WorldWideScience

Sample records for enabled integrated earth

  1. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open......-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost-effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current...... and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir...

  2. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  3. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    Directory of Open Access Journals (Sweden)

    Radoslaw Guzinski

    2014-08-01

    Full Text Available The Water Observation and Information System (WOIS is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO data. The WOIS has been developed by, among others, the authors of this paper under the TIGER-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements of the participating key African water authorities, and demonstrated with dedicated case studies utilizing the software in operational scenarios. They cover a wide range of themes and information products, including basin-wide characterization of land and water resources, lake water quality monitoring, hydrological modeling and flood forecasting and mapping. For each monitoring task, step-by-step workflows were developed, which can either be adjusted by the user or largely automatized to feed into existing data streams and reporting schemes. The WOIS enables African water authorities to fully exploit the increasing EO capacity offered by current and upcoming generations of satellites, including the Sentinel missions.

  4. Enabling model customization and integration

    Science.gov (United States)

    Park, Minho; Fishwick, Paul A.

    2003-09-01

    Until fairly recently, the idea of dynamic model content and presentation were treated synonymously. For example, if one was to take a data flow network, which captures the dynamics of a target system in terms of the flow of data through nodal operators, then one would often standardize on rectangles and arrows for the model display. The increasing web emphasis on XML, however, suggests that the network model can have its content specified in an XML language, and then the model can be represented in a number of ways depending on the chosen style. We have developed a formal method, based on styles, that permits a model to be specified in XML and presented in 1D (text), 2D, and 3D. This method allows for customization and personalization to exert their benefits beyond e-commerce, to the area of model structures used in computer simulation. This customization leads naturally to solving the bigger problem of model integration - the act of taking models of a scene and integrating them with that scene so that there is only one unified modeling interface. This work focuses mostly on customization, but we address the integration issue in the future work section.

  5. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Kass, Steve; Huber, Silvia

    2014-01-01

    The Water Observation and Information System (WOIS) is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO) data. The WOIS has been developed by, among others, the authors of this paper under the TIGER......-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA) and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed...... to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements...

  6. Integrated Photonics Enabled by Slow Light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources.......In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  7. Enabling Earth Science Measurements with NASA UAS Capabilites

    Science.gov (United States)

    Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce

    2015-01-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.

  8. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  9. Integrated and Intelligent Manufacturing: Perspectives and Enablers

    Directory of Open Access Journals (Sweden)

    Yubao Chen

    2017-10-01

    Full Text Available With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP in 2011 and the National Network for Manufacturing Innovation (NNMI in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further “leverage existing resources... to nurture manufacturing innovation and accelerate commercialization” by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10-year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Internet of Things and Services (IoTS, cyber-physical systems (CPSs, and cloud computing are discussed. Challenges are addressed with applications that are based on commercially available platforms such as General Electric (GE’s Predix and PTC’s ThingWorx.

  10. The MMI Device Ontology: Enabling Sensor Integration

    Science.gov (United States)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e

  11. Semantics-enabled knowledge management for global Earth observation system of systems

    Science.gov (United States)

    King, Roger L.; Durbha, Surya S.; Younan, Nicolas H.

    2007-10-01

    The Global Earth Observation System of Systems (GEOSS) is a distributed system of systems built on current international cooperation efforts among existing Earth observing and processing systems. The goal is to formulate an end-to-end process that enables the collection and distribution of accurate, reliable Earth Observation data, information, products, and services to both suppliers and consumers worldwide. One of the critical components in the development of such systems is the ability to obtain seamless access of data across geopolitical boundaries. In order to gain support and willingness to participate by countries around the world in such an endeavor, it is necessary to devise mechanisms whereby the data and the intellectual capital is protected through procedures that implement the policies specific to a country. Earth Observations (EO) are obtained from a multitude of sources and requires coordination among different agencies and user groups to come to a shared understanding on a set of concepts involved in a domain. It is envisaged that the data and information in a GEOSS context will be unprecedented and the current data archiving and delivery methods need to be transformed into one that allows realization of seamless interoperability. Thus, EO data integration is dependent on the resolution of conflicts arising from a variety of areas. Modularization is inevitable in distributed environments to facilitate flexible and efficient reuse of existing ontologies. Therefore, we propose a framework for modular ontologies based knowledge management approach for GEOSS and present methods to enable efficient reasoning in such systems.

  12. Enabling Analytics in the Cloud for Earth Science Data

    Science.gov (United States)

    Ramachandran, Rahul; Lynnes, Christopher; Bingham, Andrew W.; Quam, Brandi M.

    2018-01-01

    The purpose of this workshop was to hold interactive discussions where providers, users, and other stakeholders could explore the convergence of three main elements in the rapidly developing world of technology: Big Data, Cloud Computing, and Analytics, [for earth science data].

  13. Enabling the transition towards Earth Observation Science 2.0

    Science.gov (United States)

    Mathieu, Pierre-Philippe; Desnos, Yves-Louis

    2015-04-01

    Science 2.0 refers to the rapid and systematic changes in doing Research and organising Science driven by the rapid advances in ICT and digital technologies combined with a growing demand to do Science for Society (actionable research) and in Society (co-design of knowledge). Nowadays, teams of researchers around the world can easily access a wide range of open data across disciplines and remotely process them on the Cloud, combining them with their own data to generate knowledge, develop information products for societal applications, and tackle complex integrative complex problems that could not be addressed a few years ago. Such rapid exchange of digital data is fostering a new world of data-intensive research, characterized by openness, transparency, and scrutiny and traceability of results, access to large volume of complex data, availability of community open tools, unprecedented level of computing power, and new collaboration among researchers and new actors such as citizen scientists. The EO scientific community is now facing the challenge of responding to this new paradigm in science 2.0 in order to make the most of the large volume of complex and diverse data delivered by the new generation of EO missions, and in particular the Sentinels. In this context, ESA - in particular within the framework of the Scientific Exploitation of Operational Missions (SEOM) element - is supporting a variety of activities in partnership with research communities to ease the transition and make the most of the data. These include the generation of new open tools and exploitation platforms, exploring new ways to exploit data on cloud-based platforms, dissiminate data, building new partnership with citizen scientists, and training the new generation of data scientists. The paper will give a brief overview of some of ESA activities aiming to facilitate the exploitation of large amount of data from EO missions in a collaborative, cross-disciplinary, and open way, from science to

  14. How Enterprise Architecture Maturity Enables Post-merger IT Integration

    DEFF Research Database (Denmark)

    Törmer, Robert Lorenz; Henningsson, Stefan

    2017-01-01

    advances the argument that a company’s pre-existing Enterprise Architecture decisively shapes the capability to implement post-merger IT integration and subsequently realize benefits from M&A. Our multiple-case study investigates three acquisition cases and develops an explanatory theory of how Enterprise...... Architecture maturity enables the implementation of distinct integration strategies. The results do not only enrich the academic literature on M&A, but also show the strategic value of Enterprise Architecture maturity....

  15. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  16. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  17. DNA-Enabled Integrated Molecular Systems for Computation and Sensing

    Science.gov (United States)

    2014-05-21

    Computational devices can be chemically conjugated to different strands of DNA that are then self-assembled according to strict Watson − Crick binding rules... DNA -Enabled Integrated Molecular Systems for Computation and Sensing Craig LaBoda,† Heather Duschl,† and Chris L. Dwyer*,†,‡ †Department of...guided folding of DNA , inspired by nature, allows designs to manipulate molecular-scale processes unlike any other material system. Thus, DNA can be

  18. Enabling collaboration on semiformal mathematical knowledge by semantic web integration

    CERN Document Server

    Lange, C

    2011-01-01

    Mathematics is becoming increasingly collaborative, but software does not sufficiently support that: Social Web applications do not currently make mathematical knowledge accessible to automated agents that have a deeper understanding of mathematical structures. Such agents exist but focus on individual research tasks, such as authoring, publishing, peer-review, or verification, instead of complex collaboration workflows. This work effectively enables their integration by bridging the document-oriented perspective of mathematical authoring and publishing, and the network perspective of threaded

  19. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  20. The GEOSS solution for enabling data interoperability and integrative research.

    Science.gov (United States)

    Nativi, Stefano; Mazzetti, Paolo; Craglia, Max; Pirrone, Nicola

    2014-03-01

    Global sustainability research requires an integrative research effort underpinned by digital infrastructures (systems) able to harness data and heterogeneous information across disciplines. Digital data and information sharing across systems and applications is achieved by implementing interoperability: a property of a product or system to work with other products or systems, present or future. There are at least three main interoperability challenges a digital infrastructure must address: technological, semantic, and organizational. In recent years, important international programs and initiatives are focusing on such an ambitious objective. This manuscript presents and combines the studies and the experiences carried out by three relevant projects, focusing on the heavy metal domain: Global Mercury Observation System, Global Earth Observation System of Systems (GEOSS), and INSPIRE. This research work recognized a valuable interoperability service bus (i.e., a set of standards models, interfaces, and good practices) proposed to characterize the integrative research cyber-infrastructure of the heavy metal research community. In the paper, the GEOSS common infrastructure is discussed implementing a multidisciplinary and participatory research infrastructure, introducing a possible roadmap for the heavy metal pollution research community to join GEOSS as a new Group on Earth Observation community of practice and develop a research infrastructure for carrying out integrative research in its specific domain.

  1. Multi-target electrochemical biosensing enabled by integrated CMOS electronics

    International Nuclear Information System (INIS)

    Rothe, J; Lewandowska, M K; Heer, F; Frey, O; Hierlemann, A

    2011-01-01

    An integrated electrochemical measurement system, based on CMOS technology, is presented, which allows the detection of several analytes in parallel (multi-analyte) and enables simultaneous monitoring at different locations (multi-site). The system comprises a 576-electrode CMOS sensor chip, an FPGA module for chip control and data processing, and the measurement laptop. The advantages of the highly versatile system are demonstrated by two applications. First, a label-free, hybridization-based DNA sensor is enabled by the possibility of large-scale integration in CMOS technology. Second, the detection of the neurotransmitter choline is presented by assembling the chip with biosensor microprobe arrays. The low noise level enables a limit of detection of, e.g., 0.3 µM choline. The fully integrated system is self-contained: it features cleaning, functionalization and measurement functions without the need for additional electrical equipment. With the power supplied by the laptop, the system is very suitable for on-site measurements

  2. Integrating Socioeconomic Data into GEOSS to Enable Societal Benefits

    Science.gov (United States)

    Chen, R. S.; Yetman, G.

    2009-12-01

    Achieving the GEOSS vision of societal benefits from Earth observation data is a multi-faceted challenge. Linking Earth observation systems into an interoperable system of systems is an important first step, but not sufficient on its own to fulfill the ambitious GEOSS goal of improving decision making for disaster mitigation, public health, ecosystem and resource management, agriculture, and the other societal benefit areas. Significant attention needs to be given to interdisciplinary data integration, especially with regard to incorporating data and information on human activities and welfare into monitoring, modeling, and prediction activities. For example, the ability to assess, monitor, and predict the risks posed by different natural hazards is predicated on an understanding of the underlying exposure and vulnerability of different human populations and their economic assets to past, present, and future hazardous events. The NASA Socioeconomic Data and Applications Center (SEDAC) has pioneered the integration of socioeconomic data with remote sensing data within the NASA Earth Observing System Data and Information System (EOSDIS) and has contributed actively to both phase 1 and 2 of the GEOSS Architecture Implementation Pilot. We present here several use cases for socioeconomic data integration in GEOSS and recent experience in developing an interoperable Web Processing Service (WPS) for estimating population exposure as part of the GEOSS initial operating capability. We also discuss key scientific, technical, and policy challenges to developing GEOSS products and services that will be able to meet the needs of both interdisciplinary and applied users and in so doing help achieve the GEOSS goal of generating significant societal benefits.

  3. Are Earth Sciences lagging behind in data integration methodologies?

    CSIR Research Space (South Africa)

    Paasche, H

    2013-11-01

    Full Text Available This article reflects discussions German and South African Earth scientists, statisticians and risk analysts had on occasion of two bilateral workshops on Data Integration Technologies for Earth System Modelling and Resource Management...

  4. Lithography for enabling advances in integrated circuits and devices.

    Science.gov (United States)

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.

  5. Integration services to enable regional shared electronic health records.

    Science.gov (United States)

    Oliveira, Ilídio C; Cunha, João P S

    2011-01-01

    eHealth is expected to integrate a comprehensive set of patient data sources into a coherent continuum, but implementations vary and Portugal is still lacking on electronic patient data sharing. In this work, we present a clinical information hub to aggregate multi-institution patient data and bridge the information silos. This integration platform enables a coherent object model, services-oriented applications development and a trust framework. It has been instantiated in the Rede Telemática de Saúde (www.RTSaude.org) to support a regional Electronic Health Record approach, fed dynamically from production systems at eight partner institutions, providing access to more than 11,000,000 care episodes, relating to over 350,000 citizens. The network has obtained the necessary clearance from the Portuguese data protection agency.

  6. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    Science.gov (United States)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  7. An Integrated Conceptual Framework for RFID Enabled Healthcare

    Directory of Open Access Journals (Sweden)

    Gaurav Gupta

    2015-12-01

    Full Text Available Radio frequency identification (RFID technology is a wireless communication technology that facilitates automatic identification and data capture without human intervention. Since 2000s, RFID applications in the health care industry are increasing.  RFID has brought many improvements in areas like patient care, patient safety, equipment tracking, resource utilization, processing time reduction and so on. On the other hand, often deployment of RFID is questioned on the issues like high capital investment, technological complexity, and privacy concerns. Exploration of existing literature indicates the presence of works on the topics like asset management, patient management, staff management, institutional advantages, and organizational issues. However, most of the works are focused on a particular issue. Still now, scholarly attempts to integrate all the facades of RFID-enabled healthcare are limited. In this paper, we propose a conceptual framework that represents the scope for implementation of this technology and the various dimensions of RFID-enabled healthcare and demonstrate them in detail. Also, we have discussed the critical issues that can prove to be potential barriers to its successful implementation and current approaches to resolving these. We also discuss some of the regulatory initiatives encouraging its adoption in the healthcare industry. Also, we have highlighted the future research opportunities in this domain.

  8. A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    Science.gov (United States)

    Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville

    2007-01-01

    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.

  9. Earth System Science: An Integrated Approach.

    Science.gov (United States)

    Environment, 2001

    2001-01-01

    Details how an understanding of the role played by human activities in global environmental change has emerged. Presents information about the earth system provided by research programs. Speculates about the direction of future research. (DDR)

  10. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  11. AFC-Enabled Simplified High-Lift System Integration Study

    Science.gov (United States)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  12. Reduced ENSO Variability at the LGM Revealed by an Isotope-Enabled Earth System Model

    Science.gov (United States)

    Zhu, Jiang; Liu, Zhengyu; Brady, Esther; Otto-Bliesner, Bette; Zhang, Jiaxu; Noone, David; Tomas, Robert; Nusbaumer, Jesse; Wong, Tony; Jahn, Alexandra; hide

    2017-01-01

    Studying the El Nino Southern Oscillation (ENSO) in the past can help us better understand its dynamics and improve its future projections. However, both paleoclimate reconstructions and model simulations of ENSO strength at the Last Glacial Maximum (LGM; 21 ka B.P.) have led to contradicting results. Here we perform model simulations using the recently developed water isotope-enabled Community Earth System Model (iCESM). For the first time, model-simulated oxygen isotopes are directly compared with those from ENSO reconstructions using the individual foraminifera analysis (IFA). We find that the LGM ENSO is most likely weaker comparing with the preindustrial. The iCESM suggests that total variance of the IFA records may only reflect changes in the annual cycle instead of ENSO variability as previously assumed. Furthermore, the interpretation of subsurface IFA records can be substantially complicated by the habitat depth of thermocline-dwelling foraminifera and their vertical migration with a temporally varying thermocline.

  13. ESIP Federation: A Case Study on Enabling Collaboration Infrastructure to Support Earth Science Informatics Communities

    Science.gov (United States)

    Robinson, E.; Meyer, C. B.; Benedict, K. K.

    2013-12-01

    A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a

  14. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth).

    Science.gov (United States)

    Rothschild, Lynn J

    2016-08-15

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth. © 2016 The Author(s).

  15. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  16. Enabling and Encouraging Transparency in Earth Science Data for Decision Making

    Science.gov (United States)

    Abbott, S. B.

    2010-12-01

    Our ability to understand, respond, and make decisions about our changing planet hinges on timely scientific information and situational awareness. Information and understanding will continue to be the foundations of decision support in the face of uncertainty. Over the last 40 years, investments in Earth observations have brought remarkable achievements in weather prediction, disaster prediction and response, land management, and our broad base of Earth science knowledge. The only way to know what is happening to our planet and to manage our resources wisely is to measure it, This means tracking changes decade after decade and reanalyzing the record in light of new insights, technologies, and methodologies. In order to understand and respond to climate change and other global challenges, there is a need for a high degree of transparency in the publication, management, traceability, and citability of science data, and particularly for Earth science data. In addition, it is becoming increasingly important that free, open, and authoritative sources of quality data are available for peer review. One important focus is on applications and opportunities for enhancing data exchange standards for use with Earth science data. By increasing the transparency of scientific work and providing incentives for researchers and institutions to openly share data, we will more effectively leverage the scientific capacity of our Nation to address climate change and to meet future challenges. It is an enormous challenge to collect, organize, and communicate the vast stores of data maintained across the government. The Administration is committed to moving past these barriers in providing the American public with unprecedented access to useful government data, including an open architecture and making data available in multiple formats. The goal is to enable better decision-making, drive transparency, and to help power innovation for a stronger America. Whether for a research project

  17. EarthServer - an FP7 project to enable the web delivery and analysis of 3D/4D models

    Science.gov (United States)

    Laxton, John; Sen, Marcus; Passmore, James

    2013-04-01

    EarthServer aims at open access and ad-hoc analytics on big Earth Science data, based on the OGC geoservice standards Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS). The WCS model defines "coverages" as a unifying paradigm for multi-dimensional raster data, point clouds, meshes, etc., thereby addressing a wide range of Earth Science data including 3D/4D models. WCPS allows declarative SQL-style queries on coverages. The project is developing a pilot implementing these standards, and will also investigate the use of GeoSciML to describe coverages. Integration of WCPS with XQuery will in turn allow coverages to be queried in combination with their metadata and GeoSciML description. The unified service will support navigation, extraction, aggregation, and ad-hoc analysis on coverage data from SQL. Clients will range from mobile devices to high-end immersive virtual reality, and will enable 3D model visualisation using web browser technology coupled with developing web standards. EarthServer is establishing open-source client and server technology intended to be scalable to Petabyte/Exabyte volumes, based on distributed processing, supercomputing, and cloud virtualization. Implementation will be based on the existing rasdaman server technology developed. Services using rasdaman technology are being installed serving the atmospheric, oceanographic, geological, cryospheric, planetary and general earth observation communities. The geology service (http://earthserver.bgs.ac.uk/) is being provided by BGS and at present includes satellite imagery, superficial thickness data, onshore DTMs and 3D models for the Glasgow area. It is intended to extend the data sets available to include 3D voxel models. Use of the WCPS standard allows queries to be constructed against single or multiple coverages. For example on a single coverage data for a particular area can be selected or data with a particular range of pixel values. Queries on multiple surfaces can be

  18. Enabling Integration in Sports for Adolescents with Intellectual Disabilities

    Science.gov (United States)

    Grandisson, Marie; Tetreault, Sylvie; Freeman, Andrew R.

    2012-01-01

    Background: Promoting the health and social participation of adolescents with intellectual disability is important as they are particularly vulnerable to encountering difficulties in those areas. Integration of these individuals in integrated sports is one strategy to address this issue. Methods: The main objective of this study was to gain a…

  19. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    Science.gov (United States)

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  20. Highly integrated image sensors enable low-cost imaging systems

    Science.gov (United States)

    Gallagher, Paul K.; Lake, Don; Chalmers, David; Hurwitz, J. E. D.

    1997-09-01

    The highest barriers to wide scale implementation of vision systems have been cost. This is closely followed by the level of difficulty of putting a complete imaging system together. As anyone who has every been in the position of creating a vision system knows, the various bits and pieces supplied by the many vendors are not under any type of standardization control. In short, unless you are an expert in imaging, electrical interfacing, computers, digital signal processing, and high speed storage techniques, you will likely spend more money trying to do it yourself rather than to buy the exceedingly expensive systems available. Another alternative is making headway into the imaging market however. The growing investment in highly integrated CMOS based imagers is addressing both the cost and the system integration difficulties. This paper discusses the benefits gained from CMOS based imaging, and how these benefits are already being applied.

  1. Enabling an Integrated Rate-temporal Learning Scheme on Memristor

    Science.gov (United States)

    He, Wei; Huang, Kejie; Ning, Ning; Ramanathan, Kiruthika; Li, Guoqi; Jiang, Yu; Sze, Jiayin; Shi, Luping; Zhao, Rong; Pei, Jing

    2014-04-01

    Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems.

  2. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  3. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-09-27

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate

  4. From Soup to Nuts: How Terra has enabled the growth of NASA Earth science communication

    Science.gov (United States)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.

    2014-12-01

    The birth of NASA's Earth Observatory website in 1999 closely mirrored the launch of Terra and over the years its growth has paralleled that of the Earth Observing System (EOS) program. With the launch of Terra, NASA gained an extraordinary platform that not only promised new science capabilities but gave us the data and imagery for telling the stories behind the science. The Earth Observatory Group was founded to communicate these stories to the public. We will present how we have used the capabilities of all the Terra instruments over the past 15 years to expand the public's knowledge of NASA Earth science. The ever-increasing quantity and quality of Terra data, combined with technological improvements to data availability and services has allowed the Earth Observatory and, as a result, the greater science-aware media, to greatly expand the visibility of NASA data and imagery. We will offer thoughts on best practices in using these multi-faceted instruments for public communication and we will share how we have worked with Terra science teams and affiliated systems to see the potential stories in their data and the value of providing the data in a timely fashion. Terra has allowed us to tell the stories of our Earth today like never before.

  5. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  6. The Impact Imperative: A Space Infrastructure Enabling a Multi-Tiered Earth Defense

    Science.gov (United States)

    Campbell, Jonathan W.; Phipps, Claude; Smalley, Larry; Reilly, James; Boccio, Dona

    2003-01-01

    Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula a m . This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range. Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes! By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them &om striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in about a month while smaller rocks may be moved in a shorter time span. We recommend that space objectives be immediately reprioritized to start us moving quickly towards an infrastructure that will support a multiple option defense capability. Planning and development for a lunar laser facility should be initiated immediately in parallel with other options. All mitigation options are greatly enhanced by robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow significant intervention. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point

  7. Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education

    Science.gov (United States)

    Meletiou-Mavrotheris, Maria, Ed.; Mavrou, Katerina, Ed.; Paparistodemou, Efi, Ed.

    2015-01-01

    Despite increased interest in mobile devices as learning tools, the amount of available primary research studies on their integration into mathematics teaching and learning is still relatively small due to the novelty of these technologies. "Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education" presents…

  8. The Earth System Grid Center for Enabling Technologies (ESG-CET): Scaling the Earth System Grid to Petascale Data

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2007-09-27

    This report, which summarizes work carried out by the ESG-CET during the period April 1, 2007 through September 30, 2007, includes discussion of overall progress, period goals, highlights, collaborations and presentations. To learn more about our project, please visit the Earth System Grid website. In addition, this report will be forwarded to the DOE SciDAC project management, the Office of Biological and Environmental Research (OBER) project management, national and international stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), etc.), and collaborators. The ESG-CET executive committee consists of David Bernholdt, ORNL; Ian Foster, ANL; Don Middleton, NCAR; and Dean Williams, LLNL. The ESG-CET team is a collective of researchers and scientists with diverse domain knowledge, whose home institutions include seven laboratories (ANL, LANL, LBNL, LLNL, NCAR, ORNL, PMEL) and one university (ISI/USC); all work in close collaboration with the project's stakeholders and domain researchers and scientists. During this semi-annual reporting period, the ESG-CET increased its efforts on completing requirement documents, framework design, and component prototyping. As we strove to complete and expand the overall ESG-CET architectural plans and use-case scenarios to fit our constituency's scope of use, we continued to provide production-level services to the community. These services continued for IPCC AR4, CCES, and CCSM, and were extended to include Cloud Feedback Model Intercomparison Project (CFMIP) data.

  9. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, Steve

    2012-06-01

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software now known as the Earth System Grid Federation (ESGF) has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  10. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    Science.gov (United States)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  11. A SmallSat Approach for Global Imaging Spectroscopy of the Earth SYSTEM Enabled by Advanced Technology

    Science.gov (United States)

    Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.

    2017-12-01

    Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.

  12. An High Resolution Near-Earth Objects Population Enabling Next-Generation Search Strategies

    Science.gov (United States)

    Tricaico, Pasquale; Beshore, E. C.; Larson, S. M.; Boattini, A.; Williams, G. V.

    2010-01-01

    Over the past decade, the dedicated search for kilometer-size near-Earth objects (NEOs), potentially hazardous objects (PHOs), and potential Earth impactors has led to a boost in the rate of discoveries of these objects. The catalog of known NEOs is the fundamental ingredient used to develop a model for the NEOs population, either by assessing and correcting for the observational bias (Jedicke et al., 2002), or by evaluating the migration rates from the NEOs source regions (Bottke et al., 2002). The modeled NEOs population is a necessary tool used to track the progress in the search of large NEOs (Jedicke et al., 2003) and to try to predict the distribution of the ones still undiscovered, as well as to study the sky distribution of potential Earth impactors (Chesley & Spahr, 2004). We present a method to model the NEOs population in all six orbital elements, on a finely grained grid, allowing us the design and test of targeted and optimized search strategies. This method relies on the observational data routinely reported to the Minor Planet Center (MPC) by the Catalina Sky Survey (CSS) and by other active NEO surveys over the past decade, to determine on a nightly basis the efficiency in detecting moving objects as a function of observable quantities including apparent magnitude, rate of motion, airmass, and galactic latitude. The cumulative detection probability is then be computed for objects within a small range in orbital elements and absolute magnitude, and the comparison with the number of know NEOs within the same range allows us to model the population. When propagated to the present epoch and projected on the sky plane, this provides the distribution of the missing large NEOs, PHOs, and potential impactors.

  13. Design Enhancements of the Fourier Kelvin Stellar Interferometer to Enable Detection of Earth Twins

    Science.gov (United States)

    Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephan; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Kern, Pierre; Leger, Alain; hide

    2009-01-01

    During the last few years, considerable effort has been directed towards very large-scale (> $5 billion) missions to detect and characterize Mars-radius to Earth-radius planets around nearby stars; such as the Terrestrial Planet Finder Interferometer and Darwin missions. However, technological issues such as formation flying and control of systematic noise sources will likely prevent these missions from entering Phase A until at least the end of the next decade. Presently more than 350 planets have been discovered by a variety of techniques, and little is known about the majority of them other than their approximate mass. However, a simplified nulling interferometer operating in the near- to mid-infrared (e.g. approx. 5-15 microns), like the enhanced version of the Fourier Kelvin Stellar Interferometer (FKSI), can characterize the atmospheres of a large sample of the known planets - including Earth twins. Many other scientific problems can be addressed with a system like FKSI, including the studies of debris disks, active galactic nuclei, and low mass companions around nearby stars. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics including siderostats.

  14. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  15. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  16. Enabling Long-Term Earth Science Research: Changing Data Practices (Invited)

    Science.gov (United States)

    Baker, K. S.

    2013-12-01

    Data stewardship plans are shaped by our shared experiences. As a result, community engagement and collaborative activities are central to the stewardship of data. Since modes and mechanisms of engagement have changed, we benefit from asking anew: ';Who are the communities?' and ';What are the lessons learned?'. Data stewardship with its long-term care perspective, is enriched by reflection on community experience. This presentation draws on data management issues and strategies originating from within long-term research communities as well as on recent studies informed by library and information science. Ethnographic case studies that capture project activities and histories are presented as resources for comparative analysis. Agency requirements and funding opportunities are stimulating collaborative endeavors focused on data re-use and archiving. Research groups including earth scientists, information professionals, and data systems designers are recognizing the possibilities for new ways of thinking about data in the digital arena. Together, these groups are re-conceptualizing and reconfiguring for data management and data curation. A differentiation between managing data for local use and production of data for re-use remotely in locations and fields remote from the data origin is just one example of the concepts emerging to facilitate development of data management. While earth scientists as data generators have the responsibility to plan new workflows and documentation practices, data and information specialists have responsibility to promote best practices as well as to facilitate the development of community resources such as controlled vocabularies and data dictionaries. With data-centric activities and changing data practices, the potential for creating dynamic community information environments in conjunction with development of data facilities exists but remains elusive.

  17. Advancing coupled human-earth system models: The integrated Earth System Model Project

    Science.gov (United States)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems

  18. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis

    NARCIS (Netherlands)

    Geest, van Geert; Bourke, Peter M.; Voorrips, Roeland E.; Marasek-Ciolakowska, Agnieszka; Liao, Yanlin; Post, Aike; Meeteren, van Uulke; Visser, Richard G.F.; Maliepaard, Chris; Arens, Paul

    2017-01-01

    Key message: We constructed the first integrated genetic linkage map in a polysomic hexaploid. This enabled us to estimate inheritance of parental haplotypes in the offspring and detect multi-allelic QTL.Abstract: Construction and use of linkage maps are challenging in hexaploids with polysomic

  19. The 7 Habits of Highly Effective Implementation of eHealth Enabled Integrated Care

    NARCIS (Netherlands)

    Keijser, Wouter Alexander; Penterman, L; van Montfort, Augustinus P.W.P.; Smits, Jacco Gerardus Wilhelmus Leonardus; Wilderom, Celeste P.M.

    2017-01-01

    Introduction: ‘E-health enabled integrated care’ (eHEIC) has high potential to improve quality of care, widen access and increase efficiency. Experts and scholars increasingly report about difficulties of sustainable eHEIC implementation. These reports indicate in particular ‘human factors’ often

  20. Integrating Technology into Instruction at a Public University in Kyrgyzstan: Barriers and Enablers

    Science.gov (United States)

    Muhametjanova, Gulshat; Cagiltay, Kursat

    2016-01-01

    The purpose of this study was to determine enablers and barriers to the technology integration into education based on the example of the situation at the Kyrgyz-Turkish Manas University as reported by students and instructors. The study employed the mixed-methods research design, combining data obtained from 477 student and 57 instructor…

  1. An IoT-enabled supply chain integration framework : empirical case studies

    OpenAIRE

    Wakenshaw, Susan Y. L.; Maple, Carsten; Chen, Daqiang; Micillo, Rosario

    2017-01-01

    Supply chain integration is crucial for supply chain performance, particularly in industry 4.0. With the proliferation of Internet of Things (IoT) and the use of cyber-physical systems, supply chain integration needs to be greatly enhanced. In this paper, we explore supply integration (process and application) in the supply chain network enabled by IoT. Using the case study method, we investigate technical and business applications of IoT in supply chains and how it can interface with the pro...

  2. A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems

    Science.gov (United States)

    Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.

    2017-12-01

    We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial

  3. Multi-omic data integration enables discovery of hidden biological regularities

    DEFF Research Database (Denmark)

    Ebrahim, Ali; Brunk, Elizabeth; Tan, Justin

    2016-01-01

    Rapid growth in size and complexity of biological data sets has led to the 'Big Data to Knowledge' challenge. We develop advanced data integration methods for multi- level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration...... of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome- scale models, based on genomic and bibliomic data......, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can...

  4. Creating a FIESTA (Framework for Integrated Earth Science and Technology Applications) with MagIC

    Science.gov (United States)

    Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Tauxe, L.; Constable, C.

    2017-12-01

    The Magnetics Information Consortium (https://earthref.org/MagIC) has recently developed a containerized web application to considerably reduce the friction in contributing, exploring and combining valuable and complex datasets for the paleo-, geo- and rock magnetic scientific community. The data produced in this scientific domain are inherently hierarchical and the communities evolving approaches to this scientific workflow, from sampling to taking measurements to multiple levels of interpretations, require a large and flexible data model to adequately annotate the results and ensure reproducibility. Historically, contributing such detail in a consistent format has been prohibitively time consuming and often resulted in only publishing the highly derived interpretations. The new open-source (https://github.com/earthref/MagIC) application provides a flexible upload tool integrated with the data model to easily create a validated contribution and a powerful search interface for discovering datasets and combining them to enable transformative science. MagIC is hosted at EarthRef.org along with several interdisciplinary geoscience databases. A FIESTA (Framework for Integrated Earth Science and Technology Applications) is being created by generalizing MagIC's web application for reuse in other domains. The application relies on a single configuration document that describes the routing, data model, component settings and external services integrations. The container hosts an isomorphic Meteor JavaScript application, MongoDB database and ElasticSearch search engine. Multiple containers can be configured as microservices to serve portions of the application or rely on externally hosted MongoDB, ElasticSearch, or third-party services to efficiently scale computational demands. FIESTA is particularly well suited for many Earth Science disciplines with its flexible data model, mapping, account management, upload tool to private workspaces, reference metadata, image

  5. Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities

    Science.gov (United States)

    Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.

    2009-01-01

    Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.

  6. CIM-EARTH: Community integrated model of economic and resource trajectories for humankind.

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.; Foster, I.; Judd, K.; Moyer, E.; Munson, T.; Univ. of Chicago; Hoover Inst.

    2010-01-01

    Climate change is a global problem with local climatic and economic impacts. Mitigation policies can be applied on large geographic scales, such as a carbon cap-and-trade program for the entire U.S., on medium geographic scales, such as the NOx program for the northeastern U.S., or on smaller scales, such as statewide renewable portfolio standards and local gasoline taxes. To enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of mitigation policies, we are developing dynamic general equilibrium models capable of incorporating important climate impacts. This report describes the economic framework we have developed and the current Community Integrated Model of Economic and Resource Trajectories for Humankind (CIM-EARTH) instance.

  7. Enabling the Internet of Things from integrated circuits to integrated systems

    CERN Document Server

    2017-01-01

    This book offers the first comprehensive view on integrated circuit and system design for the Internet of Things (IoT), and in particular for the tiny nodes at its edge. The authors provide a fresh perspective on how the IoT will evolve based on recent and foreseeable trends in the semiconductor industry, highlighting the key challenges, as well as the opportunities for circuit and system innovation to address them. This book describes what the IoT really means from the design point of view, and how the constraints imposed by applications translate into integrated circuit requirements and design guidelines. Chapter contributions equally come from industry and academia. After providing a system perspective on IoT nodes, this book focuses on state-of-the-art design techniques for IoT applications, encompassing the fundamental sub-systems encountered in Systems on Chip for IoT: ultra-low power digital architectures and circuits low- and zero-leakage memories (including emerging technologies) circuits for hardwar...

  8. A web-enabled system for integrated assessment of watershed development

    Science.gov (United States)

    Dymond, R.; Lohani, V.; Regmi, B.; Dietz, R.

    2004-01-01

    Researchers at Virginia Tech have put together the primary structure of a web enabled integrated modeling system that has potential to be a planning tool to help decision makers and stakeholders in making appropriate watershed management decisions. This paper describes the integrated system, including data sources, collection, analysis methods, system software and design, and issues of integrating the various component models. The integrated system has three modeling components, namely hydrology, economics, and fish health, and is accompanied by descriptive 'help files.' Since all three components have a related spatial aspect, GIS technology provides the integration platform. When completed, a user will access the integrated system over the web to choose pre-selected land development patterns to create a 'what if' scenario using an easy-to-follow interface. The hydrologic model simulates effects of the scenario on annual runoff volume, flood peaks of various return periods, and ground water recharge. The economics model evaluates tax revenue and fiscal costs as a result of a new land development scenario. The fish health model evaluates effects of new land uses in zones of influence to the health of fish populations in those areas. Copyright ASCE 2004.

