WorldWideScience

Sample records for enable glucocorticoid modulation

  1. Endocannabinoids in the Rat Basolateral Amygdala Enhance Memory Consolidation and Enable Glucocorticoid Modulation of Memory

    National Research Council Canada - National Science Library

    Patrizia Campolongo; Benno Roozendaal; Viviana Trezza; Daniela Hauer; Gustav Schelling; James L. McGaugh; Vincenzo Cuomo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system...

  2. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    NARCIS (Netherlands)

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors,

  3. Selective Glucocorticoid Receptor modulators.

    Science.gov (United States)

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review. 2010 Elsevier Ltd. All rights reserved.

  4. A Mixed Glucocorticoid/Mineralocorticoid Selective Modulator With Dominant Antagonism in the Male Rat Brain

    NARCIS (Netherlands)

    Atucha, E.; Zalachoras, I.; Heuvel, J.K. van den; Weert, L.T.C.M. van; Melchers, D.; Mol, I.M.; Belanoff, J.K.; Houtman, R.; Hunt, H.; Roozendaal, B.; Meijer, O.C.

    2015-01-01

    Adrenal glucocorticoid hormones are potent modulators of brain function in the context of acute and chronic stress. Both mineralocorticoid (MRs) and glucocorticoid receptors (GRs) can mediate these effects. We studied the brain effects of a novel ligand, C118335, with high affinity for GRs and

  5. Context Modulates Outcome of Perinatal Glucocorticoid Action in the Brain

    Directory of Open Access Journals (Sweden)

    Edo Ronald ede Kloet

    2014-07-01

    Full Text Available Prematurely born infants may be at risk, because of inadequate maturation of tissues. If there are signs of preterm birth, it has become common practice therefore to treat either antenatally the mother or postnatally the infant with glucocorticoids to accelerate tissue development, particularly of the lung. However, this life-saving early glucocorticoid treatment was found to increase the risk of adverse outcome in later life. In one animal study the authors reported a 25% shorter lifespan of rats treated as newborns with the synthetic glucocorticoid dexamethasone, but sofar this finding has not been replicated. After a brief clinical introduction, we discuss studies in rodents designed to examine how perinatal glucocorticoid action affects the developing brain. It appears that the perinatal action of the glucocorticoid depends on the context and the timing as well as the type of administered steroid. The type of steroid is important because the endogenous glucocorticoids cortisol and corticosterone bind to two distinct receptor populations, i.e. mineralocorticoid (MR and glucocorticoid receptors (GR, while synthetic glucocorticoids predominantly bind to the GR. In addition, if given antenatally hydrocortisone is inactivated in the placenta by 11β-HSD type 2, and dexamethasone is not. With respect to timing, the outcome of glucocorticoid effects is different in early vs late phases of brain development. The context refers to the environmental input that can affect the susceptibility to glucocorticoid action in the newborn rodent brain; early handling of pups and maternal care obliterate effects of postnatal dexamethasone treatment. Context also refers to coping with environmental conditions in later life, for which the individual may have been programmed epigenetically by early life experience. This knowledge of determinants affecting the outcome of perinatal glucocorticoid exposure may have clinical implications for the treatment of

  6. Context modulates outcome of perinatal glucocorticoid action in the brain.

    Science.gov (United States)

