Loss of miR-367 expression in Saos-2 cells obviously inhibited the proliferation, migration and invasion of cancer cells in vitro. Meanwhile, miR-367 restoration promoted these malignant behaviors of MG-63 cells. Mechanistically, miR-367 negatively regulated DOC-2/DAB2 interactive protein (DAB2IP) abundance in OS cells. Hereby, DAB2IP was recognized as a direct target gene of miR-367 in OS. DAB2IP mRNA level was down-regulated and inversely correlated with miR-367 expression in OS specimens. DAB2IP overexpression prohibited proliferation, migration and invasion in Saos-2 cells, while DAB2IP knockdown showed promoting effects on proliferation, migration and invasion of MG-63 cells. Furthermore, the role of miR-367 might be mediated by DAB2IP-regulated phosphorylation of ERK and AKT in OS cells. To conclude, miR-367 may function as a biomarker for prediction of prognosis and a target for OS therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. MicroRNA-215 suppresses cell proliferation, migration and invasion of colon cancer by repressing Yin-Yang 1

    International Nuclear Information System (INIS)

    Chen, Zehong; Han, Siqi; Huang, Wensheng; Wu, Jialin; Liu, Yuyi; Cai, Shirong; He, Yulong; Wu, Suijing; Song, Wu

    2016-01-01

    Colorectal cancer is one of the most common malignant tumors worldwide with rising incidence. MicroRNAs are small non-coding RNAs that implicate in multiple physiological or pathological processes. The aberrant expression of miRNA-215 (miR-215) has been illustrated in various types of cancers. However, the expression of miR-215 in human colon cancer and the biological roles of it remain largely unknown. We conducted this study to explore the expression and the function of miR-215 in human colon cancer. The results showed that miR-215 was remarkably downregulated in colon cancer tissues and cell lines. Overexpression of miR-215 by miR-215 mimic significantly inhibited colon cancer cell proliferation, migration and invasion while knockdown of miR-215 by miR-215 inhibitor exerted reverse effects. Furthermore, we newly identified Yin-Yang 1(YY1) as a direct target of miR-215 which could rescue the effects of miR-215 on colon cancer cells. In summary, our investigation revealed that miR-215 was downregulated in colon cancer and it suppressed colon cancer cell proliferation, migration and invasion by directly targeting YY1. - Highlights: • MiR-215 expression was decreased in colon cancer tissues and cell lines. • Mir-215 inhibited colon cancer cell proliferation, migration and invasion. • MiR-215 targeted YY1 directly. • The effects of miR-215 on colon cancer cells were mediated by YY1.

  18. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan-Guo, E-mail: zhang_zhanguo@hotmail.com; Chen, Wei-Xun, E-mail: chenweixunclark@163.com; Wu, Yan-Hui, E-mail: wuyanhui84@126.com; Liang, Hui-Fang, E-mail: lianghuifang1997@126.com; Zhang, Bi-Xiang, E-mail: bixiangzhang@163.com

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.

  19. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    Science.gov (United States)

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell TM assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  20. 1,25D3 differentially suppresses bladder cancer cell migration and invasion through the induction of miR-101-3p.

    Science.gov (United States)

    Ma, Yingyu; Luo, Wei; Bunch, Brittany L; Pratt, Rachel N; Trump, Donald L; Johnson, Candace S

    2017-09-01

    Metastasis is the major cause of bladder cancer death. 1,25D 3 , the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D 3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D 3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D 3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D 3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using "wound" healing, chemotactic migration and Matrigel-based invasion assays. 1,25D 3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D 3 on migration and invasion in 253J-BV cells. Further, 1,25D 3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D 3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D 3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level.

  1. Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1.

    Science.gov (United States)

    Wang, Minghao; Dong, Qianze; Wang, Yunjie

    2016-08-01

    Rab23 overexpression has been implicated in several human cancers. However, its biological roles and molecular mechanism in astrocytoma have not been elucidated. The aim of this study is to explore clinical significance and biological roles of Rab23 in astrocytoma. We observed negative Rab23 staining in normal astrocytes and positive staining in 39 out of 86 (45 %) astrocytoma specimens using immunohistochemistry. The positive rate of Rab23 was higher in grades III and IV (56.5 %, 26/46) than grades I + II astrocytomas (32.5 %, 13/40, p Rac1 activity. Treatment of transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. In conclusion, Rab23 serves as an important oncoprotein in human astrocytoma by regulating cell invasion and migration through Rac1 activity.

  2. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Rieder Gabriele

    2011-11-01

    Full Text Available Abstract Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS and the effector protein cytotoxin-associated gene A (CagA of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.

  3. Transcription Factor SOX5 Promotes the Migration and Invasion of Fibroblast-Like Synoviocytes in Part by Regulating MMP-9 Expression in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Yumeng Shi

    2018-04-01

    Full Text Available ObjectivesFibroblast-like synoviocytes (FLS exhibit a unique aggressive phenotype in rheumatoid arthritis (RA. Increased FLS migration and subsequent invasion of the extracellular matrix are essential to joint destruction in RA. Our previous research reported that transcription factor SOX5 was highly expressed in RA-FLS. Here, the effects of SOX5 in RA-FLS migration and invasion will be investigated.MethodsThe migration and invasion of RA-FLS were evaluated using a transwell chamber assay. The expression of several potential SOX5-targeted genes, including matrix metalloproteinases (MMP-1, 2, 3 and 9, chemokines (CCL4, CCL2, CCR5 and CCR2, and pro-inflammatory cytokines (TNF-α and IL-6, were examined in RA-FLS using SOX5 gain- and loss-of-function study. The molecular mechanisms of SOX5-mediated MMP-9 expressions were assayed by luciferase reporter gene and chromatin immunoprecipitation (ChIP studies. The in vivo effect of SOX5 on FLS migration and invasion was examined using collagen-induced arthritis (CIA in DBA/1J mice.ResultsKnockdown SOX5 decreased lamellipodium formation, migration, and invasion of RA-FLS. The expression of MMP-9 was the only gene tested to be concomitantly affected by silencing or overexpressing SOX5. ChIP assay revealed that SOX5 was bound to the MMP-9 promoter in RA-FLS. The overexpression of SOX5 markedly enhanced the MMP-9 promoter activity, and specific deletion of a putative SOX5-binding site in MMP-9 promoter diminished this promoter-driven transcription in FLS. Locally knocked down SOX5 inhibited MMP-9 expression in the joint tissue and reduced pannus migration and invasion into the cartilage in CIA mice.ConclusionSOX5 plays a novel role in mediating migration and invasion of FLS in part by regulating MMP-9 expression in RA.

  4. Transcription Factor SOX5 Promotes the Migration and Invasion of Fibroblast-Like Synoviocytes in Part by Regulating MMP-9 Expression in Collagen-Induced Arthritis.

    Science.gov (United States)

    Shi, Yumeng; Wu, Qin; Xuan, Wenhua; Feng, Xiaoke; Wang, Fang; Tsao, Betty P; Zhang, Miaojia; Tan, Wenfeng

    2018-01-01

    Fibroblast-like synoviocytes (FLS) exhibit a unique aggressive phenotype in rheumatoid arthritis (RA). Increased FLS migration and subsequent invasion of the extracellular matrix are essential to joint destruction in RA. Our previous research reported that transcription factor SOX5 was highly expressed in RA-FLS. Here, the effects of SOX5 in RA-FLS migration and invasion will be investigated. The migration and invasion of RA-FLS were evaluated using a transwell chamber assay. The expression of several potential SOX5-targeted genes, including matrix metalloproteinases (MMP-1, 2, 3 and 9), chemokines (CCL4, CCL2, CCR5 and CCR2), and pro-inflammatory cytokines (TNF-α and IL-6), were examined in RA-FLS using SOX5 gain- and loss-of-function study. The molecular mechanisms of SOX5-mediated MMP-9 expressions were assayed by luciferase reporter gene and chromatin immunoprecipitation (ChIP) studies. The in vivo effect of SOX5 on FLS migration and invasion was examined using collagen-induced arthritis (CIA) in DBA/1J mice. Knockdown SOX5 decreased lamellipodium formation, migration, and invasion of RA-FLS. The expression of MMP-9 was the only gene tested to be concomitantly affected by silencing or overexpressing SOX5. ChIP assay revealed that SOX5 was bound to the MMP-9 promoter in RA-FLS. The overexpression of SOX5 markedly enhanced the MMP-9 promoter activity, and specific deletion of a putative SOX5-binding site in MMP-9 promoter diminished this promoter-driven transcription in FLS. Locally knocked down SOX5 inhibited MMP-9 expression in the joint tissue and reduced pannus migration and invasion into the cartilage in CIA mice. SOX5 plays a novel role in mediating migration and invasion of FLS in part by regulating MMP-9 expression in RA.

  5. MicroRNA-214-5p Inhibits the Invasion and Migration of Hepatocellular Carcinoma Cells by Targeting Wiskott-Aldrich Syndrome Like.

    Science.gov (United States)

    Li, Hongdan; Wang, Haoqi; Ren, Zhen

    2018-01-01

    This study aims to explore the effects of microRNA-214-5p (miR-214-5p) on the invasion and migration of Hepatocellular Carcinoma cells (HCC). Hepatocellular Carcinoma tissues and adjacent normal tissues from 44 hepatocellular carcinoma patients were prepared for this study. The HepG2 and BEL-7402 cells were transfected with miR-214-5p mimic and inhibitor. qRT-PCR was performed to detect the expressions of miR-214-5p. Transwell assays were used to detect the invasion and migration assays in HepG2 and BEL-7402 cells. A dual-luciferase reporter assay was conducted to examine the effect of miR-214-5p on Wiskott-Aldrich Syndrome Like (WASL/ N-WASP). Western blot and qRT-PCR were used to measure the expressions of the E-cadherin, N-cadherin and Vimentin proteins. Transwell chamber assays were performed to detect cell invasion and migration. Compared with normal tissues, HCC tissues demonstrated significantly lower expression of miR-214-5p. Overexpression of miR-214-5p significantly inhibited the migration and invasion of HCC cells and inhibition of miR-214-5p promoted the migration and invasion. Additionally, miR-214-5p suppressed the epithelial-mesenchymal transition (EMT). Further study showed WASL was a putative target gene of miR-214-5p. Up-regulating the expression of WASL could reverse the inhibition effect of miR-214-5p on invasion and migration. Our data suggested that miR-214-5p inhibited the invasion and migration of HepG2 and BEL-7402 by targeting WASL in Hepatocellular carcinoma. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Li, Yumei; Zhang, Chunmei; Cai, Danfeng; Chen, Congde; Mu, Dongmei

    2017-12-01

    Rhabdoid tumors, which tend to occur prior to the age of 2 years, are one of the most aggressive malignancies and have a poor prognosis due to the frequency of metastasis. Silibinin, a natural extract, has been approved as a potential tumor suppressor in various studies, however, whether or not it also exerts its antitumor capacity in rhabdoid tumors, particularly with regards to tumor migration and invasion, is unclear. The rhabdoid tumor G401 cell line was used in the present in vitro study. An MTT assay was used to assess the cytotoxicity of silibinin on G401 cells, cell migration was studied using a wound healing assay and a Transwell migration assay, and cell invasion was determined using a Transwell invasion assay. The underlying mechanism in silibinin inhibited cell migration and invasion was investigated by western blot analysis and further confirmed using a specific inhibitor. Experimental results demonstrated that high doses of silibinin suppressed cell viability, and that low doses of silibinin inhibited cell migration and invasion without affecting cell proliferation. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was involved in the silibinin-induced inhibition of metastasis. Silibinin inactivated the PI3K/Akt pathway, and inhibited cell migration and invasion, an effect that was further enhanced when LY294002, a classic PI3K inhibitor, was used concurrently. In general, silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway and may be a potential chemotherapeutic drug to combat rhabdoid tumors in the future.

  7. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta–Mediated Epithelial–Mesenchymal Transition

    International Nuclear Information System (INIS)

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-01-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-β)–mediated epithelial–mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by 60 Co γ-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-β in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-β signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with γ-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-β were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-β signaling. Conclusions: These results suggest that EMT mediated by TGF-β plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  8. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: guozhenguo@hotmail.com [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  9. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    Science.gov (United States)

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  10. Inherent phenotypic plasticity facilitates progression of head and neck cancer: Endotheliod characteristics enable angiogenesis and invasion

    International Nuclear Information System (INIS)

    Tong, Meng; Han, Byungdo B.; Holpuch, Andrew S.; Pei, Ping; He, Lingli; Mallery, Susan R.

    2013-01-01

    subpopulations are highly responsive to TGF- β1, VEGF and endostatin. ► TGF-β1 facilitates cadherin switching and augments invasiveness of HNSCC subpopulations

  11. Inherent phenotypic plasticity facilitates progression of head and neck cancer: Endotheliod characteristics enable angiogenesis and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Meng, E-mail: tong.59@osu.edu [Division of Oral Pathology and Radiology, The Ohio State University College of Dentistry, Columbus, OH 43210 (United States); Han, Byungdo B.; Holpuch, Andrew S.; Pei, Ping; He, Lingli; Mallery, Susan R. [Division of Oral Pathology and Radiology, The Ohio State University College of Dentistry, Columbus, OH 43210 (United States)

    2013-04-15

    subpopulations are highly responsive to TGF- β1, VEGF and endostatin. ► TGF-β1 facilitates cadherin switching and augments invasiveness of HNSCC subpopulations.

  12. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2014-01-01

    Full Text Available Fanconi anemia complementation group F protein (FANCF is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  13. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    International Nuclear Information System (INIS)

    Zhao, L.; Li, N.; Yu, J.K.; Tang, H.T.; Li, Y.L.; He, M.; Yu, Z.J.; Bai, X.F.; Zheng, Z.H.; Wang, E.H.; Wei, M.J.

    2013-01-01

    Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer

  14. Effects of low concentrations of Regorafenib and Sorafenib on human HCC cell AFP, migration, invasion and growth in vitro

    Science.gov (United States)

    Carr, Brian Irving; D’Alessandro, Rosalba; Refolo, Maria Grazia; Iacovazzi, Palma Aurelia; Lippolis, Catia; Messa, Caterina; Cavallini, Aldo; Correale, Mario; Di Carlo, Antonio

    2012-01-01

    Sorafenib was shown in clinical trial to enhance survival in hepatocellular carcinoma (HCC) patients, but with minimal tumor shrinkage. To correlate several indices of HCC growth at various drug concentrations, HCC cells were grown in various low concentrations of two multi-kinase inhibitors, Regorafenib (Stivarga) and Sorafenib (Nexavar) and their effects were examined on alpha-fetoprotein (AFP), cell growth, migration and invasion. In two AFP positive human HCC cell lines, AFP was inhibited at 0.1–1µM drug concentrations. Cell migration and invasion were also inhibited at similar low drug concentrations. However, 10-fold higher drug concentrations were required to inhibit cell growth in both AFP positive and negative cells. To investigate this concentration discrepancy of effects, cells were then grown for prolonged times and sub-cultured in low drug concentrations and then their growth was re-tested. The growth in these drug-exposed cells was found to be slower than cells without prior drug exposure and they were also more sensitive to subsequent drug challenge. Evidence was also found for changes in cell signaling pathways in these slow-growth cells. Low multi-kinase inhibitor concentrations thus modulate several aspects of HCC cell biology. PMID:23169148

  15. SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells.

    Science.gov (United States)

    Gwak, Jungsug; Shin, Jee Yoon; Lee, Kwanghyun; Hong, Soon Ki; Oh, Sangtaek; Goh, Sung-Ho; Kim, Won Sun; Ju, Bong Gun

    2016-07-26

    Metastatic prostate cancer is the leading cause of morbidity and mortality in men. In this study, we found that expression level of SFMBT2 is altered during prostate cancer progression and has been associated with the migration and invasion of prostate cancer cells. The expression level of SFMBT2 is high in poorly metastatic prostate cancer cells compared to highly metastatic prostate cancer cells. We also found that SFMBT2 knockdown elevates MMP-2, MMP-3, MMP-9, and MMP-26 expression, leading to increased cell migration and invasion in LNCaP and VCaP cells. SFMBT2 interacts with YY1, RNF2, N-CoR and HDAC1/3, as well as repressive histone marks such as H3K9me2, H4K20me2, and H2AK119Ub which are associated with transcriptional repression. In addition, SFMBT2 knockdown decreased KAI1 gene expression through up-regulation of N-CoR gene expression. Expression of SFMBT2 in prostate cancer was strongly associated with clinicopathological features. Patients having higher Gleason score (≥ 8) had substantially lower SFMBT2 expression than patients with lower Gleason score. Moreover, tail vein or intraprostatic injection of SFMBT2 knockdown LNCaP cells induced metastasis. Taken together, our findings suggest that regulation of SFMBT2 may provide a new therapeutic strategy to control prostate cancer metastasis as well as being a potential biomarker of metastatic prostate cancer.

  16. miR-148a suppresses cell invasion and migration in gastric cancer by targeting DNA methyltransferase 1.

    Science.gov (United States)

    Shi, Huaijie; Chen, Xiaojing; Jiang, Hao; Wang, Xujie; Yu, Hao; Sun, Pijiang; Sui, Xin

    2018-04-01

    Gastric cancer (GC) is the fourth most common malignant tumor globally. The highest incidence of GC is found in Eastern Asia, particularly in China. It is therefore imperative to further elucidate the molecular pathogenesis of GC in order to identify new biomarkers and targets for effective therapy. In the present study, we determined whether miR-148a was aberrantly downregulated in gastric cancer tissues and significantly correlated with aggressive clinicopathological characteristics in the MGC-803, HGC-27 and GES-1 cell lines using reverse transcription-quantitative PCR and western blot analysis. The cell lines were obtained from 60 patients who presented at our hospital between September 2010 and July 2015. The results showed that, miR-148a was aberrantly downregulated in GC tissues and its expression was relatively lower in the MGC-803 and HGC-27 GC cell lines than in the normal gastric epithelial cell line, GES-1. The clinicopathological analysis revealed that a decrease of miR-148a was significantly correlated with lymph-node metastasis (Pblot analysis. Furthermore, we found that the re-expression of DNMT1 reversed the inhibition of cell migration and invasion induced by miR-148a. Taken together, we demonstrated that miR-148a suppresses cell invasion and migration in gastric cancer by regulating DNMT1 expression. The miR-148a/DNMT1 axis may therefore be a new potential target for GC therapy.

  17. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration.

    Science.gov (United States)

    Zhou, Hejiang; Zhang, Bo; Zheng, Jiajia; Yu, Meifang; Zhou, Teng; Zhao, Kai; Jia, Yanxia; Gao, Xingfa; Chen, Chunying; Wei, Taotao

    2014-02-01

    Graphene and its derivatives have become important nanomaterials worldwide and have potential medical applications including in vivo diagnosis, drug delivery, and photothermal therapy of cancer. However, little is known about their effect on the metastasis of cancer cells, which is the cause of over 90% of patient deaths. In the present investigation, we provide direct evidence that low concentrations of pristine graphene and graphene oxide show no apparent influence on the viability of MDA-MB-231 human breast cancer cells, PC3 human prostate cancer cells, as well as B16F10 mouse melanoma cells. However, both pristine graphene and graphene oxide can effectively inhibit the migration and invasion of these cancer cells. Further studies indicate that exposure of cells to graphene led to the direct inhibition of the electron transfer chain complexes I, II, III and IV, most likely by disrupting electron transfer between iron-sulfur centers, which is due to its stronger ability to accept electrons compared to iron-sulfur clusters through theoretical calculations. The decreased electron transfer chain activity caused a reduction in the production of ATP and subsequent impairment of F-actin cytoskeleton assembly, which is crucial for the migration and invasion of metastatic cancer cells. The inhibition of cancer cell metastasis by graphene and graphene oxide might provide new insights into specific cancer treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Spiclomazine induces apoptosis associated with the suppression of cell viability, migration and invasion in pancreatic carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    Full Text Available The effective treatment for pancreatic carcinoma remains critically needed. Herein, this current study showed that spiclomazine treatment caused a reduction in viability in pancreatic carcinoma cell lines CFPAC-1 and MIA PaCa-2 in vitro. It was notable in this regard that, compared with pancreatic carcinoma cells, normal human embryonic kidney (HEK-293 and liver (HL-7702 cells were more resistant to the antigrowth effect of spiclomazine. Biochemically, spiclomazine treatment regulated the expression of protein levels in the apoptosis related pathways. Consistent with this effect, spiclomazine reduced the mitochondria membrane potential, elevated reactive oxygen species, and activated caspase-3/9. In addition, a key finding from this study was that spiclomazine suppressed migration and invasion of cancer cells through down-regulation of MMP-2/9. Collectively, the proposed studies did shed light on the antiproliferation effect of spiclomazine on pancreatic carcinoma cell lines, and further clarified the mechanisms that spiclomazine induced apoptosis associated with the suppression of migration and invasion.

  19. Elevated chemokine CC-motif receptor-like 2 (CCRL2) promotes cell migration and invasion in glioblastoma.

    Science.gov (United States)

    Yin, Fengqiong; Xu, Zhenhua; Wang, Zifeng; Yao, Hong; Shen, Zan; Yu, Fang; Tang, Yiping; Fu, Dengli; Lin, Sheng; Lu, Gang; Kung, Hsiang-Fu; Poon, Wai Sang; Huang, Yunchao; Lin, Marie Chia-Mi

    2012-12-14

    Chemokine CC-motif receptor-like 2 (CCRL2) is a 7-transmembrane G protein-coupled receptor which plays a key role in lung dendritic cell trafficking to peripheral lymph nodes. The function and expression of CCRL2 in cancer is not understood at present. Here we report that CCRL2 expression level is elevated in human glioma patient samples and cell lines. The magnitude of increase is positively associated with increasing tumor grade, with the highest level observed in grade IV glioblastoma. By gain-of-function and loss-of-function studies, we further showed that CCRL2 did not regulate the growth of human glioblatoma U87 and U373 cells. Importantly, we demonstrated that over-expression of CCRL2 significantly enhanced the migration rate and invasiveness of the glioblastoma cells. Taken together, these results suggest for the first time that elevated CCRL2 in glioma promotes cell migration and invasion. The potential roles of CCRL2 as a novel therapeutic target and biomarker warrant further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Li, N.; Yu, J.K.; Tang, H.T.; Li, Y.L.; He, M.; Yu, Z.J.; Bai, X.F. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Zheng, Z.H.; Wang, E.H. [Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Wei, M.J. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China)

    2013-12-12

    Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  1. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Ming Hong

    2018-02-01

    Full Text Available As one of the major active ingredients in Radix Scutellariae, wogonin has been shown to be associated with various pharmacological activities on cancer cell growth, apoptosis, and cell invasion and migration. Here, we demonstrated that wogonin may harbor potential anti-metastatic activities in hepatocarcinoma (HCC. The anti-metastasis potential of wogonin and its underlying mechanisms were evaluated by ligand–protein docking approach, surface plasmon resonance assay, and in vitro gelatin zymography studies. Our results showed that wogonin (100 μM, 50 μM suppressed MHCC97L and PLC/PRF/5 cells migration and invasion in vitro. The docking approach and surface plasmon resonance assay indicated that the potential binding affinity between wogonin and matrix metalloproteinase-9 (MMP-9 may lead to inhibition of MMP-9 activity and further leads to suppression of tumor metastasis. This conclusion was further verified by Western blot results and gelatin zymography analysis. Wogonin might be a potent treatment option for disrupting the tumor metastasis that favors HCC development. The potential active targets from computational screening integrated with biomedical study may help us to explore the molecular mechanism of herbal medicines.

  2. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    Science.gov (United States)

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer.

    Science.gov (United States)

    Roussos, Evanthia T; Balsamo, Michele; Alford, Shannon K; Wyckoff, Jeffrey B; Gligorijevic, Bojana; Wang, Yarong; Pozzuto, Maria; Stobezki, Robert; Goswami, Sumanta; Segall, Jeffrey E; Lauffenburger, Douglas A; Bresnick, Anne R; Gertler, Frank B; Condeelis, John S

    2011-07-01

    We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (Mena(INV)) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated Mena(INV) increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by Mena(INV) is dependent on a macrophage-tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of Mena(INV) and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells.

  4. Γ-Ionizing radiation activated EGFR-p38/ERK-STAT3/CREB-1-EMT pathway for promotion of the migration/invasion of lung cancer cell and its inhibition by podophyllotoxin acetate

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Hyun; Um, Hong Duck; Park, Jong Kuk [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we sought to identify the intracellular machinery responsible for IR induced cancer invasion/migration. We report that IR activates the EGFR - p38/ERK - CREB-1/STAT3 pathway, which triggers EMT and increases invasion/migration of lung cancer. Moreover, we show that podophyllotoxin acetate (PA) inhibits IR-induced invasion/migration at least partly by blocking EGFR - p38/ERK - STAT3/ CREB-1signaling and thereby suppressing EMT. Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration.

  5. Γ-Ionizing radiation activated EGFR-p38/ERK-STAT3/CREB-1-EMT pathway for promotion of the migration/invasion of lung cancer cell and its inhibition by podophyllotoxin acetate

    International Nuclear Information System (INIS)

    Cho, Jeong Hyun; Um, Hong Duck; Park, Jong Kuk

    2016-01-01

    In this study, we sought to identify the intracellular machinery responsible for IR induced cancer invasion/migration. We report that IR activates the EGFR - p38/ERK - CREB-1/STAT3 pathway, which triggers EMT and increases invasion/migration of lung cancer. Moreover, we show that podophyllotoxin acetate (PA) inhibits IR-induced invasion/migration at least partly by blocking EGFR - p38/ERK - STAT3/ CREB-1signaling and thereby suppressing EMT. Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration

  6. MiR-1254 inhibits proliferation, migration and invasion of human ...

    African Journals Online (AJOL)

    Thus, miR-1254 has promising potential for use in the treatment of brain tumour. Keywords: Brain tumour, Astrocytoma, miR-1254, Apoptosis, Cell migration ... colorectal cancer, adenocarcinoma carcinoma and lung cancer [6]. However, the expression profile of miR-1254 in brain tumour has not been investigated.

  7. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.

    Science.gov (United States)

    Li, Shoushan; Yan, Ting; Deng, Rong; Jiang, Xuesong; Xiong, Huaping; Wang, Yuan; Yu, Qiao; Wang, Xiaohua; Chen, Cheng; Zhu, Yichao

    2017-01-01

    Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. A low dose of kaempferol (20 μmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.

  8. Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chung, I-Che; Li, Hsin-Pai; Chang, Yu-Sun; Chen, Lih-Chyang; Chung, An-Ko; Chao, Mei; Huang, Hsin-Yi; Hsueh, Chuen; Tsang, Ngan-Ming; Chang, Kai-Ping; Liang, Ying

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a DNA/RNA binding protein, is associated with metastasis in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying hnRNP K-mediated metastasis is unclear. The aim of the present study was to determine the role of matrix metalloproteinase (MMP) in hnRNP K-mediated metastasis in NPC. We studied hnRNP K-regulated MMPs by analyzing the expression profiles of MMP family genes in NPC tissues and hnRNP K-knockdown NPC cells using Affymetrix microarray analysis and quantitative RT-PCR. The association of hnRNP K and MMP12 expression in 82 clinically proven NPC cases was determined by immunohistochemical analysis. The hnRNP K-mediated MMP12 regulation was determined by zymography and Western blot, as well as by promoter, DNA pull-down and chromatin immunoprecipitation (ChIP) assays. The functional role of MMP12 in cell migration and invasion was demonstrated by MMP12-knockdown and the treatment of MMP12-specific inhibitor, PF-356231. MMP12 was overexpressed in NPC tissues, and this high level of expression was significantly correlated with high-level expression of hnRNP K (P = 0.026). The levels of mRNA, protein and enzyme activity of MMP12 were reduced in hnRNP K-knockdown NPC cells. HnRNP K interacting with the region spanning −42 to −33 bp of the transcription start site triggered transcriptional activation of the MMP12 promoter. Furthermore, inhibiting MMP12 by MMP12 knockdown and MMP12-specific inhibitor, PF-356231, significantly reduced the migration and invasion of NPC cells. Overexpression of MMP12 was significantly correlated with hnRNP K in NPC tissues. HnRNP K can induce MMP12 expression and enzyme activity through activating MMP12 promoter, which promotes cell migration and invasion in NPC cells. In vitro experiments suggest that NPC metastasis with high MMP12 expression may be treated with PF-356231. HnRNP K and MMP12 may be potential therapeutic markers for NPC, but

  9. MicroRNA-9 suppresses the growth, migration, and invasion of malignant melanoma cells via targeting NRP1

    Directory of Open Access Journals (Sweden)

    Xu D

    2016-11-01

    Full Text Available Dan Xu,1 Xiaofeng Chen,2 Quanyong He,1 Chengqun Luo1 1Department of Plastic Surgery, Third Xiangya Hospital of Central South University, 2Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, People’s Republic of China Abstract: MicroRNAs (miRs are a class of small noncoding RNAs that negatively regulate the gene expression by directly binding to the 3' untranslated region of their target mRNA, thus resulting in mRNA degradation or translational repression. miR-9 has recently been demonstrated to play a role in the development and progression of malignant melanoma (MM, but the regulatory mechanism of miR-9 in the malignant phenotypes of MM still remains largely unknown. In this study, a total of 73 pairs of MM tissues and adjacent normal tissues were collected. Real-time reverse transcription polymerase chain reaction and Western blot were used to detect the mRNA and protein expression of miR-9. MTT assay, wound healing assay, and transwell assay were conducted to determine the cell proliferation, migration, and invasion. Luciferase reporter assay was used to determine the targeting relationship between miR-9 and NRP1. Our data demonstrated that miR-9 expression was significantly downregulated in MM tissues compared with that in adjacent normal tissues. The decreased miR-9 level was significantly associated with the tumor stage and metastasis of MM. We also found that the expression level of miR-9 was decreased in MM cell lines (G361, B16, A375, and HME1 compared with normal skin HACAT cells. Ectopic expression of miR-9 led to a significant decrease in the ability of proliferation, migration, and invasion in A375 cells. NRP1 was further identified as a direct target gene of miR-9, and the protein expression of NRP1 was negatively regulated by miR-9 in A375 cells. Furthermore, overexpression of NRP1 reversed the suppressive effects of miR-9 on the malignant phenotypes of A375 cells. In vivo study revealed that miR-9

  10. Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jih-Tung Pai

    2018-01-01

    Full Text Available Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT through the regulation of epidermal growth factor receptor (EGFR signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt and extracellular signal-regulated kinase (ERK signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.

  11. Nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro.

    Science.gov (United States)

    Wang, Chengze; Gu, Weiting; Zhang, Yunpeng; Ji, Yawen; Wen, Yong; Xu, Xin

    2017-07-05

    Cigarette smoking is one of highly risk factors of cervical cancer. Recently nicotine has been reported to increase proliferation and invasion in some smoking related cancers, like non-small cell lung cancer and esophageal squamous cell cancer. However, the effects and mechanisms of nicotine stimulation on cervical cancer cells are not clear. Here, we investigated the effects and mechanisms of nicotine stimulation on HeLa cells in vitro. In our study, we found that nicotine could accelerate HeLa cells migration and invasion, activate PI3K/Akt and NF-κB pathways and increase the expression of Vimentin in vitro. Moreover, we demonstrated that the specific PI3K inhibitor LY294002 could reverse nicotine-induced cell migration and invasion, NF-κB activation and up-regulation of Vimentin. Inhibition of NF-κB by Pyrrolidine dithiocarbamate (PDTC) also antagonized nicotine-induced cell migration, invasion and up-regulation of Vimentin. Simply put, these findings suggest that nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Microservices Architecture Enables DevOps: an Experience Report on Migration to a Cloud-Native Architecture

    OpenAIRE

    Balalaie, A; Heydarnoori, A; Jamshidi Dermani, P

    2016-01-01

    This article reports on experiences and lessons learned during incremental migration and architectural refactoring of a commercial mobile back end as a service to microservices architecture. It explains how the researchers adopted DevOps and how this facilitated a smooth migration.

  13. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy.

  14. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  15. Knockdown of long noncoding RNA linc-ITGB1 suppresses migration, invasion of hepatocellular carcinoma via regulating ZEB1.

    Science.gov (United States)

    Yu, W-W; Wang, K; Liao, G-J

    2017-11-01

    This research focuses on the influence of linc-ITGB1 on the metastasis of hepatocellular carcinoma and further explores its underlying mechanism. A total of 70 hepatocellular carcinoma patients were chosen for our study. RT-qPCR was used for detecting the expression level of linc-ITGB1 in their cancer tissues. Moreover, the expression level of linc-ITGB1 was also detected in hepatocellular carcinoma cell lines. Furthermore, whether linc-ITGB1 could affect the migrated and invaded ability of hepatocellular carcinoma cells was determined by wound healing assay and transwell assay. We further explored the potential mechanism by RT-qPCR and Western blot assay. Linc-ITGB1 expression level in hepatocellular carcinoma tissues was remarkably higher than that in adjacent tissues. Moreover, migrated and invaded ability of hepatocellular carcinoma cells was inhibited through knockdown of linc-ITGB1. Further study revealed that silenced linc-ITGB1 inhibited the expression of ZEB1 and then suppressed epithelial to mesenchymal transition (EMT), which was important during the metastasis of hepatocellular carcinoma. Moreover, the inhibition of cell invasion by silenced linc-ITGB1 could be rescued through overexpression of ZEB1 in hepatocellular carcinoma. The results indicate that linc-ITGB1, a novel oncogene in tumorigenesis, could promote the metastasis and EMT via ZEB1, which may offer a possible therapeutic target in hepatocellular carcinoma.