  9. Payment reform in the patient-centered medical home: Enabling and sustaining integrated behavioral health care.

    Science.gov (United States)

    Miller, Benjamin F; Ross, Kaile M; Davis, Melinda M; Melek, Stephen P; Kathol, Roger; Gordon, Patrick

    2017-01-01

    The patient-centered medical home (PCMH) is a promising framework for the redesign of primary care and more recently specialty care. As defined by the Agency for Healthcare Research and Quality, the PCMH framework has 5 attributes: comprehensive care, patient-centered care, coordinated care, accessible services, and quality and safety. Evidence increasingly demonstrates that for the PCMH to best achieve the Triple Aim (improved outcomes, decreased cost, and enhanced patient experience), treatment for behavioral health (including mental health, substance use, and life stressors) must be integrated as a central tenet. However, challenges to implementing the PCMH framework are compounded for real-world practitioners because payment reform rarely happens concurrently. Nowhere is this more evident than in attempts to integrate behavioral health clinicians into primary care. As behavioral health clinicians find opportunities to work in integrated settings, a comprehensive understanding of payment models is integral to the dialogue. This article describes alternatives to the traditional fee for service (FFS) model, including modified FFS, pay for performance, bundled payments, and global payments (i.e., capitation). We suggest that global payment structures provide the best fit to enable and sustain integrated behavioral health clinicians in ways that align with the Triple Aim. Finally, we present recommendations that offer specific, actionable steps to achieve payment reform, complement PCMH, and support integration efforts through policy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips

    Science.gov (United States)

    Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.

    2014-03-01

    We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.

  11. Design and length optimization of an adiabatic coupler for on-chip vertical integration of rare-earth-doped double tungstate waveguide amplifiers

    NARCIS (Netherlands)

    Mu, Jinfeng; Sefünç, Mustafa; García Blanco, Sonia Maria

    2014-01-01

    The integration of rare-earth doped double tungstate waveguide amplifiers onto passive technology platforms enables the on-chip amplification of very high bit rate signals. In this work, a methodology for the optimized design of vertical adiabatic couplers between a passive Si3N4 waveguide and the

  12. Integrated bio-photonics to revolutionize health care enabled through PIX4life and PIXAPP

    Science.gov (United States)

    Jans, Hilde; O'Brien, Peter; Artundo, Iñigo; Porcel, Marco A. G.; Hoofman, Romano; Geuzebroek, Douwe; Dumon, Pieter; van der Vliet, Marcel; Witzens, Jeremy; Bourguignon, Eric; Van Dorpe, Pol; Lagae, Liesbet

    2018-02-01

    Photonics has become critical to life sciences. However, the field is far from benefiting fully from photonics' capabilities. Today, bulky and expensive optical systems dominate biomedical photonics, even though robust optical functionality can be realized cost-effectively on single photonic integrated circuits (PICs). Such chips are commercially available mostly for telecom applications, and at infrared wavelengths. Although proof-of-concept demonstrations for PICs in life sciences, using visible wavelengths are abundant, the gating factor for wider adoption is limited in resource capacity. Two European pilot lines, PIX4life and PIXAPP, were established to facilitate European R and D in biophotonics, by helping European companies and universities bridge the gap between research and industrial development. Through creation of an open-access model, PIX4life aims to lower barriers to entry for prototyping and validating biophotonics concepts for larger scale production. In addition, PIXAPP enables the assembly and packaging of photonic integrated circuits.

  13. Enabling Technologies for Smart Grid Integration and Interoperability of Electric Vehicles

    DEFF Research Database (Denmark)

    Martinenas, Sergejus

    Conventional, centralized power plants are being replaced by intermittent, distributed renewable energy sources, thus raising the concern about the stability of the power grid in its current state. All the while, electrification of all forms of transportation is increasing the load...... for successful EV integration into the smart grid, as a smart, mobile distributed energy resource. The work is split into three key topics: enabling technologies, grid service applications and interoperability issues. The current state of e-mobility technologies is surveyed. Technologies and protocols...... EVs to not only mitigate their own effects on the grid, but also provide value to grid operators, locally as well as system wide. Finally, it is shown that active integration of EVs into the smart grid, is not only achievable, but is well on its way to becoming a reality....

  14. Potential Applications of Modularity to Enable a Deep Space Habitation Capability for Future Human Exploration Beyond Low-Earth Orbit

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Smitherman, David

    2012-01-01

    Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in mass, packaging volume, and architectural flexibility. This includes a description of the desired long duration habitation capability, the definition of a baseline model for comparison, a small trade study to investigate alternatives, and commentary on potentially advantageous configurations to enable different levels of habitability. The approaches investigated include modular pressure vessel strategies, modular subsystems, and modular manufacturing approaches to habitat structure. The paper also comments upon the possibility of an integrated habitation strategy using modular components to create all short and long duration habitation elements required in the current exploration architectures.

  15. CIM-EARTH: Community Integrated Model of Economic and Resource Trajectories for Humankind

    Science.gov (United States)

    Foster, I.; Elliott, J.; Munson, T.; Judd, K.; Moyer, E. J.; Sanstad, A. H.

    2010-12-01

    We report here on the development of an open source software framework termed CIM-EARTH that is intended to aid decision-making in climate and energy policy. Numerical modeling in support of evaluating policies to address climate change is difficult not only because of inherent uncertainties but because of the differences in scale and modeling approach required for various subcomponents of the system. Economic and climate models are structured quite differently, and while climate forcing can be assumed to be roughly global, climate impacts and the human response to them occur on small spatial scales. Mitigation policies likewise can be applied on scales ranging from the better part of a continent (e.g. a carbon cap-and-trade program for the entire U.S.) to a few hundred km (e.g. statewide renewable portfolio standards and local gasoline taxes). Both spatial and time resolution requirements can be challenging for global economic models. CIM-EARTH is a modular framework based around dynamic general equilibrium models. It is designed as a community tool that will enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of both mitigation policies and unchecked climate change. Modularity enables both integration of highly resolved component sub-models for energy and other key systems and also user-directed choice of tradeoffs between e.g. spatial, sectoral, and time resolution. This poster describes the framework architecture, the current realized version, and plans for future releases. As with other open-source models familiar to the climate community (e.g. CCSM), deliverables will be made publicly available on a regular schedule, and community input is solicited for development of new features and modules.

  16. Integrated Pathology Informatics Enables High-Quality Personalized and Precision Medicine: Digital Pathology and Beyond.

    Science.gov (United States)

    Volynskaya, Zoya; Chow, Hung; Evans, Andrew; Wolff, Alan; Lagmay-Traya, Cecilia; Asa, Sylvia L

    2018-03-01

    - The critical role of pathology in diagnosis, prognosis, and prediction demands high-quality subspecialty diagnostics that integrates information from multiple laboratories. - To identify key requirements and to establish a systematic approach to providing high-quality pathology in a health care system that is responsible for services across a large geographic area. - This report focuses on the development of a multisite pathology informatics platform to support high-quality surgical pathology and hematopathology using a sophisticated laboratory information system and whole slide imaging for histology and immunohistochemistry, integrated with ancillary tools, including electron microscopy, flow cytometry, cytogenetics, and molecular diagnostics. - These tools enable patients in numerous geographic locations access to a model of subspecialty pathology that allows reporting of every specimen by the right pathologist at the right time. The use of whole slide imaging for multidisciplinary case conferences enables better communication among members of patient care teams. The system encourages data collection using a discrete data synoptic reporting module, has implemented documentation of quality assurance activities, and allows workload measurement, providing examples of additional benefits that can be gained by this electronic approach to pathology. - This approach builds the foundation for accurate big data collection and high-quality personalized and precision medicine.

  17. IT-Enabled Integration of Renewables: A Concept for the Smart Power Grid

    Directory of Open Access Journals (Sweden)

    Sauter Thilo

    2011-01-01

    Full Text Available The wide utilisation of information and communication technologies is hoped to enable a more efficient and sustainable operation of electric power grids. This paper analyses the benefits of smart power grids for the integration of renewable energy resources into the existing grid infrastructure. Therefore, the concept of a smart power grid is analysed, and it is shown that it covers more than for example, time-of-use energy tariffs. Further, the communication technologies used for smart grids are discussed, and the challenge of interoperability between the smart grid itself and its active contributors such as functional buildings is shown. A significant share of electrical energy demand is and will be constituted by large functional buildings that are mostly equipped with automation systems and therefore enable a relatively simple IT integration into smart grids. This large potential of thermal storages and flexible consumption processes might be a future key to match demand and supply under the presence of a high share of fluctuating generation from renewables.

  18. Integrated visualization of remote sensing data using Google Earth

    Science.gov (United States)

    Castella, M.; Rigo, T.; Argemi, O.; Bech, J.; Pineda, N.; Vilaclara, E.

    2009-09-01

    The need for advanced visualization tools for meteorological data has lead in the last years to the development of sophisticated software packages either by observing systems manufacturers or by third-party solution providers. For example, manufacturers of remote sensing systems such as weather radars or lightning detection systems include zoom, product selection, archive access capabilities, as well as quantitative tools for data analysis, as standard features which are highly appreciated in weather surveillance or post-event case study analysis. However, the fact that each manufacturer has its own visualization system and data formats hampers the usability and integration of different data sources. In this context, Google Earth (GE) offers the possibility of combining several graphical information types in a unique visualization system which can be easily accessed by users. The Meteorological Service of Catalonia (SMC) has been evaluating the use of GE as a visualization platform for surveillance tasks in adverse weather events. First experiences are related to the integration in real-time of remote sensing data: radar, lightning, and satellite. The tool shows the animation of the combined products in the last hour, giving a good picture of the meteorological situation. One of the main advantages of this product is that is easy to be installed in many computers and does not need high computational requirements. Besides this, the capability of GE provides information about the most affected areas by heavy rain or other weather phenomena. On the opposite, the main disadvantage is that the product offers only qualitative information, and quantitative data is only available though the graphical display (i.e. trough color scales but not associated to physical values that can be accessed by users easily). The procedure developed to run in real time is divided in three parts. First of all, a crontab file launches different applications, depending on the data type

  19. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  20. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  1. Building a global federation system for climate change research: the earth system grid center for enabling technologies (ESG-CET)

    International Nuclear Information System (INIS)

    Ananthakrishnan, R; Bernholdt, D E; Bharathi, S; Brown, D; Chen, M; Chervenak, A L; Cinquini, L; Drach, R; Foster, I T; Fox, P; Fraser, D; Halliday, K; Hankin, S; Jones, P; Kesselman, C; Middleton, D E; Schwidder, J; Schweitzer, R; Schuler, R; Shoshani, A; Siebenlist, F; Sim, A; Strand, W G; Wilhelmi, N; Su, M; Williams, D N

    2007-01-01

    The recent release of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) has generated significant media attention. Much has been said about the US role in this report, which included significant support from the Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) and other Department of Energy (DOE) programs for climate model development and the production execution of simulations. The SciDAC-supported Earth System Grid Center for Enabling Technologies (ESG-CET) also played a major role in the IPCC AR4: all of the simulation data that went into the report was made available to climate scientists worldwide exclusively via the ESG-CET At the same time as the IPCC AR4 database was being developed, the National Center for Atmospheric Research (NCAR), a leading US climate science laboratory and a ESG participant, began publishing model runs from the Community Climate System Model (CCSM), and its predecessor the Parallel Coupled Model (PCM) through ESG In aggregate, ESG-CET provides seamless access to over 180 terabytes of distributed climate simulation data to over 6,000 registered users worldwide, who have taken delivery of more than 250 terabytes from the archive. Not only does this represent a substantial advance in scientific knowledge, it is also a major step forward in how we conduct the research process on a global scale. Moving forward, the next IPCC assessment report, AR5, will demand multi-site metadata federation for data discovery and cross-domain identity management for single sign-on of users in a more diverse federation enterprise environment. Towards this aim, ESG is leading the effort in the climate community towards standardization of material for the global federation of metadata, security, and data services required to standardize, analyze, and access data worldwide

  2. Direct Reuse of Rare Earth Permanent Magnets—Coating Integrity

    DEFF Research Database (Denmark)

    Høgberg, Stig; Holbøll, Joachim; Mijatovic, Nenad

    2017-01-01

    Rare earth permanent magnets can be reused directly as an alternative to traditional recycling methods, in which scrapped magnets are reprocessed into new magnets by undergoing many of the original energy-intensive and expensive production processes. Direct reuse entails using segmented magnet...... assemblies built by several small standard-sized magnets that can be reused directly in a number of different applications. A central part of the direct reuse strategy is to separate and demagnetize magnets by heating them to the Curie temperature. We investigated the validity of direct reuse as a rare earth...

  3. Electromagnetic wave propagation over an inhomogeneous flat earth (two-dimensional integral equation formulation)

    International Nuclear Information System (INIS)

    de Jong, G.

    1975-01-01

    With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation

  4. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    International Nuclear Information System (INIS)

    Sanromá, E.; Pallé, E.; López, R.; Montañés-Rodríguez, P.; Parenteau, M. N.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  5. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    Science.gov (United States)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  6. Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula

    Science.gov (United States)

    Güereque, M.; Pennington, D. D.; Pierce, S. A.

    2017-12-01

    High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.

  7. Integrating Earth System Science Data Into Tribal College and University Curricula

    Science.gov (United States)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget

  8. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-cell Functional Analysis

    Directory of Open Access Journals (Sweden)

    Naveen Ramalingam

    2016-09-01

    Full Text Available The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide-spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based Integrated Fluidic Circuit (IFC that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to a variety of stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

  9. Towards an Integrated Framework for SDGs: Ultimate and Enabling Goals for the Case of Energy

    Directory of Open Access Journals (Sweden)

    Tetsuro Yoshida

    2013-09-01

    Full Text Available Discussions on how to define, design, and implement sustainable development goals (SDG have taken center stage in the United Nations since the Rio+20 summit. Energy is one of the issues that enjoyed consensus, before and after Rio, as an important area for SDGs to address. Many proposals have been put forward on how SDGs should be formulated and what areas they should cover, but there have been few attempts to develop a generic integrated framework within which diverse areas can be accommodated and treated in a coherent way. The purpose of this paper is to develop such a framework for SDGs and to demonstrate its application by elaborating specific target areas for the energy sector. Based on a review and integration of global debates around SDG and energy, the framework puts human wellbeing at the center of the agenda, with the supporting resource base and global public goods forming additional tiers. A complementary set of enabling goals is suggested with four layers: capacity & knowledge, governance & institutions, public policy, and investment & finance. An energy SDG is elaborated to illustrate the application of the framework. The illustrative SDG architecture for energy includes eight target areas: basic energy access, energy for economic development, sufficiency, renewable supply, efficiency, infrastructure, greenhouse gas emissions and security. These target areas are relevant for energy for all countries, but depending on national circumstances such as levels of development, the relative emphasis will be different between countries, and over time.

  10. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...mid-infrared light sources as enabling technology for point-of-care mid-infrared spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4037...Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy ” Date: 16th August 2017 Name

  11. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae.

    Science.gov (United States)

    Valente, Rita S; Nadal-Jimenez, Pol; Carvalho, André F P; Vieira, Filipe J D; Xavier, Karina B

    2017-05-23

    Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora ), two signaling networks-the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway-control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources. IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone

  12. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition

  13. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  14. Novel in situ mechanical testers to enable integrated metal surface micro-machines.

    Energy Technology Data Exchange (ETDEWEB)

    Follstaedt, David Martin; de Boer, Maarten Pieter; Kotula, Paul Gabriel; Hearne, Sean Joseph; Foiles, Stephen Martin; Buchheit, Thomas Edward; Dyck, Christopher William

    2005-10-01

    The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and mechanical properties. Three issues have prevented the proliferation of these systems: (1) warpage of active components due to through-thickness stress gradients, (2) limited component lifetimes due to fatigue, and (3) low yield strength. To address these issues, we focus on developing and implementing techniques to enable the direct study of the stress and microstructural evolution during electrodeposition and mechanical loading. The study of stress during electrodeposition of metal thin films is being accomplished by integrating a multi-beam optical stress sensor into an electrodeposition chamber. By coupling the in-situ stress information with ex-situ microstructural analysis, a scientific understanding of the sources of stress during electrodeposition will be obtained. These results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of fatigue and yield strength are being addressed by developing novel surface micromachined tensile and bend testers, by interferometry, and by TEM analysis. The MEMS tensile tester has a ''Bosch'' etched hole to allow for direct viewing of the microstructure in a TEM before, during, and after loading. This approach allows for the quantitative measurements of stress-strain relations while imaging dislocation motion, and determination of fracture nucleation in samples with well-known fatigue/strain histories. This technique facilitates the determination of the limits for classical deformation mechanisms and helps to formulate a new understanding of the mechanical response as the grain sizes are refined to a nanometer scale. Together, these studies will result in a science

  15. Enabling the Usability of Earth Science Data Products and Services by Evaluating, Describing, and Improving Data Quality throughout the Data Lifecycle

    Science.gov (United States)

    Downs, R. R.; Peng, G.; Wei, Y.; Ramapriyan, H.; Moroni, D. F.

    2015-12-01

    Earth science data products and services are being used by representatives of various science and social science disciplines, by planning and decision-making professionals, by educators and learners ranging from primary through graduate and informal education, and by the general public. The diversity of users and uses of Earth science data is gratifying and offers new challenges for enabling the usability of these data by audiences with various purposes and levels of expertise. Users and other stakeholders need capabilities to efficiently find, explore, select, and determine the applicability and suitability of data products and services to meet their objectives and information needs. Similarly, they need to be able to understand the limitations of Earth science data, which can be complex, especially when considering combined or simultaneous use of multiple data products and services. Quality control efforts of stakeholders, throughout the data lifecycle, can contribute to the usability of Earth science data to meet the needs of diverse users. Such stakeholders include study design teams, data producers, data managers and curators, archives, systems professionals, data distributors, end-users, intermediaries, sponsoring organizations, hosting institutions, and others. Opportunities for engaging stakeholders to review, describe, and improve the quality of Earth science data products and services throughout the data lifecycle are identified and discussed. Insight is shared from the development of guidelines for implementing the Group on Earth Observations (GEO) Data Management Principles, the recommendations from the Earth Science Data System Working Group (ESDSWG) on Data Quality, and the efforts of the Information Quality Cluster of the Federation of Earth Science Information Partners (ESIP). Examples and outcomes from quality control efforts of data facilities, such as scientific data centers, that contribute to the usability of Earth science data also are offered.

  16. The Digital Library for Earth System Education: A Community Integrator

    Science.gov (United States)

    Marlino, M. R.; Pandya, R. E.

    2003-12-01

    The rapid changes in the geoscience research environment have prompted educators to request support for their efforts to reform geoscience educational practices. DLESE, the Digital Library for Earth System Education, responds to this request by providing a single point of access to high-quality educational resources for teaching about the Earth as a system. DLESE is supported by the National Science Foundation and is an operational library used by tens of thousands of educators every month. DLESE resources include a variety of media formats, from text-based lesson plans to highly-sophisticated tools for interactive three-dimensional visualization of authentic scientific data. The DLESE community is particularly interested in partnering with scientific researchers to ensure that the tools of practicing scientists become widely available to geoscience educators. Two emerging large-scale scientific efforts, the GEON project and EarthScope, provide compelling illustrations of the potential of these partnerships. Both are cutting-edge, cross-disciplinary projects that use digital tools in a distributed environment to support scientific investigation. Both have also made a deep commitment to use these same tools to support geoscience education, and both are including DLESE as part of that commitment. Our interactive presentation will allow users to discover a variety of educational resources and communication services within the library. We will highlight those library resources and services that take particular advantage of the digital media to support new modes of learning and teaching. For example, annotation tools allow educators to add tips on the most effective way to use a specific resource. Data services will help educators find and use real-time data to illustrate geoscience phenomena. Multi-dimensional visualization tools allow students to interact with authentic student data in inquiry-based learning environment. DLESE will continue to actively collaborate

  17. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.

    Science.gov (United States)

    Bandara, H M Dhammika; Darcy, Julia W; Apelian, Diran; Emmert, Marion H

    2014-06-17

    In order to facilitate the development of recycling technologies for rare earth magnets from postconsumer products, we present herein an analysis of the neodymium (Nd) content in shredder scrap. This waste stream has been chosen on the basis of current business practices for the recycling of steel, aluminum, and copper from cars and household appliances, which contain significant amounts of rare earth magnets. Using approximations based on literature data, we have calculated the average Nd content in the ferrous shredder product stream to be between 0.13 and 0.29 kg per ton of ferrous scrap. A value analysis considering rare earth metal prices between 2002 and 2013 provides values between $1.32 and $145 per ton of ferrous scrap for this material, if recoverable as pure Nd metal. Furthermore, we present an analysis of the content and value of other rare earths (Pr, Dy, Tb).

  18. Enabling rapid behavioral ecotoxicity studies using an integrated lab-on-a-chip systems

    Science.gov (United States)

    Huang, Yushi; Nugegoda, Dayanthi; Wlodkowic, Donald

    2015-12-01

    Behavioral ecotoxicity tests are gaining an increasing recognition in environmental toxicology. Behavior of sensitive bioindicator species can change rapidly in response to an acute exposure to contaminants and thus has a much higher sensitivity as compared to conventional LC50 mortality tests. Furthermore, behavioral endpoints seems to be very good candidates to develop early-warning biomonitoring systems needed for rapid chemical risk assessment. Behavioral tests are non-invasive, fast, do not harm indicator organisms (behavioural changes are very rapid) and are thus fully compatible with 3R (Replacement - Reduction - Refinement) principle encouraging alternatives to conventional animal testing. These characteristics are essential when designing improved ecotoxicity tests for chemical risk assessment. In this work, we present a pilot development of miniaturized Lab-on-a-Chip (LOC) devices for studying toxin avoidance behaviors of small aquatic crustaceans. As an investigative tool, LOCs represent a new direction that may miniaturize and revolutionize behavioral ecotoxicology. Specifically our innovative microfluidic prototype: (i) enables convening "caging" of specimens for real-time videomicroscopy; (ii) eliminates the evaporative water loss thus providing an opportunity for long-term behavioral studies; (iii) exploits laminar fluid flow under low Reynolds numbers to generate discrete domains and gradients enabling for the first time toxin avoidance studies on small aquatic crustaceans; (iv) integrates off-the-chip mechatronic interfaces and video analysis algorithms for single animal movement analysis. We provide evidence that by merging innovative bioelectronic and biomicrofluidic technologies we can deploy inexpensive and reliable systems for culture, electronic tracking and complex computational analysis of behavior of bioindicator organisms.

  19. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elsethagen, Todd O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hathaway, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guillen, Zoe C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dirks, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skorski, Daniel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephan, Eric G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorrissen, Willy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorton, Ian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Yan [Concordia Univ., Montreal, QC (Canada)

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  20. Homogeneous immunosubtraction integrated with sample preparation is enabled by a microfluidic format

    Science.gov (United States)

    Apori, Akwasi A.; Herr, Amy E.

    2011-01-01

    Immunosubtraction is a powerful and resource-intensive laboratory medicine assay that reports both protein mobility and binding specificity. To expedite and automate this electrophoretic assay, we report on advances to the electrophoretic immunosubtraction assay by introducing a homogeneous, not heterogeneous, format with integrated sample preparation. To accomplish homogeneous immunosubtraction, a step-decrease in separation matrix pore-size at the head of a polyacrylamide gel electrophoresis (PAGE) separation channel enables ‘subtraction’ of target analyte when capture antibody is present (as the large immune-complex is excluded from PAGE), but no subtraction when capture antibody is absent. Inclusion of sample preparation functionality via small pore size polyacrylamide membranes is also key to automated operation (i.e., sample enrichment, fluorescence sample labeling, and mixing of sample with free capture antibody). Homogenous sample preparation and assay operation allows on-the-fly, integrated subtraction of one to multiple protein targets and reuse of each device. Optimization of the assay is detailed which allowed for ~95% subtraction of target with 20% non-specific extraction of large species at the optimal antibody-antigen ratio, providing conditions needed for selective target identification. We demonstrate the assay on putative markers of injury and inflammation in cerebrospinal fluid (CSF), an emerging area of diagnostics research, by rapidly reporting protein mobility and binding specificity within the sample matrix. We simultaneously detect S100B and C-reactive protein, suspected biomarkers for traumatic brain injury (TBI), in ~2 min. Lastly, we demonstrate S100B detection (65 nM) in raw human CSF with a lower limit of detection of ~3.25 nM, within the clinically relevant concentration range for detecting TBI in CSF. Beyond the novel CSF assay introduced here, a fully automated immunosubtraction assay would impact a spectrum of routine but labor

  1. DisasterHub: A mobile application for enabling crowd generated data fusion in Earth Observation disaster management services

    Science.gov (United States)

    Tsironis, Vassilis; Herekakis, Themistocles; Tsouni, Alexia; Kontoes, Charalampos Haris

    2016-04-01

    The rapid changes in climate over the last decades, together with the explosion of human population, have shaped the context for a fragile biosphere, prone to natural and manmade disasters that result in massive flows of environmental immigrants and great disturbances of ecosystems. The magnitude of the latest great disasters have shown evidence for high quality Earth Observation (EO) services as it regards disaster risk reduction and emergency support (DRR & EMS). The EO community runs ambitious initiatives in order to generate services with direct impact in the biosphere, and intends to stimulate the wider participation of citizens, enabling the Openness effect through the Open Innovation paradigm. This by its turn results in the tremendous growth of open source software technologies associated with web, social media, mobile and Crowdsourcing. The Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of National Observatory of Athens has developed, in the framework of the BEYOND Centre of Excellence for EO-based monitoring of Natural Disasters (http://www.beyond-eocenter.eu), a rich ecosystem of Copernicus compliant services addressing diverse hazardous phenomena caused from climate and weather extremes (fires, floods, windstorms, heat waves), atmospheric disturbances (smoke, dust, ozone, UV), and geo-hazards (earthquakes, landslides, volcanoes). Several services are delivered in near-real time to the public and the institutional authorities at national and regional level in southeastern Europe. Specific ones have been recognized worldwide for their innovation and operational aspects (e.g. FIREHUB was awarded the first prize as Best Service Challenge in the Copernicus Masters Competition, 2014). However, a communication gap still exists between the BEYOND ecosystem and those directly concerned by the natural disasters, the citizens and emergency response managers. This disruption of information flow between interested parties is addressed

  2. Integration of Utilities Infrastructures in a Future Internet Enabled Smart City Framework

    Directory of Open Access Journals (Sweden)

    Luis Sánchez

    2013-10-01

    Full Text Available Improving efficiency of city services and facilitating a more sustainable development of cities are the main drivers of the smart city concept. Information and Communication Technologies (ICT play a crucial role in making cities smarter, more accessible and more open. In this paper we present a novel architecture exploiting major concepts from the Future Internet (FI paradigm addressing the challenges that need to be overcome when creating smarter cities. This architecture takes advantage of both the critical communications infrastructures already in place and owned by the utilities as well as of the infrastructure belonging to the city municipalities to accelerate efficient provision of existing and new city services. The paper highlights how FI technologies create the necessary glue and logic that allows the integration of current vertical and isolated city services into a holistic solution, which enables a huge forward leap for the efficiency and sustainability of our cities. Moreover, the paper describes a real-world prototype, that instantiates the aforementioned architecture, deployed in one of the parks of the city of Santander providing an autonomous public street lighting adaptation service. This prototype is a showcase on how added-value services can be seamlessly created on top of the proposed architecture.

  3. Integration of utilities infrastructures in a future internet enabled smart city framework.

    Science.gov (United States)

    Sánchez, Luis; Elicegui, Ignacio; Cuesta, Javier; Muñoz, Luis; Lanza, Jorge

    2013-10-25

    Improving efficiency of city services and facilitating a more sustainable development of cities are the main drivers of the smart city concept. Information and Communication Technologies (ICT) play a crucial role in making cities smarter, more accessible and more open. In this paper we present a novel architecture exploiting major concepts from the Future Internet (FI) paradigm addressing the challenges that need to be overcome when creating smarter cities. This architecture takes advantage of both the critical communications infrastructures already in place and owned by the utilities as well as of the infrastructure belonging to the city municipalities to accelerate efficient provision of existing and new city services. The paper highlights how FI technologies create the necessary glue and logic that allows the integration of current vertical and isolated city services into a holistic solution, which enables a huge forward leap for the efficiency and sustainability of our cities. Moreover, the paper describes a real-world prototype, that instantiates the aforementioned architecture, deployed in one of the parks of the city of Santander providing an autonomous public street lighting adaptation service. This prototype is a showcase on how added-value services can be seamlessly created on top of the proposed architecture.

  4. Enabling IoT: Integration of wireless sensor network for healthcare application using Waspmote

    Science.gov (United States)

    Azmi, Noraini; Kamarudin, Latifah Munirah

    2017-03-01

    The number of patients that require medical assistance is increasing each day while staff-patient ratio is not balanced causing issues such as treatment delay and often leads to patient dissatisfaction. Besides that, healthcare devices are getting complex and challenging for it to be handled and interpreted personally by patient. Lack of staff and challenges in operating the medical devices not only affect patient in hospital but also caused problem to home care patients that require full attention and constant monitoring. This urges for a development of new method or technology. At present, Wireless Sensor Network (WSN) is gaining interest as one of the major components in enabling Internet of Things (IoT) since it offers low cost, low power monitoring besides reducing devices dependency on wires or cable. Although, WSN is initially developed for military application, nowadays, it is being integrated into various applications such as environmental monitoring, smart monitoring and agricultural monitoring. The idea of wireless monitoring with low power consumption motivates researchers to discover the possibility of deploying wireless sensor network for mission critical application such as in healthcare applications. This paper presents the details on the design and development of wireless sensor network using Waspmote from Libelium Inc. for mission critical applications such as healthcare applications.

  5. Integration of Utilities Infrastructures in a Future Internet Enabled Smart City Framework

    Science.gov (United States)

    Sánchez, Luis; Elicegui, Ignacio; Cuesta, Javier; Muñoz, Luis; Lanza, Jorge

    2013-01-01

    Improving efficiency of city services and facilitating a more sustainable development of cities are the main drivers of the smart city concept. Information and Communication Technologies (ICT) play a crucial role in making cities smarter, more accessible and more open. In this paper we present a novel architecture exploiting major concepts from the Future Internet (FI) paradigm addressing the challenges that need to be overcome when creating smarter cities. This architecture takes advantage of both the critical communications infrastructures already in place and owned by the utilities as well as of the infrastructure belonging to the city municipalities to accelerate efficient provision of existing and new city services. The paper highlights how FI technologies create the necessary glue and logic that allows the integration of current vertical and isolated city services into a holistic solution, which enables a huge forward leap for the efficiency and sustainability of our cities. Moreover, the paper describes a real-world prototype, that instantiates the aforementioned architecture, deployed in one of the parks of the city of Santander providing an autonomous public street lighting adaptation service. This prototype is a showcase on how added-value services can be seamlessly created on top of the proposed architecture. PMID:24233072

  6. Science Enabled by the Ares V: A Large Monolithic Telescope Placed at the Second Sun-Earth Lagrange Point

    Science.gov (United States)

    Hopkins, Randall C.; Stahl, H. Philip

    2007-01-01

    The payload mass and volume capabilities of the planned Ares V launch vehicle provide the science community with unprecedented opportunities to place large science payloads into low earth orbit and beyond. One example, the outcome of a recent study conducted at the NASA Marshall Space Flight Center, is a large, monolithic telescope with a primary mirror diameter of 6.2 meters placed into a halo orbit about the second Sun-Earth Lagrange point, or L2, approximately 1.5 million kin beyond Earth's orbit. Operating in the visible and ultraviolet regions of the electromagnetic spectrum, such a large telescope would allow astronomers to detect bio-signatures and characterize the atmospheres of transiting exoplanets, provide high resolution imaging three or more times better than the Hubble Space Telescope and the James Webb Space Telescope, and observe the ultraviolet light from warm baryonic matter.

  7. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    Science.gov (United States)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653

  8. A New Cyber-enabled Platform for Scale-independent Interoperability of Earth Observations with Hydrologic Models

    Science.gov (United States)

    Rajib, A.; Zhao, L.; Merwade, V.; Shin, J.; Smith, J.; Song, C. X.

    2017-12-01

    Despite the significant potential of remotely sensed earth observations, their application is still not full-fledged in water resources research, management and education. Inconsistent storage structures, data formats and spatial resolution among different platforms/sources of earth observations hinder the use of these data. Available web-services can help bulk data downloading and visualization, but they are not sufficiently tailored to meet the degree of interoperability required for direct application of earth observations in hydrologic modeling at user-defined spatio-temporal scales. Similarly, the least ambiguous way for educators and watershed managers is to instantaneously obtain a time-series at any watershed of interest without spending time and computational resources on data download and post-processing activities. To address this issue, an open access, online platform, named HydroGlobe, is developed that minimizes all these processing tasks and delivers ready-to-use data from different earth observation sources. HydroGlobe can provide spatially-averaged time series of earth observations by using the following inputs: (i) data source, (ii) temporal extent in the form of start/end date, and (iii) geographic units (e.g., grid cell or sub-basin boundary) and extent in the form of GIS shapefile. In its preliminary version, HydroGlobe simultaneously handles five data sources including the surface and root zone soil moisture from SMAP (Soil Moisture Active Passive Mission), actual and potential evapotranspiration from MODIS (Moderate Resolution Imaging Spectroradiometer), and precipitation from GPM (Global Precipitation Measurements). This presentation will demonstrate the HydroGlobe interface and its applicability using few test cases on watersheds from different parts of the globe.

  9. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  10. Exploring the integration of the human as a flexibility factor in CPS enabled manufacturing environments: Methodology and results

    OpenAIRE

    Fantini, P.; Tavola, G.; Taisch, M.; Barbosa, José; Leitão, Paulo; Liu, Y.; Sayed, M.S.; Lohse, N.

    2016-01-01

    Cyber Physical Systems (CPS) are expected to shape the evolution of production towards the fourth industrial revolution named Industry 4.0. The increasing integration of manufacturing processes and the strengthening of the autonomous capabilities of manufacturing systems make investigating the role of humans a primary research objective in view of emerging social and demographic megatrends. Understanding how the employees can be better integrated to enable increased flexibility in manufacturi...

  11. Plasma synthesis of rare earth doped integrated optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. [Lawrence Berkeley Lab., CA (United States); Ivanov, I.C. [Charles Evans & Associates, Redwood City, CA (United States)

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  12. Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits

    Science.gov (United States)

    Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106

  13. Energy efficiency with QoS control in dynamic optical networks with SDN enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Chen, Xin; Phillips, Chris

    2014-01-01

    The paper presents energy efficient routing algorithms based on a novel integrated control plane platform. The centralized control plane structure enables the use of flexible heuristic algorithms for route selection in optical networks. Differentiated routing for various traffic types is used in ...

