WorldWideScience

Sample records for enabled 3-d ultrasound

  1. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    Science.gov (United States)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  2. Low-Power Receive-Electronics for a Miniature 3D Ultrasound Probe

    NARCIS (Netherlands)

    Yu, Z.

    2012-01-01

    This thesis describes the design of a front-end application-specific integrated circuit (ASIC), which will be put into the tip of a miniature ultrasound probe for 3D Trans-Esophageal Echocardiography (TEE). To enable 3D TEE, a matrix piezoelectric ultrasound transducer with more than 2000 elements

  3. 2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec

    2018-02-01

    CoSy (Hysterosal- pingo Contrast Sonografy or 3D HyCoSy. Examination of the ovary: With the 2D ultrasound the size of ovaries is measured and the morphology of ovaries is examined. With the 3D ultrasound the volume of the ovaries, follicles, cysts and tumors can be measured. Furthermore, position of the ovaries with re- gard to their surrounding can be defined. With the 3D surface mode we can see the surface view of the inner layer of the follicle or the cyst. The volume of the liquid structures can be measured with VOCAL or sonoAVC (sono automated volume count. The number of the antral follicles strongly correlates with fertility potential markers such as FSH and AMH. Examination of peritoneum: The position of gynaecological organs and ascites are defined. Examination of vagina: Endometriotic nodules can be excluded with ultrasound. A 3D ultrasound can define the exact position of the nodule. Ultrasound in the following of infertility treatment: Before the ovarian stimulation it is mandatory to exclude pelvic pathology that can influence the stimulation. Ovarian stimulation: We follow the natural or stimulated cycles with an ultrasound in view of follicular and endometrial growth. SonoAVC offers us automatic volume count of all follicles. This information enables us to change the stimulation protocol and avoid OHSS more accurately comparing to the standard 2D technology. Oocyte puncture: US puncture is done with ultrasound-guided needle. Great vessels around the vagina and on the needle line can be avoided if colour doppler is used. With 3D surface mode good quality follicles can be identified. Embryotransfer (ET: The angle between cervical canal and corpus uteri can be mea- sured before the embryotransfer. The introduction of the ET catheter can be followed with the 2D transabdominal probe. More exact location of the catheter can be visualized with 4D US. With this method we can avoid touching the uterine fundus with the catether and avoid bleeding in the foetus surroundings

  4. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    Directory of Open Access Journals (Sweden)

    Elisee Ilunga-Mbuyamba

    2016-04-01

    Full Text Available In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t and after (3D-iCEUS e n d tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation. Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified.

  5. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... a channel limited 2-D transducer array and the conventional 3-D beamforming technique, Parallel Beamforming. The first part of the scientific contributions demonstrate that 3-D synthetic aperture imaging achieves a better image quality than the Parallel Beamforming technique. Data were obtained using both...

  6. 4D ultrasound and 3D MRI registration of beating heart

    International Nuclear Information System (INIS)

    Herlambang, N.; Matsumiya, K.; Masamune, K.; Dohi, T.; Liao, H.; Tsukihara, H.; Takamoto, S.

    2007-01-01

    To realize intra-cardiac surgery without cardio-pulmonary bypass, a medical imaging technique with both high image quality and data acquisition rate that is fast enough to follow heart beat movements is required. In this research, we proposed a method that utilized the image quality of MRI and the speed of ultrasound. We developed a 4D image reconstruction method using image registration of 3D MRI and 4D ultrasound images. The registration method consists of rigid registration between 3D MRI and 3D ultrasound with the same heart beat phase, and non-rigid registration between 3D ultrasound images from different heart beat phases. Non-rigid registration was performed with B-spline based registration using variable spring model. In phantom experiment using balloon phantom, registration accuracy was less than 2 mm for total heart volume variation range of 10%. We applied our registration method on 3D MRI and 4D ultrasound images of a volunteer's beating heart data and confirmed through visual observation that heart beat pattern was well reproduced. (orig.)

  7. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging.

    Science.gov (United States)

    Ibrahim, Aya; Hager, Pascal A; Bartolini, Andrea; Angiolini, Federico; Arditi, Marcel; Thiran, Jean-Philippe; Benini, Luca; De Micheli, Giovanni

    2017-08-01

    Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.

  8. A framework for human spine imaging using a freehand 3D ultrasound system

    NARCIS (Netherlands)

    Purnama, Ketut E.; Wilkinson, Michael H.F.; Veldhuizen, Albert G.; van Ooijen, Peter M.A.; Lubbers, Jaap; Burgerhof, Johannes G.M.; Sardjono, Tri A.; Verkerke, Gijsbertus Jacob

    2010-01-01

    The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis

  9. 2D/ 3D Quantitative Ultrasound of the Breast

    Science.gov (United States)

    Nasief, Haidy Gerges

    Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to

  10. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Michael [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: ormying@polyu.edu.hk; Sin Manhong [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Pang, Shuk-fan [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-11-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = {pi}/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects.

  11. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    International Nuclear Information System (INIS)

    Ying, Michael; Sin Manhong; Pang, Shuk-fan

    2005-01-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = π/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects

  12. Advantages and disadvantages of 3D ultrasound of thyroid nodules including thin slice volume rendering

    Directory of Open Access Journals (Sweden)

    Slapa Rafal

    2011-01-01

    Full Text Available Abstract Background The purpose of this study was to assess the advantages and disadvantages of 3D gray-scale and power Doppler ultrasound, including thin slice volume rendering (TSVR, applied for evaluation of thyroid nodules. Methods The retrospective evaluation by two observers of volumes of 71 thyroid nodules (55 benign, 16 cancers was performed using a new TSVR technique. Dedicated 4D ultrasound scanner with an automatic 6-12 MHz 4D probe was used. Statistical analysis was performed with Stata v. 8.2. Results Multiple logistic regression analysis demonstrated that independent risk factors of thyroid cancers identified by 3D ultrasound include: (a ill-defined borders of the nodule on MPR presentation, (b a lobulated shape of the nodule in the c-plane and (c a density of central vessels in the nodule within the minimal or maximal ranges. Combination of features provided sensitivity 100% and specificity 60-69% for thyroid cancer. Calcification/microcalcification-like echogenic foci on 3D ultrasound proved not to be a risk factor of thyroid cancer. Storage of the 3D data of the whole nodules enabled subsequent evaluation of new parameters and with new rendering algorithms. Conclusions Our results indicate that 3D ultrasound is a practical and reproducible method for the evaluation of thyroid nodules. 3D ultrasound stores volumes comprising the whole lesion or organ. Future detailed evaluations of the data are possible, looking for features that were not fully appreciated at the time of collection or applying new algorithms for volume rendering in order to gain important information. Three-dimensional ultrasound data could be included in thyroid cancer databases. Further multicenter large scale studies are warranted.

  13. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, A.K.; Bow, W.J.; Strong, D.S. [and others

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  14. 3D ultrasound imaging : Fast and cost-effective morphometry of musculoskeletal tissue

    NARCIS (Netherlands)

    Weide, Guido; Van Der Zwaard, Stephan; Huijing, Peter A.; Jaspers, Richard T.; Harlaar, Jaap

    2017-01-01

    The developmental goal of 3D ultrasound imaging (3DUS) is to engineer a modality to perform 3D morphological ultrasound analysis of human muscles. 3DUS images are constructed from calibrated freehand 2D B-mode ultrasound images, which are positioned into a voxel array. Ultrasound (US) imaging allows

  15. Picture perfect: benefits and risk of fetal 3D ultrasound.

    Science.gov (United States)

    Wiseman, Claudia S; Kiehl, Ermalynn M

    2007-01-01

    The purpose of this literature review was to survey available information and research related to routine three-dimensional (3D) ultrasound technology in obstetrics, with an emphasis on current medical uses, safety, and availability issues. Several data bases, including Cochrane, WHO, NIH, CINALH, Blackwell Synergy, ERIC, PubMed, and Medline, were used along with information from Internet search engines. Although fetal 3D ultrasound is used in both medical and commercial settings, recent studies focus on its possible uses rather than the more difficult issues of safety and commercial applications. Professional organizations associated with ultrasound technology support limiting ultrasounds in pregnancy to medically necessary events, whereas commercial venues use "direct to consumer" marketing to promote this technology as a way to "see" the baby before it is born. How safe is routine or frequent use of 3D ultrasound? Further research is needed to address these important questions.

  16. Front-End ASICs for 3-D Ultrasound : From Beamforming to Digitization

    NARCIS (Netherlands)

    Chen, C.

    2018-01-01

    This thesis describes the analysis, design and evaluation of front-end application-specific integrated circuits (ASICs) for 3-D medical ultrasound imaging, with the focus on the receive electronics. They are specifically designed for next-generation miniature 3-D ultrasound devices, such as

  17. Chest wall segmentation in automated 3D breast ultrasound scans.

    Science.gov (United States)

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    the important diagnostic information in a noninvasive manner. Diagnostic and therapeutic decisions often require accurate estimates of e.g., organ, cyst, or tumor volumes. 3-D ultrasound imaging can provide these measurements without relying on the geometrical assumptions and operator-dependent skills involved...... is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D scanners is limiting their market share. Row-column addressing of 2-D transducer arrays is a low cost alternative to fully addressed 2-D arrays, for 3-D ultrasound imaging. Using row....... Based on a set of acoustical measurements the center frequency, bandwidth, surface pressure, sensitivity, and acoustical cross-talks were evaluated and discussed. The imaging quality assessments were carried out based on Field II simulations as well as phantom measurements. Moreover, an analysis...

  19. The Application of Ultrasound in 3D Bio-Printing.

    Science.gov (United States)

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  20. The Application of Ultrasound in 3D Bio-Printing

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2016-05-01

    Full Text Available Three-dimensional (3D bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  1. GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Liu Li

    2013-01-01

    Full Text Available Speckle suppression plays an important role in improving ultrasound (US image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU- based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.

  2. Actuator-Assisted Calibration of Freehand 3D Ultrasound System.

    Science.gov (United States)

    Koo, Terry K; Silvia, Nathaniel

    2018-01-01

    Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified "collinear point target" phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration.

  3. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  4. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system.

    Science.gov (United States)

    Baumann, Michael; Mozer, Pierre; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space and thus renders optimization efficient. The method was tested on 237 prostate volumes acquired from 14 different patients for 3D to 3D and 3D to orthogonal 2D slices registration. The 3D-3D version of the algorithm converged correctly in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r.m.s.) and 3.84mm (max). The 3D to slices method yielded a success rate of 88.9% in 2.3s with an accuracy of 1.37mm (r.m.s.) and 4.3mm (max).

  5. Automated 3D ultrasound measurement of the angle of progression in labor.

    Science.gov (United States)

    Montaguti, Elisa; Rizzo, Nicola; Pilu, Gianluigi; Youssef, Aly

    2018-01-01

    To assess the feasibility and reliability of an automated technique for the assessment of the angle of progression (AoP) in labor by using three-dimensional (3D) ultrasound. AoP was assessed by using 3D transperineal ultrasound by two operators in 52 women in active labor to evaluate intra- and interobserver reproducibility. Furthermore, intermethod agreement between automated and manual techniques on 3D images, and between automated technique on 3D vs 2D images were evaluated. Automated measurements were feasible in all cases. Automated measurements were considered acceptable in 141 (90.4%) out of the 156 on the first assessments and in all 156 after repeating measurements for unacceptable evaluations. The automated technique on 3D images demonstrated good intra- and interobserver reproducibility. The 3D-automated technique showed a very good agreement with the 3D manual technique. Notably, AoP calculated with the 3D automated technique were significantly wider in comparison with those measured manually on 3D images (133 ± 17° vs 118 ± 21°, p = 0.013). The assessment of the angle of progression through 3D ultrasound is highly reproducible. However, automated software leads to a systematic overestimation of AoP in comparison with the standard manual technique thus hindering its use in clinical practice in its present form.

  6. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    National Research Council Canada - National Science Library

    Carson, Paul

    1997-01-01

    This project is to improve the diagnosis and management of patients with breast cancer through development and evaluation of 3D ultrasound imaging and quantification techniques emphasizing vascularity...

  7. Localization of liver tumors in freehand 3D laparoscopic ultrasound

    Science.gov (United States)

    Shahin, O.; Martens, V.; Besirevic, A.; Kleemann, M.; Schlaefer, A.

    2012-02-01

    The aim of minimally invasive laparoscopic liver interventions is to completely resect or ablate tumors while minimizing the trauma caused by the operation. However, restrictions such as limited field of view and reduced depth perception can hinder the surgeon's capabilities to precisely localize the tumor. Typically, preoperative data is acquired to find the tumor(s) and plan the surgery. Nevertheless, determining the precise position of the tumor is required, not only before but also during the operation. The standard use of ultrasound in hepatic surgery is to explore the liver and identify tumors. Meanwhile, the surgeon mentally builds a 3D context to localize tumors. This work aims to upgrade the use of ultrasound in laparoscopic liver surgery. We propose an approach to segment and localize tumors intra-operatively in 3D ultrasound. We reconstruct a 3D laparoscopic ultrasound volume containing a tumor. The 3D image is then preprocessed and semi-automatically segmented using a level set algorithm. During the surgery, for each subsequent reconstructed volume, a fast update of the tumor position is accomplished via registration using the previously segmented and localized tumor as a prior knowledge. The approach was tested on a liver phantom with artificial tumors. The tumors were localized in approximately two seconds with a mean error of less than 0.5 mm. The strengths of this technique are that it can be performed intra-operatively, it helps the surgeon to accurately determine the location, shape and volume of the tumor, and it is repeatable throughout the operation.

  8. 3D segmentation of kidney tumors from freehand 2D ultrasound

    Science.gov (United States)

    Ahmad, Anis; Cool, Derek; Chew, Ben H.; Pautler, Stephen E.; Peters, Terry M.

    2006-03-01

    To completely remove a tumor from a diseased kidney, while minimizing the resection of healthy tissue, the surgeon must be able to accurately determine its location, size and shape. Currently, the surgeon mentally estimates these parameters by examining pre-operative Computed Tomography (CT) images of the patient's anatomy. However, these images do not reflect the state of the abdomen or organ during surgery. Furthermore, these images can be difficult to place in proper clinical context. We propose using Ultrasound (US) to acquire images of the tumor and the surrounding tissues in real-time, then segmenting these US images to present the tumor as a three dimensional (3D) surface. Given the common use of laparoscopic procedures that inhibit the range of motion of the operator, we propose segmenting arbitrarily placed and oriented US slices individually using a tracked US probe. Given the known location and orientation of the US probe, we can assign 3D coordinates to the segmented slices and use them as input to a 3D surface reconstruction algorithm. We have implemented two approaches for 3D segmentation from freehand 2D ultrasound. Each approach was evaluated on a tissue-mimicking phantom of a kidney tumor. The performance of our approach was determined by measuring RMS surface error between the segmentation and the known gold standard and was found to be below 0.8 mm.

  9. Crouzon syndrome associated with acanthosis nigricans: prenatal 2D and 3D ultrasound findings and postnatal 3D CT findings

    DEFF Research Database (Denmark)

    Nørgaard, P.; Hagen, CP; Hove, H.

    2012-01-01

    Crouzon syndrome with acanthosis nigricans (CAN) is a very rare condition with an approximate prevalence of 1 per 1 million newborns. We add the first report on prenatal 2D and 3D ultrasound findings in CAN. In addition we present the postnatal 3D CT findings. The diagnosis was confirmed...

  10. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  11. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.

    Science.gov (United States)

    Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T

    2009-10-01

    State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.

  12. 2D sparse array transducer optimization for 3D ultrasound imaging

    International Nuclear Information System (INIS)

    Choi, Jae Hoon; Park, Kwan Kyu

    2014-01-01

    A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

  13. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    Science.gov (United States)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  14. Learning process for performing and analyzing 3D/4D transperineal ultrasound imaging and interobserver reliability study.

    Science.gov (United States)

    Siafarikas, F; Staer-Jensen, J; Braekken, I H; Bø, K; Engh, M Ellström

    2013-03-01

    To evaluate the learning process for acquiring three- and four-dimensional (3D/4D) transperineal ultrasound volumes of the levator hiatus (LH) dimensions at rest, during pelvic floor muscle (PFM) contraction and on Valsalva maneuver, and for analyzing the ultrasound volumes, as well as to perform an interobserver reliability study between two independent ultrasound examiners. This was a prospective study including 22 women. We monitored the learning process of an inexperienced examiner (IE) performing 3D/4D transperineal ultrasonography and analyzing the volumes. The examination included acquiring volumes during three PFM contractions and three Valsalva maneuvers. LH dimensions were determined in the axial plane. The learning process was documented by estimating agreement between the IE and an experienced examiner (E) using the intraclass correlation coefficient. Agreement was calculated in blocks of 10 ultrasound examinations and analyzed volumes. After the learning process was complete the interobserver reliability for the technique was calculated between these two independent examiners. For offline analysis of the first 10 ultrasound volumes obtained by E, good to very good agreement between E and IE was achieved for all LH measurements except for the left and right levator-urethra gap and pubic arc. For the next 10 analyzed volumes, agreement improved for all LH measurements. Volumes that had been obtained by IE and E were then re-evaluated by IE, and good to very good agreement was found for all LH measurements indicating consistency in volume acquisition. The interobserver reliability study showed excellent ICC values (ICC, 0.81-0.97) for all LH measurements except the pubic arc (ICC = 0.67). 3D/4D transperineal ultrasound is a reliable technique that can be learned in a short period of time. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  15. Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.

    Science.gov (United States)

    Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William

    2018-06-04

    The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.

  16. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    Science.gov (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  17. Inter-rater reliability in the classification of supraspinatus tendon tears using 3D ultrasound – a question of experience?

    Directory of Open Access Journals (Sweden)

    Giorgio Tamborrini

    2016-09-01

    Full Text Available Background: Three-dimensional (3D ultrasound of the shoulder is characterized by a comparable accuracy to two-dimensional (2D ultrasound. No studies investigating 2D versus 3D inter-rater reliability in the detection of supraspinatus tendon tears taking into account the level of experience of the raters have been carried out so far. Objectives: The aim of this study was to determine the inter-rater reliability in the analysis of 3D ultrasound image sets of the supraspinatus tendon between sonographer with different levels of experience. Patients and methods: Non-interventional, prospective, observational pilot study of 2309 images of 127 adult patients suffering from unilateral shoulder pain. 3D ultrasound image sets were scored by three raters independently. The intra-and interrater reliabilities were calculated. Results: There was an excellent intra-rater reliability of rater A in the overall classification of supraspinatus tendon tears (2D vs 3D κ = 0.892, pairwise reliability 93.81%, 3D scoring round 1 vs 3D scoring round 2 κ = 0.875, pairwise reliability 92.857%. The inter-rater reliability was only moderate compared to rater B on 3D (κ = 0.497, pairwise reliability 70.95% and fair compared to rater C (κ = 0.238, pairwise reliability 42.38%. Conclusions: The reliability of 3D ultrasound of the supraspinatus tendon depends on the level of experience of the sonographer. Experience in 2D ultrasound does not seem to be sufficient for the analysis of 3D ultrasound imaging sets. Therefore, for a 3D ultrasound analysis new diagnostic criteria have to be established and taught even to experienced 2D sonographers to improve reproducibility.

  18. Prenatal 3D Ultrasound Diagnostics in Cleidocranial Dysplasia

    DEFF Research Database (Denmark)

    Hermann, NV; Hove, HD; Jørgensen, C

    2009-01-01

    A 34-year-old Caucasian woman with cleidocranial dysplasia (CCD) and a known family history of CCD was referred for an ultrasound examination in the first trimester of her second pregnancy. Molecular genetic analysis of the RUNX2 gene was non-informative. A routine 2D ultrasound examination carried...

  19. Sci-Thur AM: YIS – 03: Combining sagittally-reconstructed 3D and live-2D ultrasound for high-dose-rate prostate brachytherapy needle segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Hrinivich, Thomas; Hoover, Douglas; Surry, Kathleen; Edirisinghe, Chandima; D’Souza, David; Fenster, Aaron; Wong, Eugene [University of Western Ontario, London Regional Cancer Program/LHSC, London Regional Cancer Program/LHSC, Robarts Research Institute, London Regional Cancer Program/LHSC, Robarts Research Institute, University of Western Ontario (Canada)

    2016-08-15

    Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were used to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.

  20. A 3D ultrasound study of sinus tract formation in hidradenitis suppurativa

    DEFF Research Database (Denmark)

    Wortsman, Ximena; Jemec, Gregor

    2013-01-01

    Imaging of hidradenitis suppurativa allows the study of both the lesion morphology and evolution. Hidradenitis lesions of different stages were studied using 3D ultrasound in a cross sectional pilot study. A total of 25 HS patients (18 female/ 7 male, aged 18-46 year-old) and 10 healthy controls (5...... female/5 male, aged 21-49 year-old) were studied. All patients were referred by dermatologists. All examinations were performed on the right axilla and compared with both controls and the skin outside the lesional areas. 3D ultrasound images demonstrated enlargement of the deepest portion of the hair...

  1. Usefulness limitation of 3D-ultrasound diagnosis of breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Yong Seok; Chung, Soo Young; Yang, Ik; Lee, Kyung Won; Kim, Hong Dae; Shin, Sang Joon; Chung, Bong Wha [College of Medicine, Hallym Univ., Seoul (Korea, Republic of)

    2001-09-01

    To compare 3D ultrasound (3D-US) with 2D ultrasound (2D-US) in terms of their usefulness and limitations in the diagnosis of breast masses. We obtained 2D and 3D US images of 37 breast lesions present in 20 cases of fibroadenoma, nine of cancer, and eight of fibrocystic disease proven in a total of 26 cases [ fibroadenoma (n=13), breast cancer (n=9), fibrocystic disease (n=4)] by histologic examination, and by clinical evaluation and clinical evaluation with sonographic imaging in eleven. When comparing 3D and 2D-US images we had no prior information regarding detection rate according to the size of lesions, whether or not internal and boundary echo patterns could be interpreted, accurate differentiation between tumorous and non-tumorous lesions, or the accuracy with which benign and malignant tumors could be differentiated. For lesions of 1 cm or less in diameter the detection rate of 3D-US was lower than that of 2D-US, but for lesions over 1 cm there was no difference between the two modalities. In fibroadenoma and breast cancer, 3D-US was more useful than 2D-US for the evaluation of both internal and boundary echo, but with fibrocystic disease and in the diagnosis of tumor/non-tumor, there was no significant difference. In breast cancer, however, 3D-US more accurately determined malignancy, and in fibroadenoma, because of the pseudospicule revealed by 3D-US, this modality was less exact in determining benignancy. In the evaluation of internal and boundary echo in breast mass diagnosis, 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was low, and since in some benign cases a pseudospicule was apparent, the possibility of confusion with malignancy arose. For these reasons, the usefulness of 3D-US was limited.

  2. Usefulness limitation of 3D-ultrasound diagnosis of breast masses

    International Nuclear Information System (INIS)

    Cheon, Yong Seok; Chung, Soo Young; Yang, Ik; Lee, Kyung Won; Kim, Hong Dae; Shin, Sang Joon; Chung, Bong Wha

    2001-01-01

    To compare 3D ultrasound (3D-US) with 2D ultrasound (2D-US) in terms of their usefulness and limitations in the diagnosis of breast masses. We obtained 2D and 3D US images of 37 breast lesions present in 20 cases of fibroadenoma, nine of cancer, and eight of fibrocystic disease proven in a total of 26 cases [ fibroadenoma (n=13), breast cancer (n=9), fibrocystic disease (n=4)] by histologic examination, and by clinical evaluation and clinical evaluation with sonographic imaging in eleven. When comparing 3D and 2D-US images we had no prior information regarding detection rate according to the size of lesions, whether or not internal and boundary echo patterns could be interpreted, accurate differentiation between tumorous and non-tumorous lesions, or the accuracy with which benign and malignant tumors could be differentiated. For lesions of 1 cm or less in diameter the detection rate of 3D-US was lower than that of 2D-US, but for lesions over 1 cm there was no difference between the two modalities. In fibroadenoma and breast cancer, 3D-US was more useful than 2D-US for the evaluation of both internal and boundary echo, but with fibrocystic disease and in the diagnosis of tumor/non-tumor, there was no significant difference. In breast cancer, however, 3D-US more accurately determined malignancy, and in fibroadenoma, because of the pseudospicule revealed by 3D-US, this modality was less exact in determining benignancy. In the evaluation of internal and boundary echo in breast mass diagnosis, 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was low, and since in some benign cases a pseudospicule was apparent, the possibility of confusion with malignancy arose. For these reasons, the usefulness of 3D-US was limited

  3. A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.

    Science.gov (United States)

    Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius

    2017-06-01

    The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.

  4. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    Science.gov (United States)

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical

  5. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Poulin, Eric; Gardi, Lori; Fenster, Aaron; Pouliot, Jean; Beaulieu, Luc

    2015-01-01

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments

  6. Are 3D ultrasound and office hysteroscopy useful for the assessment of uterine cavity after late foetal loss?

    Science.gov (United States)

    Thellier, E; Levaillant, J-M; Pourcelot, A-G; Houllier, M; Fernandez, H; Capmas, P

    2018-05-01

    To assess the efficacy of office hysteroscopy and 3D ultrasound for the diagnostic of uterine anomalies after late foetal loss. This retrospective observational study took place in the gynaecologic unit of a teaching hospital from 2009 to 2014. Women with late foetal loss (<22 weeks of gestation) had an office hysteroscopy and 3D ultrasound within three months after delivery. The results of the ultrasound and hysteroscopy were recorded and compared. Eighty women were included with a mean age of 29.8 years (28.2-31.4). Forty-seven women had both hysteroscopy and 3D ultrasound, and a uterine cavity's anomaly (bicornuate uterus, T-Shape uterus and septate uterus) was found in ten women (21%) at 3D sonography and in 13 women (28%) at office hysteroscopy. Concordance between the two exams was very good with a kappa at 0.83. In three cases, a uterine cavity's anomaly was found at hysteroscopy whereas sonography was normal. Anomalies at ultrasound (uterine cavity's anomaly, myometrium anomaly or ovarian anomaly) were found in 27.6% of cases. Both 3D ultrasound and office hysteroscopy are useful for assessment of the uterine cavity after late foetal loss. The application of these two exams is important, as hysteroscopy is generally used for assessment of the uterine cavity and endometrium, while 3D ultrasound is generally used to identify the precise type of uterine malformation and for the examination of the myometrium and annexes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. 3D power Doppler ultrasound in early diagnosis of preeclampsia.

    Science.gov (United States)

    Neto, R Moreira; Ramos, J G L

    2016-01-01

    Preeclampsia is a known cause of maternal, fetal and neonatal morbidity and mortality. Thus, evaluation of the predicting value of comparing 3D power Doppler indices (3DPD) of uteroplacental circulation (UPC) in the first and second trimester in patients who developed preeclampsia (PE) and those who did not and testing the hypothesis that the parameters of vascularization and placenta flow intensity, as determined by three-dimensional ultrasound (3D), are different in normal pregnancies compared with preeclampsia, could be a suitable screening method. A prospective observational study using 3D power Doppler were performed to evaluate the placental perfusion in 96 pregnant women who came to do the ultrasound routine between 11 and 14 weeks. The placental vascular index (VI), flow index (FI), blood vessels and blood flow index (VFI) by three-dimensional Doppler histogram were calculated. All patients repeated the exam between 16 and 20 weeks. The outcome was scored as normal or preeclamptic. Placental vascular indices including VI, FI and VFI were significantly lower in preeclamptic placentas compared with controls in the study performed in the second trimester (ppower Doppler assessment of placental vascular indices in the second trimester has the potential to detect women at risk for subsequent development of PE. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  8. Diagnosis of an Omphalocele with 3 Dimension Ultrasound

    Directory of Open Access Journals (Sweden)

    Vural Dagli

    2006-12-01

    Full Text Available Fetal omphalocele is a congenital defect of the abdominal wall that allows some of the abdominal organs to protrude through it. It might be associated with chromosomal abnormalities and fetal anomalies.Two dimension (2D ultrasound is the main diagnosis\tmethod. 3D ultrasound can make the diagnosis easier. In this case report we present an omphalocele diagnosed with ultrasound prenatally. We discuss the role of 2D and 3D ultrasound while diagnosing omphalocele prenatally.

  9. Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography.

    Science.gov (United States)

    Golatta, Michael; Baggs, Christina; Schweitzer-Martin, Mirjam; Domschke, Christoph; Schott, Sarah; Harcos, Aba; Scharf, Alexander; Junkermann, Hans; Rauch, Geraldine; Rom, Joachim; Sohn, Christof; Heil, Joerg

    2015-04-01

    Automated three-dimensional (3D) breast ultrasound (US) systems are meant to overcome the shortcomings of hand-held ultrasound (HHUS). The aim of this study is to analyze and compare clinical performance of an automated 3D-US system by comparing it with HHUS, mammography and the clinical gold standard (defined as the combination of HHUS, mammography and-if indicated-histology). Nine hundred and eighty three patients (=1,966 breasts) were enrolled in this monocentric, explorative and prospective cohort study. All examinations were analyzed blinded to the patients´ history and to the results of the routine imaging. The agreement of automated 3D-US with HHUS, mammography and the gold standard was assessed with kappa statistics. Sensitivity, specificity and positive and negative predictive value were calculated to assess the test performance. Blinded to the results of the gold standard the agreement between automated 3D-US and HHUS or mammography was fair, given by a Kappa coefficient of 0.31 (95% CI [0.26;0.36], p automated 3D-US the sensitivity improved to 84% (NPV = 99%, specificity = 85%). The results of this study let us suggest, that automated 3D-US might be a helpful new tool in breast imaging, especially in screening.

  10. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.

    Science.gov (United States)

    Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin

    2017-07-01

    Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.

  11. Realistic deformable 3D numeric phantom for transcutaneous ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sergio Shiguemi, E-mail: fernando.okara@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Engenharia

    2017-01-15

    Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young's Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes. (author)

  12. Wall stress analysis of abdominal aortic aneurysms using 3D ultrasound

    NARCIS (Netherlands)

    Kok, A. M.; Nguyen, V.L.; Speelman, L.; Schurink, G.W.H.; van de Vosse, F.N.; Lopata, R.G.P.

    2014-01-01

    Wall stress analysis of abdominal aortic aneurysms is a novel tool that has proven high potential to improve risk stratification of abdominal aortic aneurysms (AAAs). Wall stress analysis is based on computed tomography (CT) and magnetic resonance imaging, however, 3D ultrasound (US) has not been

  13. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    Science.gov (United States)

    2000-09-01

    Boehm, T., Shing, Y ., Fdkai, N., Vasios, G., Lane, 29. Parke, A., Bhattacherjee, P., Palmer, R. M., and Lazarus , N. R. W. S., Flynn, E., Birkhead, J...P. L. Utility of 3D ultrasound in the R. A., Moses, M., Lane, W. S., Cao, Y ., Sage, E. H., and Folkman , J. discrimination and detection of breast...References/Appendices 7), (Abstracts y (mm) (min/set) 6,7,9,10,18); 5) expanding the field of view 5x5x5 subvols. 0.17 5.3 by combining several partially

  14. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Science.gov (United States)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  15. Processing-in-Memory Enabled Graphics Processors for 3D Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chenhao; Song, Shuaiwen; Wang, Jing; Zhang, Weigong; Fu, Xin

    2017-02-06

    The performance of 3D rendering of Graphics Processing Unit that convents 3D vector stream into 2D frame with 3D image effects significantly impact users’ gaming experience on modern computer systems. Due to the high texture throughput in 3D rendering, main memory bandwidth becomes a critical obstacle for improving the overall rendering performance. 3D stacked memory systems such as Hybrid Memory Cube (HMC) provide opportunities to significantly overcome the memory wall by directly connecting logic controllers to DRAM dies. Based on the observation that texel fetches significantly impact off-chip memory traffic, we propose two architectural designs to enable Processing-In-Memory based GPU for efficient 3D rendering.

  16. Prenatal diagnosis of bilateral anophthalmia by 3D "reverse face" view ultrasound and magnetic resonance imaging.

    Science.gov (United States)

    Araujo Júnior, Edward; Kawanami, Tatiana Emy; Nardozza, Luciano Marcondes Machado; Milani, Hérbene José Figuinha; Oliveira, Patrícia Soares; Moron, Antonio Fernandes

    2012-12-01

    Primary anophthalmia is a rare congenital malformation that affects 0.6/10,000 liveborn infants. It is usually associated with central nervous system malformations, aneuploidies, cytomegalovirus infection and mental retardation and it can also be part of genetic conditions such as Fraser, Goltz, Goldenhar, Waardenburg and Lenz syndromes. Neonatal prognosis depends on whether anophthalmia is an isolated malformation, or it is associated with other defects or part of a syndrome. A healthy 43-year-old woman, G4 P3 with three previous healthy children, was referred to our clinic for a routine obstetric ultrasound at 28 weeks' gestation. The fetal eye globes and lenses could not be seen on two-dimensional (2D) ultrasound, which led to the diagnosis of bilateral congenital anophthalmia. No other fetal malformations were detected. At 30 weeks' gestation, a three-dimensional (3D) ultrasound was performed using the rendering mode and "reverse face" view. Using this technique, the absence of both eye globes could be clearly seen through a "slit". 3D-ultrasound allowed the parents to better understand their child's problem and possible postnatal implications. Fetal magnetic resonance imaging (MRI) was also performed, to study the fetal cortex in more detail. This exam revealed right cerebral hemisphere sulci and gyri hypoplasia. At 41 1/7 weeks, she went into spontaneous labor and delivered vaginally a 3525 g male infant with Apgar scores of 9 and 10. Postnatal exams confirmed bilateral congenital anophthalmia. This is the first case report in the literature of prenatal diagnosis of bilateral anophthalmia using 3D "reverse face" view ultrasound and MRI. Copyright © 2012. Published by Elsevier B.V.

  17. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    Science.gov (United States)

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact.

  18. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.

    Science.gov (United States)

    Burtnyk, Mathieu; N'Djin, William Apoutou; Kobelevskiy, Ilya; Bronskill, Michael; Chopra, Rajiv

    2010-11-21

    MRI-controlled transurethral ultrasound therapy uses a linear array of transducer elements and active temperature feedback to create volumes of thermal coagulation shaped to predefined prostate geometries in 3D. The specific aims of this work were to demonstrate the accuracy and repeatability of producing large volumes of thermal coagulation (>10 cc) that conform to 3D human prostate shapes in a tissue-mimicking gel phantom, and to evaluate quantitatively the accuracy with which numerical simulations predict these 3D heating volumes under carefully controlled conditions. Eleven conformal 3D experiments were performed in a tissue-mimicking phantom within a 1.5T MR imager to obtain non-invasive temperature measurements during heating. Temperature feedback was used to control the rotation rate and ultrasound power of transurethral devices with up to five 3.5 × 5 mm active transducer elements. Heating patterns shaped to human prostate geometries were generated using devices operating at 4.7 or 8.0 MHz with surface acoustic intensities of up to 10 W cm(-2). Simulations were informed by transducer surface velocity measurements acquired with a scanning laser vibrometer enabling improved calculations of the acoustic pressure distribution in a gel phantom. Temperature dynamics were determined according to a FDTD solution to Pennes' BHTE. The 3D heating patterns produced in vitro were shaped very accurately to the prostate target volumes, within the spatial resolution of the MRI thermometry images. The volume of the treatment difference falling outside ± 1 mm of the target boundary was, on average, 0.21 cc or 1.5% of the prostate volume. The numerical simulations predicted the extent and shape of the coagulation boundary produced in gel to within (mean ± stdev [min, max]): 0.5 ± 0.4 [-1.0, 2.1] and -0.05 ± 0.4 [-1.2, 1.4] mm for the treatments at 4.7 and 8.0 MHz, respectively. The temperatures across all MRI thermometry images were predicted within -0.3 ± 1.6 °C and 0

  19. Preoperative prediction of lymph node metastasis and deep stromal invasion in women with invasive cervical cancer: prospective multicenter study using 2D and 3D ultrasound.

    Science.gov (United States)

    Pálsdóttir, K; Fischerova, D; Franchi, D; Testa, A; Di Legge, A; Epstein, E

    2015-04-01

    To determine how various objective two-dimensional (2D) and three-dimensional (3D) ultrasound parameters allow prediction of deep stromal tumor invasion and lymph node involvement, in comparison to subjective ultrasound assessment, in women scheduled for surgery for cervical cancer. This was a prospective multicenter trial including 104 women with cervical cancer at FIGO Stages IA2-IIB, verified histologically. Patients scheduled for surgery underwent a preoperative ultrasound examination. The value of various 2D (size, color score) and 3D (volume, vascular indices) ultrasound parameters was compared to that of subjective assessment in the prediction of deep stromal tumor invasion and lymph node involvement. Histology obtained from radical hysterectomy or trachelectomy and pelvic lymphadenectomy was considered as the gold standard for assessment. All women underwent pelvic lymphadenectomy, with 99 (95%) undergoing subsequent radical surgery; five underwent only pelvic lymphadenectomy because of the presence of a positive sentinel lymph node. Women with deep stromal invasion or lymph node involvement had significantly larger tumors (diameter and volume) but there was no correlation with vascular indices measured on 3D ultrasound. Subjective evaluation was superior (AUC, 0.93; sensitivity, 90.5%; specificity, 97.2%) in the prediction of deep stromal invasion when compared to any objective measurement technique, with maximal tumor diameter at 20.5-mm cut-off (AUC, 0.83; sensitivity, 90.5%; specificity, 61.1%) and 3D tumor volume at 9.1-mm(3) cut-off (AUC, 0.85; sensitivity, 79.4%; specificity, 83.3%) providing the best performance among the objective parameters. Both subjective assessment and objective measurements were poorly predictive of lymph node involvement. In women with cervical cancer, subjective ultrasound evaluation allowed better prediction of deep stromal invasion than did objective measurements; however, neither subjective evaluation nor objective

  20. Feasibility of Ultrasound-Based Computational Fluid Dynamics as a Mitral Valve Regurgitation Quantification Technique: Comparison with 2-D and 3-D Proximal Isovelocity Surface Area-Based Methods.

    Science.gov (United States)

    Jamil, Muhammad; Ahmad, Omar; Poh, Kian Keong; Yap, Choon Hwai

    2017-07-01

    Current Doppler echocardiography quantification of mitral regurgitation (MR) severity has shortcomings. Proximal isovelocity surface area (PISA)-based methods, for example, are unable to account for the fact that ultrasound Doppler can measure only one velocity component: toward or away from the transducer. In the present study, we used ultrasound-based computational fluid dynamics (Ub-CFD) to quantify mitral regurgitation and study its advantages and disadvantages compared with 2-D and 3-D PISA methods. For Ub-CFD, patient-specific mitral valve geometry and velocity data were obtained from clinical ultrasound followed by 3-D CFD simulations at an assumed flow rate. We then obtained the average ratio of the ultrasound Doppler velocities to CFD velocities in the flow convergence region, and scaled CFD flow rate with this ratio as the final measured flow rate. We evaluated Ub-CFD, 2-D PISA and 3-D PISA with an in vitro flow loop, which featured regurgitation flow through (i) a simplified flat plate with round orifice and (ii) a 3-D printed realistic mitral valve and regurgitation orifice. The Ub-CFD and 3-D PISA methods had higher precision than the 2-D PISA method. Ub-CFD had consistent accuracy under all conditions tested, whereas 2-D PISA had the lowest overall accuracy. In vitro investigations indicated that the accuracy of 2-D and 3-D PISA depended significantly on the choice of aliasing velocity. Evaluation of these techniques was also performed for two clinical cases, and the dependency of PISA on aliasing velocity was similarly observed. Ub-CFD was robustly accurate and precise and has promise for future translation to clinical practice. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Can 3D ultrasound identify trochlea dysplasia in newborns? Evaluation and applicability of a technique

    Energy Technology Data Exchange (ETDEWEB)

    Kohlhof, Hendrik, E-mail: Hendrik.Kohlhof@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Heidt, Christoph, E-mail: Christoph.heidt@kispi.uzh.ch [Department of Orthopedic Surgery, University Children' s Hospital Zurich, Steinwiesstrasse 74, 8032 Switzerland (Switzerland); Bähler, Alexandrine, E-mail: Alexandrine.baehler@insel.ch [Department of Pediatric Radiology, University Children' s Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Kohl, Sandro, E-mail: sandro.kohl@insel.ch [Department of Orthopedic Surgery, University Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Gravius, Sascha, E-mail: sascha.gravius@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Friedrich, Max J., E-mail: Max.Friedrich@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Ziebarth, Kai, E-mail: kai.ziebarth@insel.ch [Department of Orthopedic Surgery, University Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Stranzinger, Enno, E-mail: Enno.Stranzinger@insel.ch [Department of Pediatric Radiology, University Children' s Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland)

    2015-06-15

    Highlights: • We evaluated a possible screening method for trochlea dysplasia. • 3D ultrasound was used to perform the measurements on standardized axial planes. • The evaluation of the technique showed comparable results to other studies. • This technique may be used as a screening technique as it is quick and easy to perform. - Abstract: Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy

  2. Can 3D ultrasound identify trochlea dysplasia in newborns? Evaluation and applicability of a technique

    International Nuclear Information System (INIS)

    Kohlhof, Hendrik; Heidt, Christoph; Bähler, Alexandrine; Kohl, Sandro; Gravius, Sascha; Friedrich, Max J.; Ziebarth, Kai; Stranzinger, Enno

    2015-01-01

    Highlights: • We evaluated a possible screening method for trochlea dysplasia. • 3D ultrasound was used to perform the measurements on standardized axial planes. • The evaluation of the technique showed comparable results to other studies. • This technique may be used as a screening technique as it is quick and easy to perform. - Abstract: Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy

  3. 3D Characterization of corneal deformation using ultrasound speckle tracking

    Directory of Open Access Journals (Sweden)

    Keyton Clayson

    2017-11-01

    Full Text Available The three-dimensional (3D mechanical response of the cornea to intraocular pressure (IOP elevation has not been previously reported. In this study, we use an ultrasound speckle tracking technique to measure the 3D displacements and strains within the central 5.5mm of porcine corneas during the whole globe inflation. Inflation tests were performed on dextran-treated corneas (treated with a 10% dextran solution and untreated corneas. The dextran-treated corneas showed an inflation response expected of a thin spherical shell, with through-thickness thinning and in-plane stretch, although the strain magnitudes exhibited a heterogeneous spatial distribution from the central to more peripheral cornea. The untreated eyes demonstrated a response consistent with swelling during experimentation, with through-thickness expansion overriding the inflation response. The average volume ratios obtained in both groups was near 1 confirming general incompressibility, but local regions of volume loss or expansion were observed. These results suggest that biomechanical measurements in 3D provide important new insight to understand the mechanical response of ocular tissues such as the cornea.

  4. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    International Nuclear Information System (INIS)

    Hornblower, V D M; Yu, E; Fenster, A; Battista, J J; Malthaner, R A

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo

  5. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    Energy Technology Data Exchange (ETDEWEB)

    Hornblower, V D M [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Yu, E [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Fenster, A [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Battista, J J [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Malthaner, R A [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada)

    2007-01-07

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  6. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.

    Science.gov (United States)

    N'djin, William Apoutou; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2012-01-01

    Transurethral ultrasound therapy uses real-time magnetic resonance (MR) temperature feedback to enable the 3D control of thermal therapy accurately in a region within the prostate. Previous canine studies showed the feasibility of this method in vivo. The aim of this study was to reduce the procedure time, while maintaining targeting accuracy, by investigating new combinations of treatment parameters. Simulations and validation experiments in gel phantoms were used, with a collection of nine 3D realistic target prostate boundaries obtained from previous preclinical studies, where multi-slice MR images were acquired with the transurethral device in place. Acoustic power and rotation rate were varied based on temperature feedback at the prostate boundary. Maximum acoustic power and rotation rate were optimised interdependently, as a function of prostate radius and transducer operating frequency. The concept of dual frequency transducers was studied, using the fundamental frequency or the third harmonic component depending on the prostate radius. Numerical modelling enabled assessment of the effects of several acoustic parameters on treatment outcomes. The range of treatable prostate radii extended with increasing power, and tended to narrow with decreasing frequency. Reducing the frequency from 8 MHz to 4 MHz or increasing the surface acoustic power from 10 to 20 W/cm(2) led to treatment times shorter by up to 50% under appropriate conditions. A dual frequency configuration of 4/12 MHz with 20 W/cm(2) ultrasound intensity exposure can treat entire prostates up to 40 cm(3) in volume within 30 min. The interdependence between power and frequency may, however, require integrating multi-parametric functions in the controller for future optimisations.

