WorldWideScience

Sample records for enabled safeguards assessment

  1. Simulation enabled safeguards assessment methodology

    International Nuclear Information System (INIS)

    Bean, Robert; Bjornard, Trond; Larson, Tom

    2007-01-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wire-frame construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed. (authors)

  2. Simulation Enabled Safeguards Assessment Methodology

    International Nuclear Information System (INIS)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-01-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment Methodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed

  3. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  4. Enabling International Safeguards Research and Development in the United States

    International Nuclear Information System (INIS)

    Dwight, John E.; Schanfein, Mark J.; Bjornard, Trond A.

    2009-01-01

    Idaho National Laboratory (INL) is the lead laboratory in nuclear energy research and development within the U.S. Department of Energy national laboratory complex. INL is tasked with the advancement of nuclear energy research and development, and leadership in the renaissance of nuclear power globally. INL scientists have been central to the assessment of needs and the integration of technical programs aimed at the world-wide growth of nuclear power. One of the grand challenges of the nuclear energy resurgence is nuclear nonproliferation. Nonproliferation technology development is key to meeting this challenge. The needed advances in nonproliferation technologies are being made more difficult by the growing gap between increasing demands for nuclear materials to support technology development, and reduced availability of these materials. The gap is caused by the reduction, consolidation and more stringent lockdown of nuclear materials, made necessary by heightened and evolving security concerns, in the face of increased demand for materials to support technology development. Ironically, the increased demand for materials for technology development is made necessary by these same security concerns. The situation will continue to worsen if safeguards and security budgets remain limited for the International Atomic Energy Agency (IAEA) and many member states, while growth in global nuclear energy becomes a reality. Effective U.S. leadership in the closing of this gap is vital to homeland security and global stability. INL has taken positive steps, described in this paper, to close this gap by reestablishing a viable base for the development, testing and demonstration of safeguards and security technologies. Key attributes of this technology development base are (1) the availability of a wide variety of special nuclear materials in forms that allow for enhanced accessibility; (2) ease of access by U.S. government, national laboratory, industry and academic institution

  5. DOE assessment guide for safeguards and security

    International Nuclear Information System (INIS)

    Bennett, C.A.; Christorpherson, W.E.; Clark, R.J.; Martin, F.; Hodges, Jr.

    1978-04-01

    DOE operations are periodically assessed to assure that special nuclear material, restricted data, and other classified information and DOE facilities are executed toward continuing the effectiveness of the International Atomic Energy Agency safeguards. A guide to describe the philosophy and mechanisms through which these assessments are conducted is presented. The assessment program is concerned with all contractor, field office, and Headquarters activities which are designed to assure that safeguards and security objectives are reached by contractors at DOE facilities and operations. The guide takes into account the interlocking relationship between many of the elements of an effective safeguards and security program. Personnel clearance programs are a part of protecting classified information as well as nuclear materials. Barriers that prevent or limit access may contribute to preventing theft of government property as well as protecting against sabotage. Procedures for control and surveillance need to be integrated with both information systems and procedures for mass balance accounting. Wherever possible, assessment procedures have been designed to perform integrated inspection, evaluation, and follow-up for the safeguards and security program

  6. Probabilistic assessment of nuclear safety and safeguards

    International Nuclear Information System (INIS)

    Higson, D.J.

    1987-01-01

    Nuclear reactor accidents and diversions of materials from the nuclear fuel cycle are perceived by many people as particularly serious threats to society. Probabilistic assessment is a rational approach to the evaluation of both threats, and may provide a basis for decisions on appropriate actions to control them. Probabilistic method have become standard tools used in the analysis of safety, but there are disagreements on the criteria to be applied when assessing the results of analysis. Probabilistic analysis and assessment of the effectiveness of nuclear material safeguards are still at an early stage of development. (author)

  7. Safeguards

    International Nuclear Information System (INIS)

    Carchon, R.

    1998-01-01

    Safeguards activities at the Belgian Nuclear Research Centre SCK/CEN answer internal needs, support the Belgian authorities, and support the IAEA. The main objectives of activities concerning safeguards are: (1) to contribute to a prevention of the proliferation of nuclear materials by maintaining an up-to-date expertise in the field of safeguards and providing advice and guidance as well as scientific and technical support to the Belgian authorities and nuclear industry; (2) to improve the qualification and quantification of nuclear materials via nondestructive assay. The main achievements for 1997 are described

  8. Proliferation Resistance and Safeguards by Design: The Safeguardability Assessment Tool Provided by the INPRO Collaborative Project ''INPRO'' (Proliferation Resistance and Safeguardability Assessment)

    International Nuclear Information System (INIS)

    Haas, E.; Chang, H.-L.; Phillips, J.R.; Listner, C.

    2015-01-01

    Since the INPRO Collaborative Project on Proliferation Resistance and Safeguardability Assessment Tools (PROSA) was launched in 2011, Member State experts have worked with the INPRO Section and the IAEA Department of Safeguards to develop a revised methodology for self-assessment of sustainability in the area of proliferation resistance of a nuclear energy system (NES). With the common understanding that there is ''no proliferation resistance without safeguards'' the revised approach emphasizes the evaluation of a new 'User Requirement' for ''safeguardability'', that combines metrics of effective and efficient implementation of IAEA Safeguards including ''Safeguards-by-Design'' principles. The assessment with safeguardability as the key issue has been devised as a linear process evaluating the NES against a ''Basic Principle'' in the area of proliferation resistance, answering fundamental questions related to safeguards: 1) Do a State's legal commitments, policies and practices provide credible assurance of the exclusively peaceful use of the NES, including a legal basis for verification activities by the IAEA? 2) Does design and operation of the NES facilitate the effective and efficient implementation of IAEA safeguards? To answer those questions, a questionnaire approach has been developed that clearly identifies gaps and weaknesses. Gaps include prospects for improvements and needs for research and development. In this context, the PROSA approach assesses the safeguardability of a NES using a layered ''Evaluation Questionnaire'' that defines Evaluation Parameters (EP), EP-related questions, Illustrative Tests and Screening Questions to present and structure the evidence of findings. An integral part of the assessment process is Safeguards-by-Design, the identification of potential diversion, misuse and concealment strategies (coarse diversion path

  9. Reactor safeguards system assessment and design. Volume I

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Daniel, S.L.; Bennett, H.A.; Hulme, B.L.

    1978-06-01

    This report describes the development and application of a methodology for evaluating the effectiveness of nuclear power reactor safeguards systems. Analytic techniques are used to identify the sabotage acts which could lead to release of radioactive material from a nuclear power plant, to determine the areas of a plant which must be protected to assure that significant release does not occur, to model the physical plant layout, and to evaluate the effectiveness of various safeguards systems. The methodology was used to identify those aspects of reactor safeguards systems which have the greatest effect on overall system performance and which, therefore, should be emphasized in the licensing process. With further refinements, the methodology can be used by the licensing reviewer to aid in assessing proposed or existing safeguards systems

  10. Assessment of accountability and safeguards efficiencies

    International Nuclear Information System (INIS)

    McCormick, N.J.; Erdmann, R.C.

    1975-01-01

    Accountability and safeguards problems fall into the class of problems of searches for an anomaly, which in this case happens to be either an undesired amount of special nuclear material (SNM) in a specimen or the person or parcel which possesses SNM which is being removed surreptitiously. In such searches, principles from information theory can be used to relate the relative efficiency of the search itself to the relative efficiency of the detector. Such correlations are examined and provide some insight into the improvement of the search potentially available from an altered detector efficiency. Example calculations are presented

  11. Nuclear safeguards in challenging times [Experts on nuclear safeguards and verification assess the global picture

    International Nuclear Information System (INIS)

    Park, W.S.; Hillerman, J.

    2007-01-01

    Meeting at the IAEA's International Safeguards Symposium in October 2006, more than 500 experts from 60-plus countries and organizations addressed current and future challenges related to safeguards concepts, approaches, technologies, and experience. Sessions addressed five main issues driving developments: Current challenges to the safeguards system; Further strengthening safeguards practices and approaches; Improving the collection and analysis of safeguards information; Advances in safeguards techniques and technology; and Future challenges. Every four to five years, the IAEA brings together safeguards experts from all over the world at international symposia. In October 2001, they met in the shadow of 9/11 and the symposium included a special session on the prevention of nuclear terrorism

  12. EnableATIS strategy assessment.

    Science.gov (United States)

    2014-02-01

    Enabling Advanced Traveler Information Systems (EnableATIS) is the traveler information component of the Dynamic Mobility Application (DMA) program. The objective of : the EnableATIS effort is to foster transformative traveler information application...

  13. Assessment of Process Monitoring Techniques for Pyro processing Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Kim, C. M.; Yim, M. S. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    PM technologies can be used to inspect normal/off-normal operation with various data obtained from facility operations in real time to meet safeguards objectives. To support the use of PM technologies for the purpose of pyroprocessing safeguards, this study aims at identifying technologies that could be useful for PM purposes and evaluating their applicability to a pyroprocessing facility. This paper describes the development of the assessment criteria to evaluate the practicality of candidate technologies for PM based on a variety of requirements and considerations. By using the developed assessment criteria, application of technologies in the oxide reduction process was assessed as a test case example. Research is necessary to validate the criteria according to the needs of each unit process, perhaps based on expert elicitation and/or international collaboration with other expert organization(s). These advanced assessment criteria will serve a useful guideline for selecting appropriate candidate PM technologies for pyroprocessing safeguards. Based on the results of using these evaluation criteria, the optimum technologies can be successfully selected for use at a large scale pyroprocessing facility.

  14. Safeguards research: assessing material control and accounting systems

    International Nuclear Information System (INIS)

    Maimoni, A.

    1977-01-01

    The Laboratory is working for the Nuclear Regulatory Commission to improve the safeguarding of special nuclear material at nuclear fuel processing facilities, to provide a basis for improved regulations for material control and accounting systems, and to develop an assessment procedure for verifying compliance with these regulations. Early work included setting up a hierarchy of safeguard objectives and a set of measurable parameters with which systems performance to meet those objectives can be measured. Present work has focused on developing a computerized assessment procedure. We have also completed a test bed (based on a plutonium nitrate storage area) to identify and correct problems in the procedure and to show how this procedure can be used to evaluate the performance of an applicant's material control and accounting system

  15. A Monte Carlo based spent fuel analysis safeguards strategy assessment

    International Nuclear Information System (INIS)

    Fensin, Michael L.; Tobin, Stephen J.; Swinhoe, Martyn T.; Menlove, Howard O.; Sandoval, Nathan P.

    2009-01-01

    Safeguarding nuclear material involves the detection of diversions of significant quantities of nuclear materials, and the deterrence of such diversions by the risk of early detection. There are a variety of motivations for quantifying plutonium in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguards nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from spent fuel; however, no single NDA technique can, in isolation, quantify elemental plutonium and other actinides of interest in spent fuel. A study has been undertaken to determine the best integrated combination of cost effective techniques for quantifying plutonium mass in spent fuel for nuclear safeguards. A standardized assessment process was developed to compare the effective merits and faults of 12 different detection techniques in order to integrate a few techniques and to down-select among the techniques in preparation for experiments. The process involves generating a basis burnup/enrichment/cooling time dependent spent fuel assembly library, creating diversion scenarios, developing detector models and quantifying the capability of each NDA technique. Because hundreds of input and output files must be managed in the couplings of data transitions for the different facets of the assessment process, a graphical user interface (GUI) was development that automates the process. This GUI allows users to visually create diversion scenarios with varied replacement materials, and generate a MCNPX fixed source detector assessment input file. The end result of the assembly library assessment is to select a set of common source terms and diversion scenarios for quantifying the capability of each of the 12 NDA techniques. We present here the generalized

  16. A Monte Carlo Based Spent Fuel Analysis Safeguards Strategy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fensin, Michael L.; Tobin, Stephen J.; Swinhoe, Martyn T.; Menlove, Howard O.; Sandoval, Nathan P. [Los Alamos National Laboratory, E540, Los Alamos, NM 87545 (United States)

    2009-06-15

    Safeguarding nuclear material involves the detection of diversions of significant quantities of nuclear materials, and the deterrence of such diversions by the risk of early detection. There are a variety of motivations for quantifying plutonium in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguards nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from spent fuel; however, no single NDA technique can, in isolation, quantify elemental plutonium and other actinides of interest in spent fuel. A study has been undertaken to determine the best integrated combination of cost effective techniques for characterizing Pu mass in spent fuel for nuclear safeguards. A standardized assessment process was developed to compare the effective merits and faults of 12 different detection techniques in order to integrate a few techniques and to down-select among the techniques in preparation for experiments. The process involves generating a basis burnup/enrichment/cooling time dependent spent fuel assembly library, determining and identifying limiting diversion scenarios, developing detector models and quantifying the capability of each NDA technique. Because hundreds of input and output files must be managed in the couplings of data transitions for the different facets of the assessment process, a graphical user interface (GUI) was development that automates the process. This GUI allows users to visually create diversion scenarios with varied replacement materials, and generate a MCNPX fixed source detector assessment input file. The end result of the assembly library assessment is to select a set of common source terms and diversion scenarios for quantifying the capability of each of the 12 NDA techniques. We present here

  17. Assessment of ambient-temperature, high-resolution detectors for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Ruhter, W.D.; McQuaid, J.H.; Lavietes, A.

    1993-01-01

    High-resolution, gamma- and x-ray spectrometry are used routinely in nuclear safeguards verification measurements of plutonium and uranium in the field. These measurements are now performed with high-purity germanium (HPGe) detectors that require cooling liquid-nitrogen temperatures, thus limiting their utility in field and unattended safeguards measurement applications. Ambient temperature semiconductor detectors may complement HPGe detectors for certain safeguards verification applications. Their potential will be determined by criteria such as their performance, commercial availability, stage of development, and costs. We have conducted as assessment of ambient temperature detectors for safeguards measurement applications with these criteria in mind

  18. Assessing and Promoting the Level of Safeguards Culture in Hungarian Nuclear Facilities

    International Nuclear Information System (INIS)

    Stefanka, Z.; Vincze, A.

    2015-01-01

    The Hungarian SSAC has introduced a comprehensive domestic safeguards verification system consisting of regular comprehensive SSAC verifications in the whole lifetime of the facilities. The main goals of the comprehensive verification system are: (i) to assess the facility's safeguards system compliance with the relevant national legislation and recommendations, (ii) to assess the activities of the facility aimed at maintaining and further developing its safeguards system, and, (iii) to revise validity of data and information previously provided by the facility subject to safeguards licencing procedures. The maintenance level of the system as well as the available knowledge on the possible needs for change reflect the top management's awareness of this issue and is a good indicator of the present and future effectiveness of the facility level safeguards system and the level of safeguards culture. The structure, preparation, conduction, documentation and initial experiences of the comprehensive safeguards verification system is introduced in the paper. Additionally, HAEA has just introduced a safeguards indexing method for evaluation the safeguards culture at Hungarian nuclear facilities. The main goal of indexing method and the evaluated parameters are also shown in the paper. (author)

  19. A 3S Risk ?3SR? Assessment Approach for Nuclear Power: Safety Security and Safeguards.

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Robert; Reinhardt, Jason Christian; Wheeler, Timothy A.; Williams, Adam David

    2017-11-01

    Safety-focused risk analysis and assessment approaches struggle to adequately include malicious, deliberate acts against the nuclear power industry's fissile and waste material, infrastructure, and facilities. Further, existing methods do not adequately address non- proliferation issues. Treating safety, security, and safeguards concerns independently is inefficient because, at best, it may not take explicit advantage of measures that provide benefits against multiple risk domains, and, at worst, it may lead to implementations that increase overall risk due to incompatibilities. What is needed is an integrated safety, security and safeguards risk (or "3SR") framework for describing and assessing nuclear power risks that can enable direct trade-offs and interactions in order to inform risk management processes -- a potential paradigm shift in risk analysis and management. These proceedings of the Sandia ePRA Workshop (held August 22-23, 2017) are an attempt to begin the discussions and deliberations to extend and augment safety focused risk assessment approaches to include security concerns and begin moving towards a 3S Risk approach. Safeguards concerns were not included in this initial workshop and are left to future efforts. This workshop focused on four themes in order to begin building out a the safety and security portions of the 3S Risk toolkit: 1. Historical Approaches and Tools 2. Current Challenges 3. Modern Approaches 4. Paths Forward and Next Steps This report is organized along the four areas described above, and concludes with a summary of key points. 2 Contact: rforres@sandia.gov; +1 (925) 294-2728

  20. Assess How Changes in Fuel Cycle Operation Impact Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Adigun, Babatunde John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division

    2016-10-31

    Since the beginning of commercial nuclear power generation in the 1960s, the ability of researchers to understand and control the isotopic content of spent fuel has improved. It is therefore not surprising that both fuel assembly design and fuel assembly irradiation optimization have improved over the past 50+ years. It is anticipated that the burnup and isotopics of the spent fuel should exhibit less variation over the decades as reactor operators irradiate each assembly to the optimum amount. In contrast, older spent fuel is anticipated to vary more in burnup and resulting isotopics for a given initial enrichment. Modern fuel therefore should be more uniform in composition, and thus, measured safeguards results should be easier to interpret than results from older spent fuel. With spent fuel ponds filling up, interim and long-­term storage of spent fuel will need to be addressed. Additionally after long periods of storage, spent fuel is no longer self-­protecting and, as such, the IAEA will categorize it as more attractive; in approximately 20 years many of the assemblies from early commercial cores will no longer be considered self-­protecting. This study will assess how more recent changes in the reactor operation could impact the interpretation of safeguards measurements. The status quo for spent fuel assay in the safeguards context is that the overwhelming majority of spent fuel assemblies are not measured in a quantitative way except for those assemblies about to be loaded into a difficult or impossible to access location (dry storage or, in the future, a repository). In other words, when the assembly is still accessible to a state actor, or an insider, when it is cooling in a pool, the inspectorate does not have a measurement database that could assist them in re-­verifying the integrity of that assembly. The spent fuel safeguards regime would be strengthened if spent fuel assemblies were measured from discharge to loading into a difficult or impossible

  1. Integrated Safeguards and Security Management Self-Assessment 2004

    Energy Technology Data Exchange (ETDEWEB)

    Lunford, Dan; Ramsey, Dwayne

    2005-04-01

    In 2002 Ernest Orlando Lawrence Berkeley National Laboratory deployed the first Integrated Safeguards and Security Management (ISSM) Self-Assessment process, designed to measure the effect of the Laboratory's ISSM efforts. This process was recognized by DOE as a best practice and model program for self-assessment and training. In 2004, the second Self-Assessment was launched. The cornerstone of this process was an employee survey that was designed to meet several objectives: (1) Ensure that Laboratory assets are protected. (2) Provide a measurement of the Laboratory's current security status that can be compared against the 2002 Self-Assessment baseline. (3) Educate all Laboratory staff about security responsibilities, tools, and practices. (4) Provide security staff with feedback on the effectiveness of security programs. (5) Provide line management with the information they need to make informed decisions about security. This 2004 Self Assessment process began in July 2004 with every employee receiving an information packet and instructions for completing the ISSM survey. The Laboratory-wide survey contained questions designed to measure awareness and conformance to policy and best practices. The survey response was excellent--90% of Berkeley Lab employees completed the questionnaire. ISSM liaisons from each division followed up on the initial survey results with individual employees to improve awareness and resolve ambiguities uncovered by the questionnaire. As with the 2002 survey, the Self-Assessment produced immediate positive results for the ISSM program and revealed opportunities for longer-term corrective actions. Results of the questionnaire provided information for organizational profiles and an institutional summary. The overall level of security protection and awareness was very high--often above 90%. Post-survey work by the ISSM liaisons and line management consistently led to improved awareness and metrics, as shown by a comparison of

  2. Case study application of the IAEA safeguards assessment methodology to a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Swartz, J.; McDaniel, T.

    1981-01-01

    Science Applications, Inc. has prepared a case study illustrating the application of an assessment methodology to an international system for safeguarding mixed oxide (MOX) fuel fabrication facilities. This study is the second in a series of case studies which support an effort by the International Atomic Energy Agency (IAEA) and an international Consultant Group to develop a methodology for assessing the effectiveness of IAEA safeguards. 3 refs

  3. Proliferation Resistance and Safeguardability Assessment of a SFR Metal Fuel Manufacturing Facility (SFMF) using the INPRO Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. L.; Ko, W. I.; Park, S. H.; Kim, H. D.; Park, G. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To illustrate the proposed Prosta process, to demonstrate its usefulness, and to provide input to a revision of the INPRO manual in the area of proliferation resistance, a case study has been carried out with a conceptually designed sodium cooled fast reactor (SFR) metal fuel manufacturing facility (SFMF), representing novel technology still in the conceptual design phase. A coarse acquisition path analysis has been carried out of the SFMF to demonstrate the assessment process with identified different target materials. The case study demonstrates the usefulness of the proposed PROSA PR assessment process and the interrelationship of the PR assessment with the safeguards-by-design process, identifying potential R and D needs. The PROSA process has been applied to a conceptually designed SFMF, representing novel technology that is still in the conceptual design phase at KAERI. The case study demonstrated that the proposed PROSA process is simpler and easier to perform than the original INPRO methodology and can be applied from the early stage of design showing the relationship of PR assessment to the safeguard-by-design process. New evaluation questionnaire for UR1 is more logical and comprehensive, and provides the legal basis enabling the IAEA to achieve its safeguards objectives including the detection of undeclared nuclear materials and activities. NES information catalogue replacing UR2 was a useful modification and supports safeguardability assessment at the NES and facility level. The proposed PROSA process is also capable to identify strengths and weaknesses of a system in the area of proliferation resistance in a generally understandable form, including R and D gaps that need to be filled in order to meet the criteria for proliferation resistance of a nuclear energy system.

  4. Beyond integrated safeguards: Performance-based assessments for future nuclear controls

    International Nuclear Information System (INIS)

    Pilat, Joseph F.; Budlong Sylvester, Kory W.

    2001-01-01

    Full text: In the future, if the nuclear nonproliferation and arms control agendas are to advance, they will likely become increasingly seen as parallel undertakings with the objective of comprehensive cradle-to-grave controls over nuclear materials and possibly even warheads removed from defense programs along with materials in civilian use. This 'back to the future' prospect was envisioned in the Acheson-Lillienthal Report and the Baruch Plan, and more modestly in the Atoms-for-Peace Proposal. Unlike the grand plans of the early nuclear years, today's and tomorrow's undertakings will more likely consist of a series of incremental steps with the goal of expanding nuclear controls. These steps will be undertaken at a time of fundamental change in the IAEA safeguards system, and they will be influenced by those changes in profound ways. This prospective influence needs to be taken into account as the IAEA develops and implements integrated safeguards, including its efforts to establish new safeguards criteria, undertake technological and administrative improvements in safeguards, implement credible capabilities for the detection of undeclared nuclear facilities and activities and, perhaps, provide for a more intensive involvement in applying safeguards in new roles such as the verification of a Fissile Material Cutoff Treaty. Performance-based criteria offer one promising way to address the effectiveness of integrated safeguards and to provide a common means of assessing the other key areas of a comprehensive approach to nuclear controls as these develop independently and to the extent that they are coordinated in the future. (author)

  5. Research on seal control systems for international nuclear safeguard and the vulnerability assessment on the seals

    International Nuclear Information System (INIS)

    Zhang Hongjian; Liu Tianshu; Cao Fangfang; Xu Chunyan

    2014-01-01

    Safeguard seals, also called Tamper-indicating devices (TIDs), are widely used to detect tampering or unauthorized entry in the international safeguard and security systems, Seal control systems consist of seal implementing plan, seal development and the vulnerability assessment on tbe seals, effective implementing procedures and methods of the seals. The vulnerability assessment contents of safeguard seals, thermo-shrinked film seals being as an example, and seals control systems in the implementation program are researched. The seal control systems discuss task assignment, seals management flow and seals program data flow to promote applying effectively seals. The vulnerability assessment program of seals studies assurance level to some different tampering techniques and measures. The researches must promote utilizing seals effectively for nuclear security, non-proliferation of nuclear weapons, radioactive waste management, and the nuclear material accounting and control. (authors)

  6. Safeguards effectiveness criteria and safeguards efficiency

    International Nuclear Information System (INIS)

    Stein, G.; Canty, M.J.; Knapp, U.; Munch, E.

    1983-01-01

    A critical examination of current tendencies in quantification, assessment and enhancement of the effectiveness of international safeguards is undertaken. It is suggested that the present narrow and overly technical interpretation of some elements of international safeguards is both impractical and detrimental. A pragmatic, case-bycase approach is called for to implement the provisions of safeguards agreements in a more balanced, efficient way

  7. Nuclear safeguard assessment in nuclear power plants (NPPs) using loss function with modified random numbers

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2012-01-01

    Highlights: ► The safeguard is analyzed by quantification. ► Newly introduced SF is analyzed by the electrical power output. ► The relative value of SF is shown in the month level. ► The better operation could be indicated numerical values. ► There are several secure operation factors to be suggested. - Abstract: The energy production in nuclear power plants (NPPs) is investigated for the safeguard risk management using economic factors. The economic loss function is used for the life quality in the social and natural objects. For the basic event elements, the game theory is applied for the basic elements of the incidents in non-secure situations. The Safeguard Factor (SF) is introduced for the quantifications of simulation. The results are shown by the standard productivity comparisons with the designed power operations, which is obtained as the range of secure life extension in 2000 MW e is between 0.0000 and 9.1985 and the range in 600 MW e is between 0.0000 and 2.7600. So, the highest value in the range of secure power operation increases about 3.33 times higher than that of the interested power operation in this study, which means the safeguard assessment is quantified by the power rate in the life extension of the NPPs. The Nuclear Safeguard Protocol (NSP) is constructed for the safe operation successfully.

  8. Safeguard assessment for life extension in nuclear power plants (NPPs) using a production function

    International Nuclear Information System (INIS)

    Woo, Tae-Ho; Lee, Un-Chul

    2011-01-01

    Research highlights: → The numerical value is constructed for the secure operation. → As the power increases, the NSEF increases. → Specific month could be indicated by the relative value of NSEF. → It is suggested for the better power in NPPs. → There is another possibility for the secure operation factors. - Abstract: Life extension is investigated as a safeguard assessment for the stability on the operation of the nuclear power plants (NPPs). The Cobb-Douglas function, one of the production functions, is modified for the nuclear safeguard in NPPs, which was developed for the life quality of the social and natural objects. Nuclear Safeguard Estimator Function (NSEF) is developed for the application in NPPs. The cases of NPPs are compared with each other in the aspect of the secure performance. The results are obtained by the standard productivity comparisons with the designed power operations. The range of secure life extension is between 1.008 and 5.353 in 2000 MW e and the range is between 0.302 and 0.994 in 600 MW e . So, the successfulness of the power operation increases about 5 times higher than that of the interested power in this study, which means that the safeguard assessment has been performed in the life extension of the NPPs. The technology assessment (TA) is suggested for the safe operation which is an advanced method comparing conventional probabilistic safety assessment (PSA).

  9. Preliminary Safeguards Assessment for the Pebble-Bed Fluoride High-Temperature Reactor (PB-FHR) Concept

    Energy Technology Data Exchange (ETDEWEB)

    Disser, Jay; Arthur, Edward; Lambert, Janine

    2016-09-01

    This report examines a preliminary design for a pebble bed fluoride salt-cooled high temperature reactor (PB-FHR) concept, assessing it from an international safeguards perspective. Safeguards features are defined, in a preliminary fashion, and suggestions are made for addressing further nuclear materials accountancy needs.

  10. Safeguards activities in Japan

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  11. Assessment of the knowledge of United Arab Emirates dentists of Child Maltreatment, protection and safeguarding.

    Science.gov (United States)

    Al Hajeri, H; Al Halabi, M; Kowash, M; Khamis, A H; Welbury, R; Hussein, I

    2018-06-01

    Child safeguarding is society's responsibility. Dentists are uniquely positioned to recognise Child Abuse and Neglect (CAN) in dental practice and the wider society. The United Arab Emirates (UAE) introduced a child protection law in 2016. We aimed to assess the awareness of UAE dentists of child maltreatment, protection and safeguarding. Study Design A cross-sectional survey. We surveyed 381 UAE dentists about the knowledge and practice of CAN and safeguarding issues using a self-administered anonymous questionnaire. Statistical analysis was carried out using Chi-square, t-test, ANOVA and Pearson's correlation test and statistical significance was set as p knowledgeable about diagnosing CAN. Paediatric dentists attended more CAN-related postgraduate training (pprotection guidelines. Dentists barriers to child protection reporting were; fear of family violence (59.6%, n=227), lack of knowledge of referral process (60.2%, n=228) and lack of diagnosis certainty (54.9%, n=206). UAE dentists qualified in Western and Asian countries had fewer barriers for child protection reporting (p=0.022) than the Arab and Gulf Cooperation Council qualified dentists. A large minority of UAE dentists suspected CAN. Factors influencing child protection reporting were identified. Dentists' gender, specialty, and country of qualification affected their knowledge of CAN and practice of safeguarding. Child protection training is recommended.

  12. Enabling performance skills: Assessment in engineering education

    Science.gov (United States)

    Ferrone, Jenny Kristina

    Current reform in engineering education is part of a national trend emphasizing student learning as well as accountability in instruction. Assessing student performance to demonstrate accountability has become a necessity in academia. In newly adopted criterion proposed by the Accreditation Board for Engineering and Technology (ABET), undergraduates are expected to demonstrate proficiency in outcomes considered essential for graduating engineers. The case study was designed as a formative evaluation of freshman engineering students to assess the perceived effectiveness of performance skills in a design laboratory environment. The mixed methodology used both quantitative and qualitative approaches to assess students' performance skills and congruency among the respondents, based on individual, team, and faculty perceptions of team effectiveness in three ABET areas: Communications Skills. Design Skills, and Teamwork. The findings of the research were used to address future use of the assessment tool and process. The results of the study found statistically significant differences in perceptions of Teamwork Skills (p performance skills, such as teamwork, among freshman engineering students; (2) incorporate feedback into the learning process; (3) strengthen the assessment process with a follow-up plan that specifically targets performance skill deficiencies, and (4) integrate the assessment instrument and practice with ongoing curriculum development. The findings generated by this study provides engineering departments engaged in assessment activity, opportunity to reflect, refine, and develop their programs as it continues. It also extends research on ABET competencies of engineering students in an under-investigated topic of factors correlated with team processes, behavior, and student learning.

  13. Using proliferation assessment methodologies for Safeguards-by-Design

    International Nuclear Information System (INIS)

    Van der Meer, K.; Rossa, R.; Turcanu, C.; Borella, A.

    2013-01-01

    MYRRHA, an accelerator driven system (ADS) is designed as a proton accelerator coupled to a liquid Pb-Bi spallation target, surrounded by a Pb-Bi cooled sub-critical neutron multiplying medium in a pool type configuration. An assessment based on three methodologies was made of the proliferation risks of the MYRRHA ADS in comparison with the BR2 MTR, an existing research reactor at the Belgian Nuclear Research Centre SCK-CEN. The used methodologies were the TOPS (Technical Opportunities to Increase the Proliferation Resistance of Nuclear Power Systems), the PR-PP and the INPRO methodologies. The various features of the methodologies are described and the results of the assessments are given and discussed. It is concluded that it would be useful to define one single methodology with two options to perform a quick and a more detailed assessment. The paper is followed by the slides of the presentation

  14. Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  15. Solution Monitoring Evaluated by Proliferation Risk Assessment and Fuzzy Optimization Analysis for Safeguards in a Reprocessing Process

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Suzuki

    2013-01-01

    Full Text Available Solution monitoring (SM has been used in a nuclear reprocessing plant as an additional measure to provide assurance that the plant is operated as declared. The inline volume and density monitoring equipment with dip tubes is important for safety and safeguards purposes and is a typical example of safeguards by design (SBD. Recently safety, safeguards, and security by design (3SBD are proposed to promote an efficient and effective generation of nuclear energy. In 3SBD, proliferation risk assessment has the potential to consider likelihood of the incidence and proliferation risk in safeguards. In this study, risk assessment methodologies for safeguards and security are discussed and several mathematical methods are presented to investigate risk notion applied to intentional acts of facility misuse in an uncertainty environment. Proliferation risk analysis with the Markov model, deterrence effect with the game model, and SBD with fuzzy optimization are shown in feasibility studies to investigate the potential application of the risk and uncertainty analyses in safeguards. It is demonstrated that the SM is an effective measurement system using risk-informed and cost-effective SBD, even though there are inherent difficulties related to the possibility of operator’s falsification.

  16. The Use of Performance Metrics for the Assessment of Safeguards Effectiveness at the State Level

    Energy Technology Data Exchange (ETDEWEB)

    Bachner K. M.; George Anzelon, Lawrence Livermore National Laboratory, Livermore, CA Yana Feldman, Lawrence Livermore National Laboratory, Livermore, CA Mark Goodman,Department of State, Washington, DC Dunbar Lockwood, National Nuclear Security Administration, Washington, DC Jonathan B. Sanborn, JBS Consulting, LLC, Arlington, VA.

    2016-07-24

    In the ongoing evolution of International Atomic Energy Agency (IAEA) safeguards at the state level, many safeguards implementation principles have been emphasized: effectiveness, efficiency, non-discrimination, transparency, focus on sensitive materials, centrality of material accountancy for detecting diversion, independence, objectivity, and grounding in technical considerations, among others. These principles are subject to differing interpretations and prioritizations and sometimes conflict. This paper is an attempt to develop metrics and address some of the potential tradeoffs inherent in choices about how various safeguards policy principles are implemented. The paper carefully defines effective safeguards, including in the context of safeguards approaches that take account of the range of state-specific factors described by the IAEA Secretariat and taken note of by the Board in September 2014, and (2) makes use of performance metrics to help document, and to make transparent, how safeguards implementation would meet such effectiveness requirements.

  17. Update of the INPRO Collaborative Project, Proliferation Resistance and Safeguard ability Assessment (Prosta) Tools

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. L.; Kwon, E. H.; Ahn, S. K.; Ko, W. I.; Kim, H. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The objectives of the INPRO Collaborative Project, Proliferation Resistance and Safeguard ability Assessment (PROSA) Tools are to make the INPRO proliferation resistance (PR) assessment methodology simpler and easier to use, to allow for different users and depths of analysis, to demonstrate the value and its usefulness of the refined assessment methodology to potential users, through a test with a reference case, and to provide input to a revision of the INPRO PR assessment manual. A summary of the project is described herein, including the procedure of PR assessment process and a case study using a SFR metal fuel manufacturing facility (SFMF) which is currently in the conceptual design phase at KAERI. The PROSA process with questionnaire approach is simpler and easier to perform that the original INPRO PR methodology with qualitative scale from 'weak' to 'very strong' to be determined by expert judgment. The PROSA process can be applied from the early stage of design showing the relationship of PR assessment to the SBD process.

  18. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  19. Key Nuclear Verification Priorities: Safeguards and Beyond

    International Nuclear Information System (INIS)

    Carlson, J.

    2010-01-01

    In addressing nuclear verification priorities, we should look beyond the current safeguards system. Non-proliferation, which the safeguards system underpins, is not an end in itself, but an essential condition for achieving and maintaining nuclear disarmament. Effective safeguards are essential for advancing disarmament, and safeguards issues, approaches and techniques are directly relevant to the development of future verification missions. The extent to which safeguards challenges are successfully addressed - or otherwise - will impact not only on confidence in the safeguards system, but on the effectiveness of, and confidence in, disarmament verification. To identify the key nuclear verification priorities, we need to consider the objectives of verification, and the challenges to achieving these. The strategic objective of IAEA safeguards might be expressed as: To support the global nuclear non-proliferation regime by: - Providing credible assurance that states are honouring their safeguards commitments - thereby removing a potential motivation to proliferate; and - Early detection of misuse of nuclear material and technology - thereby deterring proliferation by the risk of early detection, enabling timely intervention by the international community. Or to summarise - confidence-building, detection capability, and deterrence. These will also be essential objectives for future verification missions. The challenges to achieving these involve a mix of political, technical and institutional dimensions. Confidence is largely a political matter, reflecting the qualitative judgment of governments. Clearly assessments of detection capability and deterrence have a major impact on confidence. Detection capability is largely thought of as 'technical', but also involves issues of legal authority, as well as institutional issues. Deterrence has both political and institutional aspects - including judgments on risk of detection and risk of enforcement action being taken. The

  20. Key Nuclear Verification Priorities - Safeguards and Beyond

    International Nuclear Information System (INIS)

    Carlson, J.

    2010-01-01

    In addressing nuclear verification priorities, we should look beyond the current safeguards system. Non-proliferation, which the safeguards system underpins, is not an end in itself, but an essential condition for achieving and maintaining nuclear disarmament. Effective safeguards are essential for advancing disarmament, and safeguards issues, approaches and techniques are directly relevant to the development of future verification missions. The extent to which safeguards challenges are successfully addressed - or otherwise - will impact not only on confidence in the safeguards system, but on the effectiveness of, and confidence in, disarmament verification. To identify the key nuclear verification priorities, we need to consider the objectives of verification, and the challenges to achieving these. The strategic objective of IAEA safeguards might be expressed as: To support the global nuclear non-proliferation regime by: - Providing credible assurance that states are honouring their safeguards commitments - thereby removing a potential motivation to proliferate; and - Early detection of misuse of nuclear material and technology - thereby deterring proliferation by the risk of early detection, enabling timely intervention by the international community. Or to summarise - confidence-building, detection capability, and deterrence. These will also be essential objectives for future verification missions. The challenges to achieving these involve a mix of political, technical and institutional dimensions. Confidence is largely a political matter, reflecting the qualitative judgment of governments. Clearly assessments of detection capability and deterrence have a major impact on confidence. Detection capability is largely thought of as 'technical', but also involves issues of legal authority, as well as institutional issues. Deterrence has both political and institutional aspects - including judgments on risk of detection and risk of enforcement action being taken. The

  1. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  2. Performance evaluation of a commercially available heat flow calorimeter and applicability assessment for safeguarding special nuclear materials

    International Nuclear Information System (INIS)

    Bracken, D.S.; Biddle, R.; Rudy, C.

    1998-01-01

    The performance characteristics of a commercially available heat-flow calorimeter will be presented. The heat-flow sensors within the calorimeter are based on thermopile technology with a vendor-quoted sensitivity of 150 microV/mW. The calorimeter is a full-twin design to compensate for ambient temperature fluctuations. The efficacy of temperature fluctuation compensations will also be detailed. Finally, an assessment of design applicability to special nuclear materials control and accountability and safeguarding will be presented

  3. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    methodology can be adapted for evaluating and assessing the safeguardability of nuclear facilities – both existing, as well as those still on the drawing board. The advantages of the Facility Safeguardability Analysis is that it would not only give the facility designer an analytical method for evaluating and assessing the safeguards measures and approaches for the prospective facility, but also the ability to optimize the design of the facility process for enhancing facility safeguardability. The following report explains the need for Facility Safeguardability Analysis and explains how it could be used in the Safeguards-by-Design, in support of the design and construction of nuclear facilities.

  4. Safeguards as an evolutionary system

    International Nuclear Information System (INIS)

    Carlson, J.

    1998-01-01

    NPT safeguards pursuant to INFCIRC/153 retain a strong emphasis on materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognized as a major shortcoming in the safeguards system. Since the 'classical' safeguards system is unable to provide credible assurance of the absence of clandestine nuclear activities, substantial efforts are being made to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the Agency's authority, and good progress has been made in developing the new approaches, technologies and techniques required to ensure this authority is used effectively. Increasingly, safeguards will involve more qualitative judgements. Transparency will be very important - without a clear understanding by Member States of how the Agency goes about its new tasks and reaches its conclusions about the absence of undeclared activities, the safeguards system will not fulfil its vital confidence-building role. A major theme in current safeguards thinking is integration, the rationalization of classical safeguards with the new safeguards strengthening measures. As part of the rationalization process, it is timely to re-assess traditional safeguards implementation practices. One of these is uniformity in the way safeguards activities are implemented in different States. Another is whether the traditional concept of safeguards confidentiality is consistent with the increasing importance of transparency. (author)

  5. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed

  6. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed.

  7. Safeguards effectiveness evaluations in safeguards planning

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.

    1987-01-01

    This paper describes analytic tools we developed to quantify the effectiveness of safeguards against theft of special nuclear material by insiders. These tools help identify vulnerabilities in existing safeguards, suggest potential improvements, and help assess the benefits of these upgrades prior to implementation. Alone, these tools are not sufficient for safeguards planning, since the cost of implementing all suggested upgrades almost always exceeds the available resources. This paper describes another tool we developed to allow comparsion of benefits of various upgrades to identify those upgrade packages that achieve the greatest improvement in protection for a given cost and to provide a priority ranking among cost-effective packages, thereby helping decision-makers select the upgrades to implement and highlight the mount of residual risk. 5 refs., 3 figs

  8. Safeguardability assessment on pilot-scale advanced spent fuel conditioning facility

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Pickett, S.E.; Miller, M.C.; Ko, W.I.; Kim, H.D.

    2006-01-01

    Full text: In South Korea, approximately 6,000 metric tons of spent nuclear fuel from commercial reactor operation has been accumulated with the expectation of more than 30,000 metric tons, three times the present storage capacity, by the end of 2040. To resolve these challenges in spent fuel management, the Korea Atomic Energy Research Institute (KAERI) has been developing a dry reprocessing technology called Advanced Spent Fuel Conditioning Process (ACP). This is an electrometallurgical treatment technique to convert oxide-type spent fuel into a metallic form, and the electrolytic reduction (ER) technology developed recently is known as a more efficient concept for spent fuel conditioning. The goal of the ACP study is to recover more than 99% of the actinide elements into a metallic form with minimizing the volume and heat load of spent fuel. The significant reduction of the volume and heat load of spent fuel is expected to lighten the burden of final disposal in terms of disposal size, safety, and economics. In the framework of R and D collaboration for the ACP safeguards, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and KAERI. The purpose of this study is to address the safeguardability of the ACP technology, through analysis of material flow and development of a proper safeguards system that meet IAEA's comprehensive safeguards objective. The sub-processes and material flow of the pilot-scale ACP facility were analyzed, and subsequently the relevant material balance area (MBA) and key measurement point (KMP) were designed for material accounting. The uncertainties in material accounting were also estimated with international target values, and design requirements for the material accounting systems were derived

  9. Structured Assessment Approach: a procedure for the assessment of fuel cycle safeguard systems

    International Nuclear Information System (INIS)

    Parziale, A.A.; Patenaude, C.J.; Renard, P.A.; Sacks, I.J.

    1980-01-01

    Lawrence Livermore National Laboratory has developed and tested for the United States Nuclear Regulatory Commission a procedure for the evaluation of Material Control and Accounting (MC and A) Systems at Nuclear Fuel Facilities. This procedure, called the Structured Assessment Approach, SAA, subjects the MC and A system at a facility to a series of increasingly sophisticated adversaries and strategies. A fully integrated version of the computer codes which assist the analyst in this assessment was made available in October, 1979. The concepts of the SAA and the results of the assessment of a hypothetical but typical facility are presented

  10. Ecological assessment of nano-enabled supercapacitors for automotive applications

    Science.gov (United States)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  11. Ecological assessment of nano-enabled supercapacitors for automotive applications

    International Nuclear Information System (INIS)

    Weil, M; Dura, H; Shimon, B; Baumann, M; Zimmermann, B; Ziemann, S; Decker, M; Lei, C; Markoulidis, F; Lekakou, T

    2012-01-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  12. Safeguards '85

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  13. Nuclear safeguards

    International Nuclear Information System (INIS)

    Estrampres, J.