  14. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    Science.gov (United States)

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  15. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  16. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Middleton, D. E. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Ananthakrishnan, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Siebenlist, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Shoshani, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bell, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Drach, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ahrens, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jones, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, D. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Chastang, J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Cinquini, L. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Fox, P. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Harper, D. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Hook, N. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Nienhouse, E. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Strand, G. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); West, P. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Wilcox, H. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Wilhelmi, N. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Zednik, S. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Hankin, S. [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Schweitzer, R. [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Bernholdt, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bharathi, S. [Univ. of Southern California, Marina Del Rey, CA (United States). Information Sciences Institute; Chervenak, A. [Univ. of Southern California, Marina Del Rey, CA (United States). Information Sciences Institute; Schuler, R. [Univ. of Southern California, Marina Del Rey, CA (United States). Information Sciences Institute; Su, M. [Univ. of Southern California, Marina Del Rey, CA (United States). Information Sciences Institute

    2010-04-21

    This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).

  17. Enabling technologies to improve area-wide integrated pest management programmes for the control of screwworms.

    Science.gov (United States)

    Robinson, A S; Vreysen, M J B; Hendrichs, J; Feldmann, U

    2009-06-01

    The economic devastation caused in the past by the New World screwworm fly Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) to the livestock industry in the U.S.A., Mexico and the rest of Central America was staggering. The eradication of this major livestock pest from North and Central America using the sterile insect technique (SIT) as part of an area-wide integrated pest management (AW-IPM) programme was a phenomenal technical and managerial accomplishment with enormous economic implications. The area is maintained screwworm-free by the weekly release of 40 million sterile flies in the Darien Gap in Panama, which prevents migration from screwworm-infested areas in Columbia. However, the species is still a major pest in many areas of the Caribbean and South America and there is considerable interest in extending the eradication programme to these countries. Understanding New World screwworm fly populations in the Caribbean and South America, which represent a continuous threat to the screwworm-free areas of Central America and the U.S.A., is a prerequisite to any future eradication campaigns. The Old World screwworm fly Chrysomya bezziana Villeneuve (Diptera: Calliphoridae) has a very wide distribution ranging from Southern Africa to Papua New Guinea and, although its economic importance is assumed to be less than that of its New World counterpart, it is a serious pest in extensive livestock production and a constant threat to pest-free areas such as Australia. In the 1980s repeated introductions and an expansion of Old World screwworm populations were reported in the Middle East; in the 1990s it invaded Iraq and since late 2007 it has been reported in Yemen, where a severe outbreak of myiasis occurred in 2008. Small-scale field trials have shown the potential of integrating the SIT in the control of this pest and various international organizations are considering using the release of sterile insects as part of an AW-IPM approach on a much wider scale

  18. One model to fit all? The pursuit of integrated earth system models in GAIM and AIMES

    OpenAIRE

    Uhrqvist, Ola

    2015-01-01

    Images of Earth from space popularized the view of our planet as a single, fragile entity against the vastness and darkness of space. In the 1980s, the International Geosphere-Biosphere Program (IGBP) was set up to produce a predictive understanding of this fragile entity as the ‘Earth System.’ In order to do so, the program sought to create a common research framework for the different disciplines involved. It suggested that integrated numerical models could provide such a framework. The pap...

  19. Barriers to and enablers for European rail freight transport for integrated door-to-door logistics service. Part 2: Enablers for multimodal rail freight transport

    Directory of Open Access Journals (Sweden)

    Dewan Md Zahurul ISLAM

    2014-12-01

    Full Text Available The objective of this paper is to examine and identify barriers to and enablers for the European rail freight transport services as a transport chain partner along the supply chains in the changing market scenario. The changing market scenario includes, among others, requiring 'door-to-door' rather than 'terminal to terminal' and integrated service, competitive ability to attract non-rail cargo type, changes in the customer requirements (e.g. reliable service and changes in the operational requirements and practices. Using a literature review method, the paper is presented in two parts. The part 1 focuses on the identification of barriers to the European rail freight service by reviewing freight logistics services for global supply chains followed by the current performance of European rail freight transport followed by a discussion on the rail freight market liberalisation in Europe. Then rail freight transport in the Unites States (U.S. is discussed. The research notes that although the background, scope and necessity for reform measures in Europe differ from those of the U.S., some lessons can be learned and the main lesson is that an appropriate reform measure can enhance rail sector competitive ability in Europe. The part 2 of the paper is dedicated to recommend some concrete steps and actions as enablers to remove the barriers identified in the part 1 to develop multimodal rail freight transport. The enablers for multimodal rail freight transport include: •\tEuropean rail freight transport market needs full liberalisation so that incumbent and new entrants can compete freely. •\tThe rail operators need to acquire service (e.g. customer tailored services, door to door service quality offered by road freight operators. •\tThey need to conduct a combination of ‘terminal-to-terminal’ and door-to-door operations, as and when needed; •\tThey must build partnership with freight forwarder or 3PLs to include all types of customers

  20. Observation and integrated Earth-system science: A roadmap for 2016-2025

    Science.gov (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  1. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    Science.gov (United States)

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to

  2. Identification of mechanisms enabling integrated care for patients with chronic diseases: a literature review

    Directory of Open Access Journals (Sweden)

    Denise van der Klauw

    2014-07-01

    Full Text Available Introduction: Notwithstanding care for chronically ill patients requires a shift towards care that is well coordinated and focused on prevention and self-care, the concept of integrated care lacks specificity and clarity. This article presents a literature review to identify mechanisms for achieving integrated care objectives.Theory and methods: Existing models often present a large variety of dimensions, archetypes and categories of integration without specifying them. Models and programmes describing integrated care for chronic diseases were reviewed. Data were extracted related to objectives and clusters of mechanisms of integration.Results: Thirty-four studies presented four objectives: functional, organisational, professional and service integration. We categorised approaches and interventions to achieve these objectives by strategy and clusters of ‘mechanisms of integration’: degree, patient centredness and normative aspects.Conclusions and discussion: The clarification of mechanisms to achieve objectives of integrated care as presented may be used as starting point for the development and refinement of integrated care programmes, including methodological grounding of their evaluation. Given that most studies reviewed lack both empirical data and descriptions of the methods used, future research needs to close these gaps. Validation of the findings by a large panel of experts is suggested as recommendation to work towards a grounded framework.

  3. Modelling the integration-performance relationship : Collaborative practices, enablers and contextual factors

    NARCIS (Netherlands)

    van der Vaart, T.; van Donk, D.P.; Giménez, C.; Sierra, V.

    2012-01-01

    Purpose - The purpose of this paper is to investigate the impact of different dimensions of supply chain integration on performance, while considering both the interconnections between these supply chain integration dimensions and the effect of context. Specifically, the authors investigate the

  4. Enabling Integrated Decision Making for Electronic-Commerce by Modelling an Enterprise's Sharable Knowledge.

    Science.gov (United States)

    Kim, Henry M.

    2000-01-01

    An enterprise model, a computational model of knowledge about an enterprise, is a useful tool for integrated decision-making by e-commerce suppliers and customers. Sharable knowledge, once represented in an enterprise model, can be integrated by the modeled enterprise's e-commerce partners. Presents background on enterprise modeling, followed by…

  5. InTeGrate: Interdisciplinary Teaching about the Earth for a Sustainable Future

    Science.gov (United States)

    Manduca, C. A.

    2017-12-01

    InTeGrate supports integrated interdisciplinary learning about resource and environmental issues across the undergraduate curriculum to create a sustainable and just civilization. The project has developed teaching materials and examples of their use in programs and is currently engaged in a suite of activities that support use of these resources in improving undergraduate Earth education. Thirty-three sets of teaching materials supporting instruction over time periods of 2 weeks to a full semester have been developed by teams of faculty and peer-reviewed to ensure strong research-based pedagogic design and attention to five design principles: 1) address one or more grand challenges involving the Earth and society, 2) develop student ability to address interdisciplinary problems, 3) improve student understanding of the nature and methods of science and developing geoscientific habits of mind, 4) make use of authentic and credible science data to learn central concepts in the context of scientific methods of inquiry, and, 5) incorporate systems thinking. They have been tested in a wide variety of institutional and disciplinary settings and are documented with instructor notes describing adaptation for specific settings. All published materials passed a review for scientific accuracy. Sixteen program models demonstrate strategies for strengthening learning about Earth and sustainability at scales ranging from a department to an interinstitutional collaboration. These examples document the use of InTeGrate resources in the development and evaluation of these programs. A synthesis of lessons learned by these projects addresses strategies for teaching about the Earth across the curriculum. InTeGrate is currently supporting use of ideas and resources developed over the past six years of project work through a webinar series, workshops at professional society meetings, a traveling workshop program for departments and regions, a set of online learning communities and

  6. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    Science.gov (United States)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  7. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae

    OpenAIRE

    Rita S. Valente; Pol Nadal-Jimenez; André F. P. Carvalho; Filipe J. D. Vieira; Karina B. Xavier; Bonnie Bassler

    2017-01-01

    This deposit is composed by the main article plus the supplementary materials of the publication. Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts....

  8. GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.; Alyamani, Ahmed Y.; Eldesouki, Munir M.; Ooi, Boon S.

    2017-01-01

    A 404-nm emitting InGaN-based laser diode with integrated-waveguide-modulator showing a large extinction ratio of 11.3 dB was demonstrated on semipolar (2021) plane GaN substrate. The device shows a low modulation voltage of −2.5 V and ∼ GHz −3 dB bandwidth, enabling 1.7 Gbps data transmission.

  9. GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode

    KAUST Repository

    Shen, Chao

    2017-01-30

    A 404-nm emitting InGaN-based laser diode with integrated-waveguide-modulator showing a large extinction ratio of 11.3 dB was demonstrated on semipolar (2021) plane GaN substrate. The device shows a low modulation voltage of −2.5 V and ∼ GHz −3 dB bandwidth, enabling 1.7 Gbps data transmission.

  10. Design and performance of a multi-channel, multi-sampling, PSD-enabling integrated circuit

    International Nuclear Information System (INIS)

    Engel, G.L.; Hall, M.J.; Proctor, J.M.; Elson, J.M.; Sobotka, L.G.; Shane, R.; Charity, R.J.

    2009-01-01

    This paper presents the design and test results of an eight-channel prototype integrated circuit chip intended to greatly simplify the pulse-processing electronics needed for large arrays of scintillation detectors. Because the chip design employs (user-controlled) multi-region charge integration, particle identification is incorporated into the basic design. Each channel on the chip also contains a time-to-voltage converter which provides relative time information. The pulse-height integrals and the relative time are all stored on capacitors and are either reset, after a user controlled time, or sequentially read out if acquisition of the event is desired. Each of the three pulse-height sub-channels consists of a gated integrator with eight programmable charging rates and an externally programmable gate generator that defines the start (with four time ranges) and width (with four time ranges) of the gate relative to an external discriminator signal. The chip supports three triggering modes, two time ranges, two power modes, and produces four sparsified analog pulse trains (three for the integrators and another for the time) with synchronized addresses for off-chip digitization with a pipelined ADC. The eight-channel prototype chip occupies an area of 2.8 mmx5.7 mm, dissipates 60 mW (low-power mode), and was fabricated in the AMI 0.5-μm process (C5N).

  11. Design and performance of a multi-channel, multi-sampling, PSD-enabling integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Engel, G.L., E-mail: gengel@siue.ed [Department of Electrical and Computer Engineering, VLSI Design Research Laboratory, Southern Illinois University Edwardsville, Engineering Building, Room 3043 Edwardsville, IL 62026 1081 (United States); Hall, M.J.; Proctor, J.M. [Department of Electrical and Computer Engineering, VLSI Design Research Laboratory, Southern Illinois University Edwardsville, Engineering Building, Room 3043 Edwardsville, IL 62026 1081 (United States); Elson, J.M.; Sobotka, L.G.; Shane, R.; Charity, R.J. [Departments of Chemistry and Physics, Washington University, Saint Louis, MO 63130 (United States)

    2009-12-21

    This paper presents the design and test results of an eight-channel prototype integrated circuit chip intended to greatly simplify the pulse-processing electronics needed for large arrays of scintillation detectors. Because the chip design employs (user-controlled) multi-region charge integration, particle identification is incorporated into the basic design. Each channel on the chip also contains a time-to-voltage converter which provides relative time information. The pulse-height integrals and the relative time are all stored on capacitors and are either reset, after a user controlled time, or sequentially read out if acquisition of the event is desired. Each of the three pulse-height sub-channels consists of a gated integrator with eight programmable charging rates and an externally programmable gate generator that defines the start (with four time ranges) and width (with four time ranges) of the gate relative to an external discriminator signal. The chip supports three triggering modes, two time ranges, two power modes, and produces four sparsified analog pulse trains (three for the integrators and another for the time) with synchronized addresses for off-chip digitization with a pipelined ADC. The eight-channel prototype chip occupies an area of 2.8 mmx5.7 mm, dissipates 60 mW (low-power mode), and was fabricated in the AMI 0.5-mum process (C5N).

  12. Integrating SQ4R Technique with Graphic Postorganizers in the Science Learning of Earth and Space

    OpenAIRE

    Djudin, Tomo; Amir, R

    2018-01-01

    This study examined the effect of integrating SQ4R reading technique with graphic post organizers on the students' Earth and Space Science learning achievement and development of metacognitive knowledge. The pretest-posttest non-equivalent control group design was employed in this quasi-experimental method. The sample which consists of 103 seventh grade of secondary school students of SMPN 1 Pontianak was drawn by using intact group random sampling technique. An achievement test and a questio...

  13. Framework Architecture Enabling an Agent-Based Inter-Company Integration with XML

    Directory of Open Access Journals (Sweden)

    Klement Fellner

    2000-11-01

    Full Text Available More and more cooperating companies utilize the World Wide Web (WWW to federate and further integrate their heterogeneous business application systems. At the same time, innovative business strategies, like virtual organizations, supply chain management or one-to-one marketing as well as trendsetting competitive strategies, like mass customisation are realisable. Both, the necessary integration and the innovative concepts are demanding software supporting automation of communication as well as coordination across system boundaries. In this paper, we describe a framework architecture for intercompany integration of business processes based on commonly accepted and (partially standardized concepts and techniques. Further on, it is shown how the framework architecture helps to automate procurement processes and how a cost-saving black-box re-use is achieved following a component oriented implementation paradigm.

  14. Design of energy efficient optical networks with software enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2015-01-01

    energy consumption by proposing a new integrated control plane structure utilising Software Defined Networking technologies. The integrated control plane increases the efficiencies of exchanging control information across different network domains, while introducing new possibilities to the routing...... methods and the control over quality of service (QoS). The structure is defined as an overlay generalised multi-protocol label switching (GMPLS) control model. With the defined structure, the integrated control plane is able to gather information from different domains (i.e. optical core network......'s) routing behaviours. With the flexibility of the routing structure, results show that the energy efficiency of the network can be improved without compromising the QoS for delay/blocking sensitive services....

  15. Introduction of storage integrated PV systems as an enabling technology for smart energy grids

    NARCIS (Netherlands)

    Ampatzis, M.; Nguyen, H.P.; Kling, W.L.

    2013-01-01

    Merging advanced control and information and communication technology (ICT) technology with the power grid is an appropriate approach for realizing the promising potential of massive distributed energy resources (DERs) integration, that is necessary for the vision of a sustainable society. This

  16. Integrated graphene based modulators enabled by interfacing plasmonic slot and silicon waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Graphene has offered a new paradigm for extremely fast and active optoelectronic devices due to its unique electronic and optical properties [1]. With the combination of high-index dielectric waveguides/resonators, several integrated graphene-based optical modulators have already been demonstrated...

  17. Product architecture development enabling integrated re-design of mechanical products

    NARCIS (Netherlands)

    Begelinger, R.E.; Post, E.; van Houten, F.J.A.M.; Kals, H.J.J.

    1999-01-01

    Global competition forces companies to increase their competitive advantage. The design process represents an interesting area to improve the overall business performance. There are two topics involved in improving the design process. The first one is the integration of constraints from the product

  18. Collaborative Business Models for Exploration: - The Expansion of Public-Private Partnerships to Enable Exploration and Improve the Quality of Life on Earth

    Science.gov (United States)

    Davis, Jeffrey R.

    2012-01-01

    In May of 2007, The Space Life Sciences Strategy was published, launching a series of efforts aimed at driving human health and performance innovations that both meet space flight needs and benefit life on Earth. These efforts, led by the Space Life Science Directorate (SLSD) at the NASA Johnson Space Center, led to the development and implementation of the NASA Human Health and Performance Center (NHHPC) in October 2010. The NHHPC now has over 100 members including seven NASA centers; other federal agencies; some of the International Space Station partners; industry; academia and non-profits. The NHHPC seeks to share best practices, develop collaborative projects and experiment with open collaboration techniques such as crowdsourcing. Using this approach, the NHHPC collaborative projects are anticipated to be at the earliest possible stage of development utilizing the many possible public-private partnerships in this center. Two workshops have been successfully conducted in 2011 (January and October) with a third workshop planned for the spring of 2012. The challenges of space flight are similar in many respects to providing health care and environmental monitoring in challenging settings on the earth. These challenges to technology development include the need for low power consumption, low weight, in-situ analysis, operator independence (i.e., minimal training), robustness, and limited resupply or maintenance. When similar technology challenges are identified (such as the need to provide and monitor a safe water supply or develop a portable medical diagnostic device for remote use), opportunities arise for public-private partnerships to engage in co-creation of novel approaches for space exploration and health and environmental applications on earth. This approach can enable the use of shared resources to reduce costs, engage other organizations and the public in participatory exploration (solving real-world problems), and provide technologies with multiple uses

  19. Coupling integrated assessment and earth system models: concepts and an application to land use change

    Science.gov (United States)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  20. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    International Nuclear Information System (INIS)

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-01-01

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H 2 O and O 2 bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H 2 O and O 2 bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H 2 O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  1. Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.

    Science.gov (United States)

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu

    2015-01-01

    The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.

  2. PHOTOMETRIC VARIABILITY OF THE DISK-INTEGRATED THERMAL EMISSION OF THE EARTH

    International Nuclear Information System (INIS)

    Gómez-Leal, I.; Selsis, F.; Pallé, E.

    2012-01-01

    Here we present an analysis of the global-integrated mid-infrared emission flux of the Earth based on data derived from satellite measurements. We have studied the photometric annual, seasonal, and rotational variability of the thermal emission of the Earth to determine which properties can be inferred from the point-like signal. We find that the analysis of the time series allows us to determine the 24 hr rotational period of the planet for most observing geometries, due to large warm and cold areas, identified with geographic features, which appear consecutively in the observer's planetary view. However, the effects of global-scale meteorology can effectively mask the rotation for several days at a time. We also find that orbital time series exhibit a seasonal modulation, whose amplitude depends strongly on the latitude of the observer but weakly on its ecliptic longitude. As no systematic difference of brightness temperature is found between the dayside and the nightside, the phase variations of the Earth in the infrared range are negligible. Finally, we also conclude that the phase variation of a spatially unresolved Earth-Moon system is dominated by the lunar signal.

  3. Developing a common strategy for integrative global change research and outreach: the Earth System Science Partnership (ESSP)

    NARCIS (Netherlands)

    Leemans, R.; Asrar, G.; Canadell, J.G.; Ingram, J.; Larigauderie, A.; Mooney, H.; Nobre, C.; Patwardhan, A.; Rice, M.; Schmidt, F.; Seitzinger, S.; Virji, H.; Vörösmarthy, C.; Yuoung, O.

    2009-01-01

    The Earth System Science Partnership (ESSP) was established in 2001 by four global environmental change (GEC) research programmes: DIVERSITAS, IGBP, IHDP and WCRP. ESSP facilitates the study of the Earth's environment as an integrated system in order to understand how and why it is changing, and to

  4. From the Earth Summit to Rio+20: integration of health and sustainable development.

    Science.gov (United States)

    Haines, Andy; Alleyne, George; Kickbusch, Ilona; Dora, Carlos

    2012-06-09

    In 2012, world leaders will meet at the Rio+20 conference to advance sustainable development--20 years after the Earth Summit that resulted in agreement on important principles but insufficient action. Many of the development goals have not been achieved partly because social (including health), economic, and environmental priorities have not been addressed in an integrated manner. Adverse trends have been reported in many key environmental indicators that have worsened since the Earth Summit. Substantial economic growth has occurred in many regions but nevertheless has not benefited many populations of low income and those that have been marginalised, and has resulted in growing inequities. Variable progress in health has been made, and inequities are persistent. Improved health contributes to development and is underpinned by ecosystem stability and equitable economic progress. Implementation of policies that both improve health and promote sustainable development is urgently needed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. INTEGRATION OF THE ROTATION OF AN EARTH-LIKE BODY AS A PERTURBED SPHERICAL ROTOR

    International Nuclear Information System (INIS)

    Ferrer, Sebastian; Lara, Martin

    2010-01-01

    For rigid bodies close to a sphere, we propose an analytical solution that is free from elliptic integrals and functions, and can be fundamental for application to perturbed problems. After reordering the Hamiltonian as a perturbed spherical rotor, the Lie-series solution is generated up to an arbitrary order. Using the inertia parameters of different solar system bodies, the comparison of the approximate series solution with the exact analytical one shows that the precision reached with relatively low orders is at the same level of the observational accuracy for the Earth and Mars. Thus, for instance, the periodic errors of the mathematical solution are confined to the microarcsecond level with a simple second-order truncation for the Earth. On the contrary, higher orders are required for the mathematical solution to reach a precision at the expected level of accuracy of proposed new theories for the rotational dynamics of the Moon.

  6. Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression

    DEFF Research Database (Denmark)

    Pinto, Rita; Hansen, Lars; Hintze, John

    2017-01-01

    to be a limitation. Here, we report that the combined use of genome editing tools and last generation Tet-On systems can resolve these issues. Our principle is based on precise integration of inducible transcriptional elements (coined PrIITE) targeted to: (i) exons of an endogenous gene of interest (GOI) and (ii......Tetracycline-based inducible systems provide powerful methods for functional studies where gene expression can be controlled. However, the lack of tight control of the inducible system, leading to leakiness and adverse effects caused by undesirable tetracycline dosage requirements, has proven......) a safe harbor locus. Using PrIITE cells harboring a GFP reporter or CDX2 transcription factor, we demonstrate discrete inducibility of gene expression with complete abrogation of leakiness. CDX2 PrIITE cells generated by this approach uncovered novel CDX2 downstream effector genes. Our results provide...

  7. Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS.

    Science.gov (United States)

    Yu, Hwanjo; Kim, Taehoon; Oh, Jinoh; Ko, Ilhwan; Kim, Sungchul; Han, Wook-Shin

    2010-04-16

    Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user's feedback and efficiently processes the function to return relevant articles in real time.

  8. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae

    Directory of Open Access Journals (Sweden)

    Rita S. Valente

    2017-05-01

    Full Text Available Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora, two signaling networks—the N-acyl homoserine lactone (AHL quorum-sensing system and the Gac/Rsm signal transduction pathway—control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources.

  9. The SeaView EarthCube project: Lessons Learned from Integrating Across Repositories

    Science.gov (United States)

    Diggs, S. C.; Stocks, K. I.; Arko, R. A.; Kinkade, D.; Shepherd, A.; Olson, C. J.; Pham, A.

    2017-12-01

    SeaView is an NSF-funded EarthCube Integrative Activity Project working with 5 existing data repositories* to provide oceanographers with highly integrated thematic data collections in user-requested formats. The project has three complementary goals: Supporting Scientists: SeaView targets scientists' need for easy access to data of interest that are ready to import into their preferred tool. Strengthening Repositories: By integrating data from multiple repositories for science use, SeaView is helping the ocean data repositories align their data and processes and make ocean data more accessible and easily integrated. Informing EarthCube (earthcube.org): SeaView's experience as an integration demonstration can inform the larger NSF EarthCube architecture and design effort. The challenges faced in this small-scale effort are informative to geosciences cyberinfrastructure more generally. Here we focus on the lessons learned that may inform other data facilities and integrative architecture projects. (The SeaView data collections will be presented at the Ocean Sciences 2018 meeting.) One example is the importance of shared semantics, with persistent identifiers, for key integration elements across the data sets (e.g. cruise, parameter, and project/program.) These must allow for revision through time and should have an agreed authority or process for resolving conflicts: aligning identifiers and correcting errors were time consuming and often required both deep domain knowledge and "back end" knowledge of the data facilities. Another example is the need for robust provenance, and tools that support automated or semi-automated data transform pipelines that capture provenance. Multiple copies and versions of data are now flowing into repositories, and onward to long-term archives such as NOAA NCEI and umbrella portals such as DataONE. Exact copies can be identified with hashes (for those that have the skills), but it can be painfully difficult to understand the processing

  10. Integrative Mapping of Global-Scale Processes and Patterns on "Imaginary Earth" Continental Geometries: A Teaching Tool in an Earth History Course

    Science.gov (United States)

    Sunderlin, David

    2009-01-01

    The complexity and interrelatedness of aspects of the geosciences is an important concept to convey in an undergraduate geoscience curriculum. A synthesis capstone project has served to integrate pattern-based learning of an introductory Earth History course into an active and process-based exercise in hypothesis production. In this exercise,…

  11. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment

    Directory of Open Access Journals (Sweden)

    Richard C. Millar

    2012-01-01

    Full Text Available The objective of the work reported herein was to use a systems engineering approach to guide development of integrated instrumentation/sensor systems (IISS incorporating communications, interconnections, and signal acquisition. These require enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles of Condition-based maintenance (CBM. It is concluded that the systems engineering approach to IISS definition provided clear benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to open standards, reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications.

  12. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  13. A Comprehensive Database and Analysis Framework To Incorporate Multiscale Data Types and Enable Integrated Analysis of Bioactive Polyphenols.

    Science.gov (United States)

    Ho, Lap; Cheng, Haoxiang; Wang, Jun; Simon, James E; Wu, Qingli; Zhao, Danyue; Carry, Eileen; Ferruzzi, Mario G; Faith, Jeremiah; Valcarcel, Breanna; Hao, Ke; Pasinetti, Giulio M

    2018-03-05

    The development of a given botanical preparation for eventual clinical application requires extensive, detailed characterizations of the chemical composition, as well as the biological availability, biological activity, and safety profiles of the botanical. These issues are typically addressed using diverse experimental protocols and model systems. Based on this consideration, in this study we established a comprehensive database and analysis framework for the collection, collation, and integrative analysis of diverse, multiscale data sets. Using this framework, we conducted an integrative analysis of heterogeneous data from in vivo and in vitro investigation of a complex bioactive dietary polyphenol-rich preparation (BDPP) and built an integrated network linking data sets generated from this multitude of diverse experimental paradigms. We established a comprehensive database and analysis framework as well as a systematic and logical means to catalogue and collate the diverse array of information gathered, which is securely stored and added to in a standardized manner to enable fast query. We demonstrated the utility of the database in (1) a statistical ranking scheme to prioritize response to treatments and (2) in depth reconstruction of functionality studies. By examination of these data sets, the system allows analytical querying of heterogeneous data and the access of information related to interactions, mechanism of actions, functions, etc., which ultimately provide a global overview of complex biological responses. Collectively, we present an integrative analysis framework that leads to novel insights on the biological activities of a complex botanical such as BDPP that is based on data-driven characterizations of interactions between BDPP-derived phenolic metabolites and their mechanisms of action, as well as synergism and/or potential cancellation of biological functions. Out integrative analytical approach provides novel means for a systematic integrative

  14. Barriers and enablers to the use of high-fidelity patient simulation manikins in nurse education: an integrative review.

    Science.gov (United States)

    Al-Ghareeb, Amal Z; Cooper, Simon J

    2016-01-01

    This integrative review identified, critically appraised and synthesised the existing evidence on the barriers and enablers to using high-fidelity human patient simulator manikins (HPSMs) in undergraduate nursing education. In nursing education, specifically at the undergraduate level, a range of low to high-fidelity simulations have been used as teaching aids. However, nursing educators encounter challenges when introducing new teaching methods or technology, despite the prevalence of high-fidelity HPSMs in nursing education. An integrative review adapted a systematic approach. Medline, CINAHL plus, ERIC, PsychINFO, EMBASE, SCOPUS, Science Direct, Cochrane database, Joanna Brigge Institute, ProQuest, California Simulation Alliance, Simulation Innovative Recourses Center and the search engine Google Scholar were searched. Keywords were selected and specific inclusion/exclusion criteria were applied. The review included all research designs for papers published between 2000 and 2015 that identified the barriers and enablers to using high-fidelity HPSMs in undergraduate nursing education. Studies were appraised using the Critical Appraisal Skills Programme criteria. Thematic analysis was undertaken and emergent themes were extracted. Twenty-one studies were included in the review. These studies adopted quasi-experimental, prospective non-experimental and descriptive designs. Ten barriers were identified, including "lack of time," "fear of technology" and "workload issues." Seven enablers were identified, including "faculty training," "administrative support" and a "dedicated simulation coordinator." Barriers to simulation relate specifically to the complex technologies inherent in high-fidelity HPSMs approaches. Strategic approaches that support up-skilling and provide dedicated technological support may overcome these barriers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Integrating emerging earth science technologies into disaster risk management: an enterprise architecture approach

    Science.gov (United States)

    Evans, J. D.; Hao, W.; Chettri, S. R.

    2014-12-01

    Disaster risk management has grown to rely on earth observations, multi-source data analysis, numerical modeling, and interagency information sharing. The practice and outcomes of disaster risk management will likely undergo further change as several emerging earth science technologies come of age: mobile devices; location-based services; ubiquitous sensors; drones; small satellites; satellite direct readout; Big Data analytics; cloud computing; Web services for predictive modeling, semantic reconciliation, and collaboration; and many others. Integrating these new technologies well requires developing and adapting them to meet current needs; but also rethinking current practice to draw on new capabilities to reach additional objectives. This requires a holistic view of the disaster risk management enterprise and of the analytical or operational capabilities afforded by these technologies. One helpful tool for this assessment, the GEOSS Architecture for the Use of Remote Sensing Products in Disaster Management and Risk Assessment (Evans & Moe, 2013), considers all phases of the disaster risk management lifecycle for a comprehensive set of natural hazard types, and outlines common clusters of activities and their use of information and computation resources. We are using these architectural views, together with insights from current practice, to highlight effective, interrelated roles for emerging earth science technologies in disaster risk management. These roles may be helpful in creating roadmaps for research and development investment at national and international levels.

  16. Earth science information: Planning for the integration and use of global change information

    Science.gov (United States)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  17. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    Science.gov (United States)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  18. INTEGRATED SFM TECHNIQUES USING DATA SET FROM GOOGLE EARTH 3D MODEL AND FROM STREET LEVEL

    Directory of Open Access Journals (Sweden)

    L. Inzerillo

    2017-08-01

    Full Text Available Structure from motion (SfM represents a widespread photogrammetric method that uses the photogrammetric rules to carry out a 3D model from a photo data set collection. Some complex ancient buildings, such as Cathedrals, or Theatres, or Castles, etc. need to implement the data set (realized from street level with the UAV one in order to have the 3D roof reconstruction. Nevertheless, the use of UAV is strong limited from the government rules. In these last years, Google Earth (GE has been enriched with the 3D models of the earth sites. For this reason, it seemed convenient to start to test the potentiality offered by GE in order to extract from it a data set that replace the UAV function, to close the aerial building data set, using screen images of high resolution 3D models. Users can take unlimited “aerial photos” of a scene while flying around in GE at any viewing angle and altitude. The challenge is to verify the metric reliability of the SfM model carried out with an integrated data set (the one from street level and the one from GE aimed at replace the UAV use in urban contest. This model is called integrated GE SfM model (i-GESfM. In this paper will be present a case study: the Cathedral of Palermo.

  19. Research priorities in land use and land-cover change for the Earth System and Integrated Assessment Modelling

    NARCIS (Netherlands)

    Hibbard, K.; Janetos, A.; Vuuren, van D.; Pongratz, J.; Rose, S.; Betts, R.; Herold, M.; Feddema, J.

    2010-01-01

    This special issue has highlighted recent and innovative methods and results that integrate observations and modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated

  20. Teaching about the Earth Online: Faculty-Sourced Guidance from InTeGrate

    Science.gov (United States)

    McDaris, J. R.; Bralower, T. J.; Anbar, A. D.; Leinbach, A.

    2017-12-01

    Teaching online is growing in acceptance within the higher education community and its accessibility creates an opportunity to reach students from diverse backgrounds with geoscience content. There is a need to develop best practices for teaching about Earth online as new technologies, pedagogical approaches, and teaching materials that incorporate societal issues and data emerge. In response to this need, the InTeGrate: Teaching about Earth for a Sustainable Future project convened a workshop of interdisciplinary faculty who teach about the Earth online, in a variety of contexts, to develop consensus best-practices, collect online resources, and develop teaching materials to share with the rest of the community. Workshop participants generated five broad categories of guidance for faculty teaching online: develop communication and a sense of community among class participants, stimulate student engagement, develop activity frameworks that scale with class size, include information literacy in the curriculum explicitly, and employ effective management and assessment techniques. Many of the best practices highlighted by the group are not unique to teaching online, but teaching online rather than face-to-face affects how they are or can be implemented. The suite of webpages developed from this work showcase specific strategies in each area, underpinned by examples drawn from the experiences of the participants. This resource can provide a wealth of advice for faculty seeking help for teaching online. Faculty can also provide feedback on the strategies and add their own experiences to the collection. Participants also worked together in teams to develop new or revise existing teaching resources to make available via the InTeGrate website. In addition, they shared insights about online resources they use in their teaching and class management and developed plans for an online repository for next-generation, interactive educational materials and tools for creating them

  1. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    Science.gov (United States)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  2. Secondary components, integral multiplicity factor and coupling coefficients of cosmic rays in the Earth atmosphere and other planets

    International Nuclear Information System (INIS)

    Dorman, L.I.; Yanke, V.G.

    1979-01-01

    Integral multiples of cosmic rays in Earth and other planets atmospheres have been determined. Kinetic equations describing the evolution of hadronic cascade in atmosphere using modern accelerating data have been solved with that end in view. Bond coefficients for nucleonic, muonic and electronic components of secondary cosmic radiation have been built using integral multiples. Normalized bond coefficients for three components obtained for maximum solar activity are presented. Integral muon and nucleon generation and bond coefficients have also been given for Mars

  3. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    Science.gov (United States)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is

  4. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period April 1, 2009 through September 30, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Middleton, D. E. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States)

    2009-10-15

    This report summarizes work carried out by the ESG-CET during the period April 1, 2009 through September 30, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities). During this semi-annual reporting period, the ESG-CET team continued its efforts to complete software components needed for the ESG Gateway and Data Node. These components include: Data Versioning, Data Replication, DataMover-Lite (DML) and Bulk Data Mover (BDM), Metrics, Product Services, and Security, all joining together to form ESG-CET's first beta release. The launch of the beta release is scheduled for late October with the installation of ESG Gateways at NCAR and LLNL/PCMDI. Using the developed ESG Data Publisher, the ESG II CMIP3 (IPCC AR4) data holdings - approximately 35 TB - will be among the first datasets to be published into the new ESG enterprise system. In addition, the NCAR's ESG II data holdings will also be published into the new system - approximately 200 TB. This period also saw the testing of the ESG Data Node at various collaboration sites, including: the British Atmospheric Data Center (BADC), the Max-Planck-Institute for Meteorology, the University of Tokyo

  5. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    Science.gov (United States)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  6. DOE SciDAC’s Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute

    Energy Technology Data Exchange (ETDEWEB)

    Chervenak, Ann Louise [Univ. of Southern California Information Sciences Inst., Marina del Rey, CA (United States)

    2013-12-19

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy’s (DOE’s) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing

  7. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National

  8. A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets

    Science.gov (United States)

    Porwal, A.; Carranza, J.; Hale, M.

    2004-12-01

    A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.