  7. Laser Ultrasound Spectroscopy Scanning for 3D Printed Parts

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Guendalyn Kendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-04

    One of the challenges of additive manufacturing is quality control due to the possibility of unseen flaws in the final product. The current methods of inspection are lacking in detail, too slow for practical use, or unable to validate internal structure. This report examines the use of laser ultrasound spectroscopy in layer by layer scans of 3D printed parts as they are created. The result is fast and detailed quality control. An additional advantage of this method is the ability to cancel a print as soon as a defect is detected, therefore saving materials and time. This technique, though simple in concept, has been a challenge to implement. I discuss tweaking the 3D printer configuration, and finding the optimal settings for laser scanning small parts made of ABS plastic, as well as the limits of how small of a detail the laser can detect. These settings include the frequency of the ultrasonic transducer, the speed of the laser, and the distance from the laser to the part.

  8. Characterization of Breast Masses Using a New Method of Ultrasound Contrast Agent Imaging in 3D Mapping of Vascular Anomalies

    National Research Council Canada - National Science Library

    LeCarpentier, Gerald

    2002-01-01

    .... The purpose of this work is to develop an innovative dual-transducer method to control the destruction and imaging of ultrasound contrast during 3D ultrasound scanning of suspicious breast masses...

  9. Ovarian morphology in polycystic ovary syndrome: estimates from 2D and 3D ultrasound and magnetic resonance imaging and their correlation to anti-Müllerian hormone.

    Science.gov (United States)

    Nylander, Malin; Frøssing, Signe; Bjerre, Anne H; Chabanova, Elizaveta; Clausen, Helle V; Faber, Jens; Skouby, Sven O

    2017-08-01

    Background Due to improved ultrasound scanners, new three-dimensional (3D) modalities, and novel Anti-Müllerian hormone (AMH)-assays, the ultrasound criteria for polycystic ovarian morphology are under debate and the appropriate thresholds are often requested. Purpose To quantify the differences in estimates of ovarian volume and antral follicle count (AFC) from two-dimensional (2D) and 3D transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI). Material and Methods A cross-sectional study on 66 overweight women with polycystic ovary syndrome (PCOS) according to Rotterdam criteria. Ovarian volume and AFC were estimated from MRI, 2D TVUS, and 3D TVUS, and serum AMH levels were assessed. Bland-Altman statistics were used for comparison. Results Participants had a median age of 29 years (age range, 19-44 years) with a mean BMI of 32.7 kg/m 2 (SD 4.5). Ovarian volume from 2D TVUS was 1.48 mL (95% confidence interval [CI], 0.94-2.03; P ovarian volume and AFC as compared with 3D TVUS and MRI. Serum AMH correlated best with AFC from 3D TVUS, followed by MRI and 2D TVUS. The advantage of 3D TVUS might be of minor clinical importance when diagnosing PCOS, but useful when the actual AFC are of interest, e.g. in fertility counseling and research.

  10. [Interest using 3D ultrasound and MRI fusion biopsy for prostate cancer detection].

    Science.gov (United States)

    Marien, A; De Castro Abreu, A; Gill, I; Villers, A; Ukimura, O

    2017-09-01

    The strategic therapy for prostate cancer depends on histo-pronostics data, which could be upgraded by obtaining targeted biopsies (TB) with MRI (magnetic resonance imagery) fusion 3D ultrasound. To compare diagnostic yield of image fusion guided prostate biopsy using image fusion of multi-parametric MRI (mpMRI) with 3D-TRUS. Between January 2010 and April 2013, 179 consecutive patients underwent outpatient TRUS biopsy using the real-time 3D TRUS tracking system (Urostation™). These patients underwent MRI-TRUS fusion targeted biopsies (TB) with 3D volume data of the MRI elastically fused with 3D TRUS at the time of biopsy. A hundred and seventy-three patients had TBs with fusion. Mean biopsy core per patient were 11.1 (6-14) for SB and 2.4 (1-6) for TB. SBs were positive in 11% compared to 56% for TB (Pperform the higher level of MR/US fusion and should be use for active surveillance. 4. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    Science.gov (United States)

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  12. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.

    Science.gov (United States)

    Nakamoto, Masahiko; Nakada, Kazuhisa; Sato, Yoshinobu; Konishi, Kozo; Hashizume, Makoto; Tamura, Shinichi

    2008-02-01

    This paper describes a ultrasound (3-D US) system that aims to achieve augmented reality (AR) visualization during laparoscopic surgery, especially for the liver. To acquire 3-D US data of the liver, the tip of a laparoscopic ultrasound probe is tracked inside the abdominal cavity using a magnetic tracker. The accuracy of magnetic trackers, however, is greatly affected by magnetic field distortion that results from the close proximity of metal objects and electronic equipment, which is usually unavoidable in the operating room. In this paper, we describe a calibration method for intraoperative magnetic distortion that can be applied to laparoscopic 3-D US data acquisition; we evaluate the accuracy and feasibility of the method by in vitro and in vivo experiments. Although calibration data can be acquired freehand using a magneto-optic hybrid tracker, there are two problems associated with this method--error caused by the time delay between measurements of the optical and magnetic trackers, and instability of the calibration accuracy that results from the uniformity and density of calibration data. A temporal calibration procedure is developed to estimate the time delay, which is then integrated into the calibration, and a distortion model is formulated by zeroth-degree to fourth-degree polynomial fitting to the calibration data. In the in vivo experiment using a pig, the positional error caused by magnetic distortion was reduced from 44.1 to 2.9 mm. The standard deviation of corrected target positions was less than 1.0 mm. Freehand acquisition of calibration data was performed smoothly using a magneto-optic hybrid sampling tool through a trocar under guidance by realtime 3-D monitoring of the tool trajectory; data acquisition time was less than 2 min. The present study suggests that our proposed method could correct for magnetic field distortion inside the patient's abdomen during a laparoscopic procedure within a clinically permissible period of time, as well as

  13. SU-F-J-176: Development of a Patient-Specific 3D Couplant Pad for Ultrasound IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Chang, A [Soonchunhyang University Hospital, Seoul (Korea, Republic of); Ye, S [Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: to overcome the several issues of ultrasound image-guided radiation therapy (US IGRT) such as probe pressure and optical tracking disability by using a patient-specific three-dimensional couplant pad (CP) fabricated by a patient’s skin mold using a 3D printing technique. Methods: A CP was then fabricated by pouring gelatin solution into a fixed-shape container accommodating the patient skin mold fabricated by a 3D printer. A breast phantom was fabricated with the compound of gelatin and agarose and a phantom study was carried out. From four patients who underwent US IGRT, total 486 ultrasound images with and without a CP were acquired before treatment. Effectiveness of the use of the CP was evaluated. Results: The positioning accuracies in the phantom study were 0.9 ± 0.3 mm and 1.3 ± 0.4 mm with and without the CP in 3D vector amplitude, respectively. In the patient study, the use of CP reduced the mean target shift from 4.7 mm to 3.7 mm in 3D vector amplitude and the one standard deviation from 2.2 mm to 1.7 mm. It also improved the image contrast around the treatment target by 10 %. The centroid offset of the target volume affected from the US scanning coverage and the target deformation due to the excessive probe pressure was decreased from 4.4 mm to 2.9 mm due to the use of CP. Its difference among three different users was statistically significant (p=0.020) without the use of CP but not significantly different (p=0.133) with the use of CP. Conclusion: Our patient-specific 3D CP using a mold by 3D printing technique is a promising strategy for improving tracking accuracy, image quality, and inter-observer variation for ultrasound-based image guided radiotherapy. In addition to its conventional advantage of non-invasiveness, US can be more facilitated in radiotherapy by the developed CP.

  14. SU-F-J-176: Development of a Patient-Specific 3D Couplant Pad for Ultrasound IGRT

    International Nuclear Information System (INIS)

    Kim, H; Chang, A; Ye, S

    2016-01-01

    Purpose: to overcome the several issues of ultrasound image-guided radiation therapy (US IGRT) such as probe pressure and optical tracking disability by using a patient-specific three-dimensional couplant pad (CP) fabricated by a patient’s skin mold using a 3D printing technique. Methods: A CP was then fabricated by pouring gelatin solution into a fixed-shape container accommodating the patient skin mold fabricated by a 3D printer. A breast phantom was fabricated with the compound of gelatin and agarose and a phantom study was carried out. From four patients who underwent US IGRT, total 486 ultrasound images with and without a CP were acquired before treatment. Effectiveness of the use of the CP was evaluated. Results: The positioning accuracies in the phantom study were 0.9 ± 0.3 mm and 1.3 ± 0.4 mm with and without the CP in 3D vector amplitude, respectively. In the patient study, the use of CP reduced the mean target shift from 4.7 mm to 3.7 mm in 3D vector amplitude and the one standard deviation from 2.2 mm to 1.7 mm. It also improved the image contrast around the treatment target by 10 %. The centroid offset of the target volume affected from the US scanning coverage and the target deformation due to the excessive probe pressure was decreased from 4.4 mm to 2.9 mm due to the use of CP. Its difference among three different users was statistically significant (p=0.020) without the use of CP but not significantly different (p=0.133) with the use of CP. Conclusion: Our patient-specific 3D CP using a mold by 3D printing technique is a promising strategy for improving tracking accuracy, image quality, and inter-observer variation for ultrasound-based image guided radiotherapy. In addition to its conventional advantage of non-invasiveness, US can be more facilitated in radiotherapy by the developed CP.

  15. Has 4D transperineal ultrasound additional value over 2D transperineal ultrasound for diagnosing obstructed defaecation syndrome?

    Science.gov (United States)

    van Gruting, I M A; Kluivers, K; Sultan, A H; De Bin, R; Stankiewicz, A; Blake, H; Thakar, R

    2018-06-08

    To establish the diagnostic test accuracy of both two-dimensional (2D) and four-dimensional (4D) transperineal ultrasound, to assess if 4D ultrasound imaging provides additional value in the diagnosis of posterior pelvic floor disorders in women with obstructed defaecation syndrome. In this prospective cohort study, 121 consecutive women with obstructed defaecation syndrome were recruited. Symptoms of obstructed defaecation and signs of pelvic organ prolapse were assessed using validated methods. All women underwent both 2D transperineal ultrasound (Pro-focus, 8802 transducer, BK-medical) and 4D transperineal ultrasound (Voluson i, RAB4-8-RS transducer, GE). Imaging analysis was performed by two blinded observers. Pelvic floor disorders were dichotomised into presence or absence according pre-defined cut-off values. In the absence of a reference standard a composite reference standard was created from a combination of results of evacuation proctogram, magnetic resonance imaging and endovaginal ultrasound. Primary outcome measures were diagnostic test characteristics of 2D and 4D transperineal ultrasound for diagnosis or rectocele, enterocele, intussusception and anismus. Secondary outcome measures were interobserver agreement, agreement between the two techniques and correlation of signs and symptoms to imaging findings. For diagnosis of all four posterior pelvic floor disorders there was no difference in sensitivity and specificity between 2D and 4D TPUS (p= 0.131 - 1.000). A good agreement between 2D and 4D TPUS was found for the diagnosis of rectocele (ĸ 0.675) and a moderate agreement for diagnosis of enterocele, intussusception and anismus (ĸ 0.465 - 0.545). There was no difference in rectocele depth measurements between both TPUS techniques (19.9 mm vs 19.0 mm, p=0.802). Inter-observer agreement was comparable for both techniques, however 2D TPUS had an excellent interobserver agreement for diagnosis of enterocele and rectocele depth measurements. Diagnosis

  16. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    Science.gov (United States)

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  17. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode.

    Science.gov (United States)

    Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph

    2018-06-01

    Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.

  18. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    Science.gov (United States)

    Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.

    2013-11-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular system. There is the potential to use this system to monitor the progression of ventriculomegaly over time in patients with IVH.

  19. Automated 3D ultrasound elastography of the breast: a phantom validation study

    Science.gov (United States)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  20. Recon3D enables a three-dimensional view of gene variation in human metabolism

    DEFF Research Database (Denmark)

    Brunk, Elizabeth; Sahoo, Swagatika; Zielinski, Daniel C.

    2018-01-01

    Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein structure data and enables integrated analyses of metabolic functions in humans. We use Recon3D...

  1. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    Science.gov (United States)

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    International Nuclear Information System (INIS)

    Kishimoto, J; Lawrence, K St; De Ribaupierre, S; Fenster, A; Lee, D S C; Mehta, R

    2013-01-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of 3 for a single observer. Results from ANOVA for three observers segmenting three patients of IVH grade II did not show any significant differences (p > 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular system. There is the potential to use this system to monitor the progression of ventriculomegaly over time in patients with IVH. (paper)

  3. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-01-01

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 ± 1.5% error, 4.4 ± 3.0% error for CT, and 3.1 ± 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  4. Clinical value of real time 3D sonohysterography and 2D sonohysterography in comparison to hysteroscopy with subsequent histopathological examination in perimenopausal women with abnormal uterine bleeding.

    Science.gov (United States)

    Kowalczyk, Dariusz; Guzikowski, Wojciech; Więcek, Jacek; Sioma-Markowska, Urszula

    2012-01-01

    In many publications the transvaginal ultrasound is regarded as the first step to diagnose the cause of uterine bleeding in perimenopausal women. In order to improve the sensitivity and specificity of the conventional ultrasound physiological saline solution was administered to the uterine cavity and after expansion of its walls the interior uterine cavity was examined. And this procedure is called 2D sonohysterography (SIS 2D). By the ultrasound scanners which enable to get 3D real time image a spatial evaluation of the uterine cavity is possible. Clinical value of the real time 3D sonohysterography and 2D sonohysterography compared to hysteroscopy with histopathological examination in perimenopausal women. The study concerned a group of 97 perimenopausal women with abnormal uterine bleeding. In all of them after a standard transvaginal ultrasonography a catheter was inserted into the uterine cavity. After expansion of the uterine walls by administering about 10 ml of 0,9% saline solution the uterine cavity was examined by conventional sonohysterography. Then a 3D imaging mode was activated and the uterine interior was examined by real time 3D ultrasonography. The ultrasound results were verified by hysteroscopy, the endometrial lesions were removed and underwent a histopathological examination. In two cases the SIS examination was impossible because of uterine cervix atresion. In the rest of examined group the SIS 2D sensitivity and specificity came up to 72 and 96% respectively. In the group of SIS 3D the sensitivity and specificity reached 83 and 99% respectively. Adding SIS 3D, a minimally invasive method, to conventional sonohysterography improves the precision of diagnosis of endometrial pathology, allows to get three-dimensional image of the uterine cavity and enables examination of endometrial lesions. The diagnostic precision of this procedure is similar to the results achieved by hysteroscopy.

  5. Automated 3D ultrasound elastography of the breast: a phantom validation study

    International Nuclear Information System (INIS)

    Hendriks, Gijs A G M; Holländer, Branislav; Menssen, Jan; Hansen, Hendrik H G; De Korte, Chris L; Milkowski, Andy

    2016-01-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s −1 ) and by three protocols: Go–Go (pre- and post-volumes with identical start and end positions), Go–Return (similar to Go–Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go–Go protocol was shown to be superior with better strain image quality (CNR e and SNR e ) than Go–Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go–Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go–Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to

  6. FINAL INTERIM REPORT, CANDIDATE SITES, MACHINES IN USE, DATA STORAGE AND TRANSMISSION METHODS: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    Science.gov (United States)

    The purpose of this Work Assignment, 02-03, is to examine the feasibility of collecting transmitting, and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant women. The study will also examine the reliability of measurements obtained from 3-D images< ...

  7. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn

    2014-01-01

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  8. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  9. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    Science.gov (United States)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  10. P32INCREASED PERCENTAGE RESECTION OF TUMOUR VOLUME USING NEURONAVIGATIONAL 3D INTRAOPERATIVE ULTRASOUND: A SINGLE UNIT EXPERIENCE

    OpenAIRE

    Vaqas, B.; O'Neill, K.; Awad, M.

    2014-01-01

    INTRODUCTION: The use of intraoperative 3D navigational ultrasound (Sonowand) offers a relatively inexpensive method of obtaining imaging of intrinsic brain tumours during resection which takes in account brain shift during surgery and also allows better visualisation of the tumour margin to help control resection. We designed a study to measure the volume of tumour resection in 25 consecutive Sonowand cases compared to 25 matched non-ultrasound guided controls. METHOD: A retrospective consec...

  11. The Use of 3D Power Doppler Ultrasound in the Quantification of Blood Vessels in Uterine Fibroids: Feasibility and Reproducibility

    NARCIS (Netherlands)

    Nieuwenhuis, L.L.; Betjes, H.E.; Hehenkamp, W.J.K.; Heymans, M.W.; Brölmann, H.A.M.; Huirne, J.A.F.

    2015-01-01

    Background: To evaluate the interobserver agreement and discriminating value of three-dimensional power Doppler ultrasound (3D PDUS) in patients with fibroids. Methods: An observational prospective cohort study in 19 patients with fibroids. 3D PDUS was performed by one examiner and evaluated by

  12. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    Science.gov (United States)

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-06-01

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.

  13. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  14. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  15. Enabling personalized implant and controllable biosystem development through 3D printing.

    Science.gov (United States)

    Nagarajan, Neerajha; Dupret-Bories, Agnes; Karabulut, Erdem; Zorlutuna, Pinar; Vrana, Nihal Engin

    The impact of additive manufacturing in our lives has been increasing constantly. One of the frontiers in this change is the medical devices. 3D printing technologies not only enable the personalization of implantable devices with respect to patient-specific anatomy, pathology and biomechanical properties but they also provide new opportunities in related areas such as surgical education, minimally invasive diagnosis, medical research and disease models. In this review, we cover the recent clinical applications of 3D printing with a particular focus on implantable devices. The current technical bottlenecks in 3D printing in view of the needs in clinical applications are explained and recent advances to overcome these challenges are presented. 3D printing with cells (bioprinting); an exciting subfield of 3D printing, is covered in the context of tissue engineering and regenerative medicine and current developments in bioinks are discussed. Also emerging applications of bioprinting beyond health, such as biorobotics and soft robotics, are introduced. As the technical challenges related to printing rate, precision and cost are steadily being solved, it can be envisioned that 3D printers will become common on-site instruments in medical practice with the possibility of custom-made, on-demand implants and, eventually, tissue engineered organs with active parts developed with biorobotics techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    Science.gov (United States)

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  17. 3D Flow reconstruction using ultrasound PIV

    Science.gov (United States)

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.

    2011-04-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.

  18. Acrania/encephalocele sequence (exencephaly) associated with 92,XXXX karyotype: early prenatal diagnosis at 9(+5) weeks by 3D transvaginal ultrasound and coelocentesis.

    Science.gov (United States)

    Tonni, Gabriele; Ventura, Alessandro; Bonasoni, Maria Paola

    2009-09-01

    A 27-year-old pregnant woman was diagnosed by 3D transvaginal ultrasound as carrying a fetus of 9(+5) weeks gestation affected by acrania/encephalocele (exencephaly) sequence. A 2D transvaginal ultrasound-guided aspiration of 5 mL of extra-coelomic fluid was performed under cervical block before uterine suction. Conventional cytogenetic analysis demonstrated a 92,XXXX karyotype. Transvaginal 2D ultrasound-guided coelocentesis for rapid karyotyping can be proposed to women who are near to miscarriage or in cases where a prenatal ultrasound diagnosis of congenital anomaly is performed at an early stage of development. Genetic analysis can be performed using traditional cytogenetic analysis or can be aided by fluorescence in situ hybridization (FISH). Coelocentesis may become an integral part of first trimester armamentarium and may be clinically useful in the understanding of the pathogenesis of early prenatally diagnosed congenital anomalies.

  19. The Correlation Between the GFR and the Renal Dimensions in Glomerulopathy Patients: Comparison of 2D and 3D Ultrasound

    International Nuclear Information System (INIS)

    Kim, Gyoung Min; Lee, Hak Jong; Hwang, Sung Il; Chin, Ho Jun

    2011-01-01

    We wanted to determine the correlation between the renal length as measured on two dimensional (2D) ultrasonography (US) and the renal parenchymal volume as measured with a new three-dimensional (3D) volume probe ultrasound system. We also wanted to determine the correlation between the renal length or renal parenchymal volume and the glomerular filtration rate (GFR) in patients with glomerulopathy. From July 2007 to December 2007, 26 patients who were pathologically confirmed to have glomerulopathy by biopsy were enrolled. Renal length was measured with 2D US and the renal parenchymal volume was measured with 3D US just prior to biopsy. The GFR was obtained from the electronic medical records. Pearson's correlation coefficients were used to analyze the correlation between the renal length and the renal parenchymal volume, the correlation between the renal length and the GFR and the correlation between the renal parenchymal volume and the GFR. The renal length and the renal parenchymal volume showed strong positive correlation (r = 0.850, p = 0.0001). The correlation coefficient between the renal length and the GFR was 0.623 (p = 0.0007) and the correlation coefficient between the renal volume and the GFR was 0.590 (p = 0.0015). Both the renal length and renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. The renal length showed strong positive correlations with the renal parenchymal volume. Both the renal length and the renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. In glomerulopathy patients, the renal dimensions measured by ultrasound can reflect the status of the GFR, and the measurement of the 2D renal length could be sufficient for follow up. Further studies are needed to evaluate the role of 3D US for assessing patients with renal disease

  20. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: Application of a personalized, 3D-printed tumor model using CT images.

    Directory of Open Access Journals (Sweden)

    Ye Ra Choi

    Full Text Available To evaluate accuracy and reliability of three-dimensional ultrasound (3D US for response evaluation of hepatic metastasis from colorectal cancer (CRC using a personalized 3D-printed tumor model.Twenty patients with liver metastasis from CRC who underwent baseline and after chemotherapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT were fabricated. Two radiologists measured volume of each 3D printing model using 3D US. With CT as a reference, we compared difference between CT and US tumor volume. The response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST criteria.3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL, 8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05. 3D US provided a high correlation coefficient with CT (r = 0.953, r = 0.97 as well as a high inter-observer intraclass correlation (0.978; 0.958-0.988. Regarding response, 3D US was in agreement with CT in 17 and 18 out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961.3D US tumor volume using a personalized 3D-printed model is an accurate and reliable method for the response evaluation in comparison with CT tumor volume.

  1. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    Science.gov (United States)

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  2. 3D quantitative breast ultrasound analysis for differentiating fibroadenomas and carcinomas smaller than 1 cm

    Energy Technology Data Exchange (ETDEWEB)

    Meel-van den Abeelen, A.S.S., E-mail: aisha.vandenabeelen@radboudumc.nl [Department of Biomechanical Engineering, MIRA-Institute, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Medical UltraSound Imaging Center (MUSIC), department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Weijers, G. [Medical UltraSound Imaging Center (MUSIC), department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Zelst, J.C.M. van [Radboud University Nijmegen Medical Centre, Department of Radiology and Nuclear Medicine, PO Box 9101, 6500 HB Nijmegen (Netherlands); Thijssen, J.M. [Medical UltraSound Imaging Center (MUSIC), department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Mann, R.M. [Radboud University Nijmegen Medical Centre, Department of Radiology and Nuclear Medicine, PO Box 9101, 6500 HB Nijmegen (Netherlands); Korte, C.L. de [Medical UltraSound Imaging Center (MUSIC), department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2017-03-15

    Purpose: In (3D) ultrasound, accurate discrimination of small solid masses is difficult, resulting in a high frequency of biopsies for benign lesions. In this study, we investigate whether 3D quantitative breast ultrasound (3DQBUS) analysis can be used for improving non-invasive discrimination between benign and malignant lesions. Methods and materials: 3D US studies of 112 biopsied solid breast lesions (size <1 cm), were included (34 fibroadenomas and 78 invasive ductal carcinomas). The lesions were manually delineated and, based on sonographic criteria used by radiologists, 3 regions of interest were defined in 3D for analysis: ROI (ellipsoid covering the inside of the lesion), PER (peritumoural surrounding: 0.5 mm around the lesion), and POS (posterior-tumoural acoustic phenomena: region below the lesion with the same size as delineated for the lesion). After automatic gain correction (AGC), the mean and standard deviation of the echo level within the regions were calculated. For the ROI and POS also the residual attenuation coefficient was estimated in decibel per cm [dB/cm]. The resulting eight features were used for classification of the lesions by a logistic regression analysis. The classification accuracy was evaluated by leave-one-out cross-validation. Receiver operating characteristic (ROC) curves were constructed to assess the performance of the classification. All lesions were delineated by two readers and results were compared to assess the effect of the manual delineation. Results: The area under the ROC curve was 0.86 for both readers. At 100% sensitivity, a specificity of 26% and 50% was achieved for reader 1 and 2, respectively. Inter-reader variability in lesion delineation was marginal and did not affect the accuracy of the technique. The area under the ROC curve of 0.86 was reached for the second reader when the results of the first reader were used as training set yielding a sensitivity of 100% and a specificity of 40%. Consequently, 3DQBUS

  3. 3D quantitative breast ultrasound analysis for differentiating fibroadenomas and carcinomas smaller than 1 cm

    International Nuclear Information System (INIS)

    Meel-van den Abeelen, A.S.S.; Weijers, G.; Zelst, J.C.M. van; Thijssen, J.M.; Mann, R.M.; Korte, C.L. de

    2017-01-01

    Purpose: In (3D) ultrasound, accurate discrimination of small solid masses is difficult, resulting in a high frequency of biopsies for benign lesions. In this study, we investigate whether 3D quantitative breast ultrasound (3DQBUS) analysis can be used for improving non-invasive discrimination between benign and malignant lesions. Methods and materials: 3D US studies of 112 biopsied solid breast lesions (size <1 cm), were included (34 fibroadenomas and 78 invasive ductal carcinomas). The lesions were manually delineated and, based on sonographic criteria used by radiologists, 3 regions of interest were defined in 3D for analysis: ROI (ellipsoid covering the inside of the lesion), PER (peritumoural surrounding: 0.5 mm around the lesion), and POS (posterior-tumoural acoustic phenomena: region below the lesion with the same size as delineated for the lesion). After automatic gain correction (AGC), the mean and standard deviation of the echo level within the regions were calculated. For the ROI and POS also the residual attenuation coefficient was estimated in decibel per cm [dB/cm]. The resulting eight features were used for classification of the lesions by a logistic regression analysis. The classification accuracy was evaluated by leave-one-out cross-validation. Receiver operating characteristic (ROC) curves were constructed to assess the performance of the classification. All lesions were delineated by two readers and results were compared to assess the effect of the manual delineation. Results: The area under the ROC curve was 0.86 for both readers. At 100% sensitivity, a specificity of 26% and 50% was achieved for reader 1 and 2, respectively. Inter-reader variability in lesion delineation was marginal and did not affect the accuracy of the technique. The area under the ROC curve of 0.86 was reached for the second reader when the results of the first reader were used as training set yielding a sensitivity of 100% and a specificity of 40%. Consequently, 3DQBUS

  4. 3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results

    Science.gov (United States)

    Gemmeke, Hartmut; Hopp, Torsten; Zapf, Michael; Kaiser, Clemens; Ruiter, Nicole V.

    2017-11-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). Current experimental USCT systems are still focused in elevation dimension resulting in a large slice thickness, limited depth of field, loss of out-of-plane reflections, and a large number of movement steps to acquire a stack of images. 3D USCT emitting and receiving spherical wave fronts overcomes these limitations. We built an optimized 3D USCT, realizing for the first time the full benefits of a 3D system. The point spread function could be shown to be nearly isotropic in 3D, to have very low spatial variability and fit the predicted values. The contrast of the phantom images is very satisfactory in spite of imaging with a sparse aperture. The resolution and imaged details of the reflectivity reconstruction are comparable to a 3 T MRI volume. Important for the obtained resolution are the simultaneously obtained results of the transmission tomography. The KIT 3D USCT was then tested in a pilot study on ten patients. The primary goals of the pilot study were to test the USCT device, the data acquisition protocols, the image reconstruction methods and the image fusion techniques in a clinical environment. The study was conducted successfully; the data acquisition could be carried out for all patients with an average imaging time of six minutes per breast. The reconstructions provide promising images. Overlaid volumes of the modalities show qualitative and quantitative information at a glance. This paper gives a summary of the involved techniques, methods, and first results.

  5. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. In ...

  7. TU-H-CAMPUS-IeP3-04: Evaluation of Changes in Quantitative Ultrasound Parameters During Prostate Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, M; El Kaffas, A; Han, B [Department of Radiation Oncology, Stanford University, Palo Alto, CA (United States); Cooper, D [Elekta Inc., Montreal, QC (Canada); Hancock, S; Hristov, D

    2016-06-15

    Purpose: Clarity Autoscan ultrasound monitoring system allows acquisition of raw radiofrequency (RF) ultrasound data prior and during radiotherapy. This enables the computation of 3D Quantitative Ultrasound (QUS) tissue parametric maps from. We aim to evaluate whether QUS parameters undergo changes with radiotherapy and thus potentially be used as early predictors and/or markers of treatment response in prostate cancer patients. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. QUS spectroscopy analysis was carried out by computing a tissue power spectrum normalized to the power spectrum obtained from a quartz to remove system transfer function effects. A ROI was selected within the 3D image volume of the prostate. Because longitudinal registration was optimal, the same features could be used to select ROIs at roughly the same location in images acquired on different days. Parametric maps were generated within the rectangular ROIs with window sizes that were approximately 8 times the wavelength of the ultrasound. The mid-band fit (MBF), spectral slope (SS) and spectral intercept (SI) QUS parameters were computed for each window within the ROI and displayed as parametric maps. Quantitative parameters were obtained by averaging each of the spectral parameters over the whole ROI. Results: Data was acquired for over 21 treatment fractions. Preliminary results show changes in the parametric maps. MBF values decreased from −33.9 dB to −38.7 dB from pre-treatment to the last day of treatment. The spectral slope increased from −1.1 a.u. to −0.5 a.u., and spectral intercept decreased from −28.2 dB to −36.3 dB over the 21 treatment regimen. Conclusion: QUS parametric maps change over the course of treatment which warrants further investigation in their potential use for treatment planning and predicting treatment

  8. TU-H-CAMPUS-IeP3-04: Evaluation of Changes in Quantitative Ultrasound Parameters During Prostate Radiotherapy

    International Nuclear Information System (INIS)

    Najafi, M; El Kaffas, A; Han, B; Cooper, D; Hancock, S; Hristov, D

    2016-01-01

    Purpose: Clarity Autoscan ultrasound monitoring system allows acquisition of raw radiofrequency (RF) ultrasound data prior and during radiotherapy. This enables the computation of 3D Quantitative Ultrasound (QUS) tissue parametric maps from. We aim to evaluate whether QUS parameters undergo changes with radiotherapy and thus potentially be used as early predictors and/or markers of treatment response in prostate cancer patients. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. QUS spectroscopy analysis was carried out by computing a tissue power spectrum normalized to the power spectrum obtained from a quartz to remove system transfer function effects. A ROI was selected within the 3D image volume of the prostate. Because longitudinal registration was optimal, the same features could be used to select ROIs at roughly the same location in images acquired on different days. Parametric maps were generated within the rectangular ROIs with window sizes that were approximately 8 times the wavelength of the ultrasound. The mid-band fit (MBF), spectral slope (SS) and spectral intercept (SI) QUS parameters were computed for each window within the ROI and displayed as parametric maps. Quantitative parameters were obtained by averaging each of the spectral parameters over the whole ROI. Results: Data was acquired for over 21 treatment fractions. Preliminary results show changes in the parametric maps. MBF values decreased from −33.9 dB to −38.7 dB from pre-treatment to the last day of treatment. The spectral slope increased from −1.1 a.u. to −0.5 a.u., and spectral intercept decreased from −28.2 dB to −36.3 dB over the 21 treatment regimen. Conclusion: QUS parametric maps change over the course of treatment which warrants further investigation in their potential use for treatment planning and predicting treatment

  9. Volumetry and biomechanical parameters detected by 3D and 2D ultrasound in patients with and without an abdominal aortic aneurysm.

    Science.gov (United States)

    Batagini, Nayara Cioffi; Ventura, Carlos Augusto Pinto; Raghavan, Madhavan L; Chammas, Maria Cristina; Tachibana, Adriano; da Silva, Erasmo Simão

    2016-06-01

    The objective was to demonstrate the ability of ultrasound (US) with 3D properties to evaluate volumetry and biomechanical parameters of the aorta in patients with and without abdominal aortic aneurysm (AAA). Thirty-one patients with normal aortas (group 1), 46 patients with AAA measuring 3.0-5.5 cm (group 2) and 31 patients with AAA ⩾ 5.5 cm (group 3) underwent a 2D/3D-US examination of the infra-renal aorta, and the images were post-processed prior to being analyzed. In the maximum diameter, the global circumferential strain and the global maximum rotation assessed by 2D speckle-tracking algorithms were compared among the three groups. The volumetry data obtained using 3D-US from 40 AAA patients were compared with the volumetry data obtained by a contemporary computed tomography (CT) scan. The median global circumferential strain was 2.0% (interquartile range (IR): 1.0-3.0), 1.0% (IR: 1.0-2.0) and 1.0% (IR: 1.0-1.75) in groups 1, 2 and 3, respectively (p volumetry and biomechanical characteristics of AAA. © The Author(s) 2016.

  10. New Algorithm to Enable Construction and Display of 3D Structures from Scanning Probe Microscopy Images Acquired Layer-by-Layer.

    Science.gov (United States)

    Deng, William Nanqiao; Wang, Shuo; Ventrici de Souza, Joao Francisco; Kuhl, Tonya L; Liu, Gang-Yu

    2018-06-11

    Scanning probe microscopy (SPM) such as atomic force microscopy (AFM) is widely known for high-resolution imaging of surface structures and nanolithography in two dimension (2D), which provides important physical insights in surface science and material science. This work reports a new algorithm to enable construction and display of layer-by-layer 3D structures from SPM images. The algorithm enables alignment of SPM images acquired during layer-by-layer deposition, removal of redundant features, and faithfully constructs the deposited 3D structures. The display uses a "see-through" strategy to enable the structure of each layer to be visible. The results demonstrate high spatial accuracy as well as algorithm versatility; users can set parameters for reconstruction and display as per image quality and research needs. To the best of our knowledge, this method represents the first report to enable SPM technology for 3D imaging construction and display. The detailed algorithm is provided to facilitate usage of the same approach in any SPM software. These new capabilities support wide applications of SPM that require 3D image reconstruction and display, such as 3D nanoprinting, and 3D additive and subtractive manufacturing and imaging.

  11. Experimental study of sector and linear array ultrasound accuracy and the influence of navigated 3D-reconstruction as compared to MRI in a brain tumor model.

    Science.gov (United States)

    Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan

    2018-03-01

    Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.

  12. Reproducibility of the interpretation of coronal 3D ultrasound view of the uterus to evaluate the position of Essure® 3 months after hysteroscopic procedure.

    Science.gov (United States)

    Capmas, P; Letendre, I; Levaillant, J-M; Fuchs, F; Panel, P; Chambon, G; Villefranque, V; Levy-Zauberman, Y; Fernandez, H

    2017-09-01

    Three-dimensional sonography is a good alternative method to assess the position of microinserts. Adequate position after three months allows for the interruption of other contraception. Objective is to evaluate inter-observer reproducibility of the interpretation of coronal transvaginal 3D ultrasound view of the uterus to evaluate the position of Essure ® . Inter-observer reproducibility study. Fifty women underwent successful bilateral placement of microinserts (Essure ® ) by hysteroscopy in the Department of Gynaecology of a teaching hospital and were included in the study. At three month, 3D ultrasound coronal views of the fifty uterus (accounting for one hundred microinserts) were assessed by five different observers and microinsert position was classified according to the classification described by Legendre et al. Inter-observer reproducibility in reading the 3D coronal view of the uterus was evaluated. The k-value was disparate, from 0.26 to 0.82. Inter-observer reproducibility then ranged from fair to almost perfect, depending on a prior knowledge of the position classification. Transvaginal 3D coronal view of the uterus is sufficient to assess the positioning of the microinserts when the practionner or the surgeon is familiar with the classification method. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  14. Enabling Symmetric Collaboration in Public Spaces through 3D Mobile Interaction

    Directory of Open Access Journals (Sweden)

    Mayra Donaji Barrera Machuca

    2018-03-01

    Full Text Available Collaboration has been common in workplaces in various engineering settings and in our daily activities. However, how to effectively engage collaborators with collaborative tasks has long been an issue due to various situational and technical constraints. The research in this paper addresses the issue in a specific scenario, which is how to enable users to interact with public information from their own perspective. We describe a 3D mobile interaction technique that allows users to collaborate with other people by creating a symmetric and collaborative ambience. This in turn can increase their engagement with public displays. In order to better understand the benefits and limitations of this technique, we conducted a usability study with a total of 40 participants. The results indicate that the 3D mobile interaction technique promotes collaboration between users and also improves their engagement with the public displays.

  15. Tracked "Pick-Up" Ultrasound for Robot-Assisted Minimally Invasive Surgery.

    Science.gov (United States)

    Schneider, Caitlin; Nguan, Christopher; Rohling, Robert; Salcudean, Septimiu

    2016-02-01

    We present a novel "pick-up" ultrasound transducer for intraabdominal robot-assisted minimally invasive surgery. Such a "pick-up" ultrasound transducer is inserted through an abdominal incision at the beginning of the procedure and remains in the abdominal cavity throughout, eliminating the need for a dedicated port or a patient bedside surgical assistant. The transducer has a handle that can be grasped in a repeatable manner using a da Vinci Prograsp tool, allowing the transducer to be accurately manipulated by the surgeon using the da Vinci Robot. This is one way to enable 3-D tracking of the transducer, and, thus, mapping of the vasculature. The 3-D vascular images can be used to register preoperative CT to intraoperative camera images. To demonstrate the feasibility of the approach, we use an ultrasound vessel phantom to register a CT surface model to extracted ultrasound vessel models. The 3-D vascular phantom images are generated by segmenting B-mode images and tracking the pick-up ultrasound transducer with the da Vinci kinematics, internal electromagnetic sensor, or visible fiducials suitable for camera tracking. Reconstruction results using da Vinci kinematics for tracking give a target registration error of 5.4 ± 1.7 mm.

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  17. Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium

    Science.gov (United States)

    Prisbrey, M.; Greenhall, J.; Guevara Vasquez, F.; Raeymaekers, B.

    2017-01-01

    We use ultrasound directed self-assembly to organize particles dispersed in a fluid medium into a three-dimensional (3D) user-specified pattern. The technique employs ultrasound transducers that line the boundary of a fluid reservoir to create a standing ultrasound wave field. The acoustic radiation force associated with the wave field drives particles dispersed in the fluid medium into organized patterns, assuming that the particles are much smaller than the wavelength and do not interact with each other. We have theoretically derived a direct solution method to calculate the ultrasound transducer operating parameters that are required to assemble a user-specified 3D pattern of particles in a fluid reservoir of arbitrary geometry. We formulate the direct solution method as a constrained optimization problem that reduces to eigendecomposition. We experimentally validate the solution method by assembling 3D patterns of carbon nanoparticles in a water reservoir and observe good quantitative agreement between theory and experiment. Additionally, we demonstrate the versatility of the solution method by simulating ultrasound directed self-assembly of complex 3D patterns of particles. The method works for any 3D simple, closed fluid reservoir geometry in combination with any arrangement of ultrasound transducers and enables employing ultrasound directed self-assembly in a myriad of engineering applications, including biomedical and materials fabrication processes.

  18. MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images

    Science.gov (United States)

    Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.

    2018-04-01

    In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.

  19. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers

    Science.gov (United States)

    Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François

    2018-01-01

    The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N  =  3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.

  20. Accuracy assessment of Tri-plane B-mode ultrasound for non-invasive 3D kinematic analysis of knee joints.

    Science.gov (United States)

    Masum, Md Abdullah; Pickering, Mark; Lambert, Andrew; Scarvell, Jennie; Smith, Paul

    2014-08-26

    Currently the clinical standard for measuring the motion of the bones in knee joints with sufficient precision involves implanting tantalum beads into the bones. These beads appear as high intensity features in radiographs and can be used for precise kinematic measurements. This procedure imposes a strong coupling between accuracy and invasiveness. In this paper, a tri-plane B-mode ultrasound (US) based non-invasive approach is proposed for use in kinematic analysis of knee joints in 3D space. The 3D analysis is performed using image processing procedures on the 2D US slices. The novelty of the proposed procedure and its applicability to the unconstrained 3D kinematic analysis of knee joints is outlined. An error analysis for establishing the method's feasibility is included for different artificial compositions of a knee joint phantom. Some in-vivo and in-vitro scans are presented to demonstrate that US scans reveal enough anatomical details, which further supports the experimental setup used using knee bone phantoms. The error between the displacements measured by the registration of the US image slices and the true displacements of the respective slices measured using the precision mechanical stages on the experimental apparatus is evaluated for translation and rotation in two simulated environments. The mean and standard deviation of errors are shown in tabular form. This method provides an average measurement precision of less than 0.1 mm and 0.1 degrees, respectively. In this paper, we have presented a novel non-invasive approach to measuring the motion of the bones in a knee using tri-plane B-mode ultrasound and image registration. In our study, the image registration method determines the position of bony landmarks relative to a B-mode ultrasound sensor array with sub-pixel accuracy. The advantages of our proposed system over previous techniques are that it is non-invasive, does not require the use of ionizing radiation and can be used conveniently if

  1. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Biren J; Longsine, Whitney; Han, Arum; Righetti, Raffaella [Department of Electrical and Computer Engineering, Dwight Look College of Engineering, Texas A and M University, College Station, TX (United States); Sabonghy, Eric P [OneOrtho Orthopedic Surgery Clinic, Houston, TX (United States); Tasciotti, Ennio; Ferrari, Mauro [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX (United States); Weiner, Bradley K, E-mail: righetti@ece.tamu.ed [Division of Spinal Surgery, Department of Orthopaedic Surgery, Methodist Hospital, Houston, TX 77030 (United States)

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 {mu}m to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  2. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor.

    Science.gov (United States)

    Sato, Miki; Noguchi, Junko; Mashima, Masato; Tanaka, Hirokazu; Hata, Toshiyuki

    2016-09-01

    To assess placental perfusion during spontaneous or induced uterine contraction in labor at term using placental vascular sonobiopsy (PVS) by 3D power Doppler ultrasound with the VOCAL imaging analysis program. PVS was performed in 50 normal pregnancies (32 in spontaneous labor group [SLG], and 18 in induced labor group with oxytocin or prostaglandin F2α [ILG]) at 37-41 weeks of gestation to assess placental perfusion during uterine contraction in labor. Only pregnancies with an entirely visualized anterior placenta were included in the study. Data acquisition was performed before, during (at the peak of contraction), and after uterine contraction. 3D power Doppler indices such as the vascularization index (VI), flow index (FI), and vascularization flow index (VFI) were calculated in each placenta. There were no abnormal fetal heart rate tracings during contraction in either group. VI and VFI values were significantly reduced during uterine contraction in both groups (SLG, -33.4% [-97.0-15.2%], and ILG, -49.6% [-78.2--4.0%]), respectively (P power Doppler indices (VI, FI, and VFI) during uterine contraction (at the peak of contraction) showed a correlation greater than 0.7, with good intra- and inter-observer agreements. Our findings suggest that uterine contraction in both spontaneous and induced labors causes a significant reduction in placental perfusion. Reduced placental blood flow in induced uterine contraction has a tendency to be marked compared with that in spontaneous uterine contraction. To the best of our knowledge, this is the first study on the non-invasive assessment of placental perfusion during uterine contraction in labor using 3D power Doppler ultrasound. However, the data and their interpretation in the present study should be taken with some degree of caution because of the small number of subjects studied. Further studies involving a larger sample size are needed to assess placental perfusion and vascularity using PVS during normal and

  3. Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Andersen, Thomas Rieks; Pedersen, Emil Bøje Lind

    2015-01-01

    one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use......The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added...