    2010-01-01

    Close cooperation with the Ministry of Industry with representation from the UNESA Safeguards Group, has meant that, after almost two years of intense meetings and negotiations, Spain has a specific plant to plant agreement for the application of Safeguards under this new method. This is an agreement which aims to be a benchmark for all other EU countries, as the IAEA tends to apply a generic agreement that, in many cases, majority interferes in the nuclear power plants own processes. (Author).

  14. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  15. International safeguards

    International Nuclear Information System (INIS)

    Sanders, B.; Ha Vinh Phuong

    1976-01-01

    Since the start of the post-war era, international safeguards were considered essential to ensure that nuclear materials should not be diverted to unauthorised uses. In parallel, it was proposed to set up an international atomic energy agency within the United Nations through which international cooperation in nuclear matters would be channelled and controlled. Created in 1957, the IAEA was authorized to administer safeguards in connection with any assistance it provided as well as at the request of Member State and of any party to bilateral or multilateral arrangements in its ambit. Today, there are two international treaties requiring that its parties should accept Agency safeguards unilaterally, the Latin America Tlatelolco Treaty of 1967, and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), operative since 1970, which requires in particular that non-nuclear weapon states should accept Agency safeguards on its peaceful nuclear activities. Thus while NPT covers peaceful nuclear activities indiscriminately in a country, the Agency's original safeguards system is applied according to specific agreements and to given facilities. A basic conflict has now emerged between commercial interests and the increasing wish that transfer of nuclear equipment and know-how should not result in proliferation of military nuclear capacity; however, serious efforts are currently in progress to ensure universal application of IAEA safeguards and to develop them in step with the uses of nuclear energy. (N.E.A.) [fr

  16. Safeguards Export-Import Training: Adapting to Changes in the Department of Safeguards Over 6 Years of Experience

    International Nuclear Information System (INIS)

    Chatelus, R.; ); Crete, J.-M.; Schot, P.-M.; Hushbeck, E.C.; Heine, P.

    2015-01-01

    Safeguards relevant information encompasses information available to the Agency in exercising its rights and fulfiling its obligations under relevant safeguards agreement(s). It includes information relating to nuclear or nuclear related trade like international transfers of nuclear material, or export (or import upon request by the Agency) of specified equipment described in annex 2 of the Additional Protocol. It may also include information provided by States on a voluntary basis. In 2005, the General Conference (see GC(49)/RES/13) encouraged the provision of information on procurement enquiries, export denials and other nuclear related information. Objectively and independently assessing this information and combining it with other Safeguards data and knowledge requires relevant expertise and well defined processes. Since 2008, the bi-annual Export-Import (EXIM) Training Workshop, jointly run by the IAEA Department of Safeguards and the U.S. Department of Energy, enables SG staff to develop competencies required for collecting, processing and drawing objective conclusions in this area. Over the years, more than 150 SG staff have been exposed to technical information on relevant non-nuclear material and equipment, trade data from different origins, analytical processes, and exercises to use this knowledge in realistic safeguards work scenarios. The EXIM training has also been an opportunity to develop analytical best practices and explore how this analytical work finds it place in the verification process. The paper describes the background and purpose of the EXIM training, how it helps Safeguards to independently collect and analyze relevant trade information to fulfil its obligations. It also touches on the lessons learned from six years of training experience, observing how the Department of Safeguards develops and implements structured processes to collect, process and evaluate safeguards relevant trade information, in order to establish findings and draw

  17. Safeguards management inspection procedures

    International Nuclear Information System (INIS)

    Barth, M.J.; Dunn, D.R.

    1984-08-01

    The objective of this inspection module is to independently assess the contributions of licensee management to overall safeguards systems performance. The inspector accomplishes this objective by comparing the licensee's safeguards management to both the 10 CFR, parts 70 and 73, requirements and to generally accepted management practices. The vehicle by which this comparison is to be made consists of assessment questions and key issues which point the inspector to areas of primary concern to the NRC and which raise additional issues for the purpose of exposing management ineffectiveness. Further insight into management effectiveness is obtained through those assessment questions specifically directed toward the licensee's safeguards system performance. If the quality of the safeguards is poor, then the inspector should strongly suspect that management's role is ineffective and should attempt to determine management's influence (or lack thereof) on the underlying safeguards deficiencies. (The converse is not necessarily true, however.) The assessment questions in essence provide an opportunity for the inspector to identify, to single out, and to probe further, questionable management practices. Specific issues, circumstances, and concerns which point to questionable or inappropriate practices should be explicitly identified and referenced against the CFR and the assessment questions. The inspection report should also explain why the inspector feels certain management practices are poor, counter to the CFR, and/or point to ineffecive management. Concurrent with documenting the inspection results, the inspector should provide recommendations for alleviating observed management practices that are detrimental to effective safeguards. The recommendations could include: specific changes in the practices of the licensee, followup procedures on the part of NRC, and proposed license changes

  18. Recent advances in safeguards operations

    International Nuclear Information System (INIS)

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  19. Safeguard sleuths

    International Nuclear Information System (INIS)

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  20. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  1. Safeguarding arms control

    International Nuclear Information System (INIS)

    Flanagan, S.J.

    1988-01-01

    This essay reviews the evolution of various safeguards concepts associated with U.S. Soviet arms control negotiations over the past twenty-five years. It explore in some detail the origins, nature, and effectiveness of the safeguards packages associated with six agreements: the Limited Test Ban Treaty (1963), the SALT I Interim Agreement (1972), the Anti-Ballistic Missile (ABM) Treaty (1972), the Threshold Test Ban Treaty (1974), the Peaceful Nuclear Explosions Treaty (1976) and the SALT II Treaty (1979). Finally, the implications of this historical record for developing future nuclear and conventional arms control accords and for shoring up existing pacts, such as the ABM Treaty, are assessed with a view towards practicable prescriptions for Western policymakers. The treaty eliminating intermediate-range nuclear forces (INF) incorporates several verification safeguards, and it is very likely that analogous measures would be attached to any accord constraining conventional forces in Europe

  2. Addressing Safeguards Challenges for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Majali, Raed; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    IAEA safeguard system is considered the corner stone of the international nuclear nonproliferation regime. Effective implementation of this legal instrument enables the IAEA to draw a conclusion with a high degree of confidence on the peaceful use of nuclear material and activities in the state. This paper aims to provide an opportunity to address various challenges encountered by IAEA. Strengthening safeguards system for verification is one of the most urgent challenges facing the IAEA. The IAEA should be able to provide credible assurance not only about declared use of nuclear material and facilities but also about the absence of undeclared material and activities. Implementation of IAEA safeguards continue to play a vital role within the nuclear non-proliferation regime. IAEA must move towards more enhanced safeguards system that is driven by the full use of all the safeguards available relevant information. Safeguards system must be responsive to evolving challenges and continue innovation through efficient implementations of more effective safeguards.

  3. Improved IAEA safeguards for closed nuclear fuel cycles

    International Nuclear Information System (INIS)

    1978-12-01

    The paper recognises the limitations of nuclear material accountancy in applying safeguards to future large scale processing plants. For those plants the following will be necessary: (i) The inclusion of safeguards requirements in design criteria. (ii) Extensive application of containment and surveillance with monitors on personnel and goods exits, pipework, tanks, etc. (iii) Continuous inspectorate measurement of input and output flows. Local IAEA laboratories to ensure timeliness. (iv) Upgrading of process control information to enable the inspectorate to monitor the in-process inventory. The inspectorates knowledge of the in-process inventory will be valuable in their assessment of any alarms given by the containment-surveillance system

  4. Enabling fast charging – A battery technology gap assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Tanim, Tanvir; Dufek, Eric J.; Pesaran, Ahmad; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Hardy, Keith; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Michelbacher, Christopher; Mohanpurkar, Manish; Nelson, Paul A.; Robertson, David C.; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Vijayagopal, Ram; Zhang, Jiucai

    2017-11-01

    The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable / validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.

  5. Assessment - enabling participation in academic discourse and the implications

    Directory of Open Access Journals (Sweden)

    Anass Bayaga

    2013-01-01

    Full Text Available The current study was an exploration of how to develop assessment resources and processes via in-depth interviews with 30 teachers. The focus was on how teachers use and apply different assessment situations. The methodology, which was a predominately qualitative approach and adopted case study design, sought to use a set of criteria based on constructs from literature reviews to evaluate assessments. Thus these characteristics guided the study which included: a brief description of assessment and moderation; assessment materials/resources; assessment objectives; assessment activities; assessment/re-evaluation; and alignment/consistency. The case (one site and 30 respondents were selected purposively. The study revealed that assessors need to use different methods of assessment depending on the socio-cultural setting of learners' environment and resources, if applicable. We argue that teachers should note the socialisation within their domain as well as the culture of their domain and domain-specific ways of talking, acting, and seeing the world.

  6. International safeguards

    International Nuclear Information System (INIS)

    Petit, A.

    1991-01-01

    The IAEA has now 200 Inspectors or so, and Euratom a similar number. People in Vienna are talking about increases of this staff, in the range of a possible doubling in the five years to come, although even an immediate restart of the expansion of nuclear industry, would not materialize significantly within this period. This means that keeping the same safeguarding approach would probably lead to another doubling of such staff in the ten following years, which is completely unrealistic. Such a staff is our of proportion with those of national inspectorates in other fields. The paper analyzes the basic irrealistic dogma which have hindered the progress of international safeguards, and recall the suggestions made since ten years to improve them

  7. International safeguards

    International Nuclear Information System (INIS)

    1995-01-01

    The system of international safeguards carried out by the IAEA is designed to verify that governments are living up to pledges to use nuclear energy only for peaceful purposes under the NPT (Treaty on the non-proliferation of nuclear weapons) and similar agreements. The film illustrates the range of field inspections and analytical work involved. It also shows how new approaches are helping to strengthen the system

  8. Web-enabling Ecological Risk Assessment for Accessibility and Transparency

    Science.gov (United States)

    Ecological risk methods and tools are necessarily diverse to account for different combinations of receptors, exposure processes, effects estimation, and degree of conservatism/realism necessary to support chemical-based assessments. These tools have been continuously developed s...

  9. E-learning enables parents to assess an infantile hemangioma.

    Science.gov (United States)

    de Graaf, Marlies; Knol, Mirjam J; Totté, Joan E E; van Os-Medendorp, Harmieke; Breugem, Corstiaan C; Pasmans, Suzanne G M A

    2014-05-01

    Infantile hemangiomas (IH) at risk for complications need to be recognized early. We sought to determine if parents are able to assess, after e-learning, whether their child has an IH, is at risk for complications, and needs to be seen (urgently) by a specialist. This was a prospective study of 158 parents participating in an IH e-learning module. Parents were asked to assess their child's skin abnormality. A dermatologist answered the same questions (by e-consult). The 2 assessments were compared. Parents showed a 96% concordance with the dermatologist for correct diagnosis after e-learning. Concordances were 79%, 75%, and 84% (P e-learning module. E-learning by parents could result in earlier presentation and treatment of high-risk IH. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  10. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  11. Safeguards First Principle Initiative (SFPI) Cost Model

    International Nuclear Information System (INIS)

    Price, Mary Alice

    2010-01-01

    The Nevada Test Site (NTS) began operating Material Control and Accountability (MC and A) under the Safeguards First Principle Initiative (SFPI), a risk-based and cost-effective program, in December 2006. The NTS SFPI Comprehensive Assessment of Safeguards Systems (COMPASS) Model is made up of specific elements (MC and A plan, graded safeguards, accounting systems, measurements, containment, surveillance, physical inventories, shipper/receiver differences, assessments/performance tests) and various sub-elements, which are each assigned effectiveness and contribution factors that when weighted and rated reflect the health of the MC and A program. The MC and A Cost Model, using an Excel workbook, calculates budget and/or actual costs using these same elements/sub-elements resulting in total costs and effectiveness costs per element/sub-element. These calculations allow management to identify how costs are distributed for each element/sub-element. The Cost Model, as part of the SFPI program review process, enables management to determine if spending is appropriate for each element/sub-element.

  12. J. Safeguards

    International Nuclear Information System (INIS)

    1976-01-01

    Like many drugs, poisons, and explosives in common use in our society today, nuclear materials are dangerous. This was recognised well before the advent of nuclear power, and precautions have been taken to isolate the substances from the environment. The expected expansion of nuclear power generation, and consequent proliferation of the materials, has caused opponents of the industry to voice pessimism over the ability of the authorities to contain these substances. The author discusses the dangers associated with the illicit use of nuclear materials, and the safeguards employed to minimise the risks arising from the commercial exploitation of nuclear power

  13. The IAEA safeguards information system

    International Nuclear Information System (INIS)

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  14. International safeguards problem

    International Nuclear Information System (INIS)

    Scheinman, L.; Curtis, H.B.

    1977-01-01

    To recognize the limitations of safeguards as a barrier to nuclear proliferation is not to deny their essential role in the effort to contain that problem. Without a safeguards system, international nuclear commerce and development would not, indeed could not, be what they are today. The problems evoked in the discussion of the spread of sensitive nuclear technology underscore the importance of ensuring that activities do not outpace our ability to control them. To sustain a global nuclear economy requires a readiness to live within the constraints that such an economy requires. Enhanced safeguards and strengthened national commitments to facilitate their application are key elements of those constraints. So also may be a prepardness by many nations to forego explicitly national control over all facets of the nuclear fuel cycle while still sharing fully and equally in the benefits of the peaceful atom. The challenge of the coming years will be to craft mechanisms and institutions enabling the continued growth of peaceful nuclear activity without further impairing international security. The constraints that such an outcome entails are not limited to nations lacking sophisticated nuclear technology; they apply to the most advanced nuclear nations as well--partly through adherence to the safeguards system that these countries call upon others to adopt, and partly through greater willingness to entertain solutions that may involve greater international involvement in, and control over, their own peaceful nuclear productive activities. With time, the relative incompatibility of nuclear energy with full national sovereignty, and the far-sighted wisdom of the Baruch Plan, are becoming increasingly clear. 1 table, 10 references

  15. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  16. Improving the flexibility and profitability of ICT-enabled business networks: an assessment method and tool.

    NARCIS (Netherlands)

    D.J.E. Delporte-Vermeiren (Dominique)

    2003-01-01

    textabstractThis thesis deals with the development and the first empirical examination of an assessment method and decision support tool for the ex ante assessment of margin to be applied in ICT-enabled redesign of business networks. Many industries face the demand for customisation. This

  17. International safeguards 1979

    International Nuclear Information System (INIS)

    Fischer, D.

    1979-01-01

    First, the nature of the nuclear proliferation problem is reviewed. Afterward, the extent to which the risk of further horizontal proliferation of nuclear weapons is being contained by international agreements and by the application of the IAEA's safeguards under these agreements is investigated. The geographical scope of such safeguards, the gaps in safeguards coverage, and the political and technical effectiveness of such safeguards are examined. In conclusion, it is pointed out that IAEA safeguards are the cutting edge of almost every nonproliferation measure that has so far been applied or put forward. Safeguards would also play a part in any international scheme for limiting vertical proliferation. If the cutting edge of safeguards is blunted or if, for one reason or another, safeguards cannot be or are not being applied, the nonproliferation regime will suffer commensurate damage

  18. Nuclear safeguards: a perspective

    International Nuclear Information System (INIS)

    Walske, C.

    1975-01-01

    Safeguards, both international and domestic, are discussed from the industrial viewpoint. Anti-criminal measures are considered in more detail. Areas of anti-criminal safeguards which need improvement are pointed out; they include communications, recovery force, and accounting

  19. Safeguards Implementation at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Lee, Byung-Doo; Kim, Hyun-Sook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The main objective of the safeguards implementation activities is to assure that there are no diversions of declared nuclear material and/or no undeclared activity. The purpose of safeguards implementation activities is the assistance facility operators to meet the safeguards criteria set forth by the Atomic Energy Safety Acts and Regulations. In addition, the nuclear material and technology control team has acted as a contact point for domestic and international safeguards inspection activities and for the relevant safeguards cooperation. Domestic inspections were successfully carried out at the KAERI nuclear facilities pursuant to the domestic laws and regulations in parallel with the IAEA safeguards inspections. It is expected that safeguards work will be increased due to the pyro-related facilities such as PRIDE, ACPF and DUPIC, for which the IAEA is making an effort to establish safeguards approach. KAERI will actively cope with the plan of the NSSC by changing its domestic inspection regulations on the accounting and control of nuclear materials.

  20. EURATOM safeguards. Safeguards verifications in reprocessing plants

    International Nuclear Information System (INIS)

    Heppleston, M.

    1999-01-01

    This paper provides a brief historical view of the legal basis for EURATOM. The specific application of safeguards to large scale reprocessing plants, from the theoretical model to the practical application of inspection is considered. The challenge to adequately safeguard major commercial reprocessing facilities has led to many novel approaches being developed. These lessons will also benefit other safeguard projects as a result. Good cooperation between the operator and regulator is essential for the satisfactory installation of adequate safeguard controls. The use of modern data processing technology combined with other diverse monitoring techniques has shown that a major industrial scale reprocessing plant can be controlled under international safeguards to provide a high level of assurance [ru

  1. Nuclear safeguards technology handbook

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included. (LK)

  2. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  3. Domestic safeguards: annual report to Congress, fiscal year 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The annual report includes an assessment of the effectiveness and adequacy of safeguards at facilities and activities licensed by the Commission. The report details NRC's criteria for judging the adequacy of safeguards at fuel cycle facilities; the report also summarizes actions required by NRC at any fuel facility whose safeguards systems are judged to provide less than high assurance protection against our design threat. The report also contains a discussion of NRC's criteria for safeguards adequacy at nuclear reactors and for transportation activities

  4. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1978-11-01

    The present IAEA approach to safeguarding various types of nuclear facilities is examined. The IAEA safeguards objectives, criteria and specific techniques are addressed, with reference e.g. to concepts like timely detection, quantities of safeguards significance, and conversion times. Material accountancy and containment and surveillance as basic features of IAEA safeguards verification are discussed. Safeguards measures for specific facility types are considered and corresponding levels of IAEA safeguards experience are assessed. Outlines of expected IAEA safeguard approaches to large bulk handling facilities are discussed. The evolutionary nature of safeguards based on experience and research and development is mentioned

  5. Inventory of safeguards software

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Horino, Koichi

    2009-03-01

    The purpose of this survey activity will serve as a basis for determining what needs may exist in this arena for development of next-generation safeguards systems and approaches. 23 software tools are surveyed by JAEA and NMCC. Exchanging information regarding existing software tools for safeguards and discussing about a next R and D program of developing a general-purpose safeguards tool should be beneficial to a safeguards system design and indispensable to evaluate a safeguards system for future nuclear fuel facilities. (author)

  6. Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics

    Science.gov (United States)

    Sangwin, Christopher J.; Naismith, Laura

    2008-01-01

    We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…

  7. International safeguards for reprocessing plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems.

  8. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1988-01-01

    In recent years considerable attention has been given to upgrading security education programs at facilities across the country. At Pacific Northwest Laboratory (PNL), a Laboratory-wide Safeguard Awareness Training Program has been established in order to raise the cognizance of the entire staff with regard to safeguards issues and concerns. This aggressive safeguards program involves a strong interface of physical security measure and material control and accountability systems. Within PNL, four distinct audiences were defined and a needs assessment analysis performed for each to determine specific training requirements. The target audiences identified were: material balance area (MBA) custodians, managers of material balance areas, material handlers, and new employees. Five safeguards training courses were created to meet the needs of those audiences. This paper discusses the development of the Safeguards Awareness Program at PNL and its benefits to the Laboratory

  9. International safeguards for reprocessing plants. Final report

    International Nuclear Information System (INIS)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems

  10. The standing advisory group on safeguards implementation

    International Nuclear Information System (INIS)

    Jennekens, J.H.F.

    1982-09-01

    In 1975 the Director General of the IAEA called together ten persons from member states with nuclear programs at varying stages of development to form the Standing Advisory Group on Safeguards Implementation. The group was later expanded to twelve. The Director General asked the group to evaluate the technical objectives of Agency safeguards, assess the effectiveness and efficiency of specific safeguards operating methods in meeting these technical objectives, advise on techniques to be employed in safeguards operations, and recommend areas where further work is needed. This paper reviews the work of the Standing Advisory Group on Safeguards Implementation since its formation in 1975, summarizes the subjects that have been examined and the advice rendered, and outlines the problem areas requiring further study

  11. Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Jennifer; Cappers, Peter

    2017-08-28

    The Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs research describe a variety of DR opportunities and the various bulk power system services they can provide. The bulk power system services are mapped to a generalized taxonomy of DR “service types”, which allows us to discuss DR opportunities and bulk power system services in fewer yet broader categories that share similar technological requirements which mainly drive DR enablement costs. The research presents a framework for the costs to automate DR and provides descriptions of the various elements that drive enablement costs. The report introduces the various DR enabling technologies and end-uses, identifies the various services that each can provide to the grid and provides the cost assessment for each enabling technology. In addition to a report, this research includes a Demand Response Advanced Controls Database and User Manual. They are intended to provide users with the data that underlies this research and instructions for how to use that database more effectively and efficiently.

  12. Structure for the decomposition of safeguards responsibilities

    International Nuclear Information System (INIS)

    Dugan, V.L.; Chapman, L.D.

    1977-01-01

    A major mission of safeguards is to protect against the use of nuclear materials by adversaries to harm society. A hierarchical structure of safeguards responsibilities and activities to assist in this mission is defined. The structure begins with the definition of international or multi-national safeguards and continues through domestic, regional, and facility safeguards. The facility safeguards is decomposed into physical protection and material control responsibilities. In addition, in-transit safeguards systems are considered. An approach to the definition of performance measures for a set of Generic Adversary Action Sequence Segments (GAASS) is illustrated. These GAASS's begin outside facility boundaries and terminate at some adversary objective which could lead to eventual safeguards risks and societal harm. Societal harm is primarily the result of an adversary who is successful in the theft of special nuclear material or in the sabotage of vital systems which results in the release of material in situ. With the facility safeguards system, GAASS's are defined in terms of authorized and unauthorized adversary access to materials and components, acquisition of material, unauthorized removal of material, and the compromise of vital components. Each GAASS defines a set of ''paths'' (ordered set of physical protection components) and each component provides one or more physical protection ''functions'' (detection, assessment, communication, delay, neutralization). Functional performance is then developed based upon component design features, the environmental factors, and the adversary attributes. An example of this decomposition is presented

  13. Structure for the decomposition of safeguards responsibilities

    International Nuclear Information System (INIS)

    Dugan, V.L.; Chapman, L.D.

    1977-08-01

    A major mission of safeguards is to protect against the use of nuclear materials by adversaries to harm society. A hierarchical structure of safeguards responsibilities and activities to assist in this mission is defined. The structure begins with the definition of international or multi-national safeguards and continues through domestic, regional, and facility safeguards. The facility safeguards is decomposed into physical protection and material control responsibilities. In addition, in-transit safeguards systems are considered. An approach to the definition of performance measures for a set of Generic Adversary Action Sequence Segments (GAASS) is illustrated. These GAASS's begin outside facility boundaries and terminate at some adversary objective which could lead to eventual safeguards risks and societal harm. Societal harm is primarily the result of an adversary who is successful in the theft of special nuclear material or in the sabotage of vital systems which results in the release of material in situ. With the facility safeguards system, GAASS's are defined in terms of authorized and unauthorized adversary access to materials and components, acquisition of material, unauthorized removal of material, and the compromise of vital components. Each GAASS defines a set of ''paths'' (ordered set of physical protection components) and each component provides one or more physical protection ''functions'' (detection, assessment, communication, delay, neutralization). Functional performance is then developed based upon component design features, the environmental factors, and the adversary attributes. An example of this decomposition is presented

  14. Safeguards technology development for spent fuel storage and disposal

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1991-01-01

    This paper reports on facilities for monitored retrievable storage and geologic repository that will be operating in the US by 1998 and 2010 respectively. The international safeguards approach for these facilities will be determined broadly by the Safeguards Agreement and the IAEA Safeguards Criteria (currently available for 1991-1995) and defined specifically in the General Subsidiary Arrangements and Specific Facility Attachments negotiated under the US/IAEA Safeguards Agreement. Design information for these facilities types, as it is conceptualized, will be essential input to the safeguards approach. Unique design and operating features will translate into equally unique challenges to the application of international safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards by enabling efficient and effective application with regard to the operator's interest, US policies, and the IAEA's statutorial obligations. Advanced unattended or remote measurement, authentication of operator's measurement, authentication of operator's measurement data, and integration of monitoring and containment/surveillance potentially are among the most fruitful areas of technology development. During the next year, a long range program plan for international safeguard technology development for monitored retrievable storage and geologic repository will be developed by the International Branch in close coordination with the Office of Civilian Radioactive Waste Management. This presentation preliminarily identifies elements of this long range program

  15. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  16. Safeguards research at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Dunn, D.R.; Huebel, J.G.; Poggio, A.J.

    1980-01-01

    The LLL safeguards research program includes inspection methods, facility assessment methodologies, value-impact analysis, vulnerability analysis of accounting systems, compliance with regulations, process monitoring, etc. Each of those projects is described as are their goals and progress

  17. Safeguards approach for conditioning facility for spent fuel

    International Nuclear Information System (INIS)

    Younkin, J.M.; Barham, M.; Moran, B.W.

    1999-01-01

    A safeguards approach has been developed for conditioning facilities associated with the final disposal of spent fuel in geologic repositories. The proposed approach is based on a generic conditioning facility incorporating common features of conditioning facility designs currently proposed. The generic facility includes a hot cell for consolidation of spent fuel pins and repackaging of spent fuel items such as assemblies and cans of pins. The consolidation process introduces safeguards concerns which have not previously been addressed in traditional safeguards approaches. In developing the safeguards approach, diversion of spent fuel was assessed in terms of potential target items, operational activities performed on the items, containment of the items, and concealment activities performed on the items. The combination of these factors defines the potential diversion pathways. Diversion pathways were identified for spent fuel pellets, pins, assemblies, canisters, and casks. Diversion activities provide for opportunities of detection along the diversion paths. Potential detection methods were identified at several levels of diversion activities. Detection methods can be implemented through safeguards measures. Safeguards measures were proposed for each of the primary safeguards techniques of design information verification (DIV), containment and surveillance (C/S), and material accountancy. Potential safeguards approaches were developed by selection of appropriate combinations of safeguards measures. For all candidate safeguards approaches, DIV is a fundamental component. Variations in the approaches are mainly in the degree of C/S measures and in the types and numbers of material accountancy verification measures. The candidate safeguards approaches were evaluated toward the goal of determining a model safeguards approach. This model approach is based on the integrated application of selected safeguards measures to use International Atomic Energy Agency resources

  18. Nuclear Safeguards Culture

    International Nuclear Information System (INIS)

    Findlay, T.

    2015-01-01

    The paper will consider safeguards culture both at the IAEA and among member states. It will do so through the lens of organizational culture theory and taking into account developments in safeguards since the Iraq case of the early 1990s. The study will seek to identify the current characteristics of safeguards culture and how it has evolved since the 93+2 programme was initiated, as well as considering the roles of the most important purveyors of such culture, including member states and their national safeguards authorities, the General Conference and Board of Governors, the Director General, the Secretariat as a whole, the Safeguards Department and the inspectorate. The question of what might be an optimal safeguards culture at the Agency and among member states will be investigated, along with the issue of how such a culture might be engendered or encouraged. (author)

  19. Safeguards and nuclear forensics

    International Nuclear Information System (INIS)

    Gangotra, Suresh

    2016-01-01

    Nuclear Safeguards is the detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons, or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by early detection. Safeguards implementation involves nuclear material accounting and containment and surveillance measures. The safeguards are implemented in nuclear facilities by the states, or agencies and International Atomic Energy Agency (IAEA). The measures for the safeguards include nuclear material Accounting (NUMAC) and Containment and surveillance systems. In recent times, there have been advances in safeguards like Near Real Time Monitoring (NRTM), Dynamic Nuclear Material Accounting (DNMA), Safeguards-by-Design (SBD), satellite imagery, information from open sources, remote monitoring etc

  20. Structure of safeguards systems

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1978-06-01

    An effective safeguards system for domestic nuclear fuel cycle facilities consists of several important subsystems that must coordinate their functions with plant management and process control. The safeguards system must not unnecessarily disrupt plant operations, compromise safety requirements, or infringe on employee working conditions. This report describes concepts, which have been developed with the cooperation of the nuclear industry and the safeguards community, for achieving these objectives

  1. Nuclear safeguards policy

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Claims have been made that Australia's nuclear safeguards policy, announced in 1977, has changed. However, examination of the texts of nuclear safeguards agreements negotiated by Australia shows that the policy has been implemented and adhered to. The purpose of these agreements is to obtain assurance that uranium exported is used exclusively for peaceful purposes. The questions of reprocessing, transfer to third countries and the application of IAEA safeguards are discussed

  2. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  3. The Canadian safeguards program

    International Nuclear Information System (INIS)

    Zarecki, C.W.; Smith, R.M.

    1981-12-01

    In support of the Treaty on the Non-Proliferation of Nuclear Weapons Canada provides technical support to the International Atomic Energy Agency for the development of safeguards relevant to Canadian designed and built nuclear facilities. Some details of this program are discussed, including the philosophy and development of CANDU safeguards systems; the unique equipment developed for these systems; the provision of technical experts; training programs; liaison with other technical organizations; research and development; implementation of safeguards systems at various nuclear facilities; and the anticipated future direction of the safeguards program

  4. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  5. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of system upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and costs and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers. The model is in the preliminary stages of implementation, and an effort is ongoing to make the approach and quantitative model available for general use. The model, which is designed to complement existing nuclear safeguards evaluation tools, incorporates a variety of factors and integrates information on the likelihood of potential threats, safeguards capabilities to defeat threats, and the relative consequences if safeguards fail. The model uses this information to provide an overall measure for comparing safeguards upgrade projects at a facility

  6. UK medical education on human trafficking: assessing uptake of the opportunity to shape awareness, safeguarding and referral in the curriculum.

    Science.gov (United States)

    Arulrajah, Poojani; Steele, Sarah

    2018-06-13

    Human trafficking is a serious violation of human rights, with numerous consequences for health and wellbeing. Recent law and policy reforms mean that clinicians now hold a crucial role in national strategies. 2015 research, however, indicates a serious shortfall in knowledge and confidence among healthcare professionals in the UK, leading potentially to failures in safeguarding and appropriate referral. Medical education is a central point for trafficking training. We ascertain the extent of such training in UK Medical Schools, and current curricular design. We sent Freedom of Information requests to the 34 public UK medical schools, which included a preliminary question on education provision, supplemented with follow-up questions exploring the nature, delivery and format of any education, as well as future curriculum development. There was a response rate of 97%. A majority (72%) of the schools did not provide trafficking education. 13% of these did, however, offer opportunities outside the formal curriculum. 70% had no plans to implement any education opportunities. Among the 28% of schools providing teaching, 56% integrated this within the core curriculum. 56% only delivered this within a single year of the degree. 67% provided some form of teaching in-person, while 78% used a combination of methods. Medical education on trafficking in the UK is variable and often absent. To produce future clinicians who are competent and capable, there is a need for expanded education on trafficking and research into optimal curriculum design. The UK's new Independent Anti-Slavery Commissioner should work with medical schools to develop an educational strategy urgently to fulfil the UK Government's plans and commitments. Both in the UK and around the world, human trafficking education presents a critical opportunity to address human rights and safeguarding to a generation of new doctors.

  7. Evolution of safeguards systems design

    International Nuclear Information System (INIS)

    Shipley, J.P.; Christensen, E.L.; Dietz, R.J.

    1979-01-01

    Safeguards systems play a vital detection and deterrence role in current nonproliferation policy. These safeguards systems have developed over the past three decades through the evolution of three essential components: the safeguards/process interface, safeguards performance criteria, and the technology necessary to support effective safeguards. This paper discusses the background and history of this evolutionary process, its major developments and status, and the future direction of safeguards system design

  8. Risk analysis of nuclear safeguards regulations

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Altman, W.D.; Judd, B.R.

    1982-06-01

    The Aggregated Systems Model (ASM), a probabilisitic risk analysis tool for nuclear safeguards, was applied to determine benefits and costs of proposed amendments to NRC regulations governing nuclear material control and accounting systems. The objective of the amendments was to improve the ability to detect insiders attempting to steal large quantities of special nuclear material (SNM). Insider threats range from likely events with minor consequences to unlikely events with catastrophic consequences. Moreover, establishing safeguards regulations is complicated by uncertainties in threats, safeguards performance, and consequences, and by the subjective judgments and difficult trade-offs between risks and safeguards costs. The ASM systematically incorporates these factors in a comprehensive, analytical framework. The ASM was used to evaluate the effectiveness of current safeguards and to quantify the risk of SNM theft. Various modifications designed to meet the objectives of the proposed amendments to reduce that risk were analyzed. Safeguards effectiveness was judged in terms of the probability of detecting and preventing theft, the expected time to detection, and the expected quantity of SNM diverted in a year. Data were gathered in tours and interviews at NRC-licensed facilities. The assessment at each facility was begun by carefully selecting scenarios representing the range of potential insider threats. A team of analysts and facility managers assigned probabilities for detection and prevention events in each scenario. Using the ASM we computed the measures of system effectiveness and identified cost-effective safeguards modifications that met the objectives of the proposed amendments

  9. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  10. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  11. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  12. Optimizing IAEA Safeguards

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  13. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  14. Safeguarding the atom

    International Nuclear Information System (INIS)

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  15. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of systems upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and cost and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers

  16. Enabling Equal Access to Molecular Diagnostics: What Are the Implications for Policy and Health Technology Assessment?

    Science.gov (United States)

    Plun-Favreau, Juliette; Immonen-Charalambous, Kaisa; Steuten, Lotte; Strootker, Anja; Rouzier, Roman; Horgan, Denis; Lawler, Mark

    2016-01-01

    Molecular diagnostics can offer important benefits to patients and are a key enabler of the integration of personalised medicine into health care systems. However, despite their promise, few molecular diagnostics are embedded into clinical practice (especially in Europe) and access to these technologies remains unequal across countries and sometimes even within individual countries. If research translation and the regulatory environments have proven to be more challenging than expected, reimbursement and value assessment remain the main barriers to providing patients with equal access to molecular diagnostics. Unclear or non-existent reimbursement pathways, together with the lack of clear evidence requirements, have led to significant delays in the assessment of molecular diagnostics technologies in certain countries. Additionally, the lack of dedicated diagnostics budgets and the siloed nature of resource allocation within certain health care systems have significantly delayed diagnostics commissioning. This article will consider the perspectives of different stakeholders (patients, health care payers, health care professionals, and manufacturers) on the provision of a research-enabled, patient-focused molecular diagnostics platform that supports optimal patient care. Through the discussion of specific case studies, and building on the experience from countries that have successfully integrated molecular diagnostics into clinical practice, this article will discuss the necessary evolutions in policy and health technology assessment to ensure that patients can have equal access to appropriate molecular diagnostics. © 2016 S. Karger AG, Basel.

  17. Safeguards Workforce Repatriation, Retention and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, Nicholas [Brookhaven National Lab. (BNL), Upton, NY (United States); Poe, Sarah [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-01

    Brookhaven National Laboratory was tasked by NA-241 to assess the transition of former IAEA employees back to the United States, investigating the rate of retention and overall smoothness of the repatriation process among returning safeguards professionals. Upon conducting several phone interviews, study authors found that the repatriation process went smoothly for the vast majority and that workforce retention was high. However, several respondents expressed irritation over the minimal extent to which their safeguards expertise had been leveraged in their current positions. This sentiment was pervasive enough to prompt a follow-on study focusing on questions relating to the utilization rather than the retention of safeguards professionals. A second, web-based survey was conducted, soliciting responses from a larger sample pool. Results suggest that the safeguards workforce may be oversaturated, and that young professionals returning to the United States from Agency positions may soon encounter difficulties finding jobs in the field.

  18. Novel technologies for safeguards

    International Nuclear Information System (INIS)

    Annese, C.; Monteith, A.; Whichello, J.

    2009-01-01

    Full-text: The International Atomic Energy Agency (IAEA) Novel Technologies Project is providing access to a wider range of methods and instruments, as well as establishing a systematic mechanism to analyse gaps in the inspectorate's technical support capabilities. The project also targets emerging and future inspectorate needs in the areas of verification and the detection of undeclared nuclear activities, materials, and facilities, providing an effective pathway to technologies in support of safeguards implementation. The identification of safeguards-useful nuclear fuel cycle (NFC) indicators and signatures (I and S) is a fundamental sub-task within the Project. It interfaces with other IAEA efforts currently underway to develop future safeguards approaches through undertaking an in-depth review of NFC processes. Primarily, the sub-task aims to identify unique and safeguards-useful 'indicators', which identify the presence of a particular process, and 'signatures', which emanate from that process when it is in operation. The matching of safeguards needs to detection tool capabilities facilitates the identification of gaps where no current method or instrument exists. The Project has already identified several promising technologies based on atmospheric gas sampling and analysis, laser spectrometry and optically stimulated luminescence. Instruments based on these technologies are presently being developed through support programme tasks with Member States. This paper discusses the IAEA's project, Novel Technologies for the Detection of Undeclared Nuclear Activities, Materials and Facilities and its goal to develop improved methods and instruments. The paper also describes the method that has been devised within the Project to identify safeguards-useful NFC I and S and to determine how the sub-task interfaces with other IAEA efforts to establish emerging safeguards approaches. As with all safeguards-targeted research and development (R and D), the IAEA depends

  19. The international safeguards profession

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1986-01-01

    The International Atomic Energy Agency has established a staff of safeguards professionals who are responsible for carrying out on-site inspections to determine compliance with international safeguards agreements. By IAEA Statute, the paramount consideration in recruiting IAEA staff is to secure employees of the highest standards of efficiency, technical competence, and integrity. An analysis of the distribution of professionals in the IAEA Department of Safeguards has revealed some interesting observations regarding the distribution of grade levels, age, time in service, gender, and geographical origin. Following several earlier studies performed by contractors for ACDA, U.S. efforts have been undertaken to attract and better prepare candidates for working at the IAEA

  20. Agreement reached on integrated safeguards in European Union

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: The International Atomic Energy Agency (IAEA), in cooperation with the European Commission, has reached agreement on arrangements to implement 'integrated safeguards' in all non-nuclear-weapon States of the European Union with significant nuclear activities. 'This important milestone is the result of the constructive common efforts of all parties concerned. It is a clear signal of the importance attributed by the EU and its Member States, as well as the IAEA, to the reinforcement of the nuclear non-proliferation regime,' said Andris Piebalgs, Member of the European Commission in charge of Energy. 'Once we have sufficient confidence that a State' s nuclear activities are purely peaceful, we can apply safeguards measures in a less prescriptive, more customised manner. This reduces the inspection burden on the State and the inspection effort of the IAEA, while enabling the IAEA to maintain the conclusion that all nuclear material has remained in peaceful activities,' said Olli Heinonen, Deputy Director General and Head of IAEA Safeguards Department. Background The Nuclear Non-Proliferation Treaty (NPT) is the main international Treaty prohibiting the spread of nuclear weapons. It entrusts the IAEA to verify that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices through the application of 'safeguards'. IAEA safeguards include comprehensive safeguards agreements and additional protocols that enable the IAEA to conclude that all nuclear material has remained in peaceful activities in a State. Integrated Safeguards refers to the optimum combination of all safeguards measures available to the Agency under comprehensive safeguards agreements and additional protocols to achieve maximum effectiveness and efficiency in meeting the Agency ' s safeguards obligations. In the European Union, nuclear safeguards are implemented on the basis of the Euratom Treaty and trilateral agreements between Euratom, its Member States and the IAEA

  1. Future directions for international safeguards - ESARDA WG on integrated safeguards

    International Nuclear Information System (INIS)

    Rezniczek, A.

    2013-01-01

    Reducing IAEA inspection effort does not mean that the overall safeguards effort will be reduced. There will be compensation and additional effort spent by states and SSACs (State Systems of Accounting and Control). State and/or regional authorities take very serious their responsibilities to safeguard the nuclear material. Enhanced cooperation between all players should be more seriously considered by the IAEA. A more effective implementation of the principle 'one job - one person' and sub-delegation of verification tasks should be taken into account for future evolution. At present, the state level approach is still based on a bottom up approach and not developed top down. The basis is still an aggregation of the facility specific safeguards approaches with some minor adjustments by state specific factors. The touchstone for a true state level approach would be a top-down development process with the result that safeguards effort spent in a state is no longer strongly correlated to the amount and quality of nuclear material in that state. The limitation of the Physical Model is that only the technical aspects are reflected. To actually perform a proliferation, the technical capability is a necessary but insufficient condition. Besides the pure technical capabilities, one has to consider the feasibility for a state to actually implement a proliferation action in its given environment. Factors to be considered are for example institutional factors, ownership of facilities and social and political structures in the state. The help a purely technical assessment can provide is also limited in cases where states have a well developed fuel cycle and thus have at their disposal all required technical capabilities. The paper is followed by the slides of the presentation. (authors)

  2. State Public Health Enabling Authorities: Results of a Fundamental Activities Assessment Examining Core and Essential Services

    Science.gov (United States)

    Hoss, Aila; Menon, Akshara; Corso, Liza

    2016-01-01

    Context Public health enabling authorities establish the legal foundation for financing, organizing, and delivering public health services. State laws vary in terms of the content, depth, and breadth of these fundamental public health activities. Given this variance, the Institute of Medicine has identified state public health laws as an area that requires further examination. To respond to this call for further examination, the Centers for Disease Control and Prevention’s Public Health Law Program conducted a fundamental activities legal assessment on state public health laws. Objective The goal of the legal assessment was to examine state laws referencing frameworks representing public health department fundamental activities (ie, core and essential services) in an effort to identify, catalog, and describe enabling authorities of state governmental public health systems. Design In 2013, Public Health Law Program staff compiled a list of state statutes and regulations referencing different commonly-recognized public health frameworks of fundamental activities. The legal assessment included state fundamental activities laws available on WestlawNext as of July 2013. The results related to the 10 essential public health services and the 3 core public health functions were confirmed and updated in June 2016. Results Eighteen states reference commonly-recognized frameworks of fundamental activities in their laws. Thirteen states have listed the 10 essential public health services in their laws. Eight of these states have also referenced the 3 core public health functions in their laws. Five states reference only the core public health functions. Conclusions Several states reference fundamental activities in their state laws, particularly through use of the essential services framework. Further work is needed to capture the public health laws and practices of states that may be performing fundamental activities but without reference to a common framework. PMID

  3. State Public Health Enabling Authorities: Results of a Fundamental Activities Assessment Examining Core and Essential Services.

    Science.gov (United States)

    Hoss, Aila; Menon, Akshara; Corso, Liza

    2016-01-01

    Public health enabling authorities establish the legal foundation for financing, organizing, and delivering public health services. State laws vary in terms of the content, depth, and breadth of these fundamental public health activities. Given this variance, the Institute of Medicine has identified state public health laws as an area that requires further examination. To respond to this call for further examination, the Centers for Disease Control and Prevention's Public Health Law Program conducted a fundamental activities legal assessment on state public health laws. The goal of the legal assessment was to examine state laws referencing frameworks representing public health department fundamental activities (ie, core and essential services) in an effort to identify, catalog, and describe enabling authorities of state governmental public health systems. In 2013, Public Health Law Program staff compiled a list of state statutes and regulations referencing different commonly-recognized public health frameworks of fundamental activities. The legal assessment included state fundamental activities laws available on WestlawNext as of July 2013. The results related to the 10 essential public health services and the 3 core public health functions were confirmed and updated in June 2016. Eighteen states reference commonly-recognized frameworks of fundamental activities in their laws. Thirteen states have listed the 10 essential public health services in their laws. Eight of these states have also referenced the 3 core public health functions in their laws. Five states reference only the core public health functions. Several states reference fundamental activities in their state laws, particularly through use of the essential services framework. Further work is needed to capture the public health laws and practices of states that may be performing fundamental activities but without reference to a common framework.