  9. New Data Services for Polar Investigators from Integrated Earth Data Applications (IEDA)

    Science.gov (United States)

    Nitsche, F. O.; Ferrini, V.; Morton, J. J.; Arko, R. A.; McLain, K.; O'hara, S. H.; Carbotte, S. M.; Lehnert, K. A.; IEDA Team, I.

    2013-12-01

    Accessibility and preservation of data is needed to support multi-disciplinary research in the key environmentally sensitive Polar Regions. IEDA (Integrated Earth Data Applications) is a community-based data facility funded by the US National Science Foundation (NSF) to support, sustain, and advance the geosciences by providing data services for observational solid earth data from the Ocean, Earth, and Polar Sciences. IEDA tools and services relevant to the Polar Research Community include the Antarctic and Southern Ocean Data System (ASODS), the U.S. Antarctic Program Data Coordination Center (USAP-DCC), GeoMapApp, as well as a number of services for sample-based data (SESAR and EarthChem). In addition to existing tools, which assist Polar investigators in archiving their data, and creating DIF records for global searches in AMD, IEDA recently added several new tools and services that will provide further support for investigators with the data life cycle process. These include a data management plan (http://www.iedadata.org/compliance/plan) and data compliance reporting tool (http://www.iedadata.org/compliance/report) that will help investigators comply with the requirements of funding agencies such as the National Science Foundation (NSF). Data, especially from challenging Polar Regions, are likely to be used by other scientists for future studies. Therefore, data acknowledgment is an important concern of many investigators. To encourage data acknowledgments by data users, we link references of publications (when known) to datasets and cruises registered within the ASODS system as part of our data curation services (http://www.marine-geo.org/portals/antarctic/references.php). In addition, IEDA offers a data publication service to register scientific data with DOI's, making data sets citable as publications with attribution to investigators as authors. IEDA is a publication agent of the DataCite consortium. Offering such services provides additional incentives

  10. Large-scale, high-performance and cloud-enabled multi-model analytics experiments in the context of the Earth System Grid Federation

    Science.gov (United States)

    Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.

    2017-12-01

    The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the

  11. Enabling the Integrated Assessment of Large Marine Ecosystems: Informatics to the Forefront of Science-Based Decision Support

    Science.gov (United States)

    Di Stefano, M.; Fox, P. A.; Beaulieu, S. E.; Maffei, A. R.; West, P.; Hare, J. A.

    2012-12-01

    and interactive visualization, and enables the download of data plotted in the ESR. Data, indicators, and information products include time series, geographic maps, and uni-variate and multi-variate analyses. Also central to the success of this initiative is the commitment to accommodate and train scientists of multiple disciplines who will learn to interact effectively with this new integrated and interoperable ecosystem assessment capability. Traceability, repeatability, explanation, verification, and validation of data, indicators, and information products are important for cross-disciplinary understanding and sharing with managers, policymakers, and the public. We are also developing an ontology to support the implementation of the DPSIR framework. These new capabilities will serve as the essential foundation for the formal synthesis and quantitative analysis of information on relevant natural and socio-economic factors in relation to specified ecosystem management goals which can be applied in other LMEs.

  12. Web-Enabled Mechanistic Case Diagramming: A Novel Tool for Assessing Students' Ability to Integrate Foundational and Clinical Sciences.

    Science.gov (United States)

    Ferguson, Kristi J; Kreiter, Clarence D; Haugen, Thomas H; Dee, Fred R

    2018-02-20

    As medical schools move from discipline-based courses to more integrated approaches, identifying assessment tools that parallel this change is an important goal. The authors describe the use of test item statistics to assess the reliability and validity of web-enabled mechanistic case diagrams (MCDs) as a potential tool to assess students' ability to integrate basic science and clinical information. Students review a narrative clinical case and construct an MCD using items provided by the case author. Students identify the relationships among underlying risk factors, etiology, pathogenesis and pathophysiology, and the patients' signs and symptoms. They receive one point for each correctly-identified link. In 2014-15 and 2015-16, case diagrams were implemented in consecutive classes of 150 medical students. The alpha reliability coefficient for the overall score, constructed using each student's mean proportion correct across all cases, was 0.82. Discrimination indices for each of the case scores with the overall score ranged from 0.23 to 0.51. In a G study using those students with complete data (n = 251) on all 16 cases, 10% of the variance was true score variance, and systematic case variance was large. Using 16 cases generated a G coefficient (relative score reliability) equal to .72 and a Phi equal to .65. The next phase of the project will involve deploying MCDs in higher-stakes settings to determine whether similar results can be achieved. Further analyses will determine whether these assessments correlate with other measures of higher-order thinking skills.

  13. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    Science.gov (United States)

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. An integrative review of in-class activities that enable active learning in college science classroom settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-10-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about 'active learning' in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are examined. Four categories of in-class activities emerge: (i) individual non-polling activities, (ii) in-class polling activities, (iii) whole-class discussion or activities, and (iv) in-class group activities. Examining the collection of identified in-class activities through the lens of a theoretical framework informed by constructivism and social interdependence theory, we synthesise the reviewed literature to propose the active learning strategies (ALSs) model and the instructional decisions to enable active learning (IDEAL) theory. The ALS model characterises in-class activities in terms of the degrees to which they are designed to promote (i) peer interaction and (ii) social interdependence. The IDEAL theory includes the ALS model and provides a framework for conceptualising different levels of the general concept 'active learning' and how these levels connect to instructional decision-making about using in-class activities. The proposed ALS model and IDEAL theory can be utilised to inform instructional decision-making and future research about active learning in college science courses.

  15. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    Science.gov (United States)

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Integration of Hospital Information and Clinical Decision Support Systems to Enable the Reuse of Electronic Health Record Data.

    Science.gov (United States)

    Kopanitsa, Georgy

    2017-05-18

    The efficiency and acceptance of clinical decision support systems (CDSS) can increase if they reuse medical data captured during health care delivery. High heterogeneity of the existing legacy data formats has become the main barrier for the reuse of data. Thus, we need to apply data modeling mechanisms that provide standardization, transformation, accumulation and querying medical data to allow its reuse. In this paper, we focus on the interoperability issues of the hospital information systems (HIS) and CDSS data integration. Our study is based on the approach proposed by Marcos et al. where archetypes are used as a standardized mechanism for the interaction of a CDSS with an electronic health record (EHR). We build an integration tool to enable CDSSs collect data from various institutions without a need for modifications in the implementation. The approach implies development of a conceptual level as a set of archetypes representing concepts required by a CDSS. Treatment case data from Regional Clinical Hospital in Tomsk, Russia was extracted, transformed and loaded to the archetype database of a clinical decision support system. Test records' normalization has been performed by defining transformation and aggregation rules between the EHR data and the archetypes. These mapping rules were used to automatically generate openEHR compliant data. After the transformation, archetype data instances were loaded into the CDSS archetype based data storage. The performance times showed acceptable performance for the extraction stage with a mean of 17.428 s per year (3436 case records). The transformation times were also acceptable with 136.954 s per year (0.039 s per one instance). The accuracy evaluation showed the correctness and applicability of the method for the wide range of HISes. These operations were performed without interrupting the HIS workflow to prevent the HISes from disturbing the service provision to the users. The project results have proven that

  17. RIMS: An Integrated Mapping and Analysis System with Applications to Earth Sciences and Hydrology

    Science.gov (United States)

    Proussevitch, A. A.; Glidden, S.; Shiklomanov, A. I.; Lammers, R. B.

    2011-12-01

    A web-based information and computational system for analysis of spatially distributed Earth system, climate, and hydrologic data have been developed. The System allows visualization, data exploration, querying, manipulation and arbitrary calculations with any loaded gridded or vector polygon dataset. The system's acronym, RIMS, stands for its core functionality as a Rapid Integrated Mapping System. The system can be deployed for a Global scale projects as well as for regional hydrology and climatology studies. In particular, the Water Systems Analysis Group of the University of New Hampshire developed the global and regional (Northern Eurasia, pan-Arctic) versions of the system with different map projections and specific data. The system has demonstrated its potential for applications in other fields of Earth sciences and education. The key Web server/client components of the framework include (a) a visualization engine built on Open Source libraries (GDAL, PROJ.4, etc.) that are utilized in a MapServer; (b) multi-level data querying tools built on XML server-client communication protocols that allow downloading map data on-the-fly to a client web browser; and (c) data manipulation and grid cell level calculation tools that mimic desktop GIS software functionality via a web interface. Server side data management of the system is designed around a simple database of dataset metadata facilitating mounting of new data to the system and maintaining existing data in an easy manner. RIMS contains "built-in" river network data that allows for query of upstream areas on-demand which can be used for spatial data aggregation and analysis of sub-basin areas. RIMS is an ongoing effort and currently being used to serve a number of websites hosting a suite of hydrologic, environmental and other GIS data.

  18. Integration of lessons from recent research for “Earth to Mars” life support systems

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An "Earth to Mars" project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process.

  19. Effective Integration of the World-Wide Web in Earth Science Education.

    Science.gov (United States)

    Herbert, Bruce; Bednarz, Sarah; Boyd, Tom; Blake, Sally; Harder, Vicki; Sutter, Marilyn

    The earth sciences is an evolving set of disciplines encompassing more than 30 specialties; however, earth scientists continue to be trained within the traditional disciplinary structure. Earth science education should focus not only on student acquisition and retention of factual knowledge, but also on the development of higher-order skills…

  20. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    Science.gov (United States)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  1. Integrated propulsion for near-Earth space missions. Volume 1: Executive summary

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.

  2. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis.

    Directory of Open Access Journals (Sweden)

    Emmanuel Dias-Neto

    2009-12-01

    Full Text Available Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i the counting of transducing units and (ii the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges.We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU, with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs approximately 250-fold for generating 10(6 ligand sequences.Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall, qPhage plus pyrosequencing is superior to TU-counting plus Sanger

  3. Ternary rare-earth based alternative gate-dielectrics for future integration in MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Juergen; Lopes, Joao Marcelo; Durgun Oezben, Eylem; Luptak, Roman; Lenk, Steffi; Zander, Willi; Roeckerath, Martin [IBN 1-IT, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-07-01

    The dielectric SiO{sub 2} has been the key to the tremendous improvements in Si-based metal-oxide-semiconductor (MOS) device performance over the past four decades. It has, however, reached its limit in terms of scaling since it exhibits a leakage current density higher than 1 A/cm{sup 2} and does not retain its intrinsic physical properties at thicknesses below 1.5 nm. In order to overcome these problems and keep Moore's law ongoing, the use of higher dielectric constant (k) gate oxides has been suggested. These high-k materials must satisfy numerous requirements such as the high k, low leakage currents, suitable band gap und offsets to silicon. Rare-earth based dielectrics are promising materials which fulfill these needs. We will review the properties of REScO{sub 3} (RE = La, Dy, Gd, Sm, Tb) and LaLuO{sub 3} thin films, grown with pulsed laser deposition, e-gun evaporation or molecular beam deposition, integrated in capacitors and transistors. A k > 20 for the REScO{sub 3} (RE = Dy, Gd) and around 30 for (RE = La, Sm, Tb) and LaLuO{sub 3} are obtained. Transistors prepared on SOI and sSOI show mobility values up to 380 cm{sup 2}/Vs on sSOI, which are comparable to such prepared with HfO{sub 2}.

  4. MEOS Microsatellite Earth Observation using Miniature Integrated-Optic IR Spectrometers

    Science.gov (United States)

    Kruzelecky, Roman

    Our planetary atmosphere helps to regulate the Earth's thermal budget and the resulting global climate by controlling the energy balance between the incident solar radiation and the thermal emission to space from the Earth's atmosphere and surface. Certain atmospheric gases, most importantly H2 O vapour and CO2 , can absorb some of the Earth's emitted IR radiation and trap it in the atmosphere to provide an atmospheric greenhouse effect that currently adds about 38 K to the Earth's mean surface temperature. The associated greenhouse gas (GHG) and water cycles are a complex balance of interactions among surface ecosystems and atmospheric processes. The natural water and carbon cycles are being measurably disrupted by anthropogenic activities. Since the industrial revolution, significant anthropogenic sources of greenhouse gases and aerosols have evolved, while natural sinks, such as forests and wetlands, are being destroyed. Changes in the land cover affect the balance of GHG sources and sinks, as well as the Albedo and resultant surface temperature. Water vapour, the most abundant GHG, is affected indirectly though the influence of aerosols on cloud formation and precipitation patterns, and directly through the influence of surface temperatures on the water evaporation rates. There is also positive feedback between the water and carbon cycles. For example, drought can result in desertification with subsequent release of stored carbon. It is clear that the common thread in all of these climate-related effects is the interaction between the surface ecosystems and the carbonand nitrogen-containing gases in the lower troposphere. Uptake of CO2 by growing vegetation, release of CH4 and N2 O by soil processes, and the effects of carbon and water cycle chemistry all interact strongly in a system that is both ex-tremely complex and poorly understood at the present time. In order to quantify these processes and provide a clearer prediction of their likely effects in the

  5. Integrating EarthScope Research and Education on a National Scale

    Science.gov (United States)

    Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.

    2002-12-01

    EarthScope's education and outreach mission is to ensure the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating products that utilize the data, models, technology and discoveries of EarthScope and that support existing education and outreach programs. EarthScope EON will carry out educational activities ranging from research experiences for students in grades K-16 to professional development for technical professionals and educators in both formal (e.g. K-20 classrooms) and informal (e.g. museums and parks) venues. It will also provide a wide range of outreach activities from organizing town halls or other local meetings in advance of an instrument deployment, to developing radio, print and video materials that inform the public about the EarthScope experiment and discoveries. The EarthScope Education and Outreach Network (EON) will be facilitated and coordinated through a national center; however, the bulk of the effort will be distributed among local EON alliances of various sizes designed to respond quickly and to meet the specific needs in a region. This allows EarthScope EON to provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The network will be built through national and local partnerships with existing science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the

  6. Potential Uses of EarthSLOT (an Earth Science, Logistics, and Outreach Terrainbase) for Education and Integration in the International Polar Year

    Science.gov (United States)

    Nolan, M.

    2004-12-01

    EarthSLOT is an internet-based, 3D, interactive terrain and data visualization system that may have many potential uses as an education and integration tool for International Polar Year projects. Recently funded by NSF's Office of Polar Programs for use in the Arctic, the global nature of the application lends itself well for use at both poles and everywhere in between. The application allows one to start with a spinning earth and zoom down to surface level. The highest resolution digital elevation models available provide the necessary 3D topographic perspective and a variety of possible high-resolution satellite and aerial imagery layers add surface realism; resolution can be down to the centimeter level for either type of data, and frequently acquired satellite imagery may be updated automatically as it arrives. Superimposed on this can be nearly any form of vector or annotation layers, such as shapefiles, polygons, point data, and 3D models (still and moving), which can be easily imported from existing GIS applications or spreadsheets. External databases can also be queried and the results served seamlessly. The entire application is served over the internet, and any connection with speeds over 300kps allows one to interactively fly with a minimum of performance lag. EarthSLOT stands for Earth Science, Logistics, and Outreach Terrainbase, targeting the user-groups of scientists, logisticians, and the public. Approved scientific users can add their own vector content to the application on their own, such that they can create their own custom applications featuring their data but using our underlying earth model with a minimum of interaction with us. For example, an oceanographer can add ship tracks or buoy locations to the model with links to data, host the link on his or her own web page, and invite collaborators to view the spatial relationship of their data to underlying bathymetry. Logisticians or program managers interested in understanding the spatial

  7. Arctic System Science: Meeting Earth System and Social Impact Challenges through Integrative Approaches and Synthesis

    Science.gov (United States)

    Vorosmarty, C. J.; Hinzman, L. D.; Rawlins, M. A.; Serreze, M. C.; Francis, J. A.; Liljedahl, A. K.; McDonald, K. C.; Piasecki, M.; Rich, R. H.; Holland, M. M.

    2017-12-01

    The Arctic is an integral part of the Earth system where multiple interactions unite its natural and human elements. Recent observations show the Arctic to be experiencing rapid and amplified signatures of global climate change. At the same time, the Arctic system's response to this broader forcing has itself become a central research topic, given its potential role as a critical throttle on future planetary dynamics. Changes are already impacting life systems and economic prosperity and continued change is expected to bear major implications far outside the region. We also have entered an era when environmental management, traditionally local in scope, must confront regional, whole biome, and pan-Arctic biogeophysical challenges. While challenges may appear to operate in isolation, they emerge within the context of an evolving, integrated Arctic system defined by interactions among natural and social sub-systems. Clearly, new efforts aimed at community planning, industrial development, and infrastructure construction must consider this multiplicity of interacting processes. We recently organized an "Arctic System Synthesis Workshop Series" supported by the Arctic Systems Science Program of NSF and devoted to exploring approaches capable of uncovering the systems-level behavior in both the natural and social sciences domains. The series featured two topical meetings. The first identified the sources responsible for extreme climate events in the Arctic. The second focused on multiple "currencies" within the system (i.e., water, energy, carbon, nutrients) and how they interact to produce systems-level behaviors. More than 40 experts participated, drawn from the ranks of Arctic natural and social sciences. We report here on the workshop series consensus report, which identifies a broad array of topics. Principal among these are a consideration of why study the Arctic as a system, as well as an articulation of the major systems-level approaches to support basic as well

  8. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Science.gov (United States)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  9. An Innovative Infrastructure with a Universal Geo-spatiotemporal Data Representation Supporting Cost-effective Integration of Diverse Earth Science Data

    Science.gov (United States)

    Kuo, K. S.; Rilee, M. L.

    2017-12-01

    Existing pathways for bringing together massive, diverse Earth Science datasets for integrated analyses burden end users with data packaging and management details irrelevant to their domain goals. The major data repositories focus on archival, discovery, and dissemination of products (files) in a standardized manner. End-users must download and then adapt these files using local resources and custom methods before analysis can proceed. This reduces scientific or other domain productivity, as scarce resources and expertise must be diverted to data processing. The Spatio-Temporal Adaptive Resolution Encoding (STARE) is a unifying scheme encoding geospatial and temporal information for organizing data on scalable computing/storage resources, minimizing expensive data transfers. STARE provides a compact representation that turns set-logic functions, e.g. conditional subsetting, into integer operations, that takes into account representative spatiotemporal resolutions of the data in the datasets, which is needed for data placement alignment of geo-spatiotemporally diverse data on massive parallel resources. Automating important scientific functions (e.g. regridding) and computational functions (e.g. data placement) allows scientists to focus on domain specific questions instead of expending their expertise on data processing. While STARE is not tied to any particular computing technology, we have used STARE for visualization and the SciDB array database to analyze Earth Science data on a 28-node compute cluster. STARE's automatic data placement and coupling of geometric and array indexing allows complicated data comparisons to be realized as straightforward database operations like "join." With STARE-enabled automation, SciDB+STARE provides a database interface, reducing costly data preparation, increasing the volume and variety of integrable data, and easing result sharing. Using SciDB+STARE as part of an integrated analysis infrastructure, we demonstrate the dramatic

  10. Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto

    Czech Academy of Sciences Publication Activity Database

    Gómez, F.; Walter, N.; Amils, R.; Rull, F.; Klingelhöfer, G.; Kvíderová, Jana; Sarrazin, P.; Foing, B.; Behar, A.; Fleischer, I.; Parro, V.; Garcia-Villadangos, M.; Blake, D.; Martin-Ramos, J. D.; Direito, S.; Mahapatra, P.; Stam, C.; Venkateswaran, K.; Voytek, M.

    2011-01-01

    Roč. 10, č. 3 (2011), 291-305 ISSN 1473-5504 Institutional research plan: CEZ:AV0Z60050516 Keywords : astrobiology * extreme environments * Earth analogue Subject RIV: EF - Botanics Impact factor: 1.723, year: 2011

  11. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    Science.gov (United States)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  12. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion

  13. High Performance Nano-Constituent Buffer Layer Thin Films to Enable Low Cost Integrated On-the-Move Communications Systems

    National Research Council Canada - National Science Library

    Cole, M. W; Nothwang, W. D; Hubbard, C; Ngo, E; Hirsch, S

    2004-01-01

    Successful integration of paraelectric Ba1-xSrxTiO3 (BST) based thin films with affordable Si substrates has a potential significant commercial impact as the demand for high-frequency tunable devices intensifies...

  14. Alignment of Partnering with Construction IT : Exploration and Synthesis of network strategies to integrate BIM-enabled Supply Chains

    NARCIS (Netherlands)

    Papadonikolaki, E.

    2016-01-01

    Supply Chain Management (SCM) and Building Information Modelling (BIM) are seen as innovations that can manage complexities in construction by focusing on integrating processes and products respectively. Whereas these two innovations have been considered compatible, their practical combination has

  15. A geodata warehouse: Using denormalisation techniques as a tool for delivering spatially enabled integrated geological information to geologists

    Science.gov (United States)

    Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham

    2016-11-01

    New requirements to understand geological properties in three dimensions have led to the development of PropBase, a data structure and delivery tools to deliver this. At the BGS, relational database management systems (RDBMS) has facilitated effective data management using normalised subject-based database designs with business rules in a centralised, vocabulary controlled, architecture. These have delivered effective data storage in a secure environment. However, isolated subject-oriented designs prevented efficient cross-domain querying of datasets. Additionally, the tools provided often did not enable effective data discovery as they struggled to resolve the complex underlying normalised structures providing poor data access speeds. Users developed bespoke access tools to structures they did not fully understand sometimes delivering them incorrect results. Therefore, BGS has developed PropBase, a generic denormalised data structure within an RDBMS to store property data, to facilitate rapid and standardised data discovery and access, incorporating 2D and 3D physical and chemical property data, with associated metadata. This includes scripts to populate and synchronise the layer with its data sources through structured input and transcription standards. A core component of the architecture includes, an optimised query object, to deliver geoscience information from a structure equivalent to a data warehouse. This enables optimised query performance to deliver data in multiple standardised formats using a web discovery tool. Semantic interoperability is enforced through vocabularies combined from all data sources facilitating searching of related terms. PropBase holds 28.1 million spatially enabled property data points from 10 source databases incorporating over 50 property data types with a vocabulary set that includes 557 property terms. By enabling property data searches across multiple databases PropBase has facilitated new scientific research, previously

  16. Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input

    Directory of Open Access Journals (Sweden)

    Stephanie eRatté

    2015-01-01

    Full Text Available Neurons rely on action potentials, or spikes, to encode information. But spikes can encode different stimulus features in different neurons. We show here through simulations and experiments how neurons encode the integral or derivative of their input based on the distinct tuning properties conferred upon them by subthreshold currents. Slow-activating subthreshold inward (depolarizing current mediates positive feedback control of subthreshold voltage, sustaining depolarization and allowing the neuron to spike on the basis of its integrated stimulus waveform. Slow-activating subthreshold outward (hyperpolarizing current mediates negative feedback control of subthreshold voltage, truncating depolarization and forcing the neuron to spike on the basis of its differentiated stimulus waveform. Depending on its direction, slow-activating subthreshold current cooperates or competes with fast-activating inward current during spike initiation. This explanation predicts that sensitivity to the rate of change of stimulus intensity differs qualitatively between integrators and differentiators. This was confirmed experimentally in spinal sensory neurons that naturally behave as specialized integrators or differentiators. Predicted sensitivity to different stimulus features was confirmed by covariance analysis. Integration and differentiation, which are themselves inverse operations, are thus shown to be implemented by the slow feedback mediated by oppositely directed subthreshold currents expressed in different neurons.

  17. NASP - Enabling new space launch options

    Science.gov (United States)

    Froning, David; Gaubatz, William; Mathews, George

    1990-10-01

    Successful NASP developments in the United States are bringing about the possibility of effective, fully reusable vehicles for transport of people and cargo between earth and space. These developments include: extension of airbreathing propulsion to a much higher speed; densification of propellants for greater energy per unit volume of mass; structures with much greater strength-to-weight at high temperatures; computational advancements that enable more optimal design and integration of airframes, engines and controls; and advances in avionics, robotics, artificial intelligence and automation that enable accomplishment of earth-to-orbit (ETO) operations with much less manpower support and cost. This paper describes the relative magnitude of improvement that these developments may provide.

  18. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  19. Integrated modeling of land-use change: the role of coupling, interactions and feedbacks between the human and Earth systems

    Science.gov (United States)

    Monier, E.; Kicklighter, D. W.; Ejaz, Q.; Winchester, N.; Paltsev, S.; Reilly, J. M.

    2016-12-01

    Land-use change integrates a large number of components of the human and Earth systems, including climate, energy, water, and land. These complex coupling elements, interactions and feedbacks take place on a variety of space and time scales, thus increasing the complexity of land-use change modeling frameworks. In this study, we aim to identify which coupling elements, interactions and feedbacks are important for modeling land-use change, both at the global and regional level. First, we review the existing land-use change modeling framework used to develop land-use change projections for the Representative Concentration Pathways (RCP) scenarios. In such framework, land-use change is simulated by Integrated Assessment Models (IAMs) and mainly influenced by economic, energy, demographic and policy drivers. IAMs focus on representing the demand for agriculture and forestry goods (crops for food and bioenergy, forest products for construction and bioenergy), the interactions with other sectors of the economy and trade between various regions of the world. Then, we investigate how important various coupling elements and feedbacks with the Earth system are for projections of land-use change at the global and regional level. We focus on the following: i) the climate impacts on land productivity and greenhouse gas emissions, which requires climate change information and coupling to a terrestrial ecosystem model/crop model; ii) the climate and economic impacts on irrigation availability, which requires coupling the LUC modeling framework to a water resources management model and disaggregating rainfed and irrigated croplands; iii) the feedback of land-use change on the global and regional climate system through land-use change emissions and changes in the surface albedo and hydrology, which requires coupling to an Earth system model. Finally, we conclude our study by highlighting the current lack of clarity in how various components of the human and Earth systems are

  20. "Space on Earth:" A Learning Community Integrating English, Math, and Science

    Science.gov (United States)

    Fortna, Joanna; Sullivan, Jim

    2010-01-01

    Imagine a mathematics instructor and English instructor sharing an office; scribbled equations litter one desk, snatches of poetry the other. Our learning community, "Space on Earth," grew from conversations in just such an office where we bridged our own disciplinary gap and discovered a shared passion for helping students apply the concepts and…

  1. An Integrative Review of In-Class Activities That Enable Active Learning in College Science Classroom Settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-01-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about "active learning" in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are…

  2. Use of Persistent Identifiers to link Heterogeneous Data Systems in the Integrated Earth Data Applications (IEDA) Facility

    Science.gov (United States)

    Hsu, L.; Lehnert, K. A.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Walker, J. D.

    2012-12-01

    The Integrated Earth Data Applications (IEDA) facility maintains multiple data systems with a wide range of solid earth data types from the marine, terrestrial, and polar environments. Examples of the different data types include syntheses of ultra-high resolution seafloor bathymetry collected on large collaborative cruises and analytical geochemistry measurements collected by single investigators in small, unique projects. These different data types have historically been channeled into separate, discipline-specific databases with search and retrieval tailored for the specific data type. However, a current major goal is to integrate data from different systems to allow interdisciplinary data discovery and scientific analysis. To increase discovery and access across these heterogeneous systems, IEDA employs several unique IDs, including sample IDs (International Geo Sample Number, IGSN), person IDs (GeoPass ID), funding award IDs (NSF Award Number), cruise IDs (from the Marine Geoscience Data System Expedition Metadata Catalog), dataset IDs (DOIs), and publication IDs (DOIs). These IDs allow linking of a sample registry (System for Earth SAmple Registration), data libraries and repositories (e.g. Geochemical Research Library, Marine Geoscience Data System), integrated synthesis databases (e.g. EarthChem Portal, PetDB), and investigator services (IEDA Data Compliance Tool). The linked systems allow efficient discovery of related data across different levels of granularity. In addition, IEDA data systems maintain links with several external data systems, including digital journal publishers. Links have been established between the EarthChem Portal and ScienceDirect through publication DOIs, returning sample-level objects and geochemical analyses for a particular publication. Linking IEDA-hosted data to digital publications with IGSNs at the sample level and with IEDA-allocated dataset DOIs are under development. As an example, an individual investigator could sign up

  3. Integrating enabling contexts and ambidexterity to create Intellectual Capital faculty’s competencies on undergraduate Business Management programs

    Directory of Open Access Journals (Sweden)

    José Rezende

    2016-09-01

    Full Text Available Purpose: This study aims to discuss a framework to promote ambidexterity through an intentional managed enabling context in order to develop university lecturers’ competencies and, at last, to improve students’ skills. Design/methodology/approach: A descriptive case study was performed based on literature review and the data collection was done through documentary and field participative research with the PACT working group. The paper reports the stage and maturity of the High Commonality of Themes Project (PACT on a private Brazilian university in Rio de Janeiro. Consequently, since the faculty shares more qualified knowledge and the syllabus could be realigned without losing epistemological identity, the subjects expect that the students learning process performs on market demanded pragmatic and practical skills. Findings: Findings indicate PACT as a kind of improvement, since it makes possible, balancing Refined Interpolation with Disciplined Extrapolation, to promote the ambidextrous learning through an enabling context, thus allowing specialized lecturers to improve competencies in their core area. Research limitations/implications: As a case study, findings could not be widespread and limitations are related to the initial stages of the PACT implementation. Originality/value: The value and originality of the ambidexterity approach refer to the possibilities it could overlap the bottlenecks that faculty performance generates to students learning effectiveness: non-adherence by the faculty to the discipline they teach (Human Capital; way lecturers interact among courses and one another (Social/Relationship Capital; and development and practicality of the educational guidelines of the course – PPC (Structural Capital.

  4. Air Vehicle Technology Integration Program (AVTIP) Delivery Order 0015: Open Control Platform (OCP) Software Enabled Control (SEC) Hardware in the Loop Simulation - OCP Hardware Integration

    National Research Council Canada - National Science Library

    Paunicka, James L

    2005-01-01

    ...) project sponsored by the DARPA Software Enabled Control (SEC) Program. The purpose of this project is to develop the capability to be an OCP test-bed and to evaluate the OCP controls and simulation environment for a specific test case...

  5. The Impact of Information System-Enabled Supply Chain Process Integration on Business Performance: A Resource-Based Analysis

    OpenAIRE

    Morteza Ghobakhloo; Sai Hong Tang; Mohammad Sadegh Sabouri; Norzima Zulkifli

    2014-01-01

    This paper seeks to develop and test a model to examine the relationships between, technical aspects of IS resources (IS alignment, IS resources technical quality, IS advancement), supply chain process integration, and firm performance. A questionnaire-based survey was conducted to collect data from 227 supply chain, logistics, or procurement/purchasing managers of leading manufacturing and retail organizations. Drawing on resources-based view of the firm, and through extending the concept of...

  6. Using System Architecture, Review Entry Criteria, and Standard Work Package Data to Enable Rapid Development of Integrated Master Schedules

    Science.gov (United States)

    2016-03-01

    critical path, EVM, project management, systems engineering, CVN, obsolescence , integrated master schedule , portfolio schedule 15. NUMBER OF PAGES...after the decision to swap deployments between the CVN-69 and CVN-75. C. COTS OBSOLESCENCE While CVN deadlines impose schedule constraints...Elements The context diagram shows how a CVN IT program SEP and IMS interact with COTS obsolescence , the CPA availability schedule , and other internal

  7. Using system architecture, review entry criteria, and standard work package data to enable rapid development of integrated master schedules

    OpenAIRE

    Porter, Burton W., Jr.

    2016-01-01

    Approved for public release; distribution is unlimited While engineers must participate in the construction of the Integrated Master Schedule, this thesis proposes a way to reduce that effort through automation. When standardized sub processes exist, automated task name construction with consistent action/object naming convention can be applied to multiple system artifacts. These repeating sub processes also allow the derivation of task sequence and dependencies. The Architecture-Based Uti...

  8. Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations

    Science.gov (United States)

    Penny, Stephen G.; Akella, Santha; Buehner, Mark; Chevallier, Matthieu; Counillon, Francois; Draper, Clara; Frolov, Sergey; Fujii, Yosuke; Karspeck, Alicia; Kumar, Arun

    2017-01-01

    The purpose of this report is to identify fundamental issues for coupled data assimilation (CDA), such as gaps in science and limitations in forecasting systems, in order to provide guidance to the World Meteorological Organization (WMO) on how to facilitate more rapid progress internationally. Coupled Earth system modeling provides the opportunity to extend skillful atmospheric forecasts beyond the traditional two-week barrier by extracting skill from low-frequency state components such as the land, ocean, and sea ice. More generally, coupled models are needed to support seamless prediction systems that span timescales from weather, subseasonal to seasonal (S2S), multiyear, and decadal. Therefore, initialization methods are needed for coupled Earth system models, either applied to each individual component (called Weakly Coupled Data Assimilation - WCDA) or applied the coupled Earth system model as a whole (called Strongly Coupled Data Assimilation - SCDA). Using CDA, in which model forecasts and potentially the state estimation are performed jointly, each model domain benefits from observations in other domains either directly using error covariance information known at the time of the analysis (SCDA), or indirectly through flux interactions at the model boundaries (WCDA). Because the non-atmospheric domains are generally under-observed compared to the atmosphere, CDA provides a significant advantage over single-domain analyses. Next, we provide a synopsis of goals, challenges, and recommendations to advance CDA: Goals: (a) Extend predictive skill beyond the current capability of NWP (e.g. as demonstrated by improving forecast skill scores), (b) produce physically consistent initial conditions for coupled numerical prediction systems and reanalyses (including consistent fluxes at the domain interfaces), (c) make best use of existing observations by allowing observations from each domain to influence and improve the full earth system analysis, (d) develop a robust

  9. Formation of an integrated holding company to produce rare-earth metal articles

    Science.gov (United States)

    Bogdanov, S. V.; Grishaev, S. I.

    2013-12-01

    The possibility of formation of a Russian holding company for the production of rare-earth metal articles under conditions of its increasing demand on the world market is considered. It is reasonable to ensure stable business operation on the market under conditions of state-private partnership after the fraction of soled products is determined and supported by the competitive advantages of Russian products.

  10. Enabling Sustainable Agro-Food Futures: Exploring Fault Lines and Synergies Between the Integrated Territorial Paradigm, Rural Eco-Economy and Circular Economy

    DEFF Research Database (Denmark)

    Kristensen, Dan Kristian; Kjeldsen, Chris; Thorsøe, Martin Hvarregaard

    2016-01-01

    What kind of futures does agro-food imaginaries enable and who can get involved in the making of agro-food futures? In this respect, what can the increasingly influential idea of circular economy potentially offer in terms of enabling more sustainable agrofood futures? We approach this task...... important contributions in relation to studies of alternative food networks and the “quality” turn. These research agendas have challenged the current logic of the food system in terms of offering alternative visions of future development. We highlight two examples from the literature—the eco......-economy and the integrated territorial agri-food paradigm—that develop broader frameworks for rethinking the future of the agro-food system and which have distinguished themselves in contrast to the industrialized and globalized conventional food system. We find that with respect to reorienting and reconfiguring economic...

  11. IEDA Integrated Services: Improving the User Experience for Interdisciplinary Earth Science Research

    Science.gov (United States)

    Carter-Orlando, M.; Ferrini, V. L.; Lehnert, K.; Carbotte, S. M.; Richard, S. M.; Morton, J. J.; Shane, N.; Ash, J.; Song, L.