  4. 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia.

    Science.gov (United States)

    Plevniak, Kimberly; Campbell, Matthew; Myers, Timothy; Hodges, Abby; He, Mei

    2016-09-01

    Clinical diagnosis requiring central facilities and site visits can be burdensome for patients in resource-limited or rural areas. Therefore, development of a low-cost test that utilizes smartphone data collection and transmission would beneficially enable disease self-management and point-of-care (POC) diagnosis. In this paper, we introduce a low-cost i POC 3D diagnostic strategy which integrates 3D design and printing of microfluidic POC device with smartphone-based disease diagnosis in one process as a stand-alone system, offering strong adaptability for establishing diagnostic capacity in resource-limited areas and low-income countries. We employ smartphone output (AutoCAD 360 app) and readout (color-scale analytical app written in-house) functionalities for rapid 3D printing of microfluidic auto-mixers and colorimetric detection of blood hemoglobin levels. The auto-mixing of reagents with blood via capillary force has been demonstrated in 1 second without the requirement of external pumps. We employed this i POC 3D system for point-of-care diagnosis of anemia using a training set of patients (n anemia  = 16 and n healthy  = 6), which showed consistent measurements of blood hemoglobin levels (a.u.c. = 0.97) and comparable diagnostic sensitivity and specificity, compared with standard clinical hematology analyzer. Capable of 3D fabrication flexibility and smartphone compatibility, this work presents a novel diagnostic strategy for advancing personalized medicine and mobile healthcare.

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... 3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study ... to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached ...

  6. Standardized acquisition, storing and provision of 3D enabled spatial data

    Science.gov (United States)

    Wagner, B.; Maier, S.; Peinsipp-Byma, E.

    2017-05-01

    In the area of working with spatial data, in addition to the classic, two-dimensional geometrical data (maps, aerial images, etc.), the needs for three-dimensional spatial data (city models, digital elevation models, etc.) is increasing. Due to this increased demand the acquiring, storing and provision of 3D enabled spatial data in Geographic Information Systems (GIS) is more and more important. Existing proprietary solutions quickly reaches their limits during data exchange and data delivery to other systems. They generate a large workload, which will be very costly. However, it is noticeable that these expenses and costs can generally be significantly reduced using standards. The aim of this research is therefore to develop a concept in the field of three-dimensional spatial data that runs on existing standards whenever possible. In this research, the military image analysts are the preferred user group of the system. To achieve the objective of the widest possible use of standards in spatial 3D data, existing standards, proprietary interfaces and standards under discussion have been analyzed. Since the here used GIS of the Fraunhofer IOSB is already using and supporting OGC (Open Geospatial Consortium) and NATO-STANAG (NATO-Standardization Agreement) standards for the most part of it, a special attention for possible use was laid on their standards. The most promising standard is the OGC standard 3DPS (3D Portrayal Service) with its occurrences W3DS (Web 3D Service) and WVS (Web View Service). A demo system was created, using a standardized workflow from the data acquiring, storing and provision and showing the benefit of our approach.

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... 3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study ... at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  8. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    DEFF Research Database (Denmark)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-01-01

    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined ...... uterus. Uterine shifts based on US imaging contains relative uterus-bone displacement, which is not taken into consideration using CBCT bone match....

  9. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 3D ultrasound-CT registration of the liver using combined landmark-intensity information

    International Nuclear Information System (INIS)

    Lange, Thomas; Schlag, Peter M.; Papenberg, Nils; Heldmann, Stefan; Modersitzki, Jan; Fischer, Bernd; Lamecker, Hans

    2009-01-01

    An important issue in computer-assisted surgery of the liver is a fast and reliable transfer of preoperative resection plans to the intraoperative situation. One problem is to match the planning data, derived from preoperative CT or MR images, with 3D ultrasound images of the liver, acquired during surgery. As the liver deforms significantly in the intraoperative situation non-rigid registration is necessary. This is a particularly challenging task because pre- and intraoperative image data stem from different modalities and ultrasound images are generally very noisy. One way to overcome these problems is to incorporate prior knowledge into the registration process. We propose a method of combining anatomical landmark information with a fast non-parametric intensity registration approach. Mathematically, this leads to a constrained optimization problem. As distance measure we use the normalized gradient field which allows for multimodal image registration. A qualitative and quantitative validation on clinical liver data sets of three different patients has been performed. We used the distance of dense corresponding points on vessel center lines for quantitative validation. The combined landmark and intensity approach improves the mean and percentage of point distances above 3 mm compared to rigid and thin-plate spline registration based only on landmarks. The proposed algorithm offers the possibility to incorporate additional a priori knowledge - in terms of few landmarks - provided by a human expert into a non-rigid registration process. (orig.)

  11. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo

    2014-01-01

    in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential......This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... Beamforming (SASB). Simulations are performed to evaluate the image quality of the presented method in comparison to Parallel beamforming utilizing 16 receive beamformers. As indicators for image quality the detail resolution and Cystic resolution are determined for a set of scatterers at a depth of 90mm...

  12. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography.

    Science.gov (United States)

    Villemain, Olivier; Kwiecinski, Wojciech; Bel, Alain; Robin, Justine; Bruneval, Patrick; Arnal, Bastien; Tanter, Mickael; Pernot, Mathieu; Messas, Emmanuel

    2016-10-01

    Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will

  13. First steps towards ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging

    Directory of Open Access Journals (Sweden)

    Julia eSchwaab

    2015-11-01

    Full Text Available Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking.The goal of this project is to develop an ultrasound based motion tracking for real time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET. In this work, a workflow is established to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system – even if the ultrasound probe is moving due to respiration. It is shown that the ultrasound tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the ultrasound probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for ultrasound tracking based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an ultrasound based motion tracking in absolute room coordinates with a moving US-transducer is feasible.

  14. Can mastication in children with cerebral palsy be analyzed by clinical observation, dynamic ultrasound and 3D kinematics?

    Science.gov (United States)

    Remijn, L; Groen, B E; Speyer, R; van Limbeek, J; Vermaire, J A; van den Engel-Hoek, L; Nijhuis-van der Sanden, M W G

    2017-02-01

    The aim of this study was to explore the feasibility of the Mastication Observation and Evaluation (MOE) instrument, dynamic ultrasound and 3D kinematic measurements to describe mastication in children with spastic cerebral palsy and typically developing children. Masticatory movements during five trials of eating a biscuit were assessed in 8 children with cerebral palsy, spastic type (mean age 9.08years) and 14 typically developing children (mean age 9.01years). Differences between trials were tested (t-test) and the mastication of individual children with cerebral palsy was analyzed. MOE scores ranged from 17 to 31 (median 24) for the children with cerebral palsy and from 28 to 32 (median 31) for the typically developing children. There was an increased chewing cycle duration, a smaller left-right and up-down tongue displacement and larger anterior mandible movements for the trials (n=40) of cerebral palsy children (pmastication between individual children with cerebral palsy. The MOE items 'jaw movement' and 'fluency and coordination' showed the most similarity with the objective measurements. Objective measurements of dynamic ultrasound and 3D kinematics complemented data from the MOE instrument. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Enabling 3D Tele-Immersion with Live Reconstructed Mesh Geometry with Fast Mesh Compression and Linear Rateless Coding

    NARCIS (Netherlands)

    Mekuria, R.; Sanna, M.; Izquierdo, E; Bulterman, D.; Garcia, P.

    2014-01-01

    3-D tele-immersion (3DTI) enables participants in remote locations to share, in real time, an activity. It offers users interactive and immersive experiences, but it challenges current media-streaming solutions. Work in the past has mainly focused on the efficient delivery of image-based 3-D videos

  16. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting.

    Science.gov (United States)

    Kim, Chunwoo; Chang, Doyoung; Petrisor, Doru; Chirikjian, Gregory; Han, Misop; Stoianovici, Dan

    2013-06-01

    Image-to-robot registration is a typical step for robotic image-guided interventions. If the imaging device uses a portable imaging probe that is held by a robot, this registration is constant and has been commonly named probe calibration. The same applies to probes tracked by a position measurement device. We report a calibration method for 2-D ultrasound probes using robotic manipulation and a planar calibration rig. Moreover, a needle guide that is attached to the probe is also calibrated for ultrasound-guided needle targeting. The method is applied to a transrectal ultrasound (TRUS) probe for robot-assisted prostate biopsy. Validation experiments include TRUS-guided needle targeting accuracy tests. This paper outlines the entire process from the calibration to image-guided targeting. Freehand TRUS-guided prostate biopsy is the primary method of diagnosing prostate cancer, with over 1.2 million procedures performed annually in the U.S. alone. However, freehand biopsy is a highly challenging procedure with subjective quality control. As such, biopsy devices are emerging to assist the physician. Here, we present a method that uses robotic TRUS manipulation. A 2-D TRUS probe is supported by a 4-degree-of-freedom robot. The robot performs ultrasound scanning, enabling 3-D reconstructions. Based on the images, the robot orients a needle guide on target for biopsy. The biopsy is acquired manually through the guide. In vitro tests showed that the 3-D images were geometrically accurate, and an image-based needle targeting accuracy was 1.55 mm. These validate the probe calibration presented and the overall robotic system for needle targeting. Targeting accuracy is sufficient for targeting small, clinically significant prostatic cancer lesions, but actual in vivo targeting will include additional error components that will have to be determined.

  17. Pictorial essay of ultrasound-reconstructed coronal plane images of the uterus in different uterine pathologies.

    Science.gov (United States)

    Grigore, Mihaela; Grigore, Anamaria; Gafitanu, Dumitru; Furnica, Cristina

    2018-04-01

    Imaging in the major planes (horizontal, coronal, and sagittal) of the uterus is important for determining anatomy and allowing the findings to be standardized, and for evaluating and diagnosing different pathological conditions in clinical practice. Examination of the coronal plane is an important step in identifying uterine pathologies and their relationships to the endometrial canal. Three-dimensional (3D) ultrasound reveals the normal anatomy better and improves the depiction of abnormal anatomy, as the coronal plane of the uterus can easily be obtained using 3D reconstruction techniques. Our pictorial essay demonstrates that adding 3D ultrasound to a routine gynecological workup can be beneficial for clinicians, enabling a precise diagnosis to be made. In addition, the volumes obtained and stored by 3D ultrasound can allow students or residents to become more familiar with normal and abnormal pelvic structures. Clin. Anat. 31:373-379, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. A compact mechatronic system for 3D ultrasound guided prostate interventions

    International Nuclear Information System (INIS)

    Bax, Jeffrey; Smith, David; Bartha, Laura; Montreuil, Jacques; Sherebrin, Shi; Gardi, Lori; Edirisinghe, Chandima; Fenster, Aaron

    2011-01-01

    Purpose: Ultrasound imaging has improved the treatment of prostate cancer by producing increasingly higher quality images and influencing sophisticated targeting procedures for the insertion of radioactive seeds during brachytherapy. However, it is critical that the needles be placed accurately within the prostate to deliver the therapy to the planned location and avoid complications of damaging surrounding tissues. Methods: The authors have developed a compact mechatronic system, as well as an effective method for guiding and controlling the insertion of transperineal needles into the prostate. This system has been designed to allow guidance of a needle obliquely in 3D space into the prostate, thereby reducing pubic arch interference. The choice of needle trajectory and location in the prostate can be adjusted manually or with computer control. Results: To validate the system, a series of experiments were performed on phantoms. The 3D scan of the string phantom produced minimal geometric error, which was less than 0.4 mm. Needle guidance accuracy tests in agar prostate phantoms showed that the mean error of bead placement was less then 1.6 mm along parallel needle paths that were within 1.2 mm of the intended target and 1 deg. from the preplanned trajectory. At oblique angles of up to 15 deg. relative to the probe axis, beads were placed to within 3.0 mm along a trajectory that were within 2.0 mm of the target with an angular error less than 2 deg. Conclusions: By combining 3D TRUS imaging system to a needle tracking linkage, this system should improve the physician's ability to target and accurately guide a needle to selected targets without the need for the computer to directly manipulate and insert the needle. This would be beneficial as the physician has complete control of the system and can safely maneuver the needle guide around obstacles such as previously placed needles.

  19. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.

    Science.gov (United States)

    Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Mulder, Harriët W; Ren, Ben; Kirişli, Hortense A; Metz, Coert; van Burken, Gerard; van Stralen, Marijn; Pluim, Josien P W; van der Steen, Antonius F W; van Walsum, Theo; Bosch, Johannes G

    2015-06-01

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts. We propose to segment all cavities within the TEE view with a multi-cavity active shape model (ASM) in conjunction with a tissue/blood classification based on a gamma mixture model (GMM). 3-D TEE image data of twenty patients were acquired with a Philips X7-2t matrix TEE probe. Tissue probability maps were estimated by a two-class (blood/tissue) GMM. A statistical shape model containing the left ventricle, right ventricle, left atrium, right atrium, and aorta was derived from computed tomography angiography (CTA) segmentations by principal component analysis. ASMs of the whole heart and individual cavities were generated and consecutively fitted to tissue probability maps. First, an average whole-heart model was aligned with the 3-D TEE based on three manually indicated anatomical landmarks. Second, pose and shape of the whole-heart ASM were fitted by a weighted update scheme excluding parts outside of the image sector. Third, pose and shape of ASM for individual heart cavities were initialized by the previous whole heart ASM and updated in a regularized manner to fit the tissue probability maps. The ASM segmentations were validated against manual outlines by two observers and CTA derived segmentations. Dice coefficients and point-to-surface distances were used to determine segmentation accuracy. ASM segmentations were successful in 19 of 20 cases. The median Dice coefficient for all successful segmentations versus the average observer ranged from 90% to 71% compared with an inter-observer range of 95% to 84%. The

  20. Validity and reliability of a structured-light 3D scanner and an ultrasound imaging system for measurements of facial skin thickness.

    Science.gov (United States)

    Lee, Kang-Woo; Kim, Sang-Hwan; Gil, Young-Chun; Hu, Kyung-Seok; Kim, Hee-Jin

    2017-10-01

    Three-dimensional (3 D)-scanning-based morphological studies of the face are commonly included in various clinical procedures. This study evaluated validity and reliability of a 3 D scanning system by comparing the ultrasound (US) imaging system versus the direct measurement of facial skin. The facial skin thickness at 19 landmarks was measured using the three different methods in 10 embalmed adult Korean cadavers. Skin thickness was first measured using the ultrasound device, then 3 D scanning of the facial skin surface was performed. After the skin on the left half of face was gently dissected, deviating slightly right of the midline, to separate it from the subcutaneous layer, and the harvested facial skin's thickness was measured directly using neck calipers. The dissected specimen was then scanned again, then the scanned images of undissected and dissected faces were superimposed using Morpheus Plastic Solution (version 3.0) software. Finally, the facial skin thickness was calculated from the superimposed images. The ICC value for the correlations between the 3 D scanning system and direct measurement showed excellent reliability (0.849, 95% confidence interval = 0.799-0.887). Bland-Altman analysis showed a good level of agreement between the 3 D scanning system and direct measurement (bias = 0.49 ± 0.49 mm, mean±SD). These results demonstrate that the 3 D scanning system precisely reflects structural changes before and after skin dissection. Therefore, an in-depth morphological study using this 3 D scanning system could provide depth data about the main anatomical structures of face, thereby providing crucial anatomical knowledge for utilization in various clinical applications. Clin. Anat. 30:878-886, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    Science.gov (United States)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  2. Automatic localization of the da Vinci surgical instrument tips in 3-D transrectal ultrasound.

    Science.gov (United States)

    Mohareri, Omid; Ramezani, Mahdi; Adebar, Troy K; Abolmaesumi, Purang; Salcudean, Septimiu E

    2013-09-01

    Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci surgical system is the current state-of-the-art treatment option for clinically confined prostate cancer. Given the limited field of view of the surgical site in RALRP, several groups have proposed the integration of transrectal ultrasound (TRUS) imaging in the surgical workflow to assist with accurate resection of the prostate and the sparing of the neurovascular bundles (NVBs). We previously introduced a robotic TRUS manipulator and a method for automatically tracking da Vinci surgical instruments with the TRUS imaging plane, in order to facilitate the integration of intraoperative TRUS in RALRP. Rapid and automatic registration of the kinematic frames of the da Vinci surgical system and the robotic TRUS probe manipulator is a critical component of the instrument tracking system. In this paper, we propose a fully automatic registration technique based on automatic 3-D TRUS localization of robot instrument tips pressed against the air-tissue boundary anterior to the prostate. The detection approach uses a multiscale filtering technique to identify and localize surgical instrument tips in the TRUS volume, and could also be used to detect other surface fiducials in 3-D ultrasound. Experiments have been performed using a tissue phantom and two ex vivo tissue samples to show the feasibility of the proposed methods. Also, an initial in vivo evaluation of the system has been carried out on a live anaesthetized dog with a da Vinci Si surgical system and a target registration error (defined as the root mean square distance of corresponding points after registration) of 2.68 mm has been achieved. Results show this method's accuracy and consistency for automatic registration of TRUS images to the da Vinci surgical system.

  3. Enabling 3D Tele-Immersion with Live Reconstructed Mesh Geometry with Fast Mesh Compression and Linear Rateless Coding

    NARCIS (Netherlands)

    R.N. Mekuria (Rufael); M. Sanna (Michele); E Izquierdo (Ebroul); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago)

    2014-01-01

    htmlabstract3D Tele-immersion enables participants in remote locations to share, in real-time, an activity. It offers users interactive and immersive experiences, but it challenges current media streaming solutions. Work in the past has mainly focused on the efficient delivery of image-based 3D

  4. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.

    Science.gov (United States)

    Ipsen, Svenja; Bruder, Ralf; O'Brien, Rick; Keall, Paul J; Schweikard, Achim; Poulsen, Per R

    2016-10-01

    With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2

  5. Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography.

    Science.gov (United States)

    Yu, Zili; Blaak, Sandra; Chang, Zu-yao; Yao, Jiajian; Bosch, Johan G; Prins, Christian; Lancée, Charles T; de Jong, Nico; Pertijs, Michiel A P; Meijer, Gerard C M

    2012-07-01

    There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE.

  6. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment

    Directory of Open Access Journals (Sweden)

    Mariella Bleve

    2012-01-01

    Full Text Available Background. Over time, the striae rubra develop into striae alba that appear white, flat, and depressed. It is very important to determine the optimum striae management. In order to evaluate the effectiveness of these therapies, objective measurement tools are necessary. Objective. The aim of this study is to evaluate if ultrasonography and PRIMOS can be used to obtain an objective assessment of stretch marks type and stage; furthermore, we aim to apply these techniques to evaluate the efficacy of a topical treatment. Methods. 20 volunteers were enrolled with a two-month study. A marketed cosmetic product was used as the active over one body area. The controlateral area with stretch marks was treated with a “placebo” formulation without active, as a control. The instrumental evaluation was carried out at the beginning of the trial (baseline values or 0, after 1 month (1, and at the end of the study (2. Results. PRIMOS was able to measure and document striae distensae maturation; furthermore, ultrasound imaging permitted to visualize and diagnose the striae. Statistical analysis of skin roughness demonstrated a statistically significant reduction of Rp value only in a treated group. In fact, the Rp value represented a maximum peak height in the area selected. These results demonstrated that after two months of treatment only the striae rubra can be treated successfully. Conclusions. This work demonstrated that the 22MHz ultrasound can diagnose stretch marks; PRIMOS device can detect and measure striae distensae type and maturation. Furthermore, the high-frequency ultrasound and the 3D image device, described in this work, can be successfully employed in order to evaluate the efficacy of a topical treatment.

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ...

  8. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Stéphane, E-mail: sgcarlier@hotmail.com [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Didday, Rich [INDEC Medical Systems Inc., Santa Clara, CA (United States); Slots, Tristan [Pie Medical Imaging BV, Maastricht (Netherlands); Kayaert, Peter; Sonck, Jeroen [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); El-Mourad, Mike; Preumont, Nicolas [Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Schoors, Dany; Van Camp, Guy [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium)

    2014-06-15

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization.

  9. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    International Nuclear Information System (INIS)

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-01-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization

  10. Anterior and posterior compartment 3D endovaginal ultrasound anatomy based on direct histologic comparison.

    Science.gov (United States)

    Shobeiri, S Abbas; White, Dena; Quiroz, Lieschen H; Nihira, Mikio A

    2012-08-01

    We used direct histologic comparison to validate the use of 3D endovaginal ultrasound (EVUS) as a novel and emerging technology for evaluating the structures found in the anterior and posterior pelvic floor compartments. A young nulliparous female pelvis specimen was dissected and histologic slides were prepared by making 8-Micron-thick sagittal cuts. The slides were stained with Mallory trichrome and arranged to form large sections encompassing each anterior and posterior sagittal plane. Healthy nulliparous women underwent 3D EVUS to obtain 3D cubes of the anterior and posterior compartments. Two investigators independently evaluated the anterior and posterior midsagittal structures. The investigators mutually viewed the images and calculated urethral and anal sphincter measurements. Thirty-one nulliparous women underwent 3D EVUS; 77% of the participants were Caucasian, with mean age 31.8 [standard deviation (SD) 5.8] and mean body mass index (BMI) of 28.5 (SD 7.9). The following mean (SD) measurements were obtained: urethral length 36 mm (± 5); striated urogenital sphincter area 0.6 cm(2) (± 0.16); longitudinal and circular smooth muscle area 1.1 cm(2) (± 0.4); urethral complex width 14 mm (± 2); urethral complex area 1.3 cm(2) (± 0.4); internal anal sphincter length 26 mm (± 4); internal anal sphincter thickness 3.2 mm (± 0.8); and rectovaginal septum length 31 mm (± 5). The agreement for visualization of structures was as follows: vesical trigone 96% (κ = 0.65), trigonal ring 94% (κ = 0.8), trigonal plate 84% (κ = 0.6); longitudinal and circular smooth muscle 100%; compressor urethra 97% (κ = 0.85); striated urogenital sphincter 97% (κ = 0.85); rectovaginal septum 100%; internal anal sphincter 100%; external anal sphincter subdivisions 100%. Three-dimensional EVUS can be used to visualize structures of the anterior and posterior compartments in nullipara.

  11. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    that the method has potential in interventions on moving abdominal organs such as MR or ultrasound guided focused ultrasound therapy and radiotherapy, pending the method is enabled to run in real-time. The data and the annotations used for this study are made publicly available for those who would like to test other methods on 4D liver ultrasound data.

  12. A Front-End ASIC with Receive Sub-array Beamforming Integrated with a 32 × 32 PZT Matrix Transducer for 3-D Transesophageal Echocardiography

    NARCIS (Netherlands)

    Chen, C.; Chen, Z.; Bera, Deep; Raghunathan, S.B.; ShabaniMotlagh, M.; Noothout, E.C.; Chang, Z.Y.; Ponte, Jacco; Prins, Christian; Vos, H.J.; Bosch, Johan G.; Verweij, M.D.; de Jong, N.; Pertijs, M.A.P.

    2017-01-01

    This paper presents a power-and area-efficient front-end application-specific integrated circuit (ASIC) that is directly integrated with an array of 32 × 32 piezoelectric transducer elements to enable next-generation miniature ultrasound probes for real-time 3-D transesophageal echocardiography.

  13. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    Science.gov (United States)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  14. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device

    Science.gov (United States)

    Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.

    2018-03-01

    Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5  ×  0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within  ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a  ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.

  15. Development of a 3D ultrasound system to investigate post-hemorrhagic hydrocephalus in pre-term neonates

    Science.gov (United States)

    Kishimoto, J.; Lee, D.; St. Lawrence, K.; Romano, W.; Fenster, A.; de Ribaupierre, S.

    2013-03-01

    Clinical intracranial ultrasound (US) is performed as a standard of care on neonates at risk of intraventricular hemorrhaging (IVH) and is also used after a diagnosis to monitor for potential ventricular dilation. However, it is difficult to estimate the volume of ventricles with 2D US due to their irregular shape. We developed a 3D US system to be used as an adjunct to a clinical system to investigate volumetric changes in the ventricles of neonates with IVH. Our system has been found have an error of within 1% of actual distance measurements in all three directions and volume measurements of manually segmented volumes from phantoms were not statistically significantly different from the actual values (p>0.3). Interobserver volume measurements of the lateral ventricles in a patient with grade III IVH found no significant differences between measurements. There is the potential to use this system in IVH patients to monitor the progression of ventriculomegaly over time.

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams also help identify: ... fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ...

  17. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    Science.gov (United States)

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Segmentation of 3-D High-Frequency Ultrasound Images of Human Lymph Nodes Using Graph Cut With Energy Functional Adapted to Local Intensity Distribution.

    Science.gov (United States)

    Kuo, Jen-Wei; Mamou, Jonathan; Wang, Yao; Saegusa-Beecroft, Emi; Machi, Junji; Feleppa, Ernest J

    2017-10-01

    Previous studies by our group have shown that 3-D high-frequency quantitative ultrasound (QUS) methods have the potential to differentiate metastatic lymph nodes (LNs) from cancer-free LNs dissected from human cancer patients. To successfully perform these methods inside the LN parenchyma (LNP), an automatic segmentation method is highly desired to exclude the surrounding thin layer of fat from QUS processing and accurately correct for ultrasound attenuation. In high-frequency ultrasound images of LNs, the intensity distribution of LNP and fat varies spatially because of acoustic attenuation and focusing effects. Thus, the intensity contrast between two object regions (e.g., LNP and fat) is also spatially varying. In our previous work, nested graph cut (GC) demonstrated its ability to simultaneously segment LNP, fat, and the outer phosphate-buffered saline bath even when some boundaries are lost because of acoustic attenuation and focusing effects. This paper describes a novel approach called GC with locally adaptive energy to further deal with spatially varying distributions of LNP and fat caused by inhomogeneous acoustic attenuation. The proposed method achieved Dice similarity coefficients of 0.937±0.035 when compared with expert manual segmentation on a representative data set consisting of 115 3-D LN images obtained from colorectal cancer patients.

  19. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, T; Harris, E; Bamber, J [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Greater London (United Kingdom); Evans, P [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom)

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  20. WE-G-BRF-09: Force- and Image-Adaptive Strategies for Robotised Placement of 4D Ultrasound Probes

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck (Germany); Graduate School for Computing in Life Science, University of Luebeck, Luebeck (Germany); Bruder, R; Ernst, F; Schweikard, A [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck (Germany)

    2014-06-15

    Purpose: To allow continuous acquisition of high quality 4D ultrasound images for non-invasive live tracking of tumours for IGRT, image- and force-adaptive strategies for robotised placement of 4D ultrasound probes are developed and evaluated. Methods: The developed robotised ultrasound system is based on a 6-axes industrial robot (adept Viper s850) carrying a 4D ultrasound transducer with a mounted force-torque sensor. The force-adaptive placement strategies include probe position control using artificial potential fields and contact pressure regulation by a PD controller strategy. The basis for live target tracking is a continuous minimum contact pressure to ensure good image quality and high patient comfort. This contact pressure can be significantly disturbed by respiratory movements and has to be compensated. All measurements were performed on human subjects under realistic conditions. When performing cardiac ultrasound, rib- and lung shadows are a common source of interference and can disrupt the tracking. To ensure continuous tracking, these artefacts had to be detected to automatically realign the probe. The detection is realised by multiple algorithms based on entropy calculations as well as a determination of the image quality. Results: Through active contact pressure regulation it was possible to reduce the variance of the contact pressure by 89.79% despite respiratory motion of the chest. The results regarding the image processing clearly demonstrate the feasibility to detect image artefacts like rib shadows in real-time. Conclusion: In all cases, it was possible to stabilise the image quality by active contact pressure control and automatically detected image artefacts. This fact enables the possibility to compensate for such interferences by realigning the probe and thus continuously optimising the ultrasound images. This is a huge step towards fully automated transducer positioning and opens the possibility for stable target tracking in

  1. WE-G-BRF-09: Force- and Image-Adaptive Strategies for Robotised Placement of 4D Ultrasound Probes

    International Nuclear Information System (INIS)

    Kuhlemann, I; Bruder, R; Ernst, F; Schweikard, A

    2014-01-01

    Purpose: To allow continuous acquisition of high quality 4D ultrasound images for non-invasive live tracking of tumours for IGRT, image- and force-adaptive strategies for robotised placement of 4D ultrasound probes are developed and evaluated. Methods: The developed robotised ultrasound system is based on a 6-axes industrial robot (adept Viper s850) carrying a 4D ultrasound transducer with a mounted force-torque sensor. The force-adaptive placement strategies include probe position control using artificial potential fields and contact pressure regulation by a PD controller strategy. The basis for live target tracking is a continuous minimum contact pressure to ensure good image quality and high patient comfort. This contact pressure can be significantly disturbed by respiratory movements and has to be compensated. All measurements were performed on human subjects under realistic conditions. When performing cardiac ultrasound, rib- and lung shadows are a common source of interference and can disrupt the tracking. To ensure continuous tracking, these artefacts had to be detected to automatically realign the probe. The detection is realised by multiple algorithms based on entropy calculations as well as a determination of the image quality. Results: Through active contact pressure regulation it was possible to reduce the variance of the contact pressure by 89.79% despite respiratory motion of the chest. The results regarding the image processing clearly demonstrate the feasibility to detect image artefacts like rib shadows in real-time. Conclusion: In all cases, it was possible to stabilise the image quality by active contact pressure control and automatically detected image artefacts. This fact enables the possibility to compensate for such interferences by realigning the probe and thus continuously optimising the ultrasound images. This is a huge step towards fully automated transducer positioning and opens the possibility for stable target tracking in

  2. THREE-DIMENSIONAL ULTRASOUND AND STENOSIS OF INTERNAL CAROTID ARTERY

    Directory of Open Access Journals (Sweden)

    Vojko Flis

    2003-12-01

    Full Text Available Background. Elucidation of the ultrasound structure of the atherosclerotic plaque in stenosis of internal carotid artery may have important implications for carotid surgery. This study compares the ability of computer derived 3D ultrasound gray scale volumetric measurements to diferentiate between ultrasonic structure of symptomatic and asymptomatic carotid plaque causing more than 70% stenosis.Methods. Eightysix internal carotid artery stenoses (70–99%, 45 symptomatic, 41 asymptomatic were imaged with 3D ultrasound to obtain the whole volume of the atherosclerotic plaque. Digitalized sonograms were computerized and normalized to the gray scale median (GSM of blood (0 and vessel adventitia (200. Plaque GSM was obtained for the whole volume by computing the volume ratio between echolucent and echogenic areas. The plaque heterogeneity was obtained by computing the density of echogenic areas per volume unit. Parametric t test was used for statistic analysis.Results. Minimum volume GSM ratio (determining echolucency was higher for asymptomatic plaque (0.6 – CI 0.48– 0.91 versus 0.3 – CI 0.21–0.75: p = 0.002. Greater GSM heterogeneity was present in symptomatic plaque (6.8 – CI 2.5– 18.3 versus 0.41 – CI 0.2–3.4;.p = 0.0001.Conclusions. Volume ultrasound imaging that enables objective assessment of whole ultrasonic plaque structure is more sensitive that single longitudinal view sonography for differentiating between ultrasonic structure of symptomatic and asymptomatic plaque.

  3. Segmentation of the lumen and media-adventitia boundaries of the common carotid artery from 3D ultrasound images

    Science.gov (United States)

    Ukwatta, E.; Awad, J.; Ward, A. D.; Samarabandu, J.; Krasinski, A.; Parraga, G.; Fenster, A.

    2011-03-01

    Three-dimensional ultrasound (3D US) vessel wall volume (VWV) measurements provide high measurement sensitivity and reproducibility for the monitoring and assessment of carotid atherosclerosis. In this paper, we describe a semiautomated approach based on the level set method to delineate the media-adventitia and lumen boundaries of the common carotid artery from 3D US images to support the computation of VWV. Due to the presence of plaque and US image artifacts, the carotid arteries are challenging to segment using image information alone. Our segmentation framework combines several image cues with domain knowledge and limited user interaction. Our method was evaluated with respect to manually outlined boundaries on 430 2D US images extracted from 3D US images of 30 patients who have carotid stenosis of 60% or more. The VWV given by our method differed from that given by manual segmentation by 6.7% +/- 5.0%. For the media-adventitia and lumen segmentations, respectively, our method yielded Dice coefficients of 95.2% +/- 1.6%, 94.3% +/- 2.6%, mean absolute distances of 0.3 +/- 0.1 mm, 0.2 +/- 0.1 mm, maximum absolute distances of 0.8 +/- 0.4 mm, 0.6 +/- 0.3 mm, and volume differences of 4.2% +/- 3.1%, 3.4% +/- 2.6%. The realization of a semi-automated segmentation method will accelerate the translation of 3D carotid US to clinical care for the rapid, non-invasive, and economical monitoring of atherosclerotic disease progression and regression during therapy.

  4. Robotic 4D ultrasound solution for real-time visualization and teleoperation

    Directory of Open Access Journals (Sweden)

    Al-Badri Mohammed

    2017-09-01

    Full Text Available Automation of the image acquisition process via robotic solutions offer a large leap towards resolving ultrasound’s user-dependency. This paper, as part of a larger project aimed to develop a multipurpose 4d-ultrasonic force-sensitive robot for medical applications, focuses on achieving real-time remote visualisation for 4d ultrasound image transfer. This was possible through implementing our software modification on a GE Vivid 7 Dimension workstation, which operates a matrix array probe controlled by a KUKA LBR iiwa 7 7-DOF robotic arm. With the help of robotic positioning and the matrix array probe, fast volumetric imaging of target regions was feasible. By testing ultrasound volumes, which were roughly 880 kB in size, while using gigabit Ethernet connection, a latency of ∼57 ms was achievable for volume transfer between the ultrasound station and a remote client application, which as a result allows a frame count of 17.4 fps. Our modification thus offers for the first time real-time remote visualization, recording and control of 4d ultrasound data, which can be implemented in teleoperation.

  5. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai [Department of Radiation Oncology, John Hopkins University, Baltimore, MD (United States); Ji, Tianlong [Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning (China); Iordachita, Iulian [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States); Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A. [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  6. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai; Ji, Tianlong; Iordachita, Iulian; Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2016-01-01

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  7. Ultrasound-assisted lipase-catalyzed synthesis of D-isoascorbyl palmitate: process optimization and Kinetic evaluation.

    Science.gov (United States)

    Cui, Feng-Jie; Zhao, Hong-Xia; Sun, Wen-Jing; Wei, Zhuan; Yu, Si-Lian; Zhou, Qiang; Dong, Ying

    2013-12-09

    D-isoascorbic acid is a food antioxidant additive and used in accordance with Good Manufacturing Practice (GMP). High solubility in water (about 150 g/L at 25°C) reduces its effectiveness in stabilizing fats and oils. Our research group had successfully synthesized D-isoascorbyl palmitate using immobilized lipase Novozym 435 as a biocatalyst. Low production efficiency of D-isoascorbyl palmitate is still a problem for industrial production due to the long reaction time of over 24 h. In the present work, ultrasonic treatment was applied for accelerating the reaction process. The operation parameters were optimized to obtain the maximum D-isoascorbyl palmitate conversion rate by using a 5-level-4-factor Central Composite Design (CCD) and Response Surface Methdology (RSM). The reaction apparent kinetic parameters under the ultrasound treatment and mechanical shaking conditions were also determined and compared. Results showed that ultrasound treatment decreased the reaction time by over 50%. D-isoascorbyl palmitate yielded to 94.32 ± 0.17% and the productivity reached to 8.67 g L-1 h-1 under the optimized conditions as: 9% of enzyme load (w/w), 61°C of reaction temperature, 1:5 of D- isoascorbic-to-palmitic acid molar ratio, and 137 W of the ultrasound power. The immobilized lipase Novozym 435 could be reused for 7 times with 65% of the remained D-isoascorbyl palmitate conversion rate. The reaction kinetics showed that the maximum apparent reaction rate (vmax) of the ultrasound-assisted reaction was 2.85 times higher than that of the mechanical shaking, which proved that ultrasound treatment significantly enhanced the reaction efficiency. A systematic study on ultrasound-assisted enzymatic esterification for D-isoascorbyl palmitate production is reported. The results show a promising perspective of the ultrasound technique to reduce the reaction time and improve the production efficiency. The commercial D-isoascorbyl palmitate synthesis will be potentially

  8. Ultrasound findings in biliary system

    International Nuclear Information System (INIS)

    Park, Won Sik; Lee, Yong Woo; Cheung, Hwan

    1986-01-01

    In the liver and biliary system ultrasound has emerged as one of the most useful imaging techniques. It is usually the first radiological procedure selected and is often sufficient alone to enable a clinical decision to be made. Good result with ultrasound depend critically on expert scanning technique coupled with an understanding of tomographic anatomy and, of course, an appreciation of the clinical significance of any findings. In addition to we'd like to stress on the ultrasonical anatomy and for the technologist and also discuss about pathological part

  9. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... are (vx, vy, vz) = (-0.03, 95, 1.0) ± (9, 6, 1) cm/s compared with the expected (0, 96, 0) cm/s. Afterwards, 3D vector flow images from a cross-sectional plane of the vessel are presented. The out of plane velocities exhibit the expected 2D circular-symmetric parabolic shape. The experimental results...... verify that the 3D TO method estimates the complete 3D velocity vectors, and that the method is suitable for 3D vector flow imaging....

  10. Ultrasound-assisted synthesis of 1-N-{beta}-D-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles and their anti-inflammatory activities

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gilson B. da; Guimaraes, Bruna M.; Oliveira, Ronaldo N. de, E-mail: ronaldonoliveira@dcm.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Ciencias Moleculares; Assis, Shalom P.O.; Lima, Vera L.M. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Bioquimica. Laboratorio de Quimica e Metabolismo de Lipideos e Lipoproteinas

    2013-06-15

    In this work, the preparation of various glucosyl triazoles from a reaction between 2,3,4,6-tetra-O-acetyl-{beta}-D-glucopyranosyl azide and terminal alkynes was developed in moderate to excellent yields (63-99%). Ultrasound energy was applied at each step of the reaction to increase chemical reactivity. In addition, the compounds conjugated with benzoheterocycles moieties revealed potent anti-inflammatory activity. (author)

  11. Ultrasound-assisted synthesis of 1-N-β-D-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles and their anti-inflammatory activities

    International Nuclear Information System (INIS)

    Silva, Gilson B. da; Guimaraes, Bruna M.; Oliveira, Ronaldo N. de; Assis, Shalom P.O.; Lima, Vera L.M.

    2013-01-01

    In this work, the preparation of various glucosyl triazoles from a reaction between 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide and terminal alkynes was developed in moderate to excellent yields (63-99%). Ultrasound energy was applied at each step of the reaction to increase chemical reactivity. In addition, the compounds conjugated with benzoheterocycles moieties revealed potent anti-inflammatory activity. (author)

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... legs, neck and/or brain (in infants and children) or within various body organs such as the ...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... color picture. It can also convert blood flow information into a distinctive sound that can be heard ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... care physician, or to the physician or other healthcare provider who requested the exam. Usually, the referring ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... sonography is performed using the same transducer. Rarely, young children may need to be sedated in order ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... American College of Radiology (ACR) and the Radiological Society of North America (RSNA), comprising physicians with expertise ...

  18. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique

    Directory of Open Access Journals (Sweden)

    Jie Ni

    2016-02-01

    Full Text Available Prostate cancer (CaP is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D ultrasound system equipped with photoacoustic (PA imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8. Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r2 = 0.948, 0.955, and 0.953, respectively and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001. The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  20. Embryonic staging using a 3D virtual reality system

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2008-01-01

    textabstractBACKGROUND: The aim of this study was to demonstrate that Carnegie Stages could be assigned to embryos visualized with a 3D virtual reality system. METHODS: We analysed 48 3D ultrasound scans of 19 IVF/ICSI pregnancies at 7-10 weeks' gestation. These datasets were visualized as 3D

  1. Characterization of neonatal patients with intraventricular hemorrhage using 3D ultrasound cerebral ventricle volumes

    Science.gov (United States)

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S. C.; de Ribaupierre, Sandrine

    2015-03-01

    One of the major non-congenital cause of neurological impairment among neonates born very preterm is intraventricular hemorrhage (IVH) - bleeding within the lateral ventricles. Most IVH patients will have a transient period of ventricle dilation that resolves spontaneously. However, those patients most at risk of long-term impairment are those who have progressive ventricle dilation as this causes macrocephaly, an abnormally enlarged head, then later causes increases intracranial pressure (ICP). 2D ultrasound (US) images through the fontanelles of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up CSF might be indicated for a patient. Initial therapies usually begin during the third week of life. Such interventions have been shown to decrease morbidity and mortality in IVH patients; however, this comes with risks of further hemorrhage or infection; therefore only patients requiring it should be treated. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. This system has been validated using phantoms and a small set of patient images. The aim of this work is to determine the ability of 3D US generated VV to categorize patients into those who will require interventional therapies, and those who will have spontaneous resolution. Patients with higher risks could therefore be monitored better, by re-allocating some of the resources as the low risks infants would need less monitoring.

  2. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    International Nuclear Information System (INIS)

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-01

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  3. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    Science.gov (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    Science.gov (United States)

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Adam; Nunn, John, E-mail: adam.shaw@npl.co.u [National Physical Laboratory, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-06-07

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45{sup 0} to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 {sup 0}C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible. (note)

  6. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    International Nuclear Information System (INIS)

    Shaw, Adam; Nunn, John

    2010-01-01

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45 0 to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 0 C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible. (note)

  7. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI

    International Nuclear Information System (INIS)

    Meckel, Stephan; Leitner, Lorenz; Schubert, Tilman; Bonati, Leo H.; Lyrer, Philippe; Santini, Francesco; Stalder, Aurelien F.; Markl, Michael; Wetzel, Stephan G.

    2013-01-01

    4D phase contrast MR imaging (4D PC MRI) has been introduced for spatiotemporal evaluation of intracranial hemodynamics in various cerebrovascular diseases. However, it still lacks validation with standards of reference. Our goal was to compare blood flow quantification derived from 4D PC MRI with transcranial ultrasound and 2D PC MRI. Velocity measurements within large intracranial arteries [internal carotid artery (ICA), basilar artery (BA), and middle cerebral artery (MCA)] were obtained in 20 young healthy volunteers with 4D and 2D PC MRI, transcranial Doppler sonography (TCD), and transcranial color-coded duplex sonography (TCCD). Maximum velocities at peak systole (PSV) and end diastole (EDV) were compared using regression analysis and Bland-Altman plots. Correlation of 4D PC MRI measured velocities was higher in comparison with TCD (r = 0.49-0.66) than with TCCD (0.35-0.44) and 2D PC MRI (0.52-0.60). In mid-BA and ICA C7 segment, a significant correlation was found with TCD (0.68-0.81 and 0.65-0.71, respectively). No significant correlation was found in carotid siphon. On average over all volunteers, PSVs and EDVs in MCA were minimally underestimated compared with TCD/TCCD. Minimal overestimation of velocities was found compared to TCD in mid-BA and ICA C7 segment. 4D PC MRI appears as valid alternative for intracranial velocity measurement consistent with previous reference standards, foremost with TCD. Spatiotemporal averaging effects might contribute to vessel size-dependent mild underestimation of velocities in smaller (MCA), and overestimation in larger-sized (BA and ICA) arteries, respectively. Complete spatiotemporal flow analysis may be advantageous in anatomically complex regions (e.g. carotid siphon) relative to restrictions of ultrasound techniques. (orig.)

  8. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    Science.gov (United States)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  9. Quantitative analysis of thyroid tumors vascularity: A comparison between 3-D contrast-enhanced ultrasound and 3-D Power Doppler on benign and malignant thyroid nodules.