  4. Strengthening regional safeguards

    International Nuclear Information System (INIS)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-01-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980's and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States

  5. Licensee safeguards contingency plans

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Nuclear Regulatory Commission is amending its regulations to require that licensees authorized to operate a nuclear reactor (other than certain research and test reactors), and those authorized to possess strategic quantities of plutonium, uranium-233, or uranium-235 develop and implement acceptable plans for responding to threats, thefts, and industrial sabotage of licensed nuclear materials and facilities. The plans will provide a structured, orderly, and timely response to safeguards contingencies and will be an important segment of NRC's contingency planning programs. Licensee safeguards contingency plans will result in organizing licensee's safeguards resources in such a way that, in the unlikely event of a safeguards contingency, the responding participants will be identified, their several responsibilities specified, and their responses coordinated

  6. Part 7. Safeguards

    International Nuclear Information System (INIS)

    Amundson, P.I.; Rusch, G.K.

    1980-01-01

    This report describes fissile nuclear material safeguards technology, both current and developmental, and discusses the possible application of this technology to FBR systems. The proliferation risks associated with both subnational and national-level diversion are addressed

  7. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  8. Special safeguards study. Scopes of work

    International Nuclear Information System (INIS)

    1975-06-01

    The Special Safeguards Study (SSS) will be conducted by a combination of (1) contacts with other agencies, (2) NRC staff studies and analysis and (3) contracted studies in specific areas. Most of the study effort will be carried out by contractual support activities. These activities will be devoted to providing technical information, primarily qualitative because of the short term of the study, to enable the staff to determine the most cost-effective sets of measures for plutonium recycle and high-enriched uranium fuel cycle safeguards. The scope of work for these activities is given. The scope of work describes tasks that range from confirming the Commission's safeguards objective to defining specific protection systems for the following siting arrangements: dispersed sites, collocated fuel cycle plants, and mixed parks where reactors, reprocessing plants and fuel fabrication plants are collocated. (U.S.)

  9. Application of safeguards procedures

    International Nuclear Information System (INIS)

    1977-01-01

    The earliest applications of safeguards procedures took place in a political and technical climate far different from that of today. In the early 1960's there was a fear of the proliferation possibilities which could arise as more and more countries acquired nuclear power plants. Today nuclear power is being produced in some 20 countries without resulting in nuclear weapons proliferation. The export of equipment and technology for the nuclear fuel cycle, however, has become the subject of current concern. In view of these developments, it is not surprising that techniques in the application of safeguards have also changed. In order to appreciate the nature of these changes, it is important to be aware of the original general attitude towards the technical problems of safeguards applications. Originally, the common attitude was that the objectives of safeguards were self-evident and the methods, while in need of development, were known at least in outline. Today, it has become evident that before a safeguards procedure can be applied, the objectives must first be carefully defined, and the criteria against which success in meeting those objectives can be measured must also be developed. In line with this change, a significant part of the effort of the safeguards inspectorate is concerned with work preliminary and subsequent to the actual inspection work in the field. Over the last two years, for example, a considerable part of the work of experienced safeguards staff has been spent in analysing the possibilities of diverting material at each facility to be safeguarded. These analyses are carried out in depth by a 'facility officer' and are subjected to constructive criticism by teams composed of staff responsible for similar types of facilities as well as other technical experts. The analyses consider the measures currently considered practicable, to meet the diversion possibilities and where necessary list the development work needed to overcome any present

  10. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  11. The Department of Safeguards Quality Management System

    International Nuclear Information System (INIS)

    Konecni, S.

    2015-01-01

    The International Atomic Energy Agency (IAEA) Department of Safeguards quality management system (QMS) provides the framework for all activities that support the Agency's commitment to providing soundly-based safeguards conclusions regarding the peaceful use of nuclear material. The focus of the QMS is to enhance the effectiveness and efficiency of safeguards implementation through defined, documented processes, routine oversight and continual improvement initiatives. In accordance with QMS principles, the high-level business processes representing the Department's activities are defined in procedures, guidelines and policies that are maintained in the Safeguards Document Manager. These processes form the basis for Department operations for drawing safeguards conclusions regarding State's compliance with their safeguards obligations. Oversight is provided through internal quality audits. These audits are targeted at processes selected by Senior Management with a focus on procedure compliance as well as customer expectations. Best practices and areas for improvement are assessed through continual improvement. Noncompliance and conditions that are adverse to quality are identified and analyzed in the Condition Report System. Root cause analysis and the implementation actions to eliminate the cause reduce the chance of condition recurrence. Through continual process improvement, processes are measured and analyzed to reduce process and administration waste. The improved processes improve efficiency while providing the desired results. Within the scope of the QMS, these tools support the performance of Departmental processes so that Safeguards products achieve the intended purpose. This paper describes how the various elements of the Department's QMS support safeguards implementation. (author)

  12. Guarantying and testing the nuclear safeguards

    International Nuclear Information System (INIS)

    Turcu, Ilie

    2002-01-01

    Apparently, the nuclear power will ensure an important share of the world energy demand at least for the next decades because there is no viable alternative in the fan of energy sources neither one complying with the environment preservation requirements. The nuclear energy future depends not only on technical and economical aspects but also on preventing any danger of nuclear safeguards nature. The main international legal instrument which provides concrete commitments for nations in this field is the Nuclear Safeguard Convention. It provides guarantees and testings of the nuclear safeguards over the entire service life of the nuclear power plants. In the two general conferences (of 1999 and 2002) the status and measures adopted in the field of nuclear safeguards by the states adhering to the convention were discussed and reviewed, as well as the issues of financial resources, licensing and the adequate measures in emergency cases. The nuclear safeguards is a major issue among the criteria of integration in UE. Essential for maintaining and endorsing the provisions of nuclear safeguards in Romania are specific research and development activities aiming at integrating the equipment and structures, solving the operation problems of nuclear facilities, studying the behavior of installations in transient regimes, investigating the reliability and probabilistic assessing of nuclear safeguards, examining the phenomenology and simulating severe accidents or human factor behavior. Of major importance appears to be the international cooperation aiming that a permanent exchange of information and experience, dissemination of the best results, solutions and practices. The paper presents the status and trends at the world level, as well as in Romania, underlining the main issues of the strategy in this field and stressing the financial and human resources implied the implementing the nuclear safeguards provisions

  13. Safeguards culture on 3S interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice.

  14. Safeguards culture on 3S interfaces

    International Nuclear Information System (INIS)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun

    2015-01-01

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice

  15. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  16. Safeguards and physics measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carchon, R

    2002-04-01

    SCK-CEN's programme on safeguards and physics measurements involves gamma and neutron dosimetry, calibrations and irradiations, electronic support, metrology of various samples including internal contamination of human beings, of waste barrels and of fissile materials, neutron activation analysis, and radioisotope source preparation. The document reports on the main activities and achievements of the sections 'Instrumentation, Calibration and Dosimetry' and 'Safeguards and Nuclear Physics Measurements'.

  17. Psychology of nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L [Manchester Univ. (UK)

    1978-08-17

    it is argued that it is unreasonable to expect the Non-Proliferation Treaty to prevent the diversion of nuclear materials from peaceful purposes to nuclear weapons, which it was designed to do. However it is considered that although prevention cannot be guaranteed it is possible to deter such diversions. The question of publicity is examined since any safeguards system is judged exclusively on what is seen to be their failures and safeguard authorities will be tempted to conceal any diversion.

  18. Safeguards and physics measurements

    International Nuclear Information System (INIS)

    Carchon, R.

    2002-01-01

    SCK-CEN's programme on safeguards and physics measurements involves gamma and neutron dosimetry, calibrations and irradiations, electronic support, metrology of various samples including internal contamination of human beings, of waste barrels and of fissile materials, neutron activation analysis, and radioisotope source preparation. The document reports on the main activities and achievements of the sections 'Instrumentation, Calibration and Dosimetry' and 'Safeguards and Nuclear Physics Measurements'

  19. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  20. IAEA safeguards information system

    International Nuclear Information System (INIS)

    Nardi, J.

    1984-01-01

    The basic concepts, structure, and operation of the Agency Safeguards Information System is discussed with respect to its role in accomplishing the overall objectives of safeguards. The basis and purposes of the Agency's information system, the structure and flow of information within the Agency's system, the relationship of the components is the Agency system, the requirements of Member States in respect of their reporting to the Agency, and the relationship of accounting data vis-a-vis facility and inspection data are described

  1. Overcoming Safeguards Challenges

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2011-01-01

    The focus of the 2010 IAEA International Safeguards Symposium was how best, from a technical perspective, to prepare for future verification challenges during this time of change. By bringing together the leading experts in the field from across the world, this symposium provided an opportunity for stakeholders to explore possible solutions in support of the IAEA's nuclear verification mission, and to identify areas where the different stakeholders in the safeguards business can help address these challenges

  2. Assessment of the requirements for placing and maintaining Savannah River Site spent fuel storage basins under International Atomic Energy Agency safeguards

    International Nuclear Information System (INIS)

    Amacker, O.P. Jr.; Curtis, M.M.; Delegard, C.H.; Hsue, S.T.; Whitesel, R.N.

    1997-03-01

    The United States is considering the offer of irradiated research reactor spent fuel (RRSF) for international safeguards applied by the International Atomic Energy Agency (IAEA). The offer would be to add one or more spent fuel storage basins to the list of facilities eligible for IAEA safeguards. The fuel to be safeguarded would be stored in basins on the Savannah River Site (SRS). This RRSF potentially can include returns of Material Test Reactor (MTR) VAX fuel from Argentina, Brazil, and Chile (ABC); returns from other foreign research reactors; and fuel from domestic research reactors. Basins on the SRS being considered for this fuel storage are the Receiving Basin for Offsite Fuel (RBOF) and the L-Area Disassembly Basin (L-Basin). A working group of SRS, U.S. Department of Energy International Safeguards Division (NN-44), and National Laboratory personnel with experience in IAEA safeguards was convened to consider the requirements for applying the safeguards to this material. The working group projected the safeguards requirements and described alternatives

  3. Safeguards Culture: lesson learned

    International Nuclear Information System (INIS)

    Frazar, S.; Mladineo, S.V.

    2010-01-01

    After the discovery of Iraq's clandestine nuclear program in 1991, the international community developed new tools for evaluating and demonstrating states' nuclear intentions. The International Atomic Energy Agency (IAEA) developed a more holistic approach toward international safeguards verification to garner more complete information about states' nuclear activities. This approach manifested itself in State Level Evaluations, using information from a variety of sources, including the implementation of integrated safeguards in Member States, to reach a broader conclusion. Those wishing to exhibit strong nonproliferation postures to a more critical international community took steps to demonstrate their nonproliferation 'bona fides'. As these Member States signed and brought into force the Additional Protocol, submitted United Nations Security Council Resolution 1540 reports and strengthened their export control laws, the international community began to consider the emergence of so-called safeguards cultures. Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been under appreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured.

  4. Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-01-01

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  5. Measuring Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  6. The international safeguards and domestic safeguards and security interface

    International Nuclear Information System (INIS)

    Whitworth, A.

    1996-01-01

    The International Safeguards Division, in conjunction with the Office of Safeguards and Security, organized a workshop on the international safeguards/domestic safeguards and security interface that was held in March 1996. The purpose of the workshop was to identify and resolve domestic safeguards and security issues associated with the implementation of International Atomic Energy Agency (IAEA) safeguards in the Department of Energy (DOE) complex. The workshop drew heavily upon lessons learned in the application of IAEA safeguards at storage facilities in oak Ridge, Hanford, and Rocky Flats. It was anticipated that the workshop would facilitate a consistent DOE safeguards and security approach for the implementation of IAEA safeguards in the DOE complex. This paper discusses the issues and resolutions of several issues raised at the workshop that involve primarily the domestic material control and accountability program

  7. An analytical laboratory to facilitate international safeguards

    International Nuclear Information System (INIS)

    Clark, B.E.; Muellner, P.; Deron, S.

    1976-01-01

    Member States which have concluded safeguards agreements accept safeguards on part or all of their nuclear facilities and nuclear materials. The Agreements enable the Agency to make inspections in order to verify the location, identity, quantity and composition of all safeguarded nuclear material. The independent analysis of samples of safeguards material is an essential part of the verification process. A new analytical laboratory has been made available to the Agency by the Austrian Government. This facility is staffed by the Agency with scientists and technicians from five Member States. Design criteria for the laboratory were defined by the Agency. Construction was carried out under the project management of the Oesterreichische Studiengesellschaft fuer Atomenergie Ges.m.b.H. Scientific equipment was procured by the Agency. Samples of feed and product material from the nuclear fuel cycle will constitute the main work load. Irradiated and unirradiated samples of uranium, plutonium and mixtures of both will be analysed for concentration and isotopic composition. Since highly diluted solutions of spent fuel will be the most active beta-gamma samples, shielded and remote manipulation facilities are not necessary. Ptentiometry, mass spectrometry and coulometry are the main techniques to be employed. Gravimetry, alpha and gamma spectrometry and emission spectroscopy will also be utilized as required. It is not intended that this laboratory, should carry the whole burden of the Agency's safeguards analytical work, but that it should function as a member of a network of international laboratories which has been set up by the Agency for this purpose. (author)

  8. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    Science.gov (United States)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  9. Methodology and preliminary models for analyzing nuclear safeguards decisions

    International Nuclear Information System (INIS)

    1978-11-01

    This report describes a general analytical tool designed to assist the NRC in making nuclear safeguards decisions. The approach is based on decision analysis--a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material, demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria), and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  10. The UK safeguards R and D support program

    International Nuclear Information System (INIS)

    Patrick, B.H.; Andrew, G.; Tuley, J.N.

    1991-01-01

    The UK Safeguards R and D Programme in support of IAEA safeguards was formally initiated in 1981. Funding is provided by HM Government through the Department of Energy, responsibility for managing and carrying out the work being placed in the hands of the UK Atomic Energy Authority The programme covers safeguards in a variety of areas, including reprocessing and enrichment plants, nuclear materials in waste, authentication of facility computer systems, training courses for safeguards inspectors, containment and surveillance, destructive and non-destructive assay techniques and techniques for assessing diversion path analysis. In this paper an overview of the work is presented

  11. Societal risk approach to safeguards design and evaluation

    International Nuclear Information System (INIS)

    Murphey, W.M.; Sherr, T.S.; Bennett, C.A.

    1975-01-01

    A comprehensive rationale for safeguards design and evaluation, and a framework for continuing systematic assessment of the system's effectiveness and efficient allocation of available safeguards resources for balanced protection, were developed. The societal risk approach employed considers the likelihood of successful destructive acts involving nuclear materials or facilities and the magnitude of the effects on society. The safeguards problem is described in terms of events affecting societal risk and adversary actions. Structure of the safeguards system and the evaluation of its adequacy are discussed. Adversary characteristics are also discussed

  12. Methodology and preliminary models for analyzing nuclear-safeguards decisions

    International Nuclear Information System (INIS)

    Judd, B.R.; Weissenberger, S.

    1978-11-01

    This report describes a general analytical tool designed with Lawrence Livermore Laboratory to assist the Nuclear Regulatory Commission in making nuclear safeguards decisions. The approach is based on decision analysis - a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material; demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria); and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  13. Dynamic analysis of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Wilson, J.R.; Rasmuson, D.M.; Tingey, F.H.

    1978-01-01

    The assessment of the safeguards/adversary system poses a unique challenge as evolving technology affects the capabilities of both. The method discussed meets this challenge using a flexible analysis which can be updated by system personnel. The automatically constructed event tree provides a rapid overview analysis for initial assessment, evaluation of changes, cost/benefit study and inspection and audit

  14. Safeguards by Design Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  15. Safeguards by Design Challenge

    International Nuclear Information System (INIS)

    Alwin, Jennifer Louise

    2016-01-01

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA's limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  16. Safeguards systems parameters

    International Nuclear Information System (INIS)

    Avenhaus, R.; Heil, J.

    1979-01-01

    In this paper analyses are made of the values of those parameters that characterize the present safeguards system that is applied to a national fuel cycle; those values have to be fixed quantitatively so that all actions of the safeguards authority are specified precisely. The analysis starts by introducing three categories of quantities: The design parameters (number of MBAs, inventory frequency, variance of MUF, verification effort and false-alarm probability) describe those quantities whose values have to be specified before the safeguards system can be implemented. The performance criteria (probability of detection, expected detection time, goal quantity) measure the effectiveness of a safeguards system; and the standards (threshold amount and critical time) characterize the magnitude of the proliferation problem. The means by which the values of the individual design parameters can be determined with the help of the performance criteria; which qualitative arguments can narrow down the arbitrariness of the choice of values of the remaining parameters; and which parameter values have to be fixed more or less arbitrarily, are investigated. As a result of these considerations, which include the optimal allocation of a given inspection effort, the problem of analysing the structure of the safeguards system is reduced to an evaluation of the interplay of only a few parameters, essentially the quality of the measurement system (variance of MUF), verification effort, false-alarm probability, goal quantity and probability of detection

  17. Probabilistic risk analysis: its possible use in safeguards problems

    International Nuclear Information System (INIS)

    Rasmussen, N.C.

    1976-01-01

    This paper reviews the methodology which was used in the Reactor Safety Study and in the WASH-1400 report. Its application to the safeguards problem is discussed. It is concluded that, while there are possible applications, an overall quantitative risk assessment of the safeguards issues is at present beyond the capability of the methodology

  18. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  19. The potential use of domestic safeguards interior monitors in International Safeguards

    International Nuclear Information System (INIS)

    Williams, J.D.; Dupree, S.A.; Sonnier, C.S.

    1998-01-01

    An important future element of International Safeguards instrumentation is expected to be the merging of containment/surveillance and nondestructive assay equipment with domestic physical protection equipment into integrated systems, coupled with remote monitoring. Instrumentation would include interior monitoring and assessment and entry/exit monitoring. Of particular importance is the application of interior monitors in spaces of declared inactivity; for example, in nuclear material storage locations that are entered infrequently. The use of modern interior monitors in International Safeguards offers potential for improving effectiveness and efficiency. Within the context of increased cooperation, one can readily envision increased interaction between International Safeguards and Domestic Safeguards, including increased joint use of State System of Accounting and Control data

  20. Some problems relating to application of safeguards in the future

    International Nuclear Information System (INIS)

    Tolchenkov, D.L.

    1983-01-01

    By the end of this century there will have been a considerable increase in the amount of nuclear material and the number of facilities subject to IAEA safeguards. The IAEA will therefore be faced with problems due to the increased volume of safeguards activity, the application of safeguards to new types of facility and to large facilities, the optimization of the existing IAEA safeguards system and so on. The authors analyse the potential growth in the IAEA's safeguards activities up to the year 2000 and consider how to optimize methods for the application of safeguards, taking into account a number of factors relating to a State's nuclear activity, the application of full-scope IAEA safeguards etc. On the basis of a hypothetical model of the nuclear fuel cycle that allows for the factors considered as part of the International Nuclear Fuel Cycle Evaluation (INFCE), the authors assess the possible risk of diversion as a function of a full-scope safeguards effort. They also examine possible conceptual approaches to safeguarding large-scale facilities such as fuel reprocessing and uranium enrichment plants. (author)

  1. Reporting of safeguards events

    International Nuclear Information System (INIS)

    Dwyer, P.A.; Ervin, N.E.

    1988-02-01

    On June 9, 1987, the Commission published in the Federal Register a final rule revising the reporting requirements for safeguards events. Safeguards events include actual or attempted theft of special nuclear material (SNM); actual or attempted acts or events which interrupt normal operations at power reactors due to unauthorized use of or tampering with machinery, components, or controls; certain threats made against facilities possessing SNM; and safeguards system failures impacting the effectiveness of the system. The revised rule was effective October 8, 1987. On September 14, 1987, the NRC held a workshop in Bethesda, MD, to answer affected licensees' questions on the final rule. This report documents questions discussed at the September 14 meeting, reflects a completed staff review of the answers, and supersedes previous oral comment on the topics covered

  2. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    McClelland-Kerr, J.; Stevens, J.

    2010-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the clean and safe growth of nuclear power, and the infrastructure that supports these three areas should be robust. The focus of this paper will be on the development of the infrastructure necessary to support safeguards, and the integration of safeguards infrastructure with other elements critical to ensuring nuclear energy security

  3. Fuel cycle based safeguards

    International Nuclear Information System (INIS)

    De Montmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-07-01

    In NPT safeguards the same model approach and absolute-quantity inspection goals are applied at present to all similar facilities, irrespective of the State's fuel cycle. There is a continuing interest and activity on the part of the IAEA in new NPT safeguards approaches that more directly address a State's nuclear activities as a whole. This fuel cycle based safeguards system is expected to a) provide a statement of findings for the entire State rather than only for individual facilities; b) allocate inspection efforts so as to reflect more realistically the different categories of nuclear materials in the different parts of the fuel cycle and c) provide more timely and better coordinated information on the inputs, outputs and inventories of nuclear materials in a State. (orig./RF) [de

  4. Prospective Technology Assessment of Synthetic Biology: Fundamental and Propaedeutic Reflections in Order to Enable an Early Assessment.

    Science.gov (United States)

    Schmidt, Jan Cornelius

    2016-08-01

    Synthetic biology is regarded as one of the key technosciences of the future. The goal of this paper is to present some fundamental considerations to enable procedures of a technology assessment (TA) of synthetic biology. To accomplish such an early "upstream" assessment of a not yet fully developed technology, a special type of TA will be considered: Prospective TA (ProTA). At the center of ProTA are the analysis and the framing of "synthetic biology," including a characterization and assessment of the technological core. The thesis is that if there is any differentia specifica giving substance to the umbrella term "synthetic biology," it is the idea of harnessing self-organization for engineering purposes. To underline that we are likely experiencing an epochal break in the ontology of technoscientific systems, this new type of technology is called "late-modern technology." -I start this paper by analyzing the three most common visions of synthetic biology. Then I argue that one particular vision deserves more attention because it underlies the others: the vision of self-organization. I discuss the inherent limits of this new type of late-modern technology in the attempt to control and monitor possible risk issues. I refer to Hans Jonas' ethics and his early anticipation of the risks of a novel type of technology. I end by drawing conclusions for the approach of ProTA towards an early societal shaping of synthetic biology.

  5. The status of safeguarding 600 MW(e) CANDU reactors

    International Nuclear Information System (INIS)

    Von Baeckmann, A.; Rundquist, D.E.; Pushkarjov, V.; Smith, R.M.; Zarecki, C.W.

    1982-09-01

    There has been extensive work in the development of CANDU safeguards since the last International Conference on Nuclear Power, and this has resulted in the development of improved equipment for the safeguards system now being installed in the 600 MW(e) CANDU generating stations. The overall system is designed to improve on the existing IAEA safeguards and to provide adequate coverage for each plausible nuclear material diversion route. There is sufficient sensitivity and redundancy to enable the timely detection of the possible diversion of significant quantities of nuclear material

  6. Enabling Ethical Code Embeddedness in Construction Organizations: A Review of Process Assessment Approach.

    Science.gov (United States)

    Oladinrin, Olugbenga Timo; Ho, Christabel Man-Fong

    2016-08-01

    Several researchers have identified codes of ethics (CoEs) as tools that stimulate positive ethical behavior by shaping the organisational decision-making process, but few have considered the information needed for code implementation. Beyond being a legal and moral responsibility, ethical behavior needs to become an organisational priority, which requires an alignment process that integrates employee behavior with the organisation's ethical standards. This paper discusses processes for the responsible implementation of CoEs based on an extensive review of the literature. The internationally recognized European Foundation for Quality Management Excellence Model (EFQM model) is proposed as a suitable framework for assessing an organisation's ethical performance, including CoE embeddedness. The findings presented herein have both practical and research implications. They will encourage construction practitioners to shift their attention from ethical policies to possible enablers of CoE implementation and serve as a foundation for further research on ethical performance evaluation using the EFQM model. This is the first paper to discuss the model's use in the context of ethics in construction practice.

  7. Development of natural gas vehicles in China: An assessment of enabling factors and barriers

    International Nuclear Information System (INIS)

    Wang, Hongxia; Fang, Hong; Yu, Xueying; Wang, Ke

    2015-01-01

    Replacing conventional gasoline or diesel vehicles with natural gas vehicles (NGVs) is necessary if China hopes to significantly reduce its greenhouse gas emissions in the short term. Based on city-level data, this paper analyzes the enabling factors and barriers to China's NGV development. We find that a shortage in natural gas supply and a relatively high price ratio of natural gas compared to gasoline are the main factors impeding China's NGV development. Imbalanced development between natural gas refueling stations and NGVs also hinder the popularity of these lower-carbon vehicles. While various policies have been implemented in recent years to promote NGVs in China, only those encouraging adoption of NGVs by the private sector appear effective. To promote further NGV development in China, the following strategies are proposed: (1) improve natural gas delivery infrastructure across the country; (2) reasonably reduce the relative price of natural gas compared to gasoline; (3) give priority to middle-income and medium-sized cities and towns, since siting natural gas refueling stations is easier in these areas; and (4) promote the use of NGVs in the private sector. -- Highlights: •We assess the effectiveness of NGV policies in China. •Relatively low natural gas price promotes NGV development. •Coordinated development of refueling stations and NGVs is important. •Policies that encourage private NGV development should be adopted. •Middle-income and medium-sized cities are more suitable for developing NGVs

  8. Assessment of fiducial markers to enable the co-registration of photographs and MRI data.

    Science.gov (United States)

    Webb, Bridgette A; Petrovic, Andreas; Urschler, Martin; Scheurer, Eva

    2015-03-01

    To investigate the visualisation of novel external fiducial skin markers in photography and MRI. To co-register photographs and MR images, and additionally assess the spatial accuracy of these co-registrations with the view of future application in the investigation of forensically relevant soft tissue lesions. Strand-shaped fiducial markers were secured externally over hematomas on the thigh of 10 volunteers. The region of interest was photographed and examined using MRI at 3T in oblique and transversal orientations and the visibility of the markers assessed. Markers provided 'control points' in both sets of images, enabling the computation of an affine transform to register oblique MR images to photographs. The fiducial registration error was evaluated by calculating the root-mean-square error of nine corresponding evaluation points visible in both modalities. Fiducial markers were clearly visualised in both photography and MRI. The co-registration of photographs and oblique MR images was achieved for all participants. The overall root-mean-square error for registrations was 1.18mm (TIRM) and 1.46mm (TSE2D with SPAIR fat-suppression). The proposed approach led to the successful visualisation of non-invasive fiducial markers using photography and MRI (TIRM and TSE2D (SPAIR) sequences). This visualisation, combined with an affine transformation process provided a simple, cost-effective way to accurately co-register photographs and MR images of subcutaneous hematomas located on the thigh. Further investigation of the novel markers and the proposed co-visualisation approach holds potential to improve not only the forensic documentation of soft tissue lesions, but to also improve certain clinical applications, including the area of dermatology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Pickering safeguards: a preliminary analysis

    International Nuclear Information System (INIS)

    Todd, J.L.; Hodgkinson, J.G.

    1977-05-01

    A summary is presented of thoughts relative to a systems approach for implementing international safeguards. Included is a preliminary analysis of the Pickering Generating Station followed by a suggested safeguards system for the facility

  10. Safeguards and Physics Measurements: Services

    International Nuclear Information System (INIS)

    Carchon, R.

    2000-01-01

    SCK-CEN's department of Safeguards and Physics Measurements provides a wide variety of internal and external services including dosimetry, calibration, instrumentation, whole body counting, safeguards and non-destructive analysis. Main developments in these areas in 1999 are described

  11. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  12. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  13. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  14. Trade Analysis and Safeguards

    International Nuclear Information System (INIS)

    Chatelus, R.; Schot, P.M.

    2010-01-01

    In order to verify compliance with safeguards and draw conclusions on the absence of undeclared nuclear material and activities, the International Atomic Energy Agency (IAEA) collects and analyses trade information that it receives from open sources as well as from Member States. Although the IAEA does not intervene in national export controls, it has to monitor the trade of dual use items. Trade analysis helps the IAEA to evaluate global proliferation threats, to understand States' ability to report exports according to additional protocols but also to compare against State declarations. Consequently, the IAEA has explored sources of trade-related information and has developed analysis methodologies beyond its traditional safeguards approaches. (author)

  15. Australian nuclear safeguards

    International Nuclear Information System (INIS)

    Kerin, J.C.

    1988-01-01

    The Australian Government considers that allegations made by the West German magazine - Der Spiegel in its January and February 1988 editions, flow from a lack of understanding of the complexities of international trade in nuclear materials, confusion between internal and international flag swaps and failure to comprehend the equivalence principle used in nuclear materials accounting. The Ministerial statement briefly outlines these issues and concludes that there is no evidence that any material subject to Australia's bilateral safeguards agreement has been diverted from peaceful uses or that Australia's safeguard requirements have been breached

  16. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Badwan, Faris M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  17. The Agency's Safeguards System (1965)

    International Nuclear Information System (INIS)

    1965-01-01

    On 28 September 1965 the Board of Governors approved the Agency's revised safeguards system which is set forth in this document for the information of all Members. For ease of reference the revised system may be cited as 'The Agency's Safeguards System (1965)' to distinguish it from the original system - 'The Agency's Safeguards System (1961)'- and from the original system as extended to large reactor facilities - 'The Agency's Safeguards System (1961, as Extended in 1964)'

  18. Facility Safeguardability Analysis in Support of Safeguards by Design

    International Nuclear Information System (INIS)

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  19. Technology-enabled assessment of health professions education: consensus statement and recommendations from the Ottawa 2010 Conference

    DEFF Research Database (Denmark)

    Amin, Zubair; Boulet, John R; Cook, David A

    2011-01-01

    The uptake of information and communication technologies (ICTs) in health professions education can have far-reaching consequences on assessment. The medical education community still needs to develop a deeper understanding of how technology can underpin and extend assessment practices....... This article was developed by the 2010 Ottawa Conference Consensus Group on technology-enabled assessment to guide practitioners and researchers working in this area. This article highlights the changing nature of ICTs in assessment, the importance of aligning technology-enabled assessment with local context...... and needs, the need for better evidence to support use of technologies in health profession education assessment, and a number of challenges, particularly validity threats, that need to be addressed while incorporating technology in assessment. Our recommendations are intended for all practitioners across...

  20. The Connection between the Areas of Safeguards and Physical Protection and Record and Memory Keeping

    International Nuclear Information System (INIS)

    Ormai, Peter; )

    2012-01-01

    Safeguards are concerned with nuclear - especially fissile - materials and associated technology. In general, nuclear safeguards exist on different levels, each with different motivations (the facility operator, national authority, international authority). Safeguards basically comes down to accountancy on fissile material (mainly U an Pu), which seeks to verify the 'material balance'. For international nuclear safeguards, accountancy assures that nuclear materials are present and used as intended. International safeguards are called for by treaties and other agreements between parties. EURATOM and IAEA are the main actors. Implementing safeguards for geological disposal is considered a big challenge as it is a new area. Although the complementarity between safeguards and general RK and M preservation was pointed out, there are also substantial differences. With regard to complementarity, it was mentioned that the challenges for preserving of IAEA safeguards relevant information and documentation are the same as that of other long term archiving. An effective application of safeguards shall assure continuity-of-knowledge about the nuclear material in the repository. A variety of technical tools enables safeguards to provide accountancy and continuity of knowledge of nuclear materials.. On the other hand it was mentioned that safeguards are only interested in fissile materials, so e.g. not really in intermediate level waste. Moreover, safeguards records keeping is a State, not a waste agency responsibility. Some more fundamental, challenging differences were also pointed out. For instance, although the record-keeping requirements for retrievability and safeguards might be considered to be complementary, their aims are in fact opposite. Safeguards can only be abandoned in case of practical irretrievability. Whether this is possible remains a question mark. In any case spent fuel will never be regarded as 'waste' by the safeguards community. Another issue is the

  1. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  2. Strengthening Performance Management in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Villiers, V. Z. de

    2015-01-01

    This paper will describe an initiative to develop a management support tool to improve performance management in the IAEA Department of Safeguards. The envisaged mechanism should enable the Department to (a) plan, assess and report on the achievement of its objectives and (b) to improve its performance on a continuous basis. The performance management tool should be aligned with related processes in the Department and the IAEA as a whole such as strategic planning, programming and budget, the result-based management approach and various reporting mechanisms. It should be integrated with existing and planned information and other management systems. The initially, departmental working group that was established for this initiative focussed on two aspects: confirmation of the overall and specific objectives to be achieved by the Department of Safeguards, and compiling an inventory of indicators of activities, outputs and outcomes that were being used in the Department. This exercise confirmed that alignment and prioritization of activities relating to assessment of, and reporting on, performance could be improved. A value creation map was subsequently developed to assist in focussing the performance management tool to identified needs of stakeholders. Other activities of the working group included the determination of the desired characteristics of a hierarchy of performance indicators to be used to drive desired behaviour across organizational levels. Complexities to be handled included the following: · reflecting the appropriate component of the results chain (such as activities, outputs, outcomes and impact); · maintaining the linkages between objectives and performance indicators across organizational levels; · developing a balanced set of performance indicators (e.g. reflecting in-field and Headquarters activities, incorporating all main components of Departmental processes and balanced scorecard perspectives, measurable vs qualitative indicators); and

  3. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities

  4. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  5. Preliminary Strategic Environmental Assessment of the Great Western Development Strategy: Safeguarding Ecological Security for a New Western China

    Science.gov (United States)

    Li, Wei; Liu, Yan-Ju; Yang, Zhifeng

    2012-02-01

    The Great Western Development Strategy (GWDS) is a long term national campaign aimed at boosting development of the western area of China and narrowing the economic gap between the western and the eastern parts of China. The Strategic Environmental Assessment (SEA) procedure was employed to assess the environmental challenges brought about by the western development plans. These plans include five key developmental domains (KDDs): water resource exploitation and use, land utilization, energy generation, tourism development, and ecological restoration and conservation. A combination of methods involving matrix assessment, incorporation of expert judgment and trend analysis was employed to analyze and predict the environmental impacts upon eight selected environmental indicators: water resource availability, soil erosion, soil salinization, forest destruction, land desertification, biological diversity, water quality and air quality. Based on the overall results of the assessment, countermeasures for environmental challenges that emerged were raised as key recommendations to ensure ecological security during the implementation of the GWDS. This paper is intended to introduce a consensus-based process for evaluating the complex, long term pressures on the ecological security of large areas, such as western China, that focuses on the use of combined methods applied at the strategic level.

  6. The evolution of safeguards

    International Nuclear Information System (INIS)

    Heinonen, O.

    1999-01-01

    The Agency's safeguards system has demonstrated a flexibility capable of responding to the verification demands of its Member States. It is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The Agency is in the process of strengthening safeguards in its verification of declared activities. Since the early 1990's the Board of Governors took up the issue of strengthening measures such as inspections at undeclared locations, the early provision of design information, a system of universal reporting on nuclear material and certain nuclear-related equipment and non-nuclear material. Following the Agency's 'Programme 93+2', a major step forward was the adoption by the Board of Governors of the Additional Protocol in May 1997. This included important strengthened safeguards measures based on greater access to information and locations. A number of member states have already indicated their willingness to participate in this system by signing the Additional Protocol and this is now in the early stages of implementation for a few states. (author)

  7. Safeguards system design methodology

    International Nuclear Information System (INIS)

    Cravens, M.N.; Winblad, A.E.

    1977-01-01

    Sandia Laboratories is developing methods for the design of physical protection systems to safeguard special nuclear material and vital equipment at fixed sites. One method is outlined and illustrated with simplified examples drawn from current programs. The use of an adversary sequence diagram as an analysis tool is discussed

  8. Technical basis of safeguards

    International Nuclear Information System (INIS)

    Buechler, C.

    1975-01-01

    Definition of nuclear materials control. Materials accountancy and physical control as technical possibilities. Legal possibilities and levels of responsibility: material holders, national and international authority. Detection vs. prevention. Physical security and containment surveillance. Accountancy: materials balance concept. Materials measurement: inventory taking, flow determination. IAEA safeguards; verification of operator's statement. (HP) [de

  9. Nuclear safeguards project

    International Nuclear Information System (INIS)

    Mache, H.R.

    1978-10-01

    The present report describes the major activities carried out in 1977 in the framework of the Nuclear Safeguards Project by the institutes of the Kernforschungszentrum Karlsruhe, Kernforschungsanlage Juelich, the European Institute of Transuranium Elements and some industrial firms. (orig.) 891 HP 892 AP [de

  10. Safeguards techniques and equipment

    International Nuclear Information System (INIS)

    1997-01-01

    The current booklet is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. As new verification measures continue to be developed, the material in the booklet will be periodically reviewed and updated versions issued. (author)

  11. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  12. The project 'nuclear safeguards'

    International Nuclear Information System (INIS)

    Gupta, D.

    1976-01-01

    A survey is given on the elaboration and implementation of a nuclear safeguards system which takes into account the economic needs of an expanding nuclear industry as well as the international monitoring commitments of the FRG under the Euratom and Non-Proliferation treaties. (RW) [de

  13. Brazilian reactors under safeguards

    International Nuclear Information System (INIS)

    1967-01-01

    Three nuclear reactors in Brazil have been placed under Agency safeguards against diversion to military use. They are used for research purposes under a bilateral treaty with the USA, and are located at Rio de Janeiro, Sao Paulo and Belo Horizonte

  14. Nuclear safeguards technology 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This publication presents the results of the sixth in a series of international symposia on nuclear material safeguards. Development efforts related to safeguards for reprocessing plants constituted over twenty per cent of the programme. Other papers present results of over four years of field testing of near real time material accountancy at a plant in Japan, and results for a lesser period of time at a plant in Scotland. Papers reporting work on destructive and non-destructive measurement procedures or equipment constituted another thirty per cent of the programme, more if measurements in reprocessing and poster presentations are included. In honour of the tenth anniversary of the founding of the Safeguards Analytical Laboratory, two sessions were devoted to a review of destructive analytical measurement procedures. Some subjects received only minor attention during the Symposium. The statistical theory of random sampling, safeguards for uranium enrichment plants, material accountancy systems and several other topics appear only incidentally in the programme, but primarily because there are few remaining problems, not because there is little remaining interest

  15. Date change and safeguards at Dounreay

    International Nuclear Information System (INIS)

    Anderson, A.; Gregory, C.V.

    1999-01-01

    The paper briefly describes the arrangements in Dounreay for tackling the Millennium problem and for managing the accountancy of fissile material. The impact of the date change upon safeguards at Dounreauy has been assessed and the paper shows the problems which have been identified and are being tackled with

  16. Can a safeguards accountancy system really detect an unauthorized removal

    International Nuclear Information System (INIS)

    Ehinger, M.H.; Ellis, J.H.

    1981-11-01

    Theoretical investigations and system studies indicate safeguards material balance data from reprocessing plants can be used to detect unauthorized removals. Plant systems have been modeled and simulated data used to demonstrate the techniques. But how sensitive are the techniques when used with actual plant data. What is the effect of safeguards applications on plant operability. Can safeguards be acceptable to plant operators, and are there any benefits to be derived. The Barnwell Nuclear Fuel Plant (BNFP) has been devoted to answering these and other questions over the past several years. A computerized system of near-real-time accounting and in-process inventory has been implemented and demonstrated during actual plant test runs. Measured inventories and hourly material balance closures have been made to assess safeguards in an operating plant application. The tests have culminated in actual removals of material from the operating plant to investigate the response and measure the sensitivity of the safeguards and data evaluation system

  17. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  18. From safeguards to treaty verification and the future

    International Nuclear Information System (INIS)

    Harry, J.

    1997-01-01

    Changes in safeguards techniques and changes in the context in which it has to be applied have led to a continuous evolution of safeguards. Nuclear material accountancy and its verification is still the basis of safeguards. But also other, less technical, tools are developed for the future. Will safeguards not become an idle story but continue to lay effectively and efficiently a concrete foundation for international trust and peace, there is a need for more investment in new methods and techniques to allow safeguards to keep pace with the developments, both politically and technically. Safeguards serves the international community by enhancing the mutual trust that leads to national security. That also enabled the rapid growth of international co-operation on the applications of nuclear energy. But international security is based on confidence. It is not a priori the technique that creates that sphere of confidence, the human and political interactions are at least equally important. In different cultures there are marked differences in behaviour and such differences can be easily misinterpreted. Therefore also the new safeguards has to be equally objectively established and critically executed under the close attention of all parties concerned

  19. Identifying the barriers and enablers to palliative care nurses' recognition and assessment of delirium symptoms: a qualitative study.

    Science.gov (United States)

    Hosie, Annmarie; Lobb, Elizabeth; Agar, Meera; Davidson, Patricia M; Phillips, Jane

    2014-11-01

    Delirium is underrecognized by nurses, including those working in palliative care settings where the syndrome occurs frequently. Identifying contextual factors that support and/or hinder palliative care nurses' delirium recognition and assessment capabilities is crucial, to inform development of clinical practice and systems aimed at improving patients' delirium outcomes. The aim of the study was to identify nurses' perceptions of the barriers and enablers to recognizing and assessing delirium symptoms in palliative care inpatient settings. A series of semistructured interviews, guided by critical incident technique, were conducted with nurses working in Australian palliative care inpatient settings. A hypoactive delirium vignette prompted participants' recall of delirium and identification of the perceived factors (barriers and enablers) that impacted on their delirium recognition and assessment capabilities. Thematic content analysis was used to analyze the qualitative data. Thirty participants from nine palliative care services provided insights into the barriers and enablers of delirium recognition and assessment in the inpatient setting that were categorized as patient and family, health professional, and system level factors. Analysis revealed five themes, each reflecting both identified barriers and current and/or potential enablers: 1) value in listening to patients and engaging families, 2) assessment is integrated with care delivery, 3) respecting and integrating nurses' observations, 4) addressing nurses' delirium knowledge needs, and 5) integrating delirium recognition and assessment processes. Supporting the development of palliative care nursing delirium recognition and assessment practice requires attending to a range of barriers and enablers at the patient and family, health professional, and system levels. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  20. Transforming paper-based assessment forms to a digital format: Exemplified by the Housing Enabler prototype app.

    Science.gov (United States)

    Svarre, Tanja; Lunn, Tine Bieber Kirkegaard; Helle, Tina

    2017-11-01

    The aim of this paper is to provide the reader with an overall impression of the stepwise user-centred design approach including the specific methods used and lessons learned when transforming paper-based assessment forms into a prototype app, taking the Housing Enabler as an example. Four design iterations were performed, building on a domain study, workshops, expert evaluation and controlled and realistic usability tests. The user-centred design process involved purposefully selected participants with different Housing Enabler knowledge and housing adaptation experience. The design iterations resulted in the development of a Housing Enabler prototype app. The prototype app has several features and options that are new compared with the original paper-based Housing Enabler assessment form. These new features include a user friendly overview of the assessment form; easy navigation by swiping back and forth between items; onsite data analysis; and ranking of the accessibility score, photo documentation and a data export facility. Based on the presented stepwise approach, a high-fidelity Housing Enabler prototype app was successfully developed. The development process has emphasized the importance of combining design participants' knowledge and experiences, and has shown that methods should seem relevant to participants to increase their engagement.