  16. North American Invasion of the Tawny Crazy Ant (Nylanderia fulva) Is Enabled by Pheromonal Synergism from Two Separate Glands.

    Science.gov (United States)

    Zhang, Qing-He; McDonald, Danny L; Hoover, Doreen R; Aldrich, Jeffrey R; Schneidmiller, Rodney G

    2015-09-01

    A new invader, the "tawny crazy ant", Nylanderia fulva (Hymenoptera: Formicidae; Formicinae), is displacing the red imported fire ant, Solenopsis invicta (Formicidae: Myrmicinae), in the southern U.S., likely through its superior chemical arsenal and communication. Alone, formic acid is unattractive, but this venom (= poison) acid powerfully synergizes attraction of tawny crazy ants to volatiles from the Dufour's gland secretion of N. fulva workers, including the two major components, undecane and 2-tridecanone. The unexpected pheromonal synergism between the Dufour's gland and the venom gland appears to be another key factor, in addition to previously known defensive and detoxification semiochemical features, for the successful invasion and domination of N. fulva in the southern U.S. This synergism is an efficient mechanism enabling N. fulva workers to outcompete Solenopsis and other ant species for food and territory. From a practical standpoint, judicious point-source release formulation of tawny crazy ant volatiles may be pivotal for enhanced attract-and-kill management of this pest.

  17. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Energy Technology Data Exchange (ETDEWEB)

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  18. Macrophage Capping Protein CapG Is a Putative Oncogene Involved in Migration and Invasiveness in Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    J. Glaser

    2014-01-01

    Full Text Available The actin binding protein CapG modulates cell motility by interacting with the cytoskeleton. CapG is associated with tumor progression in different nongynecologic tumor entities and overexpression in breast cancer cell lines correlates with a more invasive phenotype in vitro. Here, we report a significant CapG overexpression in 18/47 (38% of ovarian carcinomas (OC analyzed by qRealTime-PCR analyses. Functional analyses in OC cell lines through siRNA mediated CapG knockdown and CapG overexpression showed CapG-dependent cell migration and invasiveness. A single nucleotide polymorphism rs6886 inside the CapG gene was identified, affecting a CapG phosphorylation site and thus potentially modifying CapG function. The minor allele frequency (MAF of SNP rs6886 (c.1004A/G was higher and the homozygous (A/A, His335 genotype was significantly more prevalent in patients with fallopian tube carcinomas (50% as in controls (10%. With OC being one of the most lethal cancer diseases, the detection of novel biomarkers such as CapG could reveal new diagnostic and therapeutic targets. Moreover, in-depth analyses of SNP rs6886 related to FTC and OC will contribute to a better understanding of carcinogenesis and progression of OC.

  19. Linc-POU3F3 is overexpressed in hepatocellular carcinoma and regulates cell proliferation, migration and invasion.

    Science.gov (United States)

    Li, Yichun; Li, Yannan; Wang, Dan; Meng, Qingdong

    2018-06-12

    Linc-POU3F3 showed an up-regulated tendency and functioned as tumor promoter in glioma, esophageal cancer and colorectal cancer. There was no report about the expression pattern and clinical value of linc-POU3F3 in hepatocellular carcinoma. Thus, the purpose of our study is to explore the clinical significance and biological role of linc-POU3F3 in hepatocellular carcinoma. Our results suggested that levels of linc-POU3F3 were dramatically increased in hepatocellular carcinoma tissues and cell lines compared with paired normal hepatic tissues and normal hepatic cell line, respectively. Levels of linc-POU3F3 were positively correlated with clinical stage, tumor size, vascular invasion and metastasis. Moreover, high-expression of linc-POU3F3 was an independent prognostic factor for hepatocellular carcinoma patients. The gain- and loss-of-function experiments showed that linc-POU3F3 expression significantly promoted tumor cell proliferation, migration and invasion. In addition, linc-POU3F3 expression was negatively correlated with POU3F3 mRNA and protein expressions in hepatocellular carcinoma tissues, and negatively regulated POU3F3 mRNA and protein expressions in hepatocellular carcinoma cells. In conclusion, our study supports the first evidence that linc-POU3F3 plays an oncogenic role in hepatocellular carcinoma, and represents a potential therapeutic strategy for hepatocellular carcinoma patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Kanjoormana Aryan Manu

    Full Text Available Accumulating evidence(s indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s, it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC.

  1. CD26-mediated regulation of periostin expression contributes to migration and invasion of malignant pleural mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Komiya, Eriko [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Yamazaki, Hiroto; Hatano, Ryo; Iwata, Satoshi; Okamoto, Toshihiro [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road, Box 100278, Room MSB M410A, Gainesville, FL 32610 (United States); Yamada, Taketo [Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Morimoto, Chikao [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2014-05-16

    Highlights: • CD26-expressing MPM cells upregulate production of periostin. • The intracytoplasmic region of CD26 mediates the upregulation of periostin. • CD26 expression leads to nuclear translocation of Twist1 via phosphorylation of Src. • Secreted periostin enhances migration and invasion of MPM cells. - Abstract: Malignant pleural mesothelioma (MPM) is an aggressive malignancy arising from mesothelial lining of pleura. It is generally associated with a history of asbestos exposure and has a very poor prognosis, partly due to the lack of a precise understanding of the molecular mechanisms associated with its malignant behavior. In the present study, we expanded on our previous studies on the enhanced motility and increased CD26 expression in MPM cells, with a particular focus on integrin adhesion molecules. We found that expression of CD26 upregulates periostin secretion by MPM cells, leading to enhanced MPM cell migratory and invasive activity. Moreover, we showed that upregulation of periostin expression results from the nuclear translocation of the basic helix-loop-helix transcription factor Twist1, a process that is mediated by CD26-associated activation of Src phosphorylation. While providing new and profound insights into the molecular mechanisms involved in MPM biology, these findings may also lead to the development of novel therapeutic strategies for MPM.

  2. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways.

    Science.gov (United States)

    Hung, Tung-Wei; Chen, Pei-Ni; Wu, Hsu-Chen; Wu, Sheng-Wen; Tsai, Pao-Yu; Hsieh, Yih-Shou; Chang, Horng-Rong

    2017-01-01

    Kaempferol, which is isolated from several natural plants, is a polyphenol belonging to the subgroup of flavonoids. Kaempferol exhibits various pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer activities. In this study, kaempferol can significantly inhibit the invasion and migration of 786-O renal cell carcinoma (RCC) without cytotoxicity. We examined the potential mechanisms underlying its anti-invasive activities on 786-O RCC cells. Western blot was performed, and the results showed that kaempferol attenuates the manifestation of metalloproteinase-2 (MMP-2) protein and activity. The inhibitive effect of kaempferol on MMP-2 may be attributed to the downregulation of phosphorylation of Akt and focal adhesion kinase (FAK). By examining the SCID mice model, we found that kaempferol can safely inhibit the metastasis of the 786-O RCC cells into the lungs by about 87.4% as compared to vehicle treated control animals. In addition, the lung tumor masses of mice pretreated with 2-10 mg/kg kaempferol were reduced about twofold to fourfold. These data suggested that kaempferol can play a promising role in tumor prevention and cancer metastasis inhibition.

  3. Elevated YKL40 is associated with advanced prostate cancer (PCa) and positively regulates invasion and migration of PCa cells.

    Science.gov (United States)

    Jeet, Varinder; Tevz, Gregor; Lehman, Melanie; Hollier, Brett; Nelson, Colleen

    2014-10-01

    Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa. © 2014 The authors.

  4. Thymosin β4 induces invasion and migration of human colorectal cancer cells through the ILK/AKT/β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Zhengri [Research Center for Molecular Therapeutic to GI Tract of Cancer Center, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Center for Creative Biomedical Scientists (BK-21 Plus Project), Chonnam National University Medical School, Gwangju (Korea, Republic of); Hong, Chang-Soo [Research Center for Molecular Therapeutic to GI Tract of Cancer Center, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Jung, Mi-Ran [Department of Gastroenterologic Surgery, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Choi, Chan [Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Park, Young-Kyu, E-mail: parkyk@jnu.ac.kr [Research Center for Molecular Therapeutic to GI Tract of Cancer Center, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Center for Creative Biomedical Scientists (BK-21 Plus Project), Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Gastroenterologic Surgery, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of)

    2014-09-26

    Highlights: • Tβ4 is overexpressed in human colorectal cancer cells. • The overexpression of Tβ4 is correlated with stage of colorectal cancer. • Tβ4 stimulates cell adhesion, invasion, migration and EMT. • Tβ4 activates the ILK/AKT/β-catenin signaling pathway. - Abstract: Thymosin β4 (Tβ4) is a 43-amino-acid peptide involved in many biological processes. However, the precise molecular signaling mechanism(s) of Tβ4 in cell invasion and migration remain unclear. In this study, we show that Tβ4 was significantly overexpressed in colorectal cancer tissues compared to adjacent normal tissues and high levels of Tβ4 were correlated with stage of colorectal cancer, and that Tβ4 expression was associated with morphogenesis and EMT. Tβ4-upregulated cancer cells showed increased adhesion, invasion and migration activity, whereas Tβ4-downregulated cells showed decreased activities. We also demonstrated that Tβ4 interacts with ILK, which promoted the phosphorylation and activation of AKT, the phosphorylation and inactivation of GSK3β, the expression and nuclear localization of β-catenin, and integrin receptor activation. These results suggest that Tβ4 is an important regulator of the ILK/AKT/β-catenin/Integrin signaling cascade to induce cell invasion and migration in colorectal cancer cells, and is a potential target for cancer treatment.

  5. PRL-3 engages the focal adhesion pathway in triple-negative breast cancer cells to alter actin structure and substrate adhesion properties critical for cell migration and invasion.

    Science.gov (United States)

    Gari, Hamid H; DeGala, Gregory D; Ray, Rahul; Lucia, M Scott; Lambert, James R

    2016-10-01

    Triple-negative breast cancers (TNBCs) are among the most aggressive cancers characterized by a high propensity to invade, metastasize and relapse. We previously reported that the TNBC-specific inhibitor, AMPI-109, significantly impairs the ability of TNBC cells to migrate and invade by reducing levels of the metastasis-promoting phosphatase, PRL-3. Here, we examined the mechanisms by which AMPI-109 and loss of PRL-3 impede cell migration and invasion. AMPI-109 treatment or knock down of PRL-3 expression were associated with deactivation of Src and ERK signaling and concomitant downregulation of RhoA and Rac1/2/3 GTPase protein levels. These cellular changes led to rearranged filamentous actin networks necessary for cell migration and invasion. Conversely, overexpression of PRL-3 promoted TNBC cell invasion by upregulating matrix metalloproteinase 10, which resulted in increased TNBC cell adherence to, and degradation of, the major basement membrane component laminin. Our data demonstrate that PRL-3 engages the focal adhesion pathway in TNBC cells as a key mechanism for promoting TNBC cell migration and invasion. Collectively, these data suggest that blocking PRL-3 activity may be an effective method for reducing the metastatic potential of TNBC cells. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Involvement of microRNAs-MMPs-E-cadherin in the migration and invasion of gastric cancer cells infected with Helicobacter pylori.

    Science.gov (United States)

    Yang, Yongmei; Li, Xiaohui; Du, Jie; Yin, Youcong; Li, Yuanjian

    2018-06-15

    It has been found that Helicobacter pylori (H. pylori)is not only the main cause of gastric cancer, but also closely related to its metastasis. E-cadherin cleavage induced by matrix metalloproteinases (MMPs) plays an important role in the tumor metastasis. In the present study, we investigated the role of microRNAs-MMPs-E-cadherin in migration and invasion of gastric cancer cells treated with H. pylori. The results showed that H. pylori induced migration and invasion of SGC-7901 cells with a down-regulation of E-cadherin expression, which were abolished by MMPs knock down, E-cadherin overexpression, mimics of miR128 and miR148a. MiR128/miR148a inhibitors restored MMP-3/MMP-7 expression, down-regulated E-cadherin level, and accelerated cellular migration and invasion. This study suggests that H. pylori induces migration and invasion of gastric cancer cells through reduction of E-cadherin function by activation of MMP-3, - 7. The present results also suggest that the activated MMPs/E-cadherin pathway is related with down-regulation of miR128/miR148a in the human gastric cancer cells infected with H. pylori. Copyright © 2018. Published by Elsevier Inc.

  7. Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    He Xianghuo

    2010-07-01

    Full Text Available Abstract Background The formation of metastasis is the most common cause of death in patients with lung cancer. A major implement to understand the molecular mechanisms involved in lung cancer metastasis has been the lack of suitable models to address it. In this study, we aimed at establishing a highly metastatic model of human lung cancer and characterizing its metastatic properties and underlying mechanisms. Methods The human lung adeno-carcinoma SPC-A-1 cell line was used as parental cells for developing of highly metastatic cells by in vivo selection in NOD/SCID mice. After three rounds of selection, a new SPC-A-1sci cell line was established from pulmonary metastatic lesions. Subsequently, the metastatic properties of this cell line were analyzed, including optical imaging of in vivo metastasis, immunofluorescence and immunohistochemical analysis of several epithelial mesenchymal transition (EMT makers and trans-well migration and invasion assays. Finally, the functional roles of fibronectin in the invasive and metastatic potentials of SPC-A-1sci cells were determined by shRNA analysis. Results A spontaneously pulmonary metastatic model of human lung adeno-carcinoma was established in NOD/SCID mice, from which a new lung cancer cell line, designated SPC-A-1sci, was isolated. Initially, the highly metastatic behavior of this cell line was validated by optical imaging in mice models. Further analyses showed that this cell line exhibit phenotypic and molecular alterations consistent with EMT. Compared with its parent cell line SPC-A-1, SPC-A-1sci was more aggressive in vitro, including increased potentials for cell spreading, migration and invasion. Importantly, fibronectin, a mesenchymal maker of EMT, was found to be highly expressed in SPC-A-1sci cells and down-regulation of it can decrease the in vitro and in vivo metastatic abilities of this cell line. Conclusions We have successfully established a new human lung cancer cell line with

  8. Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Jia, Deshui; Yao, Ming; Yan, Mingxia; Wang, Xiaomin; Hao, Xiangfang; Liang, Linhui; Liu, Lei; Kong, Hanwei; He, Xianghuo; Li, Jinjun

    2010-01-01

    The formation of metastasis is the most common cause of death in patients with lung cancer. A major implement to understand the molecular mechanisms involved in lung cancer metastasis has been the lack of suitable models to address it. In this study, we aimed at establishing a highly metastatic model of human lung cancer and characterizing its metastatic properties and underlying mechanisms. The human lung adeno-carcinoma SPC-A-1 cell line was used as parental cells for developing of highly metastatic cells by in vivo selection in NOD/SCID mice. After three rounds of selection, a new SPC-A-1sci cell line was established from pulmonary metastatic lesions. Subsequently, the metastatic properties of this cell line were analyzed, including optical imaging of in vivo metastasis, immunofluorescence and immunohistochemical analysis of several epithelial mesenchymal transition (EMT) makers and trans-well migration and invasion assays. Finally, the functional roles of fibronectin in the invasive and metastatic potentials of SPC-A-1sci cells were determined by shRNA analysis. A spontaneously pulmonary metastatic model of human lung adeno-carcinoma was established in NOD/SCID mice, from which a new lung cancer cell line, designated SPC-A-1sci, was isolated. Initially, the highly metastatic behavior of this cell line was validated by optical imaging in mice models. Further analyses showed that this cell line exhibit phenotypic and molecular alterations consistent with EMT. Compared with its parent cell line SPC-A-1, SPC-A-1sci was more aggressive in vitro, including increased potentials for cell spreading, migration and invasion. Importantly, fibronectin, a mesenchymal maker of EMT, was found to be highly expressed in SPC-A-1sci cells and down-regulation of it can decrease the in vitro and in vivo metastatic abilities of this cell line. We have successfully established a new human lung cancer cell line with highly metastatic potentials, which is subject to EMT and possibly

  9. VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway.

    Directory of Open Access Journals (Sweden)

    Chang-Han Chen

    Full Text Available BACKGROUND: Lung adenocarcinoma is the leading cause of cancer-related deaths among both men and women in the world. Despite recent advances in diagnosis and treatment, the mortality rates with an overall 5-year survival of only 15%. This high mortality is probably attributable to early metastasis. Although several well-known markers correlated with poor/metastasis prognosis in lung adenocarcinoma patients by immunohistochemistry was reported, the molecular mechanisms of lung adenocarcinoma development are still not clear. To explore novel molecular markers and their signaling pathways will be crucial for aiding in treatment of lung adenocarcinoma patients. METHODOLOGY/PRINCIPAL FINDINGS: To identify novel lung adenocarcinoma-associated /metastasis genes and to clarify the underlying molecular mechanisms of these targets in lung cancer progression, we created a bioinformatics scheme consisting of integrating three gene expression profile datasets, including pairwise lung adenocarcinoma, secondary metastatic tumors vs. benign tumors, and a series of invasive cell lines. Among the novel targets identified, FLJ10540 was overexpressed in lung cancer tissues and is associated with cell migration and invasion. Furthermore, we employed two co-expression strategies to identify in which pathway FLJ10540 was involved. Lung adenocarcinoma array profiles and tissue microarray IHC staining data showed that FLJ10540 and VEGF-A, as well as FLJ10540 and phospho-AKT exhibit positive correlations, respectively. Stimulation of lung cancer cells with VEGF-A results in an increase in FLJ10540 protein expression and enhances complex formation with PI3K. Treatment with VEGFR2 and PI3K inhibitors affects cell migration and invasion by activating the PI3K/AKT pathway. Moreover, knockdown of FLJ10540 destabilizes formation of the P110-alpha/P85-alpha-(PI3K complex, further supporting the participation of FLJ10540 in the VEGF-A/PI3K/AKT pathway. CONCLUSIONS

  10. 18F-Fluorocholine PET–CT enables minimal invasive parathyroidectomy in patients with negative sestamibi SPECT–CT and ultrasound: A case report

    Directory of Open Access Journals (Sweden)

    Wouter P. Kluijfhout

    2015-01-01

    Conclusion: 18F-Fluorocholine PET–CT is a promising new imaging modality for localizing parathyroid adenomas and enabling minimal invasive parathyroidectomy when conventional imaging fails to do. Clinicians should consider its use as a second line modality for optimal patient care.

  11. HUWE1 Ubiquitylates and Degrades the RAC Activator TIAM1 Promoting Cell-Cell Adhesion Disassembly, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Lynsey Vaughan

    2015-01-01

    Full Text Available The E3 ubiquitin ligase HUWE1, deregulated in carcinoma, has been implicated in tumor formation. Here, we uncover a role for HUWE1 in cell migration and invasion through degrading the RAC activator TIAM1, implying an additional function in malignant progression. In MDCKII cells in response to HGF, HUWE1 catalyzes TIAM1 ubiquitylation and degradation predominantly at cell-cell adhesions, facilitating junction disassembly, migration, and invasion. Depleting HUWE1 or mutating the TIAM1 ubiquitylation site prevents TIAM1 degradation, antagonizing scattering, and invasion. Moreover, simultaneous depletion of TIAM1 restores migration and invasion in HUWE1-depleted cells. Significantly, we show that HUWE1 stimulates human lung cancer cell invasion through regulating TIAM1 stability. Finally, we demonstrate that HUWE1 and TIAM1 protein levels are inversely correlated in human lung carcinomas. Thus, we elucidate a critical role for HUWE1 in regulating epithelial cell-cell adhesion and provide additional evidence that ubiquitylation contributes to spatiotemporal control of RAC.

  12. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells

    International Nuclear Information System (INIS)

    Sun, Qing; Liang, Ying; Zhang, Tianli; Wang, Kun; Yang, Xingsheng

    2017-01-01

    Objective: Estrogen receptor alpha 36 (ER-α36), a truncated variant of ER-α, is different from other nuclear receptors of the ER-α family. Previous findings indicate that ER-α36 might be involved in cell growth, proliferation, and differentiation in carcinomas and primarily mediates non-genomic estrogen signaling. However, studies on ER-α36 and cervical cancer are rare. This study aimed to detect the expression of ER-α36 in cervical cancer; the role of ER-α36 in 17-β-estradiol (E2)-induced invasion, migration and proliferation of cervical cancer; and their probable molecular mechanisms. Methods: Immunohistochemistry and immunofluorescence were used to determine the location of ER-α36 in cervical cancer tissues and cervical cell lines. CaSki and HeLa cell lines were transfected with lentiviruses to establish stable cell lines with knockdown and overexpression of ER-α36. Wound healing assay, transwell invasion assay, and EdU incorporation proliferation assay were performed to evaluate the migration, invasion, and proliferation ability. The phosphorylation levels of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling molecules were examined with western blot analysis. Results: ER-α36 expression was detected in both cervical cell lines and cervical cancer tissues. Downregulation of ER-α36 significantly inhibited cell invasion, migration, and proliferation. Moreover, upregulation of ER-α36 increased the invasion, migration, and proliferation ability of CaSki and HeLa cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation. Conclusion: ER-α36 is localized on the plasma membrane and cytoplasm in both cervical cancer tissues and cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. - Highlights: • ER-α36 is expressed on both cervical cell lines and cervical cancer tissues. • ER-α36 mediates estrogen

  13. Transforming Growth Factor-β Is an Upstream Regulator of Mammalian Target of Rapamycin Complex 2-Dependent Bladder Cancer Cell Migration and Invasion.

    Science.gov (United States)

    Gupta, Sounak; Hau, Andrew M; Al-Ahmadie, Hikmat A; Harwalkar, Jyoti; Shoskes, Aaron C; Elson, Paul; Beach, Jordan R; Hussey, George S; Schiemann, William P; Egelhoff, Thomas T; Howe, Philip H; Hansel, Donna E

    2016-05-01

    Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. Copyright © 2016. Published by Elsevier Inc.

  14. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis

    Directory of Open Access Journals (Sweden)

    Wang B

    2018-02-01

    epithelial-to-mesenchymal transition (EMT biomarker levels.Results: The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O-6-methylguanine-DNA methyltransferase, and glutathione S-transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process.Conclusion: Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process. Keywords: Forkhead box K2, FOXK2, glioma, oncology

  15. CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling.

    Science.gov (United States)

    Tseng, Jen-Chih; Lin, Ching-Yu; Su, Liang-Chen; Fu, Hsiao-Hui; Yang, Shiaw-Der; Chuu, Chih-Pin

    2016-06-21

    Prostate cancer (PCa) was the fifth most common cancer overall in the world. More than 80% of patients died from PCa developed bone metastases. Caffeic acid phenethyl ester (CAPE) is a main bioactive component of honeybee hive propolis. Transwell and wound healing assays demonstrated that CAPE treatment suppressed the migration and invasion of PC-3 and DU-145 PCa cells. Gelatin zymography and Western blotting indicated that CAPE treatment reduced the abundance and activity of MMP-9 and MMP-2. Analysis using Micro-Western Array (MWA), a high-throughput antibody-based proteomics platform with 264 antibodies detecting signaling proteins involved in important pathways indicated that CAPE treatment induced receptor tyrosine kinase-like orphan receptor 2 (ROR2) in non-canonical Wnt signaling pathway but suppressed abundance of β-catenin, NF-κB activity, PI3K-Akt signaling, and epithelial-mesenchymal transition (EMT). Overexpression or knockdown of ROR2 suppressed or enhanced cell migration of PC-3 cells, respectively. TCF-LEF promoter binding assay revealed that CAPE treatment reduced canonical Wnt signaling. Intraperitoneal injection of CAPE reduced the metastasis of PC-3 xenografts in tail vein injection nude mice model. Immunohistochemical staining demonstrated that CAPE treatment increased abundance of ROR2 and Wnt5a but decreased protein expression of Ki67, Frizzle 4, NF-κB p65, MMP-9, Snail, β-catenin, and phosphorylation of IκBα. Clinical evidences suggested that genes affected by CAPE treatment (CTNNB1, RELA, FZD5, DVL3, MAPK9, SNAl1, ROR2, SMAD4, NFKBIA, DUSP6, and PLCB3) correlate with the aggressiveness of PCa. Our study suggested that CAPE may be a potential therapeutic agent for patients with advanced PCa.

  16. Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Xiaonan Qiu

    2017-03-01

    Full Text Available Elongation factor, RNA polymerase II, 2 (ELL2 is expressed and regulated by androgens in the prostate. ELL2 and ELL-associated factor 2 (EAF2 form a stable complex, and their orthologs in Caenorhabditis elegans appear to be functionally similar. In C. elegans, the EAF2 ortholog eaf-1 was reported to interact with the retinoblastoma (RB pathway to control development and fertility in worms. Because RB loss is frequent in prostate cancer, ELL2 interaction with RB might be important for prostate homeostasis. The present study explored physical and functional interaction of ELL2 with RB in prostate cancer. ELL2 expression in human prostate cancer specimens was detected using quantitative polymerase chain reaction coupled with laser capture microdissection. Co-immunoprecipitation coupled with deletion mutagenesis was used to determine ELL2 association with RB. Functional interaction between ELL2 and RB was tested using siRNA knockdown, BrdU incorporation, Transwell, and/or invasion assays in LNCaP, C4-2, and 22Rv1 prostate cancer cells. ELL2 expression was downregulated in high–Gleason score prostate cancer specimens. ELL2 could be bound and stabilized by RB, and this interaction was mediated through the N-terminus of ELL2 and the C-terminus of RB. Concurrent siRNA knockdown of ELL2 and RB enhanced cell proliferation, migration, and invasion as compared to knockdown of ELL2 or RB alone in prostate cancer cells. ELL2 and RB can interact physically and functionally to suppress prostate cancer progression.

  17. SIPA1 promotes invasion and migration in human oral squamous cell carcinoma by ITGB1 and MMP7

    International Nuclear Information System (INIS)

    Takahara, Toshikazu; Kasamatsu, Atsushi; Yamatoji, Masanobu; Iyoda, Manabu; Kasama, Hiroki; Saito, Tomoaki; Takeuchi, Shin; Endo-Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2017-01-01

    Signal-induced proliferation-associated protein 1 (SIPA1) is known to be a GTPase activating protein. Overexpressed SIPA1 is related to metastatic progression in breast and prostate cancers; however, the relevance of SIPA1 in oral squamous cell carcinoma (OSCC) is still unknown. The aim of this study was to examine SIPA1 expression and its functional mechanisms in OSCC. SIPA1 mRNA and protein expressions were analyzed by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry. The expressions of SIPA1 were up-regulated significantly in vitro and in vivo. Moreover, SIPA1 expression was correlated with regional lymph node metastasis. We next assessed the cellular functions associated with tumoral metastasis using SIPA1 knockdown (shSIPA1) cells and analyzed the downstream molecules of SIPA1, i.e., bromodomain containing protein 4(BRD4), integrin beta1 (ITGB1), and matrix metalloproteinase 7 (MMP7). The shSIPA1 cells showed decreased invasiveness and migratory activities, however cellular adhesion ability was maintained at a high level. In addition, ITGB1 expression was greater in shSIPA1 cells, whereas MMP7 expression was lower than in control cells. This research is the first to establish that SIPA1 promotes cancer metastasis by regulating the ITGB1 and MMP7. Therefore, SIPA1 might be a novel therapeutic target for patients with lymph node metastasis of OSCC. - Highlights: • SIPA1 expression was up-regulated in oral squamous cell carcinoma (OSCC). • SIPA1-positive OSCCs were correlated with regional lymph node metastasis. • SIPA1 controlled BRD4 and influenced transcription of ITGB1and MMP7. • SIPA1 induced cellular invasion and migration and decreased cellular adhesion. • SIPA1 might be a potential biomarker of cancer metastasis for OSCC.

  18. SIPA1 promotes invasion and migration in human oral squamous cell carcinoma by ITGB1 and MMP7

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Toshikazu [Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba (Japan); Kasamatsu, Atsushi, E-mail: kasamatsua@faculty.chiba-u.jp [Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Yamatoji, Masanobu [Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Iyoda, Manabu; Kasama, Hiroki; Saito, Tomoaki [Division of Oral Surgery, Chiba Rosai Hospital, Chiba (Japan); Takeuchi, Shin [Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba (Japan); Endo-Sakamoto, Yosuke [Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Shiiba, Masashi [Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba (Japan); Tanzawa, Hideki [Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba (Japan); Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Uzawa, Katsuhiro, E-mail: uzawak@faculty.chiba-u.jp [Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba (Japan); Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan)

    2017-03-15

    Signal-induced proliferation-associated protein 1 (SIPA1) is known to be a GTPase activating protein. Overexpressed SIPA1 is related to metastatic progression in breast and prostate cancers; however, the relevance of SIPA1 in oral squamous cell carcinoma (OSCC) is still unknown. The aim of this study was to examine SIPA1 expression and its functional mechanisms in OSCC. SIPA1 mRNA and protein expressions were analyzed by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry. The expressions of SIPA1 were up-regulated significantly in vitro and in vivo. Moreover, SIPA1 expression was correlated with regional lymph node metastasis. We next assessed the cellular functions associated with tumoral metastasis using SIPA1 knockdown (shSIPA1) cells and analyzed the downstream molecules of SIPA1, i.e., bromodomain containing protein 4(BRD4), integrin beta1 (ITGB1), and matrix metalloproteinase 7 (MMP7). The shSIPA1 cells showed decreased invasiveness and migratory activities, however cellular adhesion ability was maintained at a high level. In addition, ITGB1 expression was greater in shSIPA1 cells, whereas MMP7 expression was lower than in control cells. This research is the first to establish that SIPA1 promotes cancer metastasis by regulating the ITGB1 and MMP7. Therefore, SIPA1 might be a novel therapeutic target for patients with lymph node metastasis of OSCC. - Highlights: • SIPA1 expression was up-regulated in oral squamous cell carcinoma (OSCC). • SIPA1-positive OSCCs were correlated with regional lymph node metastasis. • SIPA1 controlled BRD4 and influenced transcription of ITGB1and MMP7. • SIPA1 induced cellular invasion and migration and decreased cellular adhesion. • SIPA1 might be a potential biomarker of cancer metastasis for OSCC.

  19. miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM.

    Science.gov (United States)

    Yue, Sihai; Wang, Lihua; Zhang, Hui; Min, Youhui; Lou, Yongli; Sun, Hongshan; Jiang, Yu; Zhang, Wenjin; Liang, Aming; Guo, Yongkun; Chen, Ping; Lv, Guowei; Wang, Liuxiang; Zong, Qinghua; Li, Yong

    2015-09-01

    Invasion and migration of glioblastoma multiforme (GBM) is a multistep process and an important phenotype that causes this disease to invade surrounding tissues in the brain. Recent studies have highlighted that miRNAs play a pivotal role in controlling GBM cell plasticity. In this report, we used wound healing and transwell assays to identify a novel role of miR-139-5p in inhibition of GBM cell migration and invasion. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-139-5p inhibited expression of ZEB1 and ZEB2, which are master regulators of tumor metastasis. MiR-139-5p specifically interacts with the 3'-UTR regions of ZEB1 and ZEB2, attenuating their expression in GBM cells. To corroborate this finding, we rescued ZEB1 and ZEB2 expression and found partial but significant increases in miR-139-5p-suppressed invasion of GBM cells. The biological relevance of our study was validated by analyzing levels of miR-139-5p in GBM tissue. We found that its expression significantly downregulated compared to normal tissue and shorter overall survival rates in patients with lower miR-139-5p expression. These results confirm that miR-139-5p suppresses GBM migration and invasion and highlight its potential as a biomarker and therapeutic target for treating GBM.

  20. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling.