    Science.gov (United States)

    Caresio, Cristina; Caballo, Marco; Deandrea, Maurilio; Garberoglio, Roberto; Mormile, Alberto; Rossetto, Ruth; Limone, Paolo; Molinari, Filippo

    2018-05-15

    To perform a comparative quantitative analysis of Power Doppler ultrasound (PDUS) and Contrast-Enhancement ultrasound (CEUS) for the quantification of thyroid nodules vascularity patterns, with the goal of identifying biomarkers correlated with the malignancy of the nodule with both imaging techniques. We propose a novel method to reconstruct the vascular architecture from 3-D PDUS and CEUS images of thyroid nodules, and to automatically extract seven quantitative features related to the morphology and distribution of vascular network. Features include three tortuosity metrics, the number of vascular trees and branches, the vascular volume density, and the main spatial vascularity pattern. Feature extraction was performed on 20 thyroid lesions (ten benign and ten malignant), of which we acquired both PDUS and CEUS. MANOVA (multivariate analysis of variance) was used to differentiate benign and malignant lesions based on the most significant features. The analysis of the extracted features showed a significant difference between the benign and malignant nodules for both PDUS and CEUS techniques for all the features. Furthermore, by using a linear classifier on the significant features identified by the MANOVA, benign nodules could be entirely separated from the malignant ones. Our early results confirm the correlation between the morphology and distribution of blood vessels and the malignancy of the lesion, and also show (at least for the dataset used in this study) a considerable similarity in terms of findings of PDUS and CEUS imaging for thyroid nodules diagnosis and classification. © 2018 American Association of Physicists in Medicine.

  10. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  11. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    International Nuclear Information System (INIS)

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-01-01

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 × 376 × 630 voxels. Conclusions: The proposed needle segmentation

  12. Simulation and training of ultrasound supported anaesthesia: a low-cost approach

    Science.gov (United States)

    Schaaf, T.; Lamontain, M.; Hilpert, J.; Schilling, F.; Tolxdorff, T.

    2010-03-01

    The use of ultrasound imaging technology during techniques of peripheral nerve blockade offers several clinical benefits. Here we report on a new method to educate residents in ultrasound-guided regional anesthesia. The daily challenge for the anesthesiologists is the 3D angle-depending handling of the stimulation needle and the ultrasound probe while watching the 2D ultrasound image on the monitor. Purpose: Our approach describes how a computer-aided simulation and training set for ultrasound-guided regional anesthesia could be built based on wireless low-cost devices and an interactive simulation of a 2D ultrasound image. For training purposes the injection needle and the ultrasound probe are replaced by wireless Bluetooth-connected 3D tracking devices, which are embedded in WII-mote controllers (Nintendo-Brand). In correlation to the tracked 3D positions of the needle and transducer models the visibility and position of the needle should be simulated in the 2D generated ultrasound image. Conclusion: In future, this tracking and visualization software module could be integrated in a more complex training set, where complex injection paths could be trained based on a 3D segmented model and the training results could be part of a curricular e-learning module.

  13. Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering

    Science.gov (United States)

    Engle, B. J.; Roberts, R. A.; Grandin, R. J.

    2018-04-01

    This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.

  14. Automated Visualization and Quantification of Spiral Artery Blood Flow Entering the First-Trimester Placenta, Using 3-D Power Doppler Ultrasound.

    Science.gov (United States)

    Stevenson, Gordon N; Noble, J Alison; Welsh, Alec W; Impey, Lawrence; Collins, Sally L

    2018-03-01

    The goal of our research was to quantify the placental vascularity in 3-D at 11-13 + 6 wk of pregnancy at precise distances from the utero-placental interface (UPI) using 3-D power Doppler ultrasound. With this automated image analysis technique, differences in vascularity between normal and pathologic pregnancies may be observed. The algorithm was validated using a computer-generated image phantom and applied retrospectively in 143 patients. The following features from the PD data were recorded: The number of spiral artery jets into the inter-villous space, total geometric and PD area. These were automatically measured at discrete millimeter distances from the UPI. Differences in features were compared with pregnancy outcomes: Pre-eclamptic versus normal, all small-for-gestational age (SGA) to appropriate-for-gestational age (AGA) patients and AGA versus SGA in normotensives (Mann-Whitney). The Benjamini-Hochberg procedure was used (false discovery rate 10%) for multiple comparison testing. Features decreased with increasing distance from the UPI (Kruskal-Wallis test; p  0.05). This method provides a new in-vivo imaging tool for examining spiral artery development through pregnancy. Size and number of entrances of blood flow into the UPI could potentially be used to identify high-risk pregnancies and may provide a new imaging biomarker for placental insufficiency. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of the relationship between renal function and renal volume-vascular indices using 3D power Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cansu, Aysegul, E-mail: drcansu@gmail.com; Kupeli, Ali; Kul, Sibel; Eyuboglu, Ilker; Oguz, Sukru; Ozturk, Mehmet Halil; Dinc, Hasan

    2014-07-15

    Purpose: To investigate the relationship between renal function and total renal volume-vascular indices using 3D power Doppler ultrasound (3DPDUS). Materials and methods: One hundred six patients with hypertensive proteinuric nephropathy (HPN) (49 male, 57 female) and 65 healthy controls (32 male, 33 female) were evaluated prospectively using 3DPDUS. Total renal volume (RV), vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated using Virtual Organ Computer-aided Analysis (VOCAL). The estimated glomerular filtration rates (GFRs) of the patients with HPN and the control group were calculated. The patients with HPN were divided into two groups on the basis of GFR, normal (≥90) or reduced (<90). Differences between groups were compared using ANOVA. Correlations between GFR, renal volume and vascular indices were analyzed using Pearson's correlation analysis. Significance was set at p < 0.05. Results: The mean total RV, VI, FI and VFI values in the reduced GFR, normal GFR and control groups were RV (ml): 234.7, 280.7 and 294.6; VI: 17.6, 27.6 and 46.8; FI: 79.1, 88.7 and 93.9 and VFI: 7.1, 12.7 and 23.8. There were statistically significant differences between the groups (p < 0.001). Total RVs and vascular indices exhibited significant correlations with estimated GFR (r = 0.53–0.59, p < 0.001) Conclusion: Three-dimensional power Doppler ultrasound is a reliable predictive technique in renal function analysis.

  16. Innovations in 3D printing: a 3D overview from optics to organs.

    Science.gov (United States)

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  17. Computing Radiative Transfer in a 3D Medium

    Science.gov (United States)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  18. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction

    International Nuclear Information System (INIS)

    Marquet, F; Aubry, J F; Pernot, M; Fink, M; Tanter, M

    2011-01-01

    Recent studies have demonstrated the feasibility of transcostal high intensity focused ultrasound (HIFU) treatment in liver. However, two factors limit thermal necrosis of the liver through the ribs: the energy deposition at focus is decreased by the respiratory movement of the liver and the energy deposition on the skin is increased by the presence of highly absorbing bone structures. Ex vivo ablations were conducted to validate the feasibility of a transcostal real-time 3D movement tracking and correction mode. Experiments were conducted through a chest phantom made of three human ribs immersed in water and were placed in front of a 300 element array working at 1 MHz. A binarized apodization law introduced recently in order to spare the rib cage during treatment has been extended here with real-time electronic steering of the beam. Thermal simulations have been conducted to determine the steering limits. In vivo 3D-movement detection was performed on pigs using an ultrasonic sequence. The maximum error on the transcostal motion detection was measured to be 0.09 ± 0.097 mm on the anterior–posterior axis. Finally, a complete sequence was developed combining real-time 3D transcostal movement correction and spiral trajectory of the HIFU beam, allowing the system to treat larger areas with optimized efficiency. Lesions as large as 1 cm in diameter have been produced at focus in excised liver, whereas no necroses could be obtained with the same emitted power without correcting the movement of the tissue sample.

  19. First trimester diagnosis of sirenomelia by 2D and 3D ultrasound.

    Science.gov (United States)

    Contu, Rossana; Zoppi, Maria A; Axiana, Carolina; Ibba, Rosa M; Monni, Giovanni

    2009-01-01

    A case of sirenomelia in a 27-year-old woman detected at 11 weeks 5 days of gestation is presented. It was suspected by two-dimensional sonography and color Doppler imaging. Three-dimensional ultrasound confirmed the final diagnosis. With detailed evaluation of the acquired volumes, valuable information was obtained about the anatomical as well as pathological features of the fetus. 2009 S. Karger AG, Basel.

  20. Dynamic Downlink Spectrum Access for D2D-Enabled Heterogeneous Networks

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Al-Qahtani, Fawaz S.; Celik, Abdulkadir; Alouini, Mohamed-Slim

    2018-01-01

    This paper proposes new approaches for underlay device- to-device (D2D) communication in spectrum-shared het- erogeneous cellular networks. It considers devices that share downlink resources and have an enabled D2D feature to improve coverage

  1. 3D ultrasound characterization of woven composites

    Science.gov (United States)

    Tayong, Rostand B.; Mienczakowski, Martin J.; Smith, Robert A.

    2018-04-01

    Recent studies on the Non-Destructive Testing (NDT) of composites for the aerospace industry have led to an understanding of ultrasonic propagation in these materials [1]. Techniques for enhanced ultrasonic imaging of the internal structure of composite laminates containing unidirectional fibers have been proposed and tested in a laboratory environment. For the automotive industry, textile composites are often preferred and widely used. The reason for this is that these types of composites offer good mechanical performance, with resistance to delamination and reduced manufacturing costs. In this study, two models are developed and shown to be suitable to characterize the woven specimen. The first model is a 1D analytical model that makes simplified assumptions and the second is a 3D time-domain Finite Element (FE) model developed [2] for advanced understanding of the woven composite response to an ultrasonic excitation. For each of the proposed models, three parameters are defined and used to analyze the structure behavior. They are the instantaneous amplitude, instantaneous phase and instantaneous frequency. These parameters are employed to track the in-plane fiber orientation and the ply-interface location and for the sentencing of features. Three different specimens with the following weave type: 3D orthogonal, 2D plain and Multilayer stitching were considered and scanned (using a focused ultrasonic transducer) to validate the proposed models. As a preliminary study, the work only focuses on the Orthogonal weave specimen. The results obtained from experimental, analytical and FE modeling, B-scan and C-scan are compared, discussed and presented in terms of the above defined parameters.

  2. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.

    Science.gov (United States)

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan

    2017-09-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.

  3. 3D Power Doppler ultrasound and computerised placental assessment in normal pregnancy

    International Nuclear Information System (INIS)

    Moran, Mary; Zombori, Gergely; Ryan, John; McAuliffe, Fionnuala M.

    2014-01-01

    Background: In recent years there have been significant developments in the use of 3D Power Doppler (3DPD) imaging and quantitative 3DPD histogram analysis to estimate both placental volume and intra-placental vasculature. This study aims to determine if placental volume, vascularisation and blood flow are correlated with gestational age in normal pregnancy. It also examines whether or not a new software method for analysis of percentage calcification (the ‘placentometer’) correlates well with gestation. Material and method: This was a prospective cohort study of 250 women with normal pregnancies (12 + 6 to 39 + 5 weeks gestation). 3DPD ultrasound was used to evaluate placental volume, vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). Placental volume (calculated at 35–40 weeks gestation), was correlated with birth weight. Following each scan the percentage of calcification was also calculated using the placentometer. Results: Placental volume correlated significantly with gestational age: 66.676 + 0.623 × GA (P < 0.001). No significant change with gestation was noted in VI, FI and VFI (VI: P = 0.199, FI: P = 0.299, VFI: P = 0.557). Software analysis of the percentage of calcification, demonstrated the expected increase in calcification as gestation increased: −4.605 + 0.032 × GA (P < 0.001). From 35 to 40 weeks gestation volume was related to birth weight (P < 0.01). Conclusion: This study shows that in normal low-risk pregnancy placental volume increases with gestational age, whereas vascularisation and blood flow are independent of gestation. Placental volume in late pregnancy is related to birth weight. Software analysis of the percentage of calcification demonstrates an increase with advancing gestation

  4. Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion.

    Science.gov (United States)

    Tanner, Christine; Flach, Barbara; Eggenberger, Céline; Mattausch, Oliver; Bajka, Michael; Goksel, Orcun

    2017-08-01

    4D ultrasound imaging of the fetal heart relies on reconstructions from B-mode images. In the presence of fetal motion, current approaches suffer from artifacts, which are unrecoverable for single sweeps. We propose to use many sweeps and exploit the resulting redundancy to automatically recover from motion by reconstructing a 4D image which is consistent in phase, space, and time. An interactive visualization framework to view animated ultrasound slices from 4D reconstructions on arbitrary planes was developed using a magnetically tracked mock probe. We first quantified the performance of 10 4D reconstruction formulations on simulated data. Reconstructions of 14 in vivo sequences by a baseline, the current state-of-the-art, and the proposed approach were then visually ranked with respect to temporal quality on orthogonal views. Rankings from 5 observers showed that the proposed 4D reconstruction approach significantly improves temporal image quality in comparison with the baseline. The 4D reconstructions of the baseline and the proposed methods were then inspected interactively for accessibility to clinically important views and rated for their clinical usefulness by an ultrasound specialist in obstetrics and gynecology. The reconstructions by the proposed method were rated as 'very useful' in 71% and were statistically significantly more useful than the baseline reconstructions. Multi-sweep fetal heart ultrasound acquisitions in combination with consistent 4D image reconstruction improves quality as well as clinical usefulness of the resulting 4D images in the presence of fetal motion.

  5. Correspondence optimization in 2D standardized carotid wall thickness map by description length minimization: A tool for increasing reproducibility of 3D ultrasound-based measurements.

    Science.gov (United States)

    Chen, Yimin; Chiu, Bernard

    2016-12-01

    The previously described 2D standardized vessel-wall-plus-plaque thickness (VWT) maps constructed from 3D ultrasound vessel wall measurements using an arc-length (AL) scaling approach adjusted the geometric variability of carotid arteries and has allowed for the comparisons of VWT distributions in longitudinal and cross-sectional studies. However, this mapping technique did not optimize point correspondence of the carotid arteries investigated. The potential misalignment may lead to errors in point-wise VWT comparisons. In this paper, we developed and validated an algorithm based on steepest description length (DL) descent to optimize the point correspondence implied by the 2D VWT maps. The previously described AL approach was applied to obtain initial 2D maps for a group of carotid arteries. The 2D maps were reparameterized based on an iterative steepest DL descent approach, which consists of the following two steps. First, landmarks established by resampling the 2D maps were aligned using the Procrustes algorithm. Then, the gradient of the DL with respect to horizontal and vertical reparameterizations of each landmark on the 2D maps was computed, and the 2D maps were subsequently deformed in the direction of the steepest descent of DL. These two steps were repeated until convergence. The quality of the correspondence was evaluated in a phantom study and an in vivo study involving ten carotid arteries enrolled in a 3D ultrasound interscan variability study. The correspondence quality was evaluated in terms of the compactness and generalization ability of the statistical shape model built based on the established point correspondence in both studies. In the in vivo study, the effect of the proposed algorithm on interscan variability of VWT measurements was evaluated by comparing the percentage of landmarks with statistically significant VWT-change before and after point correspondence optimization. The statistical shape model constructed with optimized

  6. A 3D airborne ultrasound scanner

    Science.gov (United States)

    Capineri, L.; Masotti, L.; Rocchi, S.

    1998-06-01

    This work investigates the feasibility of an ultrasound scanner designed to reconstruct three-dimensional profiles of objects in air. There are many industrial applications in which it is important to obtain quickly and accurately the digital reconstruction of solid objects with contactless methods. The final aim of this project was the profile reconstruction of shoe lasts in order to eliminate the mechanical tracers from the reproduction process of shoe prototypes. The feasibility of an ultrasonic scanner was investigated in laboratory conditions on wooden test objects with axial symmetry. A bistatic system based on five airborne polyvinylidenedifluoride (PVDF) transducers was mechanically moved to emulate a cylindrical array transducer that can host objects of maximum width and height 20 cm and 40 cm respectively. The object reconstruction was based on a simplified version of the synthetic aperture focusing technique (SAFT): the time of flight (TOF) of the first in time echo for each receiving transducer was taken into account, a coarse spatial sampling of the ultrasonic field reflected on the array transducer was delivered and the reconstruction algorithm was based on the ellipsoidal backprojection. Measurements on a wooden cone section provided submillimetre accuracy in a controlled environment.

  7. Enabling minimal invasive parathyroidectomy for patients with primary hyperparathyroidism using Tc-99m-sestamibi SPECT–CT, ultrasound and first results of {sup 18}F-fluorocholine PET–CT

    Energy Technology Data Exchange (ETDEWEB)

    Kluijfhout, Wouter P., E-mail: WPKluijfhout@gmail.com [Department of Endocrine Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Vorselaars, Wessel M.C.M., E-mail: W.M.Vorselaars@umcutrecht.nl [Department of Endocrine Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Vriens, Menno R., E-mail: mvriens@umcutrecht.nl [Department of Endocrine Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Borel Rinkes, Inne H.M., E-mail: I.H.M.BorelRinkes@umcutrecht.nl [Department of Endocrine Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Valk, Gerlof D., E-mail: G.D.Valk@umcutrecht.nl [Department of Endocrinology, University Medical Center Utrecht, Utrecht (Netherlands); Keizer, Bart de, E-mail: B.deKeizer@umcutrecht.nl [Department of Nuclear Medicine and Radiology, University Medical Center Utrecht, Utrecht (Netherlands)

    2015-09-15

    Highlights: • We examined an optimal pre-operative imaging strategy. • Goal was to perform minimal invasive parathyroidectomy. • Ultrasound significantly decreased the PPV when added to SPECT–CT. • {sup 18}F-fluorocholine was positive in 4/5 cases with negative conventional imaging. - Abstract: Objective: Assessment of the diagnostic value of ultrasound (US), single photon-emission computed tomography–computed tomography (SPECT–CT) and {sup 18}F-fluorocholine (FCH) PET–CT for preoperative localization of hyper-functioning parathyroid(s) in order to create a more efficient diagnostic pathway and enable minimal invasive parathyroidectomy (MIP) in patients with biochemical proven non-familial primary hyperparathyroidism (pHPT). Methods: A single-institution retrospective study of 63 consecutive patients with a biochemical diagnosis of non-familial pHPT who received a Tc-99m-sestamibi SPECT–CT and neck ultrasound. Surgical findings were used in calculating the sensitivity and the positive predictive value (PPV) of both imaging modalities. Furthermore we present 5 cases who received additional FCH PET–CT. Results: A total of 42 (66.7%) patients underwent MIP. The PPV and sensitivity of SPECT–CT, 93.0% and 80.3%, were significantly higher than those of US with 78.3% and 63.2%, respectively. Adding US to SPECT–CT for initial pre-operative localization did not significantly increase sensitivity but did significantly decrease PPV. Performance of US was significantly better when performed after SPECT–CT. {sup 18}F-fluorocholine PET–CT localized the hyper-functioning parathyroid gland in 4/5 cases with discordant conventional imaging, enabling MIP. Conclusion: SPECT–CT is the imaging modality of choice for initial pre-operative localization of hyper-functioning parathyroid gland(s) in patients with biochemical pHPT. Ultrasound should be performed after SPECT–CT for confirmation of positive SPECT–CT findings and for pre-operative marking

  8. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  9. PONDEROSA, an automated 3D-NOESY peak picking program, enables automated protein structure determination.

    Science.gov (United States)

    Lee, Woonghee; Kim, Jin Hae; Westler, William M; Markley, John L

    2011-06-15

    PONDEROSA (Peak-picking Of Noe Data Enabled by Restriction of Shift Assignments) accepts input information consisting of a protein sequence, backbone and sidechain NMR resonance assignments, and 3D-NOESY ((13)C-edited and/or (15)N-edited) spectra, and returns assignments of NOESY crosspeaks, distance and angle constraints, and a reliable NMR structure represented by a family of conformers. PONDEROSA incorporates and integrates external software packages (TALOS+, STRIDE and CYANA) to carry out different steps in the structure determination. PONDEROSA implements internal functions that identify and validate NOESY peak assignments and assess the quality of the calculated three-dimensional structure of the protein. The robustness of the analysis results from PONDEROSA's hierarchical processing steps that involve iterative interaction among the internal and external modules. PONDEROSA supports a variety of input formats: SPARKY assignment table (.shifts) and spectrum file formats (.ucsf), XEASY proton file format (.prot), and NMR-STAR format (.star). To demonstrate the utility of PONDEROSA, we used the package to determine 3D structures of two proteins: human ubiquitin and Escherichia coli iron-sulfur scaffold protein variant IscU(D39A). The automatically generated structural constraints and ensembles of conformers were as good as or better than those determined previously by much less automated means. The program, in the form of binary code along with tutorials and reference manuals, is available at http://ponderosa.nmrfam.wisc.edu/.

  10. How 3D immersive visualization is changing medical diagnostics

    Science.gov (United States)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  11. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    Science.gov (United States)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  12. Full-view 3D imaging system for functional and anatomical screening of the breast

    Science.gov (United States)

    Oraevsky, Alexander; Su, Richard; Nguyen, Ha; Moore, James; Lou, Yang; Bhadra, Sayantan; Forte, Luca; Anastasio, Mark; Yang, Wei

    2018-04-01

    Laser Optoacoustic Ultrasonic Imaging System Assembly (LOUISA-3D) was developed in response to demand of diagnostic radiologists for an advanced screening system for the breast to improve on low sensitivity of x-ray based modalities of mammography and tomosynthesis in the dense and heterogeneous breast and low specificity magnetic resonance imaging. It is our working hypothesis that co-registration of quantitatively accurate functional images of the breast vasculature and microvasculature, and anatomical images of breast morphological structures will provide a clinically viable solution for the breast cancer care. Functional imaging is LOUISA-3D is enabled by the full view 3D optoacoustic images acquired at two rapidly toggling laser wavelengths in the near-infrared spectral range. 3D images of the breast anatomical background is enabled in LOUISA-3D by a sequence of B-mode ultrasound slices acquired with a transducer array rotating around the breast. This creates the possibility to visualize distributions of the total hemoglobin and blood oxygen saturation within specific morphological structures such as tumor angiogenesis microvasculature and larger vasculature in proximity of the tumor. The system has four major components: (i) a pulsed dual wavelength laser with fiberoptic light delivery system, (ii) an imaging module with two arc shaped probes (optoacoustic and ultrasonic) placed in a transparent bowl that rotates around the breast, (iii) a multichannel electronic system with analog preamplifiers and digital data acquisition boards, and (iv) computer for the system control, data processing and image reconstruction. The most important advancement of this latest system design compared with previously reported systems is the full breast illumination accomplished for each rotational step of the optoacoustic transducer array using fiberoptic illuminator rotating around the breast independently from rotation of the detector probe. We report here a pilot case studies

  13. 4D ultrasound imaging - ethically justifiable in India?

    Science.gov (United States)

    Indiran, Venkatraman

    2017-01-01

    Four-dimensional (4D) ultrasound (real-time volume sonography), which has been used in the West since the last decade for the determination of gender as well as for bonding and entertainment of the parents, has become widely available in India in this decade. Here, I would like to discuss the ethical issues associated with 4D ultrasonography in India. These are self-referral, the use of the technology for non-medical indications, a higher possibility of the disclosure of the foetus' gender and safety concerns.

  14. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    International Nuclear Information System (INIS)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M; Marsac, L

    2009-01-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  15. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M [Laboratoire Ondes et Acoustique, ESPCI, Universite Paris VII, UMR CNRS 7587, 10 rue Vauquelin, 75005 Paris (France); Marsac, L [Supersonic Imagine, Les Jardins de la Duranne, 510 rue Rene Descartes, 13857 Aix-en-Provence (France)], E-mail: fabrice.marquet@espci.org

    2009-05-07

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  16. On the reproducibility of expert-operated and robotic ultrasound acquisitions.

    Science.gov (United States)

    Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir

    2017-06-01

    We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.

  17. 3-D high-frequency endovaginal ultrasound of female urethral complex and assessment of inter-observer reliability

    International Nuclear Information System (INIS)

    Wieczorek, A.P.; Wozniak, M.M.; Stankiewicz, A.; Santoro, G.A.; Bogusiewicz, M.; Rechberger, T.

    2012-01-01

    Objectives: Assessment of the urethral complex and defining its morphological characteristics with 3-dimensional endovaginal ultrasonography with the use of high frequency rotational 360° transducer. Defining inter-observer reliability of the performed measurements. Materials and methods: Twenty-four asymptomatic, nulliparous females (aged 18–55, mean 32 years) underwent high-frequency (12 MHz) endovaginal ultrasound with rotational 360° and automated 3D data acquisition (type 2050, B-K Medical, Herlev, Denmark). Measurements of the urethral thickness, width and length, bladder neck-symphysis distance, intramural part of the urethra as well as rhabdosphincter thickness, width and length were taken by three investigators. Descriptive statistics for continuous data was performed. The results were given as mean values with standard deviation. The relationships among different variables were assessed with ANOVA for repeated measures factors, as well as T-test for dependent samples. Intraclass correlation (ICC) was calculated for each parameter. Intra- and interobserver reliability was assessed. Statistical significance was assigned to a P value of 0.8) and good reliability for rhabdosphincter measurements (ICC > 0.6) between all three investigators. Conclusions: Advanced EVUS provides detailed information on anatomy and morphology of the female urethral complex. Our results show that 360° rotational transducer with automated 3D acquisition, currently routinely used for proctological scanning is suitable for the reliable assessment of the urethral complex and can be applied in a routine diagnostics of pelvic floor disturbances in females.

  18. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)

    2013-01-01

    as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...

  19. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    Science.gov (United States)

    2013-07-01

    Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro, Ultrasound in medicine & biology 1995; 21: 841-8. 3. Dalecki D...doxorubicin, focused ultrasound , HIFU, prostate cancer I. INTRODUCTION Pulsed high-intensity focused ultrasound (pFUS) is able to create acoustic cavitation ... ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D

  20. Ultrasound assisted one pot expeditious synthesis of new pyrido[2,3-d]pyrimidine analogues using mild and inexpensive 4-dimethylaminopyridine (DMAP catalyst

    Directory of Open Access Journals (Sweden)

    Ajmal R. Bhat

    2017-09-01

    Full Text Available The one-pot three-component reaction for the synthesis of pyrido[2,3-d]pyrimidine derivatives has been reported via initial Knoevenagel, subsequent addition and final heterocyclization of substituted aromatic aldehydes, cyanoacetamide and 6-aminouracil in N,N-dimethylformamide (DMF solvent using 4-dimethylaminopyridine (DMAP as new organocatalyst under ultrasound irradiation. The results showed that a series of aromatic aldehydes were successfully used to prepare the targeted pyrido[2,3-d]pyrimidine derivatives with good to excellent yields (81–93% and there is no major effect on the yield of product by electron donating/withdrawing substituents. Short reaction time, environment friendly procedure, excellent yields, inexpensive and readily available catalyst are the advantages of this procedure. All synthesized compounds were characterized by IR, 1HNMR, 13CNMR and mass spectral data.

  1. 3D high-resolution anorectal manometry in patients with perianal fistulas: comparison with 3D-anal ultrasound.

    Science.gov (United States)

    Felt-Bersma, Richelle J F; Vlietstra, Maarten S; Vollebregt, Paul F; Han-Geurts, Ingrid J M; Rempe-Sorm, Vera; Vander Mijnsbrugge, Grietje J H; Molenaar, Charlotte B H

    2018-04-04

    Perianal fistula surgery can damage the anal sphincters which may cause faecal incontinence. By measuring regional pressures, 3D-HRAM potentially provides better guidance for surgical strategy in patients with perianal fistulas. The aim was to measure regional anal pressures with 3D-HRAM and to compare these with 3D-EUS findings in patients with perianal fistulas. Consecutive patients with active perianal fistulas who underwent both 3D-EUS and 3D-HRAM at a clinic specialised in proctology were included. A group of 30 patients without fistulas served as controls. Data regarding demographics, complaints, previous perianal surgical procedures and obstetric history were collected. The mean and regional anal pressures were measured with 3D-HRAM. Fistula tract areas detected with 3D-EUS were analysed with 3D-HRAM by visual coding and the regional pressures of the corresponding and surrounding area of the fistula tract areas were measured. The study was granted by the VUmc Medical Ethical Committee. Forty patients (21 males, mean age 47) were included. Four patients had a primary fistula, 19 were previously treated with a seton/abscess drainage and 17 had a recurrence after previously performed fistula surgery. On 3D-HRAM, 24 (60%) fistula tract areas were good and 8 (20%) moderately visible. All but 7 (18%) patients had normal mean resting pressures. The mean resting pressure of the fistula tract area was significantly lower compared to the surrounding area (47 vs. 76 mmHg; p < 0.0001). Only 2 (5%) patients had a regional mean resting pressure < 10 mmHg of the fistula tract area. Using a Δ mean resting pressure ≥ 30 mmHg difference between fistula tract area and non-fistula tract area as alternative cut-off, 21 (53%) patients were identified. In 6 patients 3D-HRAM was repeated after surgery: a local pressure drop was detected in one patient after fistulotomy with increased complaints of faecal incontinence. Profound local anal pressure drops are found

  2. Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels.

    Science.gov (United States)

    Li, Panpan; Jin, Zhaoyu; Peng, Lele; Zhao, Fei; Xiao, Dan; Jin, Yong; Yu, Guihua

    2018-05-01

    Nanostructured conductive polymer hydrogels (CPHs) have been extensively applied in energy storage owing to their advantageous features, such as excellent electrochemical activity and relatively high electrical conductivity, yet the fabrication of self-standing and flexible electrode-based CPHs is still hampered by their limited mechanical properties. Herein, macromolecularly interconnected 3D graphene/nanostructured CPH is synthesized via self-assembly of CPHs and graphene oxide macrostructures. The 3D hybrid hydrogel shows uniform interconnectivity and enhanced mechanical properties due to the strong macromolecular interaction between the CPHs and graphene, thus greatly reducing aggregation in the fiber-shaping process. A proof-of-concept all-gel-state fibrous supercapacitor based on the 3D polyaniline/graphene hydrogel is fabricated to demonstrate the outstanding flexibility and mouldability, as well as superior electrochemical properties enabled by this 3D hybrid hydrogel design. The proposed device can achieve a large strain (up to ≈40%), and deliver a remarkable volumetric energy density of 8.80 mWh cm -3 (at power density of 30.77 mW cm -3 ), outperforming many fiber-shaped supercapacitors reported previously. The all-hydrogel design opens up opportunities in the fabrication of next-generation wearable and portable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    International Nuclear Information System (INIS)

    Martínez, José M; Jarosz, Boguslaw J

    2015-01-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20–32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10–11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m −1 , 115  ±  4 dB m −1 and 175  ±  9 dB m −1 , respectively. The density and acoustic speed determination at room temperature (∼24 °C) gave 1040  ±  40 kg m −3 and 1545  ±  44 m s −1 , respectively. The average thermal conductivity was 0.532 W m −1  K −1 . The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies. (paper)

  4. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy.

    Science.gov (United States)

    De Silva, Tharindu; Fenster, Aaron; Cool, Derek W; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D

    2013-02-01

    Three-dimensional (3D) transrectal ultrasound (TRUS)-guided systems have been developed to improve targeting accuracy during prostate biopsy. However, prostate motion during the procedure is a potential source of error that can cause target misalignments. The authors present an image-based registration technique to compensate for prostate motion by registering the live two-dimensional (2D) TRUS images acquired during the biopsy procedure to a preacquired 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. The authors implemented an intensity-based 2D-3D rigid registration algorithm optimizing the normalized cross-correlation (NCC) metric using Powell's method. The 2D TRUS images acquired during the procedure prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the beginning of the procedure. The accuracy was measured by calculating the target registration error (TRE) using manually identified fiducials within the prostate; these fiducials were used for validation only and were not provided as inputs to the registration algorithm. They also evaluated the accuracy when the registrations were performed continuously throughout the biopsy by acquiring and registering live 2D TRUS images every second. This measured the improvement in accuracy resulting from performing the registration, continuously compensating for motion during the procedure. To further validate the method using a more challenging data set, registrations were performed using 3D TRUS images acquired by intentionally exerting different levels of ultrasound probe pressures in order to measure the performance of our algorithm when the prostate tissue was intentionally deformed. In this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D TRUS images and registering them to the baseline 3D image. A graphics processing unit (GPU)-based implementation was used to improve the

  5. The Interobserver Variability and Diagnostic Performance of 3-Dimensional Breast Ultrasound

    International Nuclear Information System (INIS)

    Lyou, Chae Yeon; Kim, Sun Mi; Jang, Mi Jung; Kim, Sung Won; Kang, Eun Young; Park, So Yeon; Moon, Woo Kyung

    2011-01-01

    We wanted to evaluate the interobserver variability and diagnostic performance of 3-dimensional (3D) breast ultrasound (US) as compared with that of 2- dimensional (2D) US. We included 150 patients who received US-guided core biopsy and 3D US between June 2009 and April 2010. Three breast imaging radiologists analyzed the 2D and 3D US images using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. The intra-observer agreement and inter-observer agreement were calculated. The sensitivity and specificity of 2D and 3D US were evaluated. The intra-observer agreement between 2D and 3D US was mostly slight or fair agreement. However, in terms of the final category, there was substantial agreement for all three radiologists. The inter-observer agreement of 3D US was similar to that of 2D US (moderate agreement for shape, orientation, circumscribed margin and boundary: fair agreement for indistinct margin, angular margin, microlobulated margin, echo pattern and final category). The sensitivity of 3D US for breast cancer was higher than that of 2D US for two radiologists (2D vs. 3D for reader 2: 55.8% vs. 61.5%, 2D vs. 3D for reader 3: 59.6% vs. 63.5%), and the specificity of 3D US was lower than that of 2D US for all the readers (2D vs. 3D for reader 1: 90.8% vs. 86.7%, 2D vs. 3D for reader 2: 90.8% vs. 87.8%, 2D vs. 3D for reader 3: 94.9% vs. 90.8%), but the difference was not significant (p ≥ 0.05). The interobserver variability and diagnostic performance of 3D breast US were similar to those of 2D US

  6. High-frequency 3D echodentographic imaging modality for early assessment of periodontal diseases: in vitro study

    Science.gov (United States)

    Mahmoud, Ahmed M.; Ngan, Peter; Crout, Richard; Mukdadi, Osama M.

    2009-02-01

    The use of ultrasound in dentistry is still an open growing area of research. Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. This study investigates the feasibility of high frequency ultrasound to reconstruct high resolution 3D surface images of human jawbone. Methods: A dentate and non-dentate mandibles were used in this study. The system employs high frequency single-element ultrasound focused transducers (15-30 MHz) for scanning. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high precision two-dimensional stage positioning system of +/-1 μm resolution for acquiring accurate and quantitative measurements of the mandible in vitro. Radio frequency (RF) signals are acquired laterally 44-45.5 μm apart for each frame. Different frames are reconstructed 500 μm apart for the 3D reconstruction. Signal processing algorithms are applied on the received ultrasound signals for filtering, focusing, and envelope detection before frame reconstruction. Furthermore, an edge detection technique is adopted to detect the bone surface in each frame. Finally, all edges are combined together in order to render a 3D surface image of the jawbone. Major anatomical landmarks on the resultant images were confirmed with the anatomical structures on the mandibles to show the efficacy of the system. Comparison were also made with conventional 2D radiographs to show the superiority of the ultrasound imaging system in diagnosing small defects in the lateral, axial and elevation planes of space. Results: The landmarks on all ultrasound images matched with those on the mandible, indicating the efficacy of the system in detecting small structures in human jaw bones. Comparison with conventional 2D radiographic images of the same mandible showed superiority of

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... symptoms experienced by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams also ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterus). Sonohysterography allows for a more in-depth investigation of the uterine cavity . Three-dimensional (3-D) ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ...

  10. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  11. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  12. The clinical study of 2D and power doppler ultrasound in esophagus varix

    International Nuclear Information System (INIS)

    Li Qiang; Zhou Liang; Zhang Yucheng; Yang Minghua; Ruan Fenglian; Lu Haixia; Li Yue

    2008-01-01

    Objective: To study the application of 2D and Power Doppler Ultrasound in diagnosing the abdominal esophageal varicose veins. Methods: 65 patients under suspicion with chronic hepatitis and cirrhosis for esophageal varicose at esophagus in abdomen section were examined by 2D and Power Doppler Ultrasound.Among them, 35 patients suffered from esophageal varicose veins proved by gastroscopy and the rest did not. Results: On the power doppler imaging map, colored blood stream signals were showed in varicose veins while without signals in non-varicose veins.The diagnostic sensitivity and specificity were 91.4% and 100% respectively. On the two-dimensional image chart, non-echoes were represented in varicose veins. The anteroposterior diameter, right-left diameter, as well as the thickness of esophagus wall were larger in patients with varicose veins than those in non varicose veins cases (P<0.01). Conclusion: 2D combined with Power Doppler Ultrasound was of non-invasive, safe, sensitive and high specificity, which is a valuable and practical tool in diagnosing the esophageal varicose veins. (authors)

  13. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    Directory of Open Access Journals (Sweden)

    Johann Otto Pelz

    Full Text Available Currently, colour-coded duplex sonography (2D-CDS is clinical standard for detection and grading of internal carotid artery stenosis (ICAS. However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS for direct visualisation and quantification of ICAS.Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA reduction percentage and compared with 2D-CDS.There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%. Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90 followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81. Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51. Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}. In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57 than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51.Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard

  14. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    Science.gov (United States)

    Pelz, Johann Otto; Weinreich, Anna; Karlas, Thomas; Saur, Dorothee

    2017-01-01

    Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visualisation and quantification of ICAS. Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA) reduction percentage and compared with 2D-CDS. There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81). Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51). Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard imaging

  15. Preoperative 4D CT Localization of Nonlocalizing Parathyroid Adenomas by Ultrasound and SPECT-CT.

    Science.gov (United States)

    Hinson, Andrew M; Lee, David R; Hobbs, Bradley A; Fitzgerald, Ryan T; Bodenner, Donald L; Stack, Brendan C

    2015-11-01

    To evaluate 4-dimensional (4D) computed tomography (CT) for the localization of parathyroid adenomas previously considered nonlocalizing on ultrasound and single-photon emission CT with CT scanning (SPECT-CT). To measure radiation exposure associated with 4D-CT and compared it with SPECT-CT. Case series with chart review. University tertiary hospital. Nineteen adults with primary hyperparathyroidism who underwent preoperative 4D CT from November 2013 through July 2014 after nonlocalizing preoperative ultrasound and technetium-99m SPECT-CT scans. Sensitivity, specificity, predictive values, and accuracy of 4D CT were evaluated. Nineteen patients (16 women and 3 men) were included with a mean age of 66 years (range, 39-80 years). Mean preoperative parathyroid hormone level was 108.5 pg/mL (range, 59.3-220.9 pg/mL), and mean weight of the excised gland was 350 mg (range, 83-797 mg). 4D CT sensitivity and specificity for localization to the patient's correct side of the neck were 84.2% and 81.8%, respectively; accuracy was 82.9%. The sensitivity for localizing adenomas to the correct quadrant was 76.5% and 91.5%, respectively; accuracy was 88.2%. 4D CT radiation exposure was significantly less than the radiation associated with SPECT-CT (13.8 vs 18.4 mSv, P = 0.04). 4D CT localizes parathyroid adenomas with relatively high sensitivity and specificity and allows for the localization of some adenomas not observed on other sestamibi-based scans. 4D CT was also associated with less radiation exposure when compared with SPECT-CT based on our study protocol. 4D CT may be considered as first- or second-line imaging for localizing parathyroid adenomas in the setting of primary hyperparathyroidism. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  16. 2-D Ultrasound Scanning Probes for 3-D Medical Diagnostic Imaging

    National Research Council Canada - National Science Library

    Slayton, Michael

    1999-01-01

    .... It is being pursued vigorously by the industry and is technologically feasible. However, cost versus performance issues are currently extremely sensitive and holding back commercialization of a number of 3-D technical concepts...

  17. A Standardized Method for 4D Ultrasound-Guided Peripheral Nerve Blockade and Catheter Placement

    Directory of Open Access Journals (Sweden)

    N. J. Clendenen

    2014-01-01

    Full Text Available We present a standardized method for using four-dimensional ultrasound (4D US guidance for peripheral nerve blocks. 4D US allows for needle tracking in multiple planes simultaneously and accurate measurement of the local anesthetic volume surrounding the nerve following injection. Additionally, the morphology and proximity of local anesthetic spread around the target nerve is clearly seen with the described technique. This method provides additional spatial information in real time compared to standard two-dimensional ultrasound.

  18. Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound

    International Nuclear Information System (INIS)

    Harris, Emma J; Miller, Naomi R; Bamber, Jeffrey C; Symonds-Tayler, J Richard N; Evans, Philip M

    2010-01-01

    We have evaluated a 4D ultrasound-based motion tracking system developed for tracking of abdominal organs during therapy. Tracking accuracy and precision were determined using a tissue-mimicking phantom, by comparing tracked motion with known 3D sinusoidal motion. The feasibility of tracking 3D liver motion in vivo was evaluated by acquiring 4D ultrasound data from four healthy volunteers. For two of these volunteers, data were also acquired whilst simultaneously measuring breath flow using a spirometer. Hepatic blood vessels, tracked off-line using manual tracking, were used as a reference to assess, in vivo, two types of automated tracking algorithm: incremental (from one volume to the next) and non-incremental (from the first volume to each subsequent volume). For phantom-based experiments, accuracy and precision (RMS error and SD) were found to be 0.78 mm and 0.54 mm, respectively. For in vivo measurements, mean absolute distance and standard deviation of the difference between automatically and manually tracked displacements were less than 1.7 mm and 1 mm respectively in all directions (left-right, anterior-posterior and superior-inferior). In vivo non-incremental tracking gave the best agreement. In both phantom and in vivo experiments, tracking performance was poorest for the elevational component of 3D motion. Good agreement between automatically and manually tracked displacements indicates that 4D ultrasound-based motion tracking has potential for image guidance applications in therapy.

  19. [Non-biological 3D printed simulator for training in percutaneous nephro- lithotripsy].

    Science.gov (United States)

    Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Ali, S Kh; Bukatov, M D; Letunovskiy, A V; Byadretdinov, I Sh

    2018-03-01

    To develop a non-biological 3D printed simulator for training and preoperative planning in percutaneous nephrolithotripsy (PCNL), which allows doctors to master and perform all stages of the operation under ultrasound and fluoroscopy guidance. The 3D model was constructed using multislice spiral computed tomography (MSCT) images of a patient with staghorn urolithiasis. The MSCT data were processed and used to print the model. The simulator consisted of two parts: a non-biological 3D printed soft model of a kidney with reproduced intra-renal vascular and collecting systems and a printed 3D model of a human body. Using this 3D printed simulator, PCNL was performed in the interventional radiology operating room under ultrasound and fluoroscopy guidance. The designed 3D printed model of the kidney completely reproduces the individual features of the intra-renal structures of the particular patient. During the training, all the main stages of PCNL were performed successfully: the puncture, dilation of the nephrostomy tract, endoscopic examination, intra-renal lithotripsy. Our proprietary 3D-printed simulator is a promising development in the field of endourologic training and preoperative planning in the treatment of complicated forms of urolithiasis.

  20. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    Science.gov (United States)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  1. ULTRASOUND CRITERIA OF EARLY DIAGNOSTICS OF OVARIAN CARCINOMA

    Directory of Open Access Journals (Sweden)

    L. A. Ashrafyan

    2015-01-01

    Full Text Available Introduction. Ovarian cancer (OC in Russia is ranked the seventh within the structure of general cancer diseases and the third within the gynecological tumors, due to such reasons the problem of early diagnostics is still actual. New technologies, such as color Doppler ultrasonography,3D power Doppler ultrasonography contribute to increasing of opportunities of ultrasound analysis to detect any malignancy signs.Materials and methods. The paper sets out the results of comprehensive ultrasound study of 68 patients with morphologically verified OC at stages IА–В, IIА–В. The control group was made of 100 female patients with morphologically verified ovarian tumors (serosal cystadenomas, thecomas, fibromas. A complex of the following ultrasound methods was used during the study: 2D and 3D ultrasonography in B mode, in color Doppler and power mapping mode, 3D angiography, spectrum Doppler imaging.Results. Maximum size of tumor varied within a range between 37 and 300 mm (108 ± 61.2 mm. It worth noting that no direct dependence between the size of neoplasm and process phase was established. When assessing the echostructure, all ovarian tumors were divided into 3 structure types: cystic type (57.8 % of cases, cystic and solid type (33.3 % of cases, solid type (8.9 % of cases. The conducted analysis of types of small pelvis neoplasm echostructures enabled to evolve the sonographic types of ovarian tumors, more or less associated with the malignant transformation. The most relevanl Doppler ultrasonography exponents characteristic for benignant and malignant processes: resistance index in benignant tumors was 0.56, at OC – 0.32 (р < 0.001; average arterial blood velocity in benignant tumors – 7.8 cm/s, at OC – 20.1 cm/s (р < 0.001; average maximum venous flow velocity in benignant tumors – 3.2 cm/s, at OC – 9.3 cm/s (р < 0.001.Conclusion. Therefore modern ultrasonography can detect and differentiate rather efficiently the localized

  2. [Two- and three-dimensional power Doppler ultrasound in the follow-up of placenta accreta treated conservatively].