  1. Safeguards-By-Design: Guidance and Tools for Stakeholders

    International Nuclear Information System (INIS)

    Schanfein, Mark; Johnson, Shirley

    2012-01-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  2. Safeguards-By-Design: Guidance and Tools for Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schanfein; Shirley Johnson

    2012-02-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  3. Assessment of the effectiveness of personal visual observation as a safeguards measure in a uranium enrichment facility

    International Nuclear Information System (INIS)

    Ohno, Fubito; Okamoto, Tsuyoshi; Yokochi, Akira; Nidaira, Kazuo

    2003-01-01

    In a centrifuge enrichment facility, a cascade that produces low enriched uranium is composed of a large number of UF 6 gas centrifuges interconnected with pipes. It is possible to divert the cascade to the illegal production of highly enriched uranium (HEU) by changing the piping arrangement within the cascade. If integrated type centrifuges that contain a few tens of advanced centrifuges are introduced into the facility, the number of pipes will greatly decrease. The smaller the number of pipes, the less the labor required to change the piping arrangement. Because personal visual observation by an inspector is considered as one of measures against changing the piping arrangement, its effectiveness is assessed in this study. First, a model centrifuge enrichment facility that has a capacity of 2,400 ton-SWU/y is designed. In this model facility, integrated type centrifuges that contain advanced centrifuges are installed. Second, the diversion path analysis is carried out for the model facility under the assumption that a facility operator's goal is to produce 75 kg of HEU with 20% enrichment in a month. The analysis shows that, in our assumed diversion path, changes of the piping arrangement can be certainly detected by personal visual observation of a part of pipes connected with integrated type centrifuges that compose the cascade diverted to the HEU production. Finally, inspections in a cascade area are modeled as two-person noncooperative games between the inspector and the facility operator. As a result, it is found that all the cascades in the model facility will be investigated if the inspector can devote the inspection effort of 0.83 man-day per month to personal visual observation in the cascade area. Therefore, it is suggested that personal visual observation of the piping arrangement is worth carrying out in a uranium enrichment facility where integrated type centrifuges that contain advanced centrifuges are installed. (author)

  4. Working Group 2: Future Directions for Safeguards and Verification, Technology, Research and Development

    International Nuclear Information System (INIS)

    Zykov, S.; Blair, D.

    2013-01-01

    For traditional safeguards it was recognized that the hardware presently available is, in general, addressing adequately fundamental IAEA needs, and that further developments should therefore focus mainly on improving efficiencies (i.e. increasing cost economies, reliability, maintainability and user-friendliness, keeping abreast of continual advancements in technologies and of the evolution of verification approaches). Specific technology areas that could benefit from further development include: -) Non-destructive measurement systems (NDA), in particular, gamma-spectroscopy and neutron counting techniques; -) Containment and surveillance tools, such as tamper indicating seals, video-surveillance, surface identification methods, etc.; -) Geophysical methods for design information verification (DIV) and safeguarding of geological repositories; and -) New tools and methods for real-time monitoring. Furthermore, the Working Group acknowledged that a 'building block' (or modular) approach should be adopted towards technology development, enabling equipment to be upgraded efficiently as technologies advance. Concerning non-traditional safeguards, in the area of satellite-based sensors, increased spatial resolution and broadened spectral range were identified as priorities. In the area of wide area surveillance, the development of LIDAR-like tools for atmospheric sensing was discussed from the perspective of both potential benefits and certain limitations. Recognizing the limitations imposed by the human brain in terms of information assessment and analysis, technologies are needed that will enable the more effective utilization of all information, regardless of its format and origin. The paper is followed by the slides of the presentation. (A.C.)

  5. Assessing feasibility of IT-enabled networked value consellations: A case study in the electricity sector

    NARCIS (Netherlands)

    Derzsi, Z.; Gordijn, J.; Kok, J.K.; Akkermans, J.M.; Tan, Y.H.; Krogstie, J.; Opdahl, A.L.; Sindre, G.

    2007-01-01

    Innovative networked value constellations, such as Cisco or Dell, are often enabled by Information Technology (IT). The same holds for the Distributed Electricity Balancing Service (DBS), which we present in this case study. To explore feasibility of such constellations while designing them, we need

  6. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  7. Knowledge Management in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Carrillo-de-Fischer, J.; Martinez, J. D.; Konecni, S.

    2015-01-01

    Knowledge management is the discipline of enabling individuals and teams to collectively and systematically create, share and apply knowledge. The most important assets in the IAEA Department of Safeguards are people and their knowledge. The focus of the Department’s knowledge management activities are to create an environment within which people share, learn and work together. The efforts to manage the knowledge of an individual leaving the Department have been focused on helping the supervisor of the departing staff member to identify what critical knowledge needs to be retained, and how to retain that knowledge. The Safeguards Knowledge Management team developed a person-centred approach. This approach involves interviews with the staff member, co-workers and/or customers to identify the critical knowledge to be transferred. Although time consuming, this method has been found to be effective in capturing the needed knowledge. This approach has four steps: – Identify the critical knowledge to be retained; – Select the knowledge transfer methods; – Apply the knowledge transfer methods; and – Assess and refine the transfer process. The paper will describe the person-centred approach and lessons learned from implementing this programme in the Department over several years. (author)

  8. Knowledge Management in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Konecni, S.; McCullough, R.

    2015-01-01

    Knowledge management is the discipline of enabling individuals and teams to collectively and systematically create, share and apply knowledge. The most important assets in the IAEA Department of Safeguards are people and their knowledge. The focus of the Department is to create an environment within which people share, learn and work together. The efforts to manage the knowledge leaving the Department have been focused on helping the supervisor of the departing staff member to identify what critical knowledge needs to be retained, and how to retain that knowledge. The Safeguards Knowledge Management team developed a person-centred approach. This approach involves interviews with the staff member, co-workers and/or customers to identify the critical knowledge to be transferred. Although time consuming we have found that this method is most effective to capture the needed knowledge. This approach has four steps: · Identify the critical knowledge to be retained; · Select the knowledge transfer methods; · Apply the knowledge transfer methods; and · Assess and refine the transfer process. The paper will describe the person-centred approach and lessons learned from implementing this programme in the Department over several years. (author)

  9. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  10. Reassessment of safeguards parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Richter, J.L.; Mullen, M.F.

    1994-07-01

    The International Atomic Energy Agency is reassessing the timeliness and goal quantity parameters that are used in defining safeguards approaches. This study reviews technology developments since the parameters were established in the 1970s and concludes that there is no reason to relax goal quantity or conversion time for reactor-grade plutonium relative to weapons-grade plutonium. For low-enriched uranium, especially in countries with advanced enrichment capability there may be an incentive to shorten the detection time.

  11. Safeguards for a nuclear weapon convention

    International Nuclear Information System (INIS)

    Fischer, D.

    1999-01-01

    An NDT presupposes a fundamental commitment by all parties to its final objective and hence requires a high and sustained level of confidence amongst all states concerned. The appropriate format for an Nuclear Disarmament Treaty (NDT) would probably be a multilateral treaty open to all states. The treaty must necessarily include the five nuclear weapon states and a procedure would have to be found for securing the ratification of the threshold states without conferring upon them the status of nuclear weapon states. While the IAEA may well be able to carry out the safeguards tasks required by an NDT it would probably be necessary to establish a new international organization to verify the elimination of all nuclear weapons. The experience of UNSCOM and the IAEA in Iraq, and of the IAEA in the DPRK, have shown how difficult the verification of international obligations is in the absence of a commitment to disarm, while the experience of the INF and START treaties, and of the IAEA in South Africa have shown how much simpler it is when the parties concerned are fully committed to the process. Verifying and safeguarding an NDT would be largely an extrapolation of activities already carried out by the nuclear weapon states under the INF and START treaties and by the IAEA in the routine application of safeguards as well as in its less routine work in Iraq, South Africa and the DPRK. Both the verification and safeguarding tasks would be made very much easier if it were possible to bring down to a few hundred the number of nuclear warheads remaining in the hands of any avowed nuclear weapon state, and to conclude a cutoff convention. Experience is needed to show whether the additional safeguards authority accorded to the IAEA by 'programme 93+2' will enable it to effectively safeguard the facilities that would be decommissioned as a result of an NDT and those that would remain in operation to satisfy civilian needs. Subject to this rider and on condition that the IAEA

  12. Protecting me from my Directive: Ensuring Appropriate Safeguards for Advance Directives in Dementia.

    Science.gov (United States)

    Auckland, Cressida

    2018-02-01

    With one in six people over 80 now suffering from dementia, advance directives provide an important means of empowerment. Upholding directives in the context of dementia, however, raises extra challenges, given the potential for the directive to conflict with an assessment of what is in the person's current best interests. Given the profound harm that tying a person with dementia to their previous wishes can do, it is essential that we have sufficient safeguards in place to ensure that we only uphold such directives where we can be sure they are truly autonomous and are intended to apply to the situation at hand-safeguards which are at present, severely lacking. This article will consider various mechanisms by which safeguards can be built into the legal regime to ensure that the original decision is autonomous, including making it mandatory for the person to undergo a consultation with a healthcare professional, which would involve a contemporaneous capacity assessment. Clinicians must also be confident that the directive applies to the situation at hand. Introducing formalities, including a standardised (though not mandatory) proforma, may help to enhance specificity about when the directive is triggered, and to what treatments it relates, to enable clinicians to better assess the directive's applicability. A national registry for advance directives might also be beneficial. It will be argued that health care professionals will have to play a much greater role in the drafting and registering of advance directives, if we are to feel comfortable in upholding them.

  13. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  14. Safeguards for the atom

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Concern over the destructive potentialities of nuclear energy has grown all over the world. In fact, it was this concern, coupled with an awareness of the equally great potentialities for peaceful prosperity, that led to the establishment of the International Atomic Energy Agency. That nuclear energy should be used solely for peaceful purposes is an ideal to which all people would subscribe. Realization of this ideal, however, is dependent on many complex factors which are outside the scope of the Agency. In its own limited sphere, however, the Agency has the responsibility to ensure that in its efforts to promote the peaceful uses it does not in any way increase the potentiality of military use. The possibility of military application is not the only danger that the Agency must guard against, it has a further function arising from the nature of the materials needed in atomic energy work. Since the basic materials are radioactive and since all ionizing radiation is potentially dangerous, the Agency must ensure that in helping its Member States to develop the peaceful uses of atomic energy it does not increase the hazards of nuclear radiation or radioactive contamination. It must establish standards of safe practice for activities carried out under its auspices or with its assistance. Since the safeguards will have two distinct objectives, a distinction can be made between those which will be designed to prevent the diversion of Agency assistance to military use and those against health and safety hazards. So far as the health and safety measures are concerned, a good deal of work has already been done in determining the standards of safe practice which will be the basis for the relevant rules. The Agency has published the first in its series of safety manuals, 'Safe Handling of Radioisotopes', which deals with such standards. Safeguards against the diversion or loss of nuclear materials and facilities are more difficult to devise. It is not considered feasible for

  15. Safeguards for the atom

    International Nuclear Information System (INIS)

    1959-01-01

    Concern over the destructive potentialities of nuclear energy has grown all over the world. In fact, it was this concern, coupled with an awareness of the equally great potentialities for peaceful prosperity, that led to the establishment of the International Atomic Energy Agency. That nuclear energy should be used solely for peaceful purposes is an ideal to which all people would subscribe. Realization of this ideal, however, is dependent on many complex factors which are outside the scope of the Agency. In its own limited sphere, however, the Agency has the responsibility to ensure that in its efforts to promote the peaceful uses it does not in any way increase the potentiality of military use. The possibility of military application is not the only danger that the Agency must guard against, it has a further function arising from the nature of the materials needed in atomic energy work. Since the basic materials are radioactive and since all ionizing radiation is potentially dangerous, the Agency must ensure that in helping its Member States to develop the peaceful uses of atomic energy it does not increase the hazards of nuclear radiation or radioactive contamination. It must establish standards of safe practice for activities carried out under its auspices or with its assistance. Since the safeguards will have two distinct objectives, a distinction can be made between those which will be designed to prevent the diversion of Agency assistance to military use and those against health and safety hazards. So far as the health and safety measures are concerned, a good deal of work has already been done in determining the standards of safe practice which will be the basis for the relevant rules. The Agency has published the first in its series of safety manuals, 'Safe Handling of Radioisotopes', which deals with such standards. Safeguards against the diversion or loss of nuclear materials and facilities are more difficult to devise. It is not considered feasible for

  16. Expert judgment based multi-criteria decision model to address uncertainties in risk assessment of nanotechnology-enabled food products

    International Nuclear Information System (INIS)

    Flari, Villie; Chaudhry, Qasim; Neslo, Rabin; Cooke, Roger

    2011-01-01

    Currently, risk assessment of nanotechnology-enabled food products is considered difficult due to the large number of uncertainties involved. We developed an approach which could address some of the main uncertainties through the use of expert judgment. Our approach employs a multi-criteria decision model, based on probabilistic inversion that enables capturing experts’ preferences in regard to safety of nanotechnology-enabled food products, and identifying their opinions in regard to the significance of key criteria that are important in determining the safety of such products. An advantage of these sample-based techniques is that they provide out-of-sample validation and therefore a robust scientific basis. This validation in turn adds predictive power to the model developed. We achieved out-of-sample validation in two ways: (1) a portion of the expert preference data was excluded from the model’s fitting and was then predicted by the model fitted on the remaining rankings and (2) a (partially) different set of experts generated new scenarios, using the same criteria employed in the model, and ranked them; their ranks were compared with ranks predicted by the model. The degree of validation in each method was less than perfect but reasonably substantial. The validated model we applied captured and modelled experts’ preferences regarding safety of hypothetical nanotechnology-enabled food products. It appears therefore that such an approach can provide a promising route to explore further for assessing the risk of nanotechnology-enabled food products.

  17. The Additional Protocol as an important tool for the strengthening of the safeguards system

    International Nuclear Information System (INIS)

    Loosch, Reinhard

    2001-01-01

    Full text: The following main points will be dealt with and underlined by illustrative examples: 0. A preliminary clarification: Contrary to the title's short-hand language, it is of course, not the Additional Protocols entered into by the Agency and States and other Parties to Safeguards Agreements since 1997 nor the Model Additional Protocol adopted by the Board of Governors and endorsed by the General Conference in 1997 that are, by themselves, an important tool for the strengthening of the Agency's safeguards system. They are, however, the necessary legal prerequisite as well as a strong political and moral boost for enabling the Agency to develop and apply additional tools in order to make the international nuclear non-proliferation regime more effective and, therefore, more reassuring and at the same time, more efficient and therefore, more widely accepted. 1. The importance of the new tools cannot be assessed yet. Hopefully, it will grow quickly and consistently. This will depend primarily on two factors: - The extent to which Additional Protocols are entered into force and at what speed this is achieved, and the extent to which these Protocols cover all important peaceful nuclear activities and resources, whether these exist in states with comprehensive safeguards agreements or not; - The extent to which the Agency succeeds in merging the new measures with those applicable before into an optimized, integrated toolbox. 2. The first factor tends to increase effectiveness by permitting the collection of safeguards- relevant data provided not only in reports from countries in which such activities are conducted or such resources exist but also in information coming from other sources such as publications in. or intelligence made available by, other countries. Cross-checking all those data against each other may, in the best case, reinforce their credibility or, in the worst case, reveal gaps and inconsistencies, but will at any rate, in one way or other, help

  18. Modeling and Simulation With Operational Databases to Enable Dynamic Situation Assessment & Prediction

    Science.gov (United States)

    2010-11-01

    subsections discuss the design of the simulations. 3.12.1 Lanchester5D Simulation A Lanchester simulation was developed to conduct performance...benchmarks using the WarpIV Kernel and HyperWarpSpeed. The Lanchester simulation contains a user-definable number of grid cells in which blue and red...forces engage in battle using Lanchester equations. Having a user-definable number of grid cells enables the simulation to be stressed with high entity

  19. Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities

    Science.gov (United States)

    Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.

    2009-01-01

    Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.

  20. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  1. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  2. Defining and Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2010-01-01

    In light of the shift toward State Level Evaluations and information driven safeguards, this paper offers a refined definition of safeguards culture and a set of metrics for measuring the extent to which a safeguards culture exists in a state. Where the IAEA is able to use the definition and metrics to come to a positive conclusion about the country, it may help reduce the burden on the Agency and the state.

  3. IAEA safeguards - a 1988 perspective

    International Nuclear Information System (INIS)

    Jennekens, J.

    1988-01-01

    The problem of IAEA safeguards as regards its perspectives for 1988 is discussed. The necessity of balancing between safeguards measures required for the timely detection of nuclear material diversion to military purposes and measures to prove the absence of diversion is stated. Accurately working safeguards system aimed at the provision of nondiversion can include, as an accompanying component, any deterrence element required. Such a system will be more expensive than any other altrenatives but it will undoubtly be more suitable and accepatble

  4. Safeguards Evaluation Method for evaluating vulnerability to insider threats

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; Renis, T.A.

    1986-01-01

    As protection of DOE facilities against outsiders increases to acceptable levels, attention is shifting toward achieving comparable protection against insiders. Since threats and protection measures for insiders are substantially different from those for outsiders, new perspectives and approaches are needed. One such approach is the Safeguards Evaluation Method. This method helps in assessing safeguards vulnerabilities to theft or diversion of special nuclear meterial (SNM) by insiders. The Safeguards Evaluation Method-Insider Threat is a simple model that can be used by safeguards and security planners to evaluate safeguards and proposed upgrades at their own facilities. The method is used to evaluate the effectiveness of safeguards in both timely detection (in time to prevent theft) and late detection (after-the-fact). The method considers the various types of potential insider adversaries working alone or in collusion with other insiders. The approach can be used for a wide variety of facilities with various quantities and forms of SNM. An Evaluation Workbook provides documentation of the baseline assessment; this simplifies subsequent on-site appraisals. Quantitative evaluation is facilitated by an accompanying computer program. The method significantly increases an evaluation team's on-site analytical capabilities, thereby producing a more thorough and accurate safeguards evaluation

  5. Nuclear safeguards and security: we can do better.

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, R. G. (Roger G.); Warner, Jon S.; Garcia, A. R. E. (Anthony R. E.); Martinez, R. K. (Ronald K.); Lopez, L. N. (Leon N.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Herrera, A. M. (Alicia M.); Bitzer, E. G. (Edward G.), III

    2005-01-01

    There are a number of practical ways to significantly improve nuclear safeguards and security. These include recognizing and minimizing the insider threat; using adversarial vulnerability assessments to find vulnerabilities and countermeasures; fully appreciating the disparate nature of domestic and international nuclear safeguards; improving tamper detection and tamper-indicating seals; not confusing the inventory and security functions; and recognizing the limitations of GPS tracking, contact memory buttons, and RFID tags. The efficacy of nuclear safeguards depends critically on employing sophisticated security strategies and effective monitoring hardware. The Vulnerability Assessment Team (VAT) at Los Alamos National Laboratory has extensively researched issues associated with nuclear safeguards, especially in the areas of tamper/intrusion detection, transport security, and vulnerability assessments. This paper discusses some of our findings, recommendations, and warnings.

  6. Safeguards by design - The early consideration of safeguards concepts

    International Nuclear Information System (INIS)

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  7. Safeguard Vulnerability Analysis Program (SVAP)

    International Nuclear Information System (INIS)

    Gilman, F.M.; Dittmore, M.H.; Orvis, W.J.; Wahler, P.S.

    1980-01-01

    This report gives an overview of the Safeguard Vulnerability Analysis Program (SVAP) developed at Lawrence Livermore National Laboratory. SVAP was designed as an automated method of analyzing the safeguard systems at nuclear facilities for vulnerabilities relating to the theft or diversion of nuclear materials. SVAP addresses one class of safeguard threat: theft or diversion of nuclear materials by nonviolent insiders, acting individually or in collusion. SVAP is a user-oriented tool which uses an interactive input medium for preprocessing the large amounts of safeguards data. Its output includes concise summary data as well as detailed vulnerability information

  8. Safeguards technology research and development at CIAE

    International Nuclear Information System (INIS)

    Yang Qun

    2001-01-01

    Full text: China Institute of Atomic Energy (CIAE) is a multi-disciplinary institute under the leadership of China National Nuclear Corporation (CNNC). The Laboratory of Technical Research for Nuclear Safeguards was established at CIAE in 1991 to develop safeguards technology and to provide technical assistance to competent authorities for nuclear material management and control, which became one of the key laboratories approved by CNNC in 1993. The main research works for safeguards at CIAE include: nuclear material control and accounting, facilities license review and assessment, domestic inspection, NDA and DA analysis, physical protection and technical training. Research and development of equipment and technique for safeguards has been continuing at CIAE. A variety of NDA equipment that has different resolution and analysis capability has been developed. Method of NDA measurement has been investigated for nuclear material with different characteristics. Mathematics method such as Monte Carlo simulation is applied in NDA. Advanced destructive analysis (DA) instrument is installed at laboratory of CIAE, such as TIMS, ICP-MS and electronic chemistry analyzing system. The high accuracy results of element analysis and isotopic analysis for nuclear material can be obtained. It is possible to measure the types and quantities of nuclear material in a given area by means of NDA and DA. Physical protection system has also been developed. It consists of access control and management, various alarm (including perimeter alarm, intrusion alarms, fire alarms), video and audio monitors, intercommunication set and central console. The system can meet technical requirement for safeguards of first rank. Nuclear material accounting is an important aspect of safeguards research at CIAE. The computer software related to material accounting has been developed. It is the important task for scientists at CIAE to design and review nuclear accounting systems in various facilities. For

  9. Network modeling and analysis technique for the evaluation of nuclear safeguards systems effectiveness

    International Nuclear Information System (INIS)

    Grant, F.H. III; Miner, R.J.; Engi, D.

    1978-01-01

    Nuclear safeguards systems are concerned with the physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of safeguards system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The reports provided by the SNAP simulation program enable analysts to evaluate existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  10. Network modeling and analysis technique for the evaluation of nuclear safeguards systems effectiveness

    International Nuclear Information System (INIS)

    Grant, F.H. III; Miner, R.J.; Engi, D.

    1979-02-01

    Nuclear safeguards systems are concerned with the physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of safeguards system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The reports provided by the SNAP simulation program enable analysts to evaluate existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  11. Radicalisation: The Last Taboo in Safeguarding and Child Protection? Assessing Practitioner Preparedness in Preventing the Radicalisation of Looked-After Children

    Directory of Open Access Journals (Sweden)

    Matt Dryden

    2017-12-01

    Full Text Available Radicalisation is fast becoming one of the most acute and pressing safeguarding and child protection issues of the whole century (NSPCC, 2016. However, the issue of looked-after children as potential recruits for extremist groups has been largely overlooked, despite the universal acknowledgement that looked-after children represent the most vulnerable of all demographics within society. This research collected rare and vital primary data by interviewing practitioners within looked-after children’s, residential, and respite services. The study established that practitioners lacked basic awareness of radicalisation and extremism, the Prevent strategy, and the Channel programme. It was discovered that practitioners were unsure of what constitutes the potential indicators of radicalisation, and how and to whom such concerns should be reported. It became apparent that radicalisation as a safeguarding and child protection issue has not been afforded a level of focus adequate and proportionate to the risk posed, and that other issues, namely child sexual exploitation, remain the primary concern in safeguarding contexts.

  12. Contribution of the 'safeguarded' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  13. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  14. Neutron techniques in Safeguards

    International Nuclear Information System (INIS)

    Zucker, M.S.

    1982-01-01

    An essential part of Safeguards is the ability to quantitatively and nondestructively assay those materials with special neutron-interactive properties involved in nuclear industrial or military technology. Neutron techniques have furnished most of the important ways of assaying such materials, which is no surprise since the neutronic properties are what characterizes them. The techniques employed rely on a wide selection of the many methods of neutron generation, detection, and data analysis that have been developed for neutron physics and nuclear science in general

  15. Engineering Consultancy: An Assessment of IT-enabled International Delivery of Services

    DEFF Research Database (Denmark)

    Baark, Erik

    1999-01-01

    The delivery of engineering consultancy services in global markets has been dominated by a small group of firms located in Europe and the US. Like many other service industries, engineering consultants have depended on the movement of highly qualified people and establishment of local affiliates...... services in arms-length transactions across national borders does not appear to have been significantly exploited. Nevertheless, IT-enabled delivery of engineering consultancy services opens up possibilities for business process reengineering that may provide some firms new competitive advantages in global...... markets and lead to further integration of design and construction in partnerships or project consortia, or in the strengthening of design-build approaches in project execution....

  16. Survey of nuclear safeguards in the European Community

    International Nuclear Information System (INIS)

    Gmelin, W.

    1992-01-01

    The control of the peaceful use of nuclear energy comprises activities related to nuclear safety, to the protection of persons and of the environment, to physical protection of the nuclear materials against theft or terrorism and to nuclear safeguards. Nuclear safeguards means the set of measures performed by the IAEA in the context of non-proliferation safeguards and, in the framework of the Euratom Treaty, those measures enabling the European Commission to satisfy itself that the nuclear material is not diverted from its intended and declared uses (particularly to unlawful non-peaceful applications) and that the obligations arising from International Agreements are complied with. This contribution to the International Conference on Peaceful Application of Nuclear Energy at Liege briefly reviews the history of nuclear safeguards in Europe since the early 1960ies. It also notes the practical aspects for, constraints and impacts to the nuclear operators imposed on them by the European law such as inspections, accountancy, reporting and describes the trend of the future development of the safeguards operation. The paper finally addresses non-proliferation issues and, notably, the relations between the IAEA and Euratom which in an exemplary way resulted in effective international safeguards and high non-proliferation credentials of the European Community. (author)

  17. Measurements Matter in Nuclear Safeguards & Security

    International Nuclear Information System (INIS)

    Aregbe, Y.; Jakopic, R.; Richter, S.; Schillebeeckx, P.; Hult, M.

    2015-01-01

    The deliverable of any laboratory is a measurement result with stated uncertainty and traceability (ISO/IEC 17025: 2005). Measurement results, particularly in safeguards, have to be accurate, comparable and traceable to a stated reference, preferably to the SI. Results provided by operator-, safeguards- or network laboratories have to be in compliance with specific quality goals for nuclear material and environmental sample analysis. Metrological quality control tools are prerequisites to build up confidence in measurement results that have to be translated into meaningful safeguards conclusions or to demonstrate conformity of findings with declared processes. The European Commission—Joint Research Centre (EC–JRC) has dedicated facilities, laboratories and projects to provide certified nuclear reference materials (CRM), to develop reference methods and to organize inter-laboratory comparisons (ILC) in compliance with ISO Guide 34, ISO17025 and ISO17043, including respective training. Recent examples are: – cooperation with the JAEA to investigate on the application of Neutron Resonance Densitometry (NRD) to quantify the amount of special nuclear material in particlelike debris of melted fuel as formed in the nuclear accident in Fukushima – training in metrology and gamma-ray spectrometry for EURATOM safeguards inspectors – development of uranium reference particle standards under a new EC support task to the IAEA. Currently, the JRC puts major efforts in producing CRMs and conformity assessment tools for “age-dating” of uranium and plutonium samples. They are needed for method validation in determining the date of the last chemical separation of uranium or plutonium from their daughter nuclides. These type of CRMs are not only needed in nuclear safeguards and forensics, but could support in the future a possible new type of “verification mechanism” as part of the Fissile Material Cut-off Treaty (FMCT), since measurements and measurement standards

  18. Safety, Security and Safeguards (3S) Culture

    International Nuclear Information System (INIS)

    Mladineo, S.V.; Frazar, S.

    2013-01-01

    A meaningful discussion of Safety, Security, and Safeguards (3S) Culture requires a review of the concepts related to the culture of the three components. The concept of culture can be confusing, and so careful use of terminology is needed to enable a focused and constructive dialogue. To this end, this paper will use the concept of organizational culture as a backdrop for a broader discussion about how the three subcultures of safety, security and safeguards come together to enhance the mission of an organization. Since the accidents at Three Mile Island and Chernobyl, the nuclear industry has embraced the concept of safety culture. The work on safety culture has been used to develop programs and concepts in the culture of Material Protection, Control, and Accounting and Nuclear Security Culture. More recently, some work has been done on defining an International Safeguards Culture. Others have spoken about a 3S Culture, but there has been little rigorous consideration of the concept. This paper attempts to address 3S Culture, to begin to evaluate the merit of the concept, and to propose a definition. The paper is followed by the slides of the presentation. (authors)

  19. Safeguards can not operate alone

    International Nuclear Information System (INIS)

    Martikka, E.; Honkamaa, T.; Haemaelaeinen, M.; Okko, O.

    2013-01-01

    There are around 20 new states which are planning to use nuclear energy in the near future. Globally there are several nuclear power plants under construction and they will be bigger than ever. Also new type of nuclear facility, final disposal facility for spent nuclear fuel, will be constructed and in operation in Finland and Sweden in ca. 10 years time. It is evident that the nuclear world is changing much and quickly. After the Additional Protocol, safeguards are no longer only about accounting and control of nuclear materials, but also about verifying that there are no undeclared nuclear materials and activities in the state. It is not possible or effective anymore to implement safeguards without taking into account of the nuclear safety and security. The safeguards should not be isolated. The synergy between safeguards, security and safety exist, when implementing nationally that there are no undeclared nuclear materials or activities. In safeguards we could not do our duties effectively if we ignore some of those other S's. Safeguards by Design process does not work properly if only international safeguards and security requirements has been taken into account, it urges all 3S to be taken care at the same time. Safeguards should operate also with other synergetic regimes and organisations like CTBTO, Fissile Material Cut-off, disarmament, export control, border control,... The paper is followed by the slides of the presentation

  20. Safeguards approaches for conversion and gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Stanuch, C.; Whitaker, M.; Lockwood, D.; Boyer, B.

    2013-01-01

    This paper describes recent studies and investigations of new safeguards measures and inspection tools to strengthen international safeguards at GCEPs (Gas Centrifuge Enrichment Plants) and conversion plants. The IAEA has indicated that continuous, unattended process monitoring should play a central role in future safeguards approaches for conversion plants and GCEPs. Monitoring safeguards relevant information from accountancy scales, process load cells, and unit header pipes can make existing safeguards approaches more efficient by replacing repetitive, routine, labor-intensive inspection activities with automated systems. These systems can make the safeguards approach more effective by addressing more completely the safeguards objectives at these facilities. Automated collection and analysis of the data can further enable the IAEA to move towards a fully-information driven inspection regime with randomized (from the operator's perspective), short-notice inspections. The reduction in repetitive on-site inspection activities would also be beneficial to plant operators, but only if sensitive and proprietary information can be protected and the new systems prove to be reliable. New facilities that incorporate Safeguards by Design into the earliest design stages can facilitate the effective DIV (Design Information Verification) of the plant to allow the inspectors to analyze the capacity of the plant, to project maximum production from the plant, and to provide a focus on the areas in the plant where credible diversion scenarios could be attempted. Facilitating efficient nuclear material accountancy by simplifying process pipework and making flow measurement points more accessible can allow for easier estimation of plant holdup and a potential reduction in the number of person-days of inspection. Lastly, a universal monitoring standard that tracks the location, movement, and use of UF 6 cylinders may enhance the efficiency of operations at industry sites and would

  1. Technology Development of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Ko, W. I. (and others)

    2007-04-15

    The objective of this project is to perform R and D on the essential technologies in nuclear material measurement and surveillance and verification system, and to improve the state of being transparent on the nuclear material management of DUPIC Fuel Development Facility (DFDF) through the evaluation of safeguard ability on non-proliferation fuel cycle and nuclear proliferation resistance. Nuclear material position scan system for the reduction of measurement error was developed for the spatial distribution search of spent fuel in DUPIC facility. Web-based realtime remote monitoring system was designed and constructed for satisfying the IAEA's performance criteria of continuous monitoring, and also developed a software for the function of remote control and message. And diversion paths in a proliferation resistant pyroprocess for SFR were analyzed and its protecting system against the diversion paths were suggested for enhancing proliferation resistance of advanced nuclear fuel cycle. These results could be used for planning the further R and D items in the area of safeguards. Those R and D results mentioned above would be helpful for increasing Korean nuclear transparency in the future.

  2. Strengthening safeguards information evaluation

    International Nuclear Information System (INIS)

    Harry, J.; Hudson, P.

    2001-01-01

    The strengthening of safeguards should not be limited to the verification of explicit declarations made by the States. Additional information should guide the IAEA to set priorities for further investigations. Not only all aspects of the State's nuclear programme, including the application of safe, secure and transparent nuclear management, but also the level of compliance with other verifiable treaties, political motivation, economic capabilities, international relations and ties, co-operative attitude to safeguards, and general openness and transparency should be included. The evaluation of the diverse forms of information from different sources requires new reliable processes that will result in a high credibility and detection probability. The IAEA uses the physical model for the evaluation of the technical information, and proposed also Fuzzy Logic, or Calculation with Words, to handle the information. But for the evaluation it is questioned whether fuzziness could lead to a crisp judgement. In this paper an objective method of information evaluation is proposed, which allows to integrate different kinds of information and to include calibration and tests in the establishment of the evaluation process. This method, Delta, uses elicitation of a syndicate of experienced inspectors to integrate obvious indicators together with apparently innocent indicators, into a database that forms the core of the evaluation process. Nominal or ordinal scales could be applied to come to an objective and quantifiable result. Experience with this method can in the course of time result in predictive conclusions. 9 refs

  3. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  4. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  5. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  6. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  7. Remote monitoring for international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.

    1999-01-01

    Remote monitoring is not a new technology, and its application to safeguards-relevant activities has been examined for a number of years. On behalf of the U.S. Department of Energy and international partners, remote monitoring systems have been emplaced in nuclear facilities and laboratories in various parts of the world. The experience gained from these Geld trials of remote monitoring systems has shown the viability of the concept of using integrated monitoring systems. Although a wide variety of sensors has been used in the remote monitoring field trials conducted to date, the possible range of instrumentation that might be used has scarcely been touched. As the technology becomes widespread, large amounts of data will become available to inspectors responsible for safeguards activities at the sites. Effective use of remote monitoring will require processing, archiving, presenting, and assessing of these data. To provide reasonable efficiency in the application of this technology, data processing should be done in a careful and organized manner. The problem will be not an issue of poring over scant records but of surviving under a deluge of information made possible by modern technology Fortunately, modem technology, which created the problem of the data glut, is available to come to the assistance of those inundated by data. Apart from the technological problems, one of the most important aspects of remote monitoring is the potential constraint related to the transmission of data out of a facility or beyond national borders. Remote monitoring across national borders can be seriously considered only in the context of a comprehensive, transparent, and open implementation regime. (author)

  8. Remote monitoring in international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.; Johnson, C.S.

    1996-01-01

    In recent years, technology that permits the integration of monitoring sensors and instruments into a coherent network has become available. Such integrated monitoring systems provide a means for the automatic collection and assessment of sensor signals and instrument readings and for processing such signals and readings in near real time. To gain experience with the new monitoring system technology, the US Department of energy, through bilateral agreements with its international partners, has initiated a project to emplace demonstration systems in various nuclear facilities and conduct field trials of the technology. This effort is the International Remote Monitoring Project. Under this project, remote monitoring systems are being deployed around the world in an incremental manner. Each deployment is different and each offers lessons for improving the performance and flexibility of the technology. Few problems were encountered with the operation of the installations to date, and much has been learned about the operation and use of the new technology. In the future, the authors believe systems for safeguards applications should be capable of being monitored remotely, emphasize the use of sensors, and utilize selective triggering for recording of images. Remote monitoring across national borders can occur only in the context of a cooperative, nonadversarial implementation regime. However, significant technical and policy work remains to be done before widespread safeguards implementation of remote monitoring should be considered. This paper shows that an abundance of technology supports the implementation of integrated and remote monitoring systems. Current field trials of remote monitoring systems are providing practical data and operational experience to aid in the design of tomorrow's systems

  9. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  10. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    broaden the IAEA safeguards toolbox, the study recommends that the Agency consider closing potential gaps in safeguards coverage by, among other things: 1) adapting its safeguards measures based on a case-by-case assessment; 2) using more frequent and expanded/enhanced mailbox declarations (ideally with remote transmission of the data to IAEA Headquarters in Vienna) coupled with short-notice or unannounced inspections; 3) putting more emphasis on the collection and analysis of environmental samples at hot cells and waste storage tanks; 4) taking Safeguards by Design into account for the construction of new research reactors and best practices for existing research reactors; 5) utilizing fully all legal authorities to enhance inspection access (including a strengthened and continuing DIV process); and 6) utilizing new approaches to improve auditing activities, verify reactor operating data history, and track/monitor the movement and storage of spent fuel.

  11. A web-enabled system for integrated assessment of watershed development

    Science.gov (United States)

    Dymond, R.; Lohani, V.; Regmi, B.; Dietz, R.

    2004-01-01

    Researchers at Virginia Tech have put together the primary structure of a web enabled integrated modeling system that has potential to be a planning tool to help decision makers and stakeholders in making appropriate watershed management decisions. This paper describes the integrated system, including data sources, collection, analysis methods, system software and design, and issues of integrating the various component models. The integrated system has three modeling components, namely hydrology, economics, and fish health, and is accompanied by descriptive 'help files.' Since all three components have a related spatial aspect, GIS technology provides the integration platform. When completed, a user will access the integrated system over the web to choose pre-selected land development patterns to create a 'what if' scenario using an easy-to-follow interface. The hydrologic model simulates effects of the scenario on annual runoff volume, flood peaks of various return periods, and ground water recharge. The economics model evaluates tax revenue and fiscal costs as a result of a new land development scenario. The fish health model evaluates effects of new land uses in zones of influence to the health of fish populations in those areas. Copyright ASCE 2004.

  12. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    Science.gov (United States)

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  13. Establishing a national safeguards system at the State level

    International Nuclear Information System (INIS)

    Lopez Lizana, Fernando

    2001-01-01

    This paper is the guide to a workshop designed to enable the participants to gain a better understanding of National Safeguards Systems and their functions. The workshop provides an opportunity to address the requirements for the organization that has to carry out the system functions at the State level in a country having a research reactor and ancillary laboratories

  14. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics

    Directory of Open Access Journals (Sweden)

    Richard Mark Leggett

    2013-12-01

    Full Text Available The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC. Unlike other sequencing centres that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is fortunate to have access to a diverse range of sequencing and analysis platforms, and we are at the forefront of investigations into library quality and sequence data assessment. We have developed and implemented a number of algorithms, tools, pipelines and packages to ascertain, store, and expose quality metrics across a number of next-generation sequencing platforms, allowing rapid and in-depth cross-platform QC bioinformatics. In this review, we describe these tools as a vehicle for data-driven informatics, offering the potential to provide richer context for downstream analysis and to inform experimental design.

  15. Integrated safeguards: Australian views and experience

    International Nuclear Information System (INIS)

    Carlson, J.; Bragin, V.; Leslie, R.

    2001-01-01

    Full text: Australia has had a pioneering role in assisting the IAEA to develop the procedures and methods for strengthened safeguards, both before and after the conclusion of Australia's additional protocol. Australia played a key role in the negotiation of the model additional protocol, and made ratification a high priority in order to encourage early ratification by other States. Australia was the first State to ratify an additional protocol, on 10 December 1997, and was the first State in which the IAEA exercised complementary access and managed access under an additional protocol. Australia has undergone three full cycles of evaluation under strengthened safeguards measures, enabling the Agency to conclude it was appropriate to commence implementation of integrated safeguards. In January 2001 Australia became the first State in which integrated safeguards are being applied. As such, Australia's experience will be of interest to other States as they consult with the IAEA on the modalities for the introduction of integrated safeguards in their jurisdictions. The purpose of the paper is to outline Australia's experience with strengthened safeguards and Australia's views on the implementation of integrated safeguards. Australia has five Material Balance Areas (MBAs), the principal one covering the 10 MWt research reactor at Lucas Heights and the associated inventory of fresh and irradiated HEU fuel. Under classical safeguards, generally Australia was subject to annual Physical Inventory Verifications (PIVs) for the four MBAs at Lucas Heights, plus quarterly interim inspections, making a total of four inspections a year (PIVs for the different MBAs were conducted concurrently with each other or with interim inspections in other MBAs), although there was a period when the fresh fuel inventory exceeded one SQ, requiring monthly inspections. Under strengthened safeguards, this pattern of four inspections a year was maintained, with the addition of complementary

  16. Contribution of the ''safeguarded'' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in Safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. Management has many reasons to exercise stringent control of nuclear materials stemming from the value and hazardous nature of the materials being used, and the requirements of relevant national legislation. Because systems at a plant and within a State are generally designed to control quantities of nuclear materials within limits smaller than those specified in the I.A.E.A.'s Safeguards objectives, experience at the plant level has contributed significantly to the development of International Safeguards procedures. In making such contributions, plant management and the national authorities have a common objective with that of the I.A.E.A. in developing a Safeguards system which is both technically-effective and cost-effective. The pursuit of this objective requires that implementation of the Safeguards system can be modified in the light of relevant practical experience of plant operators and of the I.A.E.A. The familiar Blue Book (INFCIRC 153) recognises clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective I.A.E.A. system of Safeguards. It is therefore helpful to review the relevant contributions from the 'Safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of

  17. Safeguards document (INFCIRC/153) and the new safeguards system

    International Nuclear Information System (INIS)

    Haginoya, Tohru

    1997-01-01

    INFCIRC/153. The NPT covers nuclear weapons and nuclear explosive devices but not other military uses of nuclear materials. The NPT safeguards applies all nuclear materials including undeclared nuclear materials. The protection of commercially sensitive information is important. The new safeguards system. The Model protocol amends INFCIRC/153 (the Protocol prevails). Apply nuclear fuel cycle related activities with no nuclear material. The environmental monitoring is an important measure, but non-weapon countries have no such technology. Impact and benefit from the new system. Simplification of the conventional safeguards. Could possibly define three categories of plutonium. (author)

  18. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  19. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Risa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Rebecca [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frazar, Sarah [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burbank, Roberta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, Rebecca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cain, Ron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morell, Sean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps. Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.

  20. Implementation of Safeguards in Thailand

    International Nuclear Information System (INIS)

    Rueanngoen, A.; Changkrueng, K.; Srijittawa, L.; Mungpayaban, H.; Wititteeranon, A.

    2015-01-01

    Thailand is a non-nuclear weapon state. The non-nuclear activities are mainly medical, agricultural, and industrial. Therefore, Thailand ratified the Nuclear Non-Proliferation Treaty (NPT) since 1972 and has been entry into force of the Comprehensive Safeguards Agreement (INFCIRC 241) since 1974. Based on the INFCIRC 153, Thailand established a system of accounting for and control of all nuclear material subject to safeguards under the Agreement. In order to ensure the peaceful use of nuclear in Thailand the Nuclear-Non- Proliferation Center of Office of Atoms for Peace (NPC, OAP) was established to act as State level Safeguards. NPC is responsible for keeping records and providing information under requirement of Comprehensive Safeguards Agreement. In addition, the strengthening of cooperation and good coordination between Thailand and IAEA are indeed important and necessary to implementation safeguards in country. Based on the report of IAEA safeguards statement, there is no indication of the diversion of nuclear materials or misuse of the facility or the items in Thailand. Up to present, nuclear activities in Thailand are peaceful without diversion of using. This paper reviews the current status of the implementation Safeguards in Thailand. (author)

  1. How safe are nuclear safeguards

    International Nuclear Information System (INIS)

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  2. Some developments in safeguards techniques

    International Nuclear Information System (INIS)

    Beets, C.