    Science.gov (United States)

    Li, Guo-feng; Qin, Yu-hua; Du, Peng-qiang

    2015-09-01

    Hypoxia is implicated in the pathogenesis of rheumatoid arthritis (RA), contributing to the tumor-like phenotypes of RA fibroblast-like synoviocytes (RA-FLSs). Andrographolide is the main bioactive component of Andrographis paniculata, an herbal medicine that shows therapeutic benefits in RA patients. Here, we explored the effects of andrographolide on hypoxia-induced migration and invasion of RA-FLSs. RA-FLSs were exposed to hypoxia in the presence or absence of andrographolide and cell migration and invasion were tested by Transwell assays. The expression of hypoxia-inducible factor-1 alpha (HIF-1α), matrix metalloproteinase (MMP)-1, MMP-3 and MMP-9 was measured by semi-quantitative reverse transcription polymerase chain reaction and Western blot analysis. HIF-1α DNA binding activity was assessed by electrophoretic mobility shift assay. The effects of overexpression of exogenous HIF-1α on the action of andrographolide in RA-FLSs were investigated. Andrographolide inhibited FLS migration and invasion under hypoxic conditions in a dose-dependent manner. The upregulation of MMP-1, MMP-3 and MMP-9 in response to hypoxia was significantly (Pandrographolide. Moreover, the expression and DNA binding activity of HIF-1α were dose-dependently decreased in andrographolide-treated cells under hypoxic conditions. Overexpression of HIF-1α almost completely reversed the suppressive effects of andrographolide on the migration, invasion and MMP expression of hypoxic RA-FLSs. These results indicate the ability of andrographolide to attenuate hypoxia-induced invasiveness of RA-FLSs via inhibition of HIF-1α signaling, and warrant further exploration of andrographolide for the treatment of RA. Copyright © 2015. Published by Elsevier Inc.

  1. Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres

    Directory of Open Access Journals (Sweden)

    Esencay Mine

    2010-06-01

    Full Text Available Abstract Background Glioblastoma (GBM is the most common and malignant primary intracranial human neoplasm. GBMs are characterized by the presence of extensive areas of necrosis and hypoxia. Hypoxia and its master regulator, hypoxia inducible factor 1 (HIF-1 play a key role in glioma invasion. Results To further elucidate the functional role of HIF-1α in glioma cell migration in vitro and in invasion in vivo, we used a shRNA approach to knock down HIF-1α expression complemented with genome-wide expression profiling, performed in both normoxic and hypoxic conditions. Our data show that knock down of HIF-1α in glioma cells significantly impairs their migration in vitro as well as their ability to invade into the brain parenchyma in vivo. Next, we assessed the role that HIF-1α plays in maintaining the characteristics of cancer stem cells (CSCs. By using the tumor sphere forming assay, we demonstrate that HIF-1α plays a role in the survival and self-renewal potential of CSCs. Finally, expression profiling experiments in glioma cells provided detailed insight into a broad range of specific biological pathways and processes downstream of HIF-1α. We discuss the role of these processes in the migratory and invasive properties, as well as the stem cell biology of glioblastomas Conclusions Our data show that knock down of HIF-1α in human and murine glioma cells impairs their migration in vitro and their invasion in vivo. In addition, our data suggest that HIF-1α plays a role in the survival and self-renewal potential of CSCs and identify genes that might further elucidate the role of HIF-1α in tumor migration, invasion and stem cell biology.

  2. PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer.

    Science.gov (United States)

    Juang, Yu-Lin; Jeng, Yung-Ming; Chen, Chi-Long; Lien, Huang-Chun

    2016-12-01

    TGF-β and cancer progression share a multifaceted relationship. Despite the knowledge of TGF-β biology in the development of cancer, several factors that mediate the cancer-promoting role of TGF-β continue to be identified. This study aimed to identify and characterise novel factors potentially related to TGF-β-mediated tumour aggression in breast cells. We treated the human mammary epithelial cell line MCF10A with TGF-β and identified TGF-β-dependent upregulation of PRRX2, the gene encoding paired-related homeobox 2 transcription factor. Overexpression of PRRX2 enhanced migration, invasion and anchorage-independent growth of MCF10A cells and induced partial epithelial mesenchymal transition (EMT), as determined by partial fibroblastoid morphology of cells, upregulation of EMT markers and partially disrupted acinar structure in a three-dimensional culture. We further identified PLAT, the gene encoding tissue-type plasminogen activator (tPA), as the highest differentially expressed gene in PRRX2-overexpressing MCF10A cells, and demonstrated direct binding and transactivation of the PLAT promoter by PRRX2. Furthermore, PLAT knockdown inhibited PRRX2-mediated enhanced migration and invasion, suggesting that tPA may mediate PRRX2-induced migration and invasion. Finally, the significant correlation of PRRX2 expression with poor survival in 118 primary breast tumour samples (P = 0.027) and the increased PRRX2 expression in metaplastic breast carcinoma samples, which is pathogenetically related to EMT, validated the biological importance of PRRX2-enhanced migration and invasion and PRRX2-induced EMT. Thus, our data suggest that upregulation of PRRX2 may be a mechanism contributing to TGF-β-induced invasion and EMT in breast cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: association with migration, invasion and prediction of distant metastasis

    International Nuclear Information System (INIS)

    Chen, Wen-Liang; Kuo, Kuang-Tai; Chou, Teh-Ying; Chen, Chien-Lung; Wang, Chih-Hao; Wei, Yau-Huei; Wang, Liang-Shun

    2012-01-01

    Lung cancer is one of the most lethal malignancies worldwide, but useful biomarkers of lung cancer are still insufficient. The aim of this study is to identify some membrane-bound protein(s) associated with migration and invasion in human non-small cell lung cancer (NSCLC) cells. We classified four NSCLC cell lines into high and low migration/invasion groups by Transwell and Matrigel assays. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), we identified 10 membrane-associated proteins being significantly overexpressed in the high migration/invasion group. The expression of the target protein in the four NSCLC cell lines was then confirmed by reverse transcription polymerase chain reaction (RT-PCR), western blot and immunostaining. RNA interference technique was applied to observe the influence of the target protein on migration and invasion. Gelatin zymography was also performed to evaluate the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Expression condition of the target protein on surgical specimens was further examined by immunohistochemical staining and the clinicopathologic data were analyzed. We identified a mitochondria-bound protein cytochrome c oxidase subunit Va (COX Va) because of its abundant presence found exclusively in tumorous areas. We also demonstrated that migration and invasion of NSCLC cells decreased substantially after knocking down COX Va by siRNA. Meanwhile, we found a positive correlation between COX Va expression, Bcl-2 expression and activities of MMP-2 and MMP-9 in NSCLC cells. Immunohistochemical staining of surgically resected lung adenocarcinomas in 250 consecutive patients revealed that strong COX Va expression was found in 54.8% (137/250) of patients and correlated positively with the status of lymph node metastasis (P = 0.032). Furthermore, strong COX Va expression was associated with the presence of distant metastasis (P = 0

  4. Understanding the “black box” of a health-promotion program: Keys to enable health among older persons aging in the context of migration

    Directory of Open Access Journals (Sweden)

    Emmelie Barenfeld

    2015-12-01

    Full Text Available Although the need to make health services more accessible to persons who have migrated has been identified, knowledge about health-promotion programs (HPPs from the perspective of older persons born abroad is lacking. This study explores the design experiences and content implemented in an adapted version of a group-based HPP developed in a researcher–community partnership. Fourteen persons aged 70–83 years or older who had migrated to Sweden from Finland or the Balkan Peninsula were included. A grounded theory approach guided the data collection and analysis. The findings showed how participants and personnel jointly helped raise awareness. The participants experienced three key processes that could open doors to awareness: enabling community, providing opportunities to understand and be understood, and confirming human values and abilities. Depending on how the HPP content and design are being shaped by the group, the key processes could both inhibit or encourage opening doors to awareness. Therefore, this study provides key insights into how to enable health by deepening the understanding of how the exchange of health-promoting messages is experienced to be facilitated or hindered. This study adds to the scientific knowledge base of how the design and content of HPP may support and recognize the capabilities of persons aging in the context of migration.

  5. Dysregulated DNA Methyltransferase 3A Upregulates IGFBP5 to Suppress Trophoblast Cell Migration and Invasion in Preeclampsia.

    Science.gov (United States)

    Jia, Yuanhui; Li, Ting; Huang, Xiaojie; Xu, Xianghong; Zhou, Xinyao; Jia, Linyan; Zhu, Jingping; Xie, Dandan; Wang, Kai; Zhou, Qian; Jin, Liping; Zhang, Jiqin; Duan, Tao

    2017-02-01

    Preeclampsia is a unique multiple system disorder during human pregnancy, which affects ≈5% to 8% of pregnancies. Its risks and complications have become the major causes of maternal and fetal morbidity and mortality. Although abnormal placentation to which DNA methylation dysregulation is always linked is speculated to be one of the reasons causing preeclampsia, the underlying mechanisms still remain elusive to date. Here we revealed that aberrant DNA methyltransferase 3A (DNMT3A) plays a critical role in preeclampsia. Our results show that the expression and localization of DNMT3A are dysregulated in preeclamptic placenta. Moreover, knockdown of DNMT3A obviously inhibits trophoblast cell migration and invasion. Mechanistically, IGFBP5 (insulin-like growth factor-binding protein 5), known as a suppressor, is upregulated by decreased DNMT3A because of promoter hypomethylation. Importantly, IGFBP5 downregulation can rescue the defects caused by DNMT3A knockdown, thereby, consolidating the significance of IGFBP5 in the downstream of DNMT3A in trophoblast. Furthermore, we detected low promoter methylation and high protein expression of IGFBP5 in the clinical samples of preeclamptic placenta. Collectively, our study suggests that dysregulation of DNMT3A and IGFBP5 is relevant to preeclampsia. Thus, we propose that DNMT3A and IGFBP5 can serve as potential markers and targets for the clinical diagnosis and therapy of preeclampsia. © 2017 American Heart Association, Inc.

  6. Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Haojie; Zhang, Yurong; You, Haiyan; Tao, Xuemei; Wang, Cun; Jin, Guangzhi; Wang, Ning; Ruan, Haoyu; Gu, Dishui; Huo, Xisong; Cong, Wenming; Qin, Wenxin

    2015-06-23

    Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington's and Alzheimer's diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both pKMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC.

  7. Cysteine-rich buccal gland protein suppressed the proliferation, migration and invasion of hela cells through akt pathway.

    Science.gov (United States)

    Han, Jianmei; Liu, Yu; Jiang, Qi; Xiao, Rong

    2017-11-01

    Cysteine-rich buccal gland protein (CRBGP) as a member of cysteine-rich secretory proteins (CRISPs) superfamily was isolated from the buccal glands of Lampetra japonica, the blood suckers in the marine. Previous studies showed CRBGP could suppress angiogenesis probably due to its ion channel blocking activity. Whether CRBGP could also affect the activity of tumor cells has not been reported yet. In this study, CRBGP suppressed the proliferation of Hela cells with an IC 50 of 6.7 μM by inducing apoptosis. Both microscopic observation and Western blot indicated that CRBGP was able to induce the nuclei shrinking, downregulate the protein level of BCL2 and caspase 3 as well as upregulate the level of BAX in Hela cells, suggested that CRBGP might induce apoptosis of Hela cells in a mitochondrial-dependent pathway. Furthermore, CRBGP could disturb F-actin organization, which would finally cause the Hela cells to lose their shape and to lessen their abilities on adhesion, migration and invasion. Finally, CRBGP was shown to reduce the phosphorylation level of Akt, which indicated that CRBGP might inhibit the proliferation and metastasis of Hela cells through Akt pathway. CRBGP, as a voltage-gated sodium channel blocker, also possesses the anti-tumor abilities which provided information on the effects and action manner of the other CRISPs. © 2017 IUBMB Life, 69(11):856-866, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  8. Activation of PPAR{gamma} by Human Cytomegalovirus for de novo Replication Impairs Migration and Invasiveness of Cytotrophoblast from Early Placenta

    DEFF Research Database (Denmark)

    Rauwel, Benjamin; Mariamé, Bernard; Martin, Hélène

    2010-01-01

    , as assessed by using well-established in vitro models of invasive trophoblast i.e. primary cultures of EVCT isolated from first trimester placentas and the EVCT-derived cell line HIPEC. Our data provide new clues to explain how early infection during pregnancy could impair implantation, placentation...... and chromatin immunoprecipitation assays. Due to the key role of PPARgamma in placentation and its specific trophoblast expression within the human placenta, we then provided evidence that by activating PPARgamma human cytomegalovirus dramatically impaired early human trophoblast migration and invasiveness...

  9. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness

    International Nuclear Information System (INIS)

    Young, Nicholas; Van Brocklyn, James R.

    2007-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P 1-5 . S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P 1 , S1P 2 and S1P 3 all contribute positively to S1P-stimulated glioma cell proliferation, with S1P 1 being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P 5 blocks glioma cell proliferation, and inhibits ERK activation. S1P 1 and S1P 3 enhance glioma cell migration and invasion. S1P 2 inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P 2 also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P 2 -stimulated glioma invasion. Thus, while S1P 2 decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix

  10. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study

    Directory of Open Access Journals (Sweden)

    Shirasawa Senji

    2011-09-01

    Full Text Available Abstract Background Colorectal cancer is a common disease that involves genetic alterations, such as inactivation of tumour suppressor genes and activation of oncogenes. Among them are RAS and BRAF mutations, which rarely coexist in the same tumour. Individual members of the Rho (Ras homology GTPases contribute with distinct roles in tumour cell morphology, invasion and metastasis. The aim of this study is to dissect cell migration and invasion pathways that are utilised by BRAFV600E as compared to KRASG12V and HRASG12V oncoproteins. In particular, the role of RhoA (Ras homolog gene family, member A, Rac1 (Ras-related C3 botulinum toxin substrate 1 and Cdc42 (cell division cycle 42 in cancer progression induced by each of the three oncogenes is described. Methods Colon adenocarcinoma cells with endogenous as well as ectopically expressed or silenced oncogenic mutations of BRAFV600E, KRASG12V and HRASG12V were employed. Signalling pathways and Rho GTPases were inhibited with specific kinase inhibitors and siRNAs. Cell motility and invasion properties were correlated with cytoskeletal properties and Rho GTPase activities. Results Evidence presented here indicate that BRAFV600E significantly induces cell migration and invasion properties in vitro in colon cancer cells, at least in part through activation of RhoA GTPase. The relationship established between BRAFV600E and RhoA activation is mediated by the MEK-ERK pathway. In parallel, KRASG12V enhances the ability of colon adenocarcinoma cells Caco-2 to migrate and invade through filopodia formation and PI3K-dependent Cdc42 activation. Ultimately increased cell migration and invasion, mediated by Rac1, along with the mesenchymal morphology obtained through the Epithelial-Mesenchymal Transition (EMT were the main characteristics rendered by HRASG12V in Caco-2 cells. Moreover, BRAF and KRAS oncogenes are shown to cooperate with the TGFβ-1 pathway to provide cells with additional transforming

  11. Upregulation of long non-coding RNA TUG1 promotes bladder cancer cell 5 proliferation, migration and invasion by inhibiting miR-29c.

    Science.gov (United States)

    Guo, Peng; Zhang, Guohui; Meng, Jialin; He, Qian; Li, Zhihui; Guan, Yawei

    2018-01-10

    Bladder cancer (BC) is one of the leading causes of cancer-related death in the word. Long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) plays an important role in the development and progression of numerous cancers, including BC. However, the exact role of TUG1 in modulating BC progression is still poorly known. In this study, we found that TUG1 was upregulated and microRNA-29c (miR-29c) was downregulated in BC tissues and cell lines. Overexpression of TUG1 promoted the cell proliferation of T24 and EJ cells, whereas TUG1 knockdown had the opposite effect. Upregulation of TUG1 obviously facilitated the migration and invasion of T24 and EJ cells. In contrast, TUG1 silencing repressed the migration and invasion of T24 and EJ cells. Furthermore, TUG1 knockdown markedly increased the expression of miR-29c in vitro. On the contrary, overexpression of TUG1 remarkably decreased the expression of miR-29c. Transfection with plasmids containing mutant TUG1 has no effect on the expression of miR-29c. There were direct interactions between miR-29c and the binding sites of TUG1. In addition, the inhibitory effects of small interfering RNA specific for TUG1 on BC cell proliferation, migration and invasion were reversed by downregulation of miR-29c. Collectively, our study strongly demonstrates that TUG1 promotes BC cell proliferation, migration and invasion by inhibiting miR-29c, suggesting that lncRNATUG1 may be a promising target for BC gene therapy.

  12. Effect of the Wnt/β-catenin signaling pathway on apoptosis, migration, and invasion of transplanted hepatocellular carcinoma cells after transcatheter arterial chemoembolization in rats.

    Science.gov (United States)

    Wang, Bao-Ming; Li, Nuo

    2018-05-01

    This study aims to investigate the influence of the Wnt/β-catenin signaling pathway on apoptosis, migration, and invasion of transplanted hepatocellular carcinoma (HCC) cells after transcatheter arterial chemoembolization (TACE) in rat models. A total of 80 rats were grouped into sham, TACE, Wnt-C59, and TACE + Wnt-C59 groups (n = 20). Ten days after model establishment, 10 rats in each group were executed to perform pathological examination and follow-up experiment, and the remaining 10 rats in each group were reared to observe the survival condition. RT-qPCR and Western blotting were applied to determine the expressions of Wnt1, β-catenin, cyclin D1, c-met, vimentin, E-cadherin, and vascular endothelial growth factor (VEGF). ELISA was performed to measure the serum alpha-fetoprotein (AFP) content of rats. Flow cytometry was used to evaluate cell apoptosis rate and transwell assay to examine cell migration and invasion. Compared with the TACE group, the Wnt-C59 and TACE + Wnt-C59 groups showed increased apoptosis and survival time (the TACE + Wnt-C59 group > the Wnt-C59 group). Compared with the sham group, the TACE + Wnt-C59 groups showed decreased cancer tissue weight and expressions of Wnt1, β-catenin, cyclin D1, vimentin, c-met, and VEGF, but increased E-cadherin expression. Compared with the TACE group, the Wnt-C59 and TACE + Wnt-C59 groups showed decreased AFP level, migration, and invasion (the TACE + Wnt-C59 group Wnt-C59 group). These findings indicate inhibition of the Wnt/β-catenin signaling pathway improves therapeutic effect on TACE via suppressing migration, invasion, and promoting apoptosis of transplanted HCC cells in rats. © 2017 Wiley Periodicals, Inc.

  13. microRNA-494 is a potential prognostic marker and inhibits cellular proliferation, migration and invasion by targeting SIRT1 in epithelial ovarian cancer.

    Science.gov (United States)

    Yang, Aijun; Wang, Xuenan; Yu, Chunna; Jin, Zhenzhen; Wei, Lingxia; Cao, Jinghe; Wang, Qin; Zhang, Min; Zhang, Lin; Zhang, Lei; Hao, Cuifang

    2017-09-01

    Ovarian cancer is one of the most common types of gynecological malignancy worldwide, and is the fourth leading cause of cancer-associated mortality among women. Despite improvements in therapeutic treatments, the prognosis for epithelial ovarian cancer (EOC) remains poor, mainly due to the rapid growth and metastasis of ovarian cancer tumors. An increasing number of studies have indicated that microRNAs (miRNAs) are involved in the carcinogenesis and progression of human cancer, suggesting that miRNAs may be used in clinical prognosis and as a therapeutic target in EOC. The aim of the present study was to investigate the expression levels of miRNA-494 in EOC tissues and cell lines. The clinical significance of miRNA-494 in patients with EOC was also evaluated. The results demonstrated that miRNA-494 was significantly downregulated in EOC tissues and cell lines. Low expression levels of miRNA-494 were associated with poor prognostic features, including International Federation of Gynecology and Obstetrics stage, tumor size and lymph node metastasis. In vitro functional studies demonstrated that overexpression of miRNA-494 inhibited proliferation, migration and invasion in EOC cells. By contrast, knockdown of miRNA-494 enhanced cell growth, migration and invasion in EOC cells. Notably, sirtuin 1 (SIRT1) was identified as a direct target of miRNA-494 in EOC. Furthermore, MTT, cell migration and invasion assays verified that EOC cell proliferation, migration and invasion were completely restored with forced miRNA-494 expression and SIRT1 restoration. Together, these findings suggest that miRNA-494 is a potential prognostic marker, and may provide novel therapeutic regimens of targeted therapy for EOC.

  14. Osteopontin Promotes Invasion, Migration and Epithelial-Mesenchymal Transition of Human Endometrial Carcinoma Cell HEC-1A Through AKT and ERK1/2 Signaling

    OpenAIRE

    Yinghua Li; Yunpeng Xie; Dan Cui; Yanni Ma; Linlin Sui; Chenyang Zhu; Hui Kong; Ying Kong

    2015-01-01

    Background/Aims: Osteopontin (OPN) is an Extracellular Matrix (ECM) molecule and is involved in many physiologic and pathologic processes, including cell adhesion, angiogenesis and tumor metastasis. OPN is a well-known multifunctional factor involved in various aspects of cancer progression, including endometrial cancer. In this study, we examined the significance of OPN in endometrial cancer. Methods: The proliferation, migration and invasion ability of HEC-1A cells were detected by Cell Cou...

  15. The long non-coding RNA MALAT1 promotes the migration and invasion of hepatocellular carcinoma by sponging miR-204 and releasing SIRT1.

    Science.gov (United States)

    Hou, Zhouhua; Xu, Xuwen; Zhou, Ledu; Fu, Xiaoyu; Tao, Shuhui; Zhou, Jiebin; Tan, Deming; Liu, Shuiping

    2017-07-01

    Increasing evidence supports the significance of long non-coding RNA in cancer development. Several recent studies suggest the oncogenic activity of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in hepatocellular carcinoma. In this study, we explored the molecular mechanisms by which MALAT1 modulates hepatocellular carcinoma biological behaviors. We found that microRNA-204 was significantly downregulated in sh-MALAT1 HepG2 cell and 15 hepatocellular carcinoma tissues by quantitative real-time polymerase chain reaction analysis. Through bioinformatic screening, luciferase reporter assay, RNA-binding protein immunoprecipitation, and RNA pull-down assay, we identified microRNA-204 as a potential interacting partner for MALAT1. Functionally, wound-healing and transwell assays revealed that microRNA-204 significantly inhibited the migration and invasion of hepatocellular carcinoma cells. Notably, sirtuin 1 was recognized as a direct downstream target of microRNA-204 in HepG2 cells. Moreover, si-SIRT1 significantly inhibited cell invasion and migration process. These data elucidated, by sponging and competitive binding to microRNA-204, MALAT1 releases the suppression on sirtuin 1, which in turn promotes hepatocellular carcinoma migration and invasion. This study reveals a novel mechanism by which MALAT1 stimulates hepatocellular carcinoma progression and justifies targeting metastasis-associated lung adenocarcinoma transcript 1 as a potential therapy for hepatocellular carcinoma.

  16. Annexin A2 promotes the migration and invasion of human hepatocellular carcinoma cells in vitro by regulating the shedding of CD147-harboring microvesicles from tumor cells.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available It has been reported that Annexin A2 (ANXA2 is up-regulated in hepatocellular carcinoma (HCC, but the roles of ANXA2 in the migration and invasion of HCC cells have not been determined. In this study, we found that ANXA2-specific siRNA (si-ANXA2 significantly inhibited the migration and invasion of HCC cells co-cultured with fibroblasts in vitro. In addition, the production of MMP-2 by fibroblasts cultured in supernatant collected from si-ANXA2-transfected HCC cells was notably down-regulated. ANXA2 was also found to be co-localized and co-immunoprecipitated with CD147. Further investigation revealed that the expression of ANXA2 in HCC cells affected the shedding of CD147-harboring membrane microvesicles, acting as a vehicle for CD147 in tumor-stromal interactions and thereby regulating the production of MMP-2 by fibroblasts. Together, these results suggest that ANXA2 enhances the migration and invasion potential of HCC cells in vitro by regulating the trafficking of CD147-harboring membrane microvesicles.

  17. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway.

    Science.gov (United States)

    Shang, Dandan; Li, Zheng; Zhu, Zhuxia; Chen, Huamei; Zhao, Lujun; Wang, Xudong; Chen, Yan

    2015-04-01

    Flavonoids are structurally similar to steroid hormones, particularly estrogens, and therefore have been studied for their potential effects on hormone-dependent cancers. Baicalein is the primary flavonoid derived from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the effects of baicalein on 17β-estradiol (E2)-induced migration, adhesion and invasion of MCF-7 and SK-BR-3 breast cancer cells. The results demonstrated that baicalein suppressed E2-stimulated wound-healing migration and cell‑Matrigel adhesion, and ameliorated E2-promoted invasion across a Matrigel-coated Transwell membrane. Furthermore, baicalein interfered with E2-induced novel G protein-coupled estrogen receptor (GPR30)-related signaling, including a decrease in tyrosine phosphorylation of epidermal growth factor receptor (EGFR) as well as phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase Akt, without affecting GPR30 expression. The results also showed that baicalein suppressed the expression of GPR30 target genes, cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF) induced by E2. Furthermore, baicalein prevented GPR30-related signaling activation and upregulation of CYR61 and CTGF mRNA levels induced by G1, a specific GPR 30 agonist. The results suggest that baicalein inhibits E2-induced migration, adhesion and invasion through interfering with GPR30 signaling pathway activation, which indicates that it may act as a therapeutic candidate for the treatment of GPR30-positive breast cancer metastasis.

  18. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (Ptissues was than in normal adjacent esophageal tissues (Ptissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  19. Osteopontin Promotes Invasion, Migration and Epithelial-Mesenchymal Transition of Human Endometrial Carcinoma Cell HEC-1A Through AKT and ERK1/2 Signaling.

    Science.gov (United States)

    Li, Yinghua; Xie, Yunpeng; Cui, Dan; Ma, Yanni; Sui, Linlin; Zhu, Chenyang; Kong, Hui; Kong, Ying

    2015-01-01

    Osteopontin (OPN) is an Extracellular Matrix (ECM) molecule and is involved in many physiologic and pathologic processes, including cell adhesion, angiogenesis and tumor metastasis. OPN is a well-known multifunctional factor involved in various aspects of cancer progression, including endometrial cancer. In this study, we examined the significance of OPN in endometrial cancer. The proliferation, migration and invasion ability of HEC-1A cells were detected by Cell Counting Kit-8 (CCK-8), Wound scratch assay and transwell. Western blots were employed to detect the expression of Matrix metalloproteinase-2 (MMP-2) and epithelial-mesenchymal transition (EMT)-related factors in HEC-1A cells treated with rhOPN. rhOPN promotes cell proliferation, migration and invasion in HEC-1A cells. rhOPN influenced EMT-related factors and MMP-2 expression in HEC-1A cells. rhOPN promoted HEC-1A cells migration, invasion and EMT through protein kinase B (PKB/AKT) and Extracellular regulated protein kinases (ERK1/2) signaling pathway. These results may open up a novel therapeutic strategy for endometrial cancer: namely, rhOPN have important roles in controlling growth of endometrial of cancer cells and suggest a novel target pathway for treatment of this cancer. © 2015 The Author(s) Published by S. Karger AG, Basel.

  20. Osteopontin Promotes Invasion, Migration and Epithelial-Mesenchymal Transition of Human Endometrial Carcinoma Cell HEC-1A Through AKT and ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Yinghua Li

    2015-10-01

    Full Text Available Background/Aims: Osteopontin (OPN is an Extracellular Matrix (ECM molecule and is involved in many physiologic and pathologic processes, including cell adhesion, angiogenesis and tumor metastasis. OPN is a well-known multifunctional factor involved in various aspects of cancer progression, including endometrial cancer. In this study, we examined the significance of OPN in endometrial cancer. Methods: The proliferation, migration and invasion ability of HEC-1A cells were detected by Cell Counting Kit-8 (CCK-8, Wound scratch assay and transwell. Western blots were employed to detect the expression of Matrix metalloproteinase-2 (MMP-2 and epithelial-mesenchymal transition (EMT-related factors in HEC-1A cells treated with rhOPN. Results: rhOPN promotes cell proliferation, migration and invasion in HEC-1A cells. rhOPN influenced EMT-related factors and MMP-2 expression in HEC-1A cells. rhOPN promoted HEC-1A cells migration, invasion and EMT through protein kinase B (PKB/AKT and Extracellular regulated protein kinases (ERK1/2 signaling pathway. Conclusions: These results may open up a novel therapeutic strategy for endometrial cancer: namely, rhOPN have important roles in controlling growth of endometrial of cancer cells and suggest a novel target pathway for treatment of this cancer.

  1. IL-17A promotes the migration and invasiveness of cervical cancer cells by coordinately activating MMPs expression via the p38/NF-κB signal pathway.

    Directory of Open Access Journals (Sweden)

    Minjuan Feng

    Full Text Available IL-17A plays an important role in many inflammatory diseases and cancers. We aimed to examine the effect of IL-17A on the invasion of cervical cancer cells and study its related mechanisms.Wound healing and matrigel transwell assays were used to examine the effect of IL-17A on cervical cancer cell migration and invasion by a panel of cervical cancer cell lines. The levels of matrix metalloproteinases (MMPs and tissue inhibitor of metalloproteinases (TIMPs were investigated using western blotting. The activity of p38 and nuclear factor-kappa B (NF-κB signal pathway was detected too.Here, we showed that IL-17A could promote the migration and invasion of cervical cancer cells. Further molecular analysis showed that IL-17A could up-regulate the expressions and activities of MMP2 and MMP9, and down-regulate the expressions of TIMP-1 and TIMP-2. Furthermore, IL-17A also activates p38 signal pathway and increased p50 and p65 nuclear expression. In addition, treatment of cervical cancer cells with the pharmacological p38/NF-κB signal pathway inhibitors, SB203580 and PDTC, potently restored the roles of invasion and upregulation of MMPs induced by IL-17A.IL-17A could promote the migration and invasion of cervical cancer cell via up-regulating MMP2 and MMP9 expression, and down-regulating TIMP-1 and TIMP-2 expression via p38/NF-κB signal pathway. IL-17A may be a potential target to improve the prognosis for patients with cervical cancer.

  2. Downregulation of the long noncoding RNA TUG1 inhibits the proliferation, migration, invasion and promotes apoptosis of renal cell carcinoma.

    Science.gov (United States)

    Zhang, Meng; Lu, Wei; Huang, Yiqiang; Shi, Jizhou; Wu, Xun; Zhang, Xiaolong; Jiang, Runze; Cai, Zhiming; Wu, Song

    2016-08-01

    Long non-coding RNAs, a newly discovered category of noncoding genes, play a leading role in various biological processes, including tumorigenesis. In our study, we aimed to examine the TUG1 expression, and explore the influence of TUG1 silencing on cell proliferation and apoptosis in renal cell carcinoma (RCC) cell lines. The TUG1 expression level was detected using quantitative real-time PCR reverse transcription-polymerase chain reaction in 40 paired clear cell renal cell carcinoma (ccRCC) and adjacent paired normal tissues, as well as four RCC cell lines and one normal human proximal tubule epithelial cell line HK-2. Small interfering RNA was applied to suppress the TUG1 expression in RCC cell lines (A489 and A704). In vitro assays were conducted to further deliberate its potential functions in RCC progression. The relative TUG1 expression was significantly higher in ccRCC tissues compared to the adjacent normal renal tissues. In addition, higher TUG1 expression was equally detected in RCC cell lines (particularly in A498 and A704) compared to HK-2. The ccRCC specimens with higher TUG1 expression had a higher Fuhrman grade and larger tumor size than those with lower TUG1 expression. In vitro assays results suggested that knockdown of TUG1 suppressed RCC cells migration, invasion and proliferation, while the apoptosis process was activated. Our results indicate that TUG1 is identified as a novel oncogene in the morbid state of RCC, which potentially acts as a therapeutic target/biomarker in RCC. The graphic abstract of the present work.

  3. Combination of NRP1-mediated iRGD with 5-fluorouracil suppresses proliferation, migration and invasion of gastric cancer cells.

    Science.gov (United States)

    Zhang, Li; Xing, Yanfeng; Gao, Qi; Sun, Xuejun; Zhang, Di; Cao, Gang

    2017-09-01

    Gastric cancer is one of the most of common cancers in the world. 5-Fluorouracil (5-FU) has been identified as one of the standard first-line chemotherapy drugs for locally advanced or metastatic gastric cancer. However, poor tumor penetration, bad selectivity and toxic side effects are the major limitations for the application of chemotherapy drugs in anticancer therapy. Recently, plenty of studies demonstrate that the novel tumor-homing peptide iRGD could promote the tumor-penetrating capability of chemotherapy drugs in multiple cancers, and neuropilin-1 (NRP1) protein is the critical mediator for iRGD. Here,we found that NRP1 protein expression was significantly up-regulated in gastric cancer tissues and cell lines by Immunohistochemistry and Western blot. And elevated NRP1 was notably associated with tumor differentiation (P=0.021), tumor size (P=0.004), tumor stage(P=0.028), lymph node metastasis(P=0.032), TNM tumor stage (P=0.006) and poorer prognosis. Functionally, the data of Methyl thiazolyl tetrazolium (MTT) assay, Colony formation assay and Transwell assay revealed that NRP1 could facilitate gastric cancer cells proliferation, migration and invasion. Furthermore, iRGD could strengthen the chemotherapy effect of 5-FU on gastric cancer cells through NRP1. Taken together, NPR1 might be a promising tumor target for gastric cancer, and combination of iRGD with 5-FU may be a novel and valuable approach to improving the prognosis of gastric cancer patients. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Calibrating snakehead diversity with DNA barcodes: expanding taxonomic coverage to enable identification of potential and established invasive species.