    Science.gov (United States)

    Roulot, A; Barranger, E; Morel, O; Soyer, P; Héquet, D

    2015-02-01

    To determinate the potential of 2D and 3D-ultrasound in the follow-up of patients with placenta accreta treated conservatively. Seven patients with placenta accreta treated conservatively during June 2007 and September 2009 were included. The follow-up consisted in clinical examination and 2D/3D-ultrasound once a month. Criteria studied included clinical outcome, echogenicity at 2D-ultrasound, vascularisation at colour Doppler, Mean Grey at 3D-ultrasound and vascularisation, flow and perfusion index. Seven women with invasive placenta (3 placentas accreta and 2 percreta) were studied. The mean follow-up was 228 days [75-369]. Mean delay for complete elimination of residual placenta was 280 days [120-365]. The two main results were: presence of an increased anechogenicpart in residual placenta before complete resorption for all patients; a systematic and concomitant stop of genital haemorrhage and vascularisation at colour Doppler. High degrees of variability in parameters measured at 3D-ultrasound were observed between patients so that correlations with clinical outcome were found. Long and regular follow-up is essential after conservative management but the role of 3D-ultrasound compared to 2D-ultrasound was not demonstrated in this study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. FUN3D Manual: 13.3

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2018-01-01

    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  4. Three-dimensional Ultrasound in the Management of Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Lowe, C B; Ghulam, Q; Bredahl, K

    2016-01-01

    Three-dimensional (3D) ultrasound is an evolving modality that may have numerous applications in the management of abdominal aortic aneurysms. Many vascular specialists will not be familiar with the different ways in which 3D vascular ultrasound data can be acquired nor how potential applications...

  5. Proposal of custom made wrist orthoses based on 3D modelling and 3D printing.

    Science.gov (United States)

    Abreu de Souza, Mauren; Schmitz, Cristiane; Marega Pinhel, Marcelo; Palma Setti, Joao A; Nohama, Percy

    2017-07-01

    Accessibility to three-dimensional (3D) technologies, such as 3D scanning systems and additive manufacturing (like 3D printers), allows a variety of 3D applications. For medical applications in particular, these modalities are gaining a lot of attention enabling several opportunities for healthcare applications. The literature brings several cases applying both technologies, but none of them focus on the spreading of how this technology could benefit the health segment. This paper proposes a new methodology, which employs both 3D modelling and 3D printing for building orthoses, which could better fit the demands of different patients. Additionally, there is an opportunity for sharing expertise, as it represents a trendy in terms of the maker-movement. Therefore, as a result of the proposed approach, we present a case study based on a volunteer who needs an immobilization orthosis, which was built for exemplification of the whole process. This proposal also employs freely available 3D models and software, having a strong social impact. As a result, it enables the implementation and effective usability for a variety of built to fit solutions, hitching useful and smarter technologies for the healthcare sector.

  6. Selective determination of caffeine in foods with 3D-graphene based ultrasound-assisted magnetic solid phase extraction.

    Science.gov (United States)

    Rahimi, Afshin; Zanjanchi, Mohammad Ali; Bakhtiari, Sadjad; Dehsaraei, Mohammad

    2018-10-01

    An efficient method was applied for extraction of caffeine in food samples. Three-dimensional graphene-Fe 3 O 4 (3D-G-Fe 3 O 4 ) nanoparticles was successfully synthesized and used as adsorbent in magnetic solid phase extraction (MSPE) step. The properties of synthesized adsorbent were characterized by fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The influence of main parameters of extraction procedure such as ultrasound parameter, amount of nanoparticles, pH, salt concentration and desorption condition were investigated and optimized. Under the optimized experimental conditions, the figure of merit results showed excellent linear dynamic range (LDR) of 0.5-500 µg mL -1 , with determination coefficient (R 2 ) higher than 0.996 and limit of detection (LOD) of 0.1 µg mL -1 . Intra- and inter-day relative standard deviations (RSDs) were less than 5.9 and 7.1%, respectively. The method was successfully applied for determination of caffeine in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [University of Luebeck, Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck (Germany); Jauer, P; Schweikard, A; Ernst, F [University of Luebeck, Luebeck (Germany)

    2016-06-15

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  8. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    International Nuclear Information System (INIS)

    Kuhlemann, I; Jauer, P; Schweikard, A; Ernst, F

    2016-01-01

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  9. The influence of ultrasound on ionizing radiation effects, 3

    International Nuclear Information System (INIS)

    Ishigaki, Takeo; Fujita, Katsuzo; Sakuma, Sadayuki

    1976-01-01

    The effects of simultaneous administration of ionizing radiation ( 60 Co gamma-rays) and ultrasound (1 MHz, 3 W/cm 2 ) on normal tissues of the auricules and kidneys, of rabbits were examined. Irreversible damages of the auricules were obtained with simultaneous irradiation of 690 R of 60 Co gamma-rays and exposure to ultrasound for 15 minutes, but with only irradiation of 2760 R of 60 Co gamma-rays or only administration of ultrasound for 60 minutes, damages were reversible. In 5 of 6 kidneys, interstitial nephritis was demonstrated histopathologically after simultaneous administration of 200 R of 60 Co gamma-rays and ultrasound for 5 minutes. However, with each alone (600 R of 60 Co gamma-rays and ultrasound for 60 minutes) no detectable changes were found. The results obtained from these experiments suggest that the effect of simultaneous irradiation with 60 Co gamma-rays and exposure to ultrasound on normal tissues may be synergistic and that ultrasound may potentiate the effects of 60 Co gamma-rays. (Evans, J.)

  10. A simulation technique for 3D MR-guided acoustic radiation force imaging

    International Nuclear Information System (INIS)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  11. Birth weight and neonatal adiposity prediction using fractional limb volume obtained with 3D ultrasound.

    Science.gov (United States)

    O'Connor, Clare; O'Higgins, Amy; Doolan, Anne; Segurado, Ricardo; Stuart, Bernard; Turner, Michael J; Kennelly, Máireád M

    2014-01-01

    The objective of this investigation was to study fetal thigh volume throughout gestation and explore its correlation with birth weight and neonatal body composition. This novel technique may improve birth weight prediction and lead to improved detection rates for fetal growth restriction. Fractional thigh volume (TVol) using 3D ultrasound, fetal biometry and soft tissue thickness were studied longitudinally in 42 mother-infant pairs. The percentages of neonatal body fat, fat mass and fat-free mass were determined using air displacement plethysmography. Correlation and linear regression analyses were performed. Linear regression analysis showed an association between TVol and birth weight. TVol at 33 weeks was also associated with neonatal fat-free mass. There was no correlation between TVol and neonatal fat mass. Abdominal circumference, estimated fetal weight (EFW) and EFW centile showed consistent correlations with birth weight. Thigh volume demonstrated an additional independent contribution to birth weight prediction when added to the EFW centile from the 38-week scan (p = 0.03). Fractional TVol performed at 33 weeks gestation is correlated with birth weight and neonatal lean body mass. This screening test may highlight those at risk of fetal growth restriction or macrosomia.

  12. EarthServer - an FP7 project to enable the web delivery and analysis of 3D/4D models

    Science.gov (United States)

    Laxton, John; Sen, Marcus; Passmore, James

    2013-04-01

    EarthServer aims at open access and ad-hoc analytics on big Earth Science data, based on the OGC geoservice standards Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS). The WCS model defines "coverages" as a unifying paradigm for multi-dimensional raster data, point clouds, meshes, etc., thereby addressing a wide range of Earth Science data including 3D/4D models. WCPS allows declarative SQL-style queries on coverages. The project is developing a pilot implementing these standards, and will also investigate the use of GeoSciML to describe coverages. Integration of WCPS with XQuery will in turn allow coverages to be queried in combination with their metadata and GeoSciML description. The unified service will support navigation, extraction, aggregation, and ad-hoc analysis on coverage data from SQL. Clients will range from mobile devices to high-end immersive virtual reality, and will enable 3D model visualisation using web browser technology coupled with developing web standards. EarthServer is establishing open-source client and server technology intended to be scalable to Petabyte/Exabyte volumes, based on distributed processing, supercomputing, and cloud virtualization. Implementation will be based on the existing rasdaman server technology developed. Services using rasdaman technology are being installed serving the atmospheric, oceanographic, geological, cryospheric, planetary and general earth observation communities. The geology service (http://earthserver.bgs.ac.uk/) is being provided by BGS and at present includes satellite imagery, superficial thickness data, onshore DTMs and 3D models for the Glasgow area. It is intended to extend the data sets available to include 3D voxel models. Use of the WCPS standard allows queries to be constructed against single or multiple coverages. For example on a single coverage data for a particular area can be selected or data with a particular range of pixel values. Queries on multiple surfaces can be

  13. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    Science.gov (United States)

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079

  14. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  15. Role of 3D power Doppler ultrasound in the further characterization of suspicious breast masses.

    Science.gov (United States)

    Kupeli, Ali; Kul, Sibel; Eyuboglu, Ilker; Oguz, Sukru; Mungan, Sevdegul

    2016-01-01

    To investigate effectiveness of vascular indices obtained with 3D power Doppler ultrasound in the further characterization of breast masses and prevention of unnecessary biopsies. Between April 2013 and March 2014, 109 patients (age range, 17-85 years; mean age, 47 years) with 117 radiologically or clinically suspicious breast masses were prospectively evaluated with 3DPDUS before biopsy. Mass volume (MV), vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated using Virtual Organ Computer-aided Analysis (VOCAL) software and they were correlated with the final diagnosis. Cutoff values of vascular indices were determinated and diagnostic efficacy was calculated with receiver operating curve (ROC) analysis. All vascular indices, age of patients and tumor volume were significantly lower in benign masses compared with malignant ones (p<0.001). AUCs were 0.872, 0.867 and 0.789 for VI, VFI and FI, respectively. The diagnostic efficacy of VI (for cutoff 1.1; 83% sensitivity, 82% specificity and 82% accuracy) and VFI (for cutoff 0.4; 80% sensitivity, 83% specificity and 80% accuracy) were significantly higher than FI (for cutoff 33,9; 73% sensitivity, 69% specificity and 71% accuracy). It was found that with the use of vascular indices of 3DPDUS in the further characterization of suspicious breast masses between 24% to 37% of unnecessary biopsies could have been avoided. The vascular indices obtained with 3DPDUS seem reliable in the further characterization of suspicious breast masses and might be used to decrease unnecessary biopsies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Preliminary examples of 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2013-01-01

    This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental ult...... as opposed to magnetic resonance imaging (MRI). The results demonstrate that the 3D TO method is capable of performing 3D vector flow imaging.......This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental...... ultrasound scanner SARUS on a flow rig system with steady flow. The vessel of the flow-rig is centered at a depth of 30 mm, and the flow has an expected 2D circular-symmetric parabolic prole with a peak velocity of 1 m/s. Ten frames of 3D vector flow images are acquired in a cross-sectional plane orthogonal...

  17. WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X; Rossi, P; Jani, A; Ogunleye, T; Curran, W; Liu, T [Emory Univ, Atlanta, GA (United States)

    2015-06-15

    Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage. During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful

  18. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    Directory of Open Access Journals (Sweden)

    Mohammed-Baker Habhab

    2016-11-01

    Full Text Available Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  19. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    Science.gov (United States)

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... D images. A Doppler ultrasound study may be part of an ultrasound examination. Doppler ultrasound , also called ... terms of the distance traveled per unit of time, rather than as a color picture. It can ...

  1. PROTOTYPING A SENSOR ENABLED 3D CITYMODEL ON GEOSPATIAL MANAGED OBJECTS

    OpenAIRE

    E. Kjems; J. Kolář

    2013-01-01

    One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole...

  2. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images

    NARCIS (Netherlands)

    Haak, A.; Vegas-Sanchez-Ferrero, G.; Mulder, H.W.; Ren, B.; Kirisli, H.A.; Metz, C.; van Burken, G.; van Stralen, M.; Pluim, J.P.W.; Steen, van der A.F.W.; Walsum, van T.; Bosch, J.G.

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE

  3. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  4. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    Science.gov (United States)

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  5. Proposal for standardised ultrasound descriptors of abnormally invasive placenta (AIP)

    DEFF Research Database (Denmark)

    Collins, Sally L; Ashcroft, Anna; Braun, Thorsten

    2016-01-01

    on subjective interpretation of imaging signs. There is no accepted consensus on the definition of the commonly used ultrasound markers for AIP. The studies included in a recently published systematic review of antenatal sonographic diagnosis of AIP were analysed for the ultrasound descriptors. Different...... were examined for wording used to describe AIP signs. These were extracted and grouped by ultrasound modality, and synonymous or identical terms identified. The group agreed on six unified descriptors for 2D greyscale signs, four for 2D colour Doppler and one for 3D power Doppler. Four papers included...

  6. Results of vardenafil mediated power Doppler ultrasound, contrast enhanced ultrasound and systematic random biopsies to detect prostate cancer.

    Science.gov (United States)

    Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea

    2011-06-01

    We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  8. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.

    Science.gov (United States)

    Hodaei, Amin; Akhlaghi, Omid; Khani, Navid; Aytas, Tunahan; Sezer, Dilek; Tatli, Buse; Menceloglu, Yusuf Z; Koc, Bahattin; Akbulut, Ozge

    2018-03-21

    A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

  9. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    International Nuclear Information System (INIS)

    Bäck, A

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK ® (Sun Nuclear), MatriXX Evolution (IBA Dosimetry) and OCTAVIOUS ® 1500 (PTW), 3D phantoms such as OCTAVIUS ® 4D (PTW), ArcCHECK ® (Sun Nuclear) and Delta 4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDose TM (Sun Nuclear) and Dosimetry Check TM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific

  10. Initial Experience of Tomosynthesis-Guided Vacuum-Assisted Biopsies of Tomosynthesis-Detected (2D Mammography and Ultrasound Occult) Architectural Distortions.

    Science.gov (United States)

    Patel, Bhavika K; Covington, Matthew; Pizzitola, Victor J; Lorans, Roxanne; Giurescu, Marina; Eversman, William; Lewin, John

    2018-03-23

    As experience and aptitude in digital breast tomosynthesis (DBT) have increased, radiologists are seeing more areas of architectural distortion (AD) on DBT images compared with standard 2D mammograms. The purpose of this study is to report our experience using tomosynthesis-guided vacuum-assisted biopsies (VABs) for ADs that were occult at 2D mammography and ultrasound and to analyze the positive predictive value for malignancy. We performed a retrospective review of 34 DBT-detected ADs that were occult at mammography and ultrasound. We found a positive predictive value of 26% (nine malignancies in 34 lesions). Eight of the malignancies were invasive and one was ductal carcinoma in situ. The invasive cancers were grade 1 (4/8; 50%), grade 2 (2/8; 25%), or grade 3 (1/8; 13%); information about one invasive cancer was not available. The mean size of the invasive cancers at pathologic examination was 7.5 mm (range, 6-30 mm). Tomosynthesis-guided VAB is a feasible method to sample ADs that are occult at 2D mammography and ultrasound. Tomosynthesis-guided VAB is a minimally invasive method that detected a significant number of carcinomas, most of which were grade 1 cancers. Further studies are needed.

  11. Toward a 3D transrectal ultrasound system for verification of needle placement during high-dose-rate interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Rodgers, Jessica Robin; Surry, Kathleen; Leung, Eric; D'Souza, David; Fenster, Aaron

    2017-05-01

    Treatment for gynecologic cancers, such as cervical, recurrent endometrial, and vaginal malignancies, commonly includes external-beam radiation and brachytherapy. In high-dose-rate (HDR) interstitial gynecologic brachytherapy, radiation treatment is delivered via hollow needles that are typically inserted through a template on the perineum with a cylinder placed in the vagina for stability. Despite the need for precise needle placement to minimize complications and provide optimal treatment, there is no standard intra-operative image-guidance for this procedure. While some image-guidance techniques have been proposed, including magnetic resonance (MR) imaging, X-ray computed tomography (CT), and two-dimensional (2D) transrectal ultrasound (TRUS), these techniques have not been widely adopted. In order to provide intra-operative needle visualization and localization during interstitial brachytherapy, we have developed a three-dimensional (3D) TRUS system. This study describes the 3D TRUS system and reports on the system validation and results from a proof-of-concept patient study. To obtain a 3D TRUS image, the system rotates a conventional 2D endocavity transducer through 170 degrees in 12 s, reconstructing the 2D frames into a 3D image in real-time. The geometry of the reconstruction was validated using two geometric phantoms to ensure the accuracy of the linear measurements in each of the image coordinate directions and the volumetric accuracy of the system. An agar phantom including vaginal and rectal canals, as well as a model uterus and tumor, was designed and used to test the visualization and localization of the interstitial needles under idealized conditions by comparing the needles' positions between the 3D TRUS scan and a registered MR image. Five patients undergoing HDR interstitial gynecologic brachytherapy were imaged using the 3D TRUS system following the insertion of all needles. This image was manually, rigidly registered to the clinical

  12. Dynamic Frames Based Generation of 3D Scenes and Applications

    Directory of Open Access Journals (Sweden)

    Danijel Radošević

    2015-05-01

    Full Text Available Modern graphic/programming tools like Unity enables the possibility of creating 3D scenes as well as making 3D scene based program applications, including full physical model, motion, sounds, lightning effects etc. This paper deals with the usage of dynamic frames based generator in the automatic generation of 3D scene and related source code. The suggested model enables the possibility to specify features of the 3D scene in a form of textual specification, as well as exporting such features from a 3D tool. This approach enables higher level of code generation flexibility and the reusability of the main code and scene artifacts in a form of textual templates. An example of the generated application is presented and discussed.

  13. Ultrasound-based guidance of intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  14. Treatment time reduction for large thermal lesions by using a multiple 1D ultrasound phased array system

    International Nuclear Information System (INIS)

    Liu, H.-L.; Chen, Y.-Y.; Yen, J.-Y.; Lin, W.-L.

    2003-01-01

    To generate large thermal lesions in ultrasound thermal therapy, cooling intermissions are usually introduced during the treatment to prevent near-field heating, which leads to a long treatment time. A possible strategy to shorten the total treatment time is to eliminate the cooling intermissions. In this study, the two methods, power optimization and acoustic window enlargement, for reducing power accumulation in the near field are combined to investigate the feasibility of continuously heating a large target region (maximally 3.2 x 3.2 x 3.2 cm 3 ). A multiple 1D ultrasound phased array system generates the foci to scan the target region. Simulations show that the target region can be successfully heated without cooling and no near-field heating occurs. Moreover, due to the fact that there is no cooling time during the heating sessions, the total treatment time is significantly reduced to only several minutes, compared to the existing several hours

  15. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching

    Science.gov (United States)

    Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan

    2009-02-01

    The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.

  16. Reinforcement of 3D Printed Nanocomposite Materials Using Ultrasound Alignment of Carbon Nanotubes

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to understand how ultrasound waves can be used to create user-defined patterns of nanoparticles in a photopolymer resin, which will...

  17. Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.

    Science.gov (United States)

    Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura

    2016-08-01

    Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.

  18. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    Science.gov (United States)

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames.

  19. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    Science.gov (United States)

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Dynamic Downlink Spectrum Access for D2D-Enabled Heterogeneous Networks

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2018-01-15

    This paper proposes new approaches for underlay device- to-device (D2D) communication in spectrum-shared het- erogeneous cellular networks. It considers devices that share downlink resources and have an enabled D2D feature to improve coverage. The mode of operation classifies devices according to their experienced base station (BS) coverage, potential to be served by BS, ability of BS to meet their quality of service (QoS), and their downlink resources occupancy. The initiation of D2D cooperation is conditioned on proposed provisional access by an active device, wherein its serving BS attempts to meet its QoS using as low number of spectrum channels as possible, while treating remaining channels for feasible D2D cooperation. Detailed formulations for the mode of operation and a proposed D2D path allocation scheme are presented under perfect and imperfect operation scenarios. The developed results are generally applicable for any performance metric and network model.

  1. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    Science.gov (United States)

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  2. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  3. Single, aligned carbon nanotubes in 3D nanoscale architectures enabled by top-down and bottom-up manufacturable processes

    International Nuclear Information System (INIS)

    Kaul, Anupama B; Megerian, Krikor G; Von Allmen, Paul; Baron, Richard L

    2009-01-01

    We have developed manufacturable approaches for forming single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 μm deep trenches. These wafer-scale approaches were enabled by using chemically amplified resists and high density, low pressure plasma etching techniques to form the 3D nanoscale architectures. The tube growth was performed using dc plasma-enhanced chemical vapor deposition (PECVD), and the materials used in the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 deg. C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. Such scalable, high throughput top-down fabrication processes, when integrated with the bottom-up tube synthesis techniques, should accelerate the development of plasma grown tubes for a wide variety of applications in electronics, such as nanoelectromechanical systems, interconnects, field emitters and sensors. Tube characteristics were also engineered to some extent, by adjusting the Ni catalyst thickness, as well as the pressure and plasma power during growth.

  4. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    Science.gov (United States)

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  5. Prenatal diagnosis of parapagus diprosopus dibrachius dipus twins with spina bifida in the first trimester using two- and three-dimensional ultrasound.

    Science.gov (United States)

    Yang, Pei-Yin; Wu, Ching-Hua; Yeh, Guang-Perng; Hsieh, Charles Tsung-Che

    2015-12-01

    Here, we report a case of parapagus diprosopus twins with spina bifida diagnosed in the first trimester of pregnancy using two-dimensional (2D) and three-dimensional (3D) ultrasound. A 28-year-old Taiwanese woman, gravid 1, para 0, visited our hospital due to an abnormal fetal head shape discovered by 2D ultrasound at 11-weeks gestation. Parapagus diprosopus twins with spina bifida were diagnosed after ultrasound examination. The characteristics of parapagus diprosopus twins are more illustrative in 3D ultrasound than in 2D ultrasound. After counseling, termination of pregnancy was chosen by the couple. Although necropsy was declined, the gross appearance and radiograph of the abortus confirmed our diagnosis. With the help of 3D ultrasound, we made an early and definitive diagnosis of conjoined twins. Copyright © 2015. Published by Elsevier B.V.

  6. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    Science.gov (United States)

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. PLOT3D Export Tool for Tecplot

    Science.gov (United States)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  8. Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions.

    Science.gov (United States)

    Shahin, Osama; Beširević, Armin; Kleemann, Markus; Schlaefer, Alexander

    2014-05-01

    Image-guided navigation aims to provide better orientation and accuracy in laparoscopic interventions. However, the ability of the navigation system to reflect anatomical changes and maintain high accuracy during the procedure is crucial. This is particularly challenging in soft organs such as the liver, where surgical manipulation causes significant tumor movements. We propose a fast approach to obtain an accurate estimation of the tumor position throughout the procedure. Initially, a three-dimensional (3D) ultrasound image is reconstructed and the tumor is segmented. During surgery, the position of the tumor is updated based on newly acquired tracked ultrasound images. The initial segmentation of the tumor is used to automatically detect the tumor and update its position in the navigation system. Two experiments were conducted. First, a controlled phantom motion using a robot was performed to validate the tracking accuracy. Second, a needle navigation scenario based on pseudotumors injected into ex vivo porcine liver was studied. In the robot-based evaluation, the approach estimated the target location with an accuracy of 0.4 ± 0.3 mm. The mean navigation error in the needle experiment was 1.2 ± 0.6 mm, and the algorithm compensated for tumor shifts up to 38 mm in an average time of 1 s. We demonstrated a navigation approach based on tracked laparoscopic ultrasound (LUS), and focused on the neighborhood of the tumor. Our experimental results indicate that this approach can be used to quickly and accurately compensate for tumor movements caused by surgical manipulation during laparoscopic interventions. The proposed approach has the advantage of being based on the routinely used LUS; however, it upgrades its functionality to estimate the tumor position in 3D. Hence, the approach is repeatable throughout surgery, and enables high navigation accuracy to be maintained.

  9. US-CT 3D dual imaging by mutual display of the same sections for depicting minor changes in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroyuki, E-mail: fukuhiro1962@hotmail.com [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Ito, Ryu; Ohto, Masao; Sakamoto, Akio [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Otsuka, Masayuki; Togawa, Akira; Miyazaki, Masaru [Department of General Surgery, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi, Chiba 260-0856 (Japan); Yamagata, Hitoshi [Toshiba Medical Systems Corporation, Otawara 324-0036 (Japan)

    2012-09-15

    The purpose of this study was to evaluate the usefulness of ultrasound-computed tomography (US-CT) 3D dual imaging for the detection of small extranodular growths of hepatocellular carcinoma (HCC). The clinical and pathological profiles of 10 patients with single nodular type HCC with extranodular growth (extranodular growth) who underwent a hepatectomy were evaluated using two-dimensional (2D) ultrasonography (US), three-dimensional (3D) US, 3D computed tomography (CT) and 3D US-CT dual images. Raw 3D data was converted to DICOM (Digital Imaging and Communication in Medicine) data using Echo to CT (Toshiba Medical Systems Corp., Tokyo, Japan), and the 3D DICOM data was directly transferred to the image analysis system (ZioM900, ZIOSOFT Inc., Tokyo, Japan). By inputting the angle number (x, y, z) of the 3D CT volume data into the ZioM900, multiplanar reconstruction (MPR) images of the 3D CT data were displayed in a manner such that they resembled the conventional US images. Eleven extranodular growths were detected pathologically in 10 cases. 2D US was capable of depicting only 2 of the 11 extranodular growths. 3D CT was capable of depicting 4 of the 11 extranodular growths. On the other hand, 3D US was capable of depicting 10 of the 11 extranodular growths, and 3D US-CT dual images, which enable the dual analysis of the CT and US planes, revealed all 11 extranodular growths. In conclusion, US-CT 3D dual imaging may be useful for the detection of small extranodular growths.

  10. US-CT 3D dual imaging by mutual display of the same sections for depicting minor changes in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Fukuda, Hiroyuki; Ito, Ryu; Ohto, Masao; Sakamoto, Akio; Otsuka, Masayuki; Togawa, Akira; Miyazaki, Masaru; Yamagata, Hitoshi

    2012-01-01

    The purpose of this study was to evaluate the usefulness of ultrasound-computed tomography (US-CT) 3D dual imaging for the detection of small extranodular growths of hepatocellular carcinoma (HCC). The clinical and pathological profiles of 10 patients with single nodular type HCC with extranodular growth (extranodular growth) who underwent a hepatectomy were evaluated using two-dimensional (2D) ultrasonography (US), three-dimensional (3D) US, 3D computed tomography (CT) and 3D US-CT dual images. Raw 3D data was converted to DICOM (Digital Imaging and Communication in Medicine) data using Echo to CT (Toshiba Medical Systems Corp., Tokyo, Japan), and the 3D DICOM data was directly transferred to the image analysis system (ZioM900, ZIOSOFT Inc., Tokyo, Japan). By inputting the angle number (x, y, z) of the 3D CT volume data into the ZioM900, multiplanar reconstruction (MPR) images of the 3D CT data were displayed in a manner such that they resembled the conventional US images. Eleven extranodular growths were detected pathologically in 10 cases. 2D US was capable of depicting only 2 of the 11 extranodular growths. 3D CT was capable of depicting 4 of the 11 extranodular growths. On the other hand, 3D US was capable of depicting 10 of the 11 extranodular growths, and 3D US-CT dual images, which enable the dual analysis of the CT and US planes, revealed all 11 extranodular growths. In conclusion, US-CT 3D dual imaging may be useful for the detection of small extranodular growths

  11. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  12. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology

    International Nuclear Information System (INIS)

    Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.; Czarnota, Gregory J.; Brock, Kristy K.

    2010-01-01

    Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell death surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17±2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11±14% and the volume overlap was 70±12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from histology and

  13. 3D-printed Bioanalytical Devices

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-01-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  14. ROOFN3D: DEEP LEARNING TRAINING DATA FOR 3D BUILDING RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. Wichmann

    2018-05-01

    Full Text Available Machine learning methods have gained in importance through the latest development of artificial intelligence and computer hardware. Particularly approaches based on deep learning have shown that they are able to provide state-of-the-art results for various tasks. However, the direct application of deep learning methods to improve the results of 3D building reconstruction is often not possible due, for example, to the lack of suitable training data. To address this issue, we present RoofN3D which provides a new 3D point cloud training dataset that can be used to train machine learning models for different tasks in the context of 3D building reconstruction. It can be used, among others, to train semantic segmentation networks or to learn the structure of buildings and the geometric model construction. Further details about RoofN3D and the developed data preparation framework, which enables the automatic derivation of training data, are described in this paper. Furthermore, we provide an overview of other available 3D point cloud training data and approaches from current literature in which solutions for the application of deep learning to unstructured and not gridded 3D point cloud data are presented.

  15. High definition ultrasound imaging for battlefield medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M. [Sandia National Labs., Albuquerque, NM (United States); Rogers, B; Walsh, N. [Texas Univ. Health Science Center, San Antonio, TX (United States)

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  16. Quantitative measurement of total cerebral blood flow using 2D phase-contrast MRI and doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Keum Soo; Choi, Sun Seob; Lee, Young Il [Dong-A Univ., College of Medicine, Busan (Korea, Republic of)

    2001-12-01

    To compare of quantitative measurement of the total cerebral blood flow using two-dimensional phase-contrast MR imaging and Doppler ultrasound. In 16 volunteers (mean age, 26 years; mean body weight, 66 kg) without abnormal medical histories, two-dimensional phase-contrast MR imaging was performed at the level of the C2-3 inter vertebral disc for flow measurement of the internal carotid arteries and the vertebral arteries. Volume flow measurements using Doppler ultrasound were also performed at the internal carotid arteries 2cm above the carotid bifurcation, and at the vertebral arteries at the level of the upper pole of the thyroid gland. Flows in the four vessels measured by the two methods were compared using Wilcoxon's correlation analysis and the median score. Total cerebral blood flows were calculated by summing these four vessel flows, and mean values for the 16 volunteers were calculated. Cerebral blood flows measured by 2-D phase-contrast MR imaging and Doppler ultrasounds were 233 and 239 ml/min in the right internal carotid artery, 250 and 248 ml/min in the left internal carotid artery, 62 and 56 ml/min in the right vertebral artery, and 83 and 68 ml/min in the left vertebral artery. Correlation coefficients of the blood flows determined by the two methods were 0.48, 0.54, 0.49, and 0.62 in each vessel, while total cerebral blood flows were 628{+-}68 (range, 517 to 779) ml/min and 612{+-}79 (range, 482 to 804)ml/min, respectively. Total cerebral blood flow was easily measured using 2-D phase-contrast MR imaging and Doppler ultrasound, and the two noninvasive methods can therefore be used clinically for the measurement of total cerebral blood flow.

  17. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  18. Ultrasound exfoliation of inorganic analogues of graphene.

    Science.gov (United States)

    Stengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra

    2014-04-05

    High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C3N4)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented.

  19. Three dimensional ultrasound and hdlive technology as possible tools in teaching embryology.

    Science.gov (United States)

    Popovici, Razvan; Pristavu, Anda; Sava, Anca

    2017-10-01

    Embryology is an important subject in order to gain an understanding of medicine and surgery; however, sometimes students find the subject difficult to grasp and apply to clinical practice. Modern imaging techniques can be useful aids in teaching and understanding embryology. Imaging techniques have very rapidly evolved over the last few years, advancing from two- to three-dimensional (3D) ultrasound. HDlive is an innovative ultrasound technique that generates near-realistic images of the human fetus. In order to evince the capabilities of 3D ultrasound and HDlive technology in teaching embryology, we evaluated using this technique the normal evolution of the embryo and fetus from the fifth to eleventh week of amenorrhea. Our conclusion is that by yielding clear and impressive images, 3D ultrasound and HDlive could be useful tools in teaching embryology to medical students. Clin. Anat. 30:953-957, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Inkjet 3D printed check microvalve

    International Nuclear Information System (INIS)

    Walczak, Rafał; Adamski, Krzysztof; Lizanets, Danylo

    2017-01-01

    3D printing enables fast and relatively easy fabrication of various microfluidic structures including microvalves. A check microvalve is the simplest valve enabling control of the fluid flow in microchannels. Proper operation of the check valve is ensured by a movable element that tightens the valve seat during backward flow and enables free flow for forward pressure. Thus, knowledge of the mechanical properties of the movable element is crucial for optimal design and operation of the valve. In this paper, we present for the first time the results of investigations on basic mechanical properties of the building material used in multijet 3D printing. Specified mechanical properties were used in the design and fabrication of two types of check microvalve—with deflecting or hinge-fixed microflap—with 200 µ m and 300 µ m thickness. Results of numerical simulation and experimental data of the microflap deflection were obtained and compared. The valves were successfully 3D printed and characterised. Opening/closing characteristics of the microvalve for forward and backward pressures were determined. Thus, proper operation of the check microvalve so developed was confirmed. (technical note)

  1. 3D printing functional materials and devices (Conference Presentation)

    Science.gov (United States)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  2. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  3. Size Optimization of 3D Stereoscopic Film Frames

    African Journals Online (AJOL)

    pc

    2018-03-22

    Mar 22, 2018 ... perception. Keywords- Optimization; Stereoscopic Film; 3D Frames;Aspect. Ratio ... television will mature to enable the viewing of 3D films prevalent[3]. On the .... Industry Standard VFX Practices and Proced. 2014. [10] N. A. ...

  4. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, Vivek [University of Vermont Medical Center, Department of Radiology, Burlington, VT (United States); Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States); Fritz, Benjamin [University Medical Center Freiburg, Department of Radiology, Freiburg im Breisgau (Germany); Johnson, Rory [Siemens Healthcare USA, Inc, Cary, NC (United States); Gilson, Wesley D. [Siemens Healthcare USA, Inc, Baltimore, MD (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany); Fritz, Jan [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States)

    2017-09-15

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. (orig.)

  5. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons

    International Nuclear Information System (INIS)

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D.; Raithel, Esther; Fritz, Jan

    2017-01-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. (orig.)

  6. Standardization of the first-trimester fetal cardiac examination using spatiotemporal image correlation with tomographic ultrasound and color Doppler imaging.

    Science.gov (United States)

    Turan, S; Turan, O M; Ty-Torredes, K; Harman, C R; Baschat, A A

    2009-06-01

    The challenges of the first-trimester examination of the fetal heart may in part be overcome by technical advances in three-dimensional (3D) ultrasound techniques. Our aim was to standardize the first-trimester 3D imaging approach to the cardiac examination to provide the most consistent and accurate display of anatomy. Low-risk women with normal findings on first-trimester screening at 11 to 13 + 6 weeks had cardiac ultrasound using the following sequence: (1) identification of the four-chamber view; (2) four-dimensional (4D) volume acquisition with spatiotemporal image correlation (STIC) and color Doppler imaging (angle = 20 degrees, sweep 10 s); (3) offline, tomographic ultrasound imaging (TUI) analysis with standardized starting plane (four-chamber view), slice number and thickness; (4) assessment of fetal cardiac anatomy (four-chamber view, cardiac axis, size and symmetry, atrioventricular valves, great arteries and descending aorta) with and without color Doppler. 107 consecutive women (age, 16-42 years, body mass index 17.2-50.2 kg/m(2)) were studied. A minimum of three 3D volumes were obtained for each patient, transabdominally in 91.6%. Fetal motion artifact required acquisition of more than three volumes in 20%. The median time for TUI offline analysis was 100 (range, 60-240) s. Individual anatomic landmarks were identified in 89.7-99.1%. Visualization of all structures in one panel was observed in 91 patients (85%). Starting from a simple two-dimensional cardiac landmark-the four-chamber view-the standardized STIC-TUI technique enables detailed segmental cardiac evaluation of the normal fetal heart in the first trimester. (c) 2009 ISUOG.

  7. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  8. Radiological assessment of the placement of Essure® in order to reduce hysterosalpingography: Pelvic X-ray versus combined pelvic X-ray and ultrasound.

    Science.gov (United States)

    Petit, C; Vernet, T; Verpillat, P; Rubod, C; Cosson, M; Giraudet, G

    2017-10-01

    Three months after hysteroscopic sterilisation with Essure ® , a confirmation test is required to evaluate the correct location of the inserts. The test may be conducted using a pelvic ultrasound (2D or 3D) or an abdominal X-ray. Should the location not look satisfactory on these tests, a follow-up hysterosalpingography (HSG) would be required. The objective of our study is to assess whether the Essure ® 3-month confirmation test using a single X-ray or a combination of X-ray and ultrasound could reduce the use of HSG. This retrospective study examined patients who underwent birth control Essure ® procedure between 2009 and 2015 in the Gynaecological Surgery Department at the Regional University Hospital Centre (CHRU) in Lille. We divided patients into two groups based on the imaging tests performed: single X-ray (2009-2010) versus X-ray and pelvic ultrasound (2014-2015). We then compared the results of the imaging tests and the use of HSG between the two groups. One hundred and thirty-four patients were tested, of which 60 (44.8%) using a single X-ray and 74 (55.2%) using a combination of X-ray and ultrasound. We note that the combined X-ray/ultrasound test reduces significantly the number of HSG performed (26.7% versus 12.2%, P=0.04). Compared to a single X-ray, the combination of X-ray and ultrasound enables to significantly limit the use of HSG. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  10. A novel educational tool for teaching ocular ultrasound

    Directory of Open Access Journals (Sweden)

    Mustafa MS

    2011-06-01

    Full Text Available MS Mustafa1, J Montgomery2, HR Atta11Department of Ophthalmology, Aberdeen Royal Infirmary, UK; 2Medi-CAL, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, UKAbstract: Ocular ultrasound is now in increasing demand in routine ophthalmic clinical practice not only because it is noninvasive but also because of ever-advancing technology providing higher resolution imaging. It is however a difficult branch of ophthalmic investigations to grasp, as it requires a high skill level to interface with the technology and provide accurate interpretation of images for ophthalmic diagnosis and management. It is even more labor intensive to teach ocular ultrasound to another fellow clinician. One of the fundamental skills that proved difficult to learn and teach is the need for the examiner to “mentally convert” 2-dimensional B-scan images into 3-dimensional (3D interpretations. An additional challenge is the requirement to carry out this task in real time. We have developed a novel approach to teach ocular ultrasound by using a novel 3D ocular model. A 3D virtual model is built using widely available, open source, software. The model is then used to generate movie clips simulating different movements and orientations of the scanner head. Using Blender, Quicktime motion clips are choreographed and collated into interactive quizzes and other pertinent pedagogical media. The process involves scripting motion vectors, rotation, and tracking of both the virtual stereo camera and the model. The resulting sequence is then rendered for twinned right- and left-eye views. Finally, the twinned views are synchronized and combined in a format compatible with the stereo projection apparatus. This new model will help the student with spatial awareness and allow for assimilation of this awareness into clinical practice. It will also help with grasping the nomenclature used in ocular ultrasound as well as helping with localization of

  11. The use of three-dimensional ultrasound does not improve training in fetal biometric measurements.

    Science.gov (United States)

    Chan, Lin W; Ting, Yuen H; Lao, Terence T; Chau, Macy M C; Fung, Tak Y; Leung, Tak Y; Sahota, Daljit S; Lau, Tze K

    2011-09-01

    To investigate whether three-dimensional (3D) technology offers any advantage over two-dimensional (2D) ultrasound in fetal biometric measurement training. Ten midwives with no hands-on experience in ultrasound were randomized to receive training on 2D or 3D ultrasound fetal biometry assessment. Midwives were taught how to obtain fetal biometric measurements (biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL)) by a trainer. Subsequently, each midwife measured the parameters on another 10 fetuses. The same set of measurements was repeated by the trainer. The percentage deviation between the midwives' and the trainer's measurements was determined and compared between training groups. Time required for completion was recorded. Frozen images were reviewed by another sonographer to assess the image quality using a standardized scoring system. The median time for the complete set of measurements was significantly shorter in the 2D than in 3D group (13.4 min versus 17.8 min, P = 0.03). The mean percentage deviations did not reach statistical significance between the two groups except for FL (3.83% in 2D group versus 2.23% in 3D group (P = 0.046)). There were no significant differences in the quality scores. This study showed that the only demonstrable advantage of 3D ultrasound was a slightly more accurate measurement of FL, at the expense of a significantly longer time required.

  12. Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy

    Science.gov (United States)

    Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.

  13. Simultaneous ultrasound and photoacoustics based flow cytometry

    Science.gov (United States)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  14. Large-scale propagation of ultrasound in a 3-D breast model based on high-resolution MRI data.

    Science.gov (United States)

    Salahura, Gheorghe; Tillett, Jason C; Metlay, Leon A; Waag, Robert C

    2010-06-01

    A 40 x 35 x 25-mm(3) specimen of human breast consisting mostly of fat and connective tissue was imaged using a 3-T magnetic resonance scanner. The resolutions in the image plane and in the orthogonal direction were 130 microm and 150 microm, respectively. Initial processing to prepare the data for segmentation consisted of contrast inversion, interpolation, and noise reduction. Noise reduction used a multilevel bidirectional median filter to preserve edges. The volume of data was segmented into regions of fat and connective tissue by using a combination of local and global thresholding. Local thresholding was performed to preserve fine detail, while global thresholding was performed to minimize the interclass variance between voxels classified as background and voxels classified as object. After smoothing the data to avoid aliasing artifacts, the segmented data volume was visualized using isosurfaces. The isosurfaces were enhanced using transparency, lighting, shading, reflectance, and animation. Computations of pulse propagation through the model illustrate its utility for the study of ultrasound aberration. The results show the feasibility of using the described combination of methods to demonstrate tissue morphology in a form that provides insight about the way ultrasound beams are aberrated in three dimensions by tissue.

  15. An Innovative Direct-Interaction-Enabled Augmented-Reality 3D System

    Directory of Open Access Journals (Sweden)

    Sheng-Hsiung Chang

    2013-01-01

    Full Text Available Previous augmented-reality (AR applications have required users to observe the integration of real and virtual images on a display. This study proposes a novel concept regarding AR applications. By integrating AR techniques with marker identification, virtual-image output, imaging, and image-interaction processes, this study rendered virtual images that can interact with predefined markers in a real three-dimensional (3D environment.

  16. Electrical impedance tomography imaging using a priori ultrasound data

    Directory of Open Access Journals (Sweden)

    Soleimani Manuchehr

    2006-02-01

    Full Text Available Abstract Background Different imaging systems (e.g. electrical, magnetic, and ultrasound rely on a wide variety of physical properties, and the datasets obtained from such systems provide only partial information about the unknown true state. One approach is to choose complementary imaging systems, and to combine the information to achieve a better representation. Methods This paper discusses the combination of ultrasound and electrical impedance tomography (EIT information. Ultrasound reflection signals are good at locating sharp acoustic density changes associated with the boundaries of objects. Some boundaries, however, may be indeterminable due to masking from intermediate boundaries or because they are outside the ultrasound beam. Conversely, the EIT data contains relatively low-quality information, but it includes the whole region enclosed by the electrodes. Results Results are shown from a narrowband level-set method applied to 2D and 3D EIT incorporating limited angle ultrasound time of flight data. Conclusion The EIT reconstruction is shown to be faster and more accurate using the additional edge information from both one and four transducer ultrasound systems.

  17. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    Science.gov (United States)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  18. Guiding histological assessment of uterine lesions using 3D in vitro ultrasonography and stereotaxis

    DEFF Research Database (Denmark)

    Vandermeulen, Liselore; Cornelis, Ann; Rasmussen, Christina Kjærgaard

    2017-01-01

    , the uterus was re-evaluated by 3D in vitro ultrasonography and in vitro gel instillation sonography (iGIS). The lesion of interest was pinpointed by inserting an intramuscular injection needle using a free-hand 2D-ultrasound guided technique to focus the macroscopic and the microscopic examination...