    1977-01-01

    The fundamental principles of safeguards and the research and development of safeguards techniques are described. Safeguard accountancy based upon the partition of the fuel cycle into suitable material balance areas will be further improved. Implementation of international safeguards in the European fuel fabrication and reprocessing facilities is described. The effectiveness of a material accounting system depends on the quality of the quantitative data. The allocation of the tasks in the framework of an integrated safeguards is concerned with R and D work only and has no bearing on the allocation of the implementation costs. Bulk measurements, sampling and destructive or non-destructive analysis of samples are described for the determination of batch data. Testing of the safeguards techniques as a keystone in relation to plant instrumentation programmes are still being developed throughout the world. In addition to accountancy and control, it also includes an effective physical security program. The system of international safeguards that prevailed in the sixties has been re-modelled to comply with the new requirements of the Non-Proliferation Treaty and with the growth of nuclear energy

  3. Smartphone-based distributed data collection enables rapid assessment of shorebird habitat suitability

    Science.gov (United States)

    Thieler, E. Robert; Zeigler, Sara; Winslow, Luke; Hines, Megan K.; Read, Jordan S.; Walker, Jordan I.

    2016-01-01

    Understanding and managing dynamic coastal landscapes for beach-dependent species requires biological and geological data across the range of relevant environments and habitats. It is difficult to acquire such information; data often have limited focus due to resource constraints, are collected by non-specialists, or lack observational uniformity. We developed an open-source smartphone application called iPlover that addresses these difficulties in collecting biogeomorphic information at piping plover (Charadrius melodus) nest sites on coastal beaches. This paper describes iPlover development and evaluates data quality and utility following two years of collection (n = 1799 data points over 1500 km of coast between Maine and North Carolina, USA). We found strong agreement between field user and expert assessments and high model skill when data were used for habitat suitability prediction. Methods used here to develop and deploy a distributed data collection system have broad applicability to interdisciplinary environmental monitoring and modeling.

  4. Health Information Security in Hospitals: the Application of Security Safeguards.

    Science.gov (United States)

    Mehraeen, Esmaeil; Ayatollahi, Haleh; Ahmadi, Maryam

    2016-02-01

    A hospital information system has potentials to improve the accessibility of clinical information and the quality of health care. However, the use of this system has resulted in new challenges, such as concerns over health information security. This paper aims to assess the status of information security in terms of administrative, technical and physical safeguards in the university hospitals. This was a survey study in which the participants were information technology (IT) managers (n=36) who worked in the hospitals affiliated to the top ranked medical universities (university A and university B). Data were collected using a questionnaire. The content validity of the questionnaire was examined by the experts and the reliability of the questionnaire was determined using Cronbach's coefficient alpha (α=0.75). The results showed that the administrative safeguards were arranged at a medium level. In terms of the technical safeguards and the physical safeguards, the IT managers rated them at a strong level. According to the results, among three types of security safeguards, the administrative safeguards were assessed at the medium level. To improve it, developing security policies, implementing access control models and training users are recommended.

  5. Measuring the safeguards value of material accountability

    International Nuclear Information System (INIS)

    Sicherman, A.

    1988-01-01

    Material accountability (MA) activities focus on providing after-the-fact indication of diversion or theft of special nuclear material (SNM). MA activities include maintaining records for tracking nuclear material and conducting periodic inventories and audits to ensure that loss has not occurred. This paper presents a value model concept for assessing the safeguards benefits of MA activities and for comparing these benefits to those provided by physical protection (PP) and material control (MC) components. The model considers various benefits of MA, which include: 1) providing information to assist in recovery of missing material, 2) providing assurance that physical protection and material control systems have been working, 3) defeating protracted theft attempts, and 4) properly resolving causes of and responding appropriately to anomalies of missing material and external alarms (e.g., hoax). Such a value model can aid decision-makers in allocating safeguards resources among PP, MC, and MA systems

  6. Collection, Analysis, and Dissemination of Open Source News and Analysis for Safeguards Implementation and Evaluation

    International Nuclear Information System (INIS)

    Khaled, J.; Reed, J.; Ferguson, M.; Hepworth, C.; Serrat, J.; Priori, M.; Hammond, W.

    2015-01-01

    Analysis of all safeguards-relevant information is an essential component of IAEA safeguards and the ongoing State evaluation underlying IAEA verification activities. In addition to State declared safeguards information and information generated from safeguards activities both in the field and at headquarters, the IAEA collects and analyzes information from a wide array of open sources relevant to States' nuclear related activities. A number of these open sources include information that could be loosely categorized as ''news'': international, regional, and local media; company and government press releases; public records of parliamentary proceedings; and NGO/academic commentaries and analyzes. It is the task of the State Factors Analysis Section of the Department of Safeguards to collect, analyze and disseminate news of relevance to support ongoing State evaluation. This information supports State evaluation by providing the Department with a global overview of safeguards-relevant nuclear developments. Additionally, this type of information can support in-depth analyses of nuclear fuel cycle related activities, alerting State Evaluation Groups to potential inconsistencies in State declarations, and preparing inspectors for activities in the field. The State Factors Analysis Section uses a variety of tools, including subscription services, news aggregators, a roster of specialized sources, and a custom software application developed by an external partner to manage incoming data streams and assist with making sure that critical information is not overlooked. When analyzing data, it is necessary to determine the credibility of a given source and piece of information. Data must be considered for accuracy, bias, and relevance to the overall assessment. Analysts use a variety of methodological techniques to make these types of judgments, which are included when the information is presented to State Evaluation Groups. Dissemination of news to

  7. Safeguards summary event list (SSEL)

    International Nuclear Information System (INIS)

    1989-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Because of public interest, also included are events reported involving byproduct material which is exempt from safeguards requirements. Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage, alcohol and drugs, and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  8. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    Fadden, M.; Yardumian, J.

    1993-07-01

    The Safeguards Summary Event List provides brief summaries of hundreds of safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission. Events are described under the categories: Bomb-related, Intrusion, Missing/Allegedly Stolen, Transportation-related, Tampering/Vandalism, Arson, Firearms-related, Radiological Sabotage, Non-radiological Sabotage, and Miscellaneous. Because of the public interest, the Miscellaneous category also includes events reported involving source material, byproduct material, and natural uranium, which are exempt from safeguards requirements. Information in the event descriptions was obtained from official NRC sources

  9. IAEA safeguards: Challenges and opportunities

    International Nuclear Information System (INIS)

    1993-01-01

    The history of the IAEA safeguards regime is described. New challenges and opportunities are discussed in connection with the discovery in Iraq of a clandestine nuclear weapons development programme, the difficulties experienced in the implementation of the safeguards agreement with the Democratic People's Republic of Korea, the conclusion of a comprehensive safeguards agreement with Argentina, Brazil and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, recent developments in South Africa, the emergence of newly independent States that made up the former USSR. 2 figs

  10. Some reflections on nuclear safeguards

    International Nuclear Information System (INIS)

    Campbell, Ross.

    1981-01-01

    The author doubts whether, in view of the 1976 policy of requiring adherence to the Non-Proliferation Treaty or equivalent IAEA safeguards, Canada still needs the 1974 policy of bilateral safeguards on technology as well as material. The opinion is expressed that bilateral safeguards create difficulties for the IAEA, and are resented by some potential customers. Much better, if it were achievable, would be a code agreed by a convention of vendors and customers alike, to include sanctions against transgressors. The author expresses confidence in the IAEA, but perceives a need for more men and money. Also needed are better instruments to account for materials

  11. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    Science.gov (United States)

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. NNSA's next generation safeguards initiative to define an effective state system of accounting and control

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; Sunshine, Alexander; Matthews, Caroline; Frazer, Sarah; Matthews, Carrie

    2010-01-01

    build confidence in the State System. Viewed from this perspective, the model can be thought of as a quality assurance tool that assists states in ensuring that the outputs of their State System (the tangible 'goods' that are provided to the International Atomic Energy Agency under the State's agreements) are of high quality. As such, this tool is for the internal use of a State System that wishes to assess and improve its capacity. It is not intended for comparison or outside evaluation. In addition to providing a self-assessment tool, INSEP expects this model to be useful in several other ways: it will inform the approach that INSEP uses in bilateral consultations to identify areas where INSEP outreach and training may be of value, and it will provide a structure for its training curriculum. It will help INSEP to evaluate the effectiveness of its outreach - where there are gaps in the training provided, and whether the training that is provided meets its stated objectives. Finally, it will provide a framework for coordinating with the IAEA and other member states in the 'harmonization' efforts currently underway to align the outreach efforts of states that provide safeguards training. This paper describes the process of evaluation that INSEP is developing. It looks at the expected usefulness of the metrics for conducting self-assessments and joint assessments and enabling partners to identify training needs. The paper begins with a description of various performance requirements that define what must be done at the state and facility level to implement effective and efficient international safeguards. Next, technical performance measures are discussed, that define how well a state and its facilities are fulfilling these requirements. Then a functional analysis is conducted to align the technical requirements with competencies and determine who should carry out the various activities necessary to fulfill the performance requirements. Finally, the paper concludes with a

  13. Unattended safeguards instrumentation at centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Smith, L. Eric; Lebrun, Alain R.; Labella, Rocco

    2014-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants, particularly high‑capacity plants, while working within budgetary constraints. New safeguards approaches should meet the high‑level verification objectives for such facilities (i.e., timely detection of: diversion of declared material, excess production beyond declared amounts, and production of enrichment levels higher than declared), but should also strive for efficiency advantages in implementation, for both the IAEA and operators. Under the Agency’s State- level approach to safeguards implementation, the Agency needs a flexible toolbox of technologies, allowing tailoring of safeguards measures for each individual enrichment facility. In this paper, the potential roles and development status for three different types of unattended measurement instrumentation are discussed. On‑Line Enrichment Monitors (OLEM) could provide continuous enrichment measurement for 100% of the declared gas flowing through unit header pipes. Unattended Cylinder Verification Stations (UCVS) could provide unattended verification of the declared uranium mass and enrichment of 100% of the cylinders moving through the plant, but also apply and verify an ‘NDA Fingerprint’ to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. Sharing of the operator’s load cell signals from feed and withdrawal stations could count all cylinders introduced to the process and provide periodic monitoring of the uranium mass balance for in‑process material. The integration of load cell, OLEM and UCVS data streams offers the possibility for 100% verification of declared cylinder flow, and enables the periodic verification of the declared 235 U mass balance in the plant. These new capabilities would enhance the IAEA

  14. Safeguards techniques and equipment. 2003 ed

    International Nuclear Information System (INIS)

    2003-01-01

    The 1990s saw significant non-proliferation related developments in the world, resulting in a new period of safeguards development. Over several years an assessment was made of how to strengthen the effectiveness and improve the efficiency of IAEA safeguards. In May 1997 this culminated in the adoption by the IAEA Board of Governors of a Protocol Additional to Safeguards Agreements which significantly broadens the role of IAEA safeguards. As a consequence, the IAEA safeguards system entered a new era. In 1997 the IAEA began to publish a new series of booklets on safeguards, called the International Nuclear Verification Series (NVS). The objective of these booklets was to help in explaining IAEA safeguards, especially the new developments in safeguards, particularly for facility operators and government officers involved with these topics. The current booklet, which is a revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. A completely new section on data security has been added to describe the specific features that are included in installed equipment systems in order to ensure the authenticity and confidentiality of information. As new verification measures continue to be developed the material in this booklet will be periodically reviewed and updated versions issued. The basic verification measure used by the IAEA is nuclear material accountancy. In applying nuclear material accountancy, IAEA safeguards inspectors make independent measurements to verify quantitatively the amount of nuclear material presented in the State's accounts. For this purpose, inspectors count items (e.g. fuel assemblies, bundles or rods, or containers of powdered compounds of uranium or plutonium) and measure attributes of these items during their inspections using non

  15. Integrating Safeguards and Security with Safety into Design

    International Nuclear Information System (INIS)

    Bean, Robert S.; Hockert, John W.; Hebditch, David J.

    2009-01-01

    There is a need to minimize security risks, proliferation hazards, and safety risks in the design of new nuclear facilities in a global environment of nuclear power expansion, while improving the synergy of major design features and raising operational efficiency. In 2008, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) covering many safeguards areas. One of these, launched by NNSA with support of the DOE Office of Nuclear Energy, was a multi-laboratory project, led by the Idaho National Laboratory (INL), to develop safeguards by design. The proposed Safeguards-by-Design (SBD) process has been developed as a structured approach to ensure the timely, efficient, and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical security, and safety objectives into the overall design process for the nuclear facility lifecycle. A graded, iterative process was developed to integrate these areas throughout the project phases. It identified activities, deliverables, interfaces, and hold points covering both domestic regulatory requirements and international safeguards using the DOE regulatory environment as exemplar to provide a framework and guidance for project management and integration of safety with security during design. Further work, reported in this paper, created a generalized SBD process which could also be employed within the licensed nuclear industry and internationally for design of new facilities. Several tools for integrating safeguards, safety, and security into design are discussed here. SBD appears complementary to the EFCOG TROSSI process for security and safety integration created in 2006, which focuses on standardized upgrades to enable existing DOE facilities to meet a more severe design basis threat. A collaborative approach is suggested.

  16. Safeguards for special nuclear materials

    International Nuclear Information System (INIS)

    Carlson, R.L.

    1979-12-01

    Safeguards, accountability, and nuclear materials are defined. The accuracy of measuring nuclear materials is discussed. The use of computers in nuclear materials accounting is described. Measures taken to physically protect nuclear materials are described

  17. Nuclear safeguards - a new profession

    International Nuclear Information System (INIS)

    Thorne, L.

    1984-01-01

    Early moves to restrict the proliferation of nuclear weapons are described together with the application of vigorous scientific techniques to the political framework of international treaties. Technical criteria for safeguards and verification methods are discussed. (U.K.)

  18. Safeguards Envelope Progress FY08

    International Nuclear Information System (INIS)

    Bean, Robert; Metcalf, Richard; Bevill, Aaron

    2008-01-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant's large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis

  19. Development of DUPIC safeguards technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H D; Ko, W I; Song, D Y [and others

    2000-03-01

    During the first phase of R and D program conducted from 1997 to 1999, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. For the nuclear material measurement system, the performance test was finished and received IAEA approval, and now is being used in DUPIC Fuel Fabrication Facility(DFDF) for nuclear material accounting and control. Other systems being developed in this study were already installed in DFDF and being under performance test. Those systems developed in this study will make a contribution not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author)

  20. Safeguards and Nuclear Material Management

    International Nuclear Information System (INIS)

    Stanchi, L.

    1991-01-01

    The book contains contributed papers from various authors on the following subjects: Safeguards systems and implementation, Measurement techniques: general, Measurement techniques: destructive analysis, Measurement techniques: non-destructive assay, Containment and surveillance, Spent fuel strategies, Material accounting and data evaluation

  1. National safeguards system operations at a bulk-handling facility

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The presentation centers on the State System of Accounting and Control (SSAC) for bulk-handling facilities in the licenses sector of the US nuclear community. Details of those material control and accounting measures dealing with the national safeguards program are discussed in Session 6a. The concept and role of the Fundamental Nuclear Material Control (FNMC) Plan are discussed with the participants. In Session 6b, the lecture focusses on the international safeguards program of the US SSAC. The relationship of the national and international requirements is discussed as they relate to the IAEA INFCIRC/153 document. The purpose of this session is to enable participants to: (1) understand the basic MC and A elements in an SSAC; (2) understand which MC and A elements serve the country's national interests and those that serve IAEA safeguards

  2. Technology transfer - insider protection workshop (Safeguards Evaluation Method - Insider Threat)

    International Nuclear Information System (INIS)

    Strait, R.S.; Renis, T.A.

    1986-01-01

    The Safeguards Evaluation Method - Insider Threat, developed by Lawrence Livermore National Laboratory, is a field-applicable tool to evaluate facility safeguards against theft or diversion of special nuclear material (SNM) by nonviolent insiders. To ensure successful transfer of this technology from the laboratory to DOE field offices and contractors, LLNL developed a three-part package. The package includes a workbook, user-friendly microcomputer software, and a three-day training program. The workbook guides an evaluation team through the Safeguards Evaluation Method and provides forms for gathering data. The microcomputer software assists in the evaluation of safeguards effectiveness. The software is designed for safeguards analysts with no previous computer experience. It runs on an IBM Personal Computer or any compatible machine. The three-day training program is called the Insider Protection Workshop. The workshop students learn how to use the workbook and the computer software to assess insider vulnerabilities and to evaluate the benefits and costs of potential improvements. These activities increase the students' appreciation of the insider threat. The workshop format is informal and interactive, employing four different instruction modes: classroom presentations, small-group sessions, a practical exercise, and ''hands-on'' analysis using microcomputers. This approach to technology transfer has been successful: over 100 safeguards planners and analysts have been trained in the method, and it is being used at facilities through the DOE complex

  3. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    1984-03-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the U.S. Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  4. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    1983-02-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, vandalism, arson, firearms, radiological sabotage and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  5. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    1982-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, vandalism, arson, firearms, sabotage and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  6. Reactor safeguards against insider sabotage

    International Nuclear Information System (INIS)

    Bennett, H.A.

    1982-03-01

    A conceptual safeguards system is structured to show how both reactor operations and physical protection resources could be integrated to prevent release of radioactive material caused by insider sabotage. Operational recovery capabilities are addressed from the viewpoint of both detection of and response to disabled components. Physical protection capabilities for preventing insider sabotage through the application of work rules are analyzed. Recommendations for further development of safeguards system structures, operational recovery, and sabotage prevention are suggested

  7. Safeguards through secure automated fabrication

    International Nuclear Information System (INIS)

    DeMerschman, A.W.; Carlson, R.L.

    1982-01-01

    Westinghouse Hanford Company, a prime contractor for the U.S. Department of Energy, is constructing the Secure Automated Fabrication (SAF) line for fabrication of mixed oxide breeder fuel pins. Fuel processing by automation, which provides a separation of personnel from fuel handling, will provide a means whereby advanced safeguards concepts will be introduced. Remote operations and the inter-tie between the process computer and the safeguards computer are discussed

  8. International safeguards: experience and prospects

    International Nuclear Information System (INIS)

    Keepin, G.R.; Menlove, H.O.

    1982-01-01

    IAEA safeguards have been applied to over 95% of the nuclear material and facilities outside of the nuclear weapon states. The present system of nonproliferation agreements implemented by IAEA safeguards likely will not be changed in the foreseeable future. Instruments used for nondestructive analysis are described: portable multichannel analyzer, high-level neutron coincidence counter, active well coincidence counter, and neutron coincidence collar. 7 figs

  9. DOE/ABACC safeguards cooperation

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Toth, P.; Rubio, J.

    1995-01-01

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) through the Office of Nonproliferation and National Security to countries and international organizations to enhance their capabilities to control and verify nuclear material inventories. Specific activities initiated under the safeguards agreement include: (1) active US participation in ABACC's safeguards training courses, (2) joint development of specialized measurement training workshops, (3) characterization of laboratory standards, and (4) development and application of an extensive analytical laboratory comparison program. The results realized from these initial activities have been mutually beneficial in regard to strengthening the application of international safeguards in Argentina and Brazil

  10. Nuclear safeguards implementations in Taiwan

    International Nuclear Information System (INIS)

    Hou, R-H.; Chang, C-K.; Lin, C-R.; Gone, J-K.; Chen, W-L.; Yao, D.

    2006-01-01

    Full text: Now with six Nuclear Power Plant (NPP) units in operation, two Advanced Boiling Water Reactor (ABWR) units under construction, and other peaceful applications of nuclear and radiation technology expanding in great pace, the Atomic Energy Council (AEC) has been focused on reactor safety regulation, radiation protection, radioactive waste administration, environmental monitoring and R and D for technology development and other civilian nuclear applications. Despite Taiwan's departure from the United Nations and therefore its family member International Atomic Energy Agency (IAEA) in 1971, Taiwan remains its commitment to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). To date, Taiwan is still part of the international nuclear safeguards system and accepts IAEA's inspections in accordance with its regulations on nuclear safeguards. In 1998, Taiwan further agreed, through exchange of letters between the AEC and IAEA, to implementation of the measures provided for in the model Protocol Additional to its safeguards agreement. In this paper, we will introduce Taiwan's nuclear safeguards history and describe some highlights of safeguards implementation in recent years, such as complementary accesses, transparency visits, remote monitoring inspections, unannounced inspections, facility attachment termination for the decommissioned facilities, and annual safeguards implementation meeting with IAEA

  11. Introduction to nuclear material safeguards

    International Nuclear Information System (INIS)

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  12. Setting priorities for safeguards upgrades

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; Patenaude, C.J.; Sicherman, A.

    1987-01-01

    This paper describes an analytic approach and a computer program for setting priorities among safeguards upgrades. The approach provides safeguards decision makers with a systematic method for allocating their limited upgrade resources. The priorities are set based on the upgrades cost and their contribution to safeguards effectiveness. Safeguards effectiveness is measured by the probability of defeat for a spectrum of potential insider and outsider adversaries. The computer program, MI$ER, can be used alone or as a companion to ET and SAVI, programs designed to evaluate safeguards effectiveness against insider and outsider threats, respectively. Setting the priority required judgments about the relative importance (threat likelihoods and consequences) of insider and outsider threats. Although these judgments are inherently subjective, MI$ER can analyze the sensitivity of the upgrade priorities to these weights and determine whether or not they are critical to the priority ranking. MI$ER produces tabular and graphical results for comparing benefits and identifying the most cost-effective upgrades for a given expenditure. This framework provides decision makers with an explicit and consistent analysis to support their upgrades decisions and to allocate the safeguards resources in a cost-effective manner

  13. Safeguards aspects for future fuel management alternatives

    International Nuclear Information System (INIS)

    Richter, B.; Stein, G.; Gerstler, R.

    1987-01-01

    In the future, more flexible fuel management strategies will be realized in light-water reactor power stations. The incentives for this development are based on considerations related to safe and economic plant operation, e.g. improved fuel strategies can save fuel resources and waste management efforts. A further important aspect of the nuclear fuel cycle deals with recycling strategies. At the back-end of the fuel cycle, the direct final disposal of spent fuel will have to be assessed as an alternative to recycling strategies. These major development fields will also have consequences for international safeguards. In particular, reactor fuel strategies may involve higher burn-up, conditioning of spent fuel directly in the power plant, gadolinium-poisoned fuel and different levels of enrichment. These strategies will have an impact on inspection activities, especially on the applicability of NDA techniques. The inspection frequency could also be affected in recycling strategies using MOX fuel. There may be problems with NDA methods if reprocessed feed is used in enrichment plants. On the other hand, the direct final disposal of spent fuel will raise safeguards problems regarding design verification, long-term safeguarding and the very feasibility of inaccessible nuclear material

  14. Current trends in the implementation of IAEA safeguards

    International Nuclear Information System (INIS)

    Adamson, A.; Bychkov, V.

    1993-01-01

    A practical goal, embodying the principle that a minimum amount of material is required in order to manufacture a nuclear explosive device, is that safeguards activities should enable the timely detection of the diversion of a significant quantity of nuclear material. It is important to note that the safeguards activities are not restricted to the International Atomic Energy Agency (the agency) but impose obligations on both state (and consequently on facility operators) and the agency. The beneficiaries are member states of the world community which have enhanced confidence in the competence and probity of states with safeguards agreements. Neither safeguards nor the nuclear industry have remained stationary. As new techniques have been developed, they have found applications, and as new challenges were encountered, the system has responded, for example, through improved measurements; through new or improved techniques for the operator, state or agency; and through new regulations. This paper details approaches, procedures and techniques developed for new complex nuclear facilities. Trends toward increase efficiency and effectiveness, and developments leading to more automated analysis and collection of data and the development of nondestructive assay methods are examined. Also important are trends in the presentation of safeguards results to the states and the general public

  15. The organisation of interagency training to safeguard children in England: a case study using realistic evaluation

    Directory of Open Access Journals (Sweden)

    Demi Patsios

    2010-11-01

    Full Text Available Background: Joint training for interagency working is carried out by Local Safeguarding Children Boards in England to promote effective local working to safeguard and promote the welfare of children.Purpose: This paper reports on the findings of the outputs and outcomes of interagency training to safeguard children in eight Local Safeguarding Children Boards.Methods: A review of Local Safeguarding Children Board documentation, observations of Local Safeguarding Children Board training sub-group meetings and a series of interviews with training key stakeholders in each Local Safeguarding Children Board were used to assess how partner agencies in the Local Safeguarding Children Boards carried out their statutory responsibilities to organise interagency training. 'Realistic Evaluation' was used to evaluate the mechanisms by which a central government mandate produced particular inter-agency training outputs (number of courses, training days and joint working outcomes (effective partnerships, within particular Local Safeguarding Children Board contexts.Results: The 'mandated partnership' imposed on Local Safeguarding Children Boards by central government left little choice but for partner agencies to work together to deliver joint training, which in turn affected the dynamics of working partnerships across the various sites. The effectiveness of the training sub group determined the success of the organisation and delivery of training for joint working. Despite having a central mandate, Local Safeguarding Children Boards had heterogeneous funding and training arrangements. These resulted in significant variations in the outputs in terms of the number of courses per 'children in need' in the locality and in the cost per course.Conclusions: Interagency training which takes account of the context of the Local Safeguarding Children Board is more likely to produce better trained staff, effective partnership working, and lead to better integrated

  16. Safety, security and safeguard

    International Nuclear Information System (INIS)

    Zakariya, Nasiru Imam; Kahn, M.T.E.

    2015-01-01

    Highlights: • The 3S interface in the design of PPS is hereby proposed. • The 3S synergy enhances the reduction in vulnerability and terrorism. • Highlighted were concept of detection, delay and response. - Abstract: A physical protection system (PPS) integrates people, procedures, and equipment for the protection of assets or facilities against theft, sabotage and terrorist attacks. Therefore, this paper proposes the use of a systematic and measurable approach to the design of PPS and its emphases on the concept of detection, delay and response. The proposed performance based PPS has the capability of defeating adversaries thereby achieving its targets. Therefore, timely detection of intrusion – based on the use of sensors, signal lines and alarm systems – is a major principle in the proposed system. Also the need for deterrence such as barriers in form of guards, access control, close circuit television (CCTV), strong policy and procedures, then the security culture amongst the facility workers was appropriately discussed. Since nuclear power is considered the only source that can provide large scale electricity with comparatively minimal impact on the environment, the paper also considered base guidelines for the application of PPS in any nuclear and radioactive facilities, followed with the necessity to incorporate inherent safety, security and safeguard (3S) synergy innovation in the physical protection system design and other characteristics that will enhance to reduce the vulnerability of nuclear facilities and materials to theft sabotage and terrorist attacks

  17. International nuclear material safeguards

    International Nuclear Information System (INIS)

    Syed Azmi Syed Ali

    1985-01-01

    History can be a very dull subject if it relates to events which have long since lost their relevance. The factors which led to the creation of the International Atomic Energy Agency (IAEA), however, are as important and relevant today as they were when the Agency was first created. Without understanding these factors it is impossible to realise how important the Agency is in the present world or to understand some of the controversies surrounding its future. Central to these controversies is the question of how best to promote the international transfer of nuclear technology without contributing further to the problem of proliferating nuclear explosives or explosive capabilities. One effective means is to subject nuclear materials (see accompanying article in box), which forms the basic link between the manufacture of nuclear explosives and nuclear power generation, to international safeguards. This was realized very early in the development of nuclear power and was given greater emphasis following the deployment of the first two atomic bombs towards the end of World War II. (author)

  18. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. Integration is approached by coordinating all safeguards information through a safeguards coordination center. This center represents a higher level in a communication, data-processing, and decision-making structure which is needed for efficient real-time operation of the integrated system. The safeguards coordination center functions to assess alarm and warning data required to resolve threats in the safeguards system, coordinate information and interaction involving the material accounting, physical protection, and facility monitoring and control systems, and present a single unified interface for interaction with facility management, facility operations, safeguards system personnel, and response forces

  19. Proposals for the 1989/90 Safeguards R and D programme and associated meetings

    International Nuclear Information System (INIS)

    1987-07-01

    The R and D programme of the IAEA Department of Safeguards as carried out by or undertaken on behalf of the Division of Development and Technical Support, the Division of Safeguards Evaluation and the Division of Safeguards Information Treatment is set out in tables which give the objective of the programme elements, a description of the activities to be performed and a number of items of information required for assessment of the activities. The linkage between R and D activities and planned meetings on safeguards topics in 1989/90 is shown in a table too. 4 tabs

  20. Implementation of the CNEN's safeguards laboratory

    International Nuclear Information System (INIS)

    Almeida, S.G. de

    1986-01-01

    The International Safeguards Agreements between Brazil and others countries has been concluded with the participation of the International Atomic Energy Agency (AIEA), and involve the Physical Protection and Control of Nuclear Material activities, which set up the National Safeguards System. The Safeguards Laboratory was constructed to the implementation and maintenance of this National Safeguards System, under responsability of CNEN's Safeguards Division, in order to carry out measurements of nuclear materials under safeguards. Technical requirements applied to the construction, setting up and operation of the laboratory are showed. The first results refer to the implementation of safeguards methods and techniques, as well as its participation within international scientific and technical co-operation programs in the safeguards area, through of them we wait its credencement by the AIEA as Regional Safeguards Laboratory for every countries of the Latin America. (Author) [pt

  1. A Safeguardability Check-List for Safeguards by Design

    Energy Technology Data Exchange (ETDEWEB)

    Sevini, F. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy); Renda, G. [European Commission, DG Energy, Directorate E ' Nuclear Safeguards' , Unit 4 ' Inspections: reactors, storages and others facilities, Luxembourg (Luxembourg); Sidlova, V. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy)

    2011-12-15

    Safeguards by design is a complex step-by-step interactive decision process involving various stake-holders and design choices to be made over a certain period of time. The resulting plant design should be a compromise among economical, safety, security and safeguards implementation constraints. Access to technology and equipment, as well as to the nuclear fuel cycle, determines the basic choices that the designer has to make. Once the boundary conditions for a given facility have been fixed, the designer still faces the challenge of setting several design and operational parameters that will require various trade-offs . Concerning safeguards, these can be seen in three groups, i.e. those related to the general design and its intrinsic proliferation resistance; those related to the specific lay-out and planning; those related to the actual safeguards instrumentation, its effectiveness and efficiency. The paper aims at describing a model for a phased, or 'layered' approach to safeguards-by-design, focusing on the example of off-load reactors.

  2. Isotopic safeguards statistics

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Stewart, K.B.

    1978-06-01

    The methods and results of our statistical analysis of isotopic data using isotopic safeguards techniques are illustrated using example data from the Yankee Rowe reactor. The statistical methods used in this analysis are the paired comparison and the regression analyses. A paired comparison results when a sample from a batch is analyzed by two different laboratories. Paired comparison techniques can be used with regression analysis to detect and identify outlier batches. The second analysis tool, linear regression, involves comparing various regression approaches. These approaches use two basic types of models: the intercept model (y = α + βx) and the initial point model [y - y 0 = β(x - x 0 )]. The intercept model fits strictly the exposure or burnup values of isotopic functions, while the initial point model utilizes the exposure values plus the initial or fabricator's data values in the regression analysis. Two fitting methods are applied to each of these models. These methods are: (1) the usual least squares fitting approach where x is measured without error, and (2) Deming's approach which uses the variance estimates obtained from the paired comparison results and considers x and y are both measured with error. The Yankee Rowe data were first measured by Nuclear Fuel Services (NFS) and remeasured by Nuclear Audit and Testing Company (NATCO). The ratio of Pu/U versus 235 D (in which 235 D is the amount of depleted 235 U expressed in weight percent) using actual numbers is the isotopic function illustrated. Statistical results using the Yankee Rowe data indicates the attractiveness of Deming's regression model over the usual approach by simple comparison of the given regression variances with the random variance from the paired comparison results

  3. Safeguards technology: present posture and future impact

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1976-01-01

    With widespread and growing concern over the issues of nuclear safeguards, international nuclear trade and nuclear weapons proliferation, the full development of the world's nuclear energy potential could well depend on how effectively the strategic nuclear materials that fuel nuclear power are controlled and safeguarded. The broad U.S. program in nuclear safeguards and security is directed toward a balanced safeguards system incorporating the two major components of physical security and materials control. The current posture of modern safeguards technology, its impact on plant operations, and the key role it must play in the implementation of stringent cost-effective safeguards systems in facilities throughout the nuclear fuel cycle are outlined

  4. A view to the new safeguards system

    International Nuclear Information System (INIS)

    Tsuboi, Hiroshi

    2000-01-01

    The Additional Protocol to the Safeguards Agreement between Japan and the IAEA entered into force on 16 December 1999. An initial declaration of the expanded information will be provided to the IAEA by next June in accordance with the Additional Protocol. In Japan the new integrated safeguards system, which strengthens the effectiveness and improves efficiency of IAEA Safeguards, is considered to be very important issue. The establishment of a permanent and universal safeguards system including application of safeguards in Nuclear Weapon States also is an important issue from the view-point of not only non-proliferation but also nuclear disarmament. Safeguards are expected to have an increasingly important role. (author)

  5. International safeguards data management system

    International Nuclear Information System (INIS)

    Argentesi, F.; Costantini, L.; Franklin, M.; Dondi, M.G.

    1981-01-01

    The data base management system ''ISADAM'' (i.e. International Safeguards Data Management System) described in this report is intended to facilitate the safeguards authority in making efficient and effective use of accounting reports. ISADAM has been developed using the ADABAS data base management system and is implemented on the JRC-Ispra computer. The evaluation of safeguards declarations focuses on three main objectives: - the requirement of syntactical consistency with the legal conventions of data recording for safeguards accountancy; - the requirement of accounting evidence that there is no material unaccounted for (MUF); - the requirement of semantic consistency with the technological characteristics of the plant and the processing plans of the operator. Section 2 describes in more detail the facilities which ISADAM makes available to a safeguards inspector. Section 3 describes how the MUF variance computation is derived from models of measurement error propagation. Many features of the ISADAM system are automatically provided by ADABAS. The exceptions to this are the utility software designed to: - screen plant declarations before loading into the data base, - prepare variance summary files designed to support real-time computation of MUF and variance of MUF, - provide analyses in response to user requests in interactive or batch mode. Section 4 describes the structure and functions of this software which have been developed by JRC-Ispra

  6. Future issues in international safeguards

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Markin, J.T.; Mullen, M.F.

    1991-01-01

    The introduction of large bulk-handling facilities into the internationally safeguarded, commercial nuclear fuel cycle, increased concerns for radiation exposure, and the constant level of resources available to the International Atomic Energy Agency (IAEA) are driving new and innovative approaches to international safeguards. Inspector resources have traditionally been allocated on a facility-type basis. Approaches such as randomization of inspections either within a facility or across facilities in a State or the application of a fuel-cycle approach within a State are being considered as means of conserving resources. Large bulk-handling facilities require frequent material balance closures to meet IAEA timeliness goals. Approaches such as near-real-time accounting, running book inventories, and adjusted running book inventories are considered as means to meet these goals. The automated facilities require that safeguards measures also be automated, leading to more reliance on operator-supplied equipment that must be authenticated by the inspectorate. New Non-Proliferation Treaty signatory States with advanced nuclear programs will further drain IAEA resources. Finally, the role of special inspections in IAEA safeguards may be expanded. This paper discusses these issues in terms of increasing safeguards effectiveness and the possible impact on operators. 14 refs

  7. IAEA safeguards and classified materials

    International Nuclear Information System (INIS)

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  8. Web-Enabled Mechanistic Case Diagramming: A Novel Tool for Assessing Students' Ability to Integrate Foundational and Clinical Sciences.

    Science.gov (United States)

    Ferguson, Kristi J; Kreiter, Clarence D; Haugen, Thomas H; Dee, Fred R

    2018-02-20

    As medical schools move from discipline-based courses to more integrated approaches, identifying assessment tools that parallel this change is an important goal. The authors describe the use of test item statistics to assess the reliability and validity of web-enabled mechanistic case diagrams (MCDs) as a potential tool to assess students' ability to integrate basic science and clinical information. Students review a narrative clinical case and construct an MCD using items provided by the case author. Students identify the relationships among underlying risk factors, etiology, pathogenesis and pathophysiology, and the patients' signs and symptoms. They receive one point for each correctly-identified link. In 2014-15 and 2015-16, case diagrams were implemented in consecutive classes of 150 medical students. The alpha reliability coefficient for the overall score, constructed using each student's mean proportion correct across all cases, was 0.82. Discrimination indices for each of the case scores with the overall score ranged from 0.23 to 0.51. In a G study using those students with complete data (n = 251) on all 16 cases, 10% of the variance was true score variance, and systematic case variance was large. Using 16 cases generated a G coefficient (relative score reliability) equal to .72 and a Phi equal to .65. The next phase of the project will involve deploying MCDs in higher-stakes settings to determine whether similar results can be achieved. Further analyses will determine whether these assessments correlate with other measures of higher-order thinking skills.

  9. Safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The report describes the development of system concepts for the safeguarding of special strategic nuclear materials (SNM) against malevolent adversary action during the interfacility transport of the SNM. The methodology used includes techniques for defining, classifying, and analyzing adversary action sequences; defining safeguards system components; assessing the vulnerability of various safeguards systems and their component parts to the potential adversary action sequences, and conceptualizing system design requirements. The method of analysis is based primarily on a comparison of adversary actions with safeguards measures, to estimate vulnerability. Because of the paucity of the data available for assessing vulnerability, the Delphi approach was used to generate data: values were estimated in a structured exercise by a panel of experts in the safeguards and terrorist fields. It is concluded that the probability of successful attack against a truck/escort convoy manned by well-trained, well-armed personnel is low enough to discourage all but the strongest adversaries. Secrecy of operations and careful screening of personnel are very important. No reliance should be placed on current capabilities of local law enforcement agencies. The recommendation of the study is the use of road transport in the near future and air transport at a later time when the number of shipments reaches a level to justify it, and when present safety problems are resolved

  10. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    1991-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Because of public interest, the Miscellaneous category includes a few events which involve either source material, byproduct material, or natural uranium which are exempt from safeguards requirements. Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage, pre-1990 alcohol and drugs (involving reactor operators, security force members, or management persons), and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  11. Implementing Safeguards-by-Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Durst, Phillip Casey; Hockert, John; Morgan, James

    2010-01-01

    Excerpt Safeguards-by-Design (SBD) is an approach to the design and construction of nuclear facilities whereby safeguards are designed-in from the very beginning. It is a systematic and structured approach for fully integrating international and national safeguards (MC and A), physical security, and other proliferation barriers into the design and construction process for nuclear facilities. SBD is primarily a project management or project coordination challenge, and this report focuses on that aspect of SBD. The present report continues the work begun in 2008 and focuses specifically on the design process, or project management and coordination - the planning, definition, organization, coordination, scheduling and interaction of activities of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project, in order to provide the project context within which the safeguards design activities take place, describes the involvement of safeguards experts in the design process, the nature of their analyses, interactions and decisions, as well as describing the documents created and how they are used. Designing and constructing a nuclear facility is an extremely complex undertaking. The stakeholders in an actual project are many - owner, operator, State regulators, nuclear facility primary contractor, subcontractors (e.g. instrument suppliers), architect engineers, project management team, safeguards, safety and security experts, in addition to the IAEA and its team. The purpose of the present report is to provide a common basis for discussions amongst stakeholders to collaboratively develop a SBD approach that will be both practically useful and mutually beneficial. The principal conclusions from the present study are: (1) In the short term, the successful implementation of SBD is principally a project management problem. (2) Life-cycle cost

  12. Safeguards by Design - Experiences from New Nuclear Installation

    International Nuclear Information System (INIS)

    Okko, O.; Honkamaa, T.; Kuusi, A.; Rautjaervi, J.

    2010-01-01

    The experiences obtained from the current construction projects at Olkiluoto clearly point out the need to introduce the safeguards requirements into facility design process at an early stage. The early Design Information is completed, in principle, before the construction. However, during the design of containment, surveillance systems, and non-destructive assay equipment and their cabling, the design requirements for safeguards systems were not available either for the new reactor unit or for the disposal plant with a geological repository. Typically, the official Design Information documents are not available early enough for efficient integration of safeguards systems into new facilities. In case of the Olkiluoto projects, this was due to understandable reasons: at the new reactor unit the design acceptance by the ordering company and by the nuclear safety authorities was a long process, ongoing simultaneously with parts of the construction; and at the geological repository the national legislation assigns the repository the status of a nuclear facility only after the initial construction and research phase of the repository when the long-term safety of the disposal concept is demonstrated. As similar factors are likely to delay the completion of the official Design Information documents with any new reactor projects until the construction is well underway and efficient integration of safeguards systems is impossible. Therefore, the proliferation resistance of new nuclear installations should be addressed in the design phase before the official Design Information documents are finished. This approach was demonstrated with the enlargement of the Olkiluoto spent fuel storage building. For this approach to work, strong national contribution is needed to facilitate the early communication and exchange of information between the IAEA and the other stakeholders to enable the design of facilities that can be efficiently safeguarded. With the renaissance of nuclear

  13. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. These concepts identify ways in which material accounting systems can be used to enable effective monitoring of authorized movement of nuclear material through physical protection boundaries. Concepts are also discussed for monitoring user access to nuclear material and for tagging user identification to material accounting transactions through physical protection functions. These result in benefits in detecting diversion and in positively tracing material movement. Finally, coordination of safeguards information from both subsystems in such an integrated system through a safeguards coordination center is addressed with emphasis on appropriate response in case of discrepancies

  14. The Agency programme for the development of safeguards techniques and instrumentation

    International Nuclear Information System (INIS)

    Lopez-Menchero, E.; Waligura, A.J.

    1976-01-01

    The programme of the Division of Development concentrates attention upon a variety of technical problems and tasks to enable the Agency safeguards system to achieve its safeguards objectives most economically for the Agency, the Member States and the nuclear facility operators. The programme must take into account the changes which may occur in the Agency's tasks as a consequence of implementation of safeguards in States with important nuclear activities. This paper attempts to summarize where the Agency methods and techniques development programme stands on meeting defined technical objectives, to point out where the main problems lie and to offer some guidelines for their solution. (author)

  15. IAEA safeguards for the 21st century

    International Nuclear Information System (INIS)

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  16. IAEA safeguards: some pros and cons

    International Nuclear Information System (INIS)

    Kelly, P.

    1986-01-01

    The author gives a personal view of the International Atomic Energy Agency's (IAEA) safeguards. The IAEA safeguards system is described (including containment, surveillance and inspection), and the limitations and strengths of the system are examined. (U.K.)

  17. IAEA safeguards for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  18. Developing a simulation for border safeguarding

    CSIR Research Space (South Africa)

    Van Rooyen, S

    2011-09-01

    Full Text Available Border safeguarding is the defence of territorial integrity and sovereignty, and this is a joint responsibility of the military and the police. Military doctrine for conventional warfare is not sufficient for Border Safeguarding operations due...

  19. International safeguards and nuclear terrorism

    International Nuclear Information System (INIS)

    Moglewer, S.

    1987-01-01

    This report provides a critical review of the effectiveness of International Atomic Energy Agency (IAEA) safeguards against potential acts of nuclear terrorism. The author argues that IAEA safeguards should be made applicable to deterring diversions of nuclear materials from civil to weapons purposes by subnational groups as well as by nations. Both technical and institutional factors are considered, and suggestions for organizational restructuring and further technical development are made. Awareness of the necessity for effective preventive measures is emphasized, and possible directions for further effort are suggested

  20. Tour of safeguards equipment van

    International Nuclear Information System (INIS)

    Smith, B.W.; Fager, J.E.