    de Kloet, E Ronald; Claessens, Sanne E F; Kentrop, Jiska

    2014-01-01

    Prematurely born infants may be at risk, because of inadequate maturation of tissues. If there are signs of preterm birth, it has become common practice therefore to treat either antenatally the mother or postnatally the infant with glucocorticoids to accelerate tissue development, particularly of the lung. However, this life-saving early glucocorticoid treatment was found to increase the risk of adverse outcome in later life. In one animal study, the authors reported a 25% shorter lifespan of rats treated as newborns with the synthetic glucocorticoid dexamethasone, but so far this finding has not been replicated. After a brief clinical introduction, we discuss studies in rodents designed to examine how perinatal glucocorticoid action affects the developing brain. It appears that the perinatal action of the glucocorticoid depends on the context and the timing as well as the type of administered steroid. The type of steroid is important because the endogenous glucocorticoids cortisol and corticosterone bind to two distinct receptor populations, i.e., mineralocorticoid and glucocorticoid receptors (GR), while synthetic glucocorticoids predominantly bind to the GR. In addition, if given antenatally hydrocortisone is inactivated in the placenta by 11β-HSD type 2, and dexamethasone is not. With respect to timing, the outcome of glucocorticoid effects is different in early vs. late phases of brain development. The context refers to the environmental input that can affect the susceptibility to glucocorticoid action in the newborn rodent brain; early handling of pups and maternal care obliterate effects of post-natal dexamethasone treatment. Context also refers to coping with environmental conditions in later life, for which the individual may have been programed epigenetically by early-life experience. This knowledge of determinants affecting the outcome of perinatal glucocorticoid exposure may have clinical implications for the treatment of prematurely born infants.

  7. A Mixed Glucocorticoid/Mineralocorticoid Selective Modulator With Dominant Antagonism in the Male Rat Brain.

    Science.gov (United States)

    Atucha, Erika; Zalachoras, Ioannis; van den Heuvel, José K; van Weert, Lisa T C M; Melchers, Diana; Mol, Isabel M; Belanoff, Joseph K; Houtman, René; Hunt, Hazel; Roozendaal, Benno; Meijer, Onno C

    2015-11-01

    Adrenal glucocorticoid hormones are potent modulators of brain function in the context of acute and chronic stress. Both mineralocorticoid (MRs) and glucocorticoid receptors (GRs) can mediate these effects. We studied the brain effects of a novel ligand, C118335, with high affinity for GRs and modest affinity for MRs. In vitro profiling of receptor-coregulator interactions suggested that the compound is a "selective modulator" type compound for GRs that can have both agonistic and antagonistic effects. Its molecular profile for MRs was highly similar to those of the full antagonists spironolactone and eplerenone. C118335 showed predominantly antagonistic effects on hippocampal mRNA regulation of known glucocorticoid target genes. Likewise, systemic administration of C118335 blocked the GR-mediated posttraining corticosterone-induced enhancement of memory consolidation in an inhibitory avoidance task. Posttraining administration of C118335, however, gave a strong and dose-dependent impairment of memory consolidation that, surprisingly, reflected involvement of MRs and not GRs. Finally, C118335 treatment acutely suppressed the hypothalamus-pituitary-adrenal axis as measured by plasma corticosterone levels. Mixed GR/MR ligands, such as C118335, can be used to unravel the mechanisms of glucocorticoid signaling. The compound is also a prototype of mixed GR/MR ligands that might alleviate the harmful effects of chronic overexposure to endogenous glucocorticoids.

  8. Microsystem enabled photovoltaic modules and systems

    Science.gov (United States)

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  9. Insights on Glucocorticoid Receptor Activity Modulation through the Binding of Rigid Steroids

    Science.gov (United States)

    Presman, Diego M.; Alvarez, Lautaro D.; Levi, Valeria; Eduardo, Silvina; Digman, Michelle A.; Martí, Marcelo A.; Veleiro, Adriana S.; Burton, Gerardo; Pecci, Adali

    2010-01-01

    Background The glucocorticoid receptor (GR) is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. Methodology/Principal Findings Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GR-DNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2) coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. Conclusions/Significance The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are considered essential

  10. Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids.

    Directory of Open Access Journals (Sweden)

    Diego M Presman

    Full Text Available BACKGROUND: The glucocorticoid receptor (GR is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. METHODOLOGY/PRINCIPAL FINDINGS: Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GR-DNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2 coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. CONCLUSIONS/SIGNIFICANCE: The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are

  11. Microsystem enabled photovoltaic modules and systems

    Science.gov (United States)

    Nielson, Gregory N.; Sweatt, William C.; Okandan, Murat

    2017-09-12

    A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.

  12. Glucocorticoids Distinctively Modulate the CFTR Channel with Possible Implications in Lung Development and Transition into Extrauterine Life.