  19. MRI-controlled interstitial ultrasound brain therapy: An initial in-vivo study

    Science.gov (United States)

    N'Djin, W. Apoutou; Burtnyk, Mathieu; Lipsman, Nir; Bronskill, Michael; Schwartz, Michael; Kucharczyk, Walter; Chopra, Rajiv

    2012-11-01

    The recent emergence at the clinical level of minimally-invasive focal therapy such as laser-induced thermal therapy (LITT) has demonstrated promise in the management of brain metastasis [1], although control over the spatial pattern of heating is limited. Delivery of HIFU from minimally-invasive applicators enables high spatial control of the heat deposition in biological tissues, large treatment volumes and high treatment rate in well chosen conditions [2,3]. In this study, the feasibility of MRI-guided interstitial ultrasound therapy in brain was studies in-vivo in a porcine model. A prototype system originally developed for transurethral ultrasound therapy [4,5,6] was used in this study. Two burr holes of 12 mm in diameter were created in the animal's skull to allow the insertion of the therapeutic ultrasound applicator (probe) into the brain at two locations (right and left frontal lobe). A 4-element linear ultrasound transducer (f = 8 MHz) was mounted at the tip of a 25-cm linear probe (6 mm in diameter). The target boundary was traced to cover in 2D a surface compatible with the treatment of a 2 cm brain tumor. Acoustic power of each element and rotation rate of the device were adjusted in real-time based on MR-thermometry feedback control to optimize heat deposition at the target boundary [2,4,5]. Two MRT-controlled ultrasound brain treatments per animal have been performed using a maximal surface acoustic power of 10W.cm-2. In all cases, it was possible to increase accurately the temperature of the brain tissues in the targeted region over the 55°C threshold necessary for the creation of irreversible thermal lesion. Tissue changes were visible on T1w contrast-enhanced images immediately after treatment. These changes were also evident on T2w FSE images taken 2 hours after the 1st treatment and correlated well with the temperature image. On average, the targeted volume was 4.7 ± 2.3 cm3 and the 55°C treated volume was 6.7 ± 4.4 cm3. The volumetric

  20. Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation

    International Nuclear Information System (INIS)

    Wei Zhouping; Wan Gang; Gardi, Lori; Mills, Gregory; Downey, Donal; Fenster, Aaron

    2004-01-01

    Current transperineal prostate brachytherapy uses transrectal ultrasound (TRUS) guidance and a template at a fixed position to guide needles along parallel trajectories. However, pubic arch interference (PAI) with the implant path obstructs part of the prostate from being targeted by the brachytherapy needles along parallel trajectories. To solve the PAI problem, some investigators have explored other insertion trajectories than parallel, i.e., oblique. However, parallel trajectory constraints in current brachytherapy procedure do not allow oblique insertion. In this paper, we describe a robot-assisted, three-dimensional (3D) TRUS guided approach to solve this problem. Our prototype consists of a commercial robot, and a 3D TRUS imaging system including an ultrasound machine, image acquisition apparatus and 3D TRUS image reconstruction, and display software. In our approach, we use the robot as a movable needle guide, i.e., the robot positions the needle before insertion, but the physician inserts the needle into the patient's prostate. In a later phase of our work, we will include robot insertion. By unifying the robot, ultrasound transducer, and the 3D TRUS image coordinate systems, the position of the template hole can be accurately related to 3D TRUS image coordinate system, allowing accurate and consistent insertion of the needle via the template hole into the targeted position in the prostate. The unification of the various coordinate systems includes two steps, i.e., 3D image calibration and robot calibration. Our testing of the system showed that the needle placement accuracy of the robot system at the 'patient's' skin position was 0.15 mm±0.06 mm, and the mean needle angulation error was 0.07 deg. . The fiducial localization error (FLE) in localizing the intersections of the nylon strings for image calibration was 0.13 mm, and the FLE in localizing the divots for robot calibration was 0.37 mm. The fiducial registration error for image calibration was 0

  1. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...... arrays (FPGAs) making it very flexible and allowing implementation of other real-time ultrasound processing methods in the future. For conventional B-mode imaging, a penetration depth around 7 cm for a 7 MHz transducer is obtained (signal-tonoise ratio of 0 dB), which is comparable to commercial...... for 3D ultrasound imaging. It samples at 12 bits per sample and has a sampling rate of 70 MHz with the possibility of decimating the sampling frequency at the input. SARUS is capable of advanced real-time computations such as synthetic aperture imaging. The system is built using fieldprogrammable gate...

  2. Prototyping a sensor enabled 3D citymodel on geospatial managed objects

    DEFF Research Database (Denmark)

    Kjems, Erik; Kolář, Jan

    2013-01-01

    rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited......One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes...... one constraint software design complex. On several occasions we have been advocating for a new end advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This paper presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily...

  3. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Maulik, D.

    2005-01-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  4. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Maulik, D. [Winthrop Univ. Hospital, Mineola, NY (United States). Dept. of Obstetrics and Gynecology; Zalud, I. (eds.) [Kapiolani Medical Center for Women and Children, Honolulu, HI (United States)

    2005-07-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  5. Postpartum two- and three-dimensional ultrasound evaluation of anal sphincter complex in women with obstetric anal sphincter injury.

    Science.gov (United States)

    Ros, C; Martínez-Franco, E; Wozniak, M M; Cassado, J; Santoro, G A; Elías, N; López, M; Palacio, M; Wieczorek, A P; Espuña-Pons, M

    2017-04-01

    To compare the sensitivity and specificity of two- (2D) and three- (3D) dimensional transperineal ultrasound (TPUS) and 3D endovaginal ultrasound (EVUS) with the gold standard 3D endoanal ultrasound (EAUS) in detecting residual defects after primary repair of obstetric anal sphincter injuries (OASIS). External (EAS) and internal (IAS) anal sphincters were evaluated by the four ultrasound modalities in women with repaired OASIS. 2D-TPUS was evaluated in real-time, whereas 3D-TPUS, 3D-EVUS and 3D-EAUS volumes were evaluated offline by six blinded readers. The presence/absence of any tear in EAS or IAS was recorded and defects were scored according to the Starck system. Sensitivity, specificity and predictive values were calculated, using 3D-EAUS as reference standard. Inter- and intraobserver analyses were performed for all 3D imaging modalities. Association between patients' symptoms (Wexner score) and ultrasound findings (Starck score) was calculated. Images from 55 patients were analyzed. Compared with findings on 3D-EAUS, the agreement for EAS evaluation was poor for 3D-EVUS (κ = 0.01), fair for 2D-TPUS (κ = 0.30) and good for 3D-TPUS (κ = 0.73). The agreement for IAS evaluation was moderate for both 3D-EVUS (κ = 0.41) and 2D-TPUS (κ = 0.52) and good for 3D-TPUS (κ = 0.66). Good intraobserver (3D-EAUS, κ = 0.73; 3D-TPUS, κ = 0.78) and interobserver (3D-EAUS, κ = 0.68; 3D-TPUS, κ = 0.60) agreement was reported. Significant association between Starck and Wexner scores was found only for 3D-EAUS (Spearman's rho = 0.277, P = 0.04). 2D-TPUS and 3D-EVUS are not accurate modalities for the assessment of anal sphincters after repair of OASIS. 3D-TPUS shows good agreement with the gold standard 3D-EAUS and a high sensitivity in detecting residual defects. It, thus, has potential as a screening tool after primary repair of OASIS. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG

  6. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  7. Comparison of the efficacy of conventional radiography, digital radiography, and ultrasound in diagnosing periapical lesions.

    Science.gov (United States)

    Raghav, Namita; Reddy, Sujatha S; Giridhar, A G; Murthy, Srinivas; Yashodha Devi, B K; Santana, N; Rakesh, N; Kaushik, Atul

    2010-09-01

    The aim of this study was to evaluate the efficacy of conventional radiography, digital radiography and ultrasound imaging in diagnosing periapical lesions. Twenty-one patients aged between 15 and 45 years with well defined periapical radiolucency associated with anterior maxillary or mandibular teeth requiring endodontic surgery or extraction were selected and consented to the study. Preoperative intraoral periapical radiographs and digital images using charge-coupled device obtained by paralleling technique were assessed by 3 specialist observers who gave their diagnosis of the periapical lesions. Then ultrasound examination was performed and the images were assessed for size, contents, and vascular supply by 3 ultrasonographers. It was followed by curettage of periapical tissues to enable histopathologic investigation, which is the gold standard in diagnosis. The data were statistically analyzed using SPSS, analysis of variance, and kappa statistics. The percentage accuracy of diagnosing periapical lesions using conventional radiography was 47.6%, digital radiography 55.6%, and ultrasound 95.2%. Ultrasound had the highest sensitivity and specificity: 0.95 and 1.00, respectively. Conventional and digital radiography enable diagnosis of periapical diseases, but not their nature, whereas ultrasound provides accurate information on the pathologic nature of the lesions, which is of importance in predicting the treatment outcome. Therefore ultrasound can be used as an adjunct to conventional or digital radiography in diagnosing periapical lesions. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  8. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT and Ultrasound.

    Science.gov (United States)

    Filippou, Valeria; Tsoumpas, Charalampos

    2018-06-22

    Printing technology, capable of producing three-dimensional (3D) objects, has evolved in recent years and provides potential for developing reproducible and sophisticated physical phantoms. 3D printing technology can help rapidly develop relatively low cost phantoms with appropriate complexities, which are useful in imaging or dosimetry measurements. The need for more realistic phantoms is emerging since imaging systems are now capable of acquiring multimodal and multiparametric data. This review addresses three main questions about the 3D printers currently in use, and their produced materials. The first question investigates whether the resolution of 3D printers is sufficient for existing imaging technologies. The second question explores if the materials of 3D-printed phantoms can produce realistic images representing various tissues and organs as taken by different imaging modalities such as computer tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound (US), and mammography. The emergence of multimodal imaging increases the need for phantoms that can be scanned using different imaging modalities. The third question probes the feasibility and easiness of "printing" radioactive and/or non-radioactive solutions during the printing process. A systematic review of medical imaging studies published after January 2013 is performed using strict inclusion criteria. The databases used were Scopus and Web of Knowledge with specific search terms. In total, 139 papers were identified, however only 50 were classified as relevant for the purpose of this paper. In this review, following an appropriate introduction and literature research strategy, all 50 articles are presented in detail. A summary of tables and example figures of the most recent advances in 3D printing for the purposes of phantoms across different imaging modalities are provided. All 50 studies printed and scanned

  9. Antenatal diagnosis of anophthalmia by three-dimensional ultrasound: a novel application of the reverse face view.

    Science.gov (United States)

    Wong, H S; Parker, S; Tait, J; Pringle, K C

    2008-07-01

    The prenatal diagnosis of anophthalmia can be made on the demonstration of absent eye globe and lens on the affected side(s) on two-dimensional ultrasound examination, but when the fetal head position is unfavorable three-dimensional (3D) ultrasound may reveal additional diagnostic sonographic features, including sunken eyelids and small or hypoplastic orbit on the affected side(s). We present two cases of isolated anophthalmia diagnosed on prenatal ultrasound examination in which 3D ultrasound provided additional diagnostic information. The reverse face view provides valuable information about the orbits and the eyeballs for prenatal diagnosis and assessment of anophthalmia.

  10. Ultrasound Vector Flow Imaging: Part II: Parallel Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.

    2016-01-01

    The paper gives a review of the current state-of-theart in ultrasound parallel acquisition systems for flow imaging using spherical and plane waves emissions. The imaging methods are explained along with the advantages of using these very fast and sensitive velocity estimators. These experimental...... ultrasound imaging for studying brain function in animals. The paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed....

  11. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses.

    Science.gov (United States)

    Ripley, Beth; Levin, Dmitry; Kelil, Tatiana; Hermsen, Joshua L; Kim, Sooah; Maki, Jeffrey H; Wilson, Gregory J

    2017-03-01

    3D printing facilitates the creation of accurate physical models of patient-specific anatomy from medical imaging datasets. While the majority of models to date are created from computed tomography (CT) data, there is increasing interest in creating models from other datasets, such as ultrasound and magnetic resonance imaging (MRI). MRI, in particular, holds great potential for 3D printing, given its excellent tissue characterization and lack of ionizing radiation. There are, however, challenges to 3D printing from MRI data as well. Here we review the basics of 3D printing, explore the current strengths and weaknesses of printing from MRI data as they pertain to model accuracy, and discuss considerations in the design of MRI sequences for 3D printing. Finally, we explore the future of 3D printing and MRI, including creative applications and new materials. 5 J. Magn. Reson. Imaging 2017;45:635-645. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Intraoperative neuronavigation integrated high resolution 3D ultrasound for brainshift and tumor resection control

    Directory of Open Access Journals (Sweden)

    Giovani A.

    2015-06-01

    Full Text Available INTRODUCTION: The link between the neurosurgeon’s knowledge and the scientific improvements made a dramatic change in the field expressed both in impressive drop in the mortality and morbidity rates that were operated in the beginning of the XXth century and in operating with high rates of success cases that were considered inoperable in the past. Neuronavigation systems have been used for many years on surgical orientation purposes especially for small, deep seated lesions where the use of neuronavigation is correlated with smaller corticotomies and with the extended use of transulcal approaches. The major problem of neuronavigation, the brainshift once the dura is opened can be solved either by integrated ultrasound or intraoperative MRI which is out of reach for many neurosurgical departments. METHOD: The procedure of neuronavigation and ultrasonic localization of the tumor is described starting with positioning the patient in the visual field of the neuronavigation integrated 3D ultrasonography system to the control of tumor resection by repeating the ultrasonographic scan in the end of the procedure. DISCUSSION: As demonstrated by many clinical trials on gliomas, the more tumor removed, the better long term control of tumor regrowth and the longer survival with a good quality of life. Of course, no matter how aggressive the surgery, no new deficits are acceptable in the modern era neurosurgery. There are many adjuvant methods for the neurosurgeon to achieve this maximal and safe tumor removal, including the 3T MRI combined with tractography and functional MRI, the intraoperative neuronavigation and neurophysiologic monitoring in both anesthetized and awake patients. The ultrasonography integrated in neuronavigaton comes as a welcomed addition to this adjuvants to help the surgeon achieve the set purpose. CONCLUSION: With the use of this real time imaging device, the common problem of brainshift encountered with the neuronavigation systems

  13. Mechanics of ultrasound elastography

    Science.gov (United States)

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  14. Surgical fiducial segmentation and tracking for pose estimation based on ultrasound B-mode images.

    Science.gov (United States)

    Lei Chen; Kuo, Nathanael; Aalamifar, Fereshteh; Narrow, David; Coon, Devin; Prince, Jerry; Boctor, Emad M

    2016-08-01

    Doppler ultrasound is a non-invasive diagnostic tool for the quantitative measurement of blood flow. However, given that it provides velocity data that is dependent on the location and angle of measurement, repeat measurements to detect problems over time may require an expert to return to the same location. We therefore developed an image-guidance system based on ultrasound B-mode images that enables an inexperienced user to position the ultrasound probe at the same site repeatedly in order to acquire a comparable time series of Doppler readings. The system utilizes a bioresorbable fiducial and complementing software composed of the fiducial detection, key points tracking, probe pose estimation, and graphical user interface (GUI) modules. The fiducial is an echogenic marker that is implanted at the surgical site and can be detected and tracked during ultrasound B-mode screening. The key points on the marker can next be used to determine the pose of the ultrasound probe with respect to the marker. The 3D representation of the probe with its position and orientation are then displayed in the GUI for the user guidance. The fiducial detection has been tested on the data sets collected from three animal studies. The pose estimation algorithm was validated by five data sets collected by a UR5 robot. We tested the system on a plastisol phantom and showed that it can detect and track the fiducial marker while displaying the probe pose in real-time.

  15. Interobserver variation in measurements of Cesarean scar defect and myometrium with 3D ultrasonography

    DEFF Research Database (Denmark)

    Madsen, Lene Duch; Glavind, Julie; Uldbjerg, Niels

    Objectives: To evaluate the Cesarean scar defect depth and the residual myometrial thickness with 3-dimensional (3D) sonography concerning interobserver variation. Methods: Ten women were randomly selected from a larger cohort of Cesarean scar ultrasound evaluations. All women were examined 6......-16 months after their first Cesarean section with 2D transvaginal sonography and had 3D volumes recorded. Two observers independently evaluated “off-line” each of the 3D volumes stored. Residual myometrial thickness (RMT) and Cesarean scar defect depth (D) was measured in the sagittal plane with an interval...... of Cesarean section scar size and residual myometrium needs further investigation....

  16. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images

    Science.gov (United States)

    Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600

  17. Additive Manufacturing Techniques for the Reconstruction of 3D Fetal Faces

    Directory of Open Access Journals (Sweden)

    Domenico Speranza

    2017-01-01

    Full Text Available This paper deals with additive manufacturing techniques for the creation of 3D fetal face models starting from routine 3D ultrasound data. In particular, two distinct themes are addressed. First, a method for processing and building 3D models based on the use of medical image processing techniques is proposed. Second, the preliminary results of a questionnaire distributed to future parents consider the use of these reconstructions both from an emotional and an affective point of view. In particular, the study focuses on the enhancement of the perception of maternity or paternity and the improvement in the relationship between parents and physicians in case of fetal malformations, in particular facial or cleft lip diseases.

  18. Enhancing Macrophage Drug Delivery Efficiency via Co-Localization of Cells and Drug-Loaded Microcarriers in 3D Resonant Ultrasound Field.

    Science.gov (United States)

    Lee, Yu-Hsiang; Wu, Zhen-Yu

    2015-01-01

    In this study, a novel synthetic 3D molecular transfer system which involved the use of model drug calcein-AM-encapsulated poly(lactic-co-glycolic acid) microspheres (CAPMs) and resonant ultrasound field (RUF) with frequency of 1 MHz and output intensity of 0.5 W/cm2 for macrophage drug delivery was explored. We hypothesized that the efficiency of CAPMs-mediated drug delivery aided by RUF can be promoted by increasing the contact opportunities between cells and the micrometer-sized drug carriers due to effects of acoustic radiation forces generated by RUF. Through the fluoromicroscopic and flow cytometric analyses, our results showed that both DH82 macrophages and CAPMs can be quickly brought to acoustic pressure nodes within 20 sec under RUF exposure, and were consequently aggregated throughout the time course. The efficacy of cellular uptake of CAPMs was enhanced with increased RUF exposure time where a 3-fold augmentation (P CAPM delivery efficiency was mainly contributed by the co-localization of cells and CAPMs resulting from the application of the RUF, rather than from sonoporation. In summary, the developed molecular delivery approach provides a feasible means for macrophage drug delivery.

  19. 3D versus 2D Systematic Transrectal Ultrasound-Guided Prostate Biopsy: Higher Cancer Detection Rate in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Alexandre Peltier

    2013-01-01

    Full Text Available Objectives. To compare prostate cancer detection rates of extended 2D versus 3D biopsies and to further assess the clinical impact of this method in day-to-day practice. Methods. We analyzed the data of a cohort of 220 consecutive patients with no prior history of prostate cancer who underwent an initial prostate biopsy in daily practice due to an abnormal PSA and/or DRE using, respectively, the classical 2D and the new 3D systems. All the biopsies were done by a single experienced operator using the same standardized protocol. Results. There was no significant difference in terms of age, total PSA, or prostate volume between the two groups. However, cancer detection rate was significantly higher using the 3D versus the 2D system, 50% versus 34% (P<0.05. There was no statistically significant difference while comparing the 2 groups in term of nonsignificant cancer detection. Conclusion. There is reasonable evidence demonstrating the superiority of the 3D-guided biopsies in detecting prostate cancers that would have been missed using the 2D extended protocol.

  20. MAP3D: a media processor approach for high-end 3D graphics

    Science.gov (United States)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  1. Matched-pair analyses of resting and dynamic morphology between Monarc and TVT-O procedures by ultrasound.

    Science.gov (United States)

    Yang, Jenn-Ming; Yang, Shwu-Huey; Huang, Wen-Chen; Tzeng, Chii-Ruey

    2013-07-01

    To determine morphologic differences between Monarc and TVT-O procedures in axial and coronal planes by three- and four-dimensional (3D and 4D) ultrasound. Retrospective chart audits and ultrasound analyses were conducted on 128 women who had undergone either Monarc or TVT-O procedures for urodynamic stress incontinence. Thirty matched pairs of the two successful procedures were randomly selected and compared. Matched variables were age, parity, body mass index, cesarean status, menopausal status, and primary surgeries. Six-month postoperative 3D and 4D ultrasound results obtained at rest, on straining, and during coughing in these 60 women were analyzed. Assessed ultrasound parameters included the axial tape urethral distance (aTUD), axial central urethral echolucent area (aUCEA), axial tape angle (aTA), and coronal tape angle (cTA), all of which were measured at three equidistant points along the tapes. Paired t-tests were used to compare differences in ultrasound parameters between women after the two procedures and a P value TVT-O procedures. There were no significant differences in other resting ultrasound parameters between these two procedures. Additionally, after both procedures women had comparable straining and coughing ultrasound manifestations as well as respective dynamic changes. Despite flatter resting tape angulations in women following Monarc procedures, both Monarc and TVT-O tapes had equivalent dynamic patterns and changes assessed by 4D ultrasound. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Visual comfort of 3-D TV : models and measurements

    NARCIS (Netherlands)

    Lambooij, M.T.M.

    2012-01-01

    The embracing of 3-D movies by Hollywood and fast LCD panels finally enable the home consumer market to start successful campaigns to get 3-D movies and games in the comfort of the living room. By introducing three-dimensional television (3-D TV) and its desktop-counterpart for gaming and internet

  3. [3D planning in maxillofacial surgery].

    Science.gov (United States)

    Hoarau, R; Zweifel, D; Lanthemann, E; Zrounba, H; Broome, M

    2014-10-01

    The development of new technologies such as three-dimensional (3D) planning has changed the everyday practice in maxillofacial surgery. Rapid prototyping associated with the 3D planning has also enabled the creation of patient specific surgical tools, such as cutting guides. As with all new technologies, uses, practicalities, cost effectiveness and especially benefits for the patients have to be carefully evaluated. In this paper, several examples of 3D planning that have been used in our institution are presented. The advantages such as the accuracy of the reconstructive surgery and decreased operating time, as well as the difficulties have also been addressed.

  4. FUN3D Manual: 12.8

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  5. FUN3D Manual: 13.1

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  6. FUN3D Manual: 13.2

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  7. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  8. FUN3D Manual: 13.0

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  9. FUN3D Manual: 12.7

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  10. Craniofacial duplication (diprosopus) with trioftalmos, diagnosed by 3D obstetric ultrasound

    OpenAIRE

    Pachajoa, Harry; Vargas, Carolina; López-Morales, Marisol; Isaza, Carolina; Quintero-Mejía, Juan Carlos

    2016-01-01

    La duplicación cráneo-facial (diprosopus) es el resultado de la forma menos común de gemelos acoplados. La utilización de la ecografía 3D para el diagnóstico de esta patología ha sido reportada. Se presenta el segundo caso de esta patología en Colombia. Caso clínico de hijo de madre de 28 años a quien se le realizó diagnóstico prenatal con ecografía 3D, de duplicación craneofacial y de la columna vertebral. Cariotipo prenatal bandeo G: 46, XX. Al nacimiento se encontró feto de sexo femenino c...

  11. Efficient reconfigurable architectures for 3D medical image compression

    OpenAIRE

    Afandi, Ahmad

    2010-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In thes...

  12. Simulation of ultrasound propagation in bone

    Science.gov (United States)

    Kaufman, Jonathan J.; Luo, Gangming; Siffert, Robert S.

    2004-10-01

    Ultrasound has been proposed as a means to noninvasively assess bone and, particularly, bone strength and fracture risk, as for example in osteoporosis. Because strength is a function of both mineral density and architecture, ultrasound has the potential to provide more accurate measurement of bone integrity than, for example, with x-ray absorptiometric methods. Although some of this potential has already been realized-a number of clinical devices are presently available-there is still much that is unknown regarding the interaction of ultrasound with bone. Because of the inherent complexity of the propagation medium, few analytic solutions exist with practical application. For this reason, ultrasound simulation techniques have been developed and applied to a number of different problems of interest in ultrasonic bone assessment. Both 2D and 3D simulation results will be presented, including the effects of architecture and density on the received waveform, propagation effects of both cortical and trabecular bone, and the relative contributions of scattering and absorption to attenuation in trabecular bone. The results of these simulation studies should lead to improved understanding and ultimately to more effective clinical devices for ultrasound bone assessment. [This work was supported by The Carroll and Milton Petrie Foundation and by SBIR Grant No. 1R43RR16750 from the National Center for Research Resources of the NIH.

  13. Research interface on a programmable ultrasound scanner.

    Science.gov (United States)

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  14. Evaluation of high frequency ultrasound methods and contrast agents for characterising tumor response to anti-angiogenic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rix, Anne, E-mail: arix@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Lederle, Wiltrud, E-mail: wlederle@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Siepmann, Monica, E-mail: monica.siepmann@rub.de [Department of Medical Engineering, Universitätstraße 150, 44780 Bochum, Ruhr-University Bochum, Bochum (Germany); Fokong, Stanley, E-mail: sfokong@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F., E-mail: fbehrendt@ukaachen.de [Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Bzyl, Jessica, E-mail: jbzyl@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Grouls, Christoph, E-mail: cgrouls@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Kiessling, Fabian, E-mail: fkiessling@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany)

    2012-10-15

    Purpose: To compare non-enhanced and contrast-enhanced high-frequency 3D Doppler ultrasound with contrast-enhanced 2D and 3D B-mode imaging for assessing tumor vascularity during antiangiogenic treatment using soft-shell and hard-shell microbubbles. Materials and methods: Antiangiogenic therapy effects (SU11248) on vascularity of subcutaneous epidermoid-carcinoma xenografts (A431) in female CD1 nude mice were investigated longitudinally using non-enhanced and contrast-enhanced 3D Doppler at 25 MHz. Additionally, contrast-enhanced 2D and 3D B-mode scans were performed by injecting hard-shell (poly-butyl-cyanoacrylate-based) and soft-shell (phospholipid-based) microbubbles. Suitability of both contrast agents for high frequency imaging and the sensitivity of the different ultrasound methods to assess early antiangiogenic therapy effects were investigated. Ultrasound data were validated by immunohistology. Results: Hard-shell microbubbles induced higher signal intensity changes in tumors than soft-shell microbubbles in 2D B-mode measurements (424 ± 7 vs. 169 ± 8 A.U.; p < 0.01). In 3D measurements, signals of soft-shell microbubbles were hardly above the background (5.48 ± 4.57 vs. 3.86 ± 2.92 A.U.), while signals from hard-shell microbubbles were sufficiently high (30.5 ± 8.06 A.U). Using hard-shell microbubbles 2D and 3D B-mode imaging depicted a significant decrease in tumor vascularity during antiangiogenic therapy from day 1 on. Using soft-shell microbubbles significant therapy effects were observed at day 4 after therapy in 2D B-mode imaging but could not be detected in the 3D mode. With non-enhanced and contrast-enhanced Doppler imaging significant differences between treated and untreated tumors were found from day 2 on. Conclusion: Hard-shell microbubble-enhanced 2D and 3D B-mode ultrasound achieved highest sensitivity for assessing therapy effects on tumor vascularisation and were superior to B-mode ultrasound with soft-shell microbubbles and to Doppler

  15. METRIC EVALUATION PIPELINE FOR 3D MODELING OF URBAN SCENES

    Directory of Open Access Journals (Sweden)

    M. Bosch

    2017-05-01

    Full Text Available Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  16. Metric Evaluation Pipeline for 3d Modeling of Urban Scenes

    Science.gov (United States)

    Bosch, M.; Leichtman, A.; Chilcott, D.; Goldberg, H.; Brown, M.

    2017-05-01

    Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  17. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Towards next generation 3D cameras

    Science.gov (United States)

    Gupta, Mohit

    2017-03-01

    We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (robotic inspection and assembly systems.

  19. 3D-printed upper limb prostheses : a review

    NARCIS (Netherlands)

    ten Kate, J; Smit, G.; Breedveld, P.

    2017-01-01

    Goal: This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. Methods: A review was

  20. Wireless Rover Meets 3D Design and Product Development

    Science.gov (United States)

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  1. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    Directory of Open Access Journals (Sweden)

    Vera ePaefgen

    2015-09-01

    Full Text Available Ultrasound is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents. There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular contrast agents enable functional analyses, e.g. to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by ultrasound pulses to locally release the entrapped agent. Recent studies show that ultrasound contrast agents are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of ultrasound contrast agents and introduces the current clinical applications of contrast-enhanced ultrasound. Additionally, an overview of the recent developments in ultrasound probe design for functional and molecular diagnosis as well as for drug delivery is given.

  2. Multiline 3D beamforming using micro-beamformed datasets for pediatric transesophageal echocardiography

    Science.gov (United States)

    Bera, D.; Raghunathan, S. B.; Chen, C.; Chen, Z.; Pertijs, M. A. P.; Verweij, M. D.; Daeichin, V.; Vos, H. J.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.

    2018-04-01

    Until now, no matrix transducer has been realized for 3D transesophageal echocardiography (TEE) in pediatric patients. In 3D TEE with a matrix transducer, the biggest challenges are to connect a large number of elements to a standard ultrasound system, and to achieve a high volume rate (>200 Hz). To address these issues, we have recently developed a prototype miniaturized matrix transducer for pediatric patients with micro-beamforming and a small central transmitter. In this paper we propose two multiline parallel 3D beamforming techniques (µBF25 and µBF169) using the micro-beamformed datasets from 25 and 169 transmit events to achieve volume rates of 300 Hz and 44 Hz, respectively. Both the realizations use angle-weighted combination of the neighboring overlapping sub-volumes to avoid artifacts due to sharp intensity changes introduced by parallel beamforming. In simulation, the image quality in terms of the width of the point spread function (PSF), lateral shift invariance and mean clutter level for volumes produced by µBF25 and µBF169 are similar to the idealized beamforming using a conventional single-line acquisition with a fully-sampled matrix transducer (FS4k, 4225 transmit events). For completeness, we also investigated a 9 transmit-scheme (3  ×  3) that allows even higher frame rates but found worse B-mode image quality with our probe. The simulations were experimentally verified by acquiring the µBF datasets from the prototype using a Verasonics V1 research ultrasound system. For both µBF169 and µBF25, the experimental PSFs were similar to the simulated PSFs, but in the experimental PSFs, the clutter level was ~10 dB higher. Results indicate that the proposed multiline 3D beamforming techniques with the prototype matrix transducer are promising candidates for real-time pediatric 3D TEE.

  3. In vivo analysis of physiological 3D blood flow of cerebral veins

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany)

    2015-08-15

    To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.)

  4. Prototyping a Sensor Enabled 3d Citymodel on Geospatial Managed Objects

    Science.gov (United States)

    Kjems, E.; Kolář, J.

    2013-09-01

    One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D models with consistent object definitions give us the possibility to avoid troublesome abstractions of reality, and design even complex urban systems fusing information from various sources of data. These systems are difficult to design with the traditional software development approach based on major software packages and traditional data exchange. The data stream is varying from urban domain to urban domain and from system to system why it is almost impossible to design a complete system taking care of all thinkable instances now and in the future within one constraint software design complex. On several occasions we have been advocating for a new end advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This paper presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily by the Norwegian Research Council where the concept of GMO's have been applied in various situations on various running platforms of an urban system. The paper will be focusing on user experiences and interfaces rather then core technical and developmental issues. The project was primarily focusing on prototyping rather than realistic implementations although the results concerning applicability are quite clear.

  5. User-friendly freehand ultrasound calibration using Lego bricks and automatic registration.

    Science.gov (United States)

    Xiao, Yiming; Yan, Charles Xiao Bo; Drouin, Simon; De Nigris, Dante; Kochanowska, Anna; Collins, D Louis

    2016-09-01

    As an inexpensive, noninvasive, and portable clinical imaging modality, ultrasound (US) has been widely employed in many interventional procedures for monitoring potential tissue deformation, surgical tool placement, and locating surgical targets. The application requires the spatial mapping between 2D US images and 3D coordinates of the patient. Although positions of the devices (i.e., ultrasound transducer) and the patient can be easily recorded by a motion tracking system, the spatial relationship between the US image and the tracker attached to the US transducer needs to be estimated through an US calibration procedure. Previously, various calibration techniques have been proposed, where a spatial transformation is computed to match the coordinates of corresponding features in a physical phantom and those seen in the US scans. However, most of these methods are difficult to use for novel users. We proposed an ultrasound calibration method by constructing a phantom from simple Lego bricks and applying an automated multi-slice 2D-3D registration scheme without volumetric reconstruction. The method was validated for its calibration accuracy and reproducibility. Our method yields a calibration accuracy of [Formula: see text] mm and a calibration reproducibility of 1.29 mm. We have proposed a robust, inexpensive, and easy-to-use ultrasound calibration method.

  6. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience.

    Science.gov (United States)

    Cantisani, Vito; Maceroni, Piero; D'Andrea, Vito; Patrizi, Gregorio; Di Segni, Mattia; De Vito, Corrado; Grazhdani, Hektor; Isidori, Andrea M; Giannetta, Elisa; Redler, Adriano; Frattaroli, Fabrizio; Giacomelli, Laura; Di Rocco, Giorgio; Catalano, Carlo; D'Ambrosio, Ferdinando

    2016-05-01

    To assess whether ultrasound elastography (USE) with strain ratio increases diagnostic accuracy of Doppler ultrasound in further characterisation of cytologically Thy3 thyroid nodules. In two different university diagnostic centres, 315 patients with indeterminate cytology (Thy3) in thyroid nodules aspirates were prospectively evaluated with Doppler ultrasound and strain ratio USE before surgery. Ultrasonographic features were analysed separately and together as ultrasound score, to assess sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Receiver operating characteristic (ROC) curves to identify optimal cut-off value of the strain ratio were also provided. Diagnosis on a surgical specimen was considered the standard of reference. Higher strain ratio values were found in malignant nodules, with an optimum strain ratio cut-off of 2.09 at ROC analysis. USE with strain ratio showed 90.6% sensitivity, 93% specificity, 82.8% PPV, 96.4% NPV, while US score yielded a sensitivity of 52.9%, specificity of 84.3%, PPV 55.6% and NPV 82.9%. The diagnostic gain with strain ratio was statistically significant as proved by ROC areas, which was 0.9182 for strain ratio and 0.6864 for US score. USE with strain ratio should be considered a useful additional tool to colour-Doppler US, since it improves characterisation of thyroid nodules with indeterminate cytology. • Strain ratio measurements improve differentiation of thyroid nodules with indeterminate cytology • Elastography with strain ratio is more reliable than ultrasound features and ultrasound score • Strain ratio may help to better select patients with Thy 3 nodules candidate for surgery.

  7. Essure microinsert imaging: does abnormal shape on ultrasound predict complications on HSG?

    Science.gov (United States)

    VanBuren, Wendaline M; Suchet, Ian B; Thiel, John A; Karreman, Erwin

    2016-12-01

    We hypothesize that the shape of the Essure microinsert on ultrasound is able to predict complications evident on hysterosalpingogram (HSG), the accepted gold standard. From July 2, 2009 to July 2, 2012, 441 women at our institution received Essure microinsert placement for the purpose of permanent sterilization. 2D and 3D coronal plane transvaginal ultrasounds were performed three months after Essure microinsert placement. Those patients with complications identified on ultrasound, a non-diagnostic ultrasound, or following a difficult insertion were referred for HSG. Patients with both HSG and ultrasound performed were retrospectively selected and anonymized. The ultrasounds were reviewed by a single, blinded radiologist. A total of 122 microinserts in 65 patients were described on ultrasound using a numeric grading system and compared to HSG findings. Microinsert placement resulted in 37 complications, 31 of which were identified on ultrasound, including uterine and tubal perforations and placement in the endometrial cavity. The sensitivity of Essure microinsert shape on ultrasound in predicting complications, compared with standard HSG, was 94%, with a positive predictive value of 85%; specificity was 95%, with a negative predictive value of 98%. The Kappa coefficient was 0.85 (p Essure microinsert placement.

  8. Bringing 3D Printing to Geophysical Science Education

    Science.gov (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  9. In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI

    Directory of Open Access Journals (Sweden)

    Friebe M

    2018-03-01

    Full Text Available Michael Friebe,1 Juan Sanchez,1 Sathish Balakrishnan,1 Alfredo Illanes,1 Yeshaswini Nagaraj,2 Robert Odenbach,1 Marwah Matooq,1 Gabriele Krombach,3 Michael Vogele,4 Axel Boese1 1Chair of Intelligent Catheter, Otto-von-Guericke-University, Magdeburg, Germany; 2University of Groningen, University Medical Center Groningen, Center for Medical Imaging North East Netherlands, Groningen, the Netherlands; 3Universitätsklinikum Giessen, Radiologische Klinik, Giessen, Germany; 4Interventional Systems GmbH, Kitzbühel, Austria Abstract: There is no real need to discuss the potential advantages – mainly the excellent soft tissue contrast, nonionizing radiation, flow, and molecular information – of magnetic resonance imaging (MRI as an intraoperative diagnosis and therapy system particularly for neurological applications and oncological therapies. Difficult patient access in conventional horizontal-field superconductive magnets, very high investment and operational expenses, and the need for special nonferromagnetic therapy tools have however prevented the widespread use of MRI as imaging and guidance tool for therapy purposes. The interventional use of MRI systems follows for the last 20+ years the strategy to use standard diagnostic systems and add more or less complicated and expensive components (eg, MRI-compatible robotic systems, specially shielded in-room monitors, dedicated tools and devices made from low-susceptibility materials, etc to overcome the difficulties in the therapy process. We are proposing to rethink that approach using an in-room portable ultrasound (US system that can be safely operated till 1 m away from the opening of a 3T imaging system. The live US images can be tracked using an optical inside–out approach adding a camera to the US probe in combination with optical reference markers to allow direct fusion with the MRI images inside the MRI suite. This leads to a comfortable US-guided intervention and excellent patient

  10. Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction.

    Science.gov (United States)

    Businelli, Caterina; de Wit, Charlotte; Visser, Gerard H A; Pistorius, Lourens R

    2014-09-10

    Abstract Objective: We evaluated the ultrasound appearance of brain volume and cortical development in fetuses with early growth restriction and placental insufficiency. Methods: We examined a cohort of 20 fetuses with severe intrauterine growth restriction (IUGR) and evidence of placental insufficiency by three-dimensional (3D) ultrasound between 24 and 34 weeks. We graded cortical development and measured the supratentorial intracranial volume. The cortical grading and volume were compared to data obtained from a reference population of 28 adequate for gestational age (AGA) fetuses. Results: Ultrasound examinations were performed in 20 fetuses with IUGR. The biometry and brain volume were significantly reduced in IUGR fetuses. There was evidence of accelerated cortical development in IUGR fetuses. Conclusion: This study confirms that the smaller brain volume in IUGR fetuses, with normal or accelerated cortical maturation as previously depicted with postnatal MRI examination, can be demonstrated by prenatal 3D ultrasound.

  11. 3-D interactive visualisation tools for Hi spectral line imaging

    NARCIS (Netherlands)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2016-01-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is

  12. Three-dimensional ultrasound. Early personal experience with a dedicated unit and literature review

    International Nuclear Information System (INIS)

    Cesarani, F.; Isolato, G.; Capello, S.; Bianchi, S.D.

    1999-01-01

    The authors report our preliminary clinical experience with three-dimensional ultrasound (3D US) in abdominal and small parts imaging, comparing the yield of 3D versus 2D US and the through a literature review [it

  13. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  14. Three-dimensional (3D) printing and its applications for aortic diseases.

    Science.gov (United States)

    Hangge, Patrick; Pershad, Yash; Witting, Avery A; Albadawi, Hassan; Oklu, Rahmi

    2018-04-01

    Three-dimensional (3D) printing is a process which generates prototypes from virtual objects in computer-aided design (CAD) software. Since 3D printing enables the creation of customized objects, it is a rapidly expanding field in an age of personalized medicine. We discuss the use of 3D printing in surgical planning, training, and creation of devices for the treatment of aortic diseases. 3D printing can provide operators with a hands-on model to interact with complex anatomy, enable prototyping of devices for implantation based upon anatomy, or even provide pre-procedural simulation. Potential exists to expand upon current uses of 3D printing to create personalized implantable devices such as grafts. Future studies should aim to demonstrate the impact of 3D printing on outcomes to make this technology more accessible to patients with complex aortic diseases.

  15. Five-dimensional ultrasound system for soft tissue visualization.

    Science.gov (United States)

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  16. BBB disruption with unfocused ultrasound alone-A paradigm shift

    Science.gov (United States)

    Kyle, Al

    2012-10-01

    One paradigm for ultrasound-enabled blood brain barrier disruption uses image guided focused ultrasound and preformed microbubble agents to enable drug delivery to the brain. We propose an alternative approach: unguided, unfocused ultrasound with no adjunctive agent. Compared with the focused approach, the proposed method affects a larger region of the brain, and is aimed at treatment of regional neurological disease including glioblastoma multiforme (GBM). Avoidance of image guidance and focusing reduces cost for equipment and staff training. Avoidance of adjunctive agents also lowers cost and is enabled by a longer exposure time. Since 2004, our group has worked with two animal models, three investigators in four laboratories to safely deliver five compounds, increasing the concentration of large molecule markers in brain tissue two fold or more. Safety and effectiveness data for four studies have been presented at the Ultrasound Industry Association meetings in 2007 and 2010. This paper describes new safety and effectiveness results for a fifth study. We present evidence of delivery of large molecules - including Avastin-to the brains of a large animal model correlated with acoustic pressure, and summarize the advantages and disadvantages of this novel approach.

  17. Tissue and Organ 3D Bioprinting.

    Science.gov (United States)

    Xia, Zengmin; Jin, Sha; Ye, Kaiming

    2018-02-01

    Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting. It provides an update on recent developments in bioprinting and its applications. 3D bioprinting has profound impacts on biomedical research and industry. It offers a new way to industrialize tissue biofabrication. It has great potential for regenerating tissues and organs to overcome the shortage of organ transplantation.

  18. Three-dimensional ultrasound in the diagnosis of Müllerian duct anomalies and concordance with magnetic resonance imaging.

    Science.gov (United States)

    Bermejo, C; Martínez Ten, P; Cantarero, R; Diaz, D; Pérez Pedregosa, J; Barrón, E; Labrador, E; Ruiz López, L

    2010-05-01

    To demonstrate the value of three-dimensional (3D) ultrasound in the diagnosis of uterine malformations and its concordance with magnetic resonance imaging (MRI). This study included 286 women diagnosed with uterine malformation by 3D ultrasound, having been referred to our clinics on suspicion of uterine malformation following clinical and/or conventional two-dimensional ultrasound examination. With the exception of three with intact hymen, patients underwent both bimanual examination and speculoscopy before and/or after sonography. MRI was performed in 65 cases. We analyzed the diagnostic concordance between the techniques in the study of uterine malformations. Using 3D ultrasound we diagnosed: one case with uterine agenesis; 10 with unicornuate uterus, four of which also underwent MRI; six with didelphic uterus, one of which had MRI; 45 with bicornuate uterus, 12 of which had MRI; 125 with septate uterus (18 with two cervices), 42 of which had MRI (six with two cervices); 96 with arcuate uterus, three of which had MRI; and three with diethylstilbestrol (DES) iatrogenic uterine malformations, all of which had MRI. Among the 65 which underwent MRI, the diagnosis was: four cases with unicornuate uterus, 10 with bicornuate uterus (two with two cervices), 45 with septate uterus (five with two cervices), three with arcuate uterus and three with DES-related uterine malformations. The concordance between 3D ultrasound and MRI was very good (kappa index, 0.880 (95% CI, 0.769-0.993)). Discrepancies in diagnosis between the two techniques occurred in four cases. There was very good concordance in the diagnosis of associated findings (kappa index, 0.878 (95% CI, 0.775-0.980)), this analysis identifying differences in two cases. There is a high degree of concordance between 3D ultrasound and MRI in the diagnosis of uterine malformations, the relationship between cavity and fundus being visualized equally well with both techniques. 3D ultrasound should be complemented by

  19. Validation of Navigation Ultrasound for Clavicular Length Measurement

    DEFF Research Database (Denmark)

    Høj, Anders Thorsmark; Villa, Chiara; Christensen, Ole M.