    2017-12-01

    The Interdisciplinary Earth Data Alliance (IEDA) is an NSF-funded data facility that provides data tools and services to support the Ocean, Earth, and Polar Sciences. IEDA systems, developed and maintained primarily by the IEDA partners EarthChem and the Marine Geoscience Data System (MGDS), serve as primary community data collections for global geochemistry and marine geoscience research and support the preservation, discovery, retrieval, and analysis of a wide range of observational field and analytical data types. Individual IEDA systems originated independently and differ from one another in purpose and scope. Some IEDA systems are data repositories (EarthChem Library, Marine Geo-Digital Library), while others are actively maintained data syntheses (GMRT, PetDB, EarthChem Portal, Geochron). Still others are data visualization and analysis tools (GeoMapApp). Although the diversity of IEDA's data types, tools, and services is a major strength and of high value to investigators, it can be a source of confusion. And while much of the data managed in IEDA systems is appropriate for interdisciplinary research, investigators may be unfamiliar with the user interfaces and services of each system, especially if it is not in their primary discipline. This presentation will highlight new ways in which IEDA helps researchers to more efficiently navigate data submission and data access. It will also discuss how IEDA promotes discovery and access within and across its systems, to serve interdisciplinary science while also remaining aware of and responsive to the more specific needs of its disciplinary user communities. The IEDA Data Submission Hub (DaSH), which is currently under development, aspires to streamline the submission process for both the science data contributor and for the repository data curator. Instead of users deciding a priori, which system they should contribute their data to, the DaSH helps route them to the appropriate repository based primarily on data

  12. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  13. iSERVO: Implementing the International Solid Earth Research Virtual Observatory by Integrating Computational Grid and Geographical Information Web Services

    Science.gov (United States)

    Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry

    2006-12-01

    We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.

  14. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    Energy Technology Data Exchange (ETDEWEB)

    Di Vittorio, Alan V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chini, Louise M. [Univ. of Maryland, College Park, MD (United States); Bond-Lamberty, Benjamin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Truesdale, John E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Craig, Anthony P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hurtt, George [Univ. of Maryland, College Park, MD (United States); Thornton, Peter E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thomson, Allison M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-27

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessment Model’s (GCAM’s) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAM’s afforestation in 2040, and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.

  15. Organising to Enable Innovation

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approach....... The findings reveal a continous organising process between individual/ team creativity and organisational structures/control to enable innovation at firm level. Organising provides a dynamic approach and contains the integrated reconstruction of creativity, structures and boundaries for enhanced balance...... of explorative and exploitative learning in uncertain environments. Shedding light on the cross-disciplinary theories to organise innovation provides a contribution at the firm level to enable innovation....

  16. Thermal response of integral abutment bridges with mechanically stabilized earth walls.

    Science.gov (United States)

    2013-03-01

    The advantages of integral abutment bridges (IABs) include reduced maintenance costs and increased useful life spans. : However, improved procedures are necessary to account for the impacts of cyclic thermal displacements on IAB components, : includi...

  17. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    Science.gov (United States)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  18. Integrated Solid Earth Science: the right place and time to discover the unexpected? (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Cloetingh, Sierd

    2013-04-01

    -level. Those cycles were detected as a result of the pioneering work on the stratigraphic record of sedimentary basins and continental margins from all over the world by Peter Vail, Bilal Haq and others from Exxon. It was at this time, that sedimentary basins became a frontier in the integration of quantitative geology and geophysics. Sedimentary basins do not only provide a powerful source of information on the evolution of the underlying lithosphere and climate fluctuations, but also contain mankind's main reservoirs of geo-energy and geo-resources. It was Peter Ziegler, head of global geology at Shell International, who was the prime mentor in my somewhat unexpected scientific journey in sedimentary basins. These became the main research target of the Tectonics research group I established in 1988 in Amsterdam. In these years it became increasingly evident that the rheology of the lithosphere exerts a crucial control on the evolution of basins, but also on continental topography. It is on this topic that the cooperation over more than two decades with Evgenii Burov, addressing issues like the rheological structure of Europe's lithosphere, rift shoulder uplift and the interplay of lithospheric folding and mantle-lithosphere interactions, has, been very fruitful. Another unexpected milestone has been the opportunity to build up, parallel to the research efforts in field studies and numerical modeling, an analogue tectonic laboratory in our group. This brings me to another issue, also completely unforeseen: the integration of earth science in Europe, particularly taking off after the disappearance of the Iron Curtain. For my group, the latter marked the beginning of a very fruitful cooperation in particular with the groups of Frank Horvath in Budapest and Cornel Dinu in Bucharest, addressing the fascinating solid Earth dynamics of the Carpathians and Pannonian basin. Over the last few years, it has been become evident that integration in the solid earth science is the way to

  19. Mobilization and integration of bacterial phenotypic data-Enabling next generation biodiversity analysis through the BacDive metadatabase.

    Science.gov (United States)

    Reimer, Lorenz C; Söhngen, Carola; Vetcininova, Anna; Overmann, Jörg

    2017-11-10

    Microbial data and metadata are scattered throughout the scientific literature, databases and unpublished lab notes and thereby often are difficult to access. Hot spots of (meta)data are internal descriptions of culture collections and initial descriptions of novel taxa in primary literature. Here we describe three exemplary mobilization projects which yielded metadata published through the prokaryotic metadatabase BacDive. The Reichenbach collection of myxobacteria includes information on 12,535 typewritten index cards which were digitized. A total of 37,156 data points were extracted by text mining. In the second mobilization project, Analytical Profile Index (API) tests on paper forms were targeted. Overall 6820 API tests were digitized, which provide physiological data of 4524 microbial strains. Thirdly, the extraction of metadata from 523 new species descriptions of the International Journal of Systematic and Evolutionary Microbiology, yielding 35,651 data points, is described. All data sets were integrated and published in BacDive. Thereby these metadata not only became accessible and searchable but were also linked to strain taxonomy, isolation source, cultivation condition, and molecular biology data. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Xia, Lichao; Alvarado, Catalina; Kilduff, James E; Keating, John J; Belfort, Georges; Gadhamshetty, Venkataramana

    2017-06-15

    Municipal wastewater is an attractive alternative to freshwater sources to meet the cooling water needs of thermal power plants. Here we offer an energy-efficient integrated microbial fuel cell (MFC)/ultrafiltration (UF) process to purify primary clarifier effluent from a municipal wastewater treatment plant for use as cooling water. The microbial fuel cell was shown to significantly reduce chemical oxygen demand (COD) in the primary settled wastewater effluent upstream of the UF module, while eliminating the energy demand required to deliver dissolved oxygen in conventional aerobic treatment. We investigated surface modification of the UF membranes to control fouling. Two promising hydrophilic monomers were identified in a high-throughput search: zwitterion (2-(Methacryloyloxy)-ethyl-dimethyl-(3-sulfopropyl ammoniumhydroxide, abbreviated BET SO 3 - ), and amine (2-(Methacryloyloxy) ethyl trimethylammonium chloride, abbreviated N(CH 3 ) 3 + ). Monomers were grafted using UV-induced polymerization on commercial poly (ether sulfone) membranes. Filtration of MFC effluent by membranes modified with BET SO 3 - and N(CH 3 ) 3 + exhibited a lower rate of resistance increase and lower energy consumption than the commercially available membrane. The MFC/UF process produced high quality cooling water that meets the Electrical Power Research Institute (EPRI) recommendations for COD, a suite of metals (Fe, Al, Cu, Zn, Si, Mn, S, Ca and Mg), and offered extremely low corrosion rates (<0.05 mm/yr). A series of AC and DC diagnostic tests were used to evaluate the MFC performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond.

    Science.gov (United States)

    Delvigne, Frank; Takors, Ralf; Mudde, Rob; van Gulik, Walter; Noorman, Henk

    2017-09-01

    Efficient optimization of microbial processes is a critical issue for achieving a number of sustainable development goals, considering the impact of microbial biotechnology in agrofood, environment, biopharmaceutical and chemical industries. Many of these applications require scale-up after proof of concept. However, the behaviour of microbial systems remains unpredictable (at least partially) when shifting from laboratory-scale to industrial conditions. The need for robust microbial systems is thus highly needed in this context, as well as a better understanding of the interactions between fluid mechanics and cell physiology. For that purpose, a full scale-up/down computational framework is already available. This framework links computational fluid dynamics (CFD), metabolic flux analysis and agent-based modelling (ABM) for a better understanding of the cell lifelines in a heterogeneous environment. Ultimately, this framework can be used for the design of scale-down simulators and/or metabolically engineered cells able to cope with environmental fluctuations typically found in large-scale bioreactors. However, this framework still needs some refinements, such as a better integration of gas-liquid flows in CFD, and taking into account intrinsic biological noise in ABM. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Identification of the benefits, enablers and barriers to integrating junior pharmacists into the ward team within one UK-based hospital.

    Science.gov (United States)

    Hung, Man Yui; Wright, David John; Blacklock, Jeanette; Needle, Richard John

    2017-01-01

    A high nurse-vacancy rate combined with high numbers of applications for junior pharmacist roles resulted in Colchester Hospital University National Health System Foundation Trust trial employing junior pharmacists into traditional nursing posts with the aim of integrating pharmacists into the ward team and enhancing local medicines optimization. The aim of the evaluation was to describe the implementation process and practice of the integrated care pharmacists (ICPs) in order to inform future innovations of a similar nature. Four band 6 ward-based ICPs were employed on two wards funded within current ward staffing expenditure. With ethical committee approval, interviews were undertaken with the ICPs and focus groups with ward nurses, senior ward nurses and members of the medical team. Data were analyzed thematically to identify service benefits, barriers and enablers. Routine ward performance data were obtained from the two ICP wards and two wards selected as comparators. Appropriate statistical tests were performed to identify differences in performance. Four ICPs were interviewed, and focus groups were undertaken with three junior nurses, four senior nurses and three medical practitioners. Service enablers were continuous ward time, undertaking drug administration, positive feedback and use of effective communication methods. Barriers were planning, funding model, career development, and interprofessional working and social isolation. ICPs were believed to save nurse time and improve medicines safety. The proportion of patients receiving medicine reconciliation within 24 hours increased significantly in the ICP wards. All ICPs had resigned from their role within 12 months. It was believed that by locating pharmacists on the ward full time and allowing them to undertake medicines administration and medicines reconciliation, the nursing time would be saved and medicines safety improved. There was however significant learning to be derived from the implementation

  3. Study on Chinese space mutation breeding by integrating the earth with the space

    International Nuclear Information System (INIS)

    Wen Xianfang; Zhang Long; Dai Weixu; Li Chunhua

    2004-01-01

    This paper described the status of space mutation breeding in China. It emphasized that since 1978 Chinese Space scientists and agricultural biologists have send 50 kg seeds of more than 70 crops including cereals, cotton, oil, vegetable, fruit and pasture to the space using the facilities such as reture satellite 9 times, Shenzhou aircraft twice and high balloon 4 times, and 19 new varieties with high yield, high quality and disease-resistance, including five rice varieties, two wheat varieties, two cotton varieties, one sweat pepper, one tomato variety, one sesame variety, three water melon varieties, one lotus varieties and one ganaderma lucidum variety, have been bred though years of breeding at the Earth at more than 70 Chinese research institutes in 22 provinces. In addition more than 50 new lines and many other germ plasma resources have been obtained. Study on space breeding mechanism, such as biological effect of space induction, genetic variation by cell and molecular techniques and simulated study at the earth, has been conducted and some progresses have been achieved. Many space-breeding bases have been established in some provinces. Space varieties have been extended up to 270000 hectares, and some useful scientific achievements and social economic benefit had been made. The study of Chinese space mutation breading is going ahead in the world. The paper also introduced the contribution and results made by former three reture satellites in space science. Some basic parameters listed involved in study on space mutation breeding and the former three reture satellites. We also prospected the future of space mutation breeding. (authors)

  4. Identification of the benefits, enablers and barriers to integrating junior pharmacists into the ward team within one UK-based hospital

    Directory of Open Access Journals (Sweden)

    Hung MY

    2017-11-01

    Full Text Available Man Yui Hung,1 David John Wright,2 Jeanette Blacklock,2 Richard John Needle1,2 1Pharmacy Department, Colchester Hospital University NHS Foundation Trust, Colchester, 2School of Pharmacy, University of East Anglia, Norwich, UK Introduction: A high nurse-vacancy rate combined with high numbers of applications for junior pharmacist roles resulted in Colchester Hospital University National Health System Foundation Trust trial employing junior pharmacists into traditional nursing posts with the aim of integrating pharmacists into the ward team and enhancing local medicines optimization. The aim of the evaluation was to describe the implementation process and practice of the integrated care pharmacists (ICPs in order to inform future innovations of a similar nature.Methods: Four band 6 ward-based ICPs were employed on two wards funded within current ward staffing expenditure. With ethical committee approval, interviews were undertaken with the ICPs and focus groups with ward nurses, senior ward nurses and members of the medical team. Data were analyzed thematically to identify service benefits, barriers and enablers. Routine ward performance data were obtained from the two ICP wards and two wards selected as comparators. Appropriate statistical tests were performed to identify differences in performance.Results: Four ICPs were interviewed, and focus groups were undertaken with three junior nurses, four senior nurses and three medical practitioners. Service enablers were continuous ward time, undertaking drug administration, positive feedback and use of effective communication methods. Barriers were planning, funding model, career development, and interprofessional working and social isolation. ICPs were believed to save nurse time and improve medicines safety. The proportion of patients receiving medicine reconciliation within 24 hours increased significantly in the ICP wards. All ICPs had resigned from their role within 12 months.Discussion: It was

  5. Integrating iPad Technology in Earth Science K-12 Outreach Courses: Field and Classroom Applications

    Science.gov (United States)

    Wallace, Davin J.; Witus, Alexandra E.

    2013-01-01

    Incorporating technology into courses is becoming a common practice in universities. However, in the geosciences, it is difficult to find technology that can easily be transferred between classroom- and field-based settings. The iPad is ideally suited to bridge this gap. Here, we fully integrate the iPad as an educational tool into two…

  6. Moving NASA Beyond Low Earth Orbit: Future Human-Automation-Robotic Integration Challenges

    Science.gov (United States)

    Marquez, Jessica

    2016-01-01

    This presentation will provide an overview of current human spaceflight operations. It will also describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. Additionally, there are many implications regarding advanced automation and robotics, and this presentation will outline future human-automation-robotic integration challenges.

  7. GITEWS, an extensible and open integration platform for manifold sensor systems and processing components based on Sensor Web Enablement and the principles of Service Oriented Architectures

    Science.gov (United States)

    Haener, Rainer; Waechter, Joachim; Fleischer, Jens; Herrnkind, Stefan; Schwarting, Herrmann

    2010-05-01

    The German Indonesian Tsunami Early Warning System (GITEWS) is a multifaceted system consisting of various sensor types like seismometers, sea level sensors or GPS stations, and processing components, all with their own system behavior and proprietary data structure. To operate a warning chain, beginning from measurements scaling up to warning products, all components have to interact in a correct way, both syntactically and semantically. Designing the system great emphasis was laid on conformity to the Sensor Web Enablement (SWE) specification by the Open Geospatial Consortium (OGC). The technical infrastructure, the so called Tsunami Service Bus (TSB) follows the blueprint of Service Oriented Architectures (SOA). The TSB is an integration concept (SWE) where functionality (observe, task, notify, alert, and process) is grouped around business processes (Monitoring, Decision Support, Sensor Management) and packaged as interoperable services (SAS, SOS, SPS, WNS). The benefits of using a flexible architecture together with SWE lead to an open integration platform: • accessing and controlling heterogeneous sensors in a uniform way (Functional Integration) • assigns functionality to distinct services (Separation of Concerns) • allows resilient relationship between systems (Loose Coupling) • integrates services so that they can be accessed from everywhere (Location Transparency) • enables infrastructures which integrate heterogeneous applications (Encapsulation) • allows combination of services (Orchestration) and data exchange within business processes Warning systems will evolve over time: New sensor types might be added, old sensors will be replaced and processing components will be improved. From a collection of few basic services it shall be possible to compose more complex functionality essential for specific warning systems. Given these requirements a flexible infrastructure is a prerequisite for sustainable systems and their architecture must be

  8. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    Science.gov (United States)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  9. Integrated propulsion for near-Earth space missions. Volume 2: Technical

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    The calculation approach is described for parametric analysis of candidate electric propulsion systems employed in LEO to GEO missions. Occultation relations, atmospheric density effects, and natural radiation effects are presented. A solar cell cover glass tradeoff is performed to determine optimum glass thickness. Solar array and spacecraft pointing strategies are described for low altitude flight and for optimum array illumination during ascent. Mass ratio tradeoffs versus transfer time provide direction for thruster technology improvements. Integrated electric propulsion analysis is performed for orbit boosting, inclination change, attitude control, stationkeeping, repositioning, and disposal functions as well as power sharing with payload on orbit. Comparison with chemical auxiliary propulsion is made to quantify the advantages of integrated propulsion in terms of weight savings and concomittant launch cost savings.

  10. Integration of lessons from recent research for "Earth to Mars" life support systems

    Science.gov (United States)

    Nelson, M.; Allen, J. P.; Alling, A.; Dempster, W. F.; Silverstone, S.; van Thillo, M.

    Development of reliable and robust strategies for long-term life support for mbox planetary exploration needs to be built on real-time experimentation to verify and improve system components Also critical is the incorporation of a range of viable options to handle potential short-term life system imbalances This paper revisits some of the conceptual framework for a Mars base prototype previously advanced Mars on Earth in the light of three years of experimentation by the authors in the Laboratory Biosphere further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls For example crops of sweet potatoes exceeded original Mars base prototype projections by 83 ultradwarf Apogee wheat by 27 pinto bean by 240 and cowpeas slightly exceeded anticipated dry bean yield These production levels although they may be increased with further optimization of lighting regimes environmental parameters crop density etc offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research Soil also offers several distinct advantages the capability to be created using in-situ space resources reducing reliance on consumables and imported resources and more easily recycling and

  11. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    Science.gov (United States)

    Iverson, Richard M.; Chaojun Ouyang,

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  12. Visual-vestibular integration as a function of adaptation to space flight and return to Earth

    Science.gov (United States)

    Reschke, Millard R.; Bloomberg, Jacob J.; Harm, Deborah L.; Huebner, William P.; Krnavek, Jody M.; Paloski, William H.; Berthoz, Alan

    1999-01-01

    Research on perception and control of self-orientation and self-motion addresses interactions between action and perception . Self-orientation and self-motion, and the perception of that orientation and motion are required for and modified by goal-directed action. Detailed Supplementary Objective (DSO) 604 Operational Investigation-3 (OI-3) was designed to investigate the integrated coordination of head and eye movements within a structured environment where perception could modify responses and where response could be compensatory for perception. A full understanding of this coordination required definition of spatial orientation models for the microgravity environment encountered during spaceflight.

  13. Health Technology-Enabled Interventions for Adherence Support and Retention in Care Among US HIV-Infected Adolescents and Young Adults: An Integrative Review.

    Science.gov (United States)

    Navarra, Ann-Margaret Dunn; Gwadz, Marya Viorst; Whittemore, Robin; Bakken, Suzanne R; Cleland, Charles M; Burleson, Winslow; Jacobs, Susan Kaplan; Melkus, Gail D'Eramo

    2017-11-01

    The objective of this integrative review was to describe current US trends for health technology-enabled adherence interventions among behaviorally HIV-infected youth (ages 13-29 years), and present the feasibility and efficacy of identified interventions. A comprehensive search was executed across five electronic databases (January 2005-March 2016). Of the 1911 identified studies, nine met the inclusion criteria of quantitative or mixed methods design, technology-enabled adherence and or retention intervention for US HIV-infected youth. The majority were small pilots. Intervention dose varied between studies applying similar technology platforms with more than half not informed by a theoretical framework. Retention in care was not a reported outcome, and operationalization of adherence was heterogeneous across studies. Despite these limitations, synthesized findings from this review demonstrate feasibility of computer-based interventions, and initial efficacy of SMS texting for adherence support among HIV-infected youth. Moving forward, there is a pressing need for the expansion of this evidence base.

  14. Electromagnetic scattering of large structures in layered earths using integral equations

    Science.gov (United States)

    Xiong, Zonghou; Tripp, Alan C.

    1995-07-01

    An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.

  15. Geo-Semantic Framework for Integrating Long-Tail Data and Model Resources for Advancing Earth System Science

    Science.gov (United States)

    Elag, M.; Kumar, P.

    2014-12-01

    Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation

  16. Expedition Earth and Beyond: Using NASA Data Resources and Integrated Educational Strategies to Promote Authentic Research in the Classroom

    Science.gov (United States)

    Graffi, Paige Valderrama; Stefanov, William; Willis, Kim; Runco, Sue

    2009-01-01

    Teachers in today s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and

  17. An integrated, open-source set of tools for urban vulnerability monitoring from Earth observation data

    Science.gov (United States)

    De Vecchi, Daniele; Harb, Mostapha; Dell'Acqua, Fabio; Aurelio Galeazzo, Daniel

    2015-04-01

    Aim: The paper introduces an integrated set of open-source tools designed to process medium and high-resolution imagery with the aim to extract vulnerability indicators [1]. Problem: In the context of risk monitoring [2], a series of vulnerability proxies can be defined, such as the extension of a built-up area or buildings regularity [3]. Different open-source C and Python libraries are already available for image processing and geospatial information (e.g. OrfeoToolbox, OpenCV and GDAL). They include basic processing tools but not vulnerability-oriented workflows. Therefore, it is of significant importance to provide end-users with a set of tools capable to return information at a higher level. Solution: The proposed set of python algorithms is a combination of low-level image processing and geospatial information handling tools along with high-level workflows. In particular, two main products are released under the GPL license: source code, developers-oriented, and a QGIS plugin. These tools were produced within the SENSUM project framework (ended December 2014) where the main focus was on earthquake and landslide risk. Further development and maintenance is guaranteed by the decision to include them in the platform designed within the FP 7 RASOR project . Conclusion: With the lack of a unified software suite for vulnerability indicators extraction, the proposed solution can provide inputs for already available models like the Global Earthquake Model. The inclusion of the proposed set of algorithms within the RASOR platforms can guarantee support and enlarge the community of end-users. Keywords: Vulnerability monitoring, remote sensing, optical imagery, open-source software tools References [1] M. Harb, D. De Vecchi, F. Dell'Acqua, "Remote sensing-based vulnerability proxies in the EU FP7 project SENSUM", Symposium on earthquake and landslide risk in Central Asia and Caucasus: exploiting remote sensing and geo-spatial information management, 29-30th January 2014

  18. Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse

    International Nuclear Information System (INIS)

    Ghosal, M.K.; Tiwari, G.N.

    2006-01-01

    A thermal model has been developed to investigate the potential of using the stored thermal energy of the ground for greenhouse heating and cooling with the help of an earth to air heat exchanger (EAHE) system integrated with the greenhouse located in the premises of IIT, Delhi, India. Experiments were conducted extensively throughout the year 2003, but the developed model was validated against typical clear and sunny days experiments. Parametric studies performed for the EAHE coupled with the greenhouse illustrate the effects of buried pipe length, pipe diameter, mass flow rate of air, depth of ground and types of soil on the greenhouse air temperatures. The temperatures of the greenhouse air, with the experimental parameters of the EAHE, were found to be, on average 7-8 deg. C higher in the winter and 5-6 deg. C lower in the summer than those of the same greenhouse without the EAHE. The greenhouse air temperatures increase in the winter and decrease in the summer with increasing pipe length, decreasing pipe diameter, decreasing mass flow rate of flowing air inside buried pipe and increasing depth of ground up to 4 m. The predicted and measured values of the greenhouse air temperatures that were verified, in terms of root mean square percent deviation and correlation coefficient, exhibited fair agreement

  19. Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Sujata; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2010-10-15

    In this paper, a study is carried out to evaluate the annual thermal and exergy performance of a photovoltaic/thermal (PV/T) and earth air heat exchanger (EAHE) system, integrated with a greenhouse, located at IIT Delhi, India, for different climatic conditions of Srinagar, Mumbai, Jodhpur, New Delhi and Bangalore. A comparison is made of various energy metrics, such as energy payback time (EPBT), electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system by considering four weather conditions (a-d type) for five climatic zones. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. The annual overall thermal energy, annual electrical energy savings and annual exergy was found to be best for the climatic condition of Jodhpur at 29,156.8 kWh, 1185 kWh and 1366.4 kWh, respectively when compared with other weather stations covered in the study, due to higher solar intensity I and sunshine hours, and is lowest for Srinagar station. The results also showed that energy payback time for Jodhpur station is lowest at 16.7 years and highest for Srinagar station at 21.6 years. Electricity production factor (EPF) is highest for Jodhpur, i.e. 2.04 and Life cycle conversion efficiency (LCCE) is highest for Srinagar station. It is also observed that LCCE increases with increase in life cycle. (author)

  20. Better and more efficient care through ICT-enabled integration of social care and healthcare services: experiences from two European projects

    Science.gov (United States)

    Müller, Sonja; Meyer, Ingo; Kubitschke, Lutz; Delaney, Sarah

    2012-01-01

    Unsynchronised social and health care service delivery leads to inefficiencies, duplication of resources and reduced levels of quality of care. Older people are particularly affected by this situation. They often need both types of services, such as support with daily living activities and chronic disease management. ICT has the potential to support integrated service delivery to achieve high quality independent living and wellbeing for older people across Europe and elsewhere. Against this background, the presentation will demonstrate experiences and results derived from the development and piloting of ICT-supported integrated care services in eight sites across Europe, namely Dublin, Hull, Milton Keynes, Malaga, Veldhoven, Geldrop, Eindhoven and Bielefeld. Through innovative usage of ICT, current ‘silos’ in service delivery are broken up to allow for cooperation across relevant care sectors and participation of family members. The integrated services are to support the effective management of chronic diseases, and to address issues which affect independence, such as reduced agility, vision or hearing, in order to significantly improve the quality of life for older people and their carers. A dedicated programme of service process innovation complemented by adaptation of technology is being pursued in order to develop an integrated digital support infrastructure and related services: using appropriate existing technology to provide as many older people as possible with digital access to support services they needaugmenting and opening sectoral care platforms to enable coordinated cross-sector support deliveryadopting a clearly demand-driven inclusive approach and avoiding a technology ‘push’. Wider deployment of the services is supported by a dedicated programme of socio-economic service evaluation. The evaluation framework utilises a multi-method and multi-perspective approach, involving end users, family carers, service provider staff and key informants

  1. Barriers to and enablers for European rail freight transport for integrated door-to-door logistics service. Part 1: Barriers to multimodal rail freight transport

    Directory of Open Access Journals (Sweden)

    Dewan Md Zahurul ISLAM

    2014-09-01

    Full Text Available The objective of this paper is to examine and identify barriers to and enablers for the European rail freight transport services as a transport chain partner along the supply chains in the changing market scenario. The changing market scenario includes, among others, requiring 'door-to-door' rather than 'terminal to terminal' and integrated service, competitive ability to attract non-rail cargo type, changes in the customer requirements (e.g. reliable service and changes in the operational requirements and practices. Using a literature review method, the paper is presented in two parts. The part 1 focuses on the identification of barriers to the European rail freight service by reviewing freight logistics services for global supply chains followed by the current performance of European rail freight transport followed by a discussion on the rail freight market liberalisation in Europe. Then rail freight transport in the Unites States (U.S. is discussed. The research notes that although the background, scope and necessity for reform measures in Europe differ from those of the U.S., some lessons can be learned and the main lesson is that an appropriate reform measure can enhance rail sector competitive ability in Europe. Examining and identifying the barriers in the part 1 (with the pan-Pacific examples of rail freight transports, the part 2 of the paper focuses on recommending clear actions and steps as enablers for the rail freight industry in general and operators in particular. The research in part 1 of the paper finds that: •\tIn many European countries, the rail freight market is not fully liberalised. In such market segment, infrastructure managers do act independently for incumbents and new entrant operators that hamper the progress of building a competitive market; •\tThe rail operators have not yet achieved the service quality (e.g. customer tailored service needed for the modern supply chains; •\tThey operate

  2. Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    Science.gov (United States)

    Smith, Peter; Kempler, Steven; Leptoukh, Gregory; Chen, Aijun

    2010-01-01

    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data .

  3. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  4. Integrating EarthScope Data to Constrain the Long-Term Effects of Tectonism on Continental Lithosphere

    Science.gov (United States)

    Porter, R. C.; van der Lee, S.

    2017-12-01

    One of the most significant products of the EarthScope experiment has been the development of new seismic tomography models that take advantage of the consistent station design, regular 70-km station spacing, and wide aperture of the EarthScope Transportable Array (TA) network. These models have led to the discovery and interpretation of additional compositional, thermal, and density anomalies throughout the continental US, especially within tectonically stable regions. The goal of this work is use data from the EarthScope experiment to better elucidate the temporal relationship between tectonic activity and seismic velocities. To accomplish this, we compile several upper-mantle seismic velocity models from the Incorporated Research Institute for Seismology (IRIS) Earth Model Collaboration (EMC) and compare these to a tectonic age model we compiled using geochemical ages from the Interdisciplinary Earth Data Alliance: EarthChem Database. Results from this work confirms quantitatively that the time elapsed since the most recent tectonic event is a dominant influence on seismic velocities within the upper mantle across North America. To further understand this relationship, we apply mineral-physics models for peridotite to estimate upper-mantle temperatures for the continental US from tomographically imaged shear velocities. This work shows that the relationship between the estimated temperatures and the time elapsed since the most recent tectonic event is broadly consistent with plate cooling models, yet shows intriguing scatter. Ultimately, this work constrains the long-term thermal evolution of continental mantle lithosphere.

  5. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    Science.gov (United States)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  6. Integrating NASA Earth Observations into the Global Indicator Framework for Monitoring the United Nations' Sustainable Development Goals

    Science.gov (United States)

    Crepps, G.; Gotschalk, E.; Childs-Gleason, L. M.; Favors, J.; Ruiz, M. L.; Allsbrook, K. N.; Rogers, L.; Ross, K. W.

    2016-12-01

    The NASA DEVELOP National Program conducts rapid 10-week feasibility projects that build decision makers' capacity to utilize NASA Earth observations in their decision making. Teams, in collaboration with partner organizations, conduct projects that create end products such as maps, analyses, and automated tools tailored for their partners' specific decision making needs. These projects illustrate the varied applications about which Earth observations can assist in making better informed decisions, such topics as land use changes, ecological forecasting, public health, and species habitats. As a capacity building program, DEVELOP is interested in understanding how these end products are utilized once the project is over and if Earth observations become a regular tool in the partner's decision making toolkit. While DEVELOP's niche is short-term projects, to assess the impacts of these projects, a longer-term scale is needed. As a result, DEVELOP has created a project strength metrics, and partner assessments, pre- and post-project, as well as a follow up form. This presentation explores the challenges in both quantitative and qualitative assessments of valuing the contributions of these Earth observation tools. This proposal lays out the assessment framework created within the program, and illustrates case studies in which projects have been assessed and long-term partner use of tools examined and quantified.

  7. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  8. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications.

    Science.gov (United States)

    Washburn, Adam L; Bailey, Ryan C

    2011-01-21

    By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.

  9. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  10. Working Towards New Transformative Geoscience Analytics Enabled by Petascale Computing

    Science.gov (United States)

    Woodcock, R.; Wyborn, L.

    2012-04-01

    Currently the top 10 supercomputers in the world are petascale and already exascale computers are being planned. Cloud computing facilities are becoming mainstream either as private or commercial investments. These computational developments will provide abundant opportunities for the earth science community to tackle the data deluge which has resulted from new instrumentation enabling data to be gathered at a greater rate and at higher resolution. Combined, the new computational environments should enable the earth sciences to be transformed. However, experience in Australia and elsewhere has shown that it is not easy to scale existing earth science methods, software and analytics to take advantage of the increased computational capacity that is now available. It is not simply a matter of 'transferring' current work practices to the new facilities: they have to be extensively 'transformed'. In particular new Geoscientific methods will need to be developed using advanced data mining, assimilation, machine learning and integration algorithms. Software will have to be capable of operating in highly parallelised environments, and will also need to be able to scale as the compute systems grow. Data access will have to improve and the earth science community needs to move from the file discovery, display and then locally download paradigm to self describing data cubes and data arrays that are available as online resources from either major data repositories or in the cloud. In the new transformed world, rather than analysing satellite data scene by scene, sensor agnostic data cubes of calibrated earth observation data will enable researchers to move across data from multiple sensors at varying spatial data resolutions. In using geophysics to characterise basement and cover, rather than analysing individual gridded airborne geophysical data sets, and then combining the results, petascale computing will enable analysis of multiple data types, collected at varying

  11. Integrated management model. Methodology and software-enabled tood designed to assist a utility in developing a station-wide optimization

    International Nuclear Information System (INIS)

    Llovet, R.; Ibanez, R.; Woodcock, J.

    2005-01-01

    A key concern for utilities today is optimizing station aging and realibility management activities in a manner that maximizes the value of those activities withing an affordable budget. The Westinghouse Proactive Asset Management Model is a methodology and software-enabled tood designed to assist a utility in developing a station-wide optimization of those activities. The process and tool support the development of an optimized, station-wide plan for inspection, testing, maintenance, repaor and replacement of aging components. The optimization identifies the benefit and optimal timing of those activities based on minimizing unplanned outage costs (avoided costs) and maximizing station Net Present Value. (Author)

  12. Enabling immersive simulation.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Josh (University of California Santa Cruz, Santa Cruz, CA); Mateas, Michael (University of California Santa Cruz, Santa Cruz, CA); Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  13. Obstacles and enablers on the way towards integrated physical activity policies for childhood obesity prevention : An exploration of local policy officials’ views

    NARCIS (Netherlands)

    Hendriks, A.M.; Habraken, J.M.; Kremers, S.P.J.; Jansen, M.W.J.; Oers, J.A.M.; Schuit, A.J.

    2016-01-01

    Background. Limited physical activity (PA) is a risk factor for childhood obesity. In Netherlands, as in many other countries worldwide, local policy officials bear responsibility for integrated PA policies, involving both health and nonhealth domains. In practice, its development seems hampered. We

  14. Obstacles and Enablers on the Way towards Integrated Physical Activity Policies for Childhood Obesity Prevention : An Exploration of Local Policy Officials' Views

    NARCIS (Netherlands)

    Hendriks, Anna-Marie; Habraken, Jolanda M; Kremers, Stef P J; Jansen, Maria W J; Van Oers, Hans; Schuit, Albertine J

    2016-01-01

    Background. Limited physical activity (PA) is a risk factor for childhood obesity. In Netherlands, as in many other countries worldwide, local policy officials bear responsibility for integrated PA policies, involving both health and nonhealth domains. In practice, its development seems hampered. We

  15. Obstacles and Enablers on the Way towards Integrated Physical Activity Policies for Childhood Obesity Prevention: An Exploration of Local Policy Officials’ Views

    Directory of Open Access Journals (Sweden)

    Anna-Marie Hendriks

    2016-01-01

    Full Text Available Background. Limited physical activity (PA is a risk factor for childhood obesity. In Netherlands, as in many other countries worldwide, local policy officials bear responsibility for integrated PA policies, involving both health and nonhealth domains. In practice, its development seems hampered. We explore which obstacles local policy officials perceive in their effort. Methods. Fifteen semistructured interviews were held with policy officials from health and nonhealth policy domains, working at strategic, tactic, and operational level, in three relatively large municipalities. Questions focused on exploring perceived barriers for integrated PA policies. The interviews were deductively coded by applying the Behavior Change Ball framework. Findings. Childhood obesity prevention appeared on the governmental agenda and all officials understood the multicausal nature. However, operational officials had not yet developed a tradition to develop integrated PA policies due to insufficient boundary-spanning skills and structural and cultural differences between the domains. Tactical level officials did not sufficiently support intersectoral collaboration and strategic level officials mainly focused on public-private partnerships. Conclusion. Developing integrated PA policies is a bottom-up innovation process that needs to be supported by governmental leaders through better guiding organizational processes leading to such policies. Operational level officials can assist in this by making progress in intersectoral collaboration visible.