    Directory of Open Access Journals (Sweden)

    Natasha R Serrao

    Full Text Available Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway

  5. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    Science.gov (United States)

    Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John H

    2014-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  6. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Hongsheng Miao

    Full Text Available Glioblastoma (GBM is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  7. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1

    Directory of Open Access Journals (Sweden)

    Zih-Yun Wu

    2016-03-01

    Full Text Available Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells’ adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9 activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.

  8. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    International Nuclear Information System (INIS)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng; Ping, Yu; Liu, Shasha; Shi, Xiaojuan; Li, Lifeng; Wang, Liping; Huang, Lan; Zhang, Bin; Sun, Yan

    2015-01-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells

  9. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ping, Yu; Liu, Shasha [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); School of Life Sciences, Zhengzhou University, Zhengzhou 450000 (China); Shi, Xiaojuan; Li, Lifeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Liping [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Huang, Lan [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Zhang, Bin [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Sun, Yan [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences (China); and others

    2015-08-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  10. Transforming Growth Factor β1 Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells Via Up-Regulation of Connective Tissue Growth Factor.

    Science.gov (United States)

    Liu, Haizhou; Wang, Shaoyang; Ma, Weimin; Lu, Youguang

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a poor patient survival. Expression of TGF-β1 is up-regulated in HCC and is thought to play a crucial role in the occurrence and development of HCC. However, the mechanism of TGF-β1-mediated facilitation of malignant growth and invasion remains unclear, although some previous studies highlighted a potential involvement of the connective tissue growth factor (CTGF). Here we demonstrate that the in vitro migration of the HCC cell line SMMC-7721 is increased in the presence of recombinant TGF-β1, and that this effect is reversed by the specific inhibitor SB431542. Furthermore, TGF-β1 treatment up-regulated the expression of its own mRNA as well as the expression of CTGF mRNA. The TGF-β1-stimulated migration of SMMC-7721 cells was diminished by siRNA silencing of CTGF. These in vitro observations were validated in a murine xenograft model. In particular, silencing of CTFG diminished the TGF-β1-induced tumorigenesis in experimental animals. In conclusion, TGF-β1 plays a critical role in HCC migration and invasion, and this effect is dependent on CTGF.

  11. Bauhinia variegata candida Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion In Vitro

    Directory of Open Access Journals (Sweden)

    K. M. Santos

    2018-01-01

    Full Text Available Metastasis remains the most common cause of death in cancer patients. Inhibition of metalloproteinases (MMPs is an interesting approach to cancer therapy because of their role in the degradation of extracellular matrix (ECM, cell-cell, and cell-ECM interactions, modulating key events in cell migration and invasion. Herein, we show the cytotoxic and antimetastatic effects of the third fraction (FR3 from Bauhinia variegata candida (Bvc stem on human cervical tumor cells (HeLa and human peripheral blood mononuclear cells (PBMCs. FR3 inhibited MMP-2 and MMP-9 activity, indicated by zymogram. This fraction was cytotoxic to HeLa cells and noncytotoxic to PBMCs and decreased HeLa cell migration and invasion. FR3 is believed to stimulate extrinsic apoptosis together with necroptosis, assessed by western blotting. FR3 inhibited MMP-2 activity in the HeLa supernatant, differently from the control. The atomic mass spectrometry (ESI-MS characterization suggested the presence of glucopyranosides, D-pinitol, fatty acids, and phenolic acid. These findings provide insight suggesting that FR3 contains components with potential tumor-selective cytotoxic action in addition to the action on the migration of tumor cells, which may be due to inhibition of MMPs.

  12. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  13. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-01-01

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  14. Knockdown of Uba2 inhibits colorectal cancer cell invasion and migration through downregulation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Cheng, Hongjing; Sun, Xun; Li, Ji; He, Ping; Liu, Wanqi; Meng, Xiangwei

    2018-05-10

    Colorectal cancer is a serious threat to human health, and has a high mortality rate. There is currently no effective therapy for end-stage colorectal cancer. In recent years, molecular targeted therapy has received increasing attention for cancer treatment. In particular, the role of Uba2, a vital component of SUMO-activating enzyme, has been highlighted, which plays important roles in the progression of certain cancers; however, its role in colorectal cancer remains unclear. Accordingly, the aim of this study was to evaluate the relationship between Uba2 and colorectal cancer. Uba2 expression was knocked down in two colorectal cancer cell lines, and gene microarray analysis was conducted, followed by proliferation, migration, and invasion assays. Uba2 knockdown influenced the expression of several genes, and significantly inhibited the proliferation, migration, and invasion of cancer cells. To determine the underlying mechanism, the expression of related signaling pathways and molecules was evaluated in the knockdown cell lines. Overall, the results suggest that Uba2 participates in the progression, invasion, and metastasis of colorectal cancer, and the possible mechanism is via regulating the Wnt signaling pathway and enhancing epithelial-mesenchymal transition behaviors of colorectal cancer cells. Therefore, Uba2 is expected to be an important oncoprotein and potential therapeutic target in colorectal cancer. © 2018 Wiley Periodicals, Inc.

  15. Suppressions of Migration and Invasion by Cantharidin in TSGH-8301 Human Bladder Carcinoma Cells through the Inhibitions of Matrix Metalloproteinase-2/-9 Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Ping Huang

    2013-01-01

    Full Text Available Cancer metastasis becomes an initial cause of cancer death in human population. In many cancers, it has been shown that the high levels of matrix metalloproteinase (MMP-2 and/or MMP-9 are associated with the invasive phenotypes of cancer cells. In this study, we investigated the effects of cantharidin, a derivative of blister beetles which is one of the traditional Chinese medicines, on the adhesion, migration, and invasion of human bladder cancer TSGH-8301 cells. Cantharidin effectively suppressed TSGH-8301 cell adhesion, migration, and invasion in a concentration-dependent manner. Results from Western blotting, RT-PCR, and gelatin zymography assays indicated that cantharidin blocked the protein levels, gene expression (mRNA, and activities of MMP-2 and -9 in TSGH-8301 cells. Cantharidin also significantly suppressed the protein expressions of p-p38 and p-JNK1/2 in TSGH-8301 cells. Taken together, cantharidin was suggested to present antimetastatic potential via suppressing the levels of MMP-2 and MMP-9 expression that might be mediated by targeting the p38 and JNK1/2 MAPKs pathway in TSGH-8301 human bladder cancer cells.

  16. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    Science.gov (United States)

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-06-01

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Expression profiling of migrated and invaded breast cancer cells predicts early metastatic relapse and reveals Krüppel-like factor 9 as a potential suppressor of invasive growth in breast cancer

    Science.gov (United States)

    Limame, Ridha; de Beeck, Ken Op; Van Laere, Steven; Croes, Lieselot; De Wilde, Annemieke; Dirix, Luc; Van Camp, Guy; Peeters, Marc; De Wever, Olivier; Lardon, Filip; Pauwels, Patrick

    2014-01-01

    Cell motility and invasion initiate metastasis. However, only a subpopulation of cancer cells within a tumor will ultimately become invasive. Due to this stochastic and transient nature, in an experimental setting, migrating and invading cells need to be isolated from the general population in order to study the gene expression profiles linked to these processes. This report describes microarray analysis on RNA derived from migrated or invaded subpopulations of triple negative breast cancer cells in a Transwell set-up, at two different time points during motility and invasion, pre-determined as “early” and “late” in real-time kinetic assessments. Invasion- and migration-related gene expression signatures were generated through comparison with non-invasive cells, remaining at the upper side of the Transwell membranes. Late-phase signatures of both invasion and migration indicated poor prognosis in a series of breast cancer data sets. Furthermore, evaluation of the genes constituting the prognostic invasion-related gene signature revealed Krüppel-like factor 9 (KLF9) as a putative suppressor of invasive growth in breast cancer. Next to loss in invasive vs non-invasive cell lines, KLF9 also showed significantly lower expression levels in the “early” invasive cell population, in several public expression data sets and in clinical breast cancer samples when compared to normal tissue. Overexpression of EGFP-KLF9 fusion protein significantly altered morphology and blocked invasion and growth of MDA-MB-231 cells in vitro. In addition, KLF9 expression correlated inversely with mitotic activity in clinical samples, indicating anti-proliferative effects. PMID:25593984

  18. The Invasive Species Forecasting System (ISFS): An iRODS-Based, Cloud-Enabled Decision Support System for Invasive Species Habitat Suitability Modeling

    Science.gov (United States)

    Gill, Roger; Schnase, John L.

    2012-01-01

    The Invasive Species Forecasting System (ISFS) is an online decision support system that allows users to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of interest, such as a national park, monument, forest, or refuge. Target customers for ISFS are natural resource managers and decision makers who have a need for scientifically valid, model- based predictions of the habitat suitability of plant species of management concern. In a joint project involving NASA and the Maryland Department of Natural Resources, ISFS has been used to model the potential distribution of Wavyleaf Basketgrass in Maryland's Chesapeake Bay Watershed. Maximum entropy techniques are used to generate predictive maps using predictor datasets derived from remotely sensed data and climate simulation outputs. The workflow to run a model is implemented in an iRODS microservice using a custom ISFS file driver that clips and re-projects data to geographic regions of interest, then shells out to perform MaxEnt processing on the input data. When the model completes, all output files and maps from the model run are registered in iRODS and made accessible to the user. The ISFS user interface is a web browser that uses the iRODS PHP client to interact with the ISFS/iRODS- server. ISFS is designed to reside in a VMware virtual machine running SLES 11 and iRODS 3.0. The ISFS virtual machine is hosted in a VMware vSphere private cloud infrastructure to deliver the online service.

  19. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Li, Zhengkun; Chen, Wei

    2014-07-01

    Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

  20. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR).

    Science.gov (United States)

    Xiong, Yaoyao; Wang, Long; Li, Yuan; Chen, Minfeng; He, Wei; Qi, Lin

    2017-01-01

    Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells' proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3'UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  1. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR

    Directory of Open Access Journals (Sweden)

    Yaoyao Xiong

    2017-08-01

    Full Text Available Backgrounds/Aims: Long non-coding RNA (lncRNA X-inactive specific transcript (XIST is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA’s target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. Methods: XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. Results: XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells’ proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3’UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. Conclusion: These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation.

  2. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells.

    Science.gov (United States)

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-10-25

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.

  3. Nonlethal Levels of Zeaxanthin Inhibit Cell Migration, Invasion, and Secretion of MMP-2 via NF-κB Pathway in Cultured Human Uveal Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Ming-Chao Bi

    2016-01-01

    Full Text Available Zeaxanthin at nonlethal dosages (3–10 μM significantly inhibited the cell migration of cultured uveal melanoma cells (C918 cell line as determined by wound healing assay and Boyden chamber assay. Matrigel invasion assay showed that cell invasion of uveal melanoma cells could be significantly inhibited by zeaxanthin. Secretion of MMP-2 by melanoma cells was significantly inhibited by zeaxanthin in a dose-dependent manner as measured by ELISA kit. Zeaxanthin also significantly inhibited the NF-κB levels in nuclear extracts of the UM cells, which is the upstream of the MMP-2 secretion. These results suggest that zeaxanthin might be a potentially therapeutic approach in the prevention of metastasis in uveal melanoma.

  4. Overexpression of long intergenic noncoding RNA LINC00312 inhibits the invasion and migration of thyroid cancer cells by down-regulating microRNA-197-3p.

    Science.gov (United States)

    Liu, Kai; Huang, Wen; Yan, Dan-Qing; Luo, Qing; Min, Xiang

    2017-08-31

    The study evaluated the ability of long intergenic noncoding RNA LINC00312 (LINC00312) to influence the proliferation, invasion, and migration of thyroid cancer (TC) cells by regulating miRNA-197-3p. TC tissues and adjacent normal tissues were collected from 211 TC patients. K1 (papillary TC), SW579 (squamous TC), and 8505C (anaplastic TC) cell lines were assigned into a blank, negative control (NC), LINC00312 overexpression, miR-197-3p inhibitors, and LINC00312 overexpression + miR-197-3p mimics group. The expression of LINC00312, miR-197-3p , and p120 were measured using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation was assessed via CCK8 assay, cell invasion through the scratch test, and cell migration via Transwell assay. In comparison with adjacent normal tissues, the expression of LINC00312 is down-regulated and the expression of miR-197-3p is up-regulated in TC tissues. The dual luciferase reporter gene assay confirmed that P120 is a target of miR-197-3p The expression of LINC00312 and p120 was higher in the LINC00312 overexpression group than in the blank and NV groups. However, the expression of miR-197-3p was lower in the LINC00312 overexpression group than in the blank and NC groups. The miR-197-3p inhibitors group had a higher expression of miR-197-3p , but a lower expression of p120 than the blank and NC groups. The LINC00312 overexpression and miR-197-3p inhibitor groups had reduced cell proliferation, invasion and migration than the blank and NC groups. These results indicate that a LINC00312 overexpression inhibits the proliferation, invasion, and migration of TC cells and that this can be achieved by down-regulating miR-197-3p . © 2017 The Author(s).

  5. Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer

    International Nuclear Information System (INIS)

    Kang, Hua; Watkins, Gareth; Parr, Christian; Douglas-Jones, Anthony; Mansel, Robert E; Jiang, Wen G

    2005-01-01

    Stromal cell-derived factor (SDF)-1 (CXC chemokine ligand-12) is a member of the CXC subfamily of chemokines, which, through its cognate receptor (CXC chemokine receptor [CXCR]4), plays an important role in chemotaxis of cancer cells and in tumour metastasis. We conducted the present study to evaluate the effect of SDF-1 on the invasiveness and migration of breast cancer cells, and we analyzed the expression of SDF-1 and its relation to clinicopathological features and clinical outcomes in human breast cancer. Expression of SDF-1 mRNA in breast cancer, endothelial (HECV) and fibroblast (MRC5) cell lines and in human breast tissues were studied using RT-PCR. MDA-MB-231 cells were transfected with a SDF-1 expression vector, and their invasiveness and migration was tested in vitro. In addition, the expression of SDF-1 was investigated using immunohistochemistry and quantitative RT-PCR in samples of normal human mammary tissue (n = 32) and mammary tumour (n = 120). SDF-1 expression was identified in MRC5, MDA-MB-435s and MDA-MB-436 cell lines, but CXCR4 expression was detected in all cell lines and breast tissues. An autocrine loop was created following transfection of MDA-MB-231 (which was CXCR4 positive and SDF-1 negative) with a mammalian expression cassette encoding SDF-1 (MDA-MB-231SDF1 +/+ ) or with control plasmid pcDNA4/GFP (MDA-MB-231 +/- ). MDA-MB-231SDF1 +/+ cells exhibited significantly greater invasion and migration potential (in transfected cells versus in wild type and empty MDA-MB-231 +/- ; P < 0.01). In mammary tissues SDF-1 staining was primarily seen in stromal cells and weakly in mammary epithelial cells. Significantly higher levels of SDF-1 were seen in node-positive than in node-negative tumours (P = 0.05), in tumours that metastasized (P = 0.05), and tumours from patients who died (P = 0.03) than in tumours from patients who were disease free. It was most notable that levels of SDF-1 correlated significantly with overall survival (P = 0.001) and

  6. The lncRNA PCAT1 is correlated with poor prognosis and promotes cell proliferation, invasion, migration and EMT in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-01-01

    Full Text Available Xuedong Zhang,1,2 Yakui Zhang,2 Yong Mao,2 Xinlong Ma1 1Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 2Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China Introduction: Osteosarcoma is a malignant primary bone cancer and is lethal to children and adolescents. Recently, the dysregulation of long noncoding RNAs (lncRNAs has been shown in various types of cancers.Aim: The present study aimed to examine the role of the lncRNA prostate cancer-associated transcript 1 (PCAT1 in osteosarcoma progression.Materials and methods: The expression levels of relevant genes in clinical samples and cell lines were determined by quantitative real-time polymerase chain reaction. Cell proliferation, invasion and migration were examined by CCK-8 assay, transwell invasion and migration assay, respectively. Cell apoptosis and cell cycle were detected by flow cytometry. Protein levels were detected by Western blot.Results: Our results showed that PCAT1 was upregulated in osteosarcoma tissues when compared to normal bone tissues. PCAT1 was also upregulated in osteosarcoma cell lines when compared to normal bone cell line. The upregulation of PCAT1 was significantly associated with advanced clinical stage, tumor metastasis and shorter overall survival in patients with osteosarcoma. In vitro studies showed that overexpression of PCAT1 in MG-63 cells enhanced cell proliferation, cell invasion and migration and epithelial-to-mesenchymal transition (EMT; decreased cell apoptotic rate; and also caused an increase in cell population at S phase with a decrease in cell population at G0/G1 phase. Knockdown of PCAT1 in U2OS cells suppressed cell proliferation, cell invasion and migration, and EMT; increased cell apoptotic rate; and caused an increase in the cell population at G0/G1 phase with a decrease in cell population at S phase.Conclusion: Taken together, our results suggest the

  7. Effects of MicroRNA-206 on Osteosarcoma Cell Proliferation, Apoptosis, Migration and Invasion by Targeting ANXA2 Through the AKT Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Bao-Long Pan

    2018-02-01

    Full Text Available Background/Aims: This study aimed to investigate the mechanism by which microRNA-206 (miR-206 affects the proliferation, apoptosis, migration and invasion of osteosarcoma (OS cells by targeting ANXA2 via the AKT signaling pathway. Methods: A total of 132 OS tissues and 120 osteochondroma tissues were examined in this study. The targeting relationship between miR-206 and ANXA2 was verified with a dual-luciferase reporter assay. The miR-206 expression and ANXA2, AKT, PARP, FASN, Survivin, Bax, Mcl-1 and Bcl-1 mRNA and protein expression in the above two groups were examined by qRT-PCR and western blotting. The cultured OS cells were divided into 6 groups: a blank group, negative control (NC group, miR-206 mimic group, miR-206 inhibitor group, si-ANXA2 group and miR-206 inhibitor + si-ANXA2 group. Cell cycle and apoptosis were assessed by flow cytometry, cell migration was examined with a wound-healing assay, and cell invasion was assessed with a Transwell assay. Pearson correlation analysis was used to determine the correlation between ANXA2 mRNA expression and miR-206 expression in OS. Results: OS tissues exhibited increased mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-2; decreased miR-206 expression; and decreased Bax mRNA and protein expression. ANXA2 mRNA expression was strongly negatively correlated with miR-206 expression in OS. ANXA2 was found to be a miR-206 target gene. In the miR-206 mimic group and the si-ANXA2 group, the mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-1 decreased markedly, cell proliferation was inhibited, apoptosis was promoted, higher cell growth in G1 phase and decreased growth in S phase was detected, and decreased cell migration and invasion were observed compared with those in the blank group. Conclusion: The current results demonstrate that miR-206 overexpression inhibits OS cell proliferation, migration and invasion and promotes apoptosis through

  8. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9.

    Directory of Open Access Journals (Sweden)

    Justin V Joseph

    Full Text Available Glioblastoma (GBM is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs, have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the differentiation status of GBM cells is associated with their invasive capacity. For this, several primary GBM cell lines were used, cultured either as neurospheres known to enrich for GSCs or in medium supplemented with 10% FCS that promotes differentiation. The differentiation state of the cells was confirmed by determining the expression of stem cell and differentiation markers. The migration/invasion potential of these cells was tested using in vitro assays and intracranial mouse models. Interestingly, we found that serum-induced differentiation enhanced the invasive potential of GBM cells, which was associated with enhanced MMP9 expression. Chemical inhibition of MMP9 significantly reduced the invasive potential of differentiated cells in vitro. Furthermore, the serum-differentiated cells could revert back to an undifferentiated/stem cell state that were able to form neurospheres, although with a reduced efficiency as compared to non-differentiated counterparts. We propose a model in which activation of the differentiation program in GBM cells enhances their infiltrative potential and that depending on microenvironmental cues a significant portion of these cells are able to revert back to an undifferentiated state with enhanced tumorigenic potential. Thus, effective therapy should target both GSCs and differentiated offspring and targeting of differentiation-associated pathways may offer therapeutic opportunities to reduce invasive growth of GBM.

  9. The total flavonoids of Clerodendrum bungei suppress A549 cells proliferation, migration, and invasion by impacting Wnt/β-Catenin signaling

    Directory of Open Access Journals (Sweden)

    Na Yu

    2017-01-01

    Full Text Available Objectives: The objective of this study is to evaluate the effect of the total flavonoids of Clerodendrum bungei (TFCB on the proliferation, invasion, and metastasis of A549 lung cancer cells through the Wnt signaling pathway. Materials and Methods: A549 cells were transfected with a β-catenin overexpression plasmid and the empty vector pcDNA3.1. The A549 cells were divided into six groups: normal A549 cell group, normal A549 cells with TFCB group, vector control group, vector with TFCB group, β-catenin overexpression group, and β-catenin with TFCB group. We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay to detect cell proliferation, a scratch test was used to observe cell migration, and a transwell experiment was employed to evaluate cell invasion. Proteins related to the Wnt pathway were detected with Western blot analysis, including β-catenin, GSK-3 β, P-GSK-3 β, c-Myc, and CyclinD1. Results: The proliferation, invasion, and metastasis of A549 cells were significantly enhanced after being transfected with the β-catenin overexpression plasmid (P < 0.05 or 0.01, accompanied by increased expression of β-catenin, C-Myc, CyclinD1 and reduced expression of Gsk-3 β and P-GSK-3 β. Treatment of cells with TFCB resulted in inhibition of cell proliferation, migration, and invasion; downregulated expression of β-catenin, C-Myc, and CyclinD1; and upregulated expression of GSK-3 β and P-GSK-3 β, especially in the β-catenin overexpression group. Conclusion: TFCB has the potential to inhibit the Wnt/β-catenin pathway by prohibiting the overexpression of β-catenin and regulating its downstream factors.

  10. Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan; Xin, Beibei; Wang, Hui; He, Xiaodan [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China); Wei, Wei; Zhang, Ti [Tianjin Medical University Cancer Institute and Hospital, Huanhu West Road, Tianjin 300060 (China); Shen, Xiaohong, E-mail: zebal2014@163.com [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China)

    2016-08-01

    Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues. Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.

  11. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines.

    Science.gov (United States)

    Fenger, Joelle M; Roberts, Ryan D; Iwenofu, O Hans; Bear, Misty D; Zhang, Xiaoli; Couto, Jason I; Modiano, Jaime F; Kisseberth, William C; London, Cheryl A

    2016-10-10

    MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified

  12. Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway.

    Science.gov (United States)

    Xia, Rongmu; Xu, Gang; Huang, Yue; Sheng, Xin; Xu, Xianlin; Lu, Hongling

    2018-05-15

    The present study aimed to investigate the ability of hesperidin to suppress the migration and invasion of A549 cells, and to investigate the role of the SDF-1/CXCR-4 cascade in this suppression. We performed a Transwell migration assay to measure the migratory capability of A549 cells treated with 0.5% DMSO, SDF-1α, AMD3100 or hesperidin. The SDF-1 level in the culture medium was determined by an enzyme-linked immunosorbent assay (ELISA) to detect whether different concentrations of hesperidin affected SDF-1 secretion. A wound-healing assay was performed to determine the effects of different concentrations of hesperidin on the migration inhibition of A549, H460 and H1975 cells. Additionally, the effect of various hesperidin concentrations on the rate of A549 cell invasion and migration was examined with and without Matrigel in Transwell assays, respectively. Western blot analysis was used to evaluate the protein levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, p-p65, p-IκB, IκB, p-Akt and Akt. RT-qPCR was used to detect the mRNA levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, IκB, SDF-1 and Akt. The Transwell migration assay indicated that SDF-1α promoted A549 cell migration, while AMD3100 and hesperidin significantly inhibited the migratory capability. The wound-healing assay demonstrated that hesperidin treatment significantly reduced the rate of wound closure compared with the control group in a dose-dependent manner. Similarly, the migration and invasive abilities of A549 cells, H460 and H1975 cells treated with hesperidin were significantly decreased compared with the control group. The ELISA data suggested that hesperidin attenuated the secretion of SDF-1 from A549 cells in a dose-dependent manner. Furthermore, western blot analysis indicated that SDF-1α treatment significantly increased the levels of CXCR-4, p-p65, p-IκB and p-Akt in A549 cells. In contrast, AMD3100 or hesperidin reversed the effect induced by SDF-1α through decreasing the expression

  13. Epigenetic silencing of ADAMTS18 promotes cell migration and invasion of breast cancer through AKT and NF-κB signaling.

    Science.gov (United States)

    Xu, Hongying; Xiao, Qian; Fan, Yu; Xiang, Tingxiu; Li, Chen; Li, Chunhong; Li, Shuman; Hui, Tianli; Zhang, Lu; Li, Hongzhong; Li, Lili; Ren, Guosheng

    2017-06-01

    ADAMTS18 dysregulation plays an important role in many disease processes including cancer. We previously found ADAMTS18 as frequently methylated tumor suppressor gene (TSG) for multiple carcinomas, however, its biological functions and underlying molecular mechanisms in breast carcinogenesis remain unknown. Here, we found that ADAMTS18 was silenced or downregulated in breast cancer cell lines. ADAMTS18 was reduced in primary breast tumor tissues as compared with their adjacent noncancer tissues. ADAMTS18 promoter methylation was detected in 70.8% of tumor tissues by methylation-specific PCR, but none of the normal tissues. Demethylation treatment restored ADAMTS18 expression in silenced breast cell lines. Ectopic expression of ADAMTS18 in breast tumor cells resulted in inhibition of cell migration and invasion. Nude mouse model further confirmed that ADAMTS18 suppressed breast cancer metastasis in vivo. Further mechanistic studies showed that ADAMTS18 suppressed epithelial-mesenchymal transition (EMT), further inhibited migration and invasion of breast cancer cells. ADAMT18 deregulated AKT and NF-κB signaling, through inhibiting phosphorylation levels of AKT and p65. Thus, ADAMTS18 as an antimetastatic tumor suppressor antagonizes AKT and NF-κB signaling in breast tumorigenesis. Its methylation could be a potential tumor biomarker for breast cancer. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Density-dependent quiescence in glioma invasion: instability in a simple reaction–diffusion model for the migration/proliferation dichotomy

    KAUST Repository

    Pham, Kara

    2012-01-01

    Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated. Our work is motivated by the migration/proliferation dichotomy (go-or-grow) hypothesis, i.e. the antagonistic migratory and proliferating cellular behaviours in a cell population, which may play a central role in these tumours. In this paper, we formulate a simple go-or-grow model to investigate the dynamics of a population of glioma cells for which the switch from a migratory to a proliferating phenotype (and vice versa) depends on the local cell density. The model consists of two reaction-diffusion equations describing cell migration, proliferation and a phenotypic switch. We use a combination of numerical and analytical techniques to characterize the development of spatio-temporal instabilities and travelling wave solutions generated by our model. We demonstrate that the density-dependent go-or-grow mechanism can produce complex dynamics similar to those associated with tumour heterogeneity and invasion.

  15. RNAi-mediated downregulation of oral cancer overexpressed 1 (ORAOV1) inhibits vascular endothelial cell proliferation, migration, invasion, and tube formation.

    Science.gov (United States)

    Zhao, Xin; Liu, Dongjuan; Wang, Lili; Wu, Ruiqing; Zeng, Xin; Dan, Hongxia; Ji, Ning; Jiang, Lu; Zhou, Yu; Chen, Qianming

    2016-04-01

    Oral squamous cell carcinoma (OSCC) is one of the top ten tumors threatening human health. Oral cancer overexpressed 1 (ORAOV1) identified within chromosomal region 11q13, one of the most frequently amplified regions in OSCC, has been suggested as a novel candidate oncogene in OSCC, regulating cell cycle, apoptosis, and angiogenesis. In this study, we investigated the role of ORAOV1 in OSCC-induced angiogenesis in vitro. EA.hy926 human endothelial cells were co-cultured with OSCC cells (HSC-3 and SCC-25) transfected with ORAOV1-specific shRNA to downregulate ORAOV1 expression, and analyzed for proliferation, migration, invasion, and tube formation by specific assays. EA.hy926 endothelial cells co-cultured with ORAOV1-deficient OSCC cells exhibited significantly lower proliferation, migration, and invasion, as well as the activity in tube formation compared to that in the control cells. Our results show, for the first time, that ORAOV1 expressed by OSCC cells promotes tube formation by endothelial cells, indicating its involvement in OSCC angiogenesis. Considering the importance of neovascularization in tumor development and metastasis, these findings suggest that targeting ORAOV1 may be a potential therapeutic strategy against OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro.

    Science.gov (United States)

    Li, Yali; Yang, Fangfang; Zheng, Weidong; Hu, Mingxing; Wang, Juanxiu; Ma, Sisi; Deng, Yuanle; Luo, Yi; Ye, Tinghong; Yin, Wenya

    2016-05-01

    Most conventional treatments on non-small cell lung carcinoma always accompany with awful side effects, and the incidence and mortality rates of this cancer are increasing rapidly worldwide. The objective of this study was to examine the anticancer effects of extract of Punica granatum (pomegranate) leaves extract (PLE) on the non-small cell lung carcinoma cell line A549, H1299 and mouse Lewis lung carcinoma cell line LL/2 in vitro, and explore its mechanisms of action. Our results have shown that PLE inhibited cell proliferation in non-small cell lung carcinoma cell line in a concentration- and time-dependent manner. Flow cytometry (FCM) assay showed that PLE affected H1299 cell survival by arresting cell cycle progression in G2/M phase in a dose-dependent manner and inducing apoptosis. Moreover, PLE could also decrease the reactive oxygen species (ROS) and the mitochondrial membrane potential (ΔYm), indicating that PLE may induce apoptosis via mitochondria-mediated apoptotic pathway. Furthermore, PLE blocked H1299 cell migration and invasion, and the reduction of matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed in vitro. These results suggested that PLE could be an effective and safe chemotherapeutic agent in non-small cell lung carcinoma treatment by inhibiting proliferation, inducing apoptosis, cell cycle arrest and impairing cell migration and invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Elevated phosphatase of regenerating liver 3 (PRL-3) promotes cytoskeleton reorganization, cell migration and invasion in endometrial stromal cells from endometrioma.

    Science.gov (United States)

    Zhan, Hong; Ma, Junyan; Ruan, Fei; Bedaiwy, Mohamed A; Peng, Bo; Wu, Ruijin; Lin, Jun

    2016-04-01

    Is phosphatase of regenerating liver-3 (PRL-3) associated with increased motility of endometriotic cells from endometrioma? Elevated PRL-3 promotes cytoskeleton reorganization, cell migration and invasion of endometrial stromal cells (ESCs) from endometrioma. Overexpression of PRL-3 is associated with cancer cell migration, invasion and metastatic phenotype. Primary human ESCs were isolated from eutopic endometrium of women without endometriosis (EuCo, n = 10), with histologically proven endometrioma (EuEM, n = 19) and from the cyst wall of ovarian endometriosis (OvEM, n = 26). The expression of PRL-3 in ESCs derived from EuCo, EuEM and OvEM at different phases of menstrual cycle were compared. The protein and mRNA levels of PRL-3 were examined by western blot and RT-qPCR, respectively. ESCs from OvEM were transfected with/without short hairpin RNA (shRNA) or small interfering RNA (siRNA). Additionally, a plasmid-mediated delivery system was used to achieve PRL-3 overexpression in ESCs from EuEM. The cellular distribution of F-actin and α-tubulin were examined by immunocytochemistry. Cell motility was evaluated by a transwell migration/invasion assay. The protein and mRNA levels of PRL-3 are significantly elevated in ESCs from OvEM compared with EuCo and EuEM. The expression of PRL-3 was not altered between proliferative phase and secretory phase in ESCs from all groups. Knockdown of PRL-3 significantly modified the distribution of F-actin and α-tubulin cytoskeleton, inhibited cell migration and invasion. Endogenous inhibition of PRL-3 attenuated the expression of Ras homolog gene family members A and C (RhoA, RhoC), Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) and matrix metalloproteinase (MMP) 9, but not MMP2 in ESCs from OvEM. Additionally, overexpression of PRL-3 in ESCs from EuEM up-regulates cell migration and invasion, and increases the expression of RhoA, RhoC, ROCK1 and MMP9. Lack of in vivo animal studies is the major limitation of our

  18. Osteopontin Promotes Cell Migration and Invasion, and Inhibits Apoptosis and Autophagy in Colorectal Cancer by activating the p38 MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ren-hong Huang

    2017-04-01

    Full Text Available Background: Osteopontin (OPN is highly expressed in colorectal cancer (CRC and is associated with disease progression in vivo. High levels of OPN have been demonstrated to predict low survival rates in CRC. Autophagy is a process of self-digestion, which is thought to play a significant role in carcinogenesis. However, the mechanisms of OPN's effects on CRC cell autophagy have not been elucidated. Therefore, we aimed to investigate possible mechanisms of OPN's effects on CRC autophagy. Methods: HCT116 cell proliferation, apoptosis, and migration and invasion ability were identified by cell counting k¡t-8 assay, flow cytometry, wound healing assay, and transwell chamber invasion assay, respectively. The ratios of proteins LC3-II/LC3-I, P62, and Atg7 were analyzed by Western-blot. Expressions of Beclin-1, Atg4b, Bnip3, and Vps34, both in transcriptional and translational levels, were analyzed and compared by RT-PCR and Western blot. Immunofluorescence and co-focusing experiments were used to investigate the formation of autophagosomes. Results: The results showed that OPN can promote cell proliferation, migration, and invasion, as well as inhibit cell apoptosis. It was also demonstrated that OPN could inhibit cell autophagy. Further experiments revealed that the inhibitory effect of OPN on autophagy could be reversed by blocking the p38 MAPK pathway in HCT116 cells. Conclusion: OPN is involved in HCT116 cell progression and is capable of inhibiting cell autophagy possibly by activating the p38 MAPK signaling pathway, implying that OPN could be a potential novel molecular therapeutic biomarker in patients with CRC.