    2017-01-01

    interval): approximately ± 7.5 mm, Pearson's correlation R: 0.948-0.974). Navigation ultrasound can measure clavicular length with an intra-rater reliability matching that of 3-D rendered computed tomography scans and with high validity. Its use could spread to other fields requiring accurate...... of 52.5 (range: 21-78 y) were included. Navigation ultrasound exhibited high reliability (intra-class correlation coefficient: 0.942-0.997, standard error of the mean: 0.7-2.9 mm, minimal detectable change: 2.3-8.1 mm) and validity (measurement error: 1.3%-1.8%, limits of agreement (95% confidence...

  20. Non-invasive Estimation of Pressure Changes using 2-D Vector Velocity Ultrasound: An Experimental Study with In-Vivo Examples

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Møller, Niclas Dechau

    2018-01-01

    and at the aortic valve of two healthy volunteers. Ultrasound measurements were performed using the experimental scanner SARUS, in combination with an 8MHz linear array transducer for experimental scans and a carotid scan, whereas a 3.5MHz phased array probe was employed for a scan of an aortic valve. Measured 2-D......A non-invasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamics (CFD) data, and with catheter measurements on phantoms. Hereafter, the method was tested in-vivo at the carotid bifurcation...

  1. iROLL: does 3-D radioguided occult lesion localization improve surgical management in early-stage breast cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Bluemel, Christina; Kajdi, Georg W.; Schmid, Jan; Buck, Andreas K.; Herrmann, Ken [University Hospital of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Cramer, Andreas; Grossmann, Christoph; Grimminger, Hanns-Joerg [Missionsaerztliches Klinikum Wuerzburg, Department of Obstetrics and Gynecology, Wuerzburg (Germany); Malzahn, Uwe [University of Wuerzburg, Institute of Clinical Epidemiology and Biometry, Wuerzburg (Germany); Lamp, Nora [University of Wuerzburg, Institute of Pathology, Wuerzburg (Germany); Langen, Heinz-Jakob [Missionsaerztliches Klinikum Wuerzburg, Department of Radiology, Wuerzburg (Germany)

    2015-10-15

    To prospectively evaluate the feasibility of 3-D radioguided occult lesion localization (iROLL) and to compare iROLL with wire-guided localization (WGL) in patients with early-stage breast cancer undergoing breast-conserving surgery and sentinel lymph node biopsy (SLNB). WGL (standard procedure) and iROLL in combination with SLNB were performed in 31 women (mean age 65.1 ± 11.2 years) with early-stage breast cancer and clinically negative axillae. Patient comfort in respect of both methods was assessed using a ten point scale. SLNB and iROLL were guided by freehand SPECT (fhSPECT). The results of the novel 3-D image-based method were compared with those of WGL, ultrasound-based lesion localization, and histopathology. iROLL successfully detected the malignant primary and at least one sentinel lymph node in 97 % of patients. In a single patient (3 %), only iROLL, and not WGL, enabled lesion localization. The variability between fhSPECT and ultrasound-based depth localization of breast lesions was low (1.2 ± 1.4 mm). Clear margins were achieved in 81 % of the patients; however, precise prediction of clear histopathological surgical margins was not feasible using iROLL. Patients rated iROLL as less painful than WGL with a pain score 0.8 ± 1.2 points (p < 0.01) lower than the score for iROLL. iROLL is a well-tolerated and feasible technique for localizing early-stage breast cancer in the course of breast-conserving surgery, and is a suitable replacement for WGL. As a single image-based procedure for localization of breast lesions and sentinel nodes, iROLL may improve the entire surgical procedure. However, no advantages of the image-guided procedure were found with regard to prediction of complete tumour resection. (orig.)

  2. iROLL: does 3-D radioguided occult lesion localization improve surgical management in early-stage breast cancer?

    Science.gov (United States)

    Bluemel, Christina; Cramer, Andreas; Grossmann, Christoph; Kajdi, Georg W; Malzahn, Uwe; Lamp, Nora; Langen, Heinz-Jakob; Schmid, Jan; Buck, Andreas K; Grimminger, Hanns-Jörg; Herrmann, Ken

    2015-10-01

    To prospectively evaluate the feasibility of 3-D radioguided occult lesion localization (iROLL) and to compare iROLL with wire-guided localization (WGL) in patients with early-stage breast cancer undergoing breast-conserving surgery and sentinel lymph node biopsy (SLNB). WGL (standard procedure) and iROLL in combination with SLNB were performed in 31 women (mean age 65.1 ± 11.2 years) with early-stage breast cancer and clinically negative axillae. Patient comfort in respect of both methods was assessed using a ten point scale. SLNB and iROLL were guided by freehand SPECT (fhSPECT). The results of the novel 3-D image-based method were compared with those of WGL, ultrasound-based lesion localization, and histopathology. iROLL successfully detected the malignant primary and at least one sentinel lymph node in 97% of patients. In a single patient (3%), only iROLL, and not WGL, enabled lesion localization. The variability between fhSPECT and ultrasound-based depth localization of breast lesions was low (1.2 ± 1.4 mm). Clear margins were achieved in 81% of the patients; however, precise prediction of clear histopathological surgical margins was not feasible using iROLL. Patients rated iROLL as less painful than WGL with a pain score 0.8 ± 1.2 points (p localizing early-stage breast cancer in the course of breast-conserving surgery, and is a suitable replacement for WGL. As a single image-based procedure for localization of breast lesions and sentinel nodes, iROLL may improve the entire surgical procedure. However, no advantages of the image-guided procedure were found with regard to prediction of complete tumour resection.

  3. High-speed 3D surface measurement with mechanical projector

    Science.gov (United States)

    Hyun, Jae-Sang; Zhang, Song

    2017-05-01

    This paper presents a method to overcome the light spectral range limitation of using digital-light-processing (DLP) projector for 3D shape measurement by developing a mechanical projector. The mechanical projector enables much broader spectral range of light than that the DLP projector allows. The rapidly spinning disk with binary structures can generate desired sinusoidal patterns at a frequency of 10 kHz or higher with a single DC motor. By precisely synchronizing the camera with the projector, phase-shifted fringe patterns can be accurately captured for high-accuracy 3D shape measurement. We further employed a computational framework that could enable absolute phase and thus absolute 3D shape measurement. We developed such prototype system that experimentally demonstrated the success of the proposed method.

  4. Statistical shape modeling based renal volume measurement using tracked ultrasound

    Science.gov (United States)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of kidney transplant worldwide accounting for 7-10% of all cases. Although ADPKD usually progresses over many decades, accurate risk prediction is an important task.1 Identifying patients with progressive disease is vital to providing new treatments being developed and enable them to enter clinical trials for new therapy. Among other factors, total kidney volume (TKV) is a major biomarker predicting the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease (CRISP)2 have shown that TKV is an early, and accurate measure of cystic burden and likely growth rate. It is strongly associated with loss of renal function.3 While ultrasound (US) has proven as an excellent tool for diagnosing the disease; monitoring short-term changes using ultrasound has been shown to not be accurate. This is attributed to high operator variability and reproducibility as compared to tomographic modalities such as CT and MR (Gold standard). Ultrasound has emerged as one of the standout modality for intra-procedural imaging and with methods for spatial localization has afforded us the ability to track 2D ultrasound in physical space which it is being used. In addition to this, the vast amount of recorded tomographic data can be used to generate statistical shape models that allow us to extract clinical value from archived image sets. In this work, we aim at improving the prognostic value of US in managing ADPKD by assessing the accuracy of using statistical shape model augmented US data, to predict TKV, with the end goal of monitoring short-term changes.

  5. Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound

    International Nuclear Information System (INIS)

    Andermann, P.; Schloegl, S.; Maeder, U.; Luster, M.; Lassmann, M.; Reiners, C.

    2007-01-01

    Thyroid volume measurement by ultrasonography (US) is essential in numerous clinical diagnostic and therapeutic fields. While known to be limited, the accuracy and precision of two-dimensional (2D) US thyroid volume measurement have not been thoroughly characterized. Objective: We sought to assess the intra- and interobserver variability, accuracy and precision of thyroid volume determination by conventional 2D US in healthy adults using reference volumes determined by three-dimensional (3D) US. Design, methods: In a prospective blinded trial, thyroid volumes of ten volunteers were determined repeatedly by nine experienced sonographers using conventional 2D US (ellipsoid model). The values obtained were statistically compared to the so-called true volumes determined by 3D US (multiplanar approximation), the so-called gold standard, to estimate systematic errors and relative deviations of individual observers. Results: The standard error of measurement (SEM) for one observer and successive measurements (intraobserver variability), was 14%, and for different observers and repeated measurements (interobserver variability), 17%. The minimum relative thyroid volume change significantly different at the 95% level was 39% for the same observer and 46% for different observers. Regarding accuracy, the mean value of the differences showed a significant thyroid volume overestimation (17%, p <0.01) by 2D relative to 3D US. Conclusion: 2D US is appropriate for routine thyroid volumetry. Nevertheless, the so-called human factor (random error) should be kept in mind and correction is needed for methodical bias (systematic error). Further efforts are required to improve the accuracy and precision of 2D US thyroid volumetry by optimizing the underlying geometrical modeling or by the application of 3D US. (orig.)

  6. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    Science.gov (United States)

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Real-Time 3-Dimensional Ultrasound-Assisted Infraclavicular Brachial Plexus Catheter Placement: Implications of a New Technology

    Directory of Open Access Journals (Sweden)

    Steven R. Clendenen

    2010-01-01

    Full Text Available Background. There are a variety of techniques for targeting placement of an infraclavicular blockade; these include eliciting paresthesias, nerve stimulation, and 2-dimensional (2D ultrasound (US guidance. Current 2D US allows direct visualization of a “flat” image of the advancing needle and neurovascular structures but without the ability to extensively analyze multidimensional data and allow for real-time manipulation. Three-dimensional (3D ultrasonography has gained popularity and usefulness in many clinical specialties such as obstetrics and cardiology. We describe some of the potential clinical applications of 3D US in regional anesthesia. Methods. This case represents an infraclavicular catheter placement facilitated by 3D US, which demonstrates 360-degree spatial relationships of the entire anatomic region. Results. The block needle, peripheral nerve catheter, and local anesthetic diffusion were observed in multiple planes of view without manipulation of the US probe. Conclusion. Advantages of 3D US may include the ability to confirm correct needle and catheter placement prior to the injection of local anesthetic. The spread of local anesthetic along the length of the nerve can be easily observed while manipulating the 3D images in real-time by simply rotating the trackball on the US machine to provide additional information that cannot be identified with 2D US alone.

  8. Introduction to AutoCAD 2004 2D and 3D design

    CERN Document Server

    Yarwood, Alf

    2004-01-01

    Taking the reader step-by-step through the features of AutoCAD, Alf Yarwood provides a structured course of work matched to the latest release of this software. Introducing first principles and the creation of 2D technical drawings, the author goes on to demonstrate construction of 3D solid model drawings and rendering of 3D models. Worked examples and exercises are included throughout the text, to enable the reader to apply theory into real-world engineering practice, along with revision notes and exercises at the end of chapters for the reader to check their understanding of the material the

  9. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  10. 3D-printing of lightweight cellular composites.

    Science.gov (United States)

    Compton, Brett G; Lewis, Jennifer A

    2014-09-10

    A new epoxy-based ink is reported, which enables 3D printing of lightweight cellular composites with controlled alignment of multiscale, high-aspectratio fiber reinforcement to create hierarchical structures inspired by balsa wood. Young's modulus values up to 10 times higher than existing commercially available 3D-printed polymers are attainable, while comparable strength values are maintained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 3-D Vector Flow Estimation With Row–Column-Addressed Arrays

    DEFF Research Database (Denmark)

    Holbek, Simon; Christiansen, Thomas Lehrmann; Stuart, Matthias Bo

    2016-01-01

    Simulation and experimental results from 3-D vector flow estimations for a 62 + 62 2-D row–column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3-MHz RC array is developed and validated. First, a parametric...... mean bias B˜ and mean standard deviation σ˜ . Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight.......7, −0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for (vx , vy, vz). The estimated peak velocity is 48.5 ± 3 cm/s giving a −3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow rig at a 90° beam...

  12. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    Directory of Open Access Journals (Sweden)

    Jianxia Sun

    2016-08-01

    Full Text Available As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200–500 W and treatment time (0–60 min. The degradation trend was consistent with first-order reaction kinetics (R2 > 0.9100. Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R2 = 0.8790, which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  13. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature.

    Science.gov (United States)

    Sun, Jianxia; Mei, Zhouxiong; Tang, Yajuan; Ding, Lijun; Jiang, Guichuan; Zhang, Chi; Sun, Aidong; Bai, Weibin

    2016-08-24

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200-500 W) and treatment time (0-60 min). The degradation trend was consistent with first-order reaction kinetics (R² > 0.9100). Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R² = 0.8790), which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s) containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  14. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography.

    Science.gov (United States)

    Huang, Ruobing; Xie, Weidi; Alison Noble, J

    2018-04-23

    Three-dimensional (3D) fetal neurosonography is used clinically to detect cerebral abnormalities and to assess growth in the developing brain. However, manual identification of key brain structures in 3D ultrasound images requires expertise to perform and even then is tedious. Inspired by how sonographers view and interact with volumes during real-time clinical scanning, we propose an efficient automatic method to simultaneously localize multiple brain structures in 3D fetal neurosonography. The proposed View-based Projection Networks (VP-Nets), uses three view-based Convolutional Neural Networks (CNNs), to simplify 3D localizations by directly predicting 2D projections of the key structures onto three anatomical views. While designed for efficient use of data and GPU memory, the proposed VP-Nets allows for full-resolution 3D prediction. We investigated parameters that influence the performance of VP-Nets, e.g. depth and number of feature channels. Moreover, we demonstrate that the model can pinpoint the structure in 3D space by visualizing the trained VP-Nets, despite only 2D supervision being provided for a single stream during training. For comparison, we implemented two other baseline solutions based on Random Forest and 3D U-Nets. In the reported experiments, VP-Nets consistently outperformed other methods on localization. To test the importance of loss function, two identical models are trained with binary corss-entropy and dice coefficient loss respectively. Our best VP-Net model achieved prediction center deviation: 1.8 ± 1.4 mm, size difference: 1.9 ± 1.5 mm, and 3D Intersection Over Union (IOU): 63.2 ± 14.7% when compared to the ground truth. To make the whole pipeline intervention free, we also implement a skull-stripping tool using 3D CNN, which achieves high segmentation accuracy. As a result, the proposed processing pipeline takes a raw ultrasound brain image as input, and output a skull-stripped image with five detected key brain

  15. SU-F-T-41: 3D MTP-TRUS for Prostate Implant

    Energy Technology Data Exchange (ETDEWEB)

    Yan, P [Columbia University, New York, NY (United States)

    2016-06-15

    Purpose: Prostate brachytherapy is an effective treatment for early prostate cancer. The current prostate implant is limited to using 2D transrectal ultrassound (TRUS) or machenical motor driven 2D array either in the end or on the side. Real-time 3D images can improve the accuracy of the guidance of prostate implant. The concept of our system is to allow realtime full visualization of the entire prostate with the multiple transverse scan. Methods: The prototype of 3D Multiple-Transverse-Plane Transrectal Ultrasound probe (MTP-TRUS) has been designed by us and manufactured by Blatek inc. It has 7 convex linear arrays and each array has 96 elements. It is connected to cQuest Fire bird research system (Cephasonics inc.) which is a flexible and configurable ultrasound-development platform. The size of cQuest Firebird system is compact and supports the real-time wireless image transferring. A relay based mux board is designed for the cQuest Firebird system to be able to connect 672 elements. Results: The center frequency of probe is 6MHz±10%. The diameter of probe is 3cm and the length is 20cm. The element pitch is 0.205 mm. Array focus is 30mm and spacing 1.6cm. The beam data for each array was measured and met our expectation. The interface board of MTP-TURS is made and able to connect to cQuest Firebird system. The image display interface is still under the development. Our real-time needle tracking algorithm will be implemented too. Conclusion: Our MTP-TRUS system for prostate implant will be able to acquire real-time 3D images of prostate and do the real-time needle segmentation and tracking. The system is compact and have wireless function.

  16. Special Issue: NextGen Materials for 3D Printing

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2018-04-01

    Full Text Available Only a handful of materials are well-established in three-dimensional (3D printing and well-accepted in industrial manufacturing applications. However, recent advances in 3D printable materials have shown potential for enabling numerous novel applications in the future. This special issue, consisting of 2 reviews and 10 research articles, intends to explore the possible materials that could define next-generation 3D printing.

  17. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  18. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  19. From 3D to 4D printing: approaches and typical applications

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Kang Shu Feng; Wu, Xue Lian; Lu, Hai Bao; Fu, Jun; Cui, Haipo

    2015-01-01

    With the additional dimension, 4D printing is emerging as a novel technique to enable configuration switching in 3D printed items. In this paper, four major approaches, namely self-assembly of elements, deformation mismatch, bi-stability, and the Shape memory effect (SME), are identified as the generic approaches to achieve 4D printing. The main features of these approaches are briefly discussed. Utilizing these approaches either individually or in a combined manner, the potential of 4D printing to reshape product design is demonstrated by a few example applications.

  20. From 3D to 4D printing: approaches and typical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Huang, Wei Min [Nanyang Technological University, Singapore (Singapore); Kang Shu Feng [Shenzhen Woer Heat-Shrinkable Material Co. Ltd, Shenzhen (China); Wu, Xue Lian [Jiangsu University, Zhenjiang (China); Lu, Hai Bao [Harbin Institute of Technology, Harbin (China); Fu, Jun [Chinese Academy of Sciences, Ningbo (China); Cui, Haipo [University of Shanghai for Science and Technology, Shanghai (China)

    2015-10-15

    With the additional dimension, 4D printing is emerging as a novel technique to enable configuration switching in 3D printed items. In this paper, four major approaches, namely self-assembly of elements, deformation mismatch, bi-stability, and the Shape memory effect (SME), are identified as the generic approaches to achieve 4D printing. The main features of these approaches are briefly discussed. Utilizing these approaches either individually or in a combined manner, the potential of 4D printing to reshape product design is demonstrated by a few example applications.

  1. Magmatic Systems in 3-D

    Science.gov (United States)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  2. A comparison between intrastomal 3D ultrasonography, CT scanning and findings at surgery in patients with stomal complaints.

    Science.gov (United States)

    Näsvall, P; Wikner, F; Gunnarsson, U; Rutegård, J; Strigård, K

    2014-10-01

    Since there are no reliable investigative tools for imaging parastomal hernia, new techniques are needed. The aim of this study was to assess the validity of intrastomal three-dimensional ultrasonography (3D) as an alternative to CT scanning for the assessment of stomal complaints. Twenty patients with stomal complaints, indicating surgery, were examined preoperatively with a CT scan in the supine position and 3D intrastomal ultrasonography in the supine and erect positions. Comparison with findings at surgery, considered to be the true state, was made. Both imaging methods, 3D ultrasonography and CT scanning, showed high sensitivity (ultrasound 15/18, CT scan 15/18) and specificity (ultrasound 2/2, CT scan 1/2) when judged by a dedicated radiologist. Corresponding values for interpretation of CT scans in routine clinical practice was for sensitivity 17/18 and for specificity 1/2. 3D ultrasonography has a high validity and is a promising alternative to CT scanning in the supine position to distinguish a bulge from a parastomal hernia.

  3. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...... source elements are considered. Using SAF on data acquired for a conventional linear array imaging improves the penetration depth for the particular imaging situation from 80 to 110 mm. The independent use of virtual source elements in the elevation plane decreases the respective size of the point spread...

  4. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed...... carbon [2]. This process enables fabrication of 2D and 3D electrodes with possibility for tailoring ad-hoc designs and unique sensitivities for specific applications. Due to this, pyrolysed carbon is becoming increasingly attractive for numerous applications, such as novel sensors and scaffolds for cell...

  5. Analysis of 3-D images

    Science.gov (United States)

    Wani, M. Arif; Batchelor, Bruce G.

    1992-03-01

    Deriving generalized representation of 3-D objects for analysis and recognition is a very difficult task. Three types of representations based on type of an object is used in this paper. Objects which have well-defined geometrical shapes are segmented by using a fast edge region based segmentation technique. The segmented image is represented by plan and elevation of each part of the object if the object parts are symmetrical about their central axis. The plan and elevation concept enables representing and analyzing such objects quickly and efficiently. The second type of representation is used for objects having parts which are not symmetrical about their central axis. The segmented surface patches of such objects are represented by the 3-D boundary and the surface features of each segmented surface. Finally, the third type of representation is used for objects which don't have well-defined geometrical shapes (for example a loaf of bread). These objects are represented and analyzed from its features which are derived using a multiscale contour based technique. Anisotropic Gaussian smoothing technique is introduced to segment the contours at various scales of smoothing. A new merging technique is used which enables getting the current best estimate of break points at each scale. This new technique enables elimination of loss of accuracy of localization effects at coarser scales without using scale space tracking approach.

  6. Teaching enthesis ultrasound: experience of an ultrasound training workshop.

    Science.gov (United States)

    Miguel, Cláudia; De Miguel, Eugenio; Batlle-Gualda, Enrique; Rejón, Eduardo; Lojo, Leticia

    2012-12-01

    To evaluate a standardised enthesis ultrasound training method, a workshop was conducted to train rheumatologists on enthesis ultrasound. After a theoretical session about ultrasound elementary enthesis lesions (changes in tendon architecture/thickness, bone proliferation/erosion, bursitis or Doppler signal), a reading exercise of 28 entheses' ultrasonographic images (plantar fasciae, Achilles, origin and insertion of patellar tendon) was completed. Participants scored through an electronic multiple-choice device with six possible lesions in each enthesis. To assess the adequacy and efficacy of the workshop, we explored the following: (1) subjective outcomes: a 12-item structured satisfaction questionnaire (graded 1-5 using Likert scale) and (2) objective outcomes of reliability: sensitivity (Se), specificity (Sp) and percentage of correctly classified cases (CC). Forty-nine participants attended the workshop. The satisfaction questionnaire demonstrated a 4.7 mean global value. The inter-reader Kappa reliability coefficient was moderate for the plantar fascia (0.47), Achilles tendon (0.47), and distal patellar tendons (0.50) and good for the proximal patellar tendon (0.63). The whole group means comparing to teachers' consensus were as follows: (a) plantar fascia: Se, 73.2%; Sp, 87.7%; CC, 83.3%; (b) Achilles: Se, 66.9%; Sp, 85.0%; CC, 79.5%; (c) distal patellar tendon: Se, 74.6%; Sp, 85.3%; CC, 82.1%; and (d) proximal patellar tendon: Se, 82.2%; Sp, 90.6%; CC, 88%. The proposed learning method seemed to be simple, easily performed, effective and well accepted by the target audience.

  7. Quantitative ultrasound characterization of tumor cell death: ultrasound-stimulated microbubbles for radiation enhancement.

    Directory of Open Access Journals (Sweden)

    Hyunjung Christina Kim

    Full Text Available The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy. In parallel, in situ end-labelling (ISEL staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.

  8. Efficient high-performance ultrasound beamforming using oversampling

    Science.gov (United States)

    Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew

    1998-05-01

    High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.

  9. The long gestation of the small naked mole-rat (Heterocephalus glaber Ruppell, 1842 studied with ultrasound biomicroscopy and 3D-ultrasonography.

    Directory of Open Access Journals (Sweden)

    Kathleen Roellig

    Full Text Available The naked mole-rat (Heterocephalus glaber is one of the two known mammalian species that live in a eusocial population structure. Here we investigate the exceptionally long gestation period of 70 days observed in the mole-rat queen. The course of seven successful pregnancies in two individuals was recorded in a colony of captive naked mole-rats using ultrasound biomicroscopy (UBM and 3D-ultrasonography. We establish a catalogue of basic reference ultrasound data for this species by describing the ultrasonographic appearance of reproductive organs, calculating growth curves to predict gestational age and defining ultrasonographic milestones to characterize pregnancy stages. Mean litter size was 10.9±2.7, of which 7.2±1.5 survived the weaning period. Mean interbirth interval was 128.8±63.0 days. The reproductive success in our colony did not differ from previously published data. In the queen the active corpora lutea had an anechoic, fluid filled centre. Using UBM, pregnancy could be detected 53 days before parturition. The period of embryonic development is assumed to last until 30 days before parturition. Embryonic resorptions were detected frequently in the queen, indicating that this might be an ordinary event in this species. We discuss the extraordinary long gestation period of this small rodent and postulate that the long gestation is beneficial to both the eusocial structure and longevity. An increased litter size, twice as large as for other rodents of similar size, seemingly compensates for the doubling of pregnancy length. We demonstrate that the lifetime reproductive effort of a naked mole-rat queen is equivalent to the mass of offspring that would be produced if all of the females of a colony would be reproducing.

  10. 3D recovery of human gaze in natural environments

    Science.gov (United States)

    Paletta, Lucas; Santner, Katrin; Fritz, Gerald; Mayer, Heinz

    2013-01-01

    The estimation of human attention has recently been addressed in the context of human robot interaction. Today, joint work spaces already exist and challenge cooperating systems to jointly focus on common objects, scenes and work niches. With the advent of Google glasses and increasingly affordable wearable eye-tracking, monitoring of human attention will soon become ubiquitous. The presented work describes for the first time a method for the estimation of human fixations in 3D environments that does not require any artificial landmarks in the field of view and enables attention mapping in 3D models. It enables full 3D recovery of the human view frustum and the gaze pointer in a previously acquired 3D model of the environment in real time. The study on the precision of this method reports a mean projection error ≈1.1 cm and a mean angle error ≈0.6° within the chosen 3D model - the precision does not go below the one of the technical instrument (≈1°). This innovative methodology will open new opportunities for joint attention studies as well as for bringing new potential into automated processing for human factors technologies.

  11. Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry

    Directory of Open Access Journals (Sweden)

    Guang-Long Yao

    2016-11-01

    Full Text Available Power ultrasound (US could potentially be used in the food industry in the future. However, the extent of anthocyanin degradation by US requires investigation. Cyanidin-3-glucoside (Cy-3-glu obtained from blueberry extracts was used as research material to investigate the effect of power ultrasound on food processing of anthocyanin-rich raw materials. The effects of ultrasonic waves on the stability of Cy-3-glu and on the corresponding changes in UV-Vis spectrum and antioxidant activity were investigated, and the mechanisms of anthocyanin degradation induced by ultrasonic waves were discussed. To explore Cy-3-glu degradation in different environments, we kept the Cy-3-glu solution treated with ultrasonic waves in four concentrations (0%, 10%, 20%, and 50% of ethanol aqueous solutions to simulate water, beer, wine, and liquor storage environment according to the chemical kinetics method. Results show that the basic spectral characteristics of Cy-3-glu did not significantly change after power ultrasound cell crusher application at 30 °C. However, with anthocyanin degradation, the intensity of the peak for Cy-3-glu at 504 nm significantly decreased (p < 0.05. The degradation kinetics of Cy-3-glu by ultrasonic waves (200–500 W frequency fitted well to first-order reaction kinetics, and the degradation rate constant of Cy-3-glu under power ultrasound was considerably larger than that under thermal degradation (p < 0.05. The sensitivity of the anthocyanins of blueberry to temperature increased with increasing ethanol concentration, and the longest half-life was observed in 20% ethanol aqueous solution.

  12. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Demonstration of 352 Gbit/s Photonically-enabled D-Band Wireless Delivery in one 2x2 MIMO System

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Yu, Jianjun; Li, Xinying

    2017-01-01

    First demonstration of photonically-enabled independent side-bands D-Band wireless transmission up to 352 Gbit/s with a BER below 3.8×10-3. These results were achieved by means of advanced DSP and antenna polarization multiplexing (2x2 MIMO)....

  14. Reproducibility of three-dimensional ultrasound for the measurement of a niche in a caesarean scar and assessment of its shape

    NARCIS (Netherlands)

    Bij de Vaate, A.J.M.; Linskens, I.H.; van der Voet, L.F.; Twisk, J.W.R.; Brölmann, H.A.M.; Huirne, J.A.F.

    2015-01-01

    Abstract Objective To evaluate the inter- and intraobserver agreement for measurement of the size and volume of a niche and assessment of the shape, with the use of three-dimensional (3D) ultrasound. Study design In this reproducibility study, 20 3D ultrasound volumes of uteri with a niche were

  15. 3D bioprinting of tissues and organs.

    Science.gov (United States)

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  16. Physics of Ultrasound. Chapter 12

    Energy Technology Data Exchange (ETDEWEB)

    Lacefield, J. C. [University of Western Ontario, London (Canada)

    2014-09-15

    Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide at the beginning of the 21st century. The success of ultrasound may be attributed to a number of attractive characteristics, including the relatively low cost and portability of an ultrasound scanner, the non-ionizing nature of ultrasound waves, the ability to produce real time images of blood flow and moving structures such as the beating heart, and the intrinsic contrast among soft tissue structures that is achieved without the need for an injected contrast agent. The latter characteristic enables ultrasound to be used for a wide range of medical applications, which historically have primarily included cardiac and vascular imaging, imaging of the abdominal organs and, most famously, in utero imaging of the developing fetus. Ongoing technological improvements continue to expand the use of ultrasound for many applications, including cancer imaging, musculoskeletal imaging, ophthalmology and others. The term ultrasound refers specifically to acoustic waves at frequencies greater than the maximum frequency audible to humans, which is nominally 20 kHz. Diagnostic imaging is generally performed using ultrasound in the frequency range of 2–15 MHz. The choice of frequency is dictated by a trade off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue. The information contained in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue.

  17. A Smart Cage With Uniform Wireless Power Distribution in 3D for Enabling Long-Term Experiments With Freely Moving Animals.

    Science.gov (United States)

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit

    2016-04-01

    This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).

  18. 3D Inversion of SQUID Magnetic Tensor Data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...

  19. 3-D Vector Flow Using a Row-Column Addressed CMUT Array

    DEFF Research Database (Denmark)

    Holbek, Simon; Christiansen, Thomas Lehrmann; Engholm, Mathias

    2016-01-01

    This paper presents an in-house developed 2-D capacitive micromachined ultrasonic transducer (CMUT) appliedfor 3-D blood flow estimation. The probe breaks with conventional transducers in two ways; first, the ultrasonicpressure field is generated from thousands of small vibrating micromachined...... cells, and second, elements areaccessed by row and/or column indices. The 62+62 2-D row-column addressed prototype CMUT probe was usedfor vector flow estimation by transmitting focused ultrasound into a flow-rig with a fully developed parabolicflow. The beam-to-flow angle was 90◦. The received data...... was beamformed and processed offline. A transverseoscillation (TO) velocity estimator was used to estimate the 3-D vector flow along a line originating from thecenter of the transducer. The estimated velocities in the lateral and axial direction were close to zero as expected.In the transverse direction...

  20. Non-rigid registration of a 3D ultrasound and a MR image data set of the female pelvic floor using a biomechanical model

    Directory of Open Access Journals (Sweden)

    Rexilius Jan

    2005-03-01

    Full Text Available Abstract Background The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR and 3D ultrasound (US image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper. Methods We present a feasibility study for a non-rigid registration technique based on a biomechanical model for MR and US image data sets of the female anal canal as a base for a new innovative clinical visual representation. Results It is shown in this case study that the internal and external sphincter region could be registered elastically and the registration partially corrects the compression induced by the ultrasound transducer, so the MR data set showing the native anatomy is used as a frame for the US data set showing the same region with higher resolution but distorted by the transducer Conclusion The morphology is of special interest in the assessment of anal incontinence and the non-rigid registration of normal clinical MR and US image data sets is a new field of the adaptation of this method incorporating the advantages of both technologies.

  1. 3D-printing technologies for electrochemical applications.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  2. [Ultrasound findings in rhabdomyolysis].

    Science.gov (United States)

    Carrillo-Esper, Raúl; Galván-Talamantes, Yazmin; Meza-Ayala, Cynthia Margarita; Cruz-Santana, Julio Alberto; Bonilla-Reséndiz, Luis Ignacio

    Rhabdomyolysis is defined as skeletal muscle necrosis. Ultrasound assessment has recently become a useful tool for the diagnosis and monitoring of muscle diseases, including rhabdomyolysis. A case is presented on the ultrasound findings in a patient with rhabdomyolysis. To highlight the importance of ultrasound as an essential part in the diagnosis in rhabdomyolysis, to describe the ultrasound findings, and review the literature. A 30 year-old with post-traumatic rhabdomyolysis of both thighs. Ultrasound was performed using a Philips Sparq model with a high-frequency linear transducer (5-10MHz), in low-dimensional scanning mode (2D), in longitudinal and transverse sections at the level of both thighs. The images obtained showed disorganisation of the orientation of the muscle fibres, ground glass image, thickening of the muscular fascia, and the presence of anechoic areas. Ultrasound is a useful tool in the evaluation of rhabdomyolysis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  3. Comparing interpolation schemes in dynamic receive ultrasound beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Andresen, Henrik; Nikolov, Svetoslav

    2005-01-01

    In medical ultrasound interpolation schemes are of- ten applied in receive focusing for reconstruction of image points. This paper investigates the performance of various interpolation scheme by means of ultrasound simulations of point scatterers in Field II. The investigation includes conventional...... B-mode imaging and synthetic aperture (SA) imaging using a 192-element, 7 MHz linear array transducer with λ pitch as simulation model. The evaluation consists primarily of calculations of the side lobe to main lobe ratio, SLMLR, and the noise power of the interpolation error. When using...... conventional B-mode imaging and linear interpolation, the difference in mean SLMLR is 6.2 dB. With polynomial interpolation the ratio is in the range 6.2 dB to 0.3 dB using 2nd to 5th order polynomials, and with FIR interpolation the ratio is in the range 5.8 dB to 0.1 dB depending on the filter design...

  4. Compensated Row-Column Ultrasound Imaging System Using Multilayered Edge Guided Stochastically Fully Connected Random Fields.

    Science.gov (United States)

    Ben Daya, Ibrahim; Chen, Albert I H; Shafiee, Mohammad Javad; Wong, Alexander; Yeow, John T W

    2017-09-06

    The row-column method received a lot of attention for 3-D ultrasound imaging. By reducing the number of connections required to address the 2-D array and therefore reducing the amount of data to handle, this addressing method allows for real time 3-D imaging. Row-column still has its limitations: the issues of sparsity, speckle noise inherent to ultrasound, the spatially varying point spread function, and the ghosting artifacts inherent to the row-column method must all be taken into account when building a reconstruction framework. In this research, we build on a previously published system and propose an edge-guided, compensated row-column ultrasound imaging system that incorporates multilayered edge-guided stochastically fully connected conditional random fields to address the limitations of the row-column method. Tests carried out on simulated and real row-column ultrasound images show the effectiveness of our proposed system over other published systems. Visual assessment show our proposed system's potential at preserving edges and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal-to-Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging.

  5. The D3 Middleware Architecture

    Science.gov (United States)

    Walton, Joan; Filman, Robert E.; Korsmeyer, David J.; Lee, Diana D.; Mak, Ron; Patel, Tarang

    2002-01-01

    DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid-dynamics) model executions. DARWIN captures, stores and indexes data; manages derived knowledge (such as visualizations across multiple datasets); and provides an environment for designers to collaborate in the analysis of test results. DARWIN is an interesting application because it supports high-volumes of data. integrates multiple modalities of data display (e.g., images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and views of data. Here we provide an overview of the architecture of D3, the third generation of DARWIN. Earlier versions of DARWIN were characterized by browser-based interfaces and a hodge-podge of server technologies: CGI scripts, applets, PERL, and so forth. But browsers proved difficult to control, and a proliferation of computational mechanisms proved inefficient and difficult to maintain. D3 substitutes a pure-Java approach for that medley: A Java client communicates (though RMI over HTTPS) with a Java-based application server. Code on the server accesses information from JDBC databases, distributed LDAP security services, and a collaborative information system. D3 is a three tier-architecture, but unlike 'E-commerce' applications, the data usage pattern suggests different strategies than traditional Enterprise Java Beans - we need to move volumes of related data together, considerable processing happens on the client, and the 'business logic' on the server-side is primarily data integration and collaboration. With D3, we are extending DARWIN to handle other data domains and to be a distributed system, where a single login allows a user

  6. Carbon nanotube based 3-D matrix for enabling three-dimensional nano-magneto-electronics [corrected].

    Directory of Open Access Journals (Sweden)

    Jeongmin Hong

    Full Text Available This letter describes the use of vertically aligned carbon nanotubes (CNT-based arrays with estimated 2-nm thick cobalt (Co nanoparticles deposited inside individual tubes to unravel the possibility of using the unique templates for ultra-high-density low-energy 3-D nano-magneto-electronic devices. The presence of oriented 2-nm thick Co layers within individual nanotubes in the CNT-based 3-D matrix is confirmed through VSM measurements as well as an energy-dispersive X-ray spectroscopy (EDS.

  7. Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

    KAUST Repository

    Mansingka, Abhinav S.

    2012-10-07

    This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.

  8. Automatic detection of kidney in 3D pediatric ultrasound images using deep neural networks

    Science.gov (United States)

    Tabrizi, Pooneh R.; Mansoor, Awais; Biggs, Elijah; Jago, James; Linguraru, Marius George

    2018-02-01

    Ultrasound (US) imaging is the routine and safe diagnostic modality for detecting pediatric urology problems, such as hydronephrosis in the kidney. Hydronephrosis is the swelling of one or both kidneys because of the build-up of urine. Early detection of hydronephrosis can lead to a substantial improvement in kidney health outcomes. Generally, US imaging is a challenging modality for the evaluation of pediatric kidneys with different shape, size, and texture characteristics. The aim of this study is to present an automatic detection method to help kidney analysis in pediatric 3DUS images. The method localizes the kidney based on its minimum volume oriented bounding box) using deep neural networks. Separate deep neural networks are trained to estimate the kidney position, orientation, and scale, making the method computationally efficient by avoiding full parameter training. The performance of the method was evaluated using a dataset of 45 kidneys (18 normal and 27 diseased kidneys diagnosed with hydronephrosis) through the leave-one-out cross validation method. Quantitative results show the proposed detection method could extract the kidney position, orientation, and scale ratio with root mean square values of 1.3 +/- 0.9 mm, 6.34 +/- 4.32 degrees, and 1.73 +/- 0.04, respectively. This method could be helpful in automating kidney segmentation for routine clinical evaluation.

  9. Nonspherical oscilllations of ultrasound contrast agent microbubbles

    NARCIS (Netherlands)

    Dollet, B.; van der Meer, S.M.; Garbin, V.; Garbin, Valeria; de Jong, N.; Lohse, Detlef; Versluis, Michel

    2008-01-01

    The occurrence of nonspherical oscillations (or surface modes) of coated microbubbles, used as ultrasound contrast agents in medical imaging, is investigated using ultra–high-speed optical imaging. Optical tweezers designed to micromanipulate single bubbles in 3-D are used to trap the bubbles far

  10. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ultrasound of the pelvic floor during and after first pregnancy

    NARCIS (Netherlands)

    Veelen, G.A. van

    2015-01-01

    Objective First, to evaluate the reliability of different assessments using three/four-dimensional (3D/4D) transperineal ultrasound in women during and after their first pregnancy. Second, to describe changes in pelvic floor anatomy and function during and after first pregnancy and to provide

  12. Point-of-care testing: applications of 3D printing.

    Science.gov (United States)

    Chan, Ho Nam; Tan, Ming Jun Andrew; Wu, Hongkai

    2017-08-08

    Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.

  13. A 10-Fr ultrasound catheter with integrated micromotor for 4-D intracardiac echocardiography.

    Science.gov (United States)

    Lee, Warren; Griffin, Weston; Wildes, Douglas; Buckley, Donald; Topka, Terry; Chodakauskas, Thaddeus; Langer, Mark; Calisti, Serge; Bergstøl, Svein; Malacrida, Jean-Pierre; Lanteri, Frédéric; Maffre, Jennifer; McDaniel, Ben; Shivkumar, Kalyanam; Cummings, Jennifer; Callans, David; Silvestry, Frank; Packer, Douglas

    2011-07-01

    We developed prototype real-time 3-D intracardiac echocardiography catheters with integrated micromotors, allowing internal oscillation of a low-profile 64-element, 6.2-MHz phased-array transducer in the elevation direction. Components were designed to facilitate rotation of the array, including a low-torque flexible transducer interconnect and miniature fixtures for the transducer and micromotor. The catheter tip prototypes were integrated with two-way deflectable 10-Fr catheters and used in in vivo animal testing at multiple facilities. The 4-D ICE catheters were capable of imaging a 90° azimuth by up to 180° elevation field of view. Volume rates ranged from 1 vol/sec (180° elevation) to approximately 10 vol/sec (60° elevation). We successfully imaged electrophysiology catheters, atrial septal puncture procedures, and detailed cardiac anatomy. The elevation oscillation enabled 3-D visualization of devices and anatomy, providing new clinical information and perspective not possible with current 2-D imaging catheters.

  14. Evaluating the intra- and interobserver reliability of three-dimensional ultrasound and power Doppler angiography (3D-PDA) for assessment of placental volume and vascularity in the second trimester of pregnancy.

    Science.gov (United States)

    Jones, Nia W; Raine-Fenning, Nick J; Mousa, Hatem A; Bradley, Eileen; Bugg, George J

    2011-03-01

    Three-dimensional (3-D) power Doppler angiography (3-D-PDA) allows visualisation of Doppler signals within the placenta and their quantification is possible by the generation of vascular indices by the 4-D View software programme. This study aimed to investigate intra- and interobserver reproducibility of 3-D-PDA analysis of stored datasets at varying gestations with the ultimate goal being to develop a tool for predicting placental dysfunction. Women with an uncomplicated, viable singleton pregnancy were scanned at 12, 16 or 20 weeks gestational age groups. 3-D-PDA datasets acquired of the whole placenta were analysed using the VOCAL software processing tool. Each volume was analysed by three observers twice in the A plane. Intra- and interobserver reliability was assessed by intraclass correlation coefficients (ICCs) and Bland Altman plots. At each gestational age group, 20 low risk women were scanned resulting in 60 datasets in total. The ICC demonstrated a high level of measurement reliability at each gestation with intraobserver values >0.90 and interobserver values of >0.6 for the vascular indices. Bland Altman plots also showed high levels of agreement. Systematic bias was seen at 20 weeks in the vascular indices obtained by different observers. This study demonstrates that 3-D-PDA data can be measured reliably by different observers from stored datasets up to 18 weeks gestation. Measurements become less reliable as gestation advances with bias between observers evident at 20 weeks. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. A 1 MHz BW 34.2 fJ/step Continuous Time Delta Sigma Modulator With an Integrated Mixer for Cardiac Ultrasound.

    Science.gov (United States)

    Kaald, Rune; Eggen, Trym; Ytterdal, Trond

    2017-02-01

    Fully digitized 2D ultrasound transducer arrays require one ADC per channel with a beamforming architecture consuming low power. We give design considerations for per-channel digitization and beamforming, and present the design and measurements of a continuous time delta-sigma modulator (CTDSM) for cardiac ultrasound applications. By integrating a mixer into the modulator frontend, the phase and frequency of the input signal can be shifted, thereby enabling both improved conversion efficiency and narrowband beamforming. To minimize the power consumption, we propose an optimization methodology using a simulated annealing framework combined with a C++ simulator solving linear electrical networks. The 3rd order single-bit feedback type modulator, implemented in a 65 nm CMOS process, achieves an SNR/SNDR of 67.8/67.4 dB across 1 MHz bandwidth consuming 131 [Formula: see text] of power. The achieved figure of merit of 34.2 fJ/step is comparable with state-of-the-art feedforward type multi-bit designs. We further demonstrate the influence to the dynamic range when performing dynamic receive beamforming on recorded delta-sigma modulated bit-stream sequences.