    1984-01-01

    Increasing use is being made of nondestructive assay instruments for identification and measurements of nuclear materials. Important advantages of NDA are: timeliness, portability, and ease of use. Recent development in computer systems and NDA allow for the integration of sample planning, control of NDA, and data analysis into one transportable system. This session acquainted the course participants with the use of mobile NDA safeguards measurement systems. This session considered the practical problems and the type of results that can be expected from field use of NDA instruments. An existing mobile safeguards system was used to demonstrate some of the differences between field and laboratory conditions

  1. Safeguards in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J.

    2010-01-01

    The former Czechoslovakia acceded to the Non-Proliferation Treaty in 1968. Based on requirements of the Safeguard Agreement the State System of Accounting for and Control of nuclear material has been established. After dissolution of Czechoslovakia the Slovak Republic succeeded to the Safeguards Agreement. As a regulator the Nuclear Regulatory Authority of the Slovak Republic (UJD) has been constituted. After European Union (EU) accession EU legislation became valid in the Slovak republic. Atomic Law No. 541/2004 Coll. on Peaceful Use of Nuclear Energy adopts this legislation. In the frame of strengthening the IAEA safeguards an implementation of the Protocol Additional became actual. The Protocol Additional was signed by the government of the Slovak Republic in September 1999. On 1 December 2005 safeguards agreement INFCIRC/193 including the relevant Additional Protocol entered into force. As an instrument supporting non-proliferation of nuclear weapons a control of export/import of nuclear material, nuclear related and dual-use material following the EC regulation 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual use items. The execution of accountancy and control of nuclear material inspection activities has been considerably influenced by the implementation of integrated safeguards, implemented in the Slovak Republic on 1 September 2009. The aim of mentioned integrated safeguards regime is to decrease the amount and difficulty of inspections. At the same time the possibility of accountancy and control of nuclear material inspections announced 24 hours in advance took effect. The execution of Protocol Additional inspections remains the same. Additionally to international safeguards system UJD has kept the national safeguards system which observes all nuclear material on the territory of the Slovak Republic. The government of the Slovak Republic plays active role within activities of the NSG

  2. Life Cycle Assessment and Release Studies for 15 Nanosilver-Enabled Consumer Products: Investigating Hotspots and Patterns of Contribution.

    Science.gov (United States)

    Pourzahedi, Leila; Vance, Marina; Eckelman, Matthew J

    2017-06-20

    Increasing use of silver nanoparticles (AgNPs) in consumer products as antimicrobial agents has prompted extensive research toward the evaluation of their potential release to the environment and subsequent ecotoxicity to aquatic organisms. It has also been shown that AgNPs can pose significant burdens to the environment from life cycle emissions associated with their production, but these impacts must be considered in the context of actual products that contain nanosilver. Here, a cradle-to-gate life cycle assessment for the production of 15 different AgNP-enabled consumer products was performed, coupled with release studies of those same products, thus providing a consistent analytical platform for investigation of potential nanosilver impacts across a range of product types and concentrations. Environmental burdens were assessed over multiple impact categories defined by the United States Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI 2.1) method. Depending on the product composition and silver loading, the contribution of AgNP synthesis to the overall impacts was seen to vary over a wide range from 1% to 99%. Release studies found that solid polymeric samples lost more silver during wash compared to fibrous materials. Estimates of direct ecotoxicity impacts of AgNP releases from those products with the highest leaching rates resulted in lower impact levels compared to cradle-to-gate ecotoxicity from production for those products. Considering both cradle-to-gate production impacts and nanoparticle release studies, in conjunction with estimates of life cycle environmental and health benefits of nanoparticle incorporation, can inform sustainable nanoenabled product design.

  3. Safeguards information handling and treatment

    International Nuclear Information System (INIS)

    Carchon, R.; Liu, J.; Ruan, D.

    2001-01-01

    Many states are currently discussing the new additional protocol (INFCIRC/540). This expanded framework is expected to establish the additional confirmation that there are no undeclared activities and facilities in that state. The information collected by the IAEA mainly comes from three different sources: information either provided by the state, collected by the IAEA, and from open sources. This information can be uncertain, incomplete, imprecise, not fully reliable, contradictory, etc. Hence, there is a need for a mathematical framework that provides a basis for handling and treatment of multidimensional information of varying quality. We use a linguistic assessment based on fuzzy set theory, as a flexible and realistic approach. The concept of a linguistic variable serves the purpose of providing a means of approximated characterization of information that may be imprecise, too complex or ill-defined, for which the traditional quantitative approach does not give an adequate answer. In the application of this linguistic assessment approach, a problem arises on how to aggregate linguistic information. Two different approaches can be followed: (1) approximation approach using the associated membership function; (2) symbolic approach acting by the direct computation on labels, where the use of membership function and the linguistic approximation is unnecessary, which makes computation simple and quick. To manipulate the linguistic information in this context, we work with aggregation operators for combining the linguistic non-weighted and weighted values by direct computation on labels, like the Min-type and Max-type weighted aggregation operators as well as the median aggregation operator. A case study on the application of these aggregation operators to the fusion of safeguards relevant information is given. The IAEA Physical Model of the nuclear fuel cycle can be taken as a systematic and comprehensive indicator system. It identifies and describes indicators of

  4. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  5. Safeguards agreements - Their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.H.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (Safeguards Agreements) between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute. On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: The Agency's Safeguards System 1965, extended in 1966 and 1968; and the basis for negotiating safeguards agreements with NNWS pursuant to NPT. The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is ensured through the application of various safeguards measures. Containment and surveillance measures are expected to play an increasingly important role. One of the specific features of NPT Safeguards Agreements is the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under the non-NPT safeguards agreements implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular regarding the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the Safeguards System document, which is incorporated in these agreements by reference, are in continuous evolution. The Agency's Safeguards System document (INFCIRC/66/Rev.2) continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from this document, and further provision for notification, inventories and financial matters, legal and political provisions such as sanctions in the case of non-compliance, and privileges and immunities. The paper discusses the

  6. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  7. Nuclear Resonance Fluorescence for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard A; Quiter, Brian J; Ambers, Scott D

    2011-02-04

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment

  8. The International Atomic Energy Agency's safeguards system

    International Nuclear Information System (INIS)

    Wagner, W.

    2000-01-01

    A system of international safeguards has been established to provide assurance that nuclear materials in civilian use are not diverted from their peaceful purpose. The safeguards system is administered by the International Atomic Energy Agency/Department of Safeguards and devolves from treaties and other international agreements. Inspectors from the Agency verify reports from States about nuclear facilities by audits, observation, and measurements. (author)

  9. Recent advances in IAEA safeguards systems analysis

    International Nuclear Information System (INIS)

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  10. Safeguards planning in a plant design process

    International Nuclear Information System (INIS)

    Heinrich, L.A.

    1977-01-01

    The safeguards efforts for the partitioning fuel cycle are considered. Included in the discussion are the organization of the safeguards study, the development of safeguards criteria, the expression of these criteria as requirements for facility design, and some preliminary details of the implementation of these requirements in facility and process layout

  11. Evaluation of excess nuclear materials suitability for international safeguards

    International Nuclear Information System (INIS)

    Newton, J.W.; White, W.C.; Davis, R.M.; Cherry, R.C.

    1996-01-01

    President Clinton announced in March 1995 the permanent withdrawal of 200 tons of fissile material from the US nuclear stockpile. This action was made possible by the dramatic reduction in nuclear weapons stockpile size and a desire to demonstrate the US'' commitment to nonproliferation goals. To provide further assurance of that commitment, the US is addressing placement of these materials under International Atomic Energy Agency (IAEA) safeguards. An initial step of this overall assessment was evaluation of the nuclear materials'' suitability for international safeguards. US Department of Energy (DOE) field organizations reviewed a detailed listing of all candidate materials with respect to characterization status, security classification, and acceptability for international safeguards compared to specified criteria. These criteria included form, location, environment and safety considerations, measurability, and stability. The evaluation resulted in broad categorizations of all materials with respect to preparing and placing materials under IAEA safeguards and provided essential information for decisions on the timing for offering materials as a function of materials attributes. A plan is being prepared to determine the availability of these materials for IAEA safeguards considering important factors such as costs, processes and facilities required to prepare materials, and impacts on other programs

  12. Utilizing Smart Textiles-Enabled Sensorized Toy and Playful Interactions for Assessment of Psychomotor Development on Children

    Directory of Open Access Journals (Sweden)

    Mario Vega-Barbas

    2015-01-01

    Full Text Available Emerging pervasive technologies like smart textiles make it possible to develop new and more accessible healthcare services for patients independently of their location or time. However, none of these new e-health solutions guarantee a complete user acceptance, especially in cases requiring extensive interaction between the user and the solution. So far, researchers have focused their efforts on new interactions techniques to improve the perception of privacy and confidence of the people using e-health services. In this way, the use of smart everyday objects arises as an interesting approach to facilitate the required interaction and increase user acceptance. Such Smart Daily Objects together with smart textiles provide researchers with a novel way to introduce sophisticated sensor technology in the daily life of people. This work presents a sensorized smart toy for assessment of psychomotor development in early childhood. The aim of this work is to design, develop, and evaluate the usability and playfulness of a smart textile-enabled sensorized toy that facilitates the user engagement in a personalized monitoring healthcare activity. To achieve this objective the monitoring is based on a smart textile sensorized toy as catalyzer of acceptance and multimodal sensing sources to monitor psychomotor development activities during playtime.

  13. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com [Molecular Devices LLC, Sunnyvale, CA 94089 (United States); Cromwell, Evan F., E-mail: evan.cromwell@moldev.com [Molecular Devices LLC, Sunnyvale, CA 94089 (United States); Crittenden, Carole [Molecular Devices LLC, Sunnyvale, CA 94089 (United States); Wignall, Jessica A. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Wright, Fred A. [Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599 (United States); Rusyn, Ivan [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-12-15

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. A number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation

  14. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    International Nuclear Information System (INIS)

    Sirenko, Oksana; Cromwell, Evan F.; Crittenden, Carole; Wignall, Jessica A.; Wright, Fred A.; Rusyn, Ivan

    2013-01-01

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca 2+ flux readouts synchronous with beating, and cell viability. A number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of

  15. Assessment of pathologic increase in liver stiffness enables earlier diagnosis of CFLD: Results from a prospective longitudinal cohort study.

    Directory of Open Access Journals (Sweden)

    Victoria Klotter

    Full Text Available About 30% of patients with Cystic Fibrosis (CF develop CF-associated liver disease (CFLD. Recent studies have shown that transient elastography (TE, as a method to quantify liver stiffness, allows non-invasive diagnosis of CFLD in adults and children with CF. Within this study we aimed to prospectively identify patients at risk for development of CFLD by longitudinal analysis of liver stiffness and fibrosis scores in a 5-year follow-up. 36 pediatric and 16 adult patients with initial liver stiffness below the cut-off value indicative of CFLD (6.3 kPa were examined by transient elastography for 4-5 years. TE, APRI-, and FIB-4-scores were assessed and compared by Kruskal-Wallis test and receiver operating characteristic (ROC-analysis. Frequencies were compared by Chi2-test. Among the 36 patients participating in this study, a subgroup of 9 patients developed liver stiffness >6.3 kPa after 4-5 years with an increase of ΔTE >0.38 kPa/a (the group with increasing liver stiffness was labelled TEinc. APRI- and FIB-4 scores confirmed the rationale for grouping. The frequency of CFLD assessed by conventional diagnosis was significantly higher in TEinc-group compared to the control group (TEnorm. None of the adult CF patients matched criteria for TEinc-group. For the first time it was shown that the non-invasive longitudinal assessment of TE allows identification of patients with progression of CFLD in a subgroup of juvenile but not in adult CF patients. Comparing TE to conventional fibrosis-scores underlined the strength of the continuous assessment of liver stiffness for the exact diagnosis of progressive CFLD. The newly described cut-off for pathologic increase of liver stiffness, ΔTEcutoff = 0.38kPa/a, might enable to detect developing CFLD using consequent follow up TE measurements before reaching the level of stiffness indicating established CFLD. Nevertheless, the limited size of the analyzed cohort should encourage a prospective, multi

  16. The future use of pathway analysis in IAEA safeguards

    International Nuclear Information System (INIS)

    Budlong Sylvester, Kory; Pilat, J.; Murphy, Chantell

    2013-01-01

    Pathway analysis has the potential to play an important role in the development of a safeguards system that is more information driven, leveraging all the information available to the International Atomic Energy Agency (IAEA). Pathway analysis should be seen as an extension of traditional hypothesis testing used by the Agency in the past. The most attractive pathways based on the assessed capabilities of a given state can be identified and used in the development of state-level safeguards approaches. This ranking of pathways can be revised based on evidence of pathway use, or preparations for use, allowing limited safeguards resources to flow to the areas of highest concern. The possible uses of pathway analysis in the implementation of the IAEA's state-level concept are described along with implementation issues that will likely arise. The paper is followed by the slides of the presentation. (authors)

  17. Transit Matching for International Safeguards

    International Nuclear Information System (INIS)

    Gilligan, K.; Whitaker, M.; Oakberg, J.

    2015-01-01

    In 2013 the U.S. Department of Energy / National Nuclear Security Administration Office of Non-proliferation and International Security (NIS) supported a study of the International Atomic Energy Agency's (IAEA) processes and procedures for ensuring that shipments of nuclear material correspond to (match) their receipts (i.e., transit matching). Under Comprehensive Safeguards Agreements, Member States are obliged to declare such information within certain time frames. Nuclear weapons states voluntarily declare such information under INFCIRC/207. This study was funded by the NIS Next Generation Safeguards Initiative (NGSI) Concepts and Approaches program. Oak Ridge National Laboratory led the research, which included collaboration with the U.S. Nuclear Regulatory Commission, the U.S. Nuclear Material Management and Safeguards System (NMMSS), and the IAEA Section for Declared Information Analysis within the Department of Safeguards. The project studied the current transit matching methodologies, identified current challenges (e.g., level of effort and timeliness), and suggested improvements. This paper presents the recommendations that resulted from the study and discussions with IAEA staff. In particular, it includes a recommendation to collaboratively develop a set of best reporting practices for nuclear weapons states under INFCIRC/207. (author)

  18. Safeguards against Takeover after Volkswagen

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2009-01-01

    The article analyses the significance of the European Court's decision on the effects of the rules on the free movement of capital on the takeover safeguards in Volkswagen AG for restrictions on the right to vote, ownership ceilings, division into A and B share classes, increased majority require...

  19. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  20. The future for safeguards technology

    International Nuclear Information System (INIS)

    Zykov, S.

    2013-01-01

    The present paper presents some elements of an emerging vision of a new and updated potential role for safeguard instrumentation in the overall process of deterring the proliferation of nuclear weapons. The paper focusses on installed, transportable and portable measurement systems and in-situ techniques for maintaining continuity of knowledge. The paper is followed by the slides of the presentation

  1. Enrichment plant management and safeguards

    International Nuclear Information System (INIS)

    Hurt, N.H.

    1978-01-01

    The next increment of enrichment at Portsmouth will be gas centrifuge. The safeguards program at Portsmouth is discussed, including the DYMCAS system, the computerization, and the detectors. Control of the material access areas is discussed. The licensee material surveillance and verification program is also described

  2. MACSSA (Macintosh Safeguards Systems Analyzer)

    International Nuclear Information System (INIS)

    Argentesi, F.; Costantini, L.; Kohl, M.

    1986-01-01

    This paper discusses MACSSA a fully interactive menu-driven software system for accountancy of nuclear safeguards systems written for Apple Macintosh. Plant inventory and inventory change records can be entered interactively or can be downloaded from a mainframe database. Measurement procedures and instrument parameters can be defined. Partial or total statistics on propagated errors is performed and shown in tabular or graphic form

  3. Safeguards Technology Strategic Planning Pentachart

    International Nuclear Information System (INIS)

    Carroll, C. J.

    2017-01-01

    Builds on earlier strategic planning workshops conducted for SGIT, SGTS, and SGCP. Many of recommendations from these workshops have been successfully implemented at the IAEA. Provide a context for evaluating new approaches for anticipated safeguards challenges of the future. Approach used by government and military to plan for an uncertain future. Uses consensus decision-making.

  4. International safeguards for critical facilities

    International Nuclear Information System (INIS)

    Ney, J.F.; Todd, J.L.

    1979-01-01

    A study was undertaken to investigate various approaches to provide international safeguards for critical facilities and to select an optimized system. Only high-inventory critical facilities were considered. The goal of the study was to detect and confirm the protracted or abrupt diversion of 8kg of plutonium or 25kg of the uranium isotope 235 within approximately a week of the diversion. The general safeguards alternatives considered were (1) continuous inspections by resident inspectors, with varying degrees of comprehensiveness, (2) periodic inspections by regional inspectors at varying time intervals, (3) unattended containment/surveillance measures, and (4) various combinations of the above. It was concluded that a practical and effective international safeguards system can be achieved by employing a method of continuously monitoring facility activities which could lead to diversion. This is in addition to the routine inspections typical of current international safeguards. Monitoring detects inventory discrepancies and violations of agreed-upon procedural restrictions, as well as unauthorized removal of Special Nuclear Materials (SNM). A special inventory is used following detection to confirm any suspected diversion. Comparison of 28 safeguards options led to the selection of a system for further development which uses a combination of surveillance and inspection by resident IAEA personnel, containment/surveillance by unattended equipment, and routine inventory sampling. A development programme is described which is intended to demonstrate the feasibility of several containment and surveillance measures proposed in the study. Included are a personnel portal and an instrument/material pass-through as well as associated recording and tamper-protection features. (author)

  5. Automatic image processing as a means of safeguarding nuclear material

    International Nuclear Information System (INIS)

    Kahnmeyer, W.; Willuhn, K.; Uebel, W.

    1985-01-01

    Problems involved in computerized analysis of pictures taken by automatic film or video cameras in the context of international safeguards implementation are described. They include technical ones as well as the need to establish objective criteria for assessing image information. In the near future automatic image processing systems will be useful in verifying the identity and integrity of IAEA seals. (author)

  6. Nuclear Security and Nuclear Safeguards; Differences, Commonalities and Synergies

    International Nuclear Information System (INIS)

    Jorant, C.

    2015-01-01

    Reference to the three S's in the nuclear world is recurring and much has been said about the need to build on synergies to reinforce safeguards, safety and security. In practice, the 3S's communities are seldom interconnected even though some interaction can be observed between safety and security and security and safeguards. Ensuring a better understanding between those three sectors about their scope, requirements, implementation methods and tools would stimulate cooperation. The second Nuclear Security Summit and particularly the industry related event stressed the synergies between safety and security. The first IAEAs Security Conference organized in July 2013 did not address specifically nuclear safeguards and security relations. Last Security Summit took place in The Hague in March 2014 and this type of issue was not really raised either. The safeguards Symposium provides a timely opportunity to tackle possible enhanced cooperation between safeguards and security communities and assess the prospect for addressing such issue at the next and allegedly last security summit in 2016. This presentation will analyze the differences and commonalities between those two sectors, in particular with regards to the objectives and actors, the organization and technicalities, or to the conceptual approaches (DBT and APA/SLC, attractiveness/accessibility). It will then assess the possible synergies or cooperation between both communities. It will discuss the merits of a global and comprehensive involvement of the different actors, (State, industry and international bodies including the NGOs) and of exchanges on good practices to contribute to a common understanding and references while allowing for an adaptable and national approach. Indeed the need to reassure the stakeholders, including the general public, that security, as well as safeguards are addressed in a consistent manner worldwide is of utmost importance for building future nuclear energy programmes on a

  7. Inspection technologies -Development of national safeguards technology-

    International Nuclear Information System (INIS)

    Hong, J. S.; Kim, B. K.; Kwack, E. H.

    1996-12-01

    17 facility regulations prepared by nuclear facilities according to the Ministerial Notices were evaluated. Safeguards inspection activities under Safeguards are described. Safeguards inspection equipments and operation manuals to be used for national inspection are also described. Safeguards report are produced and submitted to MOST by using the computerized nuclear material accounting system at state level. National inspection support system are developed to produce the on-site information for domestic inspection. Planning and establishment of policy for nuclear control of nuclear materials, international cooperation for nuclear control, CTBT, strengthening of international safeguards system, and the supply of PWRs to North Korea are also described. (author). 43 tabs., 39 figs

  8. Safeguards instrumentation: a computer-based catalog

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  9. Network adaptable information systems for safeguard applications

    International Nuclear Information System (INIS)

    Rodriguez, C.; Burczyk, L.; Chare, P.; Wagner, H.

    1996-01-01

    While containment and surveillance systems designed for nuclear safeguards have greatly improved through advances in computer, sensor, and microprocessor technologies, the authors recognize the need to continue the advancement of these systems to provide more standardized solutions for safeguards applications of the future. The benefits to be gained from the use of standardized technologies are becoming evident as safeguard activities are increasing world-wide while funding of these activities is becoming more limited. The EURATOM Safeguards Directorate and Los Alamos National Laboratory are developing and testing advanced monitoring technologies coupled with the most efficient solutions for the safeguards applications of the future

  10. Safeguards instrumentation: a computer-based catalog

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  11. Enabling the Integrated Assessment of Large Marine Ecosystems: Informatics to the Forefront of Science-Based Decision Support

    Science.gov (United States)

    Di Stefano, M.; Fox, P. A.; Beaulieu, S. E.; Maffei, A. R.; West, P.; Hare, J. A.

    2012-12-01

    and interactive visualization, and enables the download of data plotted in the ESR. Data, indicators, and information products include time series, geographic maps, and uni-variate and multi-variate analyses. Also central to the success of this initiative is the commitment to accommodate and train scientists of multiple disciplines who will learn to interact effectively with this new integrated and interoperable ecosystem assessment capability. Traceability, repeatability, explanation, verification, and validation of data, indicators, and information products are important for cross-disciplinary understanding and sharing with managers, policymakers, and the public. We are also developing an ontology to support the implementation of the DPSIR framework. These new capabilities will serve as the essential foundation for the formal synthesis and quantitative analysis of information on relevant natural and socio-economic factors in relation to specified ecosystem management goals which can be applied in other LMEs.

  12. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Musembi, Mutava Victor [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Eun Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making.

  13. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    International Nuclear Information System (INIS)

    Musembi, Mutava Victor; Jeong, Seung Young; Kwon, Eun Ha

    2013-01-01

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making

  14. Cyber Security Evaluation of the Wireless Communication for the Mobile Safeguard Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Ye, S.H.

    2015-01-01

    This paper introduces cyber security evaluation results and a design of the wireless communication technology to apply to safeguard systems in nuclear power plants. While wireless communication technologies can generally make mobility and efficiency on plant operation, those have seldom been installed on the nuclear I&C systems due to the negative concern of unexpected outcomes that stem from electromagnetic interference and cyber attack. New design of advanced digital safeguard and I&C systems uses computer-based systems for the safeguard and safety functions. On the other hand, those are being exposed to various types of new and existing cyber threats, vulnerabilities and risks which significantly increase the likelihood that those could be compromised. In order to employ the wireless communication technology in safeguard function, licencees assess and manage the potential for adverse effects on safeguard and safety functions so as to provide high assurance that critical functions are properly protected cyber attack. It is expected that the safeguard function, specifically on the area of real-time monitoring, logging, can be enhanced by employing the mobile safeguard devices (: smart phone, laptop, smart pad, etc). In this paper, we deal with the cyber security evaluation, which consists of threat analysis, vulnerability test, establishment of security plan, and design solutions for the wireless communication on the basis of IEEE 802.11(Wi-Fi) protocol. Proposed evaluation and design solution could be a basis for the design of wireless communication and mobile safeguard systems in nuclear power plants. (author)

  15. Visualizing Safeguards: Software for Conceptualizing and Communicating Safeguards Data

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-12

    The nuclear programs of states are complex and varied, comprising a wide range of fuel cycles and facilities. Also varied are the types and terms of states’ safeguards agreements with the IAEA, each placing different limits on the inspectorate’s access to these facilities. Such nuances make it difficult to draw policy significance from the ground-level nuclear activities of states, or to attribute ground-level outcomes to the implementation of specific policies or initiatives. While acquiring a firm understanding of these relationships is critical to evaluating and formulating effective policy, doing so requires collecting and synthesizing large bodies of information. Maintaining a comprehensive working knowledge of the facilities comprising even a single state’s nuclear program poses a challenge, yet marrying this information with relevant safeguards and verification information is more challenging still. To facilitate this task, Brookhaven National Laboratory has developed a means of capturing the development, operation, and safeguards history of all the facilities comprising a state’s nuclear program in a single graphic. The resulting visualization offers a useful reference tool to policymakers and analysts alike, providing a chronology of states’ nuclear development and an easily digestible history of verification activities across their fuel cycles.

  16. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard PhD; Joseph Alexander; Robert Bean; Brian Castle; Scott DeMuth, Ph.D.; Phillip Durst; Michael Ehinger; Prof. Michael Golay, Ph.D.; Kevin Hase, Ph.D.; David J. Hebditch, DPhil; John Hockert, Ph.D.; Bruce Meppen; James Morgan; Jerry Phillips, Ph.D., PE

    2009-02-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD’s principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a “SBD design loop” that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A “Generic SBD Process” was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and

  17. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    International Nuclear Information System (INIS)

    Bjornard, Trond; Alexander, Joseph; Bean, Robert; Castle, Brian; DeMuth, Scott; Durst, Phillip; Ehinger, Michael; Golay, Michael; Hase, Kevin; Hebditch, David J.; Hockert, John; Meppen, Bruce; Morgan, James; Phillips, Jerry

    2009-01-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD's principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a 'SBD design loop' that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A 'Generic SBD Process' was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and participation in

  18. Satellite imagery in safeguards: progress and prospects

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.

    2013-01-01

    The use of satellite imagery has become very important for the verification of the safeguards implementation under the Nuclear Non-Proliferation Treaty (NPT). The main applications of satellite imagery are to verify the correctness and completeness of the member states' declarations, and to provide preparatory information for inspections, complimentary access and other technical visits. If the area of interest is not accessible, remote sensing sensors provide one of the few opportunities of gathering data for nuclear monitoring, as for example in Iraq between 1998 and 2002 or currently in North Korea. Satellite data of all available sensor types contains a considerable amount of safeguard-relevant information. Very high-resolution optical satellite imagery provides the most detailed spatial information on nuclear sites and activities up to 0.41 m resolution, together with up to 8 spectral bands from the visible light and near infrared. Thermal infrared (TIR) images can indicate the operational status of nuclear facilities and help to identify undeclared activities. Hyper-spectral imagery allows a quantitative estimation of geophysical, geochemical and biochemical characteristics of the earth's surface and is therefore useful for assessing, for example, surface cover changes due to drilling, mining and milling activities. Synthetic Aperture Radar (SAR) image data up to 1 m spatial resolution provides an all-weather, day and night monitoring capability. However, the absence (or existence) of nuclear activities can never be confirmed completely based on satellite imagery. (A.C.)

  19. Safeguards system effectiveness modeling

    International Nuclear Information System (INIS)

    Bennett, H.A.; Boozer, D.D.; Chapman, L.D.; Daniel, S.L.; Engi, D.; Hulme, B.L.; Varnado, G.B.

    1976-01-01

    A general methodology for the comparative evaluation of physical protection system effectiveness at nuclear facilities is presently under development. The approach is applicable to problems of sabotage or theft at fuel cycle facilities. The overall methodology and the primary analytic techniques used to assess system effectiveness are briefly outlined

  20. Safeguards system effectiveness modeling

    International Nuclear Information System (INIS)

    Boozer, D.D.; Hulme, B.L.; Daniel, S.L.; Varnado, G.B.; Bennett, H.A.; Chapman, L.D.; Engi, D.

    1976-09-01

    A general methodology for the comparative evaluation of physical protection system effectiveness at nuclear facilities is presently under development. The approach is applicable to problems of sabotage or theft at fuel cycle facilities. In this paper, the overall methodology and the primary analytic techniques used to assess system effectiveness are briefly outlined

  1. Safeguards system effectiveness modeling

    International Nuclear Information System (INIS)

    Bennett, H.A.; Boozer, D.D.; Chapman, L.D.; Daniel, S.L.; Engi, D.; Hulme, B.L.; Varnado, G.B.

    1976-01-01

    A general methodology for the comparative evaluation of physical protection system effectiveness at nuclear facilities is presently under development. The approach is applicable to problems of sabotage or theft at fuel cycle facilities. In this paper, the overall methodology and the primary analytic techniques used to assess system effectiveness are briefly outlined

  2. ABACC: A regional safeguards agency

    International Nuclear Information System (INIS)

    Palacios, E.

    1998-01-01

    Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was created as a common system of accounting and control. It is based on Bilateral Agreement between the two countries and the agreement with the IAEA. After a few years of experience it might be concluded that a regional system may contribute in many ways to enhance the safeguards system. The most relevant are: to improve the effectiveness and efficiency of safeguards by sending as professionals who are experts in the process involved in installations that are to be inspected; to have much more information on nuclear activities in each of the two countries than available to the IAEA; and to maintain formal and informal channels of communication

  3. Machine safety: proper safeguarding techniques.

    Science.gov (United States)

    Martin, K J

    1992-06-01

    1. OSHA mandates certain safeguarding of machinery to prevent accidents and protect machine operators. OSHA specifies moving parts that must be guarded and sets criteria for the guards. 2. A 1989 OSHA standard for lockout/tagout requires locking the energy source during maintenance, periodically inspecting for power transmission, and training maintenance workers. 3. In an amputation emergency, first aid for cardiopulmonary resuscitation, shock, and bleeding are the first considerations. The amputated part should be wrapped in moist gauze, placed in a sealed plastic bag, and placed in a container of 50% water and 50% ice for transport. 4. The role of the occupational health nurse in machine safety is to conduct worksite analyses to identify proper safeguarding and to communicate deficiencies to appropriate personnel; to train workers in safe work practices and observe compliance in the use of machine guards; to provide care to workers injured by machines; and to reinforce safe work practices among machine operators.

  4. Safeguards instrumentation: past, present, future

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    1982-01-01

    Instruments are essential for accounting, for surveillance and for protection of nuclear materials. The development and application of such instrumentation is reviewed, with special attention to international safeguards applications. Active and passive nondestructive assay techniques are some 25 years of age. The important advances have been in learning how to use them effectively for specific applications, accompanied by major advances in radiation detectors, electronics, and, more recently, in mini-computers. The progress in seals has been disappointingly slow. Surveillance cameras have been widely used for many applications other than safeguards. The revolution in TV technology will have important implications. More sophisticated containment/surveillance equipment is being developed but has yet to be exploited. On the basis of this history, some expectations for instrumentation in the near future are presented

  5. Future Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health over the Coterminous U.S.

    Science.gov (United States)

    Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km), to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices

  6. Current technical issues in international safeguards

    International Nuclear Information System (INIS)

    Bennett, C.A.

    1977-01-01

    Safeguards systems, and the associated need for technical and systems development, reflect changing conditions and concerns associated with the nuclear fuel cycle and the safety and security of nuclear materials and facilities. In particular, the implementation of international safeguards has led to the recognition of certain technical issues, both old and new, which are in need of resolution. These are: 1. The grading of nuclear materials and facilities with respect to their relative safeguards significance. 2. The extension and upgrading of safeguards techniques to maintain adequate protection in view of constantly increasing amounts of material to be safeguarded. 3. The balance between safeguards mechanisms based on physical protection and material accounting, and the role of surveillance and containment in each case. 4. The role of information systems as a basis for both analytical feedback and the determination of the factors affecting system effectiveness and their interrelationship. 5. A determination of the degree to which the overall technical effectiveness of international inspection activities can be quantified. Each of these technical issues must be considered in light of the specific objectives of international safeguards, which differ from domestic safeguards in terms of the level of the threat, the safeguards mechanisms available, and the diversion strategies assumed. Their resolution in this international context is essential if the effectiveness and viability of international safeguards are to be maintained

  7. Activities of special committee on 'quality assurance of accountancy analysis for safeguards'

    International Nuclear Information System (INIS)

    2010-01-01

    For the long-term stable operation of nuclear fuel cycle facilities, it is essential to satisfy the requirements of IAEA safeguards agreement. It could be attained by precise implementation of accountancy analysis of nuclear materials and application of Destructive Analysis (DA) which enables highly precise measurement is necessary. The requirements to maintain and improve the precision of DA are supposed to grow along with nuclear fuel cycle fully in progress and Pu handling amount increases. In order to maintain long-term stability of quality level of accountancy analysis for safeguards, a special committee on 'Quality Assurance (QA) for Accountancy /Safeguards analysis' was established at Atomic Energy Society Japan supported by INNM-Japan Chapter. Experts of safeguards analysis, reference materials, statistics and QA were gathered and drafted the committee standard document for isotope dilution mass spectrometry, the major accountancy analysis technique for Pu and U, supported Pu standard preparation at JAEA and summarized the items needed for QA of DA. (author)

  8. Advanced integrated safeguards at Barnwell

    International Nuclear Information System (INIS)

    Bambas, K.J.; Barnes, L.D.

    1980-06-01

    The development and initial performance testing of an advanced integrated safeguards system at the Barnwell Nuclear Fuel Plant (BNFP) is described. The program concentrates on the integration and coordination of physical security and nuclear materials control and accounting at a single location. Hardware and software for this phase have been installed and are currently being evaluated. The AGNS/DOE program is now in its third year of development at the BNFP

  9. National safeguard systems - Inspector formation

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1986-01-01

    The safeguards' inspector profile, in consequence of the tasks to be performed is described. An activities'hierarchy which will lead, to the structure and content of an introductory course's curriculum is established. The auditing activity as well as the material verification are described in details. Complementary resources for the upgrading the inspector's knowledge and skills are analised and the paper concludes presenting the training period, its dinamics as well as the recrutment criterium for the candidates. (Author) [pt

  10. Acoustic techniques in nuclear safeguards

    International Nuclear Information System (INIS)

    Olinger, C.T.; Sinha, D.N.

    1995-01-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed

  11. Smart unattended systems for plutonium safeguards

    International Nuclear Information System (INIS)

    Menlove, H.O.; Abhold, M.; Eccleston, G.; Puckett, J.M.

    1996-01-01

    During the past decade, IAEA inspectors, national inspectors, and facility operators have used neutron coincidence counters and gamma-ray isotopics measurements extensively to measure the plutonium content of various forms of nuclear materials in the fuel cycle. Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector''s oversight of measurement operations, reduce the inspector''s workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained form unattended assays could be used by independent inspectors such as the IAEA. The standardized containers and robot-controlled fuel movements in automated facilities enable more accurate nondestructive assay (NDA) measurements than are possible in conventional nonautomated facilities. The NDA instrumentation can be custom designed and optimized for the particular measurement goal in the automated facility

  12. Tamper proofing of safeguards monitors

    International Nuclear Information System (INIS)

    Riley, R.J.

    1982-11-01

    The tamper proofing of safeguards monitors is essential if the data they produce is, and can be seen to be, reliable. This report discusses the problem of tamper proofing and gives guidance on when and how to apply tamper proofing techniques. The report is split into two parts. The first concerns the fundamental problem of how much tamper proofing to apply and the second describes methods of tamper proofing and discusses their usefulness. Both sections are applicable to all safeguards monitors although particular reference will be made to doorway monitors in some cases. The phrase 'tamper proofing' is somewhat misleading as it is impossible to completely tamper proof any device. Given enough time and resources, even the most elaborate tamper proofing can be overcome. In safeguards applications we are more interested in making the device tamper resistant and tamper indicating. That is, it should be able to resist a certain amount of tampering, and if tampering proves successful, that fact should be immediately obvious. Techniques of making a device tamper indicating and tamper resistant will be described below. The phrase tamper proofing will be used throughout this report as a generic term, including both tamper resistance and tamper indicating. (author)

  13. Development of DUPIC safeguards technology

    International Nuclear Information System (INIS)

    Kim, H. D.; Kang, H. Y.; Ko, W. I.

    2002-05-01

    DUPIC safeguards R and D in the second phase has focused on the development of nuclear material measurement system and its operation and verification, the development of nuclear material control and accounting system, and the development of remote and unmanned containment/surveillance system. Of them, the nuclear material measurement system was authenticated from IAEA and officially used for IAEA and domestic safeguards activities in DFDF. It was also verified that the system could be used for quality control of DUPIC process. It is recognised that the diagnostic software using neural network and remote and unmanned containment/surveillance system developed here could be key technologies to go into remote and near-real time monitoring system. The result of this project will eventually contribute to similar nuclear fuel cycles like MOX and pyroprocessing facility as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material

  14. Safeguards Envelope Progress FY10

    International Nuclear Information System (INIS)

    Metcalf, Richard

    2010-01-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  15. Safeguards uses of confirmatory measurements

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1985-01-01

    An analysis is made of the role of shipper and receiver measurements in safeguarding special nuclear materials (SNM) transferred from one facility to another, with emphasis on the case where the receiver requires an analytical accounting measurement of the transferred SNM and does not need the material for process purposes at the time of receipt. Seven possible diversion periods are considered, ranging from the interval between the shipper's final accounting measurement on the material and the time it is placed in the shipper's vault, through the actual transport of the material between facilities, to the time the material is removed from the receiver's vault and placed in the process. The detection power of various combinations of six possible shipper/receiver measurements for these diversion opportunities is then evaluated; the measurements considered include the shipper's and receiver's accounting measurements, the latter at two possible times, and various nondestructive assay (NDA) confirmatory measurements. It is concluded that all safeguards measurement objectives can be met by a combination of a shipper's accounting measurement at the time the material is removed from the process, an appropriate shipper's NDA confirmatory measurement either immediately after canning or immediately before shipping, an equivalent receiver's NDA confirmatory measurement immediately after the material is received, and a receiver's accounting measurement when the material is placed in the process. Furthermore, it is found that a receiver's analytical accounting measurement immediately after receipt when the material is not yet required for process has dubious safeguards value

  16. Safeguarding the fuel cycle: Methodologies

    International Nuclear Information System (INIS)

    Gruemm, H.

    1984-01-01

    The effectiveness of IAEA safeguards is characterized by the extent to which they achieve their basic purpose - credible verification that no nuclear material is diverted from peaceful uses. This effectiveness depends inter alia but significantly on manpower in terms of the number and qualifications of inspectors. Staff increases will be required to improve effectiveness further, if this is requested by Member States, as well as to take into account new facilities expected to come under safeguards in the future. However, they are difficult to achieve due to financial constraints set by the IAEA budget. As a consequence, much has been done and is being undertaken to improve utilization of available manpower, including standardization of inspection procedures; improvement of management practices and training; rationalization of planning, reporting, and evaluation of inspection activities; and development of new equipment. This article focuses on certain aspects of the verification methodology presently used and asks: are any modifications of this methodology conceivable that would lead to economies of manpower, without loss of effectiveness. It has been stated in this context that present safeguards approaches are ''facility-oriented'' and that the adoption of a ''fuel cycle-oriented approach'' might bring about the desired savings. Many studies have been devoted to this very interesting suggestion. Up to this moment, no definite answer is available and further studies will be necessary to come to a conclusion. In what follows, the essentials of the problem are explained and some possible paths to a solution are discussed

  17. Modeling and Simulation for Safeguards

    International Nuclear Information System (INIS)

    Swinhoe, Martyn T.

    2012-01-01

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R and D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  18. Development and reliability testing of the Nordic Housing Enabler – an instrument for accessibility assessment of the physical housing

    DEFF Research Database (Denmark)

    Helle, Tina

    and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Iceland and Finland. This iterative process involved occupational therapists, architects, building engineers and professional translators, resulting in the Nordic Housing Enabler. For reliability testing...... serious deficits when it comes to accessibility. This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of inter-rater reliability, when used in occupational therapy practice. The instrument was translated from the original Swedish version......, the sample strategy and data collection procedures were the same in all countries. In total, twenty voluntary occupational therapists collected data from 106 cases by means of the Nordic Housing Enabler. Inter-rater reliability was calculated by means of percentage agreement and kappa statistics. Overall...

  19. All-Source Information Acquisition and Analysis in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Ferguson, Matthew; Norman, Claude

    2010-01-01

    All source information analysis enables proactive implementation of in-field verification activities, supports the State Evaluation process, and is essential to the IAEA's strengthened safeguards system. Information sources include State-declared nuclear material accounting and facility design information; voluntarily supplied information such as nuclear procurement data; commercial satellite imagery; open source information and information/results from design information verifications (DIVs), inspections and complementary accesses (CAs). The analysis of disparate information sources directly supports inspections, design information verifications and complementary access, and enables both more reliable cross-examination for consistency and completeness as well as in-depth investigation of possible safeguards compliance issues. Comparison of State-declared information against information on illicit nuclear procurement networks, possible trafficking in nuclear materials, and scientific and technical information on nuclear-related research and development programmes, provides complementary measures for monitoring nuclear developments and increases Agency capabilities to detect possible undeclared nuclear activities. Likewise, expert analysis of commercial satellite imagery plays a critical role for monitoring un-safeguarded sites and facilities. In sum, the combination of these measures provides early identification of possible undeclared nuclear material or activities, thus enhancing deterrence of safeguards system that is fully information driven, and increasing confidence in Safeguards conclusions. By increasing confidence that nuclear materials and technologies in States under Safeguards are used solely for peaceful purposes, information-driven safeguards will strengthen the nuclear non-proliferation system. Key assets for Agency collection, processing, expert analysis, and integration of these information sources are the Information Collection and Analysis

  20. Technology-enabled assessment of health professions education: consensus statement and recommendations from the Ottawa 2010 Conference

    DEFF Research Database (Denmark)

    Amin, Zubair; Boulet, John R; Cook, David A

    2011-01-01

    health professional education. Recommendations include adhering to principles of good assessment, the need for developing coherent institutional policy, using technologies to broaden the competencies to be assessed, linking patient-outcome data to assessment of practitioner performance, and capitalizing...

  1. NPT safeguards and the peaceful use of nuclear energy

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1993-10-01

    Origin of safeguards system and of comprehensive safeguards agreements, assurance given by IAEA safeguards, penalties and sanctions in case of breach of a safeguards agreement, recent experiences with Iraq, South Africa and DPRK as well as limits of the safeguards system are described

  2. Safeguards challenges of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  3. It's the Heat AND the Humidity -- Assessment of Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health

    Science.gov (United States)

    Crosson, William L; Al-Hamdan, Mohammad Z.; Economou, Sigrid, A.; Estes, Maurice G.; Estes, Sue M.; Puckett, Mark; Quattrochi, Dale A

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. In a NASA-funded project supporting the National Climate Assessment, we are providing historical and future measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The project s emphasis is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM output, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons, 2040 and 2090, are the focus of future assessments; these are compared to the recent past period of 1981-2000. We are characterizing regional-scale temperature and humidity conditions using GCM output for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM output have been analyzed to develop a heat stress climatology based on statistics of extreme heat indicators. Differences between the two future and past periods have been used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes, combined with hourly historical meteorological data at a spatial scale (12 km) much finer than that of GCMs, enable us to create future climate realizations, from which we compute the daily heat stress measures and related spatially-specific climatological fields. These include the mean annual

  4. Integrated Safeguards proposal for Finland. Final report on Task FIN C 1264 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Anttila, M.

    2000-08-01

    The IAEA has requested several member states to present their proposal of the application of the Integrated Safeguards (IS) system in their nuclear facilities. This report contains a IS proposal for Finland prepared under the Task FIN C 1264 of The Finnish Support Programme to IAEA Safeguards. The comprehensive safeguards system of the International Atomic Energy Agency (IAEA) has been one of the main tools in the fight against nuclear proliferation since the entry-into-force of the Nuclear Non-proliferation Treaty three decades ago. In the 1990s some of the inherent weaknesses of this so-called traditional safeguards system were revealed first in Iraq and then in North Korea. Therefore, the member states of the LAEA decided to give the Agency additional legal authority in order to make its control system more effective as well as more efficient than before. This was accomplished by the approval of the so-called Model Additional Protocol (INFCIRC/540) in 1997. Straightforward implementation of new safeguards measures allowed by the Additional Protocol (INF-CIRC540) without careful review of the old procedures based on INFCIRC153 would only result in increased costs within the IAEA and in the member states. In order to avoid that kind of outcome the old and new means available to the Agency shall be combined to form an optimised integrated safeguards (IS) system. When creating an effective and efficient system a necessary approach is a state-level evaluation, which means that each state shall be assessed by the IAEA separately and as a whole. The assessment of a country's nuclear field shall result in credible assurance of the absence of diversion of declared nuclear materials to prohibited purposes and of the absence of clandestine nuclear activities, facilities and materials. Having achieved that assurance and being able to maintain it in a state the LAEA can leave some traditional routine safeguards activities undone there. At present, the nuclear fuel cycle in

  5. Safeguards Network Analysis Procedure (SNAP): overview

    International Nuclear Information System (INIS)

    Chapman, L.D; Engi, D.