    Directory of Open Access Journals (Sweden)

    Mandy Laube

    Full Text Available During fetal development, the lung is filled with fluid that is secreted by an active Cl- transport promoting lung growth. The basolateral Na+,K+,2Cl- cotransporter (NKCC1 participates in Cl- secretion. The apical Cl- channels responsible for secretion are unknown but studies suggest an involvement of the cystic fibrosis transmembrane conductance regulator (CFTR. CFTR is developmentally regulated with a high expression in early fetal development and a decline in late gestation. Perinatal lung transition is triggered by hormones that stimulate alveolar Na+ channels resulting in fluid absorption. Little is known on how hormones affect pulmonary Cl- channels. Since the rise of fetal cortisol levels correlates with the decrease in fetal CFTR expression, a causal relation may be assumed. The aim of this study was to analyze the influence of glucocorticoids on pulmonary Cl- channels. Alveolar cells from fetal and adult rats, A549 cells, bronchial Calu-3 and 16HBE14o- cells, and primary rat airway cells were studied with real-time quantitative PCR and Ussing chambers. In fetal and adult alveolar cells, glucocorticoids strongly reduced Cftr expression and channel activity, which was prevented by mifepristone. In bronchial and primary airway cells CFTR mRNA expression was also reduced, whereas channel activity was increased which was prevented by LY-294002 in Calu-3 cells. Therefore, glucocorticoids strongly reduce CFTR expression while their effect on CFTR activity depends on the physiological function of the cells. Another apical Cl- channel, anoctamin 1 showed a glucocorticoid-induced reduction of mRNA expression in alveolar cells and an increase in bronchial cells. Furthermore, voltage-gated chloride channel 5 and anoctamine 6 mRNA expression were increased in alveolar cells. NKCC1 expression was reduced by glucocorticoids in alveolar and bronchial cells alike. The results demonstrate that glucocorticoids differentially modulate pulmonary Cl

  13. Glucocorticoids Distinctively Modulate the CFTR Channel with Possible Implications in Lung Development and Transition into Extrauterine Life.

    Science.gov (United States)

    Laube, Mandy; Bossmann, Miriam; Thome, Ulrich H

    2015-01-01

    During fetal development, the lung is filled with fluid that is secreted by an active Cl- transport promoting lung growth. The basolateral Na+,K+,2Cl- cotransporter (NKCC1) participates in Cl- secretion. The apical Cl- channels responsible for secretion are unknown but studies suggest an involvement of the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is developmentally regulated with a high expression in early fetal development and a decline in late gestation. Perinatal lung transition is triggered by hormones that stimulate alveolar Na+ channels resulting in fluid absorption. Little is known on how hormones affect pulmonary Cl- channels. Since the rise of fetal cortisol levels correlates with the decrease in fetal CFTR expression, a causal relation may be assumed. The aim of this study was to analyze the influence of glucocorticoids on pulmonary Cl- channels. Alveolar cells from fetal and adult rats, A549 cells, bronchial Calu-3 and 16HBE14o- cells, and primary rat airway cells were studied with real-time quantitative PCR and Ussing chambers. In fetal and adult alveolar cells, glucocorticoids strongly reduced Cftr expression and channel activity, which was prevented by mifepristone. In bronchial and primary airway cells CFTR mRNA expression was also reduced, whereas channel activity was increased which was prevented by LY-294002 in Calu-3 cells. Therefore, glucocorticoids strongly reduce CFTR expression while their effect on CFTR activity depends on the physiological function of the cells. Another apical Cl- channel, anoctamin 1 showed a glucocorticoid-induced reduction of mRNA expression in alveolar cells and an increase in bronchial cells. Furthermore, voltage-gated chloride channel 5 and anoctamine 6 mRNA expression were increased in alveolar cells. NKCC1 expression was reduced by glucocorticoids in alveolar and bronchial cells alike. The results demonstrate that glucocorticoids differentially modulate pulmonary Cl- channels and are likely

  14. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor

    Science.gov (United States)

    Pinto, Antonella; Malacrida, Beatrice; Oieni, Jacopo; Serafini, Melania Maria; Davin, Annalisa; Galbiati, Valentina; Corsini, Emanuela; Racchi, Marco