  16. Mi-STAR Unit Challenges serve as a model for integrating earth science and systems thinking in a Next Generation Science Standards (NGSS) aligned curriculum.

    Science.gov (United States)

    Gochis, E. E.; Tubman, S.; Matthys, T.; Bluth, G.; Oppliger, D.; Danhoff, B.; Huntoon, J. E.

    2017-12-01

    Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned middle school curriculum and associated teacher professional learning program in which science is taught and learned as an integrated body of knowledge that can be applied to address societal issues. With the generous support of the Herbert H. and Grace A. Dow Foundation, Mi-STAR has released several pilot-tested units through the Mi-STAR curriculum portal at mi-star.mtu.edu. Each of these units focuses on an ongoing `Unit Challenge' investigation that integrates STEM content across disciplinary boundaries, stimulates interest, and engages students in using scientific practices to address 21st century challenges. Each Mi-STAR unit is connected to a Unifying NGSS Crosscutting Concept (CCC) that allows students to recognize the concepts that are related to the phenomena or problems under investigation. In the 6th grade, students begin with an exploration of the CCC Systems and System Models. Through repeated applications across units, students refine their understanding of what a system is and how to model a complex Earth system. An example 6th grade unit entitled "Water on the Move: The Water Cycle," provides an example of how Mi-STAR approaches the use of Unifying CCCs and Unit Challenges to enhance middle school students' understanding of the interconnections of Earth system processes and human activities. Throughout the unit, students use a series of hands-on explorations and simulations to explore the hydrologic cycle and how human activity can alter Earth systems. Students develop new knowledge through repeated interactions with the Unit Challenge, which requires development of system models and construction of evidence-based arguments related to flooding problems in a local community. Students have the opportunity to make predictions about how proposed land-use management practices (e.g. development of a skate-park, rain garden, soccer field, etc.) can alter the earth

  17. An integrated approach for estimating global glacio isostatic adjustment, land ice, hydrology and ocean mass trends within a complete coupled Earth system framework

    Science.gov (United States)

    Schumacher, M.; Bamber, J. L.; Martin, A.

    2016-12-01

    Future sea level rise (SLR) is one of the most serious consequences of climate change. Therefore, understanding the drivers of past sea level change is crucial for improving predictions. SLR integrates many Earth system components including oceans, land ice, terrestrial water storage, as well as solid Earth effects. Traditionally, each component have been tackled separately, which has often lead to inconsistencies between discipline-specific estimates of each part of the sea level budget. To address these issues, the European Research Council has funded a five year project aimed at producing a physically-based, data-driven solution for the complete coupled land-ocean-solid Earth system that is consistent with the full suite of observations, prior knowledge and fundamental geophysical constraints. The project is called "GlobalMass" and based at University of Bristol. Observed mass movement from the GRACE mission plus vertical land motion from a global network of permanent GPS stations will be utilized in a data-driven approach to estimate glacial isostatic adjustment (GIA) without introducing any assumptions about the Earth structure or ice loading history. A Bayesian Hierarchical Model (BHM) will be used as the framework to combine the satellite and in-situ observations alongside prior information that incorporates the physics of the coupled system such as conservation of mass and characteristic length scales of different processes in both space and time. The BHM is used to implement a simultaneous solution at a global scale. It will produce a consistent partitioning of the integrated SLR signal into its steric (thermal) and barystatic (mass) component for the satellite era. The latter component is induced by hydrological mass trends and melting of land ice. The BHM was developed and tested on Antarctica, where it has been used to separate surface, ice dynamic and GIA signals simultaneously. We illustrate the approach and concepts with examples from this test case

  18. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    Science.gov (United States)

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  19. A framework to promote collective action within the One Health community of practice: Using participatory modelling to enable interdisciplinary, cross-sectoral and multi-level integration

    Directory of Open Access Journals (Sweden)

    Aurelie Binot

    2015-12-01

    The implementation of a One Health (OH approach in this context calls for improved integration among disciplines and improved cross-sectoral collaboration, involving stakeholders at different levels. For sure, such integration is not achieved spontaneously, implies methodological guidelines and has transaction costs. We explore pathways for implementing such collaboration in SEA context, highlighting the main challenges to be faced by researchers and other target groups involved in OH actions. On this basis, we propose a conceptual framework of OH integration. Throughout 3 components (field-based data management, professional training workshops and higher education, we suggest to develop a new culture of networking involving actors from various disciplines, sectors and levels (from the municipality to the Ministries through a participatory modelling process, fostering synergies and cooperation. This framework could stimulate long-term dialogue process, based on the combination of case studies implementation and capacity building. It aims for implementing both institutional OH dynamics (multi-stakeholders and cross-sectoral and research approaches promoting systems thinking and involving social sciences to follow-up and strengthen collective action.

  20. The Design, Implementation, and Evaluation of a Digital Interactive Globe System Integrated into an Earth Science Course

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2018-01-01

    The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…

  1. A framework to promote collective action within the One Health community of practice: Using participatory modelling to enable interdisciplinary, cross-sectoral and multi-level integration.

    Science.gov (United States)

    Binot, Aurelie; Duboz, Raphaël; Promburom, Panomsak; Phimpraphai, Waraphon; Cappelle, Julien; Lajaunie, Claire; Goutard, Flavie Luce; Pinyopummintr, Tanu; Figuié, Muriel; Roger, François Louis

    2015-12-01

    As Southeast Asia (SEA) is characterized by high human and domestic animal densities, growing intensification of trade, drastic land use changes and biodiversity erosion, this region appears to be a hotspot to study complex dynamics of zoonoses emergence and health issues at the Animal-Human-Environment interface. Zoonotic diseases and environmental health issues can have devastating socioeconomic and wellbeing impacts. Assessing and managing the related risks implies to take into account ecological and social dynamics at play, in link with epidemiological patterns. The implementation of a One Health ( OH ) approach in this context calls for improved integration among disciplines and improved cross-sectoral collaboration, involving stakeholders at different levels. For sure, such integration is not achieved spontaneously, implies methodological guidelines and has transaction costs. We explore pathways for implementing such collaboration in SEA context, highlighting the main challenges to be faced by researchers and other target groups involved in OH actions. On this basis, we propose a conceptual framework of OH integration. Throughout 3 components (field-based data management, professional training workshops and higher education), we suggest to develop a new culture of networking involving actors from various disciplines, sectors and levels (from the municipality to the Ministries) through a participatory modelling process, fostering synergies and cooperation. This framework could stimulate long-term dialogue process, based on the combination of case studies implementation and capacity building. It aims for implementing both institutional OH dynamics (multi-stakeholders and cross-sectoral) and research approaches promoting systems thinking and involving social sciences to follow-up and strengthen collective action.

  2. Aspiring to Spectral Ignorance in Earth Observation

    Science.gov (United States)

    Oliver, S. A.

    2016-12-01

    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  3. Health professionals' views on health literacy issues for culturally and linguistically diverse women in maternity care: barriers, enablers and the need for an integrated approach.

    Science.gov (United States)

    Hughson, Jo-Anne; Marshall, Fiona; Daly, Justin Oliver; Woodward-Kron, Robyn; Hajek, John; Story, David

    2018-02-01

    Objective To identify health literacy issues when providing maternity care to culturally and linguistically diverse (CALD) women, and the strategies needed for health professionals to collaboratively address these issues. Methods A qualitative case study design was undertaken at one large metropolitan Australian hospital serving a highly CALD population. Semistructured interviews were conducted with a range of maternity healthcare staff. The data were analysed thematically. The study is informed by a framework of cultural competence education interventions for health professionals and a health literacy framework. Results Eighteen clinicians participated in the interviews (seven midwives, five obstetricians, five physiotherapists, one social worker, and one occupational therapist). Emergent themes of health literacy-related issues were: patient-based factors (communication and cultural barriers, access issues); provider-based factors (time constraints, interpreter issues); and enablers (cultural awareness among staff, technology). Conclusions There are significant health literacy and systemic issues affecting the hospital's provision of maternity care for CALD women. These findings, mapped onto the four domains of cultural competence education interventions will inform a technology-delivered health literacy intervention for CALD maternity patients. This approach may be applied to other culturally diverse healthcare settings to foster patient health literacy. What is known about the topic? There are health inequities for pregnant women of culturally and linguistically diverse (CALD) backgrounds. Low health literacy compounded by language and cultural factors contribute to these inequities and access to interpreters in pregnancy care remains an ongoing issue. Pregnancy smart phone applications are a popular source of health information for pregnant women yet these apps are not tailored for CALD women nor are they part of a regulated industry. What does this paper add

  4. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers

    International Nuclear Information System (INIS)

    Mote, Kaustubh R.; Gopinath, T.; Traaseth, Nathaniel J.; Kitchen, Jason; Gor’kov, Peter L.; Brey, William W.; Veglia, Gianluigi

    2011-01-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1 H- 15 N dipolar couplings (DC) and 15 N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles’ heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([ 1 H, 15 N]-SE-PISEMA-PDSD). The incorporation of 2D 15 N/ 15 N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the 15 N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.

  5. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.

    Science.gov (United States)

    Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi

    2011-11-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011

  6. The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone.

    Science.gov (United States)

    Dai, Qili; Li, Liwei; Yang, Jiamei; Liu, Baoshuang; Bi, Xiaohui; Wu, Jianhui; Zhang, YuFen; Yao, Lin; Feng, Yinchang

    2016-09-01

    Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due to the unclear atmospheric signature of these elements and their adverse impact on human health and the environment. In this study, ambient particulate matter of different sizes was collected from one site in an integrated iron and steelmaking industrial zone (HG) and one urban background site with no direct industrial emissions (ZWY) during a 1-year sampling campaign in China. The total concentrations of REEs for TSP, PM10, and PM2.5 were 27.248, 14.989, 3.542 ng/m(3) in HG and 6.326, 5.274, 1.731 ng/m(3), respectively, in ZWY, which revealed the local influence of the steelmaking activities to the air quality. With respect to ZWY, the REEs in HG site are obviously fractionated in the coarser fraction, and LREEs account for more than 80 % of the total REE burden in all of the samples. Additionally, the REEs in HG and ZWY show a homogeneous trend with successively increased LREE/HREE ratios from the coarse particles to the fine particles. In our samples, La, Ce, Nd, and Sm are the most enriched rare earth elements, especially in the HG site. Moreover, ternary diagrams of LaCeSm indicate that the REEs in HG are potentially contributed by steelworks, carrier vehicles, coal combustion, and road dust re-suspension.

  7. Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment

    Science.gov (United States)

    Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A.

    2014-10-01

    In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE) concentrations have been measured in lichens and mosses collected in three French forest sites located in three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition (BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p leaching (Mn), direct uptake (Ni), or dry deposition dissolution (Pb, Cu, Cs).

  8. Expedition Earth and Beyond: Engaging Classrooms in Student-Led Research Using NASA Data, Access to Scientists, and Integrated Educational Strategies

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.

    2011-01-01

    Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.

  9. Peru Water Resources: Integrating NASA Earth Observations into Water Resource Planning and Management in Perus La Libertad Region

    Science.gov (United States)

    Padgett-Vasquez, Steve; Steentofte, Catherine; Holbrook, Abigail

    2014-01-01

    Developing countries often struggle with providing water security and sanitation services to their populations. An important aspect of improving security and sanitation is developing a comprehensive understanding of the country's water budget. Water For People, a non-profit organization dedicated to providing clean drinking water, is working with the Peruvian government to develop a water budget for the La Libertad region of Peru which includes the creation of an extensive watershed management plan. Currently, the data archive of the necessary variables to create the water management plan is extremely limited. Implementing NASA Earth observations has bolstered the dataset being used by Water For People, and the METRIC (Mapping EvapoTranspiration at High Resolution and Internalized Calibration) model has allowed for the estimation of the evapotranspiration values for the region. Landsat 8 imagery and the DEM (Digital Elevation Model) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor onboard Terra were used to derive the land cover information, and were used in conjunction with local weather data of Cascas from Peru's National Meteorological and Hydrological Service (SENAMHI). Python was used to combine input variables and METRIC model calculations to approximate the evapotranspiration values for the Ochape sub-basin of the Chicama River watershed. Once calculated, the evapotranspiration values and methodology were shared Water For People to help supplement their decision support tools in the La Libertad region of Peru and potentially apply the methodology in other areas of need.

  10. Integrative miRNA-Gene Expression Analysis Enables Refinement of Associated Biology and Prediction of Response to Cetuximab in Head and Neck Squamous Cell Cancer

    Directory of Open Access Journals (Sweden)

    Loris De Cecco

    2017-01-01

    Full Text Available This paper documents the process by which we, through gene and miRNA expression profiling of the same samples of head and neck squamous cell carcinomas (HNSCC and an integrative miRNA-mRNA expression analysis, were able to identify candidate biomarkers of progression-free survival (PFS in patients treated with cetuximab-based approaches. Through sparse partial least square–discriminant analysis (sPLS-DA and supervised analysis, 36 miRNAs were identified in two components that clearly separated long- and short-PFS patients. Gene set enrichment analysis identified a significant correlation between the miRNA first-component and EGFR signaling, keratinocyte differentiation, and p53. Another significant correlation was identified between the second component and RAS, NOTCH, immune/inflammatory response, epithelial–mesenchymal transition (EMT, and angiogenesis pathways. Regularized canonical correlation analysis of sPLS-DA miRNA and gene data combined with the MAGIA2 web-tool highlighted 16 miRNAs and 84 genes that were interconnected in a total of 245 interactions. After feature selection by a smoothed t-statistic support vector machine, we identified three miRNAs and five genes in the miRNA-gene network whose expression result was the most relevant in predicting PFS (Area Under the Curve, AUC = 0.992. Overall, using a well-defined clinical setting and up-to-date bioinformatics tools, we are able to give the proof of principle that an integrative miRNA-mRNA expression could greatly contribute to the refinement of the biology behind a predictive model.

  11. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    Science.gov (United States)

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  12. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Gupta, A. Sen; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.; Hummel, P.; Gray, M.; Duda, P.; Zaitchik, B.; Mahat, V.; Artan, G.; Tokar, S.

    2014-11-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (GeoSFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of

  13. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  14. Facing the Challenges of Accessing, Managing, and Integrating Large Observational Datasets in Ecology: Enabling and Enriching the Use of NEON's Observational Data

    Science.gov (United States)

    Thibault, K. M.

    2013-12-01

    As the construction of NEON and its transition to operations progresses, more and more data will become available to the scientific community, both from NEON directly and from the concomitant growth of existing data repositories. Many of these datasets include ecological observations of a diversity of taxa in both aquatic and terrestrial environments. Although observational data have been collected and used throughout the history of organismal biology, the field has not yet fully developed a culture of data management, documentation, standardization, sharing and discoverability to facilitate the integration and synthesis of datasets. Moreover, the tools required to accomplish these goals, namely database design, implementation, and management, and automation and parallelization of analytical tasks through computational techniques, have not historically been included in biology curricula, at either the undergraduate or graduate levels. To ensure the success of data-generating projects like NEON in advancing organismal ecology and to increase transparency and reproducibility of scientific analyses, an acceleration of the cultural shift to open science practices, the development and adoption of data standards, such as the DarwinCore standard for taxonomic data, and increased training in computational approaches for biologists need to be realized. Here I highlight several initiatives that are intended to increase access to and discoverability of publicly available datasets and equip biologists and other scientists with the skills that are need to manage, integrate, and analyze data from multiple large-scale projects. The EcoData Retriever (ecodataretriever.org) is a tool that downloads publicly available datasets, re-formats the data into an efficient relational database structure, and then automatically imports the data tables onto a user's local drive into the database tool of the user's choice. The automation of these tasks results in nearly instantaneous execution

  15. Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform, Version 1.5 and 1.x.

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-18

    EDGE bioinformatics was developed to help biologists process Next Generation Sequencing data (in the form of raw FASTQ files), even if they have little to no bioinformatics expertise. EDGE is a highly integrated and interactive web-based platform that is capable of running many of the standard analyses that biologists require for viral, bacterial/archaeal, and metagenomic samples. EDGE provides the following analytical workflows: quality trimming and host removal, assembly and annotation, comparisons against known references, taxonomy classification of reads and contigs, whole genome SNP-based phylogenetic analysis, and PCR analysis. EDGE provides an intuitive web-based interface for user input, allows users to visualize and interact with selected results (e.g. JBrowse genome browser), and generates a final detailed PDF report. Results in the form of tables, text files, graphic files, and PDFs can be downloaded. A user management system allows tracking of an individual’s EDGE runs, along with the ability to share, post publicly, delete, or archive their results.

  16. Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic.

    Science.gov (United States)

    He, Yanfang; Qi, Fei; Niu, Xiangheng; Zhang, Wenchi; Zhang, Xifeng; Pan, Jianming

    2018-08-27

    In clinical diagnosis, monitoring of uric acid (UA) is generally realized by combining uricase with natural peroxidase. The use of bio-enzymes, however, shadows some highlights of these methods due to their vulnerable activities against environments. Herein, we report a novel biosensor for the natural enzyme-free colorimetric detection of UA by using CoP nanosheet arrays grown on Ni foam (NF) as a monolithic peroxidase mimic. The integrated nanozyme can be put into and taken out from reaction systems conveniently with only tweezers, making it possible for on-demand analysis. As demonstrated, the obtained CoP/NF exhibits outstanding peroxidase-like activity to trigger the oxidation reaction of colorless 3,3'5,5'-tetramethylbenzidine (TMB) to a blue product (TMBox) mediated by H 2 O 2 . It is found that the blue TMBox can be reduced to colorless TMB again by UA selectively, thus the presence of UA in solutions will suppress the color reaction of TMB. Based on this principle, an uricase-free biosensor is developed for the photometric determination of UA, providing a wide detection range of 1-200 μM and a limit of detection down to 1.0 μM. In addition, the fabricated biosensor can be applied for measuring UA in clinical samples with merits of simple operation and good reliability, exhibiting its great promise in clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Integrating Electromagnetic Data with Other Geophysical Observations for Enhanced Imaging of the Earth: A Tutorial and Review

    Science.gov (United States)

    Moorkamp, Max

    2017-09-01

    In this review, I discuss the basic principles of joint inversion and constrained inversion approaches and show a few instructive examples of applications of these approaches in the literature. Starting with some basic definitions of the terms joint inversion and constrained inversion, I use a simple three-layered model as a tutorial example that demonstrates the general properties of joint inversion with different coupling methods. In particular, I investigate to which extent combining different geophysical methods can restrict the set of acceptable models and under which circumstances the results can be biased. Some ideas on how to identify such biased results and how negative results can be interpreted conclude the tutorial part. The case studies in the second part have been selected to highlight specific issues such as choosing an appropriate parameter relationship to couple seismic and electromagnetic data and demonstrate the most commonly used approaches, e.g., the cross-gradient constraint and direct parameter coupling. Throughout the discussion, I try to identify topics for future work. Overall, it appears that integrating electromagnetic data with other observations has reached a level of maturity and is starting to move away from fundamental proof-of-concept studies to answering questions about the structure of the subsurface. With a wide selection of coupling methods suited to different geological scenarios, integrated approaches can be applied on all scales and have the potential to deliver new answers to important geological questions.

  18. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India)

    International Nuclear Information System (INIS)

    Chel, Arvind; Tiwari, G.N.

    2010-01-01

    This paper deals with an experimental outdoor annual performance evaluation of 2.32 kW P photovoltaic (PV) power system located at solar energy park in New Delhi composite climatic conditions. This PV system operates the daily electrical load nearly 10 kW h/day which comprises of various applications such as electric air blower of an earth to air heat exchanger (EAHE) used for heating/cooling of adobe house, ceiling fan, fluorescent tube-light, computer, submersible water pump, etc. The outdoor efficiencies, power generated and lost in PV system components were determined using hourly experimental measured data for 1 year on typical clear day in each month. These realistic data are useful for design engineers for outdoor assessment of PV system components. The energy conservation, mitigation of CO 2 emission and carbon credit potential of the existing PV integrated EAHE system is presented in this paper. Also, the energy payback time (EPBT) and unit cost of electricity were determined for both stand-alone PV (SAPV) and building roof integrated PV (BIPV) systems.

  19. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    Science.gov (United States)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  20. Remediation and upgrading of old, inadequate waste management facilities. Integrated waste management system for rare earth and rare metal industry at Sillamaee, Estonia, former uranium facility

    International Nuclear Information System (INIS)

    Kaasik, Tonis; Siinmaa, Anti

    2001-01-01

    Full text: The Sillamaee Metallurgical Plant was built in 1946-1948 at Sillamaee, in North-East Estonia, ca 190 km from Tallinn. Target product was uranium, mostly in form of yellow cake (U 3 O 8 ) for Soviet nuclear program. Uranium ore processing continued from 1948 to 1977, totally 4,013,000 tons of uranium ore were processed at Sillamaee plant. In early 1970s the plant introduced a new production line - rare earth elements. Rare earths were until 1991 produced from loparite (later from semi-processed loparite) - rare earths, niobium, tantalum and NORM-containing ore for Kola peninsula, Russia; later. All wastes were, as typical to hydrometallurgical processing all over the world, discharged to a large, 40 ha liquid waste depository - tailings pond, what in Sillamaee case was designed to discharge all liquid constituents slowly to the Baltic Sea. All uranium related activities were stopped in 1990, when only rare earth and rare metal production lines remained operational. The plant was 100 % privatized in 1997 and is today operated by Silmet Ltd., processing annually up to 8 000 tons of rare earth and 2000 tons of niobium and tantalum ores. Like all industries, inherited from Soviet times, Silmet plant is today facing a serious challenge to upgrading technologies towards waste minimizations process efficiency. The historical tailings pond, containing ca 1800 tons of natural uranium and ca 800 tons of thorium, was found geotechnically unstable and leaking to the Baltic Sea, in mid 90s. Being a problem of common Baltic concern, an international remediation project was initiated by Estonian Government and plant operator in 1998. In cooperation with Estonian, Finnish, Swedish, Danish and Norwegian Governments and with assistance by the European Union, the tailings pond will be environmentally remediated - dams stabilized and surface covered, by end of 2006. Close-down and environmental remediation of the tailings pond provides plant an ultimate challenge of

  1. Integration and Value of Earth Observations Data for Water Management Decision-Making in the Western U.S.

    Science.gov (United States)

    Larsen, S. G.; Willardson, T.

    2017-12-01

    Some exciting new science and tools are under development for water management decision-making in the Western U.S. This session will highlight a number of examples where remotely-sensed observation data has been directly beneficial to water resource stakeholders, and discuss the steps needed between receipt of the data and their delivery as a finished data product or tool. We will explore case studies of how NASA scientists and researchers have worked with together with western state water agencies and other stakeholders as a team, to develop and interpret remotely-sensed data observations, implement easy-to-use software and tools, train team-members on their operation, and transition those tools into the insititution's workflows. The benefits of integrating these tools into stakeholder, agency, and end-user operations can be seen on-the-ground, when water is optimally managed for the decision-maker's objectives. These cases also point to the importance of building relationships and conduits for communication between researchers and their institutional counterparts.

  2. Development of the AuScope Australian Earth Observing System

    Science.gov (United States)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  3. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...... with an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period of up to 3...

  4. Copernicus: a quantum leap in Earth Observation

    Science.gov (United States)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  5. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  6. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools

    Science.gov (United States)

    Birk, R. J.; Frederick, M.

    2006-05-01

    The Global Earth Observation System of Systems (GEOSS) framework identifies the benefits of systematically and scientifically networking the capacity of organizations and systems into solutions that benefit nine societal benefit areas. The U.S. Integrated Earth Observation System (IEOS), the U.S. contribution to the GEOSS, focuses on near-term, mid-term, and long-term opportunities to establish integrated system solutions based on capacities and capabilities of member agencies and affiliations. Scientists at NASA, NOAA, DOE, NSF and other U.S. agencies are evolving the predictive capacity of models of Earth processes based on space-based, airborne and surface-based instruments and their measurements. NASA research activities include advancing the power and accessibility of computational resources (i.e. Project Columbia) to enable robust science data analysis, modeling, and assimilation techniques to rapidly advance. The integration of the resulting observations and predictions into decision support tools require characterization of the accuracies of a range of input measurements includes temperature and humidity profiles, wind speed, ocean height, sea surface temperature, and atmospheric constituents that are measured globally by U.S. deployed spacecraft. These measurements are stored in many data formats on many different information systems with widely varying accessibility and have processes whose documentation ranges from extremely detailed to very minimal. Integrated and interdisciplinary modeling (enabled by the Earth System Model Framework) enable the types of ensemble analysis that are useful for decision processes associated with energy management, public health risk assessments, and optimizing transportation safety and efficiency. Interdisciplinary approaches challenge systems integrators (both scientists and engineers) to expand beyond the traditional boundaries of particular disciplines to develop, verify and validate, and ultimately benchmark the

  7. Colombia: Learning Institutions Enable Integrated Response

    Science.gov (United States)

    2010-09-01

    publica - tions of the “human rights cartel.” The frames whereby the parastates assessed the conflict remained virtually unchanged, and in some cases...Politica de Defensa y 144 | FRoM the FIeld PRISM 1, no. 4 Seguridad Democratica, requires slightly more pages for its presentation but is identical...capability” to “establish security force presence throughout the country” (lograr presencia fuerza publica en todo territorio nacional). Though a

  8. First steps of integrated spatial modeling of titanium, zirconium, and rare earth element resources within the Coastal Plain sediments of the southeastern United States

    Science.gov (United States)

    Ellefsen, Karl J.; Van Gosen, Bradley S.; Fey, David L.; Budahn, James R.; Smith, Steven M.; Shah, Anjana K.

    2015-01-01

    The Coastal Plain of the southeastern United States has extensive, unconsolidated sedimentary deposits that are enriched in heavy minerals containing titanium, zirconium, and rare earth element resources. Areas favorable for exploration and development of these resources are being identified by geochemical data, which are supplemented with geological, geophysical, hydrological, and geographical data. The first steps of this analysis have been completed. The concentrations of lanthanum, yttrium, and titanium tend to decrease as distance from the Piedmont (which is the likely source of these resources) increases and are moderately correlated with airborne measurements of equivalent thorium concentration. The concentrations of lanthanum, yttrium, and titanium are relatively high in those watersheds that adjoin the Piedmont, south of the Cape Fear Arch. Although this relation suggests that the concentrations are related to the watersheds, it may be simply an independent regional trend. The concentration of zirconium is unrelated to the distance from the Piedmont, the equivalent thorium concentration, and the watershed. These findings establish a foundation for more sophisticated analyses using integrated spatial modeling.

  9. Reducing Loss of Life and Property from Disasters: A Societal Benefit Area of the Strategic Plan for U.S. Integrated Earth Observation System (IEOS)

    Science.gov (United States)

    Helz, Rosalind L.; Gaynor, John E.

    2007-01-01

    Natural and technological disasters, such as hurricanes and other extreme weather events, earthquakes, volcanic eruptions, landslides and debris flows, wildland and urban-interface fires, floods, oil spills, and space-weather storms, impose a significant burden on society. Throughout the United States, disasters inflict many injuries and deaths, and cost the nation $20 billion each year (SDR, 2003). Disasters in other countries can affect U.S. assets and interests overseas (e.g. the eruption of Mt. Pinatubo in the Philippines, which effectively destroyed Clark Air Force Base). Also, because they have a disproportionate impact on developing countries, disasters are major barriers to sustainable development. Improving our ability to assess, predict, monitor, and respond to hazardous events is a key factor in reducing the occurrence and severity of disasters, and relies heavily on the use of information from well-designed and integrated Earth observation systems. To fully realize the benefits gained from the observation systems, the information derived must be disseminated through effective warning systems and networks, with products tailored to the needs of the end users and the general public.

  10. The Concept Mastery in the Perspective of Gender of Junior High School Students on Eclipse Theme in Multiple Intelligences-based of Integrated Earth and Space Science Learning

    Science.gov (United States)

    Liliawati, W.; Utama, J. A.; Mursydah, L. S.

    2017-03-01

    The purpose of this study is to identify gender-based concept mastery differences of junior high school students after the implementation of multiple intelligences-based integrated earth and space science learning. Pretest-posttest group design was employed to two different classes at one of junior high school on eclipse theme in Tasikmalaya West Java: one class for boys (14 students) and one class of girls (18 students). The two-class received same treatment. The instrument of concepts mastery used in this study was open-ended eight essay questions. Reliability test result of this instrument was 0.9 (category: high) while for validity test results were high and very high category. We used instruments of multiple intelligences identification and learning activity observation sheet for our analysis. The results showed that normalized N-gain of concept mastery for boys and girls were improved, respectively 0.39 and 0.65. Concept mastery for both classes differs significantly. The dominant multiple intelligences for boys were in kinesthetic while girls dominated in the rest of multiple intelligences. Therefor we concluded that the concept mastery was influenced by gender and student’s multiple intelligences. Based on this finding we suggested to considering the factor of gender and students’ multiple intelligences given in the learning activity.

  11. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  12. Transmission Integration | Grid Modernization | NREL

    Science.gov (United States)

    Transmission Integration Transmission Integration The goal of NREL's transmission integration integration issues and provide data, analysis, and models to enable the electric power system to more and finding solutions to address them to enable transmission grid integration. Capabilities Power

  13. Mapping rice extent map with crop intensity in south China through integration of optical and microwave images based on google earth engine

    Science.gov (United States)

    Zhang, X.; Wu, B.; Zhang, M.; Zeng, H.

    2017-12-01

    Rice is one of the main staple foods in East Asia and Southeast Asia, which has occupied more than half of the world's population with 11% of cultivated land. Study on rice can provide direct or indirect information on food security and water source management. Remote sensing has proven to be the most effective method to monitoring the cropland in large scale by using temporary and spectral information. There are two main kinds of satellite have been used to mapping rice including microwave and optical. Rice, as the main crop of paddy fields, the main feature different from other crops is flooding phenomenon at planning stage (Figure 1). Microwave satellites can penetrate through clouds and efficiency on monitoring flooding phenomenon. Meanwhile, the vegetation index based on optical satellite can well distinguish rice from other vegetation. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for processing very large geospatial datasets. Google has collected large number of remote sensing satellite data around the world, which providing researchers with the possibility of doing application by using multi-source remote sensing data in a large area. In this work, we map rice planting area in south China through integration of Landsat-8 OLI, Sentienl-2, and Sentinel-1 Synthetic Aperture Radar (SAR) images. The flowchart is shown in figure 2. First, a threshold method the VH polarized backscatter from SAR sensor and vegetation index including normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from optical sensor were used the classify the rice extent map. The forest and water surface extent map provided by earth engine were used to mask forest and water. To overcome the problem of the "salt and pepper effect" by Pixel-based classification when the spatial resolution increased, we segment the optical image and use the pixel- based classification results to merge the object

  14. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  15. An Innovative Infrastructure with a Universal Geo-Spatiotemporal Data Representation Supporting Cost-Effective Integration of Diverse Earth Science Data

    Science.gov (United States)

    Rilee, Michael Lee; Kuo, Kwo-Sen

    2017-01-01

    The SpatioTemporal Adaptive Resolution Encoding (STARE) is a unifying scheme encoding geospatial and temporal information for organizing data on scalable computing/storage resources, minimizing expensive data transfers. STARE provides a compact representation that turns set-logic functions into integer operations, e.g. conditional sub-setting, taking into account representative spatiotemporal resolutions of the data in the datasets. STARE geo-spatiotemporally aligns data placements of diverse data on massive parallel resources to maximize performance. Automating important scientific functions (e.g. regridding) and computational functions (e.g. data placement) allows scientists to focus on domain-specific questions instead of expending their efforts and expertise on data processing. With STARE-enabled automation, SciDB (Scientific Database) plus STARE provides a database interface, reducing costly data preparation, increasing the volume and variety of interoperable data, and easing result sharing. Using SciDB plus STARE as part of an integrated analysis infrastructure dramatically eases combining diametrically different datasets.

  16. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    Science.gov (United States)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  17. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  18. Earth Charter and nuclear energy

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter presents Earth Charter, where are listed the principles in 4 sections: 1) respect and take care of the life community; 2) environmental integrity; social and economic welfare; 4) democracy, no-violence and peace

  19. Google Under-the-Earth: Seeing Beneath Stonehenge using Google Earth - a Tool for Public Engagement and the Dissemination of Archaeological Data

    Directory of Open Access Journals (Sweden)

    Kate Welham

    2015-07-01

    Full Text Available This article focuses on the use of Google Earth as a tool to facilitate public engagement and dissemination of data. It examines a case study based around one of the largest archaeological investigations of the Stonehenge landscape, the Stonehenge Riverside Project. A bespoke layer for Google Earth was developed to communicate the discoveries of the research by creating an engaging, interactive and informative multimedia application that could be viewed by users across the world. The article describes the creation of the layer: Google Under-the-Earth: Seeing Beneath Stonehenge, and the public uptake and response to this. The project was supported by a Google Research Award, and working alongside Google enabled a 'free to download' platform for users to view the data within in the form of Google Earth, as well as the integration of a variety of applications including: Google SketchUp, YouTube, and Flickr. In addition, the integration of specialist software, such as Esri ArcGIS, was fundamental to the integration of the spatial data gathered by the project. Methodologies used to create the application are documented here, including how different outputs were integrated such as geophysical survey, 3D reconstructions and landscape tours. The future possibilities for utilising Google Earth for public engagement and understanding in the discipline are examined.

  20. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  1. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Slaug, Bjørn; Brandt, Åse

    2010-01-01

    This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients and their home environments. The instrument was translated...... from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland and Iceland. This iterative process involved occupational therapists, architects, building engineers and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently from each other, collected data from 106 cases by means of the Nordic Housing...

  2. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  3. Pilot project as enabler?

    DEFF Research Database (Denmark)

    Neisig, Margit; Glimø, Helle; Holm, Catrine Granzow

    This article deals with a systemic perspective on transition. The field of study addressed is a pilot project as enabler of transition in a highly complex polycentric context. From a Luhmannian systemic approach, a framework is created to understand and address barriers of change occurred using...... pilot projects as enabler of transition. Aspects of how to create trust and deal with distrust during a transition are addressed. The transition in focus is the concept of New Public Management and how it is applied in the management of the Employment Service in Denmark. The transition regards...

  4. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples bein...

  5. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, T.; Nygren, C.; Slaug, B.

    2014-01-01

    This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument was transla......This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument...... was translated from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland, and Iceland. This iterative process involved occupational therapists, architects, building engineers, and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently of each other, collected data from 106 cases by means of the Nordic Housing...

  6. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  7. Semantic Sensor Web Enablement for COAST, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sensor Web Enablement (SWE) is an Open Geospatial Consortium (OGC) standard Service Oriented Architecture (SOA) that facilitates discovery and integration of...

  8. 5G-Enabled Tactile Internet

    OpenAIRE

    Simsek, Meryem; Aijaz, Adnan; Dohler, Mischa; Sachs, Joachim; Fettweis, Gerhard

    2016-01-01

    The long-term ambition of the Tactile Internet is to enable a democratization of skill, and how it is being delivered globally. An integral part of this is to be able to transmit touch in perceived real-time, which is enabled by suitable robotics and haptics equipment at the edges, along with an unprecedented communications network. The fifth generation (5G) mobile communications systems will underpin this emerging Internet at the wireless edge. This paper presents the most important technolo...