    1979-08-01

    Nuclear safeguards systems provide physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The outputs provided by the SNAP simulation program supplements the safeguards analyst's evaluative capabilities and supports the evaluation of existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  6. The basis for the strengthening of safeguards

    International Nuclear Information System (INIS)

    Goldschmidt, P.

    1999-01-01

    For the past 30 years, the International Atomic Energy Agency's safeguards system has contributed to the international non-proliferation regime, by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons programme in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. This paper will summarize the evolution of the safeguards system, describe strengthened safeguards, report on the status of implementing the strengthening measures, and outline plans for integrating all available safeguards measures. (author)

  7. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  8. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  9. IAEA safeguards: Staying ahead of the game

    International Nuclear Information System (INIS)

    2007-07-01

    What are nuclear safeguards and why are they important? Answers are provided in the booklet, describing and explaining the fundamentals of the IAEA safeguards system and its role as a key element of international security, and addressing the system's implementation, costs, requirements, resources and historical development, with an emphasis on trends and strengthening measures over the past 10-15 years. Topics discussed include the safeguards State evaluation process and and the key requirements of the safeguards system including information sources (open source information, commercial satellite imagery and nuclear trade related information) and the state of the art equipment, techniques and technology (unattended and remote monitoring equipment, environmental sampling, etc.)

  10. Verification and the safeguards legacy

    International Nuclear Information System (INIS)

    Perricos, Demetrius

    2001-01-01

    A number of inspection or monitoring systems throughout the world over the last decades have been structured drawing upon the IAEA experience of setting up and operating its safeguards system. The first global verification system was born with the creation of the IAEA safeguards system, about 35 years ago. With the conclusion of the NPT in 1968, inspections were to be performed under safeguards agreements, concluded directly between the IAEA and non-nuclear weapon states parties to the Treaty. The IAEA developed the safeguards system within the limitations reflected in the Blue Book (INFCIRC 153), such as limitations of routine access by the inspectors to 'strategic points', including 'key measurement points', and the focusing of verification on declared nuclear material in declared installations. The system, based as it was on nuclear material accountancy. It was expected to detect a diversion of nuclear material with a high probability and within a given time and therefore determine also that there had been no diversion of nuclear material from peaceful purposes. The most vital element of any verification system is the inspector. Technology can assist but cannot replace the inspector in the field. Their experience, knowledge, intuition and initiative are invaluable factors contributing to the success of any inspection regime. The IAEA inspectors are however not part of an international police force that will intervene to prevent a violation taking place. To be credible they should be technically qualified with substantial experience in industry or in research and development before they are recruited. An extensive training program has to make sure that the inspectors retain their professional capabilities and that it provides them with new skills. Over the years, the inspectors and through them the safeguards verification system gained experience in: organization and management of large teams; examination of records and evaluation of material balances

  11. Long-term proliferation and safeguards issues in future technologies

    International Nuclear Information System (INIS)

    Keisch, B.; Auerbach, C.; Fainberg, A.; Fiarman, S.; Fishbone, L.G.; Higinbotham, W.A.; Lemley, J.R.; O'Brien, J.

    1986-02-01

    The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for which safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification

  12. Long-term proliferation and safeguards issues in future technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keisch, B.; Auerbach, C.; Fainberg, A.; Fiarman, S.; Fishbone, L.G.; Higinbotham, W.A.; Lemley, J.R.; O' Brien, J.

    1986-02-01

    The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for which safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification.

  13. Safeguards as catastrophic risk management: insights and projections

    International Nuclear Information System (INIS)

    Leffer, T.N.

    2013-01-01

    The system of international agreements designed to prevent the use of nuclear weapons and to control the spread of nuclear weapons, materials and technologies (collectively referred to as the nuclear arms control and nonproliferation regimes) is posited as humanity.s first attempt to mitigate a man-made global catastrophic risk. By extrapolating general principles of government response to risk from the arms control and nonproliferation regimes, a model of international regime building for catastrophic risk mitigation is constructed. This model provides the context for an examination of the system of safeguards implemented by the International Atomic Energy Agency (IAEA), which serves as the nuclear nonproliferation regime.s verification and enforcement mechanism and thereby constitutes the regime's most completely developed discrete mechanism for risk mitigation (a 'system within a system'). An assessment of the history, evolution and effectiveness of the IAEA safeguards system in the context of the regimes-as-risk-mitigation model reveals some general principles for risk-mitigation regimes which are then applied to the safeguards system to identify ways in which it may be strengthened. Finally, the IAEA safeguards system is posited as the prototype verification/enforcement mechanism for future risk mitigation regimes that governments will be compelled to create in the face of new global catastrophic risks that technological advance will inevitably create. (author)

  14. 77 FR 38033 - WTO Agricultural Safeguard Trigger Levels

    Science.gov (United States)

    2012-06-26

    ... DEPARTMENT OF AGRICULTURE Foreign Agricultural Service WTO Agricultural Safeguard Trigger Levels... and trigger levels for safeguard measures provided for in the World Trade Organization (WTO) Agreement... measures under the safeguard provisions of the WTO [[Page 38034

  15. Safeguards agreements - their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (''Safeguards Agreements'') between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute (Articles II, III A.5 and XII). On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: (a) The Agency's Safeguards System 1965, extended in 1966 and 1968 (INFCIRC/66/Rev.2); and (b) The basis for negotiating safeguards agreements with NNWS pursuant to NPT (INFCIRC/153). The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is verified through the application of various safeguards measures (design review, records, reports and inspection). Containment and surveillance measures are expected to play an increasingly important role. NPT Safeguards Agreements foresee as one of their specific features the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under document INFCIRC/66/Rev.2 - i.e. the non-NPT safeguards agreements - implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular as to the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the safeguards system of document INFCIRC/66/Rev.2 which is incorporated in these agreements by reference are in continuous evolution. Document INFCIRC/66/Rev.2 continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from document INFCIRC/66/Rev.2, and further provision for notification, inventories

  16. Fuzzy resource optimization for safeguards

    International Nuclear Information System (INIS)

    Zardecki, A.; Markin, J.T.

    1991-01-01

    Authorization, enforcement, and verification -- three key functions of safeguards systems -- form the basis of a hierarchical description of the system risk. When formulated in terms of linguistic rather than numeric attributes, the risk can be computed through an algorithm based on the notion of fuzzy sets. Similarly, this formulation allows one to analyze the optimal resource allocation by maximizing the overall detection probability, regarded as a linguistic variable. After summarizing the necessary elements of the fuzzy sets theory, we outline the basic algorithm. This is followed by a sample computation of the fuzzy optimization. 10 refs., 1 tab

  17. Aspects of agents for safeguards

    International Nuclear Information System (INIS)

    Kotte, U.

    1999-01-01

    With the development of the Internet and the WWW, information treatment has gained a new dimension. (Intelligent) software agents are one of the means expected to relieve human staff of the burden of information overload, and in the future to contribute to safeguards data acquisition, data evaluation and decision-making. An overview is given for the categories of Internet, intranet and desktop agents. Aspects of the potential application of agents are described in three fields: information access and delivery, collaboration and workflow management, adaptive interfaces and learning assistants. Routine application of agents is not yet in sight, but the scientific and technical progress seems to be encouraging. (author)

  18. Safeguards approach for irradiated fuel

    International Nuclear Information System (INIS)

    Harms, N.L.; Roberts, F.P.

    1987-03-01

    IAEA verification of irradiated fuel has become more complicated because of the introduction of variations in what was once presumed to be a straightforward flow of fuel from reactors to reprocessing plants, with subsequent dissolution. These variations include fuel element disassembly and reassembly, rod consolidation, double-tiering of fuel assemblies in reactor pools, long term wet and dry storage, and use of fuel element containers. This paper reviews future patterns for the transfer and storage of irradiated LWR fuel and discusses appropriate safeguards approaches for at-reactor storage, reprocessing plant headend, independent wet storage, and independent dry storage facilities

  19. The IAEA: politicization and safeguards

    International Nuclear Information System (INIS)

    Scheinman, L.

    1983-01-01

    The International Atomic Energy Agency is widely understood to be an essential element of an effective international nonproliferation regime which is itself a condition sine qua non to international nuclear cooperation and commerce. The progressive intrusion into Agency activities of extraneous political issues has threatened the Agency's integrity and undermined confidence in the organization. The consequences of continued deterioration would be substantial, most particularly for international safeguards which are unique and invaluable to peaceful nuclear development and international security. Measures to reverse this trend are identified and discussed

  20. The IAEA's safeguards systems. Ready for the 21st century

    International Nuclear Information System (INIS)

    1998-01-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? what assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification? (author)

  1. The IAEA's safeguards system. Ready for the 21st century

    International Nuclear Information System (INIS)

    1997-09-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? What assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification?

  2. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Dept. of Physics and Astronomy, Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  3. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2008-03-01

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  4. Exploring the Application of Shared Ledger Technology to Safeguards and other National Security Topics

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Winters, Samuel T.; Kreyling, Sean J.; Joslyn, Cliff A.; West, Curtis L.; Schanfein, Mark J.; Sayre, Amanda M.

    2017-07-17

    In 2016, the Office of International Nuclear Safeguards at the National Nuclear Security Administration (NNSA) within the Department of Energy (DOE) commissioned the Pacific Northwest National Laboratory (PNNL) to explore the potential implications of the digital currency bitcoin and its underlying technologies on the safeguards system. The authors found that one category of technologies referred to as Shared Ledger Technology (SLT) offers a spectrum of benefits to the safeguards system. While further research is needed to validate assumptions and findings in the paper, preliminary analysis suggests that both the International Atomic Energy Agency (IAEA) and Member States can use SLT to promote efficient, effective, accurate, and timely reporting, and increase transparency in the safeguards system without sacrificing confidentiality of safeguards data. This increased transparency and involvement of Member States in certain safeguards transactions could lead to increased trust and cooperation among States and the public, which generates a number of benefits. This paper describes these benefits and the analytical framework for assessing SLT applications for specific safeguards problems. The paper will also describe other national security areas where SLT could provide benefits.

  5. Prioritizing and scheduling Portsmouth Gaseous Diffusion Plant safeguards upgrades

    International Nuclear Information System (INIS)

    Edmunds, T.; Saleh, R.; Zevanove, S.

    1992-02-01

    As part of the Site Safeguards and Security Plan (SSSP), facilities are required to develop a Resource Plan (RP). The Resource Plan provides documentation and justification for the facility's planned upgrades, including the schedule, priority, and cost estimates for the safeguards and security upgrades. Portsmouth Gaseous Diffusion Plant (PORTS) management has identified and obtained funding approval for a number of safeguards and security upgrades, including line-item construction projects. These upgrade projects were selected to address a variety of concerns identified in the PORTS vulnerability assessments and other reviews performed in support of the SSSP process. However, budgeting and scheduling constraints do not make it possible to simultaneously begin implementation of all of the upgrade projects. A formal methodology and analysis are needed to explicitly address the trade-offs between competing safeguards objectives, and to prioritize and schedule the upgrade projects to ensure that the maximum benefit can be realized in the shortest possible time frame. The purpose of this report is to describe the methodology developed to support these upgrade project scheduling decisions. The report also presents the results obtained from applying the methodology to a set of the upgrade projects selected by PORTS S ampersand S management. Data for the analysis are based on discussions with personnel familiar with the PORTS safeguards and security needs, the requirements for implementing these upgrades, and upgrade funding limitations. The analysis results presented here assume continued highly enriched uranium (HEU) operations at PORTS. However, the methodology developed is readily adaptable for the evaluation of other operational scenarios and other resource allocation issues relevant to PORTS

  6. Safeguards needs in the measurement area: the realm of measurements

    International Nuclear Information System (INIS)

    Hammond, G.; Auerbach, C.

    1978-01-01

    An effective safeguards measurement system must cover a multitude of material forms ranging from essentially pure substances to highly heterogeneous materials. In addition there are varied and sometimes conflicting demands for accuracy and timeliness. Consequently, a judicious and systematic choice must be made between methods based on sampling followed by chemical analysis or nondestructive methods based on nuclear properties. Fundamental advances in analytical chemistry made during the year preceding World War II enabled Manhattan Project scientists to develop methods which contributed to the success of both the immediate goal and the developments which have taken place since. Examples are given of evolutionary developments in the direction of timeliness through varying degrees of automation. Nondestructive methods, first introduced because of the need to measure scrap and other intractable material, are finding broader areas of application. Aided by DOE-sponsored research and development, new techniques providing greater accuracy, versatility and timeliness are being introduced. It is now recognized that an effective safeguards measurement system must make concerted use of both chemical and nondestructive methods. Recent studies have fostered understanding of the relative importance of various process streams in the material balance equations and have highlighted the need for a systematic approach to measurement solutions for safeguarding nuclear materials

  7. Elementary survey of nuclear safeguards problems

    International Nuclear Information System (INIS)

    Tobias, M.L.

    1975-01-01

    The discussion presented on nuclear safeguards is confined primarily to the subject of safeguards for fixed sites. The legal and quasi-legal requirements are briefly outlined. Preventive measures against theft, terrorism, sabotage, or irrational acts by employees and against sabotage by armed gangs are the aspects emphasized. Some of the cost aspects are indicated

  8. TASTEX: Tokai Advanced Safeguards Technology Exercise

    International Nuclear Information System (INIS)

    1982-01-01

    During the years 1978 to 1981 the Governments of France, Japan and the United States of America cooperated with the International Atomic Energy Agency in the TASTEX (Tokai Advanced Safeguards Technology Exercise) programme. The aim of this programme was to improve the technology for the application of international safeguards at reprocessing facilities, and the results are presented in the present report

  9. Implementing The Safeguards-By-Design Process

    International Nuclear Information System (INIS)

    Whitaker, J. Michael; McGinnis, Brent; Laughter, Mark D.; Morgan, Jim; Bjornard, Trond; Bean, Robert; Durst, Phillip; Hockert, John; DeMuth, Scott; Lockwood, Dunbar

    2010-01-01

    The Safeguards-by-Design (SBD) approach incorporates safeguards into the design and construction of nuclear facilities at the very beginning of the design process. It is a systematic and structured approach for fully integrating international and national safeguards for material control and accountability (MC and A), physical protection, and other proliferation barriers into the design and construction process for nuclear facilities. Implementing SBD is primarily a project management or project coordination challenge. This paper focuses specifically on the design process; the planning, definition, organization, coordination, scheduling and interaction of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project in order to provide the project context within which the safeguards design activities take place, describes the involvement of the safeguards experts in the design process, the nature of their analyses, interactions and decisions, and describes the documents created and how they are used. This report highlights the project context of safeguards activities, and identifies the safeguards community (nuclear facility operator, designer/builder, state regulator, SSAC and IAEA) must accomplish in order to implement SBD within the project.

  10. Improving the Transparency of IAEA Safeguards Reporting

    International Nuclear Information System (INIS)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-01-01

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  11. 7 CFR 947.55 - Safeguards.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguards. 947.55 Section 947.55 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... safeguards to prevent shipments pursuant to § 947.54 from entering channels of trade and other outlets for...

  12. Fibre optic networks for safeguards applications

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Chare, P.; Barrier, A.

    1991-01-01

    The Euratom Safeguards Directorate has recently installed a fibre optic network in a new large scale nuclear facility in the European Communities. The selection, installation and commissioning of the fibre optic network is discussed from the viewpoint of network topology, physical testing, trouble shooting and authentication. The future use of fibre optic networks for safeguards applications is discussed

  13. Integrated safeguards and facility design and operations

    International Nuclear Information System (INIS)

    Tape, J.W.; Coulter, C.A.; Markin, J.T.; Thomas, K.E.

    1987-01-01

    The integration of safeguards functions to deter or detect unauthorized actions by an insider requires the careful communication and management of safeguards-relevant information on a timely basis. The traditional separation of safeguards functions into physical protection, materials control, and materials accounting often inhibits important information flows. Redefining the major safeguards functions as authorization, enforcement, and verification, and careful attention to management of information from acquisition to organization, to analysis, to decision making can result in effective safeguards integration. The careful inclusion of these ideas in facility designs and operations will lead to cost-effective safeguards systems. The safeguards authorization function defines, for example, personnel access requirements, processing activities, and materials movements/locations that are permitted to accomplish the mission of the facility. Minimizing the number of authorized personnel, limiting the processing flexibility, and maintaining up-to-date flow sheets will facilitate the detection of unauthorized activities. Enforcement of the authorized activities can be achieved in part through the use of barriers, access control systems, process sensors, and health and safety information. Consideration of safeguards requirements during facility design can improve the enforcement function. Verification includes the familiar materials accounting activities as well as auditing and testing of the other functions

  14. Aggregated systems model for nuclear safeguards decisions

    International Nuclear Information System (INIS)

    1979-03-01

    This report summarizes a general analytical tool designed to assist nuclear safeguards decision-makers. The approach is based on decision analysis--a quantitative procedure for evaluating complex decision alternatives with uncertain outcomes. The report describes the general analytical approach in the context of safeguards decisions at a hypothetical nuclear fuel reprocessing plant

  15. Safeguards implications of laser isotope separation

    International Nuclear Information System (INIS)

    Moriarty, T.F.; Taylor, K.

    1993-10-01

    The purpose of this report is to describe and emphasise the safeguards and relevant features of atomic vapour laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS), and to consider the issues that must be addressed before a safeguards approach at a commercial AVLIS or MLIS facility can be implemented. (Author)

  16. Separations and safeguards model integration.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  17. Nuclear safeguards and export controls

    International Nuclear Information System (INIS)

    Mueller, H.

    1994-01-01

    Precisely from the perspective of the two most important nonnuclear weapons states, Japan and Germany, the safeguards and arms control agendas have not been finally dealt with. Because of their central position in the nonproliferation regime as nuclear suppliers and states with large nuclear energy industries, both countries are compelled to take a leading role in pursuing future reforms. In the dialogue with the nonaligned, this leadership position is helped by their nonnuclear status. In fact, Japan and Germany have some interests in common with the nonaligned states, such as the expansion of safeguards in the nuclear weapons states. To be sure, both Japan and Germany will pursue such interests with due regard to the interests of their friends and allies. For Japan, maintaining a close relationship with the United States is as important as shaping viable relations with China. Initiatives and controversies on nuclear policy must be weighed against this interest. By the same token, Germany must take into account the dense network of relations with its allies and with Russia, in addition to the German-French friendship. This will always set limits to Germany's readiness to confront the nuclear weapons states on nuclear issues. This, however, does not mean that both countries must shut up when the P 5 speak. The nuclear weapons register and the extension of the ''erga omnes'' rule in export controls, for example, should not be relegated to the dustbin of history, just because some friendly nuclear powers don't like these ideas. (orig.)

  18. Enhanced safeguards via solution monitoring

    International Nuclear Information System (INIS)

    Burr, T.; Wangen, L.

    1996-09-01

    Solution monitoring is defined as the essentially continuous monitoring of solution level, density, and temperature in all tanks in the process that contain, or could contain, safeguards-significant quantities of nuclear material. This report describes some of the enhancements that solution monitoring could make to international safeguards. The focus is on the quantifiable benefits of solution monitoring, but qualitatively, solution monitoring can be viewed as a form of surveillance. Quantitatively, solution monitoring can in some cases improve diversion detection probability. For example, the authors show that under certain assumptions, solution monitoring can be used to reduce the standard deviation of the annual material balance, σ MB , from approximately 17 kg to approximately 4 kg. Such reduction in σ MB will not always be possible, as they discuss. However, in all cases, solution monitoring would provide assurance that the measurement error models are adequate so that one has confidence in his estimate of σ MB . Some of the results in this report were generated using data that were simulated with prototype solution monitoring software that they are developing. An accompanying document describes that software

  19. Using LIBS Method in Safeguards

    International Nuclear Information System (INIS)

    Kovacs-Szeles, E.; Almasi, I.

    2015-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is a type of atomic emission spectroscopic technique which is capable to detect almost all the elements from the periodic table in different sample types (solid, liquid or gas). Other advantage of the technique is that a LIBS analysis is much faster than a conventional laboratory technique. Beside the easy usability and fastness of the system the main advantages of the technique is that portable systems are also available. Using a so-called ''backpack'' version in-field analysis can be carried out. Therefore, LIBS is a more and more popular technique also e.g., in the nuclear analytics due to its several advantages. It is also tested for Safeguards purposes as a novel technology. In this work development and test of a portable LIBS system is discussed in detail. Detector system with higher resolution and specific software for evaluation of uranium isotope composition has been developed. Different kind of uranium fuel pellets with various enrichments was analyzed as test samples. Concerning the test measurements the developed LIBS instrument was found well-applicable for analysis of Safeguards samples and determination of higher enrichment of uranium in-field. The method is rapid and simple enough for short in-field sample analysis. (author)

  20. Safeguards sealing systems for Zebra

    International Nuclear Information System (INIS)

    Ingram, G.; Jamieson, G.R.

    1983-01-01

    A relatively simple design has been produced for safeguards seals to be applied throughout the fuel containing areas at Zebra. It is based on the use of wire seals and regular Inspector surveillance. The application of the system would allow an Inspector to establish to a high degree of confidence that significant quantities of fuel had not been diverted during an intensive experimental programme. It would add about 5% to the time required for experiments, and careful planning would reduce this value. The inspection effort required to witness element movements during the experimental programme would average about 2 hours per day, with a further 2 hours spent each week on NDA of the fuel exposed. The Safeguards Inspector would require to spend about 25% of his time in the reactor area and would have ample time to deal with the relatively small number of fuel movements taking place in the storage area and with his duties elsewhere in the plant. During a core change, full-time inspection effort would be required for about 6 weeks each year. (author)

  1. Safeguards at the Central Institute for Nuclear Research at Rossendorf/GDR

    International Nuclear Information System (INIS)

    Helming, M.; Rehak, W.; Schillert, B.

    1989-01-01

    Experience in the implementation of domestic and international safeguards at the Central Institute for Nuclear Research at Rossendorf is reported covering the following topics: overview of the main nuclear installations belonging to the Institute; structure of its material balance areas; responsibilities for the different aspects of accounting for and control of nuclear material at facility level; the various types of nuclear materials handled and their flow, accessibility and strategic significance; the assessment of IAEA safeguards effectiveness. 2 tabs., 2 figs. (author)

  2. Design features for enhancing international safeguards of AFR dry storage for spent LWR fuel

    International Nuclear Information System (INIS)

    Roberts, F.P.; Harms, N.L.

    1985-05-01

    The Pacific Northwest Laboratory has performed a study for the Nuclear Regulatory Commission to identify and analyze design features that can facilitate the implementation of IAEA safeguards at facilities for dry storage of light water reactor spent fuels. Specific design features are identified that can enhance nuclear material flow and inventory verification. These are assessed from the viewpoint of safeguards effectiveness and possible impacts on the IAEA and the operator of the AFR facility. 11 refs., 3 figs., 2 tabs

  3. Achieving the Benefits of Safeguards by Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Hebditch, David; Morgan, Jim; Meppen, Bruce; DeMuth, Scott; Ehinger, Michael; Hockert, John

    2008-01-01

    The overarching driver for developing a formalized process to achieve safeguards by design is to support the global growth of nuclear power while reducing 'nuclear security' risks. This paper discusses an institutional approach to the design process for a nuclear facility, for designing proliferation resistance, international safeguards and U.S. national safeguards and security into new nuclear facilities. In the United States, the need exists to develop a simple, concise, formalized, and integrated approach for incorporating international safeguards and other non-proliferation considerations into the facility design process. An effective and efficient design process is one which clearly defines the functional requirements at the beginning of the project and provides for the execution of the project to achieve a reasonable balance among competing objectives in a cost effective manner. Safeguards by Design is defined as 'the integration of international and national safeguards, physical security and non-proliferation features as full and equal partners in the design process of a nuclear energy system or facility,' with the objective to achieve facilities that are intrinsically more robust while being less expensive to safeguard and protect. This Safeguards by Design process has been developed such that it: (sm b ullet) Provides improved safeguards, security, and stronger proliferation barriers, while reducing the life cycle costs to the operator and regulatory agencies, (sm b ullet) Can be translated to any international context as a model for nuclear facility design, (sm b ullet) Fosters a culture change to ensure the treatment of 'nuclear security' considerations as 'full and equal' partners in the design process, (sm b ullet) Provides a useful tool for the project manager responsible for the design, construction, and start-up of nuclear facilities, and (sm b ullet) Addresses the key integration activities necessary to efficiently incorporate International Atomic

  4. Analysis of the impact of safeguards criteria

    International Nuclear Information System (INIS)

    Mullen, M.F.; Reardon, P.T.

    1981-01-01

    As part of the US Program of Technical Assistance to IAEA Safeguards, the Pacific Northwest Laboratory (PNL) was asked to assist in developing and demonstrating a model for assessing the impact of setting criteria for the application of IAEA safeguards. This report presents the results of PNL's work on the task. The report is in three parts. The first explains the technical approach and methodology. The second contains an example application of the methodology. The third presents the conclusions of the study. PNL used the model and computer programs developed as part of Task C.5 (Estimation of Inspection Efforts) of the Program of Technical Assistance. The example application of the methodology involves low-enriched uranium conversion and fuel fabrication facilities. The effects of variations in seven parameters are considered: false alarm probability, goal probability of detection, detection goal quantity, the plant operator's measurement capability, the inspector's variables measurement capability, the inspector's attributes measurement capability, and annual plant throughput. Among the key results and conclusions of the analysis are the following: the variables with the greatest impact on the probability of detection are the inspector's measurement capability, the goal quantity, and the throughput; the variables with the greatest impact on inspection costs are the throughput, the goal quantity, and the goal probability of detection; there are important interactions between variables. That is, the effects of a given variable often depends on the level or value of some other variable. With the methodology used in this study, these interactions can be quantitatively analyzed; reasonably good approximate prediction equations can be developed using the methodology described here

  5. Safeguards Automated Facility Evaluation (SAFE) methodology

    International Nuclear Information System (INIS)

    Chapman, L.D.; Grady, L.M.; Bennett, H.A.; Sasser, D.W.; Engi, D.

    1978-08-01

    An automated approach to facility safeguards effectiveness evaluation has been developed. This automated process, called Safeguards Automated Facility Evaluation (SAFE), consists of a collection of a continuous stream of operational modules for facility characterization, the selection of critical paths, and the evaluation of safeguards effectiveness along these paths. The technique has been implemented on an interactive computer time-sharing system and makes use of computer graphics for the processing and presentation of information. Using this technique, a comprehensive evaluation of a safeguards system can be provided by systematically varying the parameters that characterize the physical protection components of a facility to reflect the perceived adversary attributes and strategy, environmental conditions, and site operational conditions. The SAFE procedure has broad applications in the nuclear facility safeguards field as well as in the security field in general. Any fixed facility containing valuable materials or components to be protected from theft or sabotage could be analyzed using this same automated evaluation technique

  6. Video image processing for nuclear safeguards

    International Nuclear Information System (INIS)

    Rodriguez, C.A.; Howell, J.A.; Menlove, H.O.; Brislawn, C.M.; Bradley, J.N.; Chare, P.; Gorten, J.

    1995-01-01

    The field of nuclear safeguards has received increasing amounts of public attention since the events of the Iraq-UN conflict over Kuwait, the dismantlement of the former Soviet Union, and more recently, the North Korean resistance to nuclear facility inspections by the International Atomic Energy Agency (IAEA). The role of nuclear safeguards in these and other events relating to the world's nuclear material inventory is to assure safekeeping of these materials and to verify the inventory and use of nuclear materials as reported by states that have signed the nuclear Nonproliferation Treaty throughout the world. Nuclear safeguards are measures prescribed by domestic and international regulatory bodies such as DOE, NRC, IAEA, and EURATOM and implemented by the nuclear facility or the regulatory body. These measures include destructive and non destructive analysis of product materials/process by-products for materials control and accountancy purposes, physical protection for domestic safeguards, and containment and surveillance for international safeguards

  7. Safeguards and retrievability from waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for any planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.

  8. Human-Centred Computing for Assisting Nuclear Safeguards

    International Nuclear Information System (INIS)

    Szoke, I.

    2015-01-01

    With the rapid evolution of enabling hardware and software, technologies including 3D simulation, virtual reality (VR), augmented reality (AR), advanced user interfaces (UI), and geographical information systems (GIS) are increasingly employed in many aspects of modern life. In line with this, the nuclear industry is rapidly adopting emerging technologies to improve efficiency and safety by supporting planning and optimization of maintenance and decommissioning work, as well as for knowledge management, surveillance, training and briefing field operatives, education, etc. For many years, the authors have been involved in research and development (R&D) into the application of 3D simulation, VR, and AR, for mobile, desktop, and immersive 3D systems, to provide a greater sense of presence and situation awareness, for training, briefing, and in situ work by field operators. This work has resulted in a unique software base and experience (documented in numerous reports) from evaluating the effects of the design of training programmes and briefing sessions on human performance and training efficiency when applying various emerging technologies. In addition, the authors are involved in R&D into the use of 3D simulation, advanced UIs, mobile computing, and GIS systems to support realistic visualization of the combined radiological and geographical environment, as well as acquisition, analyzes, visualization and sharing of radiological and other data, within nuclear installations and their surroundings. The toolkit developed by the authors, and the associated knowledge base, has been successfully applied to various aspects of the nuclear industry, and has great potential within the safeguards domain. It can be used to train safeguards inspectors, brief inspectors before inspections, assist inspectors in situ (data registration, analyzes, and communication), support the design and verification of safeguards systems, conserve data and experience, educate future safeguards

  9. International safeguards without material balance areas

    International Nuclear Information System (INIS)

    Sanborn, J.B.; Lu Mingshih; Indusi, J.P.

    1992-01-01

    Recently altered perceptions of the role of the non-proliferation regime, as well as continued IAEA funding constraints, suggest a need to re-examine the fundamentals of IAEA verification strategy. This paper suggests that abandoning certain material balance area (MBA) related concepts that nominally form the basic framework of ''full-scope'' safeguards would result in a more flexible inspection regime. The MBA concept applied in the domestic context enables a national authority to localize losses in space and in time and to minimize the need to measure in-process inventory. However, these advantages do not accrue to an international verification regime because it cannot truly verify the ''flows'' between MBAs without extensive containment/surveillance measures. In the verification model studied, the entire nuclear inventory of a state is periodically declared and verified simultaneously in one or two large segments (containing possibly many MBAS). Simultaneous inventory of all MBAs within a segment would occur through advance ''mailbox'' declarations and random selection of MBAs for on-site verification or through enhanced containment/surveillance techniques. Flows are generally speaking not verified. This scheme would free the inspectorate from the obligation to attempt to verify on-site each stratum of the material balance of every facility declaring significant quantities of nuclear material

  10. Next Generation Safeguards Initiative: 2010 and Beyond

    International Nuclear Information System (INIS)

    Whitney, J.M.; LaMontagne, S.; Sunshine, A.; Lockwood, D.; Peranteau, D.; Dupuy, G.

    2010-01-01

    Strengthening the international safeguards system is a key element of the U.S. non-proliferation policy agenda as evidenced by President Obama's call for more 'resources and authority to strengthen international inspections' in his April 2009 Prague speech. Through programs such as the recently-launched Next Generation Safeguards Initiative (NGSI) and the long standing U.S. Program of Technical Assistance to IAEA Safeguards, the United States is working to implement this vision. The U.S. Department of Energy's National Nuclear Security Administration launched NGSI in 2008 to develop the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new challenges. Following a successful 2009, NGSI has made significant progress toward these goals in 2010. NGSI has recently completed a number of policy studies on advanced safeguards concepts and sponsored several workshops, including a second international meeting on Harmonization of International Safeguards Infrastructure Development in Vienna. The program is also continuing multi-year projects to investigate advanced non-destructive assay techniques, enhance recruitment and training efforts, and strengthen international cooperation on safeguards. In December 2010, NGSI will host the Third Annual International Meeting on International Safeguards in Washington, DC, which will draw together key stakeholders from government, the nuclear industry, and the IAEA to further develop and promote a common understanding of Safeguards by Design principles and goals, and to identify opportunities for practical application of the concept. This paper presents a review of NGSI program activities in 2010 and previews plans for upcoming activities. (author)

  11. IAEA integrated safeguards instrumentation program (I2SIP)

    International Nuclear Information System (INIS)

    Arlt, R.; Fortakov, V.; Gaertner, K.J.

    1995-01-01

    This article is a review of the IAEA integrated safeguards instrumentation program. The historical development of the program is outlined, and current activities are also noted. Brief technical descriptions of certain features are given. It is concluded that the results of this year's efforts in this area will provide significant input and be used to assess the viability of the proposed concepts and to decide on the directions to pursue in the future

  12. Policy Safeguards and the Legitimacy of Highway Interdiction

    Science.gov (United States)

    2016-12-01

    Adoption among Large Law Enforcement Agencies,” Crime & Delinquency 59, no. 1 (2013): 33, doi:10.1177/0011128708328863. 71 Drug Enforcement...correlation or validity could be established between the number of complaints and the impact of highway interdiction safeguards implemented by the...Engel, “The Impact of Drivers’ Race, Gender, and Age During Traffic Stops Assessing Interaction Terms and the Social Conditioning Model,” Crime

  13. Safeguards material control at licensed processing facilities

    International Nuclear Information System (INIS)

    Cleland, L.L.; Johnson, W.A.; Maimoni, A.; Sacks, I.J.; Spogen, L.R.

    1977-01-01

    This report is a review of presentations made by Lawrence Livermore Laboratory at the NRC Office of Regulatory Research contractors review held in Bethesda, Maryland, on February 2-3, 1977. An overview of LLL's approach in assisting the NRC in its creation of Performance Based Regulations and attendant compliance testing is presented. This approach consists of the development of a hierarchy of safeguards functions, a set of measures for these functions, and a usable assessment approach. A summary of progress based on present project status is then given. A complete hierarchy of functions has been developed by LLL and is presented along with a description of the physical measures and mathematical aggregation requirements. Next, a discussion of the need for expansion of currently available data required for portions of MC system detailed evaluation is given. LLL's assessment approach is outlined in a preliminary step-by-step assessment procedure. The basic requirements, in addition to specific NRC criteria, for assessment include the development of various tools and procedures. These tools and procedures and their methodology requirements are discussed in detail and examples given

  14. Evaluating safeguards effectiveness against protracted theft of special nuclear material by insiders

    International Nuclear Information System (INIS)

    Al-Ayat, R.; Sicherman, A.

    1991-01-01

    The new draft DOE Material Control and Accountability Order 5633.3 requires that facilities handling special nuclear material (SNM) evaluate their effectiveness against provided theft of SNMProtracted theft means repeated thefts of small quantities of material to accumulate a goal quanfity. To evaluate the safeguards effectiveness against pro thefts, one must addresses several issues: (1) defining relevant time frames for various threat scenarios and delayed detection safeguards: (2) identifying which safeguards come into play more than once because of repeated adversary actions or because of periodic occurrence during the theft time frame (e.g., daily administrative check on presence of material): (3) considering whether the second and subsequent applications of safeguards are different in effectiveness from the first; (4)synthesizing how physical security, material control, and material accountability safeguards combine to provide protection against protracted theft scenarios. In this paper we discuss these issues and describe how we are augmenting the Analytic System and Software for Evaluating Safeguards and Security (ASSESS) to provide the user with a tool for evaluating effectiveness against protracted theft. Currently, the Insider module of ASSESS focuses on evaluating the ''timely'' detection of abrupt theft attempts by various types of single nonviolent insiders. In this paper we describe the approach we're implementing to augment ASSESS to handle various cases of protracted theft attempts

  15. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Ade lndra B; Kasturi; Tatang Eryadi

    2004-01-01

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  16. Towards unified performance measures for evaluating nuclear safeguard systems: mathematical foundations and formal comparison of existing models

    International Nuclear Information System (INIS)

    Corynen, G.C.

    1979-01-01

    An important step in the analysis of large-scale systems is the development of economical and meaningful measures of system performance. In the literature on analysis of nuclear safeguard systems, many performance measures have been advanced, but their interrelationships and their relevance to overall system objectives have not received attention commensurate with the effort spent in developing detailed safeguard models. The work reported here is an attempt to improve the development and evaluation of performance measures for nuclear safeguard systems. This work falls into three main areas. First, we develop a new framework which provides an initial basis for defining and structuring performance measures. To demonstrate that this framework allows a clear understanding of the purposes of nuclear safeguard systems, we employ it to state various safeguard questions clearly and concisely. The framework reflects the rough subsystem structure of safeguard systems - the detection and response subsystems - and formally accommodates various safeguard models. We especially emphasize two of these models which are under development at Lawrence Livermore Laboratory, the structured assessment approach (SAA) and the systems vulnerability assessment method (SVAM). Second, we examine some performance measures presently used in the nuclear safeguards area and in reliability theory in general. Some of these we accept and modify to obtain system performance measures that are an additive combination of subsystem performance measures, a very convenient form indeed. Others we reject as impractical and meaningless. Finally, we determine some common features between the SAA and SVAM models by formally comparing these models in our framework

  17. Evaluation of a Business Case for Safeguards by Design in Nuclear Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Seward, Amy M.; Lewis, Valerie A.; Gitau, Ernest TN; Zentner, Michael D.

    2012-12-01

    Safeguards by Design (SbD) is a well-known paradigm for consideration and incorporation of safeguards approaches and associated design features early in the nuclear facility development process. This paradigm has been developed as part of the Next Generation Safeguards Initiative (NGSI), and has been accepted as beneficial in many discussions and papers on NGSI or specific technologies under development within NGSI. The Office of Nuclear Safeguards and Security funded the Pacific Northwest National Laboratory to examine the business case justification of SbD for nuclear power reactors. Ultimately, the implementation of SbD will rely on the designers of nuclear facilities. Therefore, it is important to assess the incentives which will lead designers to adopt SbD as a standard practice for nuclear facility design. This report details the extent to which designers will have compelling economic incentives to adopt SbD.

  18. IAEA concerns about advanced containment and surveillance concepts or other alternative safeguards concepts

    International Nuclear Information System (INIS)

    von Baeckmann, A.; Powers, J.

    1981-01-01

    Nuclear material accountancy is used in IAEA safeguards as a measure of fundamental importance, with containment and surveillance as important complementary measures. Over the past five years the IAEA has worked with its Standing Advisory Group on Safeguards Implementation (SAGSI) to quantify major terms of the objectives, i.e., timeliness of detection, significant quantities and detection probabilities. The Agency is using those quantifications, as recommended by SAGSI, as guidelines for inspection planning and for evaluating the effectiveness of safeguards. The guidelines are used in this paper, together with other criteria like cost-effectiveness, compliance with legal limitation and non-intrusiveness, as yard-sticks for the assessment of the potential capabilities of alternative safeguards approaches. 4 refs

  19. Novel co-culture plate enables growth dynamic-based assessment of contact-independent microbial interactions.

    Directory of Open Access Journals (Sweden)

    Thomas J Moutinho

    Full Text Available Interactions between microbes are central to the dynamics of microbial communities. Understanding these interactions is essential for the characterization of communities, yet challenging to accomplish in practice. There are limited available tools for characterizing diffusion-mediated, contact-independent microbial interactions. A practical and widely implemented technique in such characterization involves the simultaneous co-culture of distinct bacterial species and subsequent analysis of relative abundance in the total population. However, distinguishing between species can be logistically challenging. In this paper, we present a low-cost, vertical membrane, co-culture plate to quantify contact-independent interactions between distinct bacterial populations in co-culture via real-time optical density measurements. These measurements can be used to facilitate the analysis of the interaction between microbes that are physically separated by a semipermeable membrane yet able to exchange diffusible molecules. We show that diffusion across the membrane occurs at a sufficient rate to enable effective interaction between physically separate cultures. Two bacterial species commonly found in the cystic fibrotic lung, Pseudomonas aeruginosa and Burkholderia cenocepacia, were co-cultured to demonstrate how this plate may be implemented to study microbial interactions. We have demonstrated that this novel co-culture device is able to reliably generate real-time measurements of optical density data that can be used to characterize interactions between microbial species.

  20. "A Is for Assessment"... Strategies for A-Level Marking to Motivate and Enable Students of All Abilities to Progress

    Science.gov (United States)

    Facey, Jane

    2011-01-01

    Jane Facey was unsatisfied with the way in which her A-Level students responded to typical assessment practice. This would normally involve their teacher marking their work and then providing them with written feedback. In looking to move beyond this, Facey drew upon a wide range of research and practice which has sought to develop the way in…

  1. Scientific Assessment in support of the Materials Roadmap enabling Low Carbon Energy Technologies: Hydrogen and Fuel Cells

    DEFF Research Database (Denmark)

    Cerri, I.; Lefebvre-Joud, F.; Holtappels, Peter

    A group of experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European...

  2. Safeguards information treatment in NMCC

    International Nuclear Information System (INIS)

    Kojo, Yukiko; Tanigawa, Takanori; Iwai, Naobumi; Suzuki, Tsuneo

    1994-01-01

    The Nuclear Material Control Center (NMCC) has treated all information of the accounting reports, obligation control reports and plans of import/export or domestic receipt/shipment, etc. submitted by the facilities according to the domestic laws, and prepared the reports to provide the IAEA subject to the safeguards agreement and to provide the partner countries subject to the relevant bilateral agreements. The accounting reports are processed during two weeks in the latter half of month and dispatched to the IAEA by the 30th of the month. On the other hand, the obligation control reports are processed during two weeks in the first half of the next month. The other reports are processed on case's by case's basis and submitted to the IAEA or the partner countries at need. The data processing system consists of the quality check, database update, reporting and conversational inquiry sub-systems with the database management system (ADABAS) which keeps key indexes and summary database. (author)

  3. Safeguarding and Protecting the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Bjornard, Trond; Garcia, Humberto; Desmond, William; Demuth, Scott

    2010-01-01

    International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

  4. Real‑time, fast neutron detection for stimulated safeguards assay

    International Nuclear Information System (INIS)

    Joyce, Malcolm J.; Adamczyk, Justyna; Plenteda, Romano; Aspinall, Michael D.; Cave, Francis D.

    2015-01-01

    The advent of low‑hazard organic liquid scintillation detectors and real‑time pulse‑shape discrimination (PSD) processing has suggested a variety of modalities by which fast neutrons, as opposed to neutrons moderated prior to detection, can be used directly to benefit safeguards needs. In this paper we describe a development of a fast‑neutron based safeguards assay system designed for the assessment of 235 U content in fresh fuel. The system benefits from real‑time pulse‑shape discrimination processing and auto‑calibration of the detector system parameters to ensure a rapid and effective set‑up protocol. These requirements are essential in optimising the speed and limit of detection of the fast neutron technique, whilst minimising the intervention needed to perform the assay.

  5. Development of National Future Extreme Heat Scenario to Enable the Assessment of Climate Impacts on Public Health

    Science.gov (United States)

    Quattrochi, Dale A.; Cresson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G.

    2013-01-01

    The project's emphasis is on providing assessments of the magnitude, frequency and geographic distribution of EHEs to facilitate public health studies. We focus on the daily to weekly time scales on which EHEs occur, not on decadal-scale climate changes. There is, however, a very strong connection between air temperature patterns at the two time scales and long-term climatic changes will certainly alter the frequency of EHEs.