  16. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  17. Analysis of contact stiffness in ultrasound atomic force microscopy: three-dimensional time-dependent ultrasound modeling

    International Nuclear Information System (INIS)

    Piras, Daniele; Sadeghian, Hamed

    2017-01-01

    Ultrasound atomic force microscopy (US-AFM) has been used for subsurface imaging of nanostructures. The contact stiffness variations have been suggested as the origin of the image contrast. Therefore, to analyze the image contrast, the local changes in the contact stiffness due to the presence of subsurface features should be calculated. So far, only static simulations have been conducted to analyze the local changes in the contact stiffness and, consequently, the contrast in US-AFM. Such a static approach does not fully represent the real US-AFM experiment, where an ultrasound wave is launched either into the sample or at the tip, which modulates the contact stiffness. This is a time-dependent nonlinear dynamic problem rather than a static and stationary one. This paper presents dynamic 3D ultrasound analysis of contact stiffness in US-AFM (in contrast to static analysis) to realistically predict the changes in contact stiffness and thus the changes in the subsurface image contrast. The modulation frequency also influences the contact stiffness variations and, thus, the image contrast. The three-dimensional time-dependent ultrasound analysis will greatly aid in the contrast optimization of subsurface nano imaging with US-AFM. (paper)

  18. Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Pedersen, Morten

    2004-01-01

    with high precision, and the imaging is easily extended to real-time 3D scanning. This paper presents the work done at the Center for Fast Ultrasound Imaging in the area of SA imaging. Three areas that benefit from SA imaging are described. Firstly a preliminary in-vivo evaluation comparing conventional B...

  19. ABS 3D printed solutions for cryogenic applications

    Science.gov (United States)

    Bartolomé, E.; Bozzo, B.; Sevilla, P.; Martínez-Pasarell, O.; Puig, T.; Granados, X.

    2017-03-01

    3D printing has become a common, inexpensive and rapid prototyping technique, enabling the ad hoc fabrication of complex shapes. In this paper, we demonstrate that 3D printed objects in ABS can be used at cryogenic temperatures, offering flexible solutions in different fields. Firstly, a thermo-mechanical characterization of ABS 3D printed specimens at 77 K is reported, which allowed us to delimit the type of cryogenic uses where 3D printed pieces may be implemented. Secondly, we present three different examples where ABS 3D printed objects working at low temperatures have provided specific solutions: (i) SQUID inserts for angular magnetometry (low temperature material characterization field); (ii) a cage support for a metamaterial ;magnetic concentrator; (superconductivity application), and (iii) dedicated tools for cryopreservation in assisted reproductive techniques (medicine field).

  20. 3D confocal imaging in CUBIC-cleared mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-07-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  1. 3D confocal imaging in CUBIC-cleared mouse heart

    International Nuclear Information System (INIS)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-01-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  2. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.

    Science.gov (United States)

    Haworth, Kevin J; Raymond, Jason L; Radhakrishnan, Kirthi; Moody, Melanie R; Huang, Shao-Ling; Peng, Tao; Shekhar, Himanshu; Klegerman, Melvin E; Kim, Hyunggun; McPherson, David D; Holland, Christy K

    2016-02-01

    Angioplasty and stenting of a stenosed artery enable acute restoration of blood flow. However, restenosis or a lack of re-endothelization can subsequently occur depending on the stent type. Cavitation-mediated drug delivery is a potential therapy for these conditions, but requires that particular types of cavitation be induced by ultrasound insonation. Because of the heterogeneity of tissue and stochastic nature of cavitation, feedback mechanisms are needed to determine whether the sustained bubble activity is induced. The objective of this study was to determine the feasibility of passive cavitation imaging through a metal stent in a flow phantom and an animal model. In this study, an endovascular stent was deployed in a flow phantom and in porcine femoral arteries. Fluorophore-labeled echogenic liposomes, a theragnostic ultrasound contrast agent, were injected proximal to the stent. Cavitation images were obtained by passively recording and beamforming the acoustic emissions from echogenic liposomes insonified with a low-frequency (500 kHz) transducer. In vitro experiments revealed that the signal-to-noise ratio for detecting stable cavitation activity through the stent was greater than 8 dB. The stent did not significantly reduce the signal-to-noise ratio. Trans-stent cavitation activity was also detected in vivo via passive cavitation imaging when echogenic liposomes were insonified by the 500-kHz transducer. When stable cavitation was detected, delivery of the fluorophore into the arterial wall was observed. Increased echogenicity within the stent was also observed when echogenic liposomes were administered. Thus, both B-mode ultrasound imaging and cavitation imaging are feasible in the presence of an endovascular stent in vivo. Demonstration of this capability supports future studies to monitor restenosis with contrast-enhanced ultrasound and pursue image-guided ultrasound-mediated drug delivery to inhibit restenosis. Copyright © 2016 World Federation for

  3. Studies of nonlinear ultrasound propagation: safety considerations in the use of ultrasound for medical diagnosis - nonlinear propagation

    International Nuclear Information System (INIS)

    Egerton, B.; Barnett, S.; Vella, G.

    1994-01-01

    Diagnostic ultrasound is an established imaging modality without any documented harmful effects. New developments such as pulsed Doppler and intracavity investigations may result in increases in ultrasound exposures which could cause harm. Thermal mechanisms and cavitation may become relevant sources of bioeffects. The preliminary study described here investigates the distribution and amplitude of harmonics generated through nonlinear propagation of ultrasound in water. Knowledge of harmonic attenuation will help predict sites of enhanced heating and enable accurate modelling of clinical situations. This presentation is concerned with thermal safety guidelines, their relationship to a typical ultrasound beam profile for a single, medium focussed, transducer operating in water and possible sites of enhanced heating due to nonlinear propagation effects. Measurements were made of the amplitudes of the harmonics generated by the nonlinear propagation of ultrasound in water. The amplitudes of the harmonics were detected up to frequencies of 35 MHz and displayed using Fast Fourier Transform facilities within the oscilloscope. The nonlinearity parameter of the ultrasonic waveforms has been identified as an important factor in thermal effects of ultrasound interactions. The appearance of nonlinear distortion is shown to be dependant on the peak compressional pressure and distance from the ultrasound source. 20 refs., 2 figs

  4. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  5. Design of a tracked ultrasound calibration phantom made of LEGO bricks

    Science.gov (United States)

    Walsh, Ryan; Soehl, Marie; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    PURPOSE: Spatial calibration of tracked ultrasound systems is commonly performed using precisely fabricated phantoms. Machining or 3D printing has relatively high cost and not easily available. Moreover, the possibilities for modifying the phantoms are very limited. Our goal was to find a method to construct a calibration phantom from affordable, widely available components, which can be built in short time, can be easily modified, and provides comparable accuracy to the existing solutions. METHODS: We designed an N-wire calibration phantom made of LEGO® bricks. To affirm the phantom's reproducibility and build time, ten builds were done by first-time users. The phantoms were used for a tracked ultrasound calibration by an experienced user. The success of each user's build was determined by the lowest root mean square (RMS) wire reprojection error of three calibrations. The accuracy and variance of calibrations were evaluated for the calibrations produced for various tracked ultrasound probes. The proposed model was compared to two of the currently available phantom models for both electromagnetic and optical tracking. RESULTS: The phantom was successfully built by all ten first-time users in an average time of 18.8 minutes. It cost approximately $10 CAD for the required LEGO® bricks and averaged a 0.69mm of error in the calibration reproducibility for ultrasound calibrations. It is one third the cost of similar 3D printed phantoms and takes much less time to build. The proposed phantom's image reprojections were 0.13mm more erroneous than those of the highest performing current phantom model The average standard deviation of multiple 3D image reprojections differed by 0.05mm between the phantoms CONCLUSION: It was found that the phantom could be built in less time, was one third the cost, compared to similar 3D printed models. The proposed phantom was found to be capable of producing equivalent calibrations to 3D printed phantoms.

  6. SU-C-207B-07: Deep Convolutional Neural Network Image Matching for Ultrasound Guidance in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Najafi, M; Hancock, S; Hristov, D [Stanford University Cancer Center, Palo Alto, CA (United States)

    2016-06-15

    Purpose: Robust matching of ultrasound images is a challenging problem as images of the same anatomy often present non-trivial differences. This poses an obstacle for ultrasound guidance in radiotherapy. Thus our objective is to overcome this obstacle by designing and evaluating an image blocks matching framework based on a two channel deep convolutional neural network. Methods: We extend to 3D an algorithmic structure previously introduced for 2D image feature learning [1]. To obtain the similarity between two 3D image blocks A and B, the 3D image blocks are divided into 2D patches Ai and Bi. The similarity is then calculated as the average similarity score of Ai and Bi. The neural network was then trained with public non-medical image pairs, and subsequently evaluated on ultrasound image blocks for the following scenarios: (S1) same image blocks with/without shifts (A and A-shift-x); (S2) non-related random block pairs; (S3) ground truth registration matched pairs of different ultrasound images with/without shifts (A-i and A-reg-i-shift-x). Results: For S1 the similarity scores of A and A-shift-x were 32.63, 18.38, 12.95, 9.23, 2.15 and 0.43 for x=ranging from 0 mm to 10 mm in 2 mm increments. For S2 the average similarity score for non-related block pairs was −1.15. For S3 the average similarity score of ground truth registration matched blocks A-i and A-reg-i-shift-0 (1≤i≤5) was 12.37. After translating A-reg-i-shift-0 by 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm, the average similarity scores of A-i and A-reg-i-shift-x were 11.04, 8.42, 4.56, 2.27, and 0.29 respectively. Conclusion: The proposed method correctly assigns highest similarity to corresponding 3D ultrasound image blocks despite differences in image content and thus can form the basis for ultrasound image registration and tracking.[1] Zagoruyko, Komodakis, “Learning to compare image patches via convolutional neural networks', IEEE CVPR 2015,pp.4353–4361.

  7. SU-C-207B-07: Deep Convolutional Neural Network Image Matching for Ultrasound Guidance in Radiotherapy

    International Nuclear Information System (INIS)

    Zhu, N; Najafi, M; Hancock, S; Hristov, D

    2016-01-01

    Purpose: Robust matching of ultrasound images is a challenging problem as images of the same anatomy often present non-trivial differences. This poses an obstacle for ultrasound guidance in radiotherapy. Thus our objective is to overcome this obstacle by designing and evaluating an image blocks matching framework based on a two channel deep convolutional neural network. Methods: We extend to 3D an algorithmic structure previously introduced for 2D image feature learning [1]. To obtain the similarity between two 3D image blocks A and B, the 3D image blocks are divided into 2D patches Ai and Bi. The similarity is then calculated as the average similarity score of Ai and Bi. The neural network was then trained with public non-medical image pairs, and subsequently evaluated on ultrasound image blocks for the following scenarios: (S1) same image blocks with/without shifts (A and A-shift-x); (S2) non-related random block pairs; (S3) ground truth registration matched pairs of different ultrasound images with/without shifts (A-i and A-reg-i-shift-x). Results: For S1 the similarity scores of A and A-shift-x were 32.63, 18.38, 12.95, 9.23, 2.15 and 0.43 for x=ranging from 0 mm to 10 mm in 2 mm increments. For S2 the average similarity score for non-related block pairs was −1.15. For S3 the average similarity score of ground truth registration matched blocks A-i and A-reg-i-shift-0 (1≤i≤5) was 12.37. After translating A-reg-i-shift-0 by 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm, the average similarity scores of A-i and A-reg-i-shift-x were 11.04, 8.42, 4.56, 2.27, and 0.29 respectively. Conclusion: The proposed method correctly assigns highest similarity to corresponding 3D ultrasound image blocks despite differences in image content and thus can form the basis for ultrasound image registration and tracking.[1] Zagoruyko, Komodakis, “Learning to compare image patches via convolutional neural networks', IEEE CVPR 2015,pp.4353–4361.

  8. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    OpenAIRE

    Jianxia Sun; Zhouxiong Mei; Yajuan Tang; Lijun Ding; Guichuan Jiang; Chi Zhang; Aidong Sun; Weibin Bai

    2016-01-01

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •O...

  9. Ultrasound determination of rotator cuff tear repairability

    Science.gov (United States)

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p tear size (p tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  10. Automatic Segmentation of Vessels in In-Vivo Ultrasound Scans

    DEFF Research Database (Denmark)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin

    2017-01-01

    presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs......Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper...... a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers ”8L2 Linear” and ”10L2w Wide Linear” (BK Ultrasound, Herlev, Denmark). The algorithm...

  11. Prenatal diagnosis of parapagus diprosopus dibrachius dipus twins with spina bifida in the first trimester using two- and three-dimensional ultrasound

    OpenAIRE

    Pei-Yin Yang; Ching-Hua Wu; Guang-Perng Yeh; Charles Tsung-Che Hsieh

    2015-01-01

    Objective: Here, we report a case of parapagus diprosopus twins with spina bifida diagnosed in the first trimester of pregnancy using two-dimensional (2D) and three-dimensional (3D) ultrasound. Case report: A 28-year-old Taiwanese woman, gravid 1, para 0, visited our hospital due to an abnormal fetal head shape discovered by 2D ultrasound at 11-weeks gestation. Parapagus diprosopus twins with spina bifida were diagnosed after ultrasound examination. The characteristics of parapagus diproso...

  12. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  13. Transrectal ultrasound and needle biopsy of the prostate

    Directory of Open Access Journals (Sweden)

    Tomaž Smrkolj

    2016-01-01

    Full Text Available In the last 25 years widespread use of prostatic specific antigen caused a stage migration of prostate cancer towards localized disease at diagnosis, which resulted in transrectal ultrasound biopsy to become standard in clinical practice. Transrectal ultrasound examination of the prostate is used to diagnose benign prostatic diseases, e.g. benign prostatic enlargement, prostatitis, prostatic and seminal vesicle cysts. It is also important in detection of obstructive causes of male infertility. Transrectal ultrasound examination is performed most often in needle biopsy for prostate cancer diagnosis. Besides guiding systematic tissue core biopsy, characteristic ultrasound changes enables target biopsies of suspect areas. The article describes indications, contraindications, antibiotic prophylaxis, various biopsy templates and complications of the needle biopsy. Experience with transrectal ultrasound guided biopsy at Department of urology at University medical center in Ljubljana is presented.

  14. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  15. Ultrasound in Space Medicine

    Science.gov (United States)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  16. The long gestation of the small naked mole-rat (Heterocephalus glaber Rüppell, 1842) studied with ultrasound biomicroscopy and 3D-ultrasonography.

    Science.gov (United States)

    Roellig, Kathleen; Drews, Barbara; Goeritz, Frank; Hildebrandt, Thomas Bernd

    2011-03-07

    The naked mole-rat (Heterocephalus glaber) is one of the two known mammalian species that live in a eusocial population structure. Here we investigate the exceptionally long gestation period of 70 days observed in the mole-rat queen. The course of seven successful pregnancies in two individuals was recorded in a colony of captive naked mole-rats using ultrasound biomicroscopy (UBM) and 3D-ultrasonography. We establish a catalogue of basic reference ultrasound data for this species by describing the ultrasonographic appearance of reproductive organs, calculating growth curves to predict gestational age and defining ultrasonographic milestones to characterize pregnancy stages. Mean litter size was 10.9±2.7, of which 7.2±1.5 survived the weaning period. Mean interbirth interval was 128.8±63.0 days. The reproductive success in our colony did not differ from previously published data. In the queen the active corpora lutea had an anechoic, fluid filled centre. Using UBM, pregnancy could be detected 53 days before parturition. The period of embryonic development is assumed to last until 30 days before parturition. Embryonic resorptions were detected frequently in the queen, indicating that this might be an ordinary event in this species. We discuss the extraordinary long gestation period of this small rodent and postulate that the long gestation is beneficial to both the eusocial structure and longevity. An increased litter size, twice as large as for other rodents of similar size, seemingly compensates for the doubling of pregnancy length. We demonstrate that the lifetime reproductive effort of a naked mole-rat queen is equivalent to the mass of offspring that would be produced if all of the females of a colony would be reproducing.

  17. Mortars for 3D printing

    Directory of Open Access Journals (Sweden)

    Demyanenko Olga

    2018-01-01

    Full Text Available The paper is aimed at developing scientifically proven compositions of mortars for 3D printing modified by a peat-based admixture with improved operational characteristics. The paper outlines the results of experimental research on hardened cement paste and concrete mixture with the use of modifying admixture MT-600 (thermally modified peat. It is found that strength of hardened cement paste increases at early age when using finely dispersed admixtures, which is the key factor for formation of construction and technical specifications of concrete for 3D printing technologies. The composition of new formations of hardened cement paste modified by MT-600 admixture were obtained, which enabled to suggest the possibility of their physico-chemical interaction while hardening.

  18. The role of 3-D interactive visualization in blind surveys of H I in galaxies

    Science.gov (United States)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.

    2015-09-01

    Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.

  19. SUV navigator enables rapid [18F]-FDG PET/CT image interpretation compared with 2D ROI and 3D VOI evaluations

    International Nuclear Information System (INIS)

    Okizaki, Atsutaka; Nakayama Michihiro; Ishitoya, Shunta; Nakajima, Kaori; Yamashina Masaaki; Aburano, Tamio; Takahashi, Koji

    2017-01-01

    Positron emission tomography (PET) and the maximum standardized uptake value (SUV max ) is a useful technique for assessing malignant tumors. Measurements of SUV max in multiple lesions per patient frequently require many time-consuming procedures. To address this issue, we designed a novel interface named SUV Navigator (SUVnavi), and the purpose of this study was to investigate its utility. We measured SUV max in 661 lesions from 100 patients with malignant tumors. Diagnoses and SUV max measurements were made with SUVnavi, 2D, and 3D measurements. SUV measurement accuracy in each method were also evaluated. The average reduction in time with SUVnavi versus 2D was 53.8% and 3D was 37.5%; time required with SUVnavi was significantly shorter than with 2D and 3D (P < 0.001 and P < 0.001, respectively). The time reduction and lesion number had a positive correlation (P < 0.001 and P < 0.001, respectively). SUV max agreed with precise SUV max in all lesions measured with SUVnavi and 3D but in only 466 of 661 lesions (70.5%) measured with 2D. Conclusion SUVnavi may be useful for rapid [ 18 F]-fluorodeoxyglucose positron emission tomogra phy/computed tomography ([ 18 F]-FDG PET/CT) image interpretation without reducing the accuracy of SUV max measurement. (author)

  20. High-Efficiency Solar-Powered 3-D Printers for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT, has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic (PV-powered mobile systems have been developed, but recent improvements in novel delta-style 3-D printer designs allows for reduced costs and improved performance. This study builds on these innovations to develop and experimentally validate a mobile solar-PV-powered delta 3-D printer system. It is designed to run the RepRap 3-D printer regardless of solar flux. The electrical system design is tested outdoors for operating conditions: (1 PV charging battery and running 3-D printer; (2 printing under low insolation; (3 battery powering the 3-D printer alone; (4 PV charging the battery only; and (5 battery fully charged with PV-powered 3-D printing. The results show the system performed as required under all conditions providing feasibility for adoption in off-grid rural communities. 3-D printers powered by affordable mobile PV solar systems have a great potential to reduce poverty through employment creation, as well as ensuring a constant supply of scarce products for isolated communities.

  1. New developments in paediatric cardiac functional ultrasound imaging.

    Science.gov (United States)

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.

  2. [Endoscopic ultrasound guided rendezvous for biliary drainage].

    Science.gov (United States)

    Knudsen, Marie Høxbro; Vilmann, Peter; Hassan, Hazem; Karstensen, John Gésdal

    2015-04-27

    Endoscopic retrograde cholangiography (ERCP) is currently standard treatment for biliary drainage. Endoscopic ultrasound guided rendezvous (EUS-RV) is a novel method to overcome an unsuccessful biliary drainage procedure. Under endoscopic ultrasound guidance a guidewire is passed via a needle from the stomach or duodenum to the common bile duct and from there on to the duodenum enabling ERCP. With a relatively high rate of success EUS-RV should be considered as an alternative to biliary drainage and surgical intervention.

  3. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  4. Generation of 3D nanopatterns with smooth surfaces

    International Nuclear Information System (INIS)

    Waid, Simon; Wanzenboeck, Heinz D; Gavagnin, Marco; Bertagnolli, Emmerich; Muehlberger, Michael

    2014-01-01

    Ga implantation into Si and reactive ion etching has been previously identified as candidate techniques for the generation of 3D nanopatterns. However, the structures manufactured using these techniques exhibited impedingly high surface roughness. In this work, we investigate the source of roughness and introduce a new patterning process to solve this issue. The novel patterning process introduces an additional layer absorbing the implanted Ga, thus preventing the clustering of the implanted Ga observed with uncoated Si substrates. This process enables 3D nanopatterning with sub-100 nm lateral resolution in conjunction with smooth height transitions and surface roughness down to 4 nm root mean square. Such patterns are ideally suited for optical applications and enable the manufacturing of nanoimprint lithography templates for low-profile Fresnel lenses. (paper)

  5. Poaching Museum Collections using Digital 3D Technologies

    Directory of Open Access Journals (Sweden)

    Sarah Younan

    2015-12-01

    Full Text Available This paper investigates the creative engagement with digital 3D models of museum artefacts and gives insight into new uses of museum collections enabled by digital scanning, editing and 3D printing technologies. Digital 3D models of museum artefacts are malleable and increasingly easy to use. Additionally, freely available 3D software has made 3D scanning, editing and manufacturing possible for non-specialists. These technologies allow users to create new artworks through the creation and transformation of digital replicas of museum artefacts. Examples of creative works, taken from two case studies that involve the creative use of digital reproductions of museum artefacts are presented in this paper. These projects are illustrative of a larger trend: the digital ‘poaching’ of heritage artefacts. This paper examines how digital 3D technologies can foster creative forms of museum engagement, democratise access to museum collections and engage users with personal forms of museum experience.

  6. 4-D ICE: A 2-D Array Transducer With Integrated ASIC in a 10-Fr Catheter for Real-Time 3-D Intracardiac Echocardiography.

    Science.gov (United States)

    Wildes, Douglas; Lee, Warren; Haider, Bruno; Cogan, Scott; Sundaresan, Krishnakumar; Mills, David M; Yetter, Christopher; Hart, Patrick H; Haun, Christopher R; Concepcion, Mikael; Kirkhorn, Johan; Bitoun, Marc

    2016-12-01

    We developed a 2.5 ×6.6 mm 2 2 -D array transducer with integrated transmit/receive application-specific integrated circuit (ASIC) for real-time 3-D intracardiac echocardiography (4-D ICE) applications. The ASIC and transducer design were optimized so that the high-voltage transmit, low-voltage time-gain control and preamp, subaperture beamformer, and digital control circuits for each transducer element all fit within the 0.019-mm 2 area of the element. The transducer assembly was deployed in a 10-Fr (3.3-mm diameter) catheter, integrated with a GE Vivid E9 ultrasound imaging system, and evaluated in three preclinical studies. The 2-D image quality and imaging modes were comparable to commercial 2-D ICE catheters. The 4-D field of view was at least 90 ° ×60 ° ×8 cm and could be imaged at 30 vol/s, sufficient to visualize cardiac anatomy and other diagnostic and therapy catheters. 4-D ICE should significantly reduce X-ray fluoroscopy use and dose during electrophysiology ablation procedures. 4-D ICE may be able to replace transesophageal echocardiography (TEE), and the associated risks and costs of general anesthesia, for guidance of some structural heart procedures.

  7. Real-time 3D imaging methods using 2D phased arrays based on synthetic focusing techniques.

    Science.gov (United States)

    Kim, Jung-Jun; Song, Tai-Kyong

    2008-07-01

    A fast 3D ultrasound imaging technique using a 2D phased array transducer based on the synthetic focusing method for nondestructive testing or medical imaging is proposed. In the proposed method, each column of a 2D array is fired successively to produce transverse fan beams focused at a fixed depth along a given longitudinal direction and the resulting pulse echoes are received at all elements of a 2D array used. After firing all column arrays, a frame of high-resolution image along a given longitudinal direction is obtained with dynamic focusing employed in the longitudinal direction on receive and in the transverse direction on both transmit and receive. The volume rate of the proposed method can be increased much higher than that of the conventional 2D array imaging by employing an efficient sparse array technique. A simple modification to the proposed method can further increase the volume scan rate significantly. The proposed methods are verified through computer simulations.

  8. Objective assessment and design improvement of a staring, sparse transducer array by the spatial crosstalk matrix for 3D photoacoustic tomography.

    Directory of Open Access Journals (Sweden)

    Philip Wong

    Full Text Available Accurate reconstruction of 3D photoacoustic (PA images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT staring array system and analyze system performance using singular value decomposition (SVD. The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate. The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization.

  9. Software for 3D diagnostic image reconstruction and analysis

    International Nuclear Information System (INIS)

    Taton, G.; Rokita, E.; Sierzega, M.; Klek, S.; Kulig, J.; Urbanik, A.

    2005-01-01

    Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities. The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. The main software feature is the possibility of 3D image reconstruction from a series of two-dimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at

  10. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.

    Science.gov (United States)

    Pawar, Amol A; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A; Tabaei, Seyed R; Cho, Nam-Joon; Magdassi, Shlomo

    2016-04-01

    In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)-visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode-based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.

  11. 3D-ICONS Ireland – fulfilling the potential of a rich 3D resource

    Directory of Open Access Journals (Sweden)

    Anthony Corns

    2017-03-01

    Full Text Available As a partner in the EU co-funded 3D-ICONS project, the Discovery Programme undertook the 3D documentation of some of the most iconic cultural heritage sites in Ireland. This pan-European project aimed to establish a complete pipeline for the production of 3D replicas of archaeological monuments and historic buildings, and to publish the content to Europeana for public access. The list of Irish icons range from wider cultural landscapes to smaller ornately carved stones and includes a wide range of chronological periods: from Neolithic rock art from 2500 BC to Derry's 17th-century fortifications. The primary digitisation methods include airborne laser scanning (ALS, phase-based terrestrial laser scanning (Faro Focus 3D and close range structured light scanning (Artec EVA. These are now mainstream approaches for surveying historic landscapes, structures and objects, generating precise, high-resolution point cloud data, primarily for viewing and interaction in proprietary software applications. The challenge was to convert these complex high-volume datasets into textured 3D models, retaining the geometric integrity of the original data. The article highlights the development of a pipeline to produce a lightweight 3D model that enables the public to interact with a photorealistic model based upon accurate survey and texture data. 3D-ICONS ended in January 2015, but a new website 3dicons.ie was launched to offer continued access to the Irish 3D models and associated content and media generated during the project. The article will consider the impact of this online content, particularly how it has been used as a teaching aid in secondary schools and how this may be extended in the future. It will also demonstrate how content from the project has been remodelled to develop an interactive and immersive experience for the great mound at Knowth, a development in partnership with the operators of the Brú na Bóinne visitor centre.

  12. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Science.gov (United States)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  13. Comparison of a GPS needle-tracking system, multiplanar imaging and 2D imaging for real-time ultrasound-guided epidural anaesthesia: A randomized, comparative, observer-blinded study on phantoms.

    Science.gov (United States)

    Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier

    2017-04-01

    The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  14. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    Directory of Open Access Journals (Sweden)

    Kamfai Chan

    Full Text Available Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs. Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.

  15. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection

    Science.gov (United States)

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  16. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    Science.gov (United States)

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  17. A comparison of UVb compact lamps in enabling cutaneous vitamin D synthesis in growing bearded dragons.

    Science.gov (United States)

    Diehl, J J E; Baines, F M; Heijboer, A C; van Leeuwen, J P; Kik, M; Hendriks, W H; Oonincx, D G A B

    2018-02-01

    The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty-two newly hatched bearded dragons (dragons to provide a reference level. Only one treatment resulted in elevated levels of 25(OH)D 3 compared to the control group (41.0 ± 12.85 vs. 2.0 ± 0.0 nmol/L). All UVb-exposed groups had low 25(OH)D 3 plasma levels compared to earlier studies on captive bearded dragons as well as in comparison with the free-living adult bearded dragons (409 ± 56 nmol/L). Spectral analysis indicated that all treatment lamps emitted UVb wavelengths effective for some cutaneous vitamin D synthesis. None of these lamps, under this regime, appeared to have provided a sufficient UVb dose to enable synthesis of plasma 25(OH)D 3 levels similar to those of free-living bearded dragons in their native habitat. © 2017 The Authors. Journal of Animal Physiology and Animal Nutrition Published by Blackwell Verlag GmbH.

  18. Comparison of 2D and 3D brachytherpay planning for cervical cancer

    International Nuclear Information System (INIS)

    Kim, Jung Hoom

    2017-01-01

    To evaluate the usefulness of 3-dimensional brachytherapy(BT) planning technique based on CT in cervical cancer. Patients with cervical cancer underwent 2-D BT treatment planning and then CT scan with HDR intracavitary applicators in place with same positions. Dose was prescribed to Point A with 5Gy per fraction on 2-D BT planning. For 3-D BT planning, and dose was prescribed to the High risk CTV for BT (HR CTV) with 5Gy. The 3-D BT planning goal was to cover at least 90% of the HR CTV with target 5Gy isodose surface while limiting the dose to 2 cm3 of bladder to less than 7.5 Gy, and 2cm"3 of rectum to less than 5Gy. In one patient of 10 patients, D2cm3 of rectal dose was over 5Gy and 6 patients at D2cm"3 of bladder dose on 2-D BT planning. There was a tendency to underestimate ICRU bladder dose than ICRU rectal dose. CT based 3-D BT planning for cervical cancer will enable evaluation of dose distributions for tumor and critical organs at risk. So, rectal and bladder morbidity as well as geographic miss will be reduced in case of the bulky disease or uterine malposition

  19. Comparison of 2D and 3D brachytherpay planning for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoom [Dept. of Radiation Oncology, KonYang University Hospital, Daejeon (Korea, Republic of)

    2017-06-15

    To evaluate the usefulness of 3-dimensional brachytherapy(BT) planning technique based on CT in cervical cancer. Patients with cervical cancer underwent 2-D BT treatment planning and then CT scan with HDR intracavitary applicators in place with same positions. Dose was prescribed to Point A with 5Gy per fraction on 2-D BT planning. For 3-D BT planning, and dose was prescribed to the High risk CTV for BT (HR CTV) with 5Gy. The 3-D BT planning goal was to cover at least 90% of the HR CTV with target 5Gy isodose surface while limiting the dose to 2 cm3 of bladder to less than 7.5 Gy, and 2cm{sup 3} of rectum to less than 5Gy. In one patient of 10 patients, D2cm3 of rectal dose was over 5Gy and 6 patients at D2cm{sup 3} of bladder dose on 2-D BT planning. There was a tendency to underestimate ICRU bladder dose than ICRU rectal dose. CT based 3-D BT planning for cervical cancer will enable evaluation of dose distributions for tumor and critical organs at risk. So, rectal and bladder morbidity as well as geographic miss will be reduced in case of the bulky disease or uterine malposition.

  20. From 4D Medical Images (CT, MRI, and Ultrasound to 4D Structured Mesh Models of the Left Ventricular Endocardium for Patient-Specific Simulations

    Directory of Open Access Journals (Sweden)

    Federico Canè

    2018-01-01

    Full Text Available With cardiovascular disease (CVD remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time with 1-to-1 vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume.

  1. Quantitative ultrasound and photoacoustic imaging for the assessment of vascular parameters

    CERN Document Server

    Meiburger, Kristen M

    2017-01-01

    This book describes the development of quantitative techniques for ultrasound and photoacoustic imaging in the assessment of architectural and vascular parameters. It presents morphological vascular research based on the development of quantitative imaging techniques for the use of clinical B-mode ultrasound images, and preclinical architectural vascular investigations on quantitative imaging techniques for ultrasounds and photoacoustics. The book is divided into two main parts, the first of which focuses on the development and validation of quantitative techniques for the assessment of vascular morphological parameters that can be extracted from B-mode ultrasound longitudinal images of the common carotid artery. In turn, the second part highlights quantitative imaging techniques for assessing the architectural parameters of vasculature that can be extracted from 3D volumes, using both contrast-enhanced ultrasound (CEUS) imaging and photoacoustic imaging without the addition of any contrast agent. Sharing and...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and treat medical conditions. Conventional ultrasound displays the images in thin, flat sections of the body. Advancements in ultrasound technology include three-dimensional (3- ...

  3. 3D prostate TRUS segmentation using globally optimized volume-preserving prior.

    Science.gov (United States)

    Qiu, Wu; Rajchl, Martin; Guo, Fumin; Sun, Yue; Ukwatta, Eranga; Fenster, Aaron; Yuan, Jing

    2014-01-01

    An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.

  4. 3D Printing and Digital Rock Physics for Geomaterials

    Science.gov (United States)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  5. M3D (Media 3D): a new programming language for web-based virtual reality in E-Learning and Edutainment

    Science.gov (United States)

    Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha

    2003-01-01

    Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.

  6. A random phased-array for MR-guided transcranial ultrasound neuromodulation in non-human primates

    Science.gov (United States)

    Chaplin, Vandiver; Phipps, Marshal A.; Caskey, Charles F.

    2018-05-01

    Transcranial focused ultrasound (FUS) is a non-invasive technique for therapy and study of brain neural activation. Here we report on the design and characterization of a new MR-guided FUS transducer for neuromodulation in non-human primates at 650 kHz. The array is randomized with 128 elements 6.6 mm in diameter, radius of curvature 7.2 cm, opening diameter 10.3 cm (focal ratio 0.7), and 46% coverage. Simulations were used to optimize transducer geometry with respect to focus size, grating lobes, and directivity. Focus size and grating lobes during electronic steering were quantified using hydrophone measurements in water and a three-axis stage. A novel combination of optical tracking and acoustic mapping enabled measurement of the 3D pressure distribution in the cortical region of an ex vivo skull to within ~3.5 mm of the surface, and allowed accurate modelling of the experiment via non-homogeneous 3D acoustic simulations. The data demonstrates acoustic focusing beyond the skull bone, with the focus slightly broadened and shifted proximal to the skull. The fabricated design is capable of targeting regions within the S1 sensorimotor cortex of macaques.

  7. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Bernard; Bing, Li; Chow, Tommy W S, E-mail: bcychiu@cityu.edu.hk, E-mail: bingli5@student.cityu.edu.hk, E-mail: eetchow@cityu.edu.hk [Department of Electronic Engineering, City University of Hong Kong (Hong Kong)

    2013-09-07

    With the advent of new therapies and management strategies for carotid atherosclerosis, there is a parallel need for measurement tools or biomarkers to evaluate the efficacy of these new strategies. 3D ultrasound has been shown to provide reproducible measurements of plaque area/volume and vessel wall volume. However, since carotid atherosclerosis is a focal disease that predominantly occurs at bifurcations, biomarkers based on local plaque change may be more sensitive than global volumetric measurements in demonstrating efficacy of new therapies. The ultimate goal of this paper is to develop a biomarker that is based on the local distribution of vessel-wall-plus-plaque thickness change (VWT-Change) that has occurred during the course of a clinical study. To allow comparison between different treatment groups, the VWT-Change distribution of each subject must first be mapped to a standardized domain. In this study, we developed a technique to map the 3D VWT-Change distribution to a 2D standardized template. We then applied a feature selection technique to identify regions on the 2D standardized map on which subjects in different treatment groups exhibit greater difference in VWT-Change. The proposed algorithm was applied to analyse the VWT-Change of 20 subjects in a placebo-controlled study of the effect of atorvastatin (Lipitor). The average VWT-Change for each subject was computed (i) over all points in the 2D map and (ii) over feature points only. For the average computed over all points, 97 subjects per group would be required to detect an effect size of 25% that of atorvastatin in a six-month study. The sample size is reduced to 25 subjects if the average were computed over feature points only. The introduction of this sensitive quantification technique for carotid atherosclerosis progression/regression would allow many proof-of-principle studies to be performed before a more costly and longer study involving a larger population is held to confirm the treatment

  8. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis

    International Nuclear Information System (INIS)

    Chiu, Bernard; Li Bing; Chow, Tommy W S

    2013-01-01

    With the advent of new therapies and management strategies for carotid atherosclerosis, there is a parallel need for measurement tools or biomarkers to evaluate the efficacy of these new strategies. 3D ultrasound has been shown to provide reproducible measurements of plaque area/volume and vessel wall volume. However, since carotid atherosclerosis is a focal disease that predominantly occurs at bifurcations, biomarkers based on local plaque change may be more sensitive than global volumetric measurements in demonstrating efficacy of new therapies. The ultimate goal of this paper is to develop a biomarker that is based on the local distribution of vessel-wall-plus-plaque thickness change (VWT-Change) that has occurred during the course of a clinical study. To allow comparison between different treatment groups, the VWT-Change distribution of each subject must first be mapped to a standardized domain. In this study, we developed a technique to map the 3D VWT-Change distribution to a 2D standardized template. We then applied a feature selection technique to identify regions on the 2D standardized map on which subjects in different treatment groups exhibit greater difference in VWT-Change. The proposed algorithm was applied to analyse the VWT-Change of 20 subjects in a placebo-controlled study of the effect of atorvastatin (Lipitor). The average VWT-Change for each subject was computed (i) over all points in the 2D map and (ii) over feature points only. For the average computed over all points, 97 subjects per group would be required to detect an effect size of 25% that of atorvastatin in a six-month study. The sample size is reduced to 25 subjects if the average were computed over feature points only. The introduction of this sensitive quantification technique for carotid atherosclerosis progression/regression would allow many proof-of-principle studies to be performed before a more costly and longer study involving a larger population is held to confirm the treatment

  9. 3D Printing and Assay Development for Point-of-Care Applications

    Science.gov (United States)

    Jagadeesh, Shreesha

    Existing centralized labs do not serve patients adequately in remote areas. To enable universal timely healthcare, there is a need to develop low cost, portable systems that can diagnose multiple disease (Point-of-Care (POC) devices). Future POC diagnostics can be more multi-functional if medical device vendors can develop interoperability standards. This thesis developed the following medical diagnostic modules: Plasma from 25 microl blood was extracted through a filter membrane to demonstrate a 3D printed sample preparation module. Sepsis biomarker, C - reactive protein, was quantified through adsorption on nylon beads to demonstrate bead-based assay suitable for 3D printed disposable cartridge module. Finally, a modular fluorescent detection kit was built using 3D printed parts to detect CD4 cells in a disposable cartridge from ChipCare Corp. Due to the modularity enabled by 3D printing technique, the developed units can be easily adapted to detect other diseases.

  10. New generation of 3D desktop computer interfaces

    Science.gov (United States)

    Skerjanc, Robert; Pastoor, Siegmund

    1997-05-01

    Today's computer interfaces use 2-D displays showing windows, icons and menus and support mouse interactions for handling programs and data files. The interface metaphor is that of a writing desk with (partly) overlapping sheets of documents placed on its top. Recent advances in the development of 3-D display technology give the opportunity to take the interface concept a radical stage further by breaking the design limits of the desktop metaphor. The major advantage of the envisioned 'application space' is, that it offers an additional, immediately perceptible dimension to clearly and constantly visualize the structure and current state of interrelations between documents, videos, application programs and networked systems. In this context, we describe the development of a visual operating system (VOS). Under VOS, applications appear as objects in 3-D space. Users can (graphically connect selected objects to enable communication between the respective applications. VOS includes a general concept of visual and object oriented programming for tasks ranging from, e.g., low-level programming up to high-level application configuration. In order to enable practical operation in an office or at home for many hours, the system should be very comfortable to use. Since typical 3-D equipment used, e.g., in virtual-reality applications (head-mounted displays, data gloves) is rather cumbersome and straining, we suggest to use off-head displays and contact-free interaction techniques. In this article, we introduce an autostereoscopic 3-D display and connected video based interaction techniques which allow viewpoint-depending imaging (by head tracking) and visually controlled modification of data objects and links (by gaze tracking, e.g., to pick, 3-D objects just by looking at them).

  11. MO-DE-210-03: Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities

    International Nuclear Information System (INIS)

    Ding, K.

    2015-01-01

    Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities. It is inexpensive, portable and provides good soft tissue contrast. For challenging soft tissue targets such as pancreatic cancer, ultrasound imaging can be used in combination with pre-treatment MRI and/or CT to transfer important anatomical features for target localization at time of treatment. The non-invasive and non-ionizing nature of ultrasound imaging is particularly powerful for intra-fraction localization and monitoring. Recognizing these advantages, efforts are being made to incorporate novel robotic approaches to position and manipulate the ultrasound probe during irradiation. These recent enabling developments hold potential to bring ultrasound imaging to a new level of IGRT applications. However, many challenges, not limited to image registration, robotic deployment, probe interference and image acquisition rate, need to be addressed to realize the full potential of IGRT with ultrasound imaging. Learning Objectives: Understand the benefits and limitations in using ultrasound to augment MRI and/or CT for motion monitoring during radiation therapy delivery. Understanding passive and active robotic approaches to implement ultrasound imaging for intra-fraction monitoring. Understand issues of probe interference with radiotherapy treatment. Understand the critical clinical workflow for effective and reproducible IGRT using ultrasound guidance. The work of X.L. is supported in part by Elekta; J.W. and K.D. is supported in part by a NIH grant R01 CA161613 and by Elekta; D.H. is support in part by a NIH grant R41 CA174089

  12. MO-DE-210-03: Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K. [Johns Hopkins University: Development of Intra-Fraction Soft Tissue Monitoring with Ultrasound Imaging (United States)

    2015-06-15

    Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities. It is inexpensive, portable and provides good soft tissue contrast. For challenging soft tissue targets such as pancreatic cancer, ultrasound imaging can be used in combination with pre-treatment MRI and/or CT to transfer important anatomical features for target localization at time of treatment. The non-invasive and non-ionizing nature of ultrasound imaging is particularly powerful for intra-fraction localization and monitoring. Recognizing these advantages, efforts are being made to incorporate novel robotic approaches to position and manipulate the ultrasound probe during irradiation. These recent enabling developments hold potential to bring ultrasound imaging to a new level of IGRT applications. However, many challenges, not limited to image registration, robotic deployment, probe interference and image acquisition rate, need to be addressed to realize the full potential of IGRT with ultrasound imaging. Learning Objectives: Understand the benefits and limitations in using ultrasound to augment MRI and/or CT for motion monitoring during radiation therapy delivery. Understanding passive and active robotic approaches to implement ultrasound imaging for intra-fraction monitoring. Understand issues of probe interference with radiotherapy treatment. Understand the critical clinical workflow for effective and reproducible IGRT using ultrasound guidance. The work of X.L. is supported in part by Elekta; J.W. and K.D. is supported in part by a NIH grant R01 CA161613 and by Elekta; D.H. is support in part by a NIH grant R41 CA174089.

  13. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    Science.gov (United States)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  14. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  15. Representations and Techniques for 3D Object Recognition and Scene Interpretation

    CERN Document Server

    Hoiem, Derek

    2011-01-01

    One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physi

  16. Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom.

    Science.gov (United States)

    Vieira, Sílvio L; Pavan, Theo Z; Junior, Jorge E; Carneiro, Antonio A O

    2013-12-01

    Paraffin-gel waxes have been investigated as new soft tissue-mimicking materials for ultrasound-guided breast biopsy training. Breast phantoms were produced with a broad range of acoustical properties. The speed of sound for the phantoms ranged from 1425.4 ± 0.6 to 1480.3 ± 1.7 m/s at room temperature. The attenuation coefficients were easily controlled between 0.32 ± 0.27 dB/cm and 2.04 ± 0.65 dB/cm at 7.5 MHz, depending on the amount of carnauba wax added to the base material. The materials do not suffer dehydration and provide adequate needle penetration, with a Young's storage modulus varying between 14.7 ± 0.2 kPa and 34.9 ± 0.3 kPa. The phantom background material possesses long-term stability and can be employed in a supine position without changes in geometry. These results indicate that paraffin-gel waxes may be promising materials for training radiologists in ultrasound biopsy procedures. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Peter R., E-mail: pmarti46@uwo.ca [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Cool, Derek W. [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7, Canada and Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Romagnoli, Cesare [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Fenster, Aaron [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Ward, Aaron D. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  18. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis.

    Science.gov (United States)

    Martin, Peter R; Cool, Derek W; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D

    2014-07-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm(3) or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was consistently greater when using

  19. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    International Nuclear Information System (INIS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm 3 or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was

  20. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.