  9. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    Science.gov (United States)

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spatially enabled land administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    enabling of land administration systems managing tenure, valuation, planning, and development will allow the information generated by these activities to be much more useful. Also, the services available to private and public sectors and to community organisations should commensurably improve. Knowledge....... In other words: Good governance and sustainable development is not attainable without sound land administration or - more broadly – sound land management. The paper presents a land management vision that incorporates the benefits of ICT enabled land administration functions. The idea is that spatial...... the communication between administrative systems and also establish more reliable data due to the use the original data instead of copies. In Denmark, such governmental guidelines for a service-oriented ITarchitecture in support of e-government are recently adopted. Finally, the paper presents the role of FIG...

  11. Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Brandt, Åse

    Development and reliability testing of the Nordic Housing Enabler – an instrument for accessibility assessment of the physical housing. Tina Helle & Åse Brandt University of Lund, Health Sciences, Faculty of Medicine (SE) and University College Northern Jutland, Occupational Therapy department (DK......). Danish Centre for Assistive Technology. Abstract. For decades, accessibility to the physical housing environment for people with functional limitations has been of interest politically, professionally and for the users. Guidelines and norms on accessible housing design have gradually been developed......, however, the built environment shows serious deficits when it comes to accessibility. This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of inter-rater reliability, when used in occupational therapy practice. The instrument was translated from...

  12. The ENABLER - Based on proven NERVA technology

    International Nuclear Information System (INIS)

    Livingston, J.M.; Pierce, B.L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs

  13. The ENABLER - Based on proven NERVA technology

    Science.gov (United States)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  14. Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions

    Science.gov (United States)

    Hastrup, R.; Cesarone, R.; Miller, A.

    1993-01-01

    Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...

  15. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  16. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  17. INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth

    DEFF Research Database (Denmark)

    Churazov, E.; Sunyaev, R.; Revnivtsev, M.

    2007-01-01

    by the Earth atmosphere and the Earth auroral emission. Results. The spectrum of the cosmic X-ray background in the energy band 5-100 keV is obtained. The shape of the spectrum is consistent with that obtained previously by the HEAO-1 observatory, while the normalization is similar to 10% higher....... This difference in normalization can ( at least partly) be traced to the different assumptions on the absolute flux from the Crab Nebulae. The increase relative to the earlier adopted value of the absolute flux of the CXB near the energy of maximum luminosity (20-50 keV) has direct implications for the energy...

  18. Advanced Calibration Source for Planetary and Earth Observing Imaging

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary and Earth imaging requires radiometrically calibrated and stable imaging sensors.  Radiometric calibration enables the ability to remove or mitigate...

  19. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  20. The astysphere and urban geochemistry-a new approach to integrate urban systems into the geoscientific concept of spheres and a challenging concept of modern geochemistry supporting the sustainable development of planet earth.

    Science.gov (United States)

    Norra, Stefan

    2009-07-01

    In 1875, the geoscientist Walter Suess introduced several spheres, such as the lithosphere and the atmosphere to promote a comprehensive understanding of the system earth. Since then, this idea became the dominating concept for the understanding of the distribution of chemical elements in the system earth. Meanwhile, due to the importance of human beings on global element fluxes, the term anthroposphere was introduced. Nevertheless, in face of the ongoing urbanization of the earth, this concept is not any more adequate enough to develop a comprehensive understanding of global element fluxes in and between solid, liquid, and gaseous phases. This article discusses a new concept integrating urbanization into the geoscientific concept of spheres. No geological exogenic force has altered the earth's surface during the last centuries in such an extent as human activity. Humans have altered the morphology and element balances of the earth by establishing agrosystems first and urban systems later. Currently, urban systems happen to become the main regulators for fluxes of many elements on a global scale due to ongoing industrial and economic development and a growing number of inhabitants. Additionally, urban systems are constantly expanding and cover more and more former natural and agricultural areas. For nature, urban systems are new phenomena, which never existed in previous geological eras. The process of the globe's urbanization concurrently is active with the global climate change. In fact, urban systems are a major emitter for climate active gases. Thus, beside the global changes in economy and society, urbanization is an important factor within the global change of nature as is already accepted for climate, ecosystems, and biodiversity. Due to the fact that urbanization has become a global process shaping the earth and that the urban systems are globally cross-linked among each other, a new geoscientific sphere has to be introduced: the astysphere. This sphere

  1. A vision for, and progress towards EarthCube

    Science.gov (United States)

    Jacobs, C.

    2012-04-01

    The National Science Foundation (NSF), a US government agency, seeks to transform the conduct of research in geosciences by supporting innovative approaches to community-created cyberinfrastructure that integrates knowledge management across the Geosciences. Within the NSF organization, the Geosciences Directorate (GEO) and the Office of Cyberinfrastructure (OCI) are partnering to address the multifaceted challenges of modern, data-intensive science and education. NSF encourages the community to envision and create an environment where low adoption thresholds and new capabilities act together to greatly increase the productivity and capability of researchers and educators working at the frontiers of Earth system science. This initiative is EarthCube. NSF believes the geosciences community is well positioned to plan and prototype transformative approaches that use innovative technologies to integrate and make interoperable vast resources of heterogeneous data and knowledge within a knowledge management framework. This believe is founded on tsunami of technology development and application that has and continues to engulf science and investments geosciences has made in cyberinfrastructure (CI) to take advantage the technological developments. However, no master framework for geosciences was employed in the development of technology-enable capabilities required by various geosciences communities. It is time to develop an open, adaptable and sustainable framework (an "EarthCube") to enable transformative research and education of Earth system. This will involve, but limited to fostering common data models and data-focused methodologies; developing next generation search and data tools; and advancing application software to integrate data from various sources to expand the frontiers of knowledge. Also, NSF looks to the community to develop a robust and balanced paradigm to manage a collaborative effort and build community support. Such a paradigm must engage a diverse

  2. EnableATIS strategy assessment.

    Science.gov (United States)

    2014-02-01

    Enabling Advanced Traveler Information Systems (EnableATIS) is the traveler information component of the Dynamic Mobility Application (DMA) program. The objective of : the EnableATIS effort is to foster transformative traveler information application...

  3. Enabling Digital Literacy

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Georgsen, Marianne

    2010-01-01

    There are some tensions between high-level policy definitions of “digital literacy” and actual teaching practice. We need to find workable definitions of digital literacy; obtain a better understanding of what digital literacy might look like in practice; and identify pedagogical approaches, which...... support teachers in designing digital literacy learning. We suggest that frameworks such as Problem Based Learning (PBL) are approaches that enable digital literacy learning because they provide good settings for engaging with digital literacy. We illustrate this through analysis of a case. Furthermore......, these operate on a meso-level mediating between high-level concepts of digital literacy and classroom practice....

  4. CtOS Enabler

    OpenAIRE

    Crespo Cepeda, Rodrigo; El Yamri El Khatibi, Meriem; Carrera García, Juan Manuel

    2015-01-01

    Las Smart Cities son, indudablemente, el futuro próximo de la tecnología al que nos acercamos cada día, lo que se puede observar en la abundancia de dispositivos móviles entre la población, que informatizan la vida cotidiana mediante el uso de la geolocalización y la información. Pretendemos unir estos dos ámbitos con CtOS Enabler para crear un estándar de uso que englobe todos los sistemas de Smart Cities y facilite a los desarrolladores de dicho software la creación de nuevas herramientas. ...

  5. A Technology Enabled Journey

    Science.gov (United States)

    Devine, Pamela Albert

    2012-01-01

    This article features Point Road School, a pre-K-4 school in New Jersey that enhances student learning by integrating new and emerging technologies into the curriculum. Point Road School's technology story began in 1996 with a grant for a classroom modem so students could email their university literacy buddies. The New Jersey school has moved…

  6. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    Science.gov (United States)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  7. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  8. Multiple Modes of Inquiry in Earth Science

    Science.gov (United States)

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  9. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  10. EarthCollab, building geoscience-centric implementations of the VIVO semantic software suite

    Science.gov (United States)

    Rowan, L. R.; Gross, M. B.; Mayernik, M. S.; Daniels, M. D.; Krafft, D. B.; Kahn, H. J.; Allison, J.; Snyder, C. B.; Johns, E. M.; Stott, D.

    2017-12-01

    EarthCollab, an EarthCube Building Block project, is extending an existing open-source semantic web application, VIVO, to enable the exchange of information about scientific researchers and resources across institutions. EarthCollab is a collaboration between UNAVCO, a geodetic facility and consortium that supports diverse research projects informed by geodesy, The Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory, and Cornell University. VIVO has been implemented by more than 100 universities and research institutions to highlight research and institutional achievements. This presentation will discuss benefits and drawbacks of working with and extending open source software. Some extensions include plotting georeferenced objects on a map, a mobile-friendly theme, integration of faceting via Elasticsearch, extending the VIVO ontology to capture geoscience-centric objects and relationships, and the ability to cross-link between VIVO instances. Most implementations of VIVO gather information about a single organization. The EarthCollab project created VIVO extensions to enable cross-linking of VIVO instances to reduce the amount of duplicate information about the same people and scientific resources and to enable dynamic linking of related information across VIVO installations. As the list of customizations grows, so does the effort required to maintain compatibility between the EarthCollab forks and the main VIVO code. For example, dozens of libraries and dependencies were updated prior to the VIVO v1.10 release, which introduced conflicts in the EarthCollab cross-linking code. The cross-linking code has been developed to enable sharing of data across different versions of VIVO, however, using a JSON output schema standardized across versions. We will outline lessons learned in working with VIVO and its open source dependencies, which include Jena, Solr, Freemarker, and jQuery and discuss future

  11. Breakthrough Science Enabled by Smallsat Optical Communication

    Science.gov (United States)

    Gorjian, V.

    2017-12-01

    The recent NRC panel on "Achieving Science with Cubesats" found that "CubeSats have already proven themselves to be an important scientific tool. CubeSats can produce high-value science, as demonstrated by peer-reviewed publications that address decadal survey science goals." While some science is purely related to the size of the collecting aperture, there are plentiful examples of new and exciting experiments that can be achieved using the relatively inexpensive Cubesat platforms. We will present various potential science applications that can benefit from higher bandwidth communication. For example, on or near Earth orbit, Cubesats could provide hyperspectral imaging, gravity field mapping, atmospheric probing, and terrain mapping. These can be achieved either as large constellations of Cubesats or a few Cubesats that provide multi-point observations. Away from the Earth (up to 1AU) astrophysical variability studies, detections of solar particles between the Earth and Venus, mapping near earth objects, and high-speed videos of the Sun will also be enabled by high bandwidth communications.

  12. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  13. Enabling graphene nanoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  14. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  15. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C

    2014-01-01

    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  16. Social-ecological enabling conditions for payments for ecosystem services

    OpenAIRE

    Heidi R. Huber-Stearns; Drew E. Bennett; Stephen Posner; Ryan C. Richards; Jenn Hoyle. Fair; Stella J. M. Cousins; Chelsie L. Romulo

    2017-01-01

    The concept of "enabling conditions" centers on conditions that facilitate approaches to addressing social and ecological challenges. Although multiple fields have independently addressed the concept of enabling conditions, the literature lacks a shared understanding or integration of concepts. We propose a more synthesized understanding of enabling conditions beyond disciplinary boundaries by focusing on the enabling conditions that influence the implementation of a range of environmental p...

  17. Grid-Enabled Measures

    Science.gov (United States)

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  18. Enabling distributed petascale science

    International Nuclear Information System (INIS)

    Baranovski, Andrew; Bharathi, Shishir; Bresnahan, John

    2007-01-01

    Petascale science is an end-to-end endeavour, involving not only the creation of massive datasets at supercomputers or experimental facilities, but the subsequent analysis of that data by a user community that may be distributed across many laboratories and universities. The new SciDAC Center for Enabling Distributed Petascale Science (CEDPS) is developing tools to support this end-to-end process. These tools include data placement services for the reliable, high-performance, secure, and policy-driven placement of data within a distributed science environment; tools and techniques for the construction, operation, and provisioning of scalable science services; and tools for the detection and diagnosis of failures in end-to-end data placement and distributed application hosting configurations. In each area, we build on a strong base of existing technology and have made useful progress in the first year of the project. For example, we have recently achieved order-of-magnitude improvements in transfer times (for lots of small files) and implemented asynchronous data staging capabilities; demonstrated dynamic deployment of complex application stacks for the STAR experiment; and designed and deployed end-to-end troubleshooting services. We look forward to working with SciDAC application and technology projects to realize the promise of petascale science

  19. Displays enabling mobile multimedia

    Science.gov (United States)

    Kimmel, Jyrki

    2007-02-01

    With the rapid advances in telecommunications networks, mobile multimedia delivery to handsets is now a reality. While a truly immersive multimedia experience is still far ahead in the mobile world, significant advances have been made in the constituent audio-visual technologies to make this become possible. One of the critical components in multimedia delivery is the mobile handset display. While such alternatives as headset-style near-to-eye displays, autostereoscopic displays, mini-projectors, and roll-out flexible displays can deliver either a larger virtual screen size than the pocketable dimensions of the mobile device can offer, or an added degree of immersion by adding the illusion of the third dimension in the viewing experience, there are still challenges in the full deployment of such displays in real-life mobile communication terminals. Meanwhile, direct-view display technologies have developed steadily, and can provide a development platform for an even better viewing experience for multimedia in the near future. The paper presents an overview of the mobile display technology space with an emphasis on the advances and potential in developing direct-view displays further to meet the goal of enabling multimedia in the mobile domain.

  20. An Integrative Approach to Improving an Introductory Weather & Climate Course and Developing an Allied NASA Earth & Space Science Certificate Program for Pre-service Secondary Teachers (Invited)

    Science.gov (United States)

    Morrow, C. A.; Martin-Hansen, L.; Diem, J.; Elliott, W.

    2009-12-01

    An Atlanta-based partnership made up of leaders in science, education, and Georgia’s state-wide STEM Education Initiative are creating an enduring legacy of climate science education for pre-service and in-service teachers in Georgia as well as for underrepresented high school students who participate in an "Early College" program with Georgia State University (GSU). The core elements of our NASA-funded program are to infuse NASA global climate change resources and best pedagogical practice into a popular 4-credit lecture/lab course called “Introduction to Weather & Climate” (GEOG 1112) at GSU, and to establish a sustainable academic program for pre-service teachers in the College of Education called the NASA Earth & Space Science (ESS) Teacher Certificate. The NASA ESS Certificate will require candidates to accomplish the following as part of (or in addition to) standard degree and licensure requirements: 1. successfully complete a graduate section of “Introduction to Weather and Climate” (GEOG 7112), which requires lesson planning related to course content and engagement with GSU's new CO2 monitoring station whose research-quality data will provide unique hands-on opportunities for Metro Atlanta students and teachers; 2) complete an additional advanced course in climate change (GEOG 6784) plus elective hours in physical science disciplines (e.g. astronomy and physics); 3) serve as a lab teaching assistant for GEOG 1112 and a coach for a cadre of Carver Early College students who are taking the course; 4) make at least one of two teaching practica at a Georgia-based NASA Explorer School; and 5) participate or co-present in a week-long, residential, field-based, Summer Institute in Earth & Space Science intended to increase the interest, knowledge, and ability of in-service secondary science educators to fulfill climate-related standards in Earth Science and Earth Systems Science. We will evaluate, document, and disseminate (to the University System of

  1. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Ditmars, J. D.

    2002-01-01

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  2. Integrating components of the earth system to model global climate changes: implications for the simulation of the climate of the next million years

    International Nuclear Information System (INIS)

    Duplessy, J.C.

    2009-01-01

    The climate system is complex because it is made up of several components (atmosphere, ocean, sea ice, continental surface, ice sheets), each of which has its own response time. The paleo-climate record provides ample evidence that these components interact nonlinearly with each other and also with global biogeochemical cycles, which drive greenhouse gas concentration in the atmosphere. Forecasting the evolution of future climate is therefore an extremely complex problem. In addition, since the nineteenth century, human activities are releasing great quantities of greenhouse gases (CO 2 , CH 4 , CFC, etc.) into the atmosphere. As a consequence, the atmospheric content of these gases has tremendously increased. As they have a strong greenhouse effect, their concentration is now large enough to perturb the natural evolution of the earth's climate. In this paper, we shall review the strategy which has been used to develop and validate tools that would allow to simulate the future long-term behaviour of the Earth's climate. This strategy rests on two complementary approaches: developing numerical models of the climate system and validating them by comparing their output with present-day meteorological data and paleo-climatic reconstructions. We shall then evaluate the methods available to simulate climate at the regional scale and the major uncertainties that must be solved to reasonable estimate the long-term evolution of a region, which would receive a geological repository for nuclear wastes. (author)

  3. Integration of geotechnical and geophysical techniques for the characterization of a small earth-filled canal dyke and the localization of water leakage

    Science.gov (United States)

    Bièvre, Grégory; Lacroix, Pascal; Oxarango, Laurent; Goutaland, David; Monnot, Guy; Fargier, Yannick

    2017-04-01

    This paper investigates the combined use of extensive geotechnical, hydrogeological and geophysical techniques to assess a small earth dyke with a permanent hydraulic head, namely a canal embankment. The experimental site was chosen because of known issues regarding internal erosion and piping phenomena. Two leakages were visually located following the emptying of the canal prior to remediation works. The results showed a good agreement between the geophysical imaging techniques (Electrical Resistivity Tomography, P- and SH-waves Tomography) and the geotechnical data to detect the depth to the bedrock and its lateral variations. It appeared that surface waves might not be fully adapted for dyke investigation because of the particular geometry of the studied dyke, non-respectful of the 1D assumption, and which induced depth and velocity discrepancies retrieved from Rayleigh and Love waves inversion. The use of these classical prospecting techniques however did not allow to directly locate the two leakages within the studied earth dyke. The analysis of ambient vibration time series with a modified beam-forming algorithm allowed to localize the most energetic water flow prior to remediation works. It was not possible to detect the leakage after remediation works, suggesting that they efficiently contributed to significantly reduce the water flow. The second leakage was not detected probably because of a non-turbulent water flow, generating few energetic vibrations.

  4. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    Science.gov (United States)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  5. Bringing the environment down to earth.

    Science.gov (United States)

    Reinhardt, F L

    1999-01-01

    The debate on business and the environment has typically been framed in simple yes-or-no terms: "Does it pay to be green?" But the environment, like other business issues, requires a more complex approach--one that demands more than such all-or-nothing thinking. Managers need to ask instead, "Under what circumstances do particular kinds of environmental investments deliver returns to shareholders?" This article presents five approaches that managers can take to identify those circumstances and integrate the environment into their business thinking. These approaches will enable companies with the right industry structure, competitive position, and managerial skills to reconcile their responsibility to shareholders with the pressure to be faithful stewards of the earth's resources. Some companies can distance themselves from competitors by differentiating their products and commanding higher prices for them. Others may be able to "manage" their competitors by imposing a set of private regulations or by helping to shape the rules written by government officials. Still others may be able to cut costs and help the environment simultaneously. Almost all can learn to improve their management of risk and thus reduce the outlays associated with accidents, lawsuits, and boycotts. And some companies may even be able to make systemic changes that will redefine competition in their markets. All five approaches can help managers bring the environment down to earth. And that means bringing the environment back into the fold of business problems and determining when it really pays to be green.

  6. Looking at the earth from space

    Science.gov (United States)

    Geller, Marvin A.

    1988-01-01

    Some of the scientific accomplishments attained in observing the earth from space are discussed. A brief overview of findings concerning the atmosphere, the oceans and sea ice, the solid earth, and the terrestrial hydrosphere and biosphere is presented, and six examples are examined in which space data have provided unique information enabling new knowledge concerning the workings of the earth to be derived. These examples concern stratospheric water vapor, hemispheric differences in surface and atmosphere parameters, Seasat altimeter mesoscale variability, variability of Antarctic sea ice, variations in the length of day, and spaceborne radar imaging of ancient rivers. Future space observations of the earth are briefly addressed.

  7. Age of the earth and solar system

    International Nuclear Information System (INIS)

    Manhes, G.

    1977-01-01

    The history of chemical element formation and radiochronology is given. The study of Pb isotope composition evolution enables to estimate the age of the earth. A series of galena of known ages was measured. By means of a model, it is possible to determine the initial isotope composition of Pb on the earth and the age of the earth. On the other hand, the analysis of stony meteorites provides a Pb isotope composition higher than the earth value. A comparison of the data shows a fundamental transition at 4.55 10 9 years [fr

  8. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  9. The application of neutral network integrated with genetic algorithm and simulated annealing for the simulation of rare earths separation processes by the solvent extraction technique using EHEHPA agent

    International Nuclear Information System (INIS)

    Tran Ngoc Ha; Pham Thi Hong Ha

    2003-01-01

    In the present work, neutral network has been used for mathematically modeling equilibrium data of the mixture of two rare earth elements, namely Nd and Pr with PC88A agent. Thermo-genetic algorithm based on the idea of the genetic algorithm and the simulated annealing algorithm have been used in the training procedure of the neutral networks, giving better result in comparison with the traditional modeling approach. The obtained neutral network modeling the experimental data is further used in the computer program to simulate the solvent extraction process of two elements Nd and Pr. Based on this computer program, various optional schemes for the separation of Nd and Pr have been investigated and proposed. (author)

  10. FOILFEST :community enabled security.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.; Drayer, Darryl Donald; Cummings, John C., Jr. (.,; .)

    2005-09-01

    The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological

  11. Targeted Human Factors and Ergonomics Recommendations for Materiel and Concept Developers from the 2013 US Army Capabilities Integration Center Dismounted Non-network-Enabled Limited Objective Experiment (ARCIC DNNE LOE)

    Science.gov (United States)

    2014-11-01

    carrying Equipment ( MOLLE ) for gear carrying options; how the system is carried would be critical for squad mobility. Generally Soldiers said that one...retain items without allowing them to flop around. • The tactical assault panel (TAP) system restricts use of the MOLLE straps on the IOTV...and Fires Integrated Application MANPRINT US Army Manpower and Personnel Integration MOLLE Modular Lightweight Load-carrying Equipment MPLC Man

  12. Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning

    Science.gov (United States)

    Kuo, K. S.; Rilee, M. L.; Oloso, A.

    2017-12-01

    Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in

  13. A Governance Roadmap and Framework for EarthCube

    Science.gov (United States)

    Allison, M. L.

    2012-12-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and

  14. PHM Enabled Autonomous Propellant Loading Operations

    Science.gov (United States)

    Walker, Mark; Figueroa, Fernando

    2017-01-01

    The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.

  15. New Catalog of Resources Enables Paleogeosciences Research

    Science.gov (United States)

    Lingo, R. C.; Horlick, K. A.; Anderson, D. M.

    2014-12-01

    The 21st century promises a new era for scientists of all disciplines, the age where cyber infrastructure enables research and education and fuels discovery. EarthCube is a working community of over 2,500 scientists and students of many Earth Science disciplines who are looking to build bridges between disciplines. The EarthCube initiative will create a digital infrastructure that connects databases, software, and repositories. A catalog of resources (databases, software, repositories) has been produced by the Research Coordination Network for Paleogeosciences to improve the discoverability of resources. The Catalog is currently made available within the larger-scope CINERGI geosciences portal (http://hydro10.sdsc.edu/geoportal/catalog/main/home.page). Other distribution points and web services are planned, using linked data, content services for the web, and XML descriptions that can be harvested using metadata protocols. The databases provide searchable interfaces to find data sets that would otherwise remain dark data, hidden in drawers and on personal computers. The software will be described in catalog entries so just one click will lead users to methods and analytical tools that many geoscientists were unaware of. The repositories listed in the Paleogeosciences Catalog contain physical samples found all across the globe, from natural history museums to the basements of university buildings. EarthCube has over 250 databases, 300 software systems, and 200 repositories which will grow in the coming year. When completed, geoscientists across the world will be connected into a productive workflow for managing, sharing, and exploring geoscience data and information that expedites collaboration and innovation within the paleogeosciences, potentially bringing about new interdisciplinary discoveries.

  16. Naval Science & Technology: Enabling the Future Force

    Science.gov (United States)

    2013-04-01

    corn for disruptive technologies Laser Cooling Spintronics Bz 1st U.S. Intel satellite GRAB Semiconductors GaAs, GaN, SiC GPS...Payoff • Innovative and game-changing • Approved by Corporate Board • Delivers prototype Innovative Naval Prototypes (5-10 Year) Disruptive ... Technologies Free Electron Laser Integrated Topside EM Railgun Sea Base Enablers Tactical Satellite Large Displacement UUV AACUS Directed

  17. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    Science.gov (United States)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  18. Learning to Improve Earth Observation Flight Planning

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes a method and system for integrating machine learning with planning and data visualization for the management of mobile sensors for Earth science...

  19. Enabling individualized therapy through nanotechnology.

    Science.gov (United States)

    Sakamoto, Jason H; van de Ven, Anne L; Godin, Biana; Blanco, Elvin; Serda, Rita E; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I; De Rosa, Enrica; Martinez, Jonathan O; Smid, Christine A; Buchanan, Rachel M; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-08-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of 'losing sight of the forest for the trees'. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of "-omic" technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon "-omic" technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology "snapshot" of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to "self-correct" in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. Copyright 2010 Elsevier Ltd. All rights

  20. Enabling individualized therapy through nanotechnology

    Science.gov (United States)

    Sakamoto, Jason H.; van de Ven, Anne L.; Godin, Biana; Blanco, Elvin; Serda, Rita E.; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I.; De Rosa, Enrica; Martinez, Jonathan O.; Smid, Christine A.; Buchanan, Rachel M.; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-01-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of ‘losing sight of the forest for the trees’. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of “-omic” technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon “-omic” technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology “snapshot” of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to “self-correct” in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. PMID:20045055

  1. CEOS Ocean Variables Enabling Research and Applications for Geo (COVERAGE)

    Science.gov (United States)

    Tsontos, V. M.; Vazquez, J.; Zlotnicki, V.

    2017-12-01

    The CEOS Ocean Variables Enabling Research and Applications for GEO (COVERAGE) initiative seeks to facilitate joint utilization of different satellite data streams on ocean physics, better integrated with biological and in situ observations, including near real-time data streams in support of oceanographic and decision support applications for societal benefit. COVERAGE aligns with programmatic objectives of CEOS (the Committee on Earth Observation Satellites) and the missions of GEO-MBON (Marine Biodiversity Observation Network) and GEO-Blue Planet, which are to advance and exploit synergies among the many observational programs devoted to ocean and coastal waters. COVERAGE is conceived of as 3 year pilot project involving international collaboration. It focuses on implementing technologies, including cloud based solutions, to provide a data rich, web-based platform for integrated ocean data delivery and access: multi-parameter observations, easily discoverable and usable, organized by disciplines, available in near real-time, collocated to a common grid and including climatologies. These will be complemented by a set of value-added data services available via the COVERAGE portal including an advanced Web-based visualization interface, subsetting/extraction, data collocation/matchup and other relevant on demand processing capabilities. COVERAGE development will be organized around priority use cases and applications identified by GEO and agency partners. The initial phase will be to develop co-located 25km products from the four Ocean Virtual Constellations (VCs), Sea Surface Temperature, Sea Level, Ocean Color, and Sea Surface Winds. This aims to stimulate work among the ocean VCs while developing products and system functionality based on community recommendations. Such products as anomalies from a time mean, would build on the theme of applications with a relevance to CEOS/GEO mission and vision. Here we provide an overview of the COVERAGE initiative with an

  2. Archaic-history of the Earth

    International Nuclear Information System (INIS)

    Allegre, C.

    1997-01-01

    Isotopic dating is the principal technique that enabled researches on the Earth history, its origins and formation: planets were formed by accretion, and the study of meteorites allowed to confirm that the accretion was of the homogenous type; the study of meteorites allowed also to determine the solar system formation, while the mantel rocks dating gave an estimation of the Earth age (and the Moon), and the gas confined in eruptive submarine rocks gave insights on the atmosphere formation

  3. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard

    2006-01-01

    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me...

  4. A Governance Roadmap and Framework for EarthCube

    Science.gov (United States)

    Governance Steering Committee, EarthCube

    2013-04-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and

  5. Launching an EarthCube Interoperability Workbench for Constructing Workflows and Employing Service Interfaces

    Science.gov (United States)

    Fulker, D. W.; Pearlman, F.; Pearlman, J.; Arctur, D. K.; Signell, R. P.

    2016-12-01

    A major challenge for geoscientists—and a key motivation for the National Science Foundation's EarchCube initiative—is to integrate data across disciplines, as is necessary for complex Earth-system studies such as climate change. The attendant technical and social complexities have led EarthCube participants to devise a system-of-systems architectural concept. Its centerpiece is a (virtual) interoperability workbench, around which a learning community can coalesce, supported in their evolving quests to join data from diverse sources, to synthesize new forms of data depicting Earth phenomena, and to overcome immense obstacles that arise, for example, from mismatched nomenclatures, projections, mesh geometries and spatial-temporal scales. The full architectural concept will require significant time and resources to implement, but this presentation describes a (minimal) starter kit. With a keep-it-simple mantra this workbench starter kit can fulfill the following four objectives: 1) demonstrate the feasibility of an interoperability workbench by mid-2017; 2) showcase scientifically useful examples of cross-domain interoperability, drawn, e.g., from funded EarthCube projects; 3) highlight selected aspects of EarthCube's architectural concept, such as a system of systems (SoS) linked via service interfaces; 4) demonstrate how workflows can be designed and used in a manner that enables sharing, promotes collaboration and fosters learning. The outcome, despite its simplicity, will embody service interfaces sufficient to construct—from extant components—data-integration and data-synthesis workflows involving multiple geoscience domains. Tentatively, the starter kit will build on the Jupyter Notebook web application, augmented with libraries for interfacing current services (at data centers involved in EarthCube's Council of Data Facilities, e.g.) and services developed specifically for EarthCube and spanning most geoscience domains.

  6. Global Earth Observation System of Systems (GEOSS): Initial Actions to Enhance Data Sharing to Meet Societal Needs

    Science.gov (United States)

    Adang, T.

    2006-05-01

    Over 60 nations and 50 participating organizations are working to make the Global Earth Observation System of Systems (GEOSS) a reality. The U.S. contribution to GEOSS is the Integrated Earth Observation System (IEOS), with a vision of enabling a healthy public, economy and planet through an integrated, comprehensive, and sustained Earth observation system. The international Group on Earth Observations (GEO) and the U.S. Group on Earth Observations have developed strategic plans for both GEOSS and IEOS, respectively, and are now working the first phases of implementation. Many of these initial actions are data architecture related and are being addressed by architecture and data working groups from both organizations - the GEO Architecture and Data Committee and the USGEO Architecture and Data Management Working Group. NOAA has actively participated in both architecture groups and has taken internal action to better support GEOSS and IEOS implementation by establishing the Global Earth Observation Integrated Data Environment (GEO IDE). GEO IDE provides a "system of systems" framework for effective and efficient integration of NOAA's many quasi-independent systems, which individually address diverse mandates in such areas resource management, weather forecasting, safe navigation, disaster response, and coastal mapping among others. GEO IDE will have a services oriented architecture, allowing NOAA Line Offices to retain a high level of independence in many of their data management decisions, and encouraging innovation in pursuit of their missions. Through GEO IDE, NOAA partners (both internal and external) will participate in a well-ordered, standards-based data and information infrastructure that will allow users to easily locate, acquire, integrate and utilize NOAA data and information. This paper describes the initial progress being made by GEO and USGEO architecture and data working groups, a status report on GEO IDE development within NOAA, and an assessment of

  7. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being

    Directory of Open Access Journals (Sweden)

    Ivy Shiue

    2014-11-01

    Full Text Available Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”.

  8. Enabling scientific workflows in virtual reality

    Science.gov (United States)

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  9. HABEBEE: habitability of eyeball-exo-Earths.

    Science.gov (United States)

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  10. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  11. Analytics and Visualization Pipelines for Big ­Data on the NASA Earth Exchange (NEX) and OpenNEX

    Science.gov (United States)

    Chaudhary, A.; Votava, P.; Nemani, R. R.; Michaelis, A.; Kotfila, C.

    2016-12-01

    We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.

  12. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  13. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  14. Computer Security Systems Enable Access.

    Science.gov (United States)

    Riggen, Gary

    1989-01-01

    A good security system enables access and protects information from damage or tampering, but the most important aspects of a security system aren't technical. A security procedures manual addresses the human element of computer security. (MLW)

  15. How GNSS Enables Precision Farming

    Science.gov (United States)

    2014-12-01

    Precision farming: Feeding a Growing Population Enables Those Who Feed the World. Immediate and Ongoing Needs - population growth (more to feed) - urbanization (decrease in arable land) Double food production by 2050 to meet world demand. To meet thi...

  16. Evolution of telemedicine in the space program and earth applications

    Science.gov (United States)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  17. Enabling information sharing in a port

    DEFF Research Database (Denmark)

    Olesen, Peter Bjerg; Hvolby, Hans-Henrik; Dukovska-Popovska, Iskra

    2012-01-01

    Ports are integral parts of many supply chains and are as such a contributing factor to the overall efficiency of the supply chain. Ports are also dynamic entities where things changes continuously. The dynamic nature of ports is also a problem when trying to optimise the utilisation of resources...... and ensure a low lead-time. Information sharing is a very important tool to reduce the effect of dynamism. This paper attempts to explain how information sharing is enabled in such an environment, and which considerations are relevant, both in regards to the information and required technology. The paper...

  18. Nanoarchitecture Control Enabled by Ionic Liquids

    Science.gov (United States)

    Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.

    2017-04-01

    Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.

  19. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, David; Vidal, Rafael; Russell, Tania; Babcock, Doosan; Freeman, Charles; Bearden, Mark; Whyatt, Greg; Liu, Kun; Frimpong, Reynolds; Lu, Kunlei; Salmon, Sonja; House, Alan; Yarborough, Erin

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorber off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.

  20. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  1. Engaging Middle School Students with Google Earth Technology to Analyze Ocean Cores as Evidence for Sea Floor Spreading

    Science.gov (United States)

    Prouhet, T.; Cook, J.

    2006-12-01

    Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.

  2. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  3. Space exercise and Earth benefits.

    Science.gov (United States)

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R

    2005-08-01

    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients.

  4. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  5. The European Plate Observing System (EPOS) Services for Solid Earth Science

    Science.gov (United States)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  6. OGC® Sensor Web Enablement Standards

    Directory of Open Access Journals (Sweden)

    George Percivall

    2006-09-01

    Full Text Available This article provides a high-level overview of and architecture for the Open Geospatial Consortium (OGC standards activities that focus on sensors, sensor networks, and a concept called the “Sensor Web”. This OGC work area is known as Sensor Web Enablement (SWE. This article has been condensed from "OGC® Sensor Web Enablement: Overview And High Level Architecture," an OGC White Paper by Mike Botts, PhD, George Percivall, Carl Reed, PhD, and John Davidson which can be downloaded from http://www.opengeospatial.org/pt/15540. Readers interested in greater technical and architecture detail can download and read the OGC SWE Architecture Discussion Paper titled “The OGC Sensor Web Enablement Architecture” (OGC document 06-021r1, http://www.opengeospatial.org/pt/14140.

  7. Architectural Strategies for Enabling Data-Driven Science at Scale

    Science.gov (United States)

    Crichton, D. J.; Law, E. S.; Doyle, R. J.; Little, M. M.