    2015-01-01

    Background and Purpose Dehydroepiandrosterone (DHEA) is thought to be an anti-glucocorticoid hormone known to be fully functional in young people but deficient in aged humans. Our previous data suggest that DHEA not only counteracts the effect of cortisol on RACK1 expression, a protein required both for the correct functioning of immune cells and for PKC-dependent pathway activation, but also modulates the inhibitory effect of cortisol on LPS-induced cytokine production. The purpose of this study was to investigate the effect of DHEA on the splicing mechanism of the human glucocorticoid receptor (GR). Experimental Approach The THP1 monocytic cell line was used as a cellular model. Cytokine production was measured by specific elisa. Western blot and real-time RT-PCR were used, where appropriate, to determine the effect of DHEA on GRs, serine/arginine-rich proteins (SRp), and RACK1 protein and mRNA. Small-interfering RNA was used to down-regulate GRβ. Key Results DHEA induced a dose-related up-regulation of GRβ and GRβ knockdown completely prevented DHEA-induced RACK1 expression and modulation of cytokine release. Moreover, we showed that DHEA influenced the expression of some components of the SRps found within the spliceosome, the main regulators of the alternative splicing of the GR gene. Conclusions and Implications These data contribute to our understanding of the mechanism of action of DHEA and its effect on the immune system and as an anti-glucocorticoid agent. PMID:25626076

  15. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor.

    Science.gov (United States)

    Pinto, Antonella; Malacrida, Beatrice; Oieni, Jacopo; Serafini, Melania Maria; Davin, Annalisa; Galbiati, Valentina; Corsini, Emanuela; Racchi, Marco

    2015-06-01

    Dehydroepiandrosterone (DHEA) is thought to be an anti-glucocorticoid hormone known to be fully functional in young people but deficient in aged humans. Our previous data suggest that DHEA not only counteracts the effect of cortisol on RACK1 expression, a protein required both for the correct functioning of immune cells and for PKC-dependent pathway activation, but also modulates the inhibitory effect of cortisol on LPS-induced cytokine production. The purpose of this study was to investigate the effect of DHEA on the splicing mechanism of the human glucocorticoid receptor (GR). The THP1 monocytic cell line was used as a cellular model. Cytokine production was measured by specific elisa. Western blot and real-time RT-PCR were used, where appropriate, to determine the effect of DHEA on GRs, serine/arginine-rich proteins (SRp), and RACK1 protein and mRNA. Small-interfering RNA was used to down-regulate GRβ. DHEA induced a dose-related up-regulation of GRβ and GRβ knockdown completely prevented DHEA-induced RACK1 expression and modulation of cytokine release. Moreover, we showed that DHEA influenced the expression of some components of the SRps found within the spliceosome, the main regulators of the alternative splicing of the GR gene. These data contribute to our understanding of the mechanism of action of DHEA and its effect on the immune system and as an anti-glucocorticoid agent. © 2015 The British Pharmacological Society.

  16. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Natalie G. Burford

    2017-10-01

    Full Text Available The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  17. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Science.gov (United States)

    Burford, Natalie G.; Webster, Natalia A.; Cruz-Topete, Diana

    2017-01-01

    The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA) axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart. PMID:29035323

  18. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.

    Science.gov (United States)

    Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana

    2017-10-16

    The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  19. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  20. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5bet...

  1. Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells and fibroblasts.

    Science.gov (United States)

    Fehrholz, Markus; Glaser, Kirsten; Speer, Christian P; Seidenspinner, Silvia; Ottensmeier, Barbara; Kunzmann, Steffen