  19. An Anti-Urokinase Plasminogen Activator Receptor Antibody (ATN-658 Blocks Prostate Cancer Invasion, Migration, Growth, and Experimental Skeletal Metastasis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Shafaat A. Rabbani

    2010-10-01

    Full Text Available Urokinase plasminogen activator receptor (uPAR is a multidomain protein that plays important roles in the growth, invasion, and metastasis of a number of cancers. In the present study, we examined the effects of administration of a monoclonal anti-uPAR antibody (ATN-658 on prostate cancer progression in vitro and in vivo. We examined the effect of treatment of ATN-658 on human prostate cancer cell invasion, migration, proliferation, and regulation of intracellular signaling pathways. For in vivo studies, PC-3 cells (1 x 106 were inoculated into the right flank of male Balb C nu/nu mice through subcutaneous or through intratibial route (2 x 105 of male Fox Chase severe combined immunodeficient mice to monitor the effect on tumor growth and skeletal metastasis. Treatment with ATN-658 resulted in a significant dose-dependent decrease in PC-3 cell invasion and migration without affecting cell doubling time. Western blot analysis showed that ATN-658 treatment decreased the phosphorylation of serine/threonine protein kinase B (AKT, mitogen-activated protein kinase (MAPK, and focal adhesion kinase (FAK without affecting AKT, MAPK, and FAK total protein expression. In in vivo studies, ATN-658 caused a significant decrease in tumor volume and a marked reduction in skeletal lesions as determined by Faxitron x-ray and micro-computed tomography. Immunohistochemical analysis of subcutaneous and tibial tumors showed a marked decrease in the levels of expression of pAKT, pMAPK, and pFAK, consistent with the in vitro observations. Results from these studies provide compelling evidence for the continued development of ATN-658 as a potential therapeutic agent for the treatment of prostate and other cancers expressing uPAR.

  20. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells.

    Science.gov (United States)

    Knoepp, Stewart M; Chahal, Manpreet S; Xie, Yuhuan; Zhang, Zhihong; Brauner, Daniel J; Hallman, Mark A; Robinson, Stephanie A; Han, Shujie; Imai, Masaki; Tomlinson, Stephen; Meier, Kathryn E

    2008-09-01

    The phosphatidylcholine-using phospholipase D (PLD) isoform PLD2 is widely expressed in mammalian cells and is activated in response to a variety of promitogenic agonists. In this study, active and inactive hemagglutinin-tagged human PLD2 (HA-PLD2) constructs were stably expressed in an EL4 cell line lacking detectable endogenous PLD1 or PLD2. The overall goal of the study was to examine the roles of PLD2 in cellular signal transduction and cell phenotype. HA-PLD2 confers PLD activity that is activated by phorbol ester, ionomycin, and okadaic acid. Proliferation and Erk activation are unchanged in cells transfected with active PLD2; proliferation rate is decreased in cells expressing inactive PLD2. Basal tyrosine phosphorylation of focal adhesion kinase (FAK) is increased in cells expressing active PLD2, as is phosphorylation of Akt; inactive PLD2 has no effect. Expression of active PLD2 is associated with increased spreading and elongation of cells on tissue culture plastic, whereas inactive PLD2 inhibits cell spreading. Inactive PLD2 also inhibits cell adhesion, migration, and serum-induced invasion. Cells expressing active PLD2 form metastases in syngeneic mice, as do the parental cells; cells expressing inactive PLD2 form fewer metastases than parental cells. In summary, active PLD2 enhances FAK phosphorylation, Akt activation, and cell invasion in EL4 lymphoma cells, whereas inactive PLD2 exerts inhibitory effects on adhesion, migration, invasion, and tumor formation. Overall, expression of active PLD2 enhances processes favorable to lymphoma cell metastasis, whereas expression of inactive PLD2 inhibits metastasis.

  1. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Li, Ying [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Yue, Jiang [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Guo, Austin M., E-mail: Austin_Guo@nymc.edu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Flavonoids exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Anoikis resistance occurs at multiple key stages of the metastatic cascade. Here, we demonstrate that isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, inhibits human breast cancer metastasis by preventing anoikis resistance, migration and invasion through downregulating cyclooxygenase (COX)-2 and cytochrome P450 (CYP) 4A signaling. ISL induced anoikis in MDA-MB-231 and BT-549 human breast cancer cells as evidenced by flow cytometry and the detection of caspase cleavage. Moreover, ISL inhibited the mRNA expression of phospholipase A2, COX-2 and CYP 4A and decreased the secretion of prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE) in detached MDA-MB-231 cells. In addition, it decreased the levels of phospho-PI3K (Tyr{sup 458}), phospho-PDK (Ser{sup 241}) and phospho-Akt (Thr{sup 308}). Conversely, the exogenous addition of PGE{sub 2}, WIT003 (a 20-HETE analog) and an EP4 agonist (CAY10580) or overexpression of constitutively active Akt reversed ISL-induced anoikis. ISL exerted the in vitro anti-migratory and anti-invasive activities, whereas the addition of PGE{sub 2}, WIT003 and CAY10580 or overexpression of constitutively active Akt reversed the in vitro anti-migratory and anti-invasive activities of ISL in MDA-MB-231 cells. Notably, ISL inhibited the in vivo lung metastasis of MDA-MB-231 cells, together with decreased intratumoral levels of PGE{sub 2}, 20-HETE and phospho-Akt (Thr{sup 308}). In conclusion, ISL inhibits breast cancer metastasis by preventing anoikis resistance, migration and invasion via downregulating COX-2 and CYP 4A signaling. It suggests that ISL could be a promising multi-target agent for preventing breast cancer metastasis, and anoikis could represent a novel mechanism through which flavonoids may exert the anti-metastatic activities. - Highlights: • Isoliquiritigenin induces anoikis and suppresses

  2. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Miret, Noelia; Pontillo, Carolina; Ventura, Clara; Carozzo, Alejandro; Chiappini, Florencia

    2016-01-01

    Highlights: • HCB enhances TGF-β1 expression and activation levels in breast cancer cells. • HCB activates TGF-β1 pathways: Smad3, JNK and p38. • The HCB- induced migration and invasion involves TGF-β1 signaling pathways. • HCB modulates AhR levels and activation. • HCB enhances TGF-β1 mRNA expression in an AhR-dependent manner. - Abstract: Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5 μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5 μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell

  3. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Jaworski, Slawomir; Kutwin, Marta

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug...... that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment....

  4. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    International Nuclear Information System (INIS)

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi; Isozaki, Tetsurou; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi

    2015-01-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2 major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells

  5. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Isozaki, Tetsurou; Endo, Satoshi; Yamada, Shigeru [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2015-09-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2 major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells.

  6. lncRNA H19 predicts poor prognosis in patients with melanoma and regulates cell growth, invasion, migration and epithelial–mesenchymal transition in melanoma cells

    Directory of Open Access Journals (Sweden)

    Shi G

    2018-06-01

    Full Text Available Gaofeng Shi,1,2 Hu Li,2 Fengshan Gao,2 Qian Tan1 1Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China; 2Department of Plastic Surgery, the Affiliated Wuxi No 4 People’s Hospital of Jiangnan University, Wuxi, People’s Republic of China Introduction: Melanoma is a deadly malignancy and the poor prognosis of patients with advanced disease is relatively poor. Recent studies indicate that long non-coding RNAs are involved in the pathogenesis of malignant melanoma. This study aims to investigate the role of the long non-coding RNA H19 in melanoma and to explore the underlying molecular mechanisms. Materials and methods: The expression levels of H19 in clinical samples and melanoma cells were determined by quantitative real-time PCR. The cell growth and cell metastasis were assessed by Cell Counting Kit 8, cell invasion and wound healing assays. Cell apoptosis and cell cycle were determined by flow cytometry. Protein levels were determined by Western blotting assay. Results: H19 was highly expressed in melanoma tissues compared to normal adjacent skin tissues, and the tissue expression level of H19 from melanoma patients with metastasis was significantly higher than that from patients without distant metastasis. In addition, the high expression of H19 in melanoma tissues was associated with advanced tumor invasion and TNM stage, distal metastasis, lymph node metastasis and shorter overall survival in patients with melanoma. The in vitro functional assays showed that knockdown of H19 inhibited cell growth, invasion and migration and also induced cell apoptosis as well as G0/G1 arrest in melanoma cells. Further quantitative real-time PCR and Western blot experiments showed that knockdown of H19 differentially regulated the epithelial–mesenchymal transition (EMT-related gene expressions and reversed EMT in melanoma cell lines. Knockdown of H19 suppressed in vivo tumor growth and modulated the

  7. Estrogen receptor α enhances the transcriptional activity of ETS-1 and promotes the proliferation, migration and invasion of neuroblastoma cell in a ligand dependent manner

    International Nuclear Information System (INIS)

    Cao, Peng; Feng, Fan; Dong, Guofu; Yu, Chunyong; Feng, Sizhe; Song, Erlin; Shi, Guobing; Liang, Yong; Liang, Guobiao

    2015-01-01

    It is well known that estrogen receptor α (ERα) participates in the pathogenic progress of breast cancer, hepatocellular carcinoma and head and neck squamous cell carcinoma. In neuroblastoma cells and related cancer clinical specimens, moreover, the ectopic expression of ERα has been identified. However, the detailed function of ERα in the proliferation of neuroblastoma cell is yet unclear. The transcriptional activity of ETS-1 (E26 transformation specific sequence 1) was measured by luciferase analysis. Western blot assays and Real-time RT-PCR were used to examine the expression of ERα, ETS-1 and its targeted genes. The protein-protein interaction between ERα and ETS-1 was determined by co-IP and GST-Pull down assays. The accumulation of ETS-1 in nuclear was detected by western blot assays, and the recruitment of ETS-1 to its targeted gene’s promoter was tested by ChIP assays. Moreover, SH-SY5Y cells’ proliferation, anchor-independent growth, migration and invasion were quantified using the MTT, soft agar or Trans-well assay, respectively. The transcriptional activity of ETS-1 was significantly increased following estrogen treatment, and this effect was related to ligand-mediated activation of ERα. The interaction between the ERα and ETS-1 was identified, and enhancement of ERα activation would up-regulate the ETS-1 transcription factor activity via modulating its cytoplasm/nucleus translocation and the recruitment of ETS-1 to its target gene’s promoter. Furthermore, treatment of estrogen increased proliferation, migration and invasion of neuroblastoma cells, whereas the antagonist of ERα reduced those effects. In this study, we provided evidences that activation of ERα promoted neuroblastoma cells proliferation and up-regulated the transcriptional activity of ETS-1. By investigating the role of ERα in the ETS-1 activity regulation, we demonstrated that ERα may be a novel ETS-1 co-activator and thus a potential therapeutic target in human

  8. Demethoxycurcumin Suppresses Migration and Invasion of Human Cervical Cancer HeLa Cells via Inhibition of NF-κB Pathways.

    Science.gov (United States)

    Lin, Chin-Chung; Kuo, Chao-Lin; Huang, Yi-Ping; Chen, Cheng-Yen; Hsu, Ming-Jie; Chu, Yung Lin; Chueh, Fu-Shin; Chung, Jing-Gung

    2018-05-01

    Demethoxycurcumin (DMC), one of the curcuminoids present in turmeric, has been shown to induce cell death in many human cancer cell lines, however, there has not been any investigation on whether DMC inhibits metastatic activity in human cervical cancer cells in vitro. In the present study, DMC at 2.5-15 μM decreased cell number, thus, we used IC 20 (7.5 μM) for further investigation of its anti-metastatic activity in human cervical cancer HeLa cells. The wound healing, migration, invasion, zymography, and western blotting assays were used to investigate the effects of DMC on HeLa cells. The wound healing assay was used to show that DMC suppressed cell movement of HeLa cells. Furthermore, the trans-well chamber assay was used to show that DMC suppressed HeLa cell migration and invasion. Gelatin zymography assay did not show any significant effects of DMC on the gelatinolytic activity (MMP-2 and -9) in conditioned media of HeLa cells treated by DMC. Western blotting showed that DMC significantly reduced protein levels of GRB2, MMP-2, ERK1/2, N-cadherin and Ras but increased the levels of E-cadherin and NF-κB in HeLa cells. Confocal laser microscopy indicated that DMC increased NF-κB in HeLa cells confirming the results from Western blotting. DMC may be used as a novel anti-metastatic agent for the treatment of human cervical cancer in the future. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin [West Biostatistics and Cost-effectiveness Research Center, Medical Insurance Office, West China Hospital of Sichuan University, 610041, Sichuan (China); Li, Yu [Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Sichuan (China); Yang, Bangxiang, E-mail: b19933009@qq.coom [Department of Pain Management, West China Hospital of Sichuan University, 610041, Sichuan (China)

    2016-09-09

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition of proliferation, colony formation, migration and invasion capacities by enhancing p53’s transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53’s transcriptional activity by decreasing MDM2’s transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells’ malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. - Highlights: • MEG3 RNA is widely downregulated in breast tumor tissue. • MEG3 regulates P53 indirectly through transcriptional regulation of MDM2. • Under unstressed condition, MEG3-related P53 accumulation transcriptionally activates p53’s target genes. • MEG3 expression level tightly regulates proliferation, colony formation, migration and invasion in breast tumor cells.

  10. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Fenger, Joelle M.; Roberts, Ryan D.; Iwenofu, O. Hans; Bear, Misty D.; Zhang, Xiaoli; Couto, Jason I.; Modiano, Jaime F.; Kisseberth, William C.; London, Cheryl A.

    2016-01-01

    MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified

  11. CREB mediates ICAM-3: inducing radio-resistance, cell growth and migration/invasion of the human nonsmall cell lung cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kuk; So, Kwang Sup; Bae, In Hwa; Um, Hong Duck [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    The ICAM family proteins comprises cell surface molecules that are homologous to NCAM and are members of the single passed type 1 immunoglobulin superfamily (IgSF) that are anchored at the cellular membrane. The ICAM family consists of five subfamilies (ICAM-1 to ICAM-5) of heavily glycosylated cell surface receptors with common functional or structural homology. The extracellular domains of ICAM protein have roles in immune response and inflammation through various cell-cell interactions. The cytoplasmic tail residues of ICAM-3 participate in intracellular signaling such as calcium mobilization and tyrosine phosphorylation. Interestingly, the ICAM proteins appear to have a dual role in cancer. ICAM molecules may target and block tumor progression by stimulation of an immune response such as leukocyte activation. Conversely, other investigations have shown that ICAM molecules are involved in cancer malignancy because their increased expressions are associated with a poor diagnosis, lower survival rates and invasion in several cancers including melanoma, breast cancer and leukemia. We have also reported that an increase of ICAM-3 expression in several cancer cells and specimens of cervical cancer patient induce enhanced radio-resistance by the activation of focal adhesion kinase (FAK) and promote cancer cell proliferation by the activation of Akt and p44/42 MAPK. Therefore, these previous reports imply that ICAM-3 has various undefined roles in cancer. In this study, we investigated whether ICAM-3 increase cell migration and invasion through CREB activation and CREB has a role of increase of radioresistance and cell growth.

  12. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization.

    Directory of Open Access Journals (Sweden)

    J Saadi Imam

    Full Text Available Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF, a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.

  13. The translational blocking of α5 and α6 integrin subunits affects migration and invasion, and increases sensitivity to carboplatin of SKOV-3 ovarian cancer cell line

    Energy Technology Data Exchange (ETDEWEB)

    Villegas-Pineda, Julio César, E-mail: jcvillegas@cinvestav.mx; Toledo-Leyva, Alfredo, E-mail: toledo_leyva@hotmail.com; Osorio-Trujillo, Juan Carlos, E-mail: clostrujillo2@yahoo.com.mx; Hernández-Ramírez, Verónica Ivonne, E-mail: arturomvi@hotmail.com; Talamás-Rohana, Patricia, E-mail: ptr@cinvestav.mx

    2017-02-15

    Epithelial ovarian cancer is the most lethal gynecologic malignancy. Integrins, overexpressed in cancer, are involved in various processes that favor the development of the disease. This study focused on determining the degree of involvement of α5, α6 and β3 integrin subunits in the establishment/development of epithelial ovarian cancer (EOC), such as proliferation, migration, invasion, and response to carboplatin. The translation of the α5, α6 and β3 integrins was blocked using morpholines, generating morphant cells for these proteins, which were corroborated by immunofluorescence assays. WST-1 proliferation assay showed that silencing of α5, α6, and β3 integrins does not affect the survival of morphants. Wound healing and transwell chamber assays showed that blocking α5 and α6 integrins decrease, in lesser and greater level respectively, the migratory and the invasive capacity of SKOV-3 cells. Finally, blocking α5 and α6 integrins partially sensitized the cells response to carboplatin, while blocking integrin β3 generated resistance to this drug. Statistical analyses were performed with the GraphPad Prism 5.0 software employing one way and two-way ANOVA tests; data are shown as average±SD. Results suggest that α5 and α6 integrins could become good candidates for chemotherapy targets in EOC.

  14. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells

    Directory of Open Access Journals (Sweden)

    Sun Xiao-Feng

    2010-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenously expressed noncoding RNAs with important biological and pathological functions. Although several studies have shown that microRNA-31 (miR-31 is obviously up-regulated in colorectal cancer (CRC, there is no study on the functional roles of miR-31 in CRC. Methods Anti-miR™ miRNA 31 inhibitor (anti-miR-31 is a sequence-specific and chemically modified oligonucleotide to specifically target and knockdown miR-31 molecule. The effect of anti-miR-31 transfection was investigated by real-time PCR. HCT-116p53+/+ and HCT-116p53-/-colon cancer cells were treated by anti-miR-31 with or without 5-fluorouracil (5-FU, cell proliferation was determined by MTT assay; apoptosis was detected by DAPI staining; cell cycle was evaluated by flow cytometry; colony formation, migration and invasion assays were performed to investigate the effect of suppression of miR-31 on the cell lines. Results Real-time PCR results showed that anti-miR-31 was efficiently introduced into the cells and reduced miR-31 levels to 44.1% in HCT-116p53+/+ and 67.8% in HCT-116p53-/-cell line (p = 0.042 and 0.046. MTT results showed that anti-miR-31 alone had no effect on the proliferation of HCT-116p53+/+ or HCT-116p53-/-. However, when combined with 5-FU, anti-miR-31 inhibited the proliferation of the two cell lines as early as 24 h after exposure to 5-FU (p = 0.038 and 0.044. Suppression of miR-31 caused a reduction of the migratory cells by nearly 50% compared with the negative control in both HCT-116p53+/+ and HCT-116p53-/-(p = 0.040 and 0.001. The invasive ability of the cells were increased by 8-fold in HCT-116p53+/+ and 2-fold in HCT-116p53-/- (p = 0.045 and 0.009. Suppression of miR-31 had no effect on cell cycle and colony formation (p > 0.05. Conclusions Suppression of miR-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells.

  15. PTP1B Deficiency Enables the Ability of a High-Fat Diet to Drive the Invasive Character of PTEN-Deficient Prostate Cancers.

    Science.gov (United States)

    Labbé, David P; Uetani, Noriko; Vinette, Valérie; Lessard, Laurent; Aubry, Isabelle; Migon, Eva; Sirois, Jacinthe; Haigh, Jody J; Bégin, Louis R; Trotman, Lloyd C; Paquet, Marilène; Tremblay, Michel L

    2016-06-01

    Diet affects the risk and progression of prostate cancer, but the interplay between diet and genetic alterations in this disease is not understood. Here we present genetic evidence in the mouse showing that prostate cancer progression driven by loss of the tumor suppressor Pten is mainly unresponsive to a high-fat diet (HFD), but that coordinate loss of the protein tyrosine phosphatase Ptpn1 (encoding PTP1B) enables a highly invasive disease. Prostate cancer in Pten(-/-)Ptpn1(-/-) mice was characterized by increased cell proliferation and Akt activation, interpreted to reflect a heightened sensitivity to IGF-1 stimulation upon HFD feeding. Prostate-specific overexpression of PTP1B was not sufficient to initiate prostate cancer, arguing that it acted as a diet-dependent modifier of prostate cancer development in Pten(-/-) mice. Our findings offer a preclinical rationale to investigate the anticancer effects of PTP1B inhibitors currently being studied clinically for diabetes treatment as a new modality for management of prostate cancer. Cancer Res; 76(11); 3130-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Simone, E-mail: beninati@bio.uniroma2.it [Department of Biology, University “Tor Vergata”, Rome (Italy); Oliverio, Serafina [Department of Biology, University “Tor Vergata”, Rome (Italy); Cordella, Martina [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome (Italy); Rossi, Stefania; Senatore, Cinzia [Regina Elena National Cancer Institute, Rome (Italy); Liguori, Immacolata; Lentini, Alessandro; Piredda, Lucia [Department of Biology, University “Tor Vergata”, Rome (Italy); Tabolacci, Claudio [Department of Biology, University “Tor Vergata”, Rome (Italy); Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome (Italy)

    2014-08-08

    Highlights: • We studied the anticancer potential of a new emerging molecule, α-mangostin (α-M). • We provide first evidences on the effects of α-M on transglutaminase activity. • We deeply examined the antimetastatic effects of α-M through many in vitro assays. • Proteomic analysis revealed that α-M promotes a reorganization at cellular level. - Abstract: In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastatic process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma.

  17. MiR-339-5p inhibits breast cancer cell migration and invasion in vitro and may be a potential biomarker for breast cancer prognosis

    International Nuclear Information System (INIS)

    Wu, Zheng-sheng; Xu, Xiao-chun; Wu, Qiang; Wang, Chao-qun; Wang, Xiao-nan; Wang, Yan; Zhao, Jing-jing; Mao, Shan-shan; Zhang, Gui-hong; Zhang, Nong

    2010-01-01

    MicroRNAs (miRNAs) play an important role in the regulation of cell growth, differentiation, apoptosis, and carcinogenesis. Detection of their expression may lead to identifying novel markers for breast cancer. We profiled miRNA expression in three breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-468) and then focused on one miRNA, miR-339-5p, for its role in regulation of tumor cell growth, migration, and invasion and target gene expression. We then analyzed miR-339-5p expression in benign and cancerous breast tissue specimens. A number of miRNAs were differentially expressed in these cancer cell lines. Real-time PCR indicated that miR-339-5p expression was downregulated in the aggressive cell lines MDA-MB-468 and MDA-MB-231 and in breast cancer tissues compared with benign tissues. Transfection of miR-339-5p oligonucleotides reduced cancer cell growth only slightly but significantly decreased tumor cell migration and invasion capacity compared with controls. Real-time PCR analysis showed that BCL-6, a potential target gene of miR-339-5p, was downregulated in MDA-MB-231 cells by miR-339-5p transfection. Furthermore, the reduced miR-339-5p expression was associated with an increase in metastasis to lymph nodes and with high clinical stages. Kaplan-Meier analyses found that the patients with miR-339-5p expression had better overall and relapse-free survivals compared with those without miR-339-5p expression. Cox proportional hazards analyses showed that miR-339-5p expression was an independent prognostic factor for breast cancer patients. MiR-339-5p may play an important role in breast cancer progression, suggesting that miR-339-5p should be further evaluated as a biomarker for predicting the survival of breast cancer patients

  18. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner

    Directory of Open Access Journals (Sweden)

    Wen-Tao Wang

    2016-11-01

    Full Text Available Abstract Background Long non-coding RNAs (lncRNAs are known to play important roles in different cell contexts, including cancers. However, little is known about lncRNAs in cholangiocarcinoma (CCA, a cholangiocyte malignancy with poor prognosis, associated with chronic inflammation and damage to the biliary epithelium. The aim of the study is to identify if any lncRNA might associate with inflammation or oxidative stress in CCA and regulate the disease progression. Methods In this study, RNA-seqs datasets were used to identify aberrantly expressed lncRNAs. Small interfering RNA and overexpressed plasmids were used to modulate the expression of lncRNAs, and luciferase target assay RNA immunoprecipitation (RIP was performed to explore the mechanism of miRNA-lncRNA sponging. Results We firstly analyzed five available RNA-seqs datasets to investigate aberrantly expressed lncRNAs which might associate with inflammation or oxidative stress. We identified that two lncRNAs, H19 and HULC, were differentially expressed among all the samples under the treatment of hypoxic or inflammatory factors, and they were shown to be stimulated by short-term oxidative stress responses to H2O2 and glucose oxidase in CCA cell lines. Further studies revealed that these two lncRNAs promoted cholangiocyte migration and invasion via the inflammation pathway. H19 and HULC functioned as competing endogenous RNAs (ceRNAs by sponging let-7a/let-7b and miR-372/miR-373, respectively, which activate pivotal inflammation cytokine IL-6 and chemokine receptor CXCR4. Conclusions Our study revealed that H19 and HULC, up-regulated by oxidative stress, regulate CCA cell migration and invasion by targeting IL-6 and CXCR4 via ceRNA patterns of sponging let-7a/let-7b and miR-372/miR-373, respectively. The results suggest that these lncRNAs might be the chief culprits of CCA pathogenesis and progression. The study provides new insight into the mechanism linking lncRNA function with CCA and

  19. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion.

    Science.gov (United States)

    Haridas, Parvathi; Penington, Catherine J; McGovern, Jacqui A; McElwain, D L Sean; Simpson, Matthew J

    2017-06-21

    Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  1. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    International Nuclear Information System (INIS)

    Lopez, Jesus Adrian; Alvarez-Salas, Luis Marat

    2011-01-01

    Highlights: → In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. → We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. → We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. → miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. → In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  2. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis

    Directory of Open Access Journals (Sweden)

    Nipin Sp

    2018-06-01

    Full Text Available Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36 is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1, and then interacting with transforming growth factor beta 1 (TGFβ1. CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin’s anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3 rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB, suggesting that nobiletin also acts through the CD36/ (STAT3/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.

  3. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    International Nuclear Information System (INIS)

    Zhou, Yan; Ming, Jia; Xu, Yan; Zhang, Yi; Jiang, Jun

    2015-01-01

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we found that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis

  4. Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway.

    Science.gov (United States)

    Wang, Jieqiong; Liu, Yali; Zhao, Jingjing; Zhang, Wen; Pang, Xiufeng

    2013-04-01

    The inedible bottom part (~30-40%) of asparagus (Asparagus officinalis L.) spears is usually discarded as waste. However, since this by-product has been reported to be rich in many bioactive phytochemicals, it might be utilisable as a supplement in foods or natural drugs for its therapeutic effects. In this study it was identifed that saponins from old stems of asparagus (SSA) exerted potential inhibitory activity on tumour growth and metastasis. SSA suppressed cell viability of breast, colon and pancreatic cancers in a concentration-dependent manner, with half-maximum inhibitory concentrations ranging from 809.42 to 1829.96 µg mL(-1). However, SSA was more functional in blocking cell migration and invasion as compared with its cytotoxic effect, with an effective inhibitory concentration of 400 µg mL(-1). A mechanistic study showed that SSA markedly increased the activities of Cdc42 and Rac1 and decreased the activity of RhoA in cancer cells. SSA inhibits tumour cell motility through modulating the Rho GTPase signalling pathway, suggesting a promising use of SSA as a supplement in healthcare foods and natural drugs for cancer prevention and treatment. © 2012 Society of Chemical Industry.

  5. [Pt(O,O'-acac)(γ-acac)(DMS)] alters SH-SY5Y cell migration and invasion by the inhibition of Na+/H+ exchanger isoform 1 occurring through a PKC-ε/ERK/mTOR Pathway.

    Science.gov (United States)

    Muscella, Antonella; Vetrugno, Carla; Calabriso, Nadia; Cossa, Luca Giulio; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Marsigliante, Santo

    2014-01-01

    We previously showed that [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(acac)2(DMS)]) exerted substantial cytotoxic effects in SH-SY5Y neuroblastoma cells, and decreased metalloproteases (MMPs) production and cells migration in MCF-7 breast cancer cells. The ubiquitously distributed sodium-hydrogen antiporter 1 (NHE1) is involved in motility and invasion of many solid tumours. The present study focuses on the effects of [Pt(acac)2(DMS)] in SH-SY5Y cell migration and also on the possibility that NHE1 may be involved in such effect. After sublethal [Pt(acac)2(DMS)] treatment cell migration was examined by wounding assay and cell invasion by transwell assay. NHE1 activity was measured in BCECF-loaded SH-SY5Y as the rate of Na+-dependent intracellular pH recovery in response to an acute acid pulse. Gelatin zymography for MMP-2/9 activities, Western blottings of MMPs, MAPKs, mTOR, S6 and PKCs and small interfering RNAs to PKC-ε/-δ mRNA were performed. Sublethal concentrations of [Pt(acac)2(DMS)] decreases NHE1 activity, inhibits cell migration and invasion and decreases expression and activity of MMP-2 and -9. [Pt(acac)2(DMS)] administered to SH-SY5Y cells provokes the increment of ROS, generated by NADPH oxidase, responsible for the PKC-ε and PKC-δ activation. Whilst PKC-δ activates p38/MAPK, responsible for the inhibition of MMP-2 and -9 secretion, PKC-ε activates a pathway made of ERK1/2, mTOR and S6K responsible for the inhibition of NHE1 activity and cell migration. In conclusion, we have shown a drastic impairment in tumour cell metastatization in response to inhibition of NHE1 and MMPs activities by [Pt(acac)2(DMS)] occurring through a novel mechanism mediated by PKC-δ/-ε activation.

  6. Flaccidoxide-13-Acetate Extracted from the Soft Coral Cladiella kashmani Reduces Human Bladder Cancer Cell Migration and Invasion through Reducing Activation of the FAK/PI3K/AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Choo-Aun Neoh

    2017-12-01

    Full Text Available Metastasis of cancer is the cause of the majority of cancer deaths. Active compound flaccidoxide-13-acetate, isolated from the soft coral Cladiella kashmani, has been found to exhibit anti-tumor activity. In this study, Boyden chamber analysis, Western blotting and gelatin zymography assays indicated that flaccidoxide-13-acetate exerted inhibitory effects on the migration and invasion of RT4 and T24 human bladder cancer cells. The results demonstrated that flaccidoxide-13-acetate, in a concentration-dependent manner, reduced the levels of matrix metalloproteinase-2 (MMP-2, MMP-9, urokinase-type plasminogen activator receptor (uPAR, focal adhesion kinase (FAK, phosphatidylinositide-3 kinases (PI3K, p-PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR, p-mTOR, Ras homolog gene family, member A (Rho A, Ras, mitogen-activated protein kinase kinase 7 (MKK7 and mitogen-activated protein kinase kinase kinase 3 (MEKK3, and increased the expressions of tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2 in RT4 and T24 cells. This study revealed that flaccidoxide-13-acetate suppressed cell migration and invasion by reducing the expressions of MMP-2 and MMP-9, regulated by the FAK/PI3K/AKT/mTOR pathway. In conclusion, our study was the first to demonstrate that flaccidoxide-13-acetate could be a potent medical agent for use in controlling the migration and invasion of bladder cancer.

  7. MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Yamashita Shunichi

    2011-03-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC is often diagnosed at later stages until they are incurable. MicroRNA (miR is a small, non-coding RNA that negatively regulates gene expression mainly via translational repression. Accumulating evidence indicates that deregulation of miR is associated with human malignancies including ESCC. The aim of this study was to identify miR that could be specifically expressed and exert distinct biological actions in ESCC. Methods Total RNA was extracted from ESCC cell lines, OE21 and TE10, and a non-malignant human esophageal squamous cell line, Het-1A, and subjected to microarray analysis. Expression levels of miR that showed significant differences between the 2 ESCC and Het-1A cells based on the comprehensive analysis were analyzed by the quantitative reverse transcriptase (RT-PCR method. Then, functional analyses, including cellular proliferation, apoptosis and Matrigel invasion and the wound healing assay, for the specific miR were conducted. Using ESCC tumor samples and paired surrounding non-cancerous tissue obtained endoscopically, the association with histopathological differentiation was examined with quantitative RT-PCR. Results Based on the miR microarray analysis, there were 14 miRs that showed significant differences (more than 2-fold in expression between the 2 ESCC cells and non-malignant Het-1A. Among the significantly altered miRs, miR-205 expression levels were exclusively higher in 5 ESCC cell lines examined than any other types of malignant cell lines and Het-1A. Thus, miR-205 could be a specific miR in ESCC. Modulation of miR-205 expression by transfection with its precursor or anti-miR-205 inhibitor did not affect ESCC cell proliferation and apoptosis, but miR-205 was found to be involved in cell invasion and migration. Western blot revealed that knockdown of miR-205 expression in ESCC cells substantially enhanced expression of zinc finger E-box binding homeobox 2

  8. Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer.