    2017-12-01

    The analysis of large data collections from NASA or other agencies is often executed through traditional computational and data analysis approaches, which require users to bring data to their desktops and perform local data analysis. Alternatively, data are hauled to large computational environments that provide centralized data analysis via traditional High Performance Computing (HPC). Scientific data archives, however, are not only growing massive, but are also becoming highly distributed. Neither traditional approach provides a good solution for optimizing analysis into the future. Assumptions across the NASA mission and science data lifecycle, which historically assume that all data can be collected, transmitted, processed, and archived, will not scale as more capable instruments stress legacy-based systems. New paradigms are needed to increase the productivity and effectiveness of scientific data analysis. This paradigm must recognize that architectural and analytical choices are interrelated, and must be carefully coordinated in any system that aims to allow efficient, interactive scientific exploration and discovery to exploit massive data collections, from point of collection (e.g., onboard) to analysis and decision support. The most effective approach to analyzing a distributed set of massive data may involve some exploration and iteration, putting a premium on the flexibility afforded by the architectural framework. The framework should enable scientist users to assemble workflows efficiently, manage the uncertainties related to data analysis and inference, and optimize deep-dive analytics to enhance scalability. In many cases, this "data ecosystem" needs to be able to integrate multiple observing assets, ground environments, archives, and analytics, evolving from stewardship of measurements of data to using computational methodologies to better derive insight from the data that may be fused with other sets of data. This presentation will discuss

  8. Data management and analysis for the Earth System Grid

    Science.gov (United States)

    Williams, D. N.; Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Henson, V. E.; Jones, P.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.

    2008-07-01

    The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. In order to address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.

  9. Data management and analysis for the Earth System Grid

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D N; Drach, R; Henson, V E [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ananthakrishnan, R; Foster, I T; Siebenlist, F [Argonne National Laboratory, Argonne, IL 60439 (United States); Bernholdt, D E; Chen, M; Schwidder, J [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bharathi, S; Chervenak, A L; Schuler, R [University of Southern California, Information Sciences Institute, Marina del Ray, CA 90292 (United States); Brown, D; Cinquini, L; Fox, P; Middleton, D E [National Center for Atmospheric Research, Boulder, CO 80307 (United States); Hankin, S; Schweitzer, R [National Oceanic and Atmospheric Administration (PMEL), Seattle, WA 98115 (United States); Jones, P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shoshani, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: williams13@llnl.gov, E-mail: don@ucar.edu, E-mail: itf@mcs.anl.gov, E-mail: bernholdtde@ornl.gov (and others)

    2008-07-15

    The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. In order to address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.

  10. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  11. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  12. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  13. The human dimension of fire regimes on Earth.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-12-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding

  14. The human dimension of fire regimes on Earth

    Science.gov (United States)

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Michelle, Mack; Moritz, Max A.; Pyne, Stephen; Roos, Christopher I.; Scott, Andrew C.; Sodhi, Navjot S.; Swetnam, Thomas W.

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding

  15. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  16. Goddard Earth Science Data and Information Center (GES DISC)

    Science.gov (United States)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  17. Advances in chromatography of the rare earth elements (review)

    International Nuclear Information System (INIS)

    Oguma, Koichi; Kuroda, Rokuro; Shimizu, Tsuneo.

    1995-01-01

    A review is presented which covers liquid chromatography, gas chromatography, and related techniques. This article intends to describe the chromatographic methods playing an important role in the separation of the rare earth elements. Special attention is paid to the usefulness of various types of liquid chromatography which enable the complete mutual separation of the rare earth elements. Applications are also discussed. (author) 161 refs

  18. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  19. Alliance for Earth Sciences, Engineering and Development in Africa

    Science.gov (United States)

    Barron, E. J.; Adewumi, M.

    2004-12-01

    Penn State University, with a significant number of African University partners (University of Ibadan, University of Lagos, University of Cape Town, University of Witwatersrand, and Agustino Neto University) as well as HBCUs (Howard University and the Mississippi Consortium for International Development - a consortium of four HBCUs in Mississippi), has established the Alliance for Earth Sciences, Engineering and Development in Africa (AESEDA). AESEDA is designed to enable the integration of science, engineering, and social sciences in order to develop human resources, promote economic vitality and enable environmental stewardship in Africa. The Alliance has a coherent and significant multidisciplinary focus, namely African georesources. Education is a central focus, with research collaboration as one element of the vehicle for education. AESEDA is focused on building an environment of intellectual discourse and pooled intellectual capital and developing innovative and enabling educational programs and enhancing existing ones. AESEDA also has unique capabilities to create role models for under-represented groups to significantly enable the utilization of human potential. The efforts of the Alliance center around specific activities in support of its objectives: (1) Focused research collaboration among partner institutions, (2) Development of an international community of scholars, and (3) Joint development of courses and programs and instructional innovation. Penn State has a unique ability to contribute to the success of this program. The College of Earth and Mineral Sciences contains strong programs in the areas of focus. More than 25 faculty in the College have active research and educational efforts in Africa. Hence, the Alliance has natural and vigorous support within the College. The College is also providing strong institutional support for AESEDA, by establishing a Director and support staff and creating permanent funds for a unique set of new faculty hires

  20. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  1. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  2. Calculation of the flux density of gamma rays above the surface of Venus and the Earth

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.

    1987-01-01

    In this article the authors present the results of calculating the flux density of unscattered gamma rays as a function of height above the surfaces of Venus and the Earth. At each height they calculate the areas which will collect a certain fraction of the gamma rays. The authors calculate the spectra of scattered gamma rays, as well as their integrated fluxes at various heights above the surface of Venus. They consider how the atmosphere will affect the recording of gamma rays. Their results enable them to evaluate the optimal conditions for measuring the gamma-ray fields above the surfaces of Venus and the Earth and to determine the area of the planet which can be investigated in this way. These results are also necessary if they are to determine the elemental composition of the rock from the characteristic recorded spectrum of gamma radiation

  3. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    Science.gov (United States)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  4. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  5. FINESSE: Field Investigations to Enable Solar System Science and Exploration

    Science.gov (United States)

    Heldmann, Jennifer; Lim, Darlene; Colaprete, Anthony

    2015-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We follow the philosophy that "science enables exploration and exploration enables science." 1) FINESSE Science: Understand the effects of volcanism and impacts as dominant planetary processes on the Moon, NEAs, and Phobos & Deimos. 2) FINESSE Exploration: Understand which exploration concepts of operations (ConOps) and capabilities enable and enhance scientific return. To accomplish these objectives, we are conducting an integrated research program focused on scientifically-driven field exploration at Craters of the Moon National Monument and Preserve in Idaho and at the West Clearwater Lake Impact Structure in northern Canada. Field deployments aimed at reconnaissance geology and data acquisition were conducted in 2014 at Craters of the Moon National Monument and Preserve. Targets for data acquisition included selected sites at Kings Bowl eruptive fissure, lava field and blowout crater, Inferno Chasm vent and outflow channel, North Crater lava flow and Highway lava flow. Field investigation included (1) differential GPS (dGPS) measurements of lava flows, channels (and ejecta block at Kings Bowl); (2) LiDAR imaging of lava flow margins, surfaces and other selected features; (3) digital photographic documentation; (4) sampling for geochemical and petrographic analysis; (5) UAV aerial imagery of Kings Bowl and Inferno Chasm features; and (6) geologic assessment of targets and potential new targets. Over the course of the 5-week field FINESSE campaign to the West Clearwater Impact Structure (WCIS) in 2014, the team focused on several WCIS research topics, including impactites, central uplift formation, the impact-generated hydrothermal system, multichronometer

  6. Organizational Enablers for Project Governance

    DEFF Research Database (Denmark)

    Müller, Ralf; Shao, Jingting; Pemsel, Sofia

    and their relationships to organizational success. Based on these results, the authors discovered that organizational enablers (including key factors such as leadership, governance, and influence of project managers) have a critical impact on how organizations operate, adapt to market fluctuations and forces, and make......While corporate culture plays a significant role in the success of any corporation, governance and “governmentality” not only determine how business should be conducted, but also define the policies and procedures organizations follow to achieve business functions and goals. In their book......, Organizational Enablers for Project Governance, Ralf Müller, Jingting Shao, and Sofia Pemsel examine the interaction of governance and governmentality in various types of companies and demonstrate how these factors drive business success and influence project work, efficiency, and profitability. The data...

  7. The ENABLER---based on proven NERVA technology

    International Nuclear Information System (INIS)

    Livingston, J.M.; Pierce, B.L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs

  8. Cloud Based Earth Observation Data Exploitation Platforms

    Science.gov (United States)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.

    2017-12-01

    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland

  9. 'Ethos' Enabling Organisational Knowledge Creation

    Science.gov (United States)

    Matsudaira, Yoshito

    This paper examines knowledge creation in relation to improvements on the production line in the manufacturing department of Nissan Motor Company and aims to clarify embodied knowledge observed in the actions of organisational members who enable knowledge creation will be clarified. For that purpose, this study adopts an approach that adds a first, second, and third-person's viewpoint to the theory of knowledge creation. Embodied knowledge, observed in the actions of organisational members who enable knowledge creation, is the continued practice of 'ethos' (in Greek) founded in Nissan Production Way as an ethical basis. Ethos is knowledge (intangible) assets for knowledge creating companies. Substantiated analysis classifies ethos into three categories: the individual, team and organisation. This indicates the precise actions of the organisational members in each category during the knowledge creation process. This research will be successful in its role of showing the indispensability of ethos - the new concept of knowledge assets, which enables knowledge creation -for future knowledge-based management in the knowledge society.

  10. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  11. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  12. Social-ecological enabling conditions for payments for ecosystem services

    Directory of Open Access Journals (Sweden)

    Heidi R. Huber-Stearns

    2017-03-01

    Full Text Available The concept of "enabling conditions" centers on conditions that facilitate approaches to addressing social and ecological challenges. Although multiple fields have independently addressed the concept of enabling conditions, the literature lacks a shared understanding or integration of concepts. We propose a more synthesized understanding of enabling conditions beyond disciplinary boundaries by focusing on the enabling conditions that influence the implementation of a range of environmental policies termed payments for ecosystem services (PES. Through an analysis of key literature from different disciplinary perspectives, we examined how researchers and practitioners refer to and identify enabling conditions within the context of PES. Through our synthesis, we identified 24 distinct enabling conditions organized within 4 broad themes: biophysical, economic, governance, and social-cultural conditions. We found that the literature coalesces around certain enabling conditions, such as strong ecosystem science and existing institutions, regardless of disciplinary background or journal audience. We also observed key differences in how authors perceive the direction of influence for property type, program objectives, and number of actors. Additionally, we noted an emphasis on the importance of the contextual nature of many enabling conditions that may cause certain conditions to have a disproportionate impact on successful implementation in some circumstances. Unraveling the relative importance of specific enabling conditions in diverse contexts remains a research frontier. Ultimately, no single disciplinary perspective is likely to provide all necessary insights for PES creation, and given the intertwined nature of enabling conditions, practitioners need to consider insights from multiple dimensions. Our work suggests opportunities to better connect diverse conversations through integration of concepts, a common vocabulary, and a synthetic framework.

  13. Enabling Medical Device Interoperability for the Integrated Clinical Environment

    Science.gov (United States)

    2016-02-01

    The MD PnP Program had already tested different technologies to carry out this migration (e.g. the Hibernate framework to persist Java objects into...Security, a powerful and highly customizable authentication and access control framework, and BCrypt, the Java implementation of a hashing algorithm...including C, C++, and Java . Our OpenICE demo code is written in JavaScript and runs in the web browser in order to make it as easy as possible for

  14. Enabling engineering support for integrated product and service innovation

    OpenAIRE

    Thor, Peter

    2011-01-01

    The increasing need for mobility in society alongside an intensifying concern for sustainability challenges today’s aviation industry. For companies, a Product-Service Systems (PSS) perspective puts emphasis on proving value to customers by offering a combination of hardware and services over an extended life cycle. While opening up the room for innovation, development from an extended life cycle perspective can seem daunting for companies currently focusing on development and sale of physica...

  15. Enabling Medical Device Interoperability for the Integrated Clinical Environment

    Science.gov (United States)

    2016-12-01

    context. For instance, part of the data logger demo at NIH included a scenario in which the patient received an overdose from a PCA pump . The device...data shows the patient’s physiologic response, the log from a PCA pump would show that the dose request button was pressed, but only the video could...databases including Microsoft Access  vcd (IEEE-1364) – Value Change Dump – a waveform storage format defined by the Institute of Electrical and

  16. Enabling rural innovation in Africa: An approach for integrating ...

    African Journals Online (AJOL)

    Mo

    agencies, private companies or development organizations. These organizations then ... In Uganda, the government Plan for Modernization of Agriculture (PMA) .... information, knowledge and technology in support of their productive activities ...

  17. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    Science.gov (United States)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  18. Enabling opportunistic resources for CMS Computing Operations

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Dick [Fermilab

    2015-11-19

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize “opportunistic” resources — resources not owned by, or a priori configured for CMS — to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.

  19. Enabling women to achieve their breastfeeding goals.

    Science.gov (United States)

    Stuebe, Alison M

    2014-03-01

    In mammalian physiology, lactation follows pregnancy, and disruption of this physiology is associated with adverse health outcomes for mother and child. Although lactation is the physiologic norm, cultural norms for infant feeding have changed dramatically over the past century. Breastfeeding initiation fell from 70% in the early 1900s to 22% in 1972. In the past 40 years, rates have risen substantially, to 77% in 2010. Although more mothers are initiating breastfeeding, many report that they do not continue as long as they desire. As reproductive health care experts, obstetricians are uniquely positioned to assist women to make an informed feeding decision, offer anticipatory guidance, support normal lactation physiology, and evaluate and treat breastfeeding complications. Integration of care among the obstetrician, pediatric provider, and lactation consultant may enable more women to achieve their breastfeeding goals, thereby improving health outcomes across two generations.

  20. Directory Enabled Policy Based Networking; TOPICAL

    International Nuclear Information System (INIS)

    KELIIAA, CURTIS M.

    2001-01-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking

  1. IN13B-1660: Analytics and Visualization Pipelines for Big Data on the NASA Earth Exchange (NEX) and OpenNEX

    Science.gov (United States)

    Chaudhary, Aashish; Votava, Petr; Nemani, Ramakrishna R.; Michaelis, Andrew; Kotfila, Chris

    2016-01-01

    We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.

  2. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    Directory of Open Access Journals (Sweden)

    R. Baatz

    2018-05-01

    Full Text Available Advancing our understanding of Earth system dynamics (ESD depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER, Critical Zone Observatories (CZOs, and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1 widen application of terrestrial observation network data in Earth system modelling, (2 develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3 identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  3. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    Science.gov (United States)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris

    2018-05-01

    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  4. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  5. Earth Observation Research for GMES Initial Operations

    Science.gov (United States)

    van Beijma, Sybrand; Balzter, Heiko; Nicolas-Perea, Virginia

    2013-04-01

    methodologies for ground-motion monitoring * Climate adaptation and emergency response: o Earth Observation based analysis of regional impact of climate change induced water stress patterns fuelling human crisis and conflict situations in semi dry climate regimes o Satellite derived information for drought detection and estimation of the water balance GIONET will also cover methodologies including (i) modelling fundamental radiative processes determining the satellite signal, (ii) atmospheric correction and calibration, (iii) processing higher-order data products, (iii) developing information products from satellite data to meet user requirements, and (iv) statistical methods for assessing the quality and accuracy of data products. These methodologies will enable the researchers to develop careers in the evolving GMES (renamed to Copernicus) Services, network with the GMES community and contribute to rolling out the GMES Program. Communication skills and effective engagement with stakeholders and the public will form an integral part of the training. The Earth Observation methods developed in GIONET will benefit the economy in Europe.

  6. Array Databases: Agile Analytics (not just) for the Earth Sciences

    Science.gov (United States)

    Baumann, P.; Misev, D.

    2015-12-01

    Gridded data, such as images, image timeseries, and climate datacubes, today are managed separately from the metadata, and with different, restricted retrieval capabilities. While databases are good at metadata modelled in tables, XML hierarchies, or RDF graphs, they traditionally do not support multi-dimensional arrays.This gap is being closed by Array Databases, pioneered by the scalable rasdaman ("raster data manager") array engine. Its declarative query language, rasql, extends SQL with array operators which are optimized and parallelized on server side. Installations can easily be mashed up securely, thereby enabling large-scale location-transparent query processing in federations. Domain experts value the integration with their commonly used tools leading to a quick learning curve.Earth, Space, and Life sciences, but also Social sciences as well as business have massive amounts of data and complex analysis challenges that are answered by rasdaman. As of today, rasdaman is mature and in operational use on hundreds of Terabytes of timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Additionally, its concepts have shaped international Big Data standards in the field, including the forthcoming array extension to ISO SQL, many of which are supported by both open-source and commercial systems meantime. In the geo field, rasdaman is reference implementation for the Open Geospatial Consortium (OGC) Big Data standard, WCS, now also under adoption by ISO. Further, rasdaman is in the final stage of OSGeo incubation.In this contribution we present array queries a la rasdaman, describe the architecture and novel optimization and parallelization techniques introduced in 2015, and put this in context of the intercontinental EarthServer initiative which utilizes rasdaman for enabling agile analytics on Petascale datacubes.

  7. CMOS Enabled Microfluidic Systems for Healthcare Based Applications.

    Science.gov (United States)

    Khan, Sherjeel M; Gumus, Abdurrahman; Nassar, Joanna M; Hussain, Muhammad M

    2018-04-01

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CMOS Enabled Microfluidic Systems for Healthcare Based Applications

    KAUST Repository

    Khan, Sherjeel M.; Gumus, Abdurrahman; Nassar, Joanna M.; Hussain, Muhammad Mustafa

    2018-01-01

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.

  9. CMOS Enabled Microfluidic Systems for Healthcare Based Applications

    KAUST Repository

    Khan, Sherjeel M.

    2018-02-27

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.

  10. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  11. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  12. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  13. Cyber-Enabled Scientific Discovery

    International Nuclear Information System (INIS)

    Chan, Tony; Jameson, Leland

    2007-01-01

    It is often said that numerical simulation is third in the group of three ways to explore modern science: theory, experiment and simulation. Carefully executed modern numerical simulations can, however, be considered at least as relevant as experiment and theory. In comparison to physical experimentation, with numerical simulation one has the numerically simulated values of every field variable at every grid point in space and time. In comparison to theory, with numerical simulation one can explore sets of very complex non-linear equations such as the Einstein equations that are very difficult to investigate theoretically. Cyber-enabled scientific discovery is not just about numerical simulation but about every possible issue related to scientific discovery by utilizing cyberinfrastructure such as the analysis and storage of large data sets, the creation of tools that can be used by broad classes of researchers and, above all, the education and training of a cyber-literate workforce

  14. Simulation enabled safeguards assessment methodology

    International Nuclear Information System (INIS)

    Bean, Robert; Bjornard, Trond; Larson, Tom

    2007-01-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wire-frame construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed. (authors)

  15. Simulation Enabled Safeguards Assessment Methodology

    International Nuclear Information System (INIS)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-01-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment Methodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed

  16. Context-Enabled Business Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Troy Hiltbrand

    2012-04-01

    To truly understand context and apply it in business intelligence, it is vital to understand what context is and how it can be applied in addressing organizational needs. Context describes the facets of the environment that impact the way that end users interact with the system. Context includes aspects of location, chronology, access method, demographics, social influence/ relationships, end-user attitude/ emotional state, behavior/ past behavior, and presence. To be successful in making Business Intelligence content enabled, it is important to be able to capture the context of use user. With advances in technology, there are a number of ways in which this user based information can be gathered and exposed to enhance the overall end user experience.

  17. Informatics enables public health surveillance

    Directory of Open Access Journals (Sweden)

    Scott J. N McNabb

    2017-01-01

    Full Text Available Over the past decade, the world has radically changed. New advances in information and communication technologies (ICT connect the world in ways never imagined. Public health informatics (PHI leveraged for public health surveillance (PHS, can enable, enhance, and empower essential PHS functions (i.e., detection, reporting, confirmation, analyses, feedback, response. However, the tail doesn't wag the dog; as such, ICT cannot (should not drive public health surveillance strengthening. Rather, ICT can serve PHS to more effectively empower core functions. In this review, we explore promising ICT trends for prevention, detection, and response, laboratory reporting, push notification, analytics, predictive surveillance, and using new data sources, while recognizing that it is the people, politics, and policies that most challenge progress for implementation of solutions.

  18. Earth Rotation Dynamics: Review and Prospects

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  19. A grid portal for Earth Observation community

    International Nuclear Information System (INIS)

    Aloisio, G.; Cafaro, M.; Carteni, G.; Epicoco, I.; Quarta, G.

    2005-01-01

    Earth Observation techniques offer many powerful instruments far Earth planet study, urban development planning, military intelligence helping and so on. Tera bytes of EO and geo spatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to salve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases aver high-speed networks, etc. In this paper we present the Italian Grid far Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations

  20. Uncertainty enabled Sensor Observation Services

    Science.gov (United States)

    Cornford, Dan; Williams, Matthew; Bastin, Lucy

    2010-05-01

    Almost all observations of reality are contaminated with errors, which introduce uncertainties into the actual observation result. Such uncertainty is often held to be a data quality issue, and quantification of this uncertainty is essential for the principled exploitation of the observations. Many existing systems treat data quality in a relatively ad-hoc manner, however if the observation uncertainty is a reliable estimate of the error on the observation with respect to reality then knowledge of this uncertainty enables optimal exploitation of the observations in further processes, or decision making. We would argue that the most natural formalism for expressing uncertainty is Bayesian probability theory. In this work we show how the Open Geospatial Consortium Sensor Observation Service can be implemented to enable the support of explicit uncertainty about observations. We show how the UncertML candidate standard is used to provide a rich and flexible representation of uncertainty in this context. We illustrate this on a data set of user contributed weather data where the INTAMAP interpolation Web Processing Service is used to help estimate the uncertainty on the observations of unknown quality, using observations with known uncertainty properties. We then go on to discuss the implications of uncertainty for a range of existing Open Geospatial Consortium standards including SWE common and Observations and Measurements. We discuss the difficult decisions in the design of the UncertML schema and its relation and usage within existing standards and show various options. We conclude with some indications of the likely future directions for UncertML in the context of Open Geospatial Consortium services.

  1. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  2. Enabling Electric Propulsion for Flight

    Science.gov (United States)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  3. EARTH FROM SPACE

    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  4. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  5. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  6. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  7. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  8. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  9. Application of Ontologies for Big Earth Data

    Science.gov (United States)

    Huang, T.; Chang, G.; Armstrong, E. M.; Boening, C.

    2014-12-01

    Connected data is smarter data! Earth Science research infrastructure must do more than just being able to support temporal, geospatial discovery of satellite data. As the Earth Science data archives continue to expand across NASA data centers, the research communities are demanding smarter data services. A successful research infrastructure must be able to present researchers the complete picture, that is, datasets with linked citations, related interdisciplinary data, imageries, current events, social media discussions, and scientific data tools that are relevant to the particular dataset. The popular Semantic Web for Earth and Environmental Terminology (SWEET) ontologies is a collection of ontologies and concepts designed to improve discovery and application of Earth Science data. The SWEET ontologies collection was initially developed to capture the relationships between keywords in the NASA Global Change Master Directory (GCMD). Over the years this popular ontologies collection has expanded to cover over 200 ontologies and 6000 concepts to enable scalable classification of Earth system science concepts and Space science. This presentation discusses the semantic web technologies as the enabling technology for data-intensive science. We will discuss the application of the SWEET ontologies as a critical component in knowledge-driven research infrastructure for some of the recent projects, which include the DARPA Ontological System for Context Artifact and Resources (OSCAR), 2013 NASA ACCESS Virtual Quality Screening Service (VQSS), and the 2013 NASA Sea Level Change Portal (SLCP) projects. The presentation will also discuss the benefits in using semantic web technologies in developing research infrastructure for Big Earth Science Data in an attempt to "accommodate all domains and provide the necessary glue for information to be cross-linked, correlated, and discovered in a semantically rich manner." [1] [1] Savas Parastatidis: A platform for all that we know

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C B S Dutt. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 243-262. Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview · K Krishna Moorthy S K Satheesh S Suresh Babu C B S Dutt · More Details ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Senthilnath. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 559-572. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction · J Senthilnath H Vikram Shenoy Ritwik ...

  12. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    Science.gov (United States)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  13. Responsibility and Integrated Thinking

    OpenAIRE

    Robinson, SJ

    2014-01-01

    Integrated thinking is essentially focused in dialogue and communication. This is partly because relationships and related purpose focus on action, which itself acts as a means of integration, and partly because critical dialogue enables better, more responsive, integrated thinking and action.

  14. Grid Enabled Geospatial Catalogue Web Service

    Science.gov (United States)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  15. Enabling the First Interstellar Missions

    Science.gov (United States)

    Lubin, P.

    2017-12-01

    All propulsion systems that leave the Earth are based on chemical reactions. Chemical reactions, at best, have an efficiency compared to rest mass of 10-10 (or about 1eV per bond). All the mass in the universe converted to chemical reactions would not propel even a single proton to relativistic speeds. While chemistry will get us to Mars it will not allow interstellar capability in any reasonable mission time. Barring new physics we are left with few realistic solutions. None of our current propulsion systems, including nuclear, are capable of the relativistic speeds needed for exploring the many nearby stellar systems and exo-planets. However recent advances in photonics and directed energy systems now allow us to realize what was only a decade ago, simply science fiction, namely the ability to seriously conceive of and plan for relativistic flight. From fully-functional gram-level wafer-scale spacecraft capable of speeds greater than c/4 that could reach the nearest star in 20 years to spacecraft for large missions capable of supporting human life with masses more than 105 kg (100 tons) for rapid interplanetary transit that could reach speeds of greater than 1000 km/s can be realized. With this technology spacecraft can be propelled to speeds currently unimaginable. Photonics, like electronics, and unlike chemical propulsion is an exponential technology with a current double time of about 20 months. This is the key. The cost of such a system is amortized over the essentially unlimited number of launches. In addition, the same photon driver can be used for many other purposes including beamed energy to power high Isp ion engines, remote asteroid composition analysis and planetary defense. This would be a profound change in human capability with enormous implications. Known as Starlight we are now in a NASA Phase II study. The FY 2017 congressional appropriations request directs NASA to study the feasibility of an interstellar mission to coincide with the 100th

  16. Measuring Earth's Radiation Budget from the Vicinity of the Moon

    Science.gov (United States)

    Swartz, W. H.; Lorentz, S. R.; Erlandson, R. E.; Cahalan, R. F.; Huang, P. M.

    2018-02-01

    We propose to measure Earth's radiation budget (integrated total and solar-reflected shortwave) using broadband radiometers and other technology demonstrated in space. The instrument is compact, autonomous, and has modest resource requirements.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 5 ... a Geographical Information System (GIS)based hydrogeomorphic approach in the ... The integrated study helps design a suitable groundwater management plan for a ...

  18. Integral Education in Light of Earthrise

    Directory of Open Access Journals (Sweden)

    Craig Chalquist

    2015-02-01

    Full Text Available This article explores the relationship between integral education and the emerging terrestrial consciousness—a consciousness of interdependency, sovereignty, and earthly responsibility. It asserts that integral education is well positioned at this time when urgent environmental catastrophes threaten our planet, to help us recover an integral relation with the universe and our planet Earth, and contribute to restoration of a sense of earthly wonder and reverence.

  19. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion

  20. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  1. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  2. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  3. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  4. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  5. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  6. From Extrasolar Planets to Exo-Earths

    Science.gov (United States)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  7. Future Earth Health Knowledge-Action Network.

    Science.gov (United States)

    Shrivastava, Paul; Raivio, Kari; Kasuga, Fumiko; Tewksbury, Joshua; Haines, Andy; Daszak, Peter

    Future Earth is an international research platform providing the knowledge and support to accelerate our transformations to a sustainable world. Future Earth 2025 Vision identified eight key focal challenges, and challenge #6 is to "Improve human health by elucidating, and finding responses to, the complex interactions amongst environmental change, pollution, pathogens, disease vectors, ecosystem services, and people's livelihoods, nutrition and well-being." Several studies, including the Rockefeller Foundation/Lancet Planetary Health Commission Report of 2015, the World Health Organization/Convention on Biological Diversity report and those by oneHEALTH (former ecoHEALTH), have been conducted over the last 30 years. Knowledge-Action Networks (KANs) are the frameworks to apply Future Earth principles of research to related activities that respond to societal challenges. Future Earth Health Knowledge-Action Network will connect health researchers with other natural and social scientists, health and environmental policy professionals and leaders in government, the private sector and civil society to provide research-based solutions based on better, integrated understanding of the complex interactions between a changing global environment and human health. It will build regional capacity to enhance resilience, protect the environment and avert serious threats to health and will also contribute to achieving Sustainable Development Goals. In addition to the initial partners, Future Earth Health Knowledge-Action Network will further nourish collaboration with other on-going, leading research programmes outside Future Earth, by encouraging them in active participation.

  8. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  9. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  10. Earth study from space

    Science.gov (United States)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  11. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  12. Near Earth Asteroid Scout

    Data.gov (United States)

    National Aeronautics and Space Administration — Near-Earth Asteroid Scout, or NEA Scout, is a 6U CubeSat developed jointly between NASA’s Marshall Space Flight Center and the Jet Propulsion Laboratory. NASA...

  13. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  14. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  15. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  16. Enabler for the agile virtual enterprise

    Science.gov (United States)

    Fuerst, Karl; Schmidt, Thomas; Wippel, Gerald

    2001-10-01

    In this presentation, a new approach for a flexible low-cost Internet extended enterprise (project FLoCI-EE) will be presented. FLoCI-EE is a project in the fifth framework program of the European commission with 8 partners from 4 countries, which started in January 2001 and will be finished in December 2003. The main objective of FLoCI-EE is the development of a software prototype, which enables flexible enterprise cooperation with the aim to design, manufacture and sell products commonly, independent of enterprise borderlines. The needed IT-support includes functions of product data management (PDM), enterprise resource planning (ERP), supply chain management (SCM) and customer relationship management (CRM). Especially for small and medium sized enterprises, existing solutions are too expensive and inflexible to be of use under current turbulent market conditions. The second part of this paper covers the item Web Services, because in the role-specific support approach of FLoCI-EE, there are user- interface-components, which are tailored for specific roles in an enterprise. These components integrate automatically the services of the so-called basic-components, and the externally offered Web Services like UDDI.

  17. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  18. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  19. Visualizing NASA's Planetary Data with Google Earth

    Science.gov (United States)

    Beyer, R. A.; Hancher, M. D.; Broxton, M.; Weiss-Malik, M.; Gorelick, N.; Kolb, E.

    2008-12-01

    There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. As a 3D geospatial browser, the Google Earth client is one way to visualize planetary data. KML imagery super-overlays enable us to create a non-Earth planetary globe within Google Earth, and conversion of planetary meta-data allows display of the footprint locations of various higher-resolution data sets. Once our group, or any group, performs these data conversions the KML can be made available on the Web, where anyone can download it and begin using it in Google Earth (or any other geospatial browser), just like a Web page. Lucian Plesea at JPL offers several KML basemaps (MDIM, colorized MDIM, MOC composite, THEMIS day time infrared, and both grayscale and colorized MOLA). We have created TES Thermal Inertia maps, and a THEMIS night time infrared overlay, as well. Many data sets for Mars have already been converted to KML. We provide coverage polygons overlaid on the globe, whose icons can be clicked on and lead to the full PDS data URL. We have built coverage maps for the following data sets: MOC narrow angle, HRSC imagery and DTMs, SHARAD tracks, CTX, and HiRISE. The CRISM team is working on providing their coverage data via publicly-accessible KML. The MSL landing site process is also providing data for potential landing sites via KML. The Google Earth client and KML allow anyone to contribute data for everyone to see via the Web. The Earth sciences community is already utilizing KML and Google Earth in a variety of ways as a geospatial browser, and we hope that the planetary sciences community will do the same. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data

  20. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  1. Do It Yourself (DIY) Earth Science Collaboratories Using Best Practices and Breakthrough Technologies

    Science.gov (United States)

    Stephan, E.

    2017-12-01

    The objective of published earth science study data results and literature on the Web should be to provide a means to integrate discoverable science resources through an open collaborative-Web. At the core of any open science collaborative infrastructure is the ability to discover, manage and ultimately use relevant data accessible to the collaboration. Equally important are the relationships between people, applications, services, and publications, which capture critical contextual knowledge that enable their effective use. While contributions of either irreproducible or costly data can be a great asset the inability of users being able to use the data intelligently or make sense of it, makes these investments not usable. An ability to describe ad-hoc discoverable usage methodologies, provide feedback to data producers, and identify and cite data in a systematic way by leveraging existing Web-enabled off the shelf technology is needed. Fortunately many break-through advancements in data publication best practices and government, open source, and commercial investments support consumers who can provide feedback, share experiences, and contribute back to the earth science ecosystem.

  2. Earth Science Data and Models for Improved Targeting of Humanitarian Aid

    Science.gov (United States)

    Brown, Molly E.

    2011-01-01

    Humanitarian assistance to developing countries has long focused on countries that have political, economic and strategic interest to the United States. Recent changes in global security concerns have heightened the perception that humanitarian action is becoming increasingly politicized. This is seen to be largely driven by the 'global war on terror' along with a push by donors and the United Nations for closer integration between humanitarian action and diplomatic, military and other spheres of engagement in conflict and crisis-affected states (HPG 2010). As we enter an era of rising commodity prices and increasing uncertainty in global food production due to a changing climate, scientific data and analysis will be increasingly important to improve the targeting of humanitarian assistance. Earth science data enables appropriate humanitarian response to complex food emergencies that arise in regions outside the areas of current strategic and security focus. As the climate changes, new places will become vulnerable to food insecurity and will need emergency assistance. Earth science data and multidisciplinary models will enable an information-based comparison of need that goes beyond strategic and political considerations to identify new hotspots of food insecurity as they emerge. These analyses will improve aid targeting and timeliness while reducing strategic risk by highlighting new regions at risk of crisis in a rapidly changing world. Improved targeting with respect to timing and location could reduce cost while increasing the likelihood that those who need aid get it.

  3. Development of a Carbon Sequestration Visualization Tool using Google Earth Pro

    Science.gov (United States)

    Keating, G. N.; Greene, M. K.

    2008-12-01

    The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.

  4. Multi-source Geospatial Data Analysis with Google Earth Engine

    Science.gov (United States)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  5. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  6. Democratized electronics to enable smart living for all

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-12-25

    With the increased global population, smart living is an increasingly important criteria to ensure equal opportunities for all. Therefore, what is Smart Living? The first time when we tossed this terminology seven years back, we thought reducing complexities in human life. Today we believe it more. However, smart living for all complicates the technological need further. As by all, we mean any age group, any academic background and any financial condition. Although electronics are powerful today and have enabled our digital world, many as of today have not experienced that progress. Going forward while we realize more and more electronics in our daily life, the most important question would be how. Here we show, a heterogeneous integration approach to integrate low-cost high performance interactive electronic system which are physically compliant. We are redesigning electronics to redefine its purposes to reconfigure life for all to enable smart living.

  7. Democratized electronics to enable smart living for all

    KAUST Repository

    Hussain, Muhammad Mustafa; Nassar, Joanna M.; Khan, S. M.; Saikh, S. F.; Sevilla, Galo T.; Kutbee, Arwa T.; Bahabry, Rabab R.; Babatain, Wedyan; Muslem, A. S.; Nour, Maha A.; Wicaksono, I.; Mishra, Kush

    2017-01-01

    With the increased global population, smart living is an increasingly important criteria to ensure equal opportunities for all. Therefore, what is Smart Living? The first time when we tossed this terminology seven years back, we tho