    2017-03-23

    Although caffeine and glucocorticoids are frequently used to treat chronic lung disease in preterm neonates, potential interactions are largely unknown. While anti-inflammatory effects of glucocorticoids are well defined, their impact on airway remodeling is less characterized. Caffeine has been ascribed to positive effects on airway inflammation as well as remodeling. Connective tissue growth factor (CTGF, CCN2) plays a key role in airway remodeling and has been implicated in the pathogenesis of chronic lung diseases such as bronchopulmonary dysplasia (BPD) in preterm infants. The current study addressed the impact of glucocorticoids on the regulation of CTGF in the presence of caffeine using human lung epithelial and fibroblast cells. The human airway epithelial cell line H441 and the fetal lung fibroblast strain IMR-90 were exposed to different glucocorticoids (dexamethasone, budesonide, betamethasone, prednisolone, hydrocortisone) and caffeine. mRNA and protein expression of CTGF, TGF-β1-3, and TNF-α were determined by means of quantitative real-time PCR and immunoblotting. H441 cells were additionally treated with cAMP, the adenylyl cyclase activator forskolin, and the selective phosphodiesterase (PDE)-4 inhibitor cilomilast to mimic caffeine-mediated PDE inhibition. Treatment with different glucocorticoids (1 μM) significantly increased CTGF mRNA levels in H441 (p caffeine (10 mM), both glucocorticoid-induced mRNA and protein expression were significantly reduced in IMR-90 cells (p caffeine alone significantly suppressed basal expression of CTGF mRNA and protein in IMR-90 cells. Caffeine-induced reduction of CTGF mRNA expression seemed to be independent of cAMP levels, adenylyl cyclase activation, or PDE-4 inhibition. While dexamethasone or caffeine treatment did not affect TGF-β1 mRNA in H441 cells, increased expression of TGF-β2 and TGF-β3 mRNA was detected upon exposure to dexamethasone or dexamethasone and caffeine, respectively. Moreover

  2. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  3. Melatonin regulates catecholamine biosynthesis by modulating bone morphogenetic protein and glucocorticoid actions.

    Science.gov (United States)

    Komatsubara, Motoshi; Hara, Takayuki; Hosoya, Takeshi; Toma, Kishio; Tsukamoto-Yamauchi, Naoko; Iwata, Nahoko; Inagaki, Kenichi; Wada, Jun; Otsuka, Fumio

    2017-01-01

    Melatonin is functionally involved in the control of circadian rhythm and hormonal secretion. In the present study, we investigated the roles of melatonin in the interaction of catecholamine synthesis with adrenocortical steroids by focusing on bone morphogenetic protein (BMP)-4 expressed in the adrenal medulla using rat pheochromocytoma PC12 cells. Melatonin treatment significantly reduced the mRNA expression of catecholamine synthases, including the rate-limiting enzyme tyrosine hydroxylase (Th), 3,4-dihydroxyphenylalanine decarboxylase and dopamine-β-hydroxylase expressed in PC12 cells. In accordance with changes in the expression levels of enzymes, dopamine production and cAMP synthesis determined in the culture medium and cell lysate were also suppressed by melatonin. The MT1 receptor, but not the MT2 receptor, was expressed in PC12 cells, and luzindole treatment reversed the inhibitory effect of melatonin on Th expression, suggesting that MT1 is a functional receptor for the control of catecholamine synthesis. Interestingly, melatonin enhanced the inhibitory effect of BMP-4 on Th mRNA expression in PC12 cells. Melatonin treatment accelerated BMP-4-induced phosphorylation of SMAD1/5/8 and transcription of the BMP target gene Id1. Of note, melatonin significantly upregulated Alk2 and Bmpr2 mRNA levels but suppressed inhibitory Smad6/7 expression, leading to the enhancement of SMAD1/5/8 signaling in PC12 cells, while BMP-4 did not affect Mt1 expression. Regarding the interaction with adrenocortical steroids, melatonin preferentially enhanced glucocorticoid-induced Th mRNA through upregulation of the glucocorticoid receptor and downregulation of Bmp4 expression, whereas melatonin repressed Th mRNA expression induced by aldosterone or androgen without affecting expression levels of the receptors for mineralocorticoid and androgen. Collectively, the results indicate that melatonin plays a modulatory role in catecholamine synthesis by cooperating with BMP-4 and

  4. Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility.

    Science.gov (United States)

    Nasca, C; Bigio, B; Zelli, D; Nicoletti, F; McEwen, B S

    2015-06-01

    Why do some individuals succumb to stress and develop debilitating psychiatric disorders, whereas others adapt well in the face of adversity? There is a gap in understanding the neural bases of individual differences in the responses to environmental factors on brain development and functions. Here, using a novel approach for screening an inbred population of laboratory animals, we identified two subpopulations of mice: susceptible mice that show mood-related abnormalities compared with resilient mice, which cope better with stress. This approach combined with molecular and