    Science.gov (United States)

    Fan, Shulin; Yang, Zhaoying; Ke, Zirui; Huang, Keke; Liu, Ning; Fang, Xuedong; Wang, Keren

    2017-11-01

    Recent studies have identified many long non-coding RNAs (lncRNAs) with critical roles in various biological processes including tumorigenesis. Taurine-upregulated gene 1 (TUG1), is an lncRNA recently reported to be involved in the progression of several human cancers. This study aimed to investigate the clinical significance and biological functions of TUG1 in breast cancer. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure TUG1 expression in cells from breast cancer cell lines and in 58 matched pairs of breast cancer and normal tissue samples from patients with clinicopathological comparisons. Gain-and loss-of-function experiments were performed in vitro to investigate the biological role of TUG1. TUG1 expression was significantly downregulated in both breast cancer tissues and cell lines compared to controls, and low TUG1 expression was significantly correlated with mutant p53 expression (p=0.037) and lymph node metastasis (p=0.044). In vitro experiments revealed that TUG1 overexpression significantly suppressed cell proliferation by causing cell cycle arrest and inducing apoptosis in breast cancer cells, while TUG1 knockdown caused increased cell growth via promoting cell cycle progression and regulating the expression of cyclinD1 and CDK4. Further functional assays indicated that TUG1 overexpression significantly promoted cell migration and invasion while TUG1 knockdown had the opposite effects. Our findings indicate that the lncRNA TUG1 is a tumor suppressor in breast cancer, and may serve as a novel prognostic biomarker and potential therapeutic target for patients with breast cancer. Copyright © 2017. Published by Elsevier Masson SAS.

  9. Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer.

    Science.gov (United States)

    Iliev, Robert; Kleinova, Renata; Juracek, Jaroslav; Dolezel, Jan; Ozanova, Zuzana; Fedorko, Michal; Pacik, Dalibor; Svoboda, Marek; Stanik, Michal; Slaby, Ondrej

    2016-10-01

    Long non-coding RNA TUG1 is involved in the development and progression of a variety of tumors. Little is known about TUG1 function in high-grade muscle-invasive bladder cancer (MIBC). The aims of our study were to determine expression levels of long non-coding RNA TUG1 in tumor tissue, to evaluate its relationship with clinico-pathological features of high-grade MIBC, and to describe its function in MIBC cells in vitro. TUG1 expression levels were determined in paired tumor and adjacent non-tumor bladder tissues of 47 patients with high-grade MIBC using real-time PCR. Cell line T-24 and siRNA silencing were used to study the TUG1 function in vitro. We observed significantly increased levels of TUG1 in tumor tissue in comparison to adjacent non-tumor bladder tissue (P TUG1 levels were significantly increased in metastatic tumors (P = 0.0147) and were associated with shorter overall survival of MIBC patients (P = 0.0241). TUG1 silencing in vitro led to 34 % decrease in cancer cell proliferation (P = 0.0004) and 23 % reduction in migration capacity of cancer cells (P TUG1 silencing on cell cycle distribution and number of apoptotic cells. Our study confirmed overexpression of TUG1 in MIBC tumor tissue and described its association with worse overall survival in high-grade MIBC patients. Together with in vitro observations, these data suggest an oncogenic role of TUG1 and its potential usage as biomarker or therapeutic target in MIBC.

  10. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Liu, Huaize; Wang, Han; Liu, Xiaoxiao; Yu, Tingting

    2016-01-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  11. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huaize [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China); Wang, Han [The First Clinical Medical College of Nanjing Medical University, Nanjing 210029 (China); Liu, Xiaoxiao [Department of Biotechnology, Nanjing Medical University, Nanjing 210029 (China); Yu, Tingting, E-mail: tingting@njmu.edu.cn [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China)

    2016-04-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  12. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β‑catenin signaling.

    Science.gov (United States)

    Kundu, Juthika; Wahab, S M Riajul; Kundu, Joydeb Kumar; Choi, Yoon-La; Erkin, Ozgur Cem; Lee, Hun Seok; Park, Sang Gyu; Shin, Young Kee

    2012-09-01

    Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.

  13. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Guo J

    2016-12-01

    Full Text Available Jia-ni Guo,* Jin Li,* Chang-li Zhu,* Wan-ting Feng, Jing-xian Shao, Li Wan, Ming-de Huang, Jing-dong He Department of Medical Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an City, Jiangsu Province, People’s Republic of China *These authors contributed equally to this work Background: Nowadays, despite great progress in cancer research, the detailed mechanisms of colorectal cancer (CRC are still poorly understood. Circular RNAs (circRNAs, a new star of the non-coding RNA network, have been identified as critical regulators in various cancers, including CRC. Methods and results: In this study, by using unsupervised hierarchical clustering analysis, a novel dysregulated circRNA, hsa_circ_0000069, was found. The expression of hsa_circ_0000069 was measured in 30 paired CRC tissues and adjacent noncancerous tissues using quantitative polymerase chain reaction. A high expression of hsa_circ_0000069 was observed in CRC tissues and correlated with patients’ age and tumor, node, metastasis (TNM stage (P<0.05. Furthermore, by using specifically designed siRNAs in CRC cells, a functional analysis was performed which revealed that hsa_circ_0000069 knockdown could notably inhibit cell proliferation, migration, and invasion, and induce G0/G1 phase arrest of cell cycle in vitro. Conclusion: This study’s findings are the first to demonstrate that hsa_circ_0000069, an important regulator in cancer progression, could be a promising target in the diagnosis and therapy in colorectal cancer. Keywords: circular RNA, colorectal cancer, regulation, hsa_circ_0000069

  14. MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12

    Directory of Open Access Journals (Sweden)

    Liang T

    2016-07-01

    Full Text Available Tian Liang, Liru Li, Yan Cheng, Chengcheng Ren, Guangmei Zhang Department of Gynecology and Obstetrics, The first Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Hei Longjiang, People’s Republic of China Abstract: Ovarian carcinoma is the most lethal gynecologic malignancy among women. Ovarian cancer metastasis is the main reason for poor prognosis. MicroRNAs (miRNAs have been shown to play an important role in tumorigenesis and metastasis in various cancers by affecting the expression of their targets. In this study, we explored the role of miR-194 in ovarian cancer. Real-time polymerase chain reaction assays showed that miR-194 was significantly upregulated in ovarian cancer tissues. Overexpression of miR-194 in ovarian cancer cells promotes cell proliferation, migration, and invasion; in contrast, inhibition of the expression of miR-194 has the opposite effects. Meanwhile, bioinformatics tools were used to identify protein tyrosine phosphatase nonreceptor type 12 (PTPN12 as a potential target of miR-194. The luciferase assay showed that miR-194 directly binds to the 3'-untranslated region of PTPN12. Western blot analysis and quantitative real-time polymerase chain reaction assay revealed that PTPN12 expression was negatively associated with miR-194 expression in both ovarian cancer tissues and cells. Thus, we conclude that miR-194 targets PTPN12 and functions as an oncogene in ovarian cancer cells. This novel pathway may provide a new insight to explain ovarian cancer development and metastasis. Keywords: miR-194, ovarian cancer, PTPN12, metastasis

  15. Minocycline suppresses interleukine-6, its receptor system and signaling pathways and impairs migration, invasion and adhesion capacity of ovarian cancer cells: in vitro and in vivo studies.

    Directory of Open Access Journals (Sweden)

    Parvin Ataie-Kachoie

    Full Text Available Interleukin (IL-6 has been shown to be a major contributing factor in growth and progression of ovarian cancer. The cytokine exerts pro-tumorigenic activity through activation of several signaling pathways in particular signal transducer and activator of transcription (STAT3 and extracellular signal-regulated kinase (ERK1/2. Hence, targeting IL-6 is becoming increasingly attractive as a treatment option in ovarian cancer. Here, we investigated the effects of minocycline on IL-6 and its signaling pathways in ovarian cancer. In vitro, minocycline was found to significantly suppress both constitutive and IL-1β or 4-hydroxyestradiol (4-OH-E2-stimulated IL-6 expression in human ovarian cancer cells; OVCAR-3, SKOV-3 and CAOV-3. Moreover, minocycline down-regulated two major components of IL-6 receptor system (IL-6Rα and gp130 and blocked the activation of STAT3 and ERK1/2 pathways leading to suppression of the downstream product MCL-1. In female nude mice bearing intraperitoneal OVCAR-3 tumors, acute administration (4 and 24 h of minocycline (30 mg/kg led to suppression of IL-6. Even single dose of minocycline was effective at significantly lowering plasma and tumor IL-6 levels. In line with this, tumoral expression of p-STAT3, p-ERK1/2 and MCL-1 were decreased in minocycline-treated mice. Evaluation of the functional implication of minocycline on metastatic activity revealed the capacity of minocycline to inhibit cellular migration, invasion and adhesion associated with down-regulation of matrix metalloproteinases (MMP-2 and 9. Thus, the data suggest a potential role for minocycline in suppressing IL-6 expression and activity. These effects may prove to be an important attribute to the upcoming clinical trials of minocycline in ovarian cancer.

  16. Minocycline Suppresses Interleukine-6, Its Receptor System and Signaling Pathways and Impairs Migration, Invasion and Adhesion Capacity of Ovarian Cancer Cells: In Vitro and In Vivo Studies

    Science.gov (United States)

    Ataie-Kachoie, Parvin; Morris, David L.; Pourgholami, Mohammad H.

    2013-01-01

    Interleukin (IL)-6 has been shown to be a major contributing factor in growth and progression of ovarian cancer. The cytokine exerts pro-tumorigenic activity through activation of several signaling pathways in particular signal transducer and activator of transcription (STAT3) and extracellular signal-regulated kinase (ERK)1/2. Hence, targeting IL-6 is becoming increasingly attractive as a treatment option in ovarian cancer. Here, we investigated the effects of minocycline on IL-6 and its signaling pathways in ovarian cancer. In vitro, minocycline was found to significantly suppress both constitutive and IL-1β or 4-hydroxyestradiol (4-OH-E2)-stimulated IL-6 expression in human ovarian cancer cells; OVCAR-3, SKOV-3 and CAOV-3. Moreover, minocycline down-regulated two major components of IL-6 receptor system (IL-6Rα and gp130) and blocked the activation of STAT3 and ERK1/2 pathways leading to suppression of the downstream product MCL-1. In female nude mice bearing intraperitoneal OVCAR-3 tumors, acute administration (4 and 24 h) of minocycline (30 mg/kg) led to suppression of IL-6. Even single dose of minocycline was effective at significantly lowering plasma and tumor IL-6 levels. In line with this, tumoral expression of p-STAT3, p-ERK1/2 and MCL-1 were decreased in minocycline-treated mice. Evaluation of the functional implication of minocycline on metastatic activity revealed the capacity of minocycline to inhibit cellular migration, invasion and adhesion associated with down-regulation of matrix metalloproteinases (MMP)-2 and 9. Thus, the data suggest a potential role for minocycline in suppressing IL-6 expression and activity. These effects may prove to be an important attribute to the upcoming clinical trials of minocycline in ovarian cancer. PMID:23593315

  17. Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Zhou, Yufei; Li, Shaoxia; Li, Jiangtao; Wang, Dongfeng; Li, Quanxing

    2017-01-01

    This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC). NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis. The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis. These findings indicated that miR-135a promotes cell apoptosis and inhibits

  18. ICAM-3, radiation resistance gene, activates PI3K/Akt-CREB-MMPs pathway and promotes migration/invasion of the human non-small cell lung cancer cell NCI-H1299

    International Nuclear Information System (INIS)

    Park, Jong Kuk; Park, Seon Ho; Hong, Sung Hee; Um, Hong Duck; Yoo, Young Do

    2008-01-01

    Cancer cell is characterized by various distinctive functions difference from normal cell. The one of specific properties of cancer is invasion and metastasis. Invasion and metastasis is a multi-step process involving over-expression of proteolytic enzymes such as matrix metalloproteinases (MMPs) and critically dependent on the ability of cells to move away from the primary tumor to gain access to the vascular or lymphatic systems which disperses cells to distant sites, where they can grow in a permissive microenvironment at a secondary location. All of these processes are critically dependent upon the ability of cancer cells to breach the basement membrane and to migrate through neighboring tissues. Cancer cell invasion is an important, tightly regulated process that is related with development, immune response and wound healing. This invasive response is dependent on activation of signaling pathways that result in both short-term and long-term cellular responses. The gene expressions of the cancer cell invasion related-proteolytic enzymes are regulated at the transcriptional level (through AP-1 and NF-kB via mitogen activated protein kinases (MAPKs) and PI3K-Akt pathways) and post-transcriptional levels, and the protein level via their activators or inhibitors, and their cell surface localization. Therefore, the related proteins such as MMPs, MAPK, PI3K, Akt and their regulatory pathway have been considered as promising targets for anti-cancer drugs. In previous reports, Intercellular adherin molecule-3 (ICAM-3) showed increase of radio-resistance and proliferation. We have made ICAM-3 overexpressed cancer cells which shows elevated level of invasion compared with normal cancer cells and its invasion capacity was down regulated with treatment of specific inhibitor for PI3K. These results suggest that ICAM-3 related invasion is associated with PI3K signaling pathway

  19. SMAD4 loss enables EGF, TGF?1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

    OpenAIRE

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H.; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-01-01

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor ?1 (TGF?1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGF?1 and S100A8/A...

  20. miR-22 regulates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma.

    Science.gov (United States)

    Qiu, Kaifeng; Huang, Zixian; Huang, Zhiquan; He, Zhichao; You, Siping

    2016-06-01

    Tongue squamous cell carcinoma (TSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) in China, and its survival rate remains unsatisfactory. miR-22 has been identified as a tumor suppressor in many human cancers, and high expression of CD147 occurs in many tumors. The aim of the present study was to investigate the expression and function of miR-22 in TSCC and its relationship with the expression of CD147. TCA8113 cells were transiently transfected with a miR-22 mimic/inhibitor. Subsequently, a validation with Real-time RT-PCR was performed to analyze the miR-22 expression level, and a CCK-8 proliferation assay and transwell migration and invasion assays were carried out. Cotransfections using As-miR-22/si-CD147 mRNA or a miR-22/CD147 overexpression vector were applied, and we investigated the biological effects on cotranscribed TCA8113 cells. qRT-PCR confirmed that miR-22 or As-miR-22 were successfully transfected into TCA8113 cells. Suppressing miR-22 resulted in a promotion of cell proliferation and motility and an up-regulation of CD147 in TCA8113 cells in vitro. In contrast, increasing miR-22 inhibited cell proliferation and motility and down-regulated CD147. Furthermore, the reduction or overexpression of CD147 can reverse the promoting or suppressive effects of miR-22, respectively. The down-expression of miR-22 can regulate cell growth and motility in TSCC cells, which indicates that miR-22 acts as a tumor suppressor in TSCC. Additionally, CD147 is subsequently up-regulated when miR-22 inhibited. Taken together, the findings of this research defined a novel relationship between the down-regulation of miR-22 and the up-regulation of CD147 and demonstrated that CD147 is a downstream factor of miR-22. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    Directory of Open Access Journals (Sweden)

    Kholoud Arafat

    Full Text Available A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  2. A Semantically Automated Protocol Adapter for Mapping SOAP Web Services to RESTful HTTP Format to Enable the Web Infrastructure, Enhance Web Service Interoperability and Ease Web Service Migration

    Directory of Open Access Journals (Sweden)

    Frank Doheny

    2012-04-01

    Full Text Available Semantic Web Services (SWS are Web Service (WS descriptions augmented with semantic information. SWS enable intelligent reasoning and automation in areas such as service discovery, composition, mediation, ranking and invocation. This paper applies SWS to a previous protocol adapter which, operating within clearly defined constraints, maps SOAP Web Services to RESTful HTTP format. However, in the previous adapter, the configuration element is manual and the latency implications are locally based. This paper applies SWS technologies to automate the configuration element and the latency tests are conducted in a more realistic Internet based setting.

  3. Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells.

    Science.gov (United States)

    Wang, Yong; Yang, Tao; Zhang, Zhen; Lu, Ming; Zhao, Wei; Zeng, Xiandong; Zhang, Weiguo

    2017-05-01

    Long non-coding RNA (lncRNA) have been the focus of increasing attention due to the role they play in many diseases, including osteosarcoma. The function of taurine upregulated gene 1 (TUG1) and its mechanism in osteosarcoma remain unclear. In our research, we found that TUG1 was elevated and correlated with a poor prognosis in osteosarcoma patients. In addition, the following functional experiment showed that decreased TUG1 could remarkably inhibit osteosarcoma cell migration and invasion, indicating that TUG1 functioned as an oncogene in osteosarcoma. Moreover, we revealed that TUG1 and Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), a metastasis-related gene targeted by microRNA-335-5p (miR-335-5p), had the same miR-335-5p combining site. The subsequent luciferase assay verified TUG1 was a target of miR-335-5p. Furthermore, the results of a real-time quantitative PCR showed that TUG1 and miR-335-5p could affect each other's expression. respectively. Finally, we affirmed that TUG1 affected ROCK1 expression and ROCK1-mediated migration/invasion by working as a competitive endogenous RNA (ceRNA) via miR-335-5p. In summary, the findings of this study, based on ceRNA theory, combining the research foundation of miR-335-5p and ROCK1, and taking TUG1 as a new study point, provide new insight into molecular-level reversing migration and invasion of osteosarcoma. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis

    International Nuclear Information System (INIS)

    Song, Lingqin; Liu, Di; Zhao, Yang; He, Jianjun; Kang, Huafeng; Dai, Zhijun; Wang, Xijing; Zhang, Shuqun; Zan, Ying

    2015-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial–mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1 breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation. - Highlights: • Sinomenine reduced invasion and migration of MDA-MB-231 and 4T1 breast cancer cells.

  5. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Lingqin, E-mail: qinlingsongxa@163.com [Department of Oncology, The Second Affiliated Hospital, Medical School of Xi' an Jiaotong University, Xi' an 710004 (China); Liu, Di; Zhao, Yang [Department of Oncology, The Second Affiliated Hospital, Medical School of Xi' an Jiaotong University, Xi' an 710004 (China); He, Jianjun [Department of Surgical Oncology, The First Affiliated Hospital, Medical School of Xi' an Jiaotong University, Xi' an 710061 (China); Kang, Huafeng; Dai, Zhijun; Wang, Xijing; Zhang, Shuqun; Zan, Ying [Department of Oncology, The Second Affiliated Hospital, Medical School of Xi' an Jiaotong University, Xi' an 710004 (China)

    2015-08-28

    Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial–mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1 breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation. - Highlights: • Sinomenine reduced invasion and migration of MDA-MB-231 and 4T1 breast cancer cells.

  6. Phosphorylation and mRNA splicing of collapsin response mediator protein-2 determine inhibition of rho-associated protein kinase (ROCK) II function in carcinoma cell migration and invasion

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Couchman, John R; Yoneda, Atsuko

    2013-01-01

    The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II......, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2....

  7. [Pt(O,O’-acac)(γ-acac)(DMS)] Alters SH-SY5Y Cell Migration and Invasion by the Inhibition of Na+/H+ Exchanger Isoform 1 Occurring through a PKC-ε/ERK/mTOR Pathway

    Science.gov (United States)

    Muscella, Antonella; Vetrugno, Carla; Calabriso, Nadia; Cossa, Luca Giulio; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Marsigliante, Santo

    2014-01-01

    We previously showed that [Pt(O,O’-acac)(γ-acac)(DMS)] ([Pt(acac)2(DMS)]) exerted substantial cytotoxic effects in SH-SY5Y neuroblastoma cells, and decreased metalloproteases (MMPs) production and cells migration in MCF-7 breast cancer cells. The ubiquitously distributed sodium-hydrogen antiporter 1 (NHE1) is involved in motility and invasion of many solid tumours. The present study focuses on the effects of [Pt(acac)2(DMS)] in SH-SY5Y cell migration and also on the possibility that NHE1 may be involved in such effect. After sublethal [Pt(acac)2(DMS)] treatment cell migration was examined by wounding assay and cell invasion by transwell assay. NHE1 activity was measured in BCECF-loaded SH-SY5Y as the rate of Na+-dependent intracellular pH recovery in response to an acute acid pulse. Gelatin zymography for MMP-2/9 activities, Western blottings of MMPs, MAPKs, mTOR, S6 and PKCs and small interfering RNAs to PKC-ε/-δ mRNA were performed. Sublethal concentrations of [Pt(acac)2(DMS)] decreases NHE1 activity, inhibites cell migration and invasion and decreases expression and activity of MMP-2 and -9. [Pt(acac)2(DMS)] administered to SH-SY5Y cells provokes the increment of ROS, generated by NADPH oxidase, responsible for the PKC-ε and PKC-δ activation. Whilst PKC-δ activates p38/MAPK, responsible for the inhibition of MMP-2 and -9 secretion, PKC-ε activates a pathway made of ERK1/2, mTOR and S6K responsible for the inhibition of NHE1 activity and cell migration. In conclusion, we have shown a drastic impairment in tumour cell metastatization in response to inhibition of NHE1 and MMPs activities by [Pt(acac)2(DMS)] occurring through a novel mechanism mediated by PKC-δ/-ε activation. PMID:25372487

  8. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ruey-Hwang Chou

    Full Text Available Fisetin (3,3',4',7-tetrahydroxyflavone, a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion.

  9. Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the p38 MAPK-Dependent NF-κB Signaling Pathway

    Science.gov (United States)

    Chou, Ruey-Hwang; Hsieh, Shu-Ching; Yu, Yung-Luen; Huang, Min-Hsien; Huang, Yi-Chang; Hsieh, Yi-Hsien

    2013-01-01

    Fisetin (3,3’,4’,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion. PMID:23940799

  10. Migration to Current Open Source Technologies by MagIC Enables a More Responsive Website, Quicker Development Times, and Increased Community Engagement

    Science.gov (United States)

    Jarboe, N.; Minnett, R.; Koppers, A.; Constable, C.; Tauxe, L.; Jonestrask, L.

    2017-12-01

    The Magnetics Information Consortium (MagIC) supports an online database for the paleo, geo, and rock magnetic communities ( https://earthref.org/MagIC ). Researchers can upload data into the archive and download data as selected with a sophisticated search system. MagIC has completed the transition from an Oracle backed, Perl based, server oriented website to an ElasticSearch backed, Meteor based thick client website technology stack. Using JavaScript on both the sever and the client enables increased code reuse and allows easy offloading many computational operations to the client for faster response. On-the-fly data validation, column header suggestion, and spreadsheet online editing are some new features available with the new system. The 3.0 data model, method codes, and vocabulary lists can be browsed via the MagIC website and more easily updated. Source code for MagIC is publicly available on GitHub ( https://github.com/earthref/MagIC ). The MagIC file format is natively compatible with the PmagPy ( https://github.com/PmagPy/PmagPy) paleomagnetic analysis software. MagIC files can now be downloaded from the database and viewed and interpreted in the PmagPy GUI based tool, pmag_gui. Changes or interpretations of the data can then be saved by pmag_gui in the MagIC 3.0 data format and easily uploaded to the MagIC database. The rate of new contributions to the database has been increasing with many labs contributing measurement level data for the first time in the last year. Over a dozen file format conversion scripts are available for translating non-MagIC measurement data files into the MagIC format for easy uploading. We will continue to work with more labs until the whole community has a manageable workflow for contributing their measurement level data. MagIC will continue to provide a global repository for archiving and retrieving paleomagnetic and rock magnetic data and, with the new system in place, be able to more quickly respond to the community

  11. Enabling the hypothesis-driven prioritization of ligand candidates in big databases: Screenlamp and its application to GPCR inhibitor discovery for invasive species control

    Science.gov (United States)

    Raschka, Sebastian; Scott, Anne M.; Liu, Nan; Gunturu, Santosh; Huertas, Mar; Li, Weiming; Kuhn, Leslie A.

    2018-03-01

    While the advantage of screening vast databases of molecules to cover greater molecular diversity is often mentioned, in reality, only a few studies have been published demonstrating inhibitor discovery by screening more than a million compounds for features that mimic a known three-dimensional (3D) ligand. Two factors contribute: the general difficulty of discovering potent inhibitors, and the lack of free, user-friendly software to incorporate project-specific knowledge and user hypotheses into 3D ligand-based screening. The Screenlamp modular toolkit presented here was developed with these needs in mind. We show Screenlamp's ability to screen more than 12 million commercially available molecules and identify potent in vivo inhibitors of a G protein-coupled bile acid receptor within the first year of a discovery project. This pheromone receptor governs sea lamprey reproductive behavior, and to our knowledge, this project is the first to establish the efficacy of computational screening in discovering lead compounds for aquatic invasive species control. Significant enhancement in activity came from selecting compounds based on one of the hypotheses: that matching two distal oxygen groups in the 3D structure of the pheromone is crucial for activity. Six of the 15 most active compounds met these criteria. A second hypothesis—that presence of an alkyl sulfate side chain results in high activity—identified another 6 compounds in the top 10, demonstrating the significant benefits of hypothesis-driven screening.

  12. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial–mesenchymal transition in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan, E-mail: wangpengyuan2014@126.com

    2015-12-04

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial–mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. - Highlights: • TGF-β1/β2-induced model of EMT was used in this study to test the effect of 1,25(OH)2D3 on EMT in colon cancer cells. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased migration and invasion. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased level of EMT-related transcription factors. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased expression of F-actin in SW-480 cells.

  13. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells.

    Science.gov (United States)

    Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong

    2015-12-01

    ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.

  14. Forkhead Box Protein C2 Promotes Epithelial-Mesenchymal Transition, Migration and Invasion in Cisplatin-Resistant Human Ovarian Cancer Cell Line (SKOV3/CDDP

    Directory of Open Access Journals (Sweden)

    Chanjuan Li

    2016-08-01

    Full Text Available Background/Aims: Forkhead Box Protein C2 (FOXC2 has been reported to be overexpressed in a variety of human cancers. However, it is unclear whether FOXC2 regulates epithelial-mesenchymal transition (EMT in CDDP-resistant ovarian cancer cells. The aim of this study is to investigate the effects of FOXC2 on EMT and invasive characteristics of CDDP-resistant ovarian cancer cells and the underlying molecular mechanism. Methods: MTT, Western blot, scratch wound healing, matrigel transwell invasion, attachment and detachment assays were performed to detect half maximal inhibitory concentration (IC50 of CDDP, expression of EMT-related proteins and invasive characteristics in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP and its parental cell line (SKOV3. Small hairpin RNA (shRNA was used to knockdown FOXC2 and analyze the effect of FOXC2 knockdown on EMT and invasive characteristics of SKOV3/CDDP cells. Also, the effect of FOXC2 upregulation on EMT and invasive characteristics of SKOV3 cells was analyzed. Furthermore, the molecular mechanism underlying FOXC2-regulating EMT in ovarian cancer cells was determined. Results: Compared with parental SKOV3 cell line, SKOV3/CDDP showed higher IC50 of CDDP (43.26μM (PConclusions: Taken together, these data demonstrate that FOXC2 may be a promoter of EMT phenotype in CDDP-resistant ovarian cancer cells and a potential therapeutic target for the treatment of advanced ovarian cancer.

  15. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen.

    Science.gov (United States)

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-12-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

  16. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9

    NARCIS (Netherlands)

    Vareecal Joseph, Justin; van Roosmalen, Ingrid A. M.; Busschers, Ellen; Tomar, Tushar; Conroy, Siobhan; Eggens-Meijer, Ellie; Fajardo, Natalia Penaranda; Pore, Milind M.; Balasubramaniyan, Veerakumar; Wagemakers, Michiel; Copray, Sjef; den Dunnen, Wilfred F. A.; Kruyt, Frank A. E.

    2015-01-01

    Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In

  17. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study

    Czech Academy of Sciences Publication Activity Database

    Makrodouli, E.; Oikonomou, E.; Koc, Michal; Anděra, Ladislav; Sasazuki, T.; Shirasawa, S.; Pintzas, A.

    2011-01-01

    Roč. 10, - (2011), e118 ISSN 1476-4598 Grant - others:GSRT(GR) 03ED562; EK(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorectal cancer * invasiveness * oncogenes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.993, year: 2011

  18. The Cell-CT 3D Cell Imaging Technology Platform Enables the Detection of Lung Cancer Using the Non-Invasive LuCED Sputum Test

    Science.gov (United States)

    Meyer, Michael G.; Hayenga, Jon; Neumann, Thomas; Katdare, Rahul; Presley, Chris; Steinhauer, David; Bell, Timothy; Lancaster, Christy; Nelson, Alan C.

    2015-01-01

    The war against cancer has yielded important advances in the early diagnosis and treatment of certain cancer types, but the poor detection rate and 5-year survival rate for lung cancer remains little changed over the past 40 years. Early detection through emerging lung cancer screening programs promises the most reliable means of improving mortality. Sputum cytology has been tried without success because sputum contains few malignant cells that are difficult for cytologists to detect. However, research has shown that sputum contains diagnostic malignant cells and could serve as a means of lung cancer detection if those cells could be detected and correctly characterized. Recently, the National Lung Cancer Screening Trial reported that screening by three consecutive low-dose X-ray CT scans provides a 20% reduction in lung cancer mortality compared to chest X-ray. This reduction in mortality, however, comes with an unacceptable false positive rate that increases patient risks and the overall cost of lung cancer screening. This article reviews the LuCED® test for detecting early lung cancer. LuCED is based on patient sputum that is enriched for bronchial epithelial cells. The enriched sample is then processed on the Cell-CT®, which images cells in three dimensions with sub-micron resolution. Algorithms are applied to the 3D cell images to extract morphometric features that drive a classifier to identify cells that have abnormal characteristics. The final status of these candidate abnormal cells is established by the pathologist's manual review. LuCED promotes accurate cell classification which could enable cost effective detection of lung cancer. PMID:26148817

  19. Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin.