  6. Development of DUPIC safeguards neutron counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gil; Cha, Hong Ryul; Kim, Ho Dong; Hong, Jong Sook; Kang, Hee Young

    1999-08-01

    KAERI, in cooperation with LANL, developed DSNC (DUPIC Safeguards Neutron Counter) for safeguards implementing on DUPIC process which is under development by KAERI for direct use of spent PWR fuel in CANDU reactors. DSNC is a well-type neutron coincidence counter with substantial shielding to protect system from high gamma radiation of spent fuel. General development procedures in terms of design, manufacturing, fabrication, cold and hot test, performance test for DSNC authentication by KAERI-IAEA-LANL are described in this report. It is expected that the techniques related DSNC development and associated neutron detection and evaluation method could be applied for safeguards improvement. (Author). 20 refs., 16 tabs. 98 figs.

  7. Goals of measurement systems for international safeguards

    International Nuclear Information System (INIS)

    de Montmollin, J.M.; Weinstock, E.V.

    1979-01-01

    The safeguards applied by the International Atomic Energy Agency are based on technical performance goals and criteria that have been developed, but not officially adopted by the Agency. The goals derive in part from the external consequences that safeguards are intended to prevent and in some cases on internal considerations of feasibility. To the extent that these goals may not be attainable, as may be the case with large-throughput bulk reprocessing plants, the Agency is placed in a difficult position. In this paper safeguards goals and criteria and their underlying rationales are critically examined. Suggestions for a more rational and workable structure of performance goals are offered

  8. IAEA Safeguards: Present status and experience gained

    International Nuclear Information System (INIS)

    Thorne, L.; Buechler, C.; Haegglund, E.

    1983-01-01

    IAEA safeguards are at the present under critical review with regard to their purpose and effectiveness. This paper describes the development of the IAEA Safeguards System from the early days, when procedures were developed on an ad hoc basis, to the present day. The development of State Systems of Accounting for and Control of Nuclear Material (SSAC), and of sophisticated instrumentation, has been necessary to deal with the rapid growth in the quantities of nuclear material and in the number of facilities under safeguards. The paper also discusses some of the managerial and organizational issues that are inherent in such a large international inspectorate. (author)

  9. IAEA Safeguards: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A. [Los Alamos National Laboratory; Hypes, Philip A. [Los Alamos National Laboratory

    2012-06-14

    This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

  10. International seminar on safeguards information reporting and processing. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included

  11. Overview of the Facility Safeguardability Analysis (FSA) Process

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  12. Development of a canine model to enable the preclinical assessment of pH-dependent absorption of test compounds.

    Science.gov (United States)

    Fancher, R Marcus; Zhang, Hongjian; Sleczka, Bogdan; Derbin, George; Rockar, Richard; Marathe, Punit

    2011-07-01

    A preclinical canine model capable of predicting a compound's potential for pH-dependent absorption in humans was developed. This involved the surgical insertion of a gastrostomy feeding tube into the stomach of a beagle dog. The tube was sutured in position to allow frequent withdrawal of gastric fluid for pH measurement. Therefore, it was possible to measure pH in the stomach and assess the effect of gastric pH-modifying agents on the absorption of various test compounds. Fasted gastric pH in the dog showed considerable inter- and intra-animal variability. Pretreatment of pentagastrin (6 µg/kg intramuscularly) 20 min prior to test compound administration was determined to be adequate for simulating fasting stomach pH in humans. Pretreatment with famotidine [40 mg orally] 1 h prior to test compound administration was determined to be adequate for simulating human gastric pH when acid-reducing agents are coadministered. Pentagastrin and famotidine pretreatments were used to test two discovery compounds and distinct differences in their potential for pH-dependent absorption were observed. The model described herein can be used preclinically to screen out compounds, differentiate compounds, and support the assessment of various formulation- and prodrug-based strategies to mitigate the pH effect. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Japan-IAEA Workshops on Advanced Safeguards for Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Hoffheins, B.; Hori, M.; Suzuki, M.; Kuno, Y.; Kimura, N.; Naito, K.; Hosoya, M.; Khlebnikov, N.; Whichello, J.; Zendel, M.

    2010-01-01

    Beginning in 2007, the Japan Atomic Energy Agency (JAEA) and the International Atomic Energy Agency (IAEA) Department of Safeguards initiated a workshop series focused on advanced safeguards technologies for the future nuclear fuel cycle (NFC). The goals for these workshops were to address safeguards challenges, to share implementation experiences, to discuss fuel cycle plans and promising research and development, and to address other issues associated with safeguarding new fuel cycle facilities. Concurrently, the workshops also served to promote dialog and problem solving, and to foster closer collaborations for facility design and planning. These workshops have sought participation from IAEA Member States' support programmes (MSSP), the nuclear industry, R and D organizations, state systems of accounting and control (SSAC), regulators and inspectorates to ensure that all possible stakeholder views can be shared in an open process. Workshop presentations have covered, inter alia, national fuel cycle programs and plans, research progress in proliferation resistance (PR) and safeguardability, approaches for nuclear measurement accountancy of large material throughputs and difficult to access material, new and novel radiation detectors with increased sensitivity and automation, and lessons learned from recent development and operation of safeguards systems for complex facilities and the experiences of integrated safeguards (IS) in Japan. Although the title of the workshops presumes an emphasis on technology, participants recognized that early planning and organization, coupled with close cooperation among stakeholders, that is, through the application of 'Safeguards by Design' (SBD) processes that include nuclear safety and security coordination, 'Remote Inspections' and 'Joint-Use of Equipment (JUE)' would be required to enable more successful implementations of safeguards at future NFC facilities. The needs to cultivate the future workforce, effectively preserve

  14. Upgrading nuclear safeguards in Kazakhstan

    International Nuclear Information System (INIS)

    Hunt, Maribeth; Murakami, Kenji

    2005-01-01

    When the Soviet Union collapsed in December 1991, Kazakhstan inherited 1,410 nuclear warheads. Within three years, by 1994, Kazakhstan had formally acceded to the Nuclear Non-Proliferation Treaty (NPT) and transferred its last nuclear warhead to Russia in April 1995. Its NPT safeguards agreement with the IAEA came into force in 1994 and all facilities are under safeguards. In February 2004 Kazakhstan signed the Additional Protocol to its IAEA safeguards agreement, though this not yet in force. Kazakhstan played a key role during the Soviet era as a supplier and processor of uranium. The BN-350 fast reactor at Aktau (formerly Shevchenko), on the shore of the Caspian Sea, successfully produced up to 135 MWe of electricity and 80,000 m3/day of potable water over some 27 years until it was closed down in mid-1999. The IAEA being involved in upgrading the nuclear material accountancy and control systems of all Member States requested, Japan and Sweden to conduct independent evaluations at the Kazakhstan Atomic Energy Committee (KAEC), and specifically at the Ulba Metallurgical Plant (UMP) and identified areas that could be improved with respect to nuclear material accountancy and control. In June 2003 the Agency, with four Member States and the European Union, undertook a programme to upgrade the nuclear accountancy and control systems within Kazakhstan with special emphasis on the UMP in Ust-Kamenogorsk in northeast Kazakhstan. The current IAEA programme is focused on upgrading hardware and software systems and the training of personnel in Kazakhstan. Due to the complexity of the facility, special emphasis is on training personnel and upgrading systems at the UMP. At the UMP the focus is on reducing the uncertainty in the hold-up (material which cannot be cleaned out) in the process lines, better determining the amount of nuclear material that is released from the facility as waste or retained at the facility as waste, increasing the ability of the facility to more

  15. Combined SAFE/SNAP approach to safeguards evaluation

    International Nuclear Information System (INIS)

    Engi, D.; Chapman, L.D.; Grant, F.H.; Polito, J.

    1980-01-01

    The scope of a safeguards evaluation model can efficiently address one of two issues: (1) global safeguards effectiveness or (2) vulnerability analysis for individual scenarios. The Safeguards Automated Facility Evaluation (SAFE) focuses on the first issue, while the Safeguards Network Analysis Procedure (SNAP) is directed towards the second. A combined SAFE/SNAP approach to the problem of safeguards evaluation is described and illustrated through an example. 4 refs

  16. Some basic concepts of fast breeder reactor safeguards

    International Nuclear Information System (INIS)

    Tkharev, E.; Walford, F.J.

    1987-04-01

    The range of discussion topics of this report is restricted to a few key areas of safeguards importance at Fast Breeder Reactors (FBR) only. The differences between thermal and fast reactors that may have safeguards significance in the case of FBRs are listed. The FBR principles of design are mentioned. The relevant safeguards objectives and criteria are given. The fundamental issues for safeguarding FBR are treated. An outline safeguards approach is presented. Model inspection activities are mentioned. 4 figs

  17. Symposium on International Safeguards: Preparing for Future Verification Challenges

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of the symposium is to foster dialogue and information exchange involving Member States, the nuclear industry and members of the broader nuclear non-proliferation community to prepare for future verification challenges. Topics addressed during the 2010 symposium include the following: - Supporting the global nuclear non-proliferation regime: Building support for strengthening international safeguards; Enhancing confidence in compliance with safeguards obligations; Legal authority as a means to enhance effectiveness and efficiency; Verification roles in support of arms control and disarmament. - Building collaboration and partnerships with other international forums: Other verification and non-proliferation regimes; Synergies between safety, security and safeguards regimes. - Improving cooperation between IAEA and States for safeguards implementation: Strengthening State systems for meeting safeguards obligations; Enhancing safeguards effectiveness and efficiency through greater cooperation; Lessons learned: recommendations for enhancing integrated safeguards implementation. - Addressing safeguards challenges in an increasingly interconnected world: Non-State actors and covert trade networks; Globalization of nuclear information and technology. - Preparing for the global nuclear expansion and increasing safeguards workload: Furthering implementation of the State-level concept and integrated safeguards; Information-driven safeguards; Remote data-driven safeguards inspections; Safeguards in States without comprehensive safeguards agreements. - Safeguarding advanced nuclear facilities and innovative fuel cycles: Proliferation resistance; Safeguards by design; Safeguards approaches for advanced facilities. - Advanced technologies and methodologies: For verifying nuclear material and activities; For detecting undeclared nuclear material and activities; For information collection, analysis and integration. - Enhancing the development and use of safeguards

  18. The Concept of Goals-Driven Safeguards

    International Nuclear Information System (INIS)

    Wigeland, R.; Bjornard, T.; Castle, B.

    2009-01-01

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization's purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations' approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  19. Office of Safeguards and Security - Operational Interface

    International Nuclear Information System (INIS)

    Hammond, G.A.

    1987-01-01

    The mission of the Office of Safeguards and Security (OSS), Department of Energy (DOE) is to: Develop policy and programs to protect DOE facilities, nuclear materials, and classified information; Provide oversight for safeguards and security operations; Direct research and development (RandD) to support the protection program; and Strengthen international safeguards in support of nonproliferation policy. Objectives are to maintain an integrated safeguards and security system that is effective against a wide range of threats, and do so in a manner to minimize impacts on facility operation. Implementation is the responsibility of field offices and contractors operating DOE facilities. The OSS-operational interface is the focus of this discussion with emphasis on RandD to meet user needs. The scope and project selection process will be discussed along with information required for evaluation, and field operational planning and budgeting commitments to permit implementation of successful RandD results

  20. Safeguards Implementation in Kazakhstan: Experience and Challenges

    International Nuclear Information System (INIS)

    Zhantikin, T.

    2015-01-01

    Experience of Kazakhstan joined the NPT in 1993, just after desintegration of USSR, and enforced Safeguards Agreement in 1995 can be interesting in implementation of safeguards in non-standard cases. Having weapon materials and test infrastructure legacy, the country together with IAEA and several donor countries found acceptable approaches to meet NPT provisions. One of challenges was to provide protection of sensitive information that could be accidentally disclosed in safeguards activities. With support of several weapon countries in close cooperation with the IAEA Kazakhstan liquidated test infrastructure in Semipalatinsk, implemented projects on elimination and minimization of use of HEU in civil sector, decommissioning of BN-350 fast breeder reactor. Now the IAEA LEU Bank is going to be established in Kazakhstan, and more challenges are coming in implementation of safeguards. Some technical and organizational details will be described from the experience of Kazakhstan in these projects. (author)

  1. Protecting safeguards information / Division of technical support

    International Nuclear Information System (INIS)

    2002-01-01

    This DVD contains two films representing the key aspects of the IAEA Department of Safeguards. 'Protecting Safeguards Information' is a narrative/fiction film which presents the Agency's information handling and protection measures. A security representative from a fictional nation receives a briefing on the procedures and methods used by the Department. These techniques will assure member states that the information they provide to the Agency is kept safe and confidential. 'Division of Technical Support' is a non-fiction documentary which presents a detailed look at the technical capabilities and management techniques used by the Agency in nuclear material accountancy. The film covers many aspects of safeguards equipment and techniques including: NDA and DA instruments, seals, surveillance, training, development and maintenance. Taken together, these films provide an introduction and overview to many important aspects of the IAEA Department of Safeguards. (IAEA)

  2. Safeguards: the industry's role and views

    International Nuclear Information System (INIS)

    Walske, C.

    1975-01-01

    Possible improvements in the U. S. safeguards system are discussed: guard forces, physical protection, personnel clearance, accounting and monitoring in plants, communications, the command function, reinforcements, and intelligence information. (U.S.)

  3. Computerised safeguards in Kazakhstan and its problems

    International Nuclear Information System (INIS)

    Yeligbayeva, G.Zh.

    1999-01-01

    Hereby will be described the Kazakhstan computerized safeguards system. Kazakhstan Atomic Energy Agency (KAEA) developed guides concerning of Y2K problem for facilities. The results of preliminary analyze of this problem are presented. (author)

  4. Handbook of nuclear data for safeguards

    International Nuclear Information System (INIS)

    Lammer, M.; Schwerer, O.

    1991-06-01

    This handbook contains nuclear data needed by safeguards users for their work. It was initiated by an IAEA working group, and the contents were defined by the relies to a questionnaire sent to safeguards specialists. This is a preliminary edition of the handbook for distribution to safeguards and nuclear data experts for review. The present edition of the handbook contains the following basic nuclear data: actinides: nuclear decay data, thermal neutron cross sections and resonance integrals, prompt neutron data, delayed neutron data; fission products: nuclear decay data, thermal neutron capture cross sections and resonance integrals; fission product yields. Also included are appendices that summarize the data requested by safeguards users, and that present a number of questions to them and to data experts on the data contained in this preliminary issue and about additional data for possible inclusion in future editions and updates of the handbook

  5. PROBLEMS AND PROSPECTS OF SAFEGUARDING HEALTH ...

    African Journals Online (AJOL)

    observes that problems of safeguarding health values and right to health in ... through organized strategies and new approaches deliberately instituted to ... conceptions of a group about what is bad, undesirable and improper towards their ...

  6. The safeguards active response inventory system (SARIS)

    International Nuclear Information System (INIS)

    Carlson, R.L.; Hairston, L.A.; O'Callaghan, P.B.; Grambihler, A.J.; Ruemmler, W.P.

    1987-01-01

    The Safeguards Active Response Inventory System (SARIS) is a computerized accountability system developed for nuclear materials control that incorporates elements of process monitoring, criticality safety, physical inventory and safeguards. It takes data from the process operations, stores it in an on-line database and translates the information into the formats needed by the various users. It traces the material through the process from feed to product; including recycle, waste and scraps streams. It models the process as the material changes form to ensure that artificial losses are not created. It automatically generates input to Nuclear Materials Management and Safeguards System (NMMSS), performs checks to prevent the possibility of a criticality accident, prepares an audit trail for Safeguards, prints labels for nuclear material containers, and produces DOE/NRC 741 forms. SARIS has been installed at three laboratories across the country

  7. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1984-01-01

    The general structure of the safeguards system, the SSAC interfaces, and physical protection principles, equipment, and techniques are reviewed. In addition, the interactions between the State, the facility operator, and the IAEA are described

  8. The international safeguards system and physical protection

    International Nuclear Information System (INIS)

    Canty, M.J.; Lauppe, W.D.; Richter, B.; Stein, G.

    1990-02-01

    The report summarizes and explains facts and aspects of the IAEA safeguards performed within the framework of the Non-Proliferation Treaty, and shows perspectives to be discussed by the NPT Review Conferences in 1990 and 1995. The technical background of potential misuse of nuclear materials for military purposes is explained in connection with the physical protection regime of the international safeguards, referring to recent developments for improvement of technical measures for material containment and surveillance. Most attention is given to the peaceful uses of nuclear energy and their surveillance by the IAEA safeguards, including such new technologies and applications as controlled nuclear fusion, laser techniques for uranium enrichment, and particle accelerators. The report's concluding analyses of the current situation show potentials for improvement and desirable or necessary consequences to be drawn for the international safeguards system, also taking into account recent discussions on the parliamentary level. (orig./HP) [de

  9. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  10. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  11. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  12. Review of potential technology contributions to safeguards

    International Nuclear Information System (INIS)

    Sellers, T.A.

    1977-01-01

    Separate, uncoordinated approaches to nuclear facility safeguards such as physical security and accounting are no longer adequate. A comprehensive, integrated strategy for improved in-depth protection of nuclear facilities with acceptable operational impact is needed. The safeguards system concept, analysis techniques, and hardware required to implement such a strategy are presented in this paper. Handbooks for intrusion detection, entry control systems, barrier, etc. are described briefly. 17 figures

  13. Measurement trends for future safeguards systems

    International Nuclear Information System (INIS)

    Baloga, S.M.; Hakkila, E.A.

    1980-01-01

    Safeguards for future commercial-scale nuclear facilities may employ three materials control and accounting concepts: classical accounting, dynamic materials balancing, and independent verification of inventories and materials balances. Typical measurement needs associated with the implementation of these concepts at high-throughput facilities are discussed. Promising measurement methods for meeting these needs are described and recent experience is cited. General directions and considerations for meeting advanced safeguards systems needs through measurement technology development over the next decade are presented

  14. Security Management and Safeguards Office

    Science.gov (United States)

    Bewley, Nathaniel M.

    2004-01-01

    The Security Management and Safeguards Office at NASA is here to keep the people working in a safe environment. They also are here to protect the buildings and documents from sabotage, espionage, and theft. During the summer of 2004, I worked with Richard Soppet in Physical Security. While I was working here I helped out with updating the map that we currently use at NASA Glenn Research Center, attended meetings for homeland security, worked with the security guards and the locksmith. The meetings that I attended for homeland security talked about how to protect ourselves before something happened, they told us to always be on the guard and look for anything suspicious, and the different ways that terrorist groups operate. When I was with the security guards I was taught how to check someone into the base, showed how to use a radar gun, observed a security guard make a traffic stop for training and was with them while they patrolled NASA Glenn Research Center to make sure things were running smooth and no one was in danger. When I was with the lock smith I was taught how to make keys and locks for the employees here at NASA. The lock smith also showed me that he had inventory cabinets of files that show how many keys were out to people and who currently has access to the rooms that they keys were made for. I also helped out the open house at NASA Glenn Research Center. I helped out by showing the Army Reserves, and Brook Park's SWAT team where all the main events were going to take place a week before the open house was going to begin. Then during the open house I helped out by making sure people had there IDS, checked through there bags, and handed out a map to them that showed where the different activities were going to take place. So the main job here at NASA Glenn Research Center for the Security Management and Safeguards Office is to make sure that nothing is stolen, sabotaged, and espionaged. Also most importantly make sure all the employees here at NASA are

  15. Euratom experience in safeguarding reprocessing and thermal reactor mixed oxide fuel fabrication facilities within the European Community

    International Nuclear Information System (INIS)

    1978-11-01

    The legal basis and instruments for the application of safeguards in the European Community are described. Euratom safeguards apply throughout the fuel cycle starting at the ore stage. Euratom has had experience in the application of safeguards to small and medium size reprocessing and MOX fabrication plants. In reprocessing plants accountancy, containment and surveillance methods are applied and the plant is divided into three material balance areas. Similar procedures are applied at fabrication plants. Euratom inspectors apply their main verification activities at strategic points but have the right of access at any time to all places which contain nuclear material. Under the Euratom-IAEA Agreements 'Joint Teams' of Euratom and IAEA inspectors will operate together to minimise the burden on operators and to avoid duplication of effort while enabling both organisations to achieve their safeguards objectives

  16. Middle term prospects for Japan's safeguards

    International Nuclear Information System (INIS)

    Ogawa, T.

    2001-01-01

    Japan has responded to IAEA requirements on reinforced safeguard regulations. The IAEA additional protocol entered in force in Japan on December 1999. Japan submitted a preliminary information report to IAEA on June 2000 after joint works with the Nuclear Material Control Center (NMCC) of Japan. The first annual report was submitted to IAEA on May 2001. Another activity for the additional protocol is complementary accesses. The total 36 accesses to facilities have been done from November 2000 to September 2001. Procedures of access to managements are under discussion. MEXT (Ministry of Education, Culture, Sports, Science and Technology) has been constructing the Rokkasho Safeguards On-Site Laboratory from 1997, and the Rokkasho Safeguards Center from 2000. The Design Information Verification (DIV) is now ongoing. Much more personal resources will be needed for future inspections. Therefore, the budget for safeguards is increasing in contrast to the flat base budget for the total atomic energy. As for future activity, a MOX (Mixed Oxide Fuels) fuel processing plant is one of the issues for discussion. The construction of the MOX processing plant is supposed to begin on around 2004. The conclusion of additional protocol will be given by IAEA until end of 2002. Shift to integrated safeguards are under discussions by MEXT, NMCC and utilities of Japan parallel with IAEA. Key issues of discussion are cost saving for safeguards, development of personal resources for inspectors and the role of NMCC. (Y. Tanaka)

  17. Next Generation Safeguards Initiative: Human Capital Development

    International Nuclear Information System (INIS)

    Scholz, M.; Irola, G.; Glynn, K.

    2015-01-01

    Since 2008, the Human Capital Development (HCD) subprogramme of the U.S. National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) has supported the recruitment, education, training, and retention of the next generation of international safeguards professionals to meet the needs of both the International Atomic Energy Agency (IAEA) and the United States. Specifically, HCD's efforts respond to data indicating that 82% of safeguards experts at U.S. Laboratories will have left the workforce within 15 years. This paper provides an update on the status of the subprogramme since its last presentation at the IAEA Safeguards Symposium in 2010. It highlights strengthened, integrated efforts in the areas of graduate and post-doctoral fellowships, young and midcareer professional support, short safeguards courses, and university engagement. It also discusses lessons learned from the U.S. experience in safeguards education and training as well as the importance of long-range strategies to develop a cohesive, effective, and efficient human capital development approach. (author)

  18. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1986-10-01

    Safeguarding our country's nuclear materials against theft or diversion is extremely important due to their significantly strategic value. In addition, nuclear materials also have an extremely high monetary value. The term ''safeguards'' is defined as an integrated system of physical protection, accountability, and material control measures designed to deter, prevent, detect, and respond to unauthorized possession and use of special nuclear materials. An aggressive Safeguards program, therefore, employs both good security measures and a strong material control and accountability system. For effective internal control of nuclear materials, having people qualified in the many aspects of safeguards and accountability is essential. At Pacific Northwest Laboratory (PNL), this goal is accomplished through a Laboratory-wide Safeguards Awareness Program. All PNL staff members receive a level of Safeguards training appropriate to their particular function within the Laboratory. This paper presents an overview of the unique training opportunities this topic provides and how the training goals are accomplished through the various training courses given to the staff members

  19. Use of fuel reprocessing plant instrumentation for international safeguards

    International Nuclear Information System (INIS)

    Ayers, A.L.

    1977-01-01

    The International Atomic Energy Agency has a program for developing instrumentation to be used by safeguards inspectors at reprocessing facilities. These instruments have generally been individual pieces of equipment for improving the accuracy of existing measurement instrumentation or equipment to perform nondestructive assay on a selected basis. It is proposed that greater use be made of redundant plant instrumentation and data recovery systems that could augment plant instrumentation to verify the validity of plant measurements. Use of these methods for verfication must be proven as part of an operating plant before they can be relied upon for safeguards surveillance. Inspectors must be qualified in plant operations, or have ready access to those so qualified, if the integrity of the operation is to be properly assessed. There is an immediate need for the development and in-plant proof testing of an integrated gamma, passive neutron, and active neutron measurement system for drum quantities of radioactive trash. The primary safeguards effort should be limited to plutonium and highly enriched uranium

  20. Safeguards and security issues for the disposition of fissile materials

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Moya, R.W.; Duggan, R.A.; Mangan, D.L.; Tolk, K.M.; Rutherford, D.; Fearey, B.; Moore, L.

    1995-01-01

    The Department of Energy's Office of Fissile Material Disposition (FMD) is analyzing long-term storage and disposition options for surplus weapons-usable fissile materials, preparing a programmatic environmental impact statement (PEIS), preparing for a record of decision (ROD) regarding this material and conducting other activities. The primary security objectives of this program are to reduce major security risks and strengthen arms reduction and nonproliferation (NP). To help achieve these objectives, a safeguards and security (S ampersand S) team consisting of participants from Sandia, Los Alamos, and Lawrence Livermore National Laboratories was established. The S ampersand S activity for this program is a cross-cutting task which addresses all of the FMD program options. It includes both domestic and international safeguards and includes areas such as physical protection, nuclear materials accountability and material containment and surveillance. This paper will discuss the activities of the Fissile Materials Disposition Program (FMDP) S ampersand S team as well as some specific S ampersand S issues associated with various FMDP options/facilities. Some of the items to be discussed include the threat, S ampersand S requirements, S ampersand S criteria for assessing risk, S ampersand S issues concerning fissile material processing/facilities, and international and domestic safeguards

  1. Monitoring Spongospora subterranea Development in Potato Roots Reveals Distinct Infection Patterns and Enables Efficient Assessment of Disease Control Methods.

    Directory of Open Access Journals (Sweden)

    Tamilarasan Thangavel

    Full Text Available Spongospora subterranea is responsible for significant potato root and tuber disease globally. Study of this obligate (non-culturable pathogen that infects below-ground plant parts is technically difficult. The capacity to measure the dynamics and patterns of root infections can greatly assist in determining the efficacy of control treatments on disease progression. This study used qPCR and histological analysis in time-course experiments to measure temporal patterns of pathogen multiplication and disease development in potato (and tomato roots and tubers. Effects of delayed initiation of infection and fungicidal seed tuber and soil treatments were assessed. This study found roots at all plant developmental ages were susceptible to infection but that delaying infection significantly reduced pathogen content and resultant disease at final harvest. The pathogen was first detected in roots 15-20 days after inoculation (DAI and the presence of zoosporangia noted 15-45 DAI. Following initial infection pathogen content in roots increased at a similar rate regardless of plant age at inoculation. All fungicide treatments (except soil-applied mancozeb which had a variable response suppressed pathogen multiplication and root and tuber disease. In contrast to delayed inoculation, the fungicide treatments slowed disease progress (rate rather than delaying onset of infection. Trials under suboptimal temperatures for disease expression provided valuable data on root infection rate, demonstrating the robustness of monitoring root infection. These results provide an early measure of the efficacy of control treatments and indicate two possible patterns of disease suppression by either delayed initiation of infection which then proceeds at a similar rate or diminished epidemic rate.

  2. Monitoring Spongospora subterranea Development in Potato Roots Reveals Distinct Infection Patterns and Enables Efficient Assessment of Disease Control Methods.

    Science.gov (United States)

    Thangavel, Tamilarasan; Tegg, Robert S; Wilson, Calum R

    2015-01-01

    Spongospora subterranea is responsible for significant potato root and tuber disease globally. Study of this obligate (non-culturable) pathogen that infects below-ground plant parts is technically difficult. The capacity to measure the dynamics and patterns of root infections can greatly assist in determining the efficacy of control treatments on disease progression. This study used qPCR and histological analysis in time-course experiments to measure temporal patterns of pathogen multiplication and disease development in potato (and tomato) roots and tubers. Effects of delayed initiation of infection and fungicidal seed tuber and soil treatments were assessed. This study found roots at all plant developmental ages were susceptible to infection but that delaying infection significantly reduced pathogen content and resultant disease at final harvest. The pathogen was first detected in roots 15-20 days after inoculation (DAI) and the presence of zoosporangia noted 15-45 DAI. Following initial infection pathogen content in roots increased at a similar rate regardless of plant age at inoculation. All fungicide treatments (except soil-applied mancozeb which had a variable response) suppressed pathogen multiplication and root and tuber disease. In contrast to delayed inoculation, the fungicide treatments slowed disease progress (rate) rather than delaying onset of infection. Trials under suboptimal temperatures for disease expression provided valuable data on root infection rate, demonstrating the robustness of monitoring root infection. These results provide an early measure of the efficacy of control treatments and indicate two possible patterns of disease suppression by either delayed initiation of infection which then proceeds at a similar rate or diminished epidemic rate.

  3. Assurance of the effectiveness of safeguards in light of their objectives

    International Nuclear Information System (INIS)

    Kennedy, R.T.; Lyon, H.E.

    1977-01-01

    The purpose of nuclear safeguards is to prevent unauthorized use of SNM or sabotage of facilities in which significant quantities of SNM are located. A balanced safeguards system includes the three elements of material accountability, material control, and physical protection. These safeguard systems must detect unauthorized activities, initiate timely response and, as necessary, provide sufficient delay for an appropriate action to be taken. Methods used to assure effectiveness of safeguards systems for both ERDA and licensed facilities will be reviewed in this paper. The respective responsibilities of ERDA and NRC are briefly outlined as are the procedures and methods used for implementing these responsibilities. The objective of achieving overall comparability between ERDA and licensed facilities is discussed. The manner in which adequacy of safeguards is assessed is discussed. New techniques which are beginning to be employed and further refined is presented. These involve characterization of the representative threats, development of modeling of outsider and insider threats, site specific analysis of facility vulnerabilities to threats and selection of critical paths. Modeling is used to assess effectiveness with which a system protects against a postulated threat along critical attack paths. Assumptions with regard to the protection provided by the different elements can be varied to improve (decrease) vulnerability along any path. This method along with graphic analysis techniques can be used to: - Identify current weaknesses in existing or as designed systems. - Evaluate upgrading plans. - Develop design trade-offs. - Identify hardware or other developments required. Research and development is required to deal with the problems identified in these assessments and in the safeguards related studies conducted by both ERDA and NRC. These efforts and a summary of the areas currently under review will be described briefly. The practical problems of proof testing

  4. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Takamine, J.; Weber, A.-L.; Yamaguchi, T.; Zhu, H.

    2015-01-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3 He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3 He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3 He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3 He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3 He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3 He-alternative technologies.

  5. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kouzes, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peerani, P. [European Commission, Ispra (Italy). Joint Research Centre; Aspinall, M. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Baird, K. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Bakel, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Borella, M. [SCK.CEN, Mol (Belgium); Bourne, M. [Univ. of Michigan, Ann Arbor, MI (United States); Bourva, L. [Canberra Ltd., Oxford (United Kingdom); Cave, F. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Chandra, R. [Arktis Radiation Detectors Ltd., Zurich (Sweden); Chernikova, D. [Chalmers Univ. of Technology (Sweden); Croft, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dermody, G. [Symetrica Inc., Maynard, MA (United States); Dougan, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Ely, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fanchini, E. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Gavron, Victor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kureta, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ishiyama, K. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Lee, T. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Martin, Ch. [Symetrica Inc., Maynard, MA (United States); McKinny, K. [GE Reuter-Stokes, Twinsburg, OH (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Orton, Ch. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Pappalardo, A. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Pedersen, B. [European Commission, Ispra (Italy). Joint Research Centre; Peranteau, D. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Plenteda, R. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Pozzi, S. [Univ. of Michigan, Ann Arbor, MI (United States); Schear, M. [Symetrica Inc., Maynard, MA (United States); Seya, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Siciliano, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, L. [Proportional Technologies Inc., Houston, TX (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tagziria, H. [European Commission, Ispra (Italy). Joint Research Centre; Vaccaro, S. [DG Energy (Luxembourg); Takamine, J. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Weber, A. -L. [Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France); Yamaguchi, T. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Zhu, H. [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  6. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and

  7. Safeguards Implementation Practices Guide on Establishing and Maintaining State Safeguards Infrastructure

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreements. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This

  8. Fast Enrichment Screening for Safeguards Applications

    International Nuclear Information System (INIS)

    Simpson, A.; McElhaney, S.

    2010-01-01

    Methods for rapid non-destructive uranium enrichment classification of large containers are of importance to safeguards and counter-terrorism agencies. There is a need to quickly categorize and segregate suspect items as 'depleted' or 'enriched' on a 'Go/No Go' basis. Recent improvements in gamma spectroscopy technologies have provided the capability to perform rapid field analysis using portable and hand-held devices such as battery-operated medium and high resolution detectors (including lanthanum halide and high purity germanium). Furthermore a new generation of portal monitors are currently under development with advanced spectroscopic capabilities. Instruments and technologies that were previously the domain of complex lab systems are now widely available as touch-screen 'off-the-shelf' units. Despite such advances, the task of enrichment analysis remains a complex exercise. This is particularly so when surveying large items such as drums and crates containing debris of unknown density and composition contaminated with uranium. The challenge is equally applicable to safeguards inspectors evaluating large items and for interdiction of illicit special nuclear materials in mass transport e.g. shipping containers at ports and borders. The variable shielding, container size, lack of matrix knowledge, wall thickness and self-shielding compound this problem. Performing an accurate assessment within the short count time window demanded of the field operative, leads to the need for a reliable method that can adapt to such conditions and is robust to a wide dynamic range of counting statistics. Several methods are evaluated with reference to the performance metrics defined in applicable standards. The primary issue is to minimize the bias that can result from attenuation effects, particularly as the gamma emissions from U235 are low energy and therefore highly susceptible to absorption in large containers with metal scrap. Use of other radiometric signatures such as

  9. Scientific and technical information as a source for IAEA safeguards state evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, M.; Feldman, Y.; Ferguson, M. [International Atomic Energy Agency, Vienna (Austria)

    2014-07-01

    The IAEA Department of Safeguards is continually working to refine its methodologies and procedures for the analysis of information relevant to the evaluation of the nuclear fuel cycle in States that have safeguards agreements with the IAEA. This analysis is required to achieve an understanding of States' nuclear-related activities against which a State's declarations are evaluated for correctness as well as completeness, and to provide credible assurances on the peaceful uses of nuclear material in the State. To achieve this end, diversification of sources and comparison for consistency among available information is essential to ensure an accurate assessment of a State's nuclear activities. Open sources of information on scientific and technical (S&T) developments and research provide the Department of Safeguards with an enhanced basis to evaluate the technical capabilities of States. These information sources are regularly and systematically assessed to provide information about industrial capabilities, patenting activities and research and development activities in States as reflected through published scientific and technical literature. Using such sources, in addition to other, long-established safeguards information sources, helps the IAEA to draw soundly-based safeguards conclusions. The utility of this category of information in terms of the State evaluation process lies primarily in the comparison with other sources of information, especially State-declared information, and in the assessment of consistency of all safeguards-relevant information regarding nuclear fuel cycle technologies and activities in a State. The current paper aims to describe the use of S&T literature, how information from different sources is consolidated, how it is analysed and how it contributes in the overall process of State evaluation in the IAEA Department of Safeguards. (author)

  10. Designing Data Protection Safeguards Ethically

    Directory of Open Access Journals (Sweden)

    Ugo Pagallo

    2011-03-01

    Full Text Available Since the mid 1990s, lawmakers and scholars have worked on the idea of embedding data protection safeguards in information and communication technology (ICT with the aim to access and control personal data in compliance with current regulatory frameworks. This effort has been strengthened by the capacities of computers to draw upon the tools of artificial intelligence (AI and operations research. However, work on AI and the law entails crucial ethical issues concerning both values and modalities of design. On one hand, design choices might result in conflicts of values and, vice versa, values may affect design features. On the other hand, the modalities of design cannot only limit the impact of harm-generating behavior but also prevent such behavior from occurring via self-enforcement technologies. In order to address some of the most relevant issues of data protection today, the paper suggests we adopt a stricter, yet more effective version of “privacy by design.” The goal should be to reinforce people’s pre-existing autonomy, rather than having to build it from scratch.

  11. Performance monitoring of safeguards equipment

    International Nuclear Information System (INIS)

    Sirisena, K.; Peltoranta, M.; Goussarov, V.; Vodrazka, P.

    1999-01-01

    SGTCS is responsible for monitoring and reporting the performance of the SG equipment. Performance monitoring (PM) has been implemented in most important safeguards equipment operating unattended in nuclear facilities. Inspectors acquire equipment performance data in facilities. After inspection, the data package is submitted to SGTCS for processing and analysis. The performance data is used for identification of systems or components, which should be changed in the field and for identification of modules which, should be diagnosed at HQ in order to determine the cause of failure. Moreover, the performance data is used for preventive maintenance and spares distribution planning, and to provide statistics for official reports and management decision making. An important part of the performance monitoring is reporting. Equipment performance reports contain information about equipment inventory, utilization, failure types, failure distribution, and reliability. Trends in performance are given in graphical form in cases, where past data is available. Reliability estimates such as expected times between failures are provided. The automated reporting tools are obtainable through EMIS database application. (author)

  12. New approach to safeguards accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.

    1977-03-01

    In recent years there has been widespread concern over the problem of nuclear safeguards. Due to the proliferation of nuclear reactors throughout the world, the concern about the loss or diversion of nuclear materials at various points in the fuel cycle has greatly increased. To minimize the possibility of material loss, the nuclear industry relies on physical protection systems and materials accountability procedures at licensed facilities. Present techniques of material accountability rely on double-entry accounting systems. For various reasons, only noisy observations of on-hand inventory are available. Hence one is forced to use statistical techniques in an attempt to detect the existence of missing material. Current practice is to use control charts as the basis for detecting significant material losses. Control charts may aid in detecting large material losses but are insensitive to small quantities of material loss, even if these small losses occur repeatedly over a long period of time. The purpose of this research is to show the feasibility of using linear state estimation theory in nuclear material accountability. The Kalman Filter is used as the state estimation technique. The state vector which consists of on-hand inventory and material losses is estimated recursively

  13. Mass Spectrometric Analysis for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Boulyga, S.

    2013-01-01

    The release of man-made radionuclides into the environment results in contamination that carries specific isotopic signatures according to the release scenarios and the previous usage of materials and facilities. In order to trace the origin of such contamination and/or to assess the potential impact on the public and environmental health, it is necessary to determine the isotopic composition and activity concentrations of radionuclides in environmental samples in an accurate and timely fashion. Mass spectrometric techniques, such as thermal ionization mass spectrometry (TIMS), secondary ion mass spectrometry (SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) belong to the most powerful methods for analysis of nuclear and related samples in nuclear safeguards, forensics, and environmental monitoring. This presentation will address the potential of mass spectrometric analysis of actinides at ultra-trace concentration levels, isotopic analysis of micro-samples, age determination of nuclear materials as well as identification and quantification of elemental and isotopic signatures of nuclear samples in general. (author)

  14. Strengthened safeguards: Present and future challenges

    International Nuclear Information System (INIS)

    Goldschmidt, Pierre

    2001-01-01

    Full text: The safeguards system is experiencing what has been seen as a revolution and, in doing so, it is confronting a series of challenges. These can be grouped into three areas. Drawing and maintaining safeguards conclusions - The process by which the safeguards conclusions are derived is based upon the analysis, evaluation and review of all the information available to the Agency. This process is on- going, but the State Evaluation Reports are compiled and reviewed periodically. For States with an additional protocol in force, the absence of indicators of the presence of undeclared nuclear material or activities provides the basis for the safeguards conclusion. Future challenges center on States' expectations of, and reactions to, the results of the evaluation and review process. Designing and implementing integrated safeguards - The conceptual framework of integrated safeguards is being actively pursued. Basic principles have been defined and integrated safeguards approaches have been developed for various types of facilities. Work is also progressing on the design of integrated safeguards approaches for specific States. Complementary access is being successfully implemented, and procedures for the use of unannounced inspections are being developed with the prospect of cost- effectiveness gains. Costs neutrality vs. quality and credibility - The Department faces serious staff and financial challenges. It has succeeded so far in 'doing more' and 'doing better' within a zero-real growth budget, but the scope for further significant efficiency gains is exhausted. There is no capacity to absorb new or unexpected tasks. Difficulties in recruiting and retaining qualified and experienced staff exacerbate the problems and add to costs. The Director General of the IAEA has referred to the need for new initiatives to bridge the budgetary gap; a possible measure is proposed. The tasks of meeting the challenges and demands of strengthened safeguards have been added to

  15. Promoting Safeguards Best Practice through the Asia-Pacific Safeguards Network (APSN)

    International Nuclear Information System (INIS)

    Floyd, R.; Everton, C.; Lestari, S.

    2015-01-01

    There is a growing international focus on effective regulatory oversight of nuclear energy across the three pillars of nuclear safety, security and safeguards. Regarding nuclear safeguards, States in the Asia-Pacific region recognize the importance of cooperation and sharing of experiences to ensure that this is implemented to high international standards. For this reason the Asia-Pacific Safeguards Network (APSN) was formed in 2009 - an informal network of departments, agencies and regulatory authorities with safeguards responsibilities from some 15 countries across the Asia-Pacific region. The objective of APSN it to bring States in the region together to develop practical measures for enhancing effective safeguards implementation, through workshops, sharing experiences and other safeguards projects. APSN works closely with the IAEA to achieve these objectives. This paper will outline the role and objectives of APSN and provide examples of how APSN work together to enhance safeguards effectiveness and raise awareness. The paper will also explore how this model of a broad community of States working together on safeguards could enhance implementation and awareness in other regions of the world. (author)

  16. Safeguards systems analysis research and development and the practice of safeguards at DOE facilities

    International Nuclear Information System (INIS)

    Zack, N.R.; Thomas, K.E.; Markin, J.T.; Tape, J.W.

    1991-01-01

    Los Alamos Safeguards Systems Group personnel interact with Department of Energy (DOE) nuclear materials processing facilities in a number of ways. Among them are training courses, formal technical assistance such as developing information management or data analysis software, and informal ad hoc assistance especially in reviewing and commenting on existing facility safeguards technology and procedures. These activities are supported by the DOE Office of Safeguards and Security, DOE Operations Offices, and contractor organizations. Because of the relationships with the Operations Office and facility personnel, the Safeguards Systems Group research and development (R and D) staff have developed an understanding of the needs of the entire complex. Improved safeguards are needed in areas such as materials control activities, accountability procedures and techniques, systems analysis and evaluation methods, and material handling procedures. This paper surveys the generic needs for efficient and cost effective enhancements in safeguards technologies and procedures at DOE facilities, identifies areas where existing safeguards R and D products are being applied or could be applied, and sets a direction for future systems analysis R and D to address practical facility safeguards needs

  17. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  18. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-01-01

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency's (IAEA's) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL's International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  19. The state-level approach: moving beyond integrated safeguards

    International Nuclear Information System (INIS)

    Tape, James W.

    2008-01-01

    The concept of a State-Level Approach (SLA) for international safeguards planning, implementation, and evaluation was contained in the Conceptual Framework for Integrated Safeguards (IS) agreed in 2002. This paper describes briefly the key elements of the SLA, including State-level factors and high-level safeguards objectives, and considers different cases in which application of the SLA methodology could address safeguards for 'suspect' States, 'good' States, and Nuclear Weapons States hosting fuel cycle centers. The continued use and further development of the SLA to customize safeguards for each State, including for States already under IS, is seen as central to effective and efficient safeguards for an expanding nuclear world.

  20. Fundamentals of materials accounting for nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. (comp.)

    1989-04-01

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.