    Science.gov (United States)

    Hammouda, Manel B; Riahi-Chebbi, Ichrak; Souid, Soumaya; Othman, Houcemeddine; Aloui, Zohra; Srairi-Abid, Najet; Karoui, Habib; Gasmi, Ammar; Magnenat, Edith M; Wells, Timothy N C; Clemetson, Kenneth J; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2018-03-01

    The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells. Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study. Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK 1/2 , p38, AKT and NF-κB. Moreover, macrovipecetin alone or combined with cisplatin induced the expression of TRADD, p53, Bax, Bim and Bad and down-regulated the Bcl-2 expression and ROS levels in SK-MEL-28 cells. Interestingly, these treatments impaired SK-MEL-28 cell adhesion, migration and invasion through modulating the function and expression of αvβ3 integrin along with regulating E-cadherin, vimentin, β-catenin, c-Src and RhoA expression. In silico study suggested that only the α chain of macrovipecetin interacts with a region overlapping the RGD motif binding site on this integrin. We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells. The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38α activation, while it impairs tumor growth through p38α-independent mechanisms

    Science.gov (United States)

    Priego, Neibla; Arechederra, María; Sequera, Celia; Bragado, Paloma; Vázquez-Carballo, Ana; Gutiérrez-Uzquiza, Álvaro; Martín-Granado, Víctor; Ventura, Juan José; Kazanietz, Marcelo G.; Guerrero, Carmen; Porras, Almudena

    2016-01-01

    C3G, a Guanine nucleotide Exchange Factor (GEF) for Rap1 and R-Ras, has been shown to play important roles in development and cancer. Previous studies determined that C3G regulates cell death through down-regulation of p38α MAPK activity. Here, we found that C3G knock-down in MEFs and HCT116 cells promotes migration and invasion through Rap1-mediated p38α hyper-activation. These effects of C3G were inhibited by Rap1 knock-down or inactivation. The enhanced migration observed in C3G depleted HCT116 cells was associated with reduction in E-cadherin expression, internalization of ZO-1, actin cytoskeleton reorganization and decreased adhesion. We also found that matrix metalloproteases MMP2 and MMP9 are involved in the pro-invasive effect of C3G down-regulation. Additionally, our studies revealed that both C3G and p38α collaborate to promote growth of HCT116 cells in vitro and in vivo, possibly by enhancing cell survival. In fact, knocking-down C3G or p38α individually or together promoted cell death in vitro, although only the double C3G-p38α silencing was able to increase cell death within tumors. Notably, we found that the pro-tumorigenic function of C3G does not depend on p38α or Rap1 activation. Altogether, our studies uncover novel mechanisms by which C3G controls key aspects of tumorigenesis. PMID:27286263

  1. Enabling minimal invasive parathyroidectomy for patients with primary hyperparathyroidism using Tc-99m-sestamibi SPECT–CT, ultrasound and first results of {sup 18}F-fluorocholine PET–CT

    Energy Technology Data Exchange (ETDEWEB)

    Kluijfhout, Wouter P., E-mail: WPKluijfhout@gmail.com [Department of Endocrine Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Vorselaars, Wessel M.C.M., E-mail: W.M.Vorselaars@umcutrecht.nl [Department of Endocrine Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Vriens, Menno R., E-mail: mvriens@umcutrecht.nl [Department of Endocrine Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Borel Rinkes, Inne H.M., E-mail: I.H.M.BorelRinkes@umcutrecht.nl [Department of Endocrine Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Valk, Gerlof D., E-mail: G.D.Valk@umcutrecht.nl [Department of Endocrinology, University Medical Center Utrecht, Utrecht (Netherlands); Keizer, Bart de, E-mail: B.deKeizer@umcutrecht.nl [Department of Nuclear Medicine and Radiology, University Medical Center Utrecht, Utrecht (Netherlands)

    2015-09-15

    Highlights: • We examined an optimal pre-operative imaging strategy. • Goal was to perform minimal invasive parathyroidectomy. • Ultrasound significantly decreased the PPV when added to SPECT–CT. • {sup 18}F-fluorocholine was positive in 4/5 cases with negative conventional imaging. - Abstract: Objective: Assessment of the diagnostic value of ultrasound (US), single photon-emission computed tomography–computed tomography (SPECT–CT) and {sup 18}F-fluorocholine (FCH) PET–CT for preoperative localization of hyper-functioning parathyroid(s) in order to create a more efficient diagnostic pathway and enable minimal invasive parathyroidectomy (MIP) in patients with biochemical proven non-familial primary hyperparathyroidism (pHPT). Methods: A single-institution retrospective study of 63 consecutive patients with a biochemical diagnosis of non-familial pHPT who received a Tc-99m-sestamibi SPECT–CT and neck ultrasound. Surgical findings were used in calculating the sensitivity and the positive predictive value (PPV) of both imaging modalities. Furthermore we present 5 cases who received additional FCH PET–CT. Results: A total of 42 (66.7%) patients underwent MIP. The PPV and sensitivity of SPECT–CT, 93.0% and 80.3%, were significantly higher than those of US with 78.3% and 63.2%, respectively. Adding US to SPECT–CT for initial pre-operative localization did not significantly increase sensitivity but did significantly decrease PPV. Performance of US was significantly better when performed after SPECT–CT. {sup 18}F-fluorocholine PET–CT localized the hyper-functioning parathyroid gland in 4/5 cases with discordant conventional imaging, enabling MIP. Conclusion: SPECT–CT is the imaging modality of choice for initial pre-operative localization of hyper-functioning parathyroid gland(s) in patients with biochemical pHPT. Ultrasound should be performed after SPECT–CT for confirmation of positive SPECT–CT findings and for pre-operative marking

  2. Marine Bromophenol Bis (2,3-Dibromo-4,5-dihydroxy-phenyl-methane Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Modulating β1-Integrin/FAK Signaling

    Directory of Open Access Journals (Sweden)

    Ning Wu

    2015-02-01

    Full Text Available Bis (2,3-dibromo-4,5-dihydroxy-phenyl-methane (BDDPM is a natural bromophenol compound derived from marine algae. Previous reports have shown that BDDPM possesses antimicrobial activity. In the present study, we found that BDDPM has cytotoxic activity on a wide range of tumor cells, including BEL-7402 cells (IC50 = 8.7 μg/mL. Further studies have shown that prior to the onset of apoptosis, the BDDPM induces BEL-7402 cell detachment by decreasing the adherence of cells to the extracellular matrix (ECM. Detachment experiments have shown that the treatment of BEL-7402 cells with low concentrations of BDDPM (5.0 μg/mL significantly inhibits cell adhesion to fibronectin and collagen IV as well as cell migration and invasion. High doses of BDDPM (10.0 μg/mL completely inhibit the migration of BEL-7402 cells, and the expression level of MMPs (MMP-2 and MMP-9 is significantly decreased. Moreover, the expression of β1-integrin and focal adhesion kinase (FAK is found to be down-regulated by BDDPM. This study suggests that BDDPM has a potential to be developed as a novel anticancer therapeutic agent due to its anti-metastatic activity and also indicates that BDDPM, which has a unique chemical structure, could serve as a lead compound for rational drug design and for future development of anticancer agents.

  3. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells.

    Science.gov (United States)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial-mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Type II cGMP‑dependent protein kinase inhibits the migration, invasion and proliferation of several types of human cancer cells.

    Science.gov (United States)

    Wu, Min; Wu, Yan; Qian, Hai; Tao, Yan; Pang, Ji; Wang, Ying; Chen, Yongchang

    2017-10-01

    Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.

  5. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  6. Kefir exhibits anti‑proliferative and pro‑apoptotic effects on colon adenocarcinoma cells with no significant effects on cell migration and invasion.

    Science.gov (United States)

    Khoury, Nathalie; El-Hayek, Stephany; Tarras, Omayr; El-Sabban, Marwan; El-Sibai, Mirvat; Rizk, Sandra

    2014-11-01

    Kefir, a fermented milk product, exhibits anti‑tumoral activity in vivo; yet its mechanism of action remains elusive. Recent studies have focused on the mechanism of action of kefir on cancer cells in vitro. The current study aims at examining the effect of kefir on cell survival, proliferation, and motility of colorectal cancer (CRC) cells. Kefir's anti‑cancer potential was tested on CRC cell lines, Caco‑2 and HT‑29, through cytotoxicity, proliferation, and apoptotic assays. The expression of certain genes involved in proliferation and apoptosis was measured using reverse transcriptase‑polymerase chain reaction (RT‑PCR) and western blotting. To assess the effect of kefir on cancer metastasis, wound‑healing and time‑lapse movies, in addition to collagen‑based invasion assay, were used. The results show that cell‑free fractions of kefir exhibit an anti‑proliferative effect on Caco‑2 and HT‑29 cells. Analysis of DNA content by flow cytometry revealed the ability of kefir to induce cell cycle arrest at the G1 phase. Kefir was also found to induce apoptosis, as seen by cell death ELISA. Results from RT‑PCR showed that kefir decreases the expression of transforming growth factor α (TGF‑α); and transforming growth factor‑β1 (TGF‑β1) in HT‑29 cells. Western blotting results revealed an upregulation in Bax:Bcl‑2 ratio, confirming the pro‑apoptotic effect of kefir, and an increase in p53 independent‑p21 expression upon kefir treatment. MMP expression was not altered by kefir treatment. Furthermore, results from time‑lapse motility movies, wound‑healing, and invasion assays showed no effect on the motility of colorectal as well as breast (MCF‑7 and MB‑MDA‑231) cancer cells upon kefir treatment. Our data suggest that kefir is able to inhibit the proliferation and induce apoptosis in HT‑29 and Caco‑2 CRC cells, yet it does not exhibit a significant effect on the motility and invasion of these cells in vitro.

  7. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis.

    Science.gov (United States)

    Philippar, Ulrike; Roussos, Evanthia T; Oser, Matthew; Yamaguchi, Hideki; Kim, Hyung-Do; Giampieri, Silvia; Wang, Yarong; Goswami, Sumanta; Wyckoff, Jeffrey B; Lauffenburger, Douglas A; Sahai, Erik; Condeelis, John S; Gertler, Frank B

    2008-12-01

    The spread of cancer during metastatic disease requires that tumor cells subvert normal regulatory networks governing cell motility to invade surrounding tissues and migrate toward blood and lymphatic vessels. Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) proteins regulate cell motility by controlling the geometry of assembling actin networks. Mena, an Ena/VASP protein, is upregulated in the invasive subpopulation of breast cancer cells. In addition, Mena is alternately spliced to produce an invasion isoform, Mena(INV). Here we show that Mena and Mena(INV) promote carcinoma cell motility and invasiveness in vivo and in vitro, and increase lung metastasis. Mena and Mena(INV) potentiate epidermal growth factor (EGF)-induced membrane protrusion and increase the matrix degradation activity of tumor cells. Interestingly, Mena(INV) is significantly more effective than Mena in driving metastases and sensitizing cells to EGF-dependent invasion and protrusion. Upregulation of Mena(INV) could therefore enable tumor cells to invade in response to otherwise benign EGF stimulus levels.

  8. Reduced miR-433 expression is associated with advanced stages and early relapse of colorectal cancer and restored miR-433 expression suppresses the migration, invasion and proliferation of tumor cells in vitro and in nude mice.

    Science.gov (United States)

    Zhang, Jian; Zhang, Lei; Zhang, Tong; Dong, Xin-Min; Zhu, Yu; Chen, Long-Hua

    2018-05-01

    The expression of microRNA (miR-433) is altered in various types of human cancer. The present study analyzed the prognostic and biological value of miR-433 expression in colorectal cancer using reverse transcription-quantitative polymerase chain reaction in 125 colorectal tissue specimens (including a test cohort of 40 cases of paired colorectal cancer and adjacent normal mucosae and a confirmation cohort of 85 cases of stage I-III colorectal cancer). In vitro and nude mouse xenograft experiments were subsequently used to assess the effects of miR-433 expression on the regulation of colorectal cancer cell proliferation, adhesion, migration, and invasion. The data indicated that miR-433 expression was significantly downregulated in colorectal cancer tissues in the test and confirmation patient cohorts and that low miR-433 expression was associated with advanced tumor stage and early relapse. Furthermore, the restoration of miR-433 expression was able to significantly inhibit the proliferation of tumor cells by inducing G1-S cell cycle arrest, suppressing cyclinD1 and CDK4 expression, and markedly inhibited the migratory and invasive capacities of tumor cells in vitro . The restoration of miR-433 expression or liposome-based delivery of miR-433 mimics suppressed the growth of colorectal cancer cell xenografts in nude mice. In conclusion, miR-433 may be a putative tumor suppressor in colorectal cancer, and the detection of low miR-433 expression will be investigated in further studies as a putative biomarker for the detection of early relapse in patients with colorectal cancer.

  9. Correlations between transmembrane 4 L6 family member 5 (TM4SF5, CD151, and CD63 in liver fibrotic phenotypes and hepatic migration and invasive capacities.

    Directory of Open Access Journals (Sweden)

    Minkyung Kang

    Full Text Available Transmembrane 4 L6 family member 5 (TM4SF5 is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies.

  10. Plasticity of cell migration: a multiscale tuning model.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Wolf, K. van der

    2010-01-01

    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or

  11. Conservation physiology of animal migration

    Science.gov (United States)

    Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  12. Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer.

    Science.gov (United States)

    Zhou, Chunxia; Ye, Lincai; Jiang, Chuan; Bai, Jie; Chi, Yongbin; Zhang, Haibo

    2015-12-01

    Despite the fact that great advances have been made in the management of non-small cell lung cancer (NSCLC), the prognosis of advanced NSCLC remains very poor. HOX transcript antisense intergenic RNA (HOTAIR) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in the progression of a variety of carcinomas and acts as a negative prognostic biomarker. Yet, little is known about the effect of HOTAIR in the hypoxic microenvironment of NSCLC. The expression and promoter activity of HOTAIR were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The function of the hypoxia-inducible factor-1α (HIF-1α) binding site to hypoxia-responsive elements (HREs) in the HOTAIR promoter region was tested by luciferase reporter assay with nucleotide substitutions. The binding of HIF-1α to the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay (CHIP) and electrophoretic mobility shift assay (EMSA). The effect of HIF-1α suppression by small interference RNA or YC-1 on HOTAIR expression was also determined. In the present study, we demonstrated that HOTAIR was upregulated by hypoxia in NSCLC cells. HOTAIR is a direct target of HIF-1α through interaction with putative HREs in the upstream region of HOTAIR in NSCLC cells. Furthermore, HIF-1α knockdown or inhibition could prevent HOTAIR upregulation under hypoxic conditions. Under hypoxic conditions, HOTAIR enhanced cancer cell proliferation, migration, and invasion. These data suggested that suppression of HOTAIR upon hypoxia of NSCLC could be a novel therapeutic strategy.

  13. Migrating for a Profession

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2015-01-01

    a strong sense of agency and self-empowerment. In the post-WWII period, numerous Caribbean women trained in nursing at British hospitals that have been described as marred by race and gender related inequality and associated forms of exploitation. Yet, the nurses interviewed about this training emphasised......Youths from the Global South migrating for further education often face various forms of discrimination. This Caribbean case study discusses how conditions in the home country can provide a foundation for educational migration that helps the migrants overcome such obstacles and even develop...... in which it enabled these Caribbean women to stake out a new life for themselves....

  14. An efficient Trojan delivery of tetrandrine by poly(N-vinylpyrrolidone-block-poly(ε-caprolactone (PVP-b-PCL nanoparticles shows enhanced apoptotic induction of lung cancer cells and inhibition of its migration and invasion

    Directory of Open Access Journals (Sweden)

    Xu H

    2013-12-01

    Full Text Available Huae Xu,1,2 Zhibo Hou,3 Hao Zhang,4 Hui Kong,2 Xiaolin Li,4 Hong Wang,2 Weiping Xie21Department of Pharmacy, 2Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China; 3First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, People's Republic of China; 4Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of ChinaAbstract: Earlier studies have demonstrated the promising antitumor effect of tetrandrine (Tet against a series of cancers. However, the poor solubility of Tet limits its application, while its hydrophobicity makes Tet a potential model drug for nanodelivery systems. We report on a simple way of preparing drug-loaded nanoparticles formed by amphiphilic poly(N-vinylpyrrolidone-block-poly(ε-caprolactone (PVP-b-PCL copolymers with Tet as a model drug. The mean diameters of Tet-loaded PVP-b-PCL nanoparticles (Tet-NPs were between 110 nm and 125 nm with a negative zeta potential slightly below 0 mV. Tet was incorporated into PVP-b-PCL nanoparticles with high loading efficiency. Different feeding ratios showed different influences on sizes, zeta potentials, and the drug loading efficiencies of Tet-NPs. An in vitro release study shows the sustained release pattern of Tet-NPs. It is shown that the uptake of Tet-NPs is mainly mediated by the endocytosis of nanoparticles, which is more efficient than the filtration of free Tet. Further experiments including fluorescence activated cell sorting and Western blotting indicated that this Trojan strategy of delivering Tet in PVP-b-PCL nanoparticles via endocytosis leads to enhanced induction of apoptosis in the non-small cell lung cancer cell A549 line; enhanced apoptosis is achieved by inhibiting the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins. Moreover, Tet-NPs more efficiently inhibit the ability of cell migration and

  15. Invasive Candidiasis

    Science.gov (United States)

    ... Waterborne, and Environmental Diseases Mycotic Diseases Branch Invasive Candidiasis Recommend on Facebook Tweet Share Compartir Global Emergence ... antifungal drugs. Learn more about C. auris Invasive candidiasis is an infection caused by a yeast (a ...

  16. Migration chemistry

    International Nuclear Information System (INIS)

    Carlsen, L.

    1992-05-01

    Migration chemistry, the influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour of pollutants in the environment, is an interplay between the actual natur of the pollutant and the characteristics of the environment, such as pH, redox conditions and organic matter content. The wide selection of possible pollutants in combination with varying geological media, as well as the operation of different chemical -, biochemical - and physico-chemical reactions compleactes the prediction of the influence of these processes on the mobility of pollutants. The report summarizes a wide range of potential pollutants in the terrestrial environment as well as a variety of chemical -, biochemical - and physico-chemical reactions, which can be expected to influence the migration behaviour, comprising diffusion, dispersion, convection, sorption/desorption, precipitation/dissolution, transformations/degradations, biochemical reactions and complex formation. The latter comprises the complexation of metal ions as well as non-polar organics to naturally occurring organic macromolecules. The influence of the single types of processes on the migration process is elucidated based on theoretical studies. The influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour is unambiguous, as the processes apparently control the transport of pollutants in the terrestrial environment. As the simple, conventional K D concept breaks down, it is suggested that the migration process should be described in terms of the alternative concepts chemical dispersion, average-elution-time and effective retention. (AB) (134 refs.)

  17. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals.

    Science.gov (United States)

    Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang

    2017-05-28

    Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Migrating Worker

    DEFF Research Database (Denmark)

    Hansen, Hans

    This is the preliminary report on the results obtained in the Migrating Worker-project. This project was initiated by the Danish Ministry of Finance with the aim of illustrating the effects of the 1408/71 agreement and the bilateral double taxation agreements Denmark has with the countries included...

  19. Dateline Migration.

    Science.gov (United States)

    Tomasi, Lydio E., Ed.

    1995-01-01

    Presents data on international migration and its effects in and between various countries in North America, Europe, and Africa. Discussions include refugee, immigrant, and migrant worker flows; the legal, political, and social problems surrounding immigrants; alien terrorism and law enforcement problems; and migrant effects on education, social…

  20. Service Migration Protocol for NFC Links

    DEFF Research Database (Denmark)

    Nickelsen, Anders; Schwefel, Hans-Peter; Martin, Miquel

    2010-01-01

    of use while preserving state. This paper focuses on the scenario of migration between two devices in which the actual migration procedure is executed over near-field communication (NFC) ad-hoc links. The NFC link is interesting as it gives the user the perception of trust and enables service continuity...

  1. A preference for migration

    OpenAIRE

    Stark, Oded

    2007-01-01

    At least to some extent migration behavior is the outcome of a preference for migration. The pattern of migration as an outcome of a preference for migration depends on two key factors: imitation technology and migration feasibility. We show that these factors jointly determine the outcome of a preference for migration and we provide examples that illustrate how the prevalence and transmission of a migration-forming preference yield distinct migration patterns. In particular, the imitation of...

  2. Dispersal and migration

    Directory of Open Access Journals (Sweden)

    Schwarz, C.

    2004-06-01

    Full Text Available Ringing of birds unveiled many aspects of avian migration and dispersal movements. However, there is even much more to be explored by the use of ringing and other marks. Dispersal is crucial in understanding the initial phase of migration in migrating birds as it is to understand patterns and processes of distribution and gene flow. So far, the analysis of migration was largely based on analysing spatial and temporal patters of recoveries of ringed birds. However, there are considerable biases and pitfalls in using recoveries due to spatial and temporal variation in reporting probabilities. Novel methods are required for future studies separating the confounding effects of spatial and temporal heterogeneity of recovery data and heterogeneity of the landscape as well. These novel approaches should aim a more intensive and novel use of the existing recovery data by taking advantage of, for instance, dynamic and multistate modeling, should elaborate schemes for future studies, and should also include other marks that allow a more rapid data collection, like telemetry, geolocation and global positioning systems, and chemical and molecular markers. The latter appear to be very useful in the delineating origin of birds and connectivity between breeding and non–breeding grounds. Many studies of migration are purely descriptive. However, King and Brooks (King & Brooks, 2004 examine if movement patterns of dolphins change after the introduction of a gillnet ban. Bayesian methods are an interesting approach to this problem as they provide a meaningful measure of the probability that such a change occurred rather than simple yes/no response that is often the result of classical statistical methods. However, the key difficulty of a general implementation of Bayesian methods is the complexity of the modelling —there is no general userfriendly package that is easily accessible to most scientists. Drake and Alisauskas (Drake & Alisauskas, 2004 examine the

  3. Nuss bar migrations: occurrence and classification

    International Nuclear Information System (INIS)

    Binkovitz, Lauren E.; Binkovitz, Larry A.; Zendejas, Benjamin; Moir, Christopher R.

    2016-01-01

    Pectus excavatum results from dorsal deviation of the sternum causing narrowing of the anterior-posterior diameter of the chest. It can result in significant cosmetic deformities and cardiopulmonary compromise if severe. The Nuss procedure is a minimally invasive technique that involves placing a thin horizontally oriented metal bar below the dorsal sternal apex for correction of the pectus deformity. To identify the frequency and types of Nuss bar migrations, to present a new categorization of bar migrations, and to present examples of true migrations and pseudomigrations. We retrospectively reviewed the electronic medical records and all pertinent radiologic studies of 311 pediatric patients who underwent a Nuss procedure. We evaluated the frequency and type of bar migrations. Bar migration was demonstrated in 23 of 311 patients (7%) and occurred within a mean period of 26 days after surgery. Bar migrations were subjectively defined as deviation of the bar from the position demonstrated on the immediate postoperative radiographs and categorized as superior, inferior, rotation, lateral or flipped using a new classification system. Sixteen of the 23 migrations required re-operation. Nuss bar migration can be diagnosed with careful evaluation of serial radiographs. Nuss bar migration has a wide variety of appearances and requires exclusion of pseudomigration resulting from changes in patient positioning between radiologic examinations. (orig.)

  4. Nuss bar migrations: occurrence and classification

    Energy Technology Data Exchange (ETDEWEB)

    Binkovitz, Lauren E.; Binkovitz, Larry A. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Zendejas, Benjamin; Moir, Christopher R. [Mayo Clinic, Department of Surgery, Rochester, MN (United States)

    2016-12-15

    Pectus excavatum results from dorsal deviation of the sternum causing narrowing of the anterior-posterior diameter of the chest. It can result in significant cosmetic deformities and cardiopulmonary compromise if severe. The Nuss procedure is a minimally invasive technique that involves placing a thin horizontally oriented metal bar below the dorsal sternal apex for correction of the pectus deformity. To identify the frequency and types of Nuss bar migrations, to present a new categorization of bar migrations, and to present examples of true migrations and pseudomigrations. We retrospectively reviewed the electronic medical records and all pertinent radiologic studies of 311 pediatric patients who underwent a Nuss procedure. We evaluated the frequency and type of bar migrations. Bar migration was demonstrated in 23 of 311 patients (7%) and occurred within a mean period of 26 days after surgery. Bar migrations were subjectively defined as deviation of the bar from the position demonstrated on the immediate postoperative radiographs and categorized as superior, inferior, rotation, lateral or flipped using a new classification system. Sixteen of the 23 migrations required re-operation. Nuss bar migration can be diagnosed with careful evaluation of serial radiographs. Nuss bar migration has a wide variety of appearances and requires exclusion of pseudomigration resulting from changes in patient positioning between radiologic examinations. (orig.)

  5. Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl-N-(5-cyclopropyl-1H-pyrazol-3-yl-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity

    Directory of Open Access Journals (Sweden)

    Tianxiao Wu

    2018-02-01

    Full Text Available A series of novel 2,4-diaminoquinazoline derivatives were designed, synthesized, and evaluated as p21-activated kinase 4 (PAK4 inhibitors. All compounds showed significant inhibitory activity against PAK4 (half-maximal inhibitory concentration IC50 < 1 μM. Among them, compounds 8d and 9c demonstrated the most potent inhibitory activity against PAK4 (IC50 = 0.060 μM and 0.068 μM, respectively. Furthermore, we observed that compounds 8d and 9c displayed potent antiproliferative activity against the A549 cell line and inhibited cell cycle distribution, migration, and invasion of this cell line. In addition, molecular docking analysis was performed to predict the possible binding mode of compound 8d. This series of compounds has the potential for further development as PAK4 inhibitors for anticancer activity.

  6. Collective cell migration in morphogenesis, regeneration and cancer.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Gilmour, D.

    2009-01-01

    The collective migration of cells as a cohesive group is a hallmark of the tissue remodelling events that underlie embryonic morphogenesis, wound repair and cancer invasion. In such migration, cells move as sheets, strands, clusters or ducts rather than individually, and use similar actin- and

  7. Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma

    International Nuclear Information System (INIS)

    Zhai, Qingna; Zhou, Liang; Zhao, Chunjuan; Wan, Jun; Yu, Zhendong; Guo, Xin; Qin, Jie; Chen, Jing; Lu, Ruijing

    2012-01-01

    Highlights: ► Previous method was the second-generation sequencing technology. ► miR-508-3p and miR-509-3p were significantly down-regulated in RCC tissues. ► They can inhibit cell proliferation and migration and promote cell apoptosis. ► The expression of miR-508-3p was significantly decreased in RCC patients plasma. ► miR-508-3p may be a novel diagnostic marker of RCC. -- Abstract: MicroRNAs (miRNAs) have emerged as powerful regulators of multiple processes linked to human cancer, including cell apoptosis, proliferation and migration, suggesting that the regulation of miRNA function could play a critical role in cancer progression. Recent studies have found that human serum/plasma contains stably expressed miRNAs. If they prove indicative of disease states, miRNAs measured from peripheral blood samples may be a source for routine clinical detection of cancer. Our studies showed that both miR-508-3p and miR-509-3p were down-regulated in renal cancer tissues. The level of miR-508-3p but not miR-509-3p in renal cell carcinoma (RCC) patient plasma demonstrated significant differences from that in control plasma. In addition, the overexpression of miR-508-3p and miR-509-3p suppressed the proliferation of RCC cells (786-0), induced cell apoptosis and inhibited cell migration in vitro. Our data demonstrated that miR-508-3p and miR-509-3p played an important role as tumor suppressor genes during tumor formation and that they may serve as novel diagnostic markers for RCC.

  8. In vitro effect of lysophosphatidic acid on proliferation, invasion and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of lysophosphatidic acid (LPA) on the proliferation, invasion and migration ... reproduction in any medium, provided the original work is properly credited. Tropical .... air dried at room temperature overnight.

  9. Induction of the mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma.

    Science.gov (United States)

    Bao, Xing; Ren, Tingting; Huang, Yi; Wang, Shidong; Zhang, Fan; Liu, Kuisheng; Zheng, Bingxin; Guo, Wei

    2016-08-30

    In addition to treating acute promyelocytic leukemia, arsenic trioxide (ATO) suppresses other solid tumors, including chondrosarcoma. However, the effects of ATO on metastasis in chondrosarcoma cells, and the underlying molecular mechanisms remain unclear. The effects of ATO on the migratory and invasive capacities of chondrosarcoma cells were investigated by Wound healing, Transwell and EMT assays. The expression of miR-125b in human chondrosarcoma tissues and cell lines was detected by real-time PCR analysis. Bisulfite sequencing analysis (BSP) was used to detect the effects of ATO on the expression of miR-125b. The gain-of-function and loss-of-function experiments were performed on chondrosarcoma cell lines to investigate the effects of miR-125b on chondrosarcoma invasion, and to determine whether signal transducer and activator of transcription 3(Stat3) mediates these effects. Dual-luciferase reporter assay was used to identify whether Stat3 is a direct target of miR-125b. MiR-125b was significantly downregulated in human metastatic chondrosarcoma tissues and cell lines but not in non-metastatic chondrosarcoma tissues. ATO up-regulates the expression of miR-125b by the demethylation of DNA. ATO induces MET and attenuates the invasive capacities of chondrosarcoma cells through miR-125b. Stat3 was verified as a direct target of miR-125b, which is involved in ATO regulating EMT-associated traits. These findings, for the first time, provides evidence that the miR-125b-mediated inhibition of Stat3 is involved in the ATO-induced attenuation of metastasis in chondrosarcoma cells.

  10. The Globalisation of migration

    OpenAIRE

    Milan Mesić

    2002-01-01

    The paper demonstrates that contemporary international migration is a constitutive part of the globalisation process. After defining the concepts of globalisation and the globalisation of migration, the author discusses six key themes, linking globalisation and international migration (“global cities”, the scale of migration; diversification of migration flows; globalisation of science and education; international migration and citizenship; emigrant communities and new identities). First, in ...

  11. Final Report: Migration Mechanisms for Large-scale Parallel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jason Nieh

    2009-10-30

    Process migration is the ability to transfer a process from one machine to another. It is a useful facility in distributed computing environments, especially as computing devices become more pervasive and Internet access becomes more ubiquitous. The potential benefits of process migration, among others, are fault resilience by migrating processes off of faulty hosts, data access locality by migrating processes closer to the data, better system response time by migrating processes closer to users, dynamic load balancing by migrating processes to less loaded hosts, and improved service availability and administration by migrating processes before host maintenance so that applications can continue to run with minimal downtime. Although process migration provides substantial potential benefits and many approaches have been considered, achieving transparent process migration functionality has been difficult in practice. To address this problem, our work has designed, implemented, and evaluated new and powerful transparent process checkpoint-restart and migration mechanisms for desktop, server, and parallel applications that operate across heterogeneous cluster and mobile computing environments. A key aspect of this work has been to introduce lightweight operating system virtualization to provide processes with private, virtual namespaces that decouple and isolate processes from dependencies on the host operating system instance. This decoupling enables processes to be transparently checkpointed and migrated without modifying, recompiling, or relinking applications or the operating system. Building on this lightweight operating system virtualization approach, we have developed novel technologies that enable (1) coordinated, consistent checkpoint-restart and migration of multiple processes, (2) fast checkpointing of process and file system state to enable restart of multiple parallel execution environments and time travel, (3) process migration across heterogeneous

  12. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Korvala, Johanna, E-mail: johanna.korvala@oulu.fi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Jee, Kowan [Department of Pathology, University of Turku, Turku University Hospital, Turku (Finland); Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Porkola, Emmi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Almangush, Alhadi [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Mosakhani, Neda [Department of Pathology, HUSLAB, Helsinki (Finland); Bitu, Carolina [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Cervigne, Nilva K. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); Department of Clinical and Pathology, Faculty of Medicine of Jundiai - FMJ, Jundiai, SP (Brazil); Zandonadi, Flávia S.; Meirelles, Gabriela V.; Leme, Adriana Franco Paes [Laboratório Nacional de Biociências, LNBio, CNPEM, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas/SP, P.O.Box 6192, CEP 13083-970 Campinas, São Paulo (Brazil); Coletta, Ricardo D. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); and others

    2017-01-01

    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.

  13. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  14. Simulation of vacancy migration energy in Cu under high strain

    International Nuclear Information System (INIS)

    Sato, K.; Yoshiie, T.; Satoh, Y.; Xu, Q.; Kiritani, M.

    2003-01-01

    The activation energy for the migration of vacancies in Cu under high strain was calculated by computer simulation using static methods. The migration energy of vacancies was 0.98 eV in the absence of deformation. It varied with the migration direction and stress direction because the distance between a vacancy and its neighboring atoms changes by deformation. For example, the migration energy for the shortest migration distance was reduced to 9.6 and 39.4% of its initial value by 10% compression and 20% elongation, respectively, while that for the longest migration distance was raised to 171.7 by 20% elongation. If many vacancies are created during high-speed deformation, the lowering of migration energy enables vacancies to escape to sinks such as surfaces, even during the shorter deformation period. The critical strain rate above which the strain rate dependence of vacancy accumulation ceases to exist increases with the lowering of vacancy migration energy

  15. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.

    Science.gov (United States)

    Pathak, Amit

    2018-04-12

    Motile cells sense the stiffness of their extracellular matrix (ECM) through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a two-dimensional cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns as compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments. © 2018 IOP Publishing Ltd.

  16. MANAGING MIGRATION: TURKISH PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    İhsan GÜLAY

    2018-04-01

    Full Text Available Conducting migration studies is of vital importance to Turkey, a country which has been experiencing migration throughout history due to its “open doors policy”. The objective of this study is to evaluate the strategic management of migration in Turkey in order to deal with the issue of migration. The main focus of the study is Syrian migrants who sought refuge in Turkey due to the civil war that broke out in their country in April 2011. This study demonstrates the policies and processes followed by Turkey for Syrian migration flow in terms of the social acceptance and harmonisation of the migrants within a democratic environment. The study addresses some statistical facts and issues related to Syrian migration as it has become an integral part of daily life in Turkey. The study also reviews how human rights are protected in the migration process. The study will provide insights for developing sound strategic management policies for the migration issue.

  17. Migration and revolution

    Directory of Open Access Journals (Sweden)

    Nando Sigona

    2012-06-01

    Full Text Available The Arab Spring has not radically transformed migration patterns in the Mediterranean, and the label ‘migration crisis’ does not do justice to the composite and stratified reality.

  18. Migration towards Windows 2000/XP

    International Nuclear Information System (INIS)

    Gal, J.

    2004-01-01

    The article deals with interesting technical solutions used in the project 'Migration towards Windows 2000/XP', which was introduced by the company AITEN, Plc for companies SE Plc, SEPS Plc and TEKO, Plc in the period 2002 and 2003. The contents of the project was migration of about 100 servers and more than 4 000 PC to the Windows 2000 and XP environs. The result of the project is a unified and documented system in the field of file, print and small application servers and PC. It has enabled to increase the system reliability and availability, to decrease the total costs for administration and operation and to establish the steady environs for users of the applications. (author)

  19. Embryonic chicken transplantation is a promising model for studying the invasive behaviour of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Aparna eJayachandran

    2015-02-01

    Full Text Available Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology which enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labelled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 hours to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5 or trunk level (embryonic day 2.5. Chick embryos are reincubated and analysed after 48 hours for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence the embryonic chicken transplantation model has potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and

  20. The Features of Naturalization of Invasive Fraction of Flora in the Voronezh Region and in Some Regions of the European Part of Russia

    Directory of Open Access Journals (Sweden)

    Vladimirov D.R.

    2015-10-01

    Full Text Available The article is about naturalization features of invasive fraction of flora in Voronezh and some other regions of the European part of Russia. The summary table represents all invasive and potentially invasive plants of the European part of Russia with their level of naturalization (or invasive status. Invasive fraction of flora in the Voronezh region numbers 120 plants. All of them are on different stages of naturalization process in an anthropogenic areal. Invasive plants represent by agriophyts – 41 (34,1 % species, epecophyts – 75 (62,5 % species and colonophyts-epecophyts – 4 (3,4 % species. Totally there are 201 species of invasive and potentially invasive plants spread within European part of Russia (Northern-West Russia, Ivanovo, Kaluga, Tver, and Voronezh regions. They formed the “black list” of European Russia. 10 species are common to all invasive fractions. These are Acer negundo, Amelanchier x spicata, Aster x salignus, Echinocystis lobata, Elodea canadensis, Heracleum sosnowskyi, Impatiens glandulifera, Impatiens parviflora, Juncus tenuis and Lupinus polyphyllus. The analysis of the general list of invasive fractions of European Russia shows that 120 species of the list are invasive or potentially invasive in the Voronezh region (100 and 20 species in accordance, adventives naturalized species – 31, native species – 19, archaeophyts – 2, apophyts – 4. 26 species from the list were not found in the Voronezh region. Apparently, the region is a transit area for many invasive plants, which migrate from South to North, from East to West etc. Not only its natural and climatic potential, but also high level of transformation of local landscapes enabled immigrant-plants to naturalize within the bounds of the region. Furthermore, for many years the Voronezh region was the center of introduction of alien plants. Many of those became a part of invasion fraction of regional flora. In recent decades green building took place of

  1. Population, migration and urbanization.

    Science.gov (United States)

    1982-06-01

    Despite recent estimates that natural increase is becoming a more important component of urban growth than rural urban transfer (excess of inmigrants over outmigrants), the share of migration in the total population growth has been consistently increasing in both developed and developing countries. From a demographic perspective, the migration process involves 3 elements: an area of origin which the mover leaves and where he or she is considered an outmigrant; the destination or place of inmigration; and the period over which migration is measured. The 2 basic types of migration are internal and international. Internal migration consists of rural to urban migration, urban to urban migration, rural to rural migration, and urban to rural migration. Among these 4 types of migration various patterns or processes are followed. Migration may be direct when the migrant moves directly from the village to the city and stays there permanently. It can be circular migration, meaning that the migrant moves to the city when it is not planting season and returns to the village when he is needed on the farm. In stage migration the migrant makes a series of moves, each to a city closer to the largest or fastest growing city. Temporary migration may be 1 time or cyclical. The most dominant pattern of internal migration is rural urban. The contribution of migration to urbanization is evident. For example, the rapid urbanization and increase in urban growth from 1960-70 in the Republic of Korea can be attributed to net migration. In Asia the largest component of the population movement consists of individuals and groups moving from 1 rural location to another. Recently, because urban centers could no longer absorb the growing number of migrants from other places, there has been increased interest in the urban to rural population redistribution. This reverse migration also has come about due to slower rates of employment growth in the urban centers and improved economic opportunities

  2. [Internal migration studies].

    Science.gov (United States)

    Stpiczynski, T

    1986-10-01

    Recent research on internal migration in Poland is reviewed. The basic sources of data, consisting of censuses or surveys, are first described. The author discusses the relationship between migration studies and other sectors of the national economy, and particularly the relationship between migration and income.

  3. Organising to Enable Innovation

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approach....... The findings reveal a continous organising process between individual/ team creativity and organisational structures/control to enable innovation at firm level. Organising provides a dynamic approach and contains the integrated reconstruction of creativity, structures and boundaries for enhanced balance...... of explorative and exploitative learning in uncertain environments. Shedding light on the cross-disciplinary theories to organise innovation provides a contribution at the firm level to enable innovation....

  4. Cloud Security Audit for Migration and Continuous Monitoring

    OpenAIRE

    Ismail, Umar Mukhtar; Islam, Shareeful; Mouratidis, Haralambos

    2015-01-01

    Security assurance in cloud computing is one of the main barriers for wider cloud adoption. Potential cloud computing consumers like to know whether the controls in cloud environments can adequately protect critical assets migrated into the cloud. We present a cloud security audit approach to enable users' evaluate cloud service provider offerings before migration, as well as monitoring of events after migration. Our approach entails a set of concepts such as actor, goals, monitoring, conditi...

  5. Simulating migrated and inverted seismic data for enhanced reservoir characterization

    NARCIS (Netherlands)

    Toxopeus, G.

    2006-01-01

    An optimal use of shared-earth modeling is hampered by the fact that simulating a migrated image that can be compared directly to the real migrated image is time-consuming. The key to enable iterative testing of different geological scenarios is to filter a shared-earth model by a spatial resolution

  6. Depth migration and de-migration for 3-D migration velocity analysis; Migration profondeur et demigration pour l'analyse de vitesse de migration 3D

    Energy Technology Data Exchange (ETDEWEB)

    Assouline, F.

    2001-07-01

    3-D seismic imaging of complex geologic structures requires the use of pre-stack imaging techniques, the post-stack ones being unsuitable in that case. Indeed, pre-stack depth migration is a technique which allows to image accurately complex structures provided that we have at our disposal a subsurface velocity model accurate enough. The determination of this velocity model is thus a key element for seismic imaging, and to this end, migration velocity analysis methods have met considerable interest. The SMART method is a specific migration velocity analysis method: the singularity of this method is that it does not rely on any restrictive assumptions on the complexity of the velocity model to determine. The SMART method uses a detour through the pre-stack depth migrated domain for extracting multi-offset kinematic information hardly accessible in the time domain. Once achieved the interpretation of the pre-stack depth migrated seismic data, a kinematic de-migration technique of the interpreted events enables to obtain a consistent kinematic database (i.e. reflection travel-times). Then, the inversion of these travel-times, by means of reflection tomography, allows the determination of an accurate velocity model. To be able to really image geologic structures for which the 3-D feature is predominant, we have studied the implementation of migration velocity analysis in 3-D in the context of the SMART method, and more generally, we have developed techniques allowing to overcome the intrinsic difficulties in the 3-D aspects of seismic imaging. Indeed, although formally the SMART method can be directly applied to the case of 3-D complex structures, the feasibility of its implementation requires to choose well the imaging domain. Once this choice done, it is also necessary to conceive a method allowing, via the associated de-migration, to obtain the reflection travel-times. We first consider the offset domain which constitutes, still today, the strategy most usually used

  7. Grading system for migrated lumbar disc herniation on sagittal magnetic resonance imaging. An agreement study

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.; Jeong, T.S. [Gachon University Gil Medical Center, Department of Neurosurgery, Incheon (Korea, Republic of); Lim, T.; Jeon, J.Y. [Gachon University Gil Medical Center, Department of Radiology, Incheon (Korea, Republic of)

    2018-01-15

    Migrated lumbar disc herniations (LDHs) in the sagittal plane are common. Disc migration grading can be applied as a useful measurement tool in the diagnosis, treatment, and outcome evaluation of migrated LDH. No study has evaluated the reliability of migrated LDH grading. We evaluated the reliability and functionality of the current magnetic resonance imaging (MRI) grading system for migrated LDH. We assessed a six-level grading system developed based on sagittal MRI and graded according to the direction (rostral and caudal) and degree (low, high, and very high) of disc migration. One-hundred and one migrated LDHs treated with minimally invasive endoscopic discectomy were analyzed independently by two experienced radiologists. Intraobserver and interobserver agreements were assessed by kappa statistics. The most common migrated LDH grade was grade 4 (30.94%; caudal, low-grade migration). Rostral and caudal migrations were more common in the upper and lower lumbar levels, respectively. Interobserver agreement in the grading of migrated LDH was good at both the first (kappa = 0.737) and second assessment (kappa = 0.657). The intraobserver agreement for reader 1 was very good (kappa = 0.827) and for reader 2 was good (kappa = 0.620). The current grading system for migrated LDH was found to be reliable and functional with good interobserver and intraobserver agreement. It may be useful in the interpretation of disc migration patterns and outcomes of various minimally invasive surgical procedures. (orig.)

  8. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Slaug, Bjørn; Brandt, Åse

    2010-01-01

    This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients and their home environments. The instrument was translated...... from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland and Iceland. This iterative process involved occupational therapists, architects, building engineers and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently from each other, collected data from 106 cases by means of the Nordic Housing...

  9. Pilot project as enabler?

    DEFF Research Database (Denmark)

    Neisig, Margit; Glimø, Helle; Holm, Catrine Granzow

    This article deals with a systemic perspective on transition. The field of study addressed is a pilot project as enabler of transition in a highly complex polycentric context. From a Luhmannian systemic approach, a framework is created to understand and address barriers of change occurred using...... pilot projects as enabler of transition. Aspects of how to create trust and deal with distrust during a transition are addressed. The transition in focus is the concept of New Public Management and how it is applied in the management of the Employment Service in Denmark. The transition regards...

  10. Radon depth migration

    International Nuclear Information System (INIS)

    Hildebrand, S.T.; Carroll, R.J.

    1993-01-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  11. Climate Change, Agriculture and Migration: A Survey

    Directory of Open Access Journals (Sweden)

    Chiara Falco

    2018-05-01

    Full Text Available This paper proposes a selective review of the classical economics-based literature on climate change and migration, focusing on the extent to which agriculture might be considered a key mediating channel linking climate change to migration. Overall, climate change is expected to have large and negative effects on the global economy. These effects are even more evident whenever the economic sector considered is the agricultural one, particularly in developing countries. Hence, migration can be viewed as a specific form of adaptation implemented by individuals and households, enabling them to cope, among other things, with weather-induced risk. We show that the importance of agriculture emerges from both plenty of micro-level country studies and relatively few macro-level analyses using cross-sectional data over longer time periods. Thus, policy actions targeted to sustainable agriculture and rural development can both help tackle the challenges posed by climate change and create opportunities in the face of growing migration issues. However, we also stress that much of the current evidence is based on statistical associations that have nothing to do with causal inferences. This calls for the use of a more structural approach and more sophisticated research designs, enabling the researchers to better discriminate among different mechanisms concurrently at work. In addition, further research should be addressed to the role played by food security, a complex dimension largely missing in the current debates on climate change and migration.

  12. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples bein...

  13. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, T.; Nygren, C.; Slaug, B.

    2014-01-01

    This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument was transla......This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument...... was translated from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland, and Iceland. This iterative process involved occupational therapists, architects, building engineers, and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently of each other, collected data from 106 cases by means of the Nordic Housing...

  14. Migration into art

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    This book addresses a topic of increasing importance to artists, art historians and scholars of cultural studies, migration studies and international relations: migration as a profoundly transforming force that has remodelled artistic and art institutional practices across the world. It explores...... contemporary art's critical engagement with migration and globalisation as a key source for improving our understanding of how these processes transform identities, cultures, institutions and geopolitics. The author explores three interwoven issues of enduring interest: identity and belonging, institutional...

  15. 3D cancer cell migration in a confined matrix

    Science.gov (United States)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  16. Regional Redistribution and Migration

    DEFF Research Database (Denmark)

    Manasse, Paolo; Schultz, Christian

    We study a model with free migration between a rich and a poor region. Since there is congestion, the rich region has an incentive to give the poor region a transfer in order to reduce immigration. Faced with free migration, the rich region voluntarily chooses a transfer, which turns out...... to be equal to that a social planner would choose. Provided migration occurs in equilibrium, this conclusion holds even in the presence of moderate mobility costs. However, large migration costs will lead to suboptimal transfers in the market solution...

  17. Entropy measures of collective cell migration

    Science.gov (United States)

    Whitby, Ariadne; Parrinello, Simona; Faisal, Aldo

    2015-03-01

    Collective cell migration is a critical process during tissue formation and repair. To this end there is a need to develop tools to quantitatively measure the dynamics of collective cell migration obtained from microscopy data. Drawing on statistical physics we use entropy of velocity fields derived from dense optic flow to quantitatively measure collective migration. Using peripheral nerve repair after injury as experimental system, we study how Schwann cells, guided by fibroblasts, migrate in cord-like structures across the cut, paving a highway for neurons. This process of emergence of organised behaviour is key for successful repair, yet the emergence of leader cells and transition from a random to ordered state is not understood. We find fibroblasts induce correlated directionality in migrating Schwann cells as measured by a decrease in the entropy of motion vector. We show our method is robust with respect to image resolution in time and space, giving a principled assessment of how various molecular mechanisms affect macroscopic features of collective cell migration. Finally, the generality of our method allows us to process both simulated cell movement and microscopic data, enabling principled fitting and comparison of in silico to in vitro. ICCS, Imperial College London & MRC Clinical Sciences Centre.

  18. Spatially enabled land administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    enabling of land administration systems managing tenure, valuation, planning, and development will allow the information generated by these activities to be much more useful. Also, the services available to private and public sectors and to community organisations should commensurably improve. Knowledge....... In other words: Good governance and sustainable development is not attainable without sound land administration or - more broadly – sound land management. The paper presents a land management vision that incorporates the benefits of ICT enabled land administration functions. The idea is that spatial...... the communication between administrative systems and also establish more reliable data due to the use the original data instead of copies. In Denmark, such governmental guidelines for a service-oriented ITarchitecture in support of e-government are recently adopted. Finally, the paper presents the role of FIG...

  19. Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Brandt, Åse

    Development and reliability testing of the Nordic Housing Enabler – an instrument for accessibility assessment of the physical housing. Tina Helle & Åse Brandt University of Lund, Health Sciences, Faculty of Medicine (SE) and University College Northern Jutland, Occupational Therapy department (DK......). Danish Centre for Assistive Technology. Abstract. For decades, accessibility to the physical housing environment for people with functional limitations has been of interest politically, professionally and for the users. Guidelines and norms on accessible housing design have gradually been developed......, however, the built environment shows serious deficits when it comes to accessibility. This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of inter-rater reliability, when used in occupational therapy practice. The instrument was translated from...

  20. The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives.

    Science.gov (United States)

    De Leenheer, Patrick; Mohapatra, Anushaya; Ohms, Haley A; Lytle, David A; Cushing, J M

    2017-01-07

    We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  2. Inhibition of proliferation, migration and invasion of human non ...

    African Journals Online (AJOL)

    caspase-9 is essential for activating the intrinsic pathway [13]. Both activated caspase-8 and caspase-9 can activate executioner caspases like caspase-3 which will activate death substrates and lead to cell death [16]. Caspase-3 is a key executor in the process of apoptosis and can hydrolyze specific protein substrates [17].

  3. Knockdown of Cripto-1 inhibits the proliferation, migration, invasion ...

    Indian Academy of Sciences (India)

    Ding Wu

    2017-07-04

    Jul 4, 2017 ... modes of therapy for PCa, because most cases of early PCa ... efforts, the cancer will inevitably reoccur aggressively, with ... therapeutic intervention of PCa in order to improve patient ... family of zinc-dependent endopeptidases, whose main ..... underlying strategy for anti-carcinoma treatment (Nam and.

  4. Hypoxia stimulates invasion and migration of human cervical cancer ...

    Indian Academy of Sciences (India)

    Hao Xu

    2017-07-25

    Jul 25, 2017 ... For experiments that involved hypoxic culture, HeLa cells were grown in ... in 1640 supplemented with 10% heat-inactivated fetal bovine serum; cells ... DMEM media with 10% FBS and the top chambers were see- ded with 5 9 104 ... with secondary antibodies at a 1:10,000 dilution at room temperature and.

  5. Thymol inhibits cell migration and invasion by downregulating the ...

    African Journals Online (AJOL)

    Monarda punctate and Origanum vulgare spp [4]. It has been widely ... effect of thymol on metastasis in human colorectal ..... A, Mahdouani K, Chaieb K. Antibacterial and efflux ... Antiproliferative Properties of the Essential Oils of. Satureja ...

  6. Samtidskunst og migration

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    2010-01-01

    "Samtidskunst og migration. En oversigt over faglitteraturen" er en forskningsoversigt der gør status over hvad der hidtil er skrevet inden for det kunsthistoriske område om vor tids billedkunst og migration som politisk, socialt og kulturelt fænomen, primært i forbindelse med immigration til...

  7. The Great Migration.

    Science.gov (United States)

    Trotter, Joe William, Jr.

    2002-01-01

    Describes the migration of African Americans in the United States and the reasons why African Americans migrated from the south. Focuses on issues, such as the effect of World War I, the opportunities offered in the north, and the emergence of a black industrial working class. (CMK)

  8. Migrating Art History

    DEFF Research Database (Denmark)

    Ørum, Tania

    2012-01-01

    Review of Hiroko Ikegami, The Great Migrator. Robert Rauschenberg and the Global Rise of American Art. Cambridge Mass., The MIT Press, 2010. 277 pages. ISBN 978-0-262-01425-0.......Review of Hiroko Ikegami, The Great Migrator. Robert Rauschenberg and the Global Rise of American Art. Cambridge Mass., The MIT Press, 2010. 277 pages. ISBN 978-0-262-01425-0....

  9. College Student Migration.

    Science.gov (United States)

    Fenske, Robert H.; And Others

    This study examines the background characteristics of two large national samples of first-time enrolled freshmen who (a) attended college within their state of residence but away from their home community, (b) migrated to a college in an adjacent state, (c) migrated to a college in a distant state, and (d) attended college in their home community.…

  10. Migration, klima og sundhed

    DEFF Research Database (Denmark)

    Tellier, Siri; Carballo, Manuel

    2009-01-01

    Many tentative connections have been postulated between migration and climate. This article points to rural-urban migration, particularly into low elevation urban slums prone to flooding as an issue needing urgent attention by health professionals. It also notes the no-man's land in which environ...

  11. Migration in Burkina Faso

    NARCIS (Netherlands)

    Wouterse, F.S.

    2007-01-01

    Migration plays an important role in development and as a strategy for poverty reduction. A recent World Bank investigation finds a significant positive relationship between international migration and poverty reduction at the country level (Adams and Page 2003). Burkina Faso, whose conditions for

  12. Migration, Narration, Identity

    DEFF Research Database (Denmark)

    Leese, Peter

    (co-editor with Carly McLaughlin and Wladyslaw Witalisz) This book presents articles resulting from joint research on the representations of migration conducted in connection with the Erasmus Intensive Programme entitled «Migration and Narration» taught to groups of international students over...

  13. Src Induces Podoplanin Expression to Promote Cell Migration*

    Science.gov (United States)

    Shen, Yongquan; Chen, Chen-Shan; Ichikawa, Hitoshi; Goldberg, Gary S.

    2010-01-01

    Nontransformed cells can force tumor cells to assume a normal morphology and phenotype by the process of contact normalization. Transformed cells must escape this process to become invasive and malignant. However, mechanisms underlying contact normalization have not been elucidated. Here, we have identified genes that are affected by contact normalization of Src-transformed cells. Tumor cells must migrate to become invasive and malignant. Src must phosphorylate the adaptor protein Cas (Crk-associated substrate) to promote tumor cell motility. We report here that Src utilizes Cas to induce podoplanin (Pdpn) expression to promote tumor cell migration. Pdpn is a membrane-bound extracellular glycoprotein that associates with endogenous ligands to promote tumor cell migration leading to cancer invasion and metastasis. In fact, Pdpn expression accounted for a major part of the increased migration seen in Src-transformed cells. Moreover, nontransformed cells suppressed Pdpn expression in adjacent Src-transformed cells. Of >39,000 genes, Pdpn was one of only 23 genes found to be induced by transforming Src activity and suppressed by contact normalization of Src-transformed cells. In addition, we found 16 genes suppressed by Src and induced by contact normalization. These genes encode growth factor receptors, adaptor proteins, and products that have not yet been annotated and may play important roles in tumor cell growth and migration. PMID:20123990

  14. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  15. The Globalisation of migration

    Directory of Open Access Journals (Sweden)

    Milan Mesić

    2002-04-01

    Full Text Available The paper demonstrates that contemporary international migration is a constitutive part of the globalisation process. After defining the concepts of globalisation and the globalisation of migration, the author discusses six key themes, linking globalisation and international migration (“global cities”, the scale of migration; diversification of migration flows; globalisation of science and education; international migration and citizenship; emigrant communities and new identities. First, in accordance with Saskia Sassen’s analysis, the author rejects the wide-spread notion that unqualified migrants have lost an (important role in »global cities«, i.e. in the centres of the new (global economy. Namely, the post-modern service sector cannot function without the support of a wide range of auxiliary unqualified workers. Second, a critical comparison with traditional overseas mass migration to the USA at the turn of the 19th and 20th centuries indicates that present international migration is, perhaps, less extensive – however it is important to take into consideration various limitations that previously did not exist, and thus the present migration potential is in really greater. Third, globalisation is more evident in a diversification of the forms of migration: the source area of migrants to the New World and Europe has expanded to include new regions in the world; new immigration areas have arisen (the Middle East, new industrial countries of the Far East, South Europe; intra-regional migration has intensified. Forth, globalisation is linked to an increased migration of experts and the pessimistic notion of a brain drain has been replaced by the optimistic idea of a brain gain. Fifth, contemporary international migration has been associated with a crisis of the national model of citizenship. Sixth, the interlinking of (migrant cultural communities regardless of distance and the physical proximity of cultural centres (the

  16. Visualizing Human Migration Trhough Space and Time

    Science.gov (United States)

    Zambotti, G.; Guan, W.; Gest, J.

    2015-07-01

    Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.

  17. Malaysia and forced migration

    Directory of Open Access Journals (Sweden)

    Arzura Idris

    2012-06-01

    Full Text Available This paper analyzes the phenomenon of “forced migration” in Malaysia. It examines the nature of forced migration, the challenges faced by Malaysia, the policy responses and their impact on the country and upon the forced migrants. It considers forced migration as an event hosting multifaceted issues related and relevant to forced migrants and suggests that Malaysia has been preoccupied with the issue of forced migration movements. This is largely seen in various responses invoked from Malaysia due to “south-south forced migration movements.” These responses are, however, inadequate in terms of commitment to the international refugee regime. While Malaysia did respond to economic and migration challenges, the paper asserts that such efforts are futile if she ignores issues critical to forced migrants.

  18. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    Science.gov (United States)

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    experience that sharing information, including invasive species dispersal mechanisms and rates, impacts, and prevention and control strategies, enables resource managers and decision-makers to mount a more effective response to biological invasions.

  19. EnableATIS strategy assessment.

    Science.gov (United States)

    2014-02-01

    Enabling Advanced Traveler Information Systems (EnableATIS) is the traveler information component of the Dynamic Mobility Application (DMA) program. The objective of : the EnableATIS effort is to foster transformative traveler information application...

  20. Enabling Digital Literacy

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Georgsen, Marianne

    2010-01-01

    There are some tensions between high-level policy definitions of “digital literacy” and actual teaching practice. We need to find workable definitions of digital literacy; obtain a better understanding of what digital literacy might look like in practice; and identify pedagogical approaches, which...... support teachers in designing digital literacy learning. We suggest that frameworks such as Problem Based Learning (PBL) are approaches that enable digital literacy learning because they provide good settings for engaging with digital literacy. We illustrate this through analysis of a case. Furthermore......, these operate on a meso-level mediating between high-level concepts of digital literacy and classroom practice....

  1. CtOS Enabler

    OpenAIRE

    Crespo Cepeda, Rodrigo; El Yamri El Khatibi, Meriem; Carrera García, Juan Manuel

    2015-01-01

    Las Smart Cities son, indudablemente, el futuro próximo de la tecnología al que nos acercamos cada día, lo que se puede observar en la abundancia de dispositivos móviles entre la población, que informatizan la vida cotidiana mediante el uso de la geolocalización y la información. Pretendemos unir estos dos ámbitos con CtOS Enabler para crear un estándar de uso que englobe todos los sistemas de Smart Cities y facilite a los desarrolladores de dicho software la creación de nuevas herramientas. ...

  2. Migration in Deltas: An Integrated Analysis

    Science.gov (United States)

    Nicholls, Robert J.; Hutton, Craig W.; Lazar, Attila; Adger, W. Neil; Allan, Andrew; Arto, Inaki; Vincent, Katharine; Rahman, Munsur; Salehin, Mashfiqus; Sugata, Hazra; Ghosh, Tuhin; Codjoe, Sam; Appeaning-Addo, Kwasi

    2017-04-01

    Deltas and low-lying coastal regions have long been perceived as vulnerable to global sea-level rise, with the potential for mass displacement of exposed populations. The assumption of mass displacement of populations in deltas requires a comprehensive reassessment in the light of present and future migration in deltas, including the potential role of adaptation to influence these decisions. At present, deltas are subject to multiple drivers of environmental change and often have high population densities as they are accessible and productive ecosystems. Climate change, catchment management, subsidence and land cover change drive environmental change across all deltas. Populations in deltas are also highly mobile, with significant urbanization trends and the growth of large cities and mega-cities within or adjacent to deltas across Asia and Africa. Such migration is driven primarily by economic opportunity, yet environmental change in general, and climate change in particular, are likely to play an increasing direct and indirect role in future migration trends. The policy challenges centre on the role of migration within regional adaptation strategies to climate change; the protection of vulnerable populations; and the future of urban settlements within deltas. This paper reviews current knowledge on migration and adaptation to environmental change to discern specific issues pertinent to delta regions. It develops a new integrated methodology to assess present and future migration in deltas using the Volta delta in Ghana, Mahanadi delta in India and Ganges-Brahmaputra-Meghna delta across India and Bangladesh. The integrated method focuses on: biophysical changes and spatial distribution of vulnerability; demographic changes and migration decision-making using multiple methods and data; macro-economic trends and scenarios in the deltas; and the policies and governance structures that constrain and enable adaptation. The analysis is facilitated by a range of

  3. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  4. Migration and AIDS.

    Science.gov (United States)

    1998-01-01

    This article presents the perspectives of UNAIDS and the International Organization for Migration (IOM) on migration and HIV/AIDS. It identifies research and action priorities and policy issues, and describes the current situation in major regions of the world. Migration is a process. Movement is enhanced by air transport, rising international trade, deregulation of trade practices, and opening of borders. Movements are restricted by laws and statutes. Denial to freely circulate and obtain asylum is associated with vulnerability to HIV infections. A UNAIDS policy paper in 1997 and IOM policy guidelines in 1988 affirm that refugees and asylum seekers should not be targeted for special measures due to HIV/AIDS. There is an urgent need to provide primary health services for migrants, voluntary counseling and testing, and more favorable conditions. Research is needed on the role of migration in the spread of HIV, the extent of migration, availability of health services, and options for HIV prevention. Research must be action-oriented and focused on vulnerability to HIV and risk taking behavior. There is substantial mobility in West and Central Africa, economic migration in South Africa, and nonvoluntary migration in Angola. Sex workers in southeast Asia contribute to the spread. The breakup of the USSR led to population shifts. Migrants in Central America and Mexico move north to the US where HIV prevalence is higher.

  5. Differential migration and proliferation of geometrical ensembles of cell clusters

    International Nuclear Information System (INIS)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-01-01

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  6. Labor migration in Asia.

    Science.gov (United States)

    Martin, P L

    1991-01-01

    "A recent conference sponsored by the United Nations Center for Regional Development (UNCRD) in Nagoya, Japan examined the growing importance of labor migration for four major Asian labor importers (Japan, Hong Kong, Malaysia, and Singapore) and five major labor exporters (Bangladesh, Korea, Pakistan, Philippines, and Thailand).... The conference concluded that international labor migration would increase within Asia because the tight labor markets and rising wages which have stimulated Japanese investment in other Asian nations, for example, have not been sufficient to eliminate migration push and pull forces...." excerpt

  7. Doping front migration in intrinsically conductive polymers and its electrochemical modulation by a separate electrode

    International Nuclear Information System (INIS)

    Rahmanian, Afsaneh; Knoll, Meinhard

    2012-01-01

    Highlights: ► We modify the doping front migration process. ► The migration velocity is controlled by a separate electrode. ► The process may be used in “best use before” labels. - Abstract: We demonstrate a new method of modifying the doping front migration process in multilayer structures, enabling the control of migration velocity. The presence of two interfaces in contact with the migration layer strongly affects the migration mechanism. Electrochemical switching of an electrode at one interface may be used to control the chemical doping front migration at the second interface. The process may be used to produce ultralow-cost devices acting as electronic “best use before” labels on food and drink or “use-by” labels on drugs. Control of the migration velocity may be used as a method for weighting storage conditions (i.e. opening of a package during the measurement period increases the migration velocity).

  8. Enabling graphene nanoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  9. Neuronal Migration Disorders

    Science.gov (United States)

    ... Understanding Sleep The Life and Death of a Neuron Genes At Work In The Brain Order Publications ... birth defects caused by the abnormal migration of neurons in the developing brain and nervous system. In ...

  10. Migration og etnicitet

    DEFF Research Database (Denmark)

    Christiansen, Connie Carøe

    2004-01-01

    Migration og etnicitet er aktuelle og forbundne fænomener, idet migration øger berøringsfladerne mellem befolkningsgrupper. Etniciteter formes i takt med at grænser drages imellem disse grupper. Imod moderniserings-teoriernes forventning forsvandt etnicitet ikke som en traditionel eller oprindelig...... måde at skabe tilhørsforhold på; globalt set fremstår vor tid istedet som en "migrationens tidsalder", der tilsyneladende også er en tidsalder, hvor kulturelle særtræk, i form af etnicitet, udgør vigtige linjer, hvorefter grupper skilller sig ud fra hinanden. Både migration og etnicitet bringer fokus...... den finder sted i modtagerlandet, men nyere perspektiver på migration, som begreber om medborgerskab, transnationalisme og diaspora er eksponenter for, søger udover den nationalstatslige ramme og inddrager konsekvenserne af migrationen for afsenderlande....

  11. Indonesia's migration transition.

    Science.gov (United States)

    Hugo, G

    1995-01-01

    This article describes population movements in Indonesia in the context of rapid and marked social and economic change. Foreign investment in Indonesia is increasing, and global mass media is available to many households. Agriculture is being commercialized, and structural shifts are occurring in the economy. Educational levels are increasing, and women's role and status are shifting. Population migration has increased over the decades, both short and long distance, permanent and temporary, legal and illegal, and migration to and between urban areas. This article focuses specifically on rural-to-urban migration and international migration. Population settlements are dense in the agriculturally rich inner areas of Java, Bali, and Madura. Although the rate of growth of the gross domestic product was 6.8% annually during 1969-94, the World Bank ranked Indonesia as a low-income economy in 1992 because of the large population size. Income per capita is US $670. Indonesia is becoming a large exporter of labor to the Middle East, particularly women. The predominance of women as overseas contract workers is changing women's role and status in the family and is controversial due to the cases of mistreatment. Malaysia's high economic growth rate of over 8% per year means an additional 1.3 million foreign workers and technicians are needed. During the 1980s urban growth increased at a very rapid rate. Urban growth tended to occur along corridors and major transportation routes around urban areas. It is posited that most of the urban growth is due to rural-to-urban migration. Data limitations prevent an exact determination of the extent of rural-to-urban migration. More women are estimated to be involved in movements to cities during the 1980s compared to the 1970s. Recruiters and middlemen have played an important role in rural-to-urban migration and international migration.

  12. Repeat migration and disappointment.

    Science.gov (United States)

    Grant, E K; Vanderkamp, J

    1986-01-01

    This article investigates the determinants of repeat migration among the 44 regions of Canada, using information from a large micro-database which spans the period 1968 to 1971. The explanation of repeat migration probabilities is a difficult task, and this attempt is only partly successful. May of the explanatory variables are not significant, and the overall explanatory power of the equations is not high. In the area of personal characteristics, the variables related to age, sex, and marital status are generally significant and with expected signs. The distance variable has a strongly positive effect on onward move probabilities. Variables related to prior migration experience have an important impact that differs between return and onward probabilities. In particular, the occurrence of prior moves has a striking effect on the probability of onward migration. The variable representing disappointment, or relative success of the initial move, plays a significant role in explaining repeat migration probabilities. The disappointment variable represents the ratio of actural versus expected wage income in the year after the initial move, and its effect on both repeat migration probabilities is always negative and almost always highly significant. The repeat probabilities diminish after a year's stay in the destination region, but disappointment in the most recent year still has a bearing on the delayed repeat probabilities. While the quantitative impact of the disappointment variable is not large, it is difficult to draw comparisons since similar estimates are not available elsewhere.

  13. X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex.

    Science.gov (United States)

    Imaizumi, Hiromasa; Sato, Katsutoshi; Nishihara, Asuka; Minami, Kazumasa; Koizumi, Masahiko; Matsuura, Nariaki; Hieda, Miki

    2018-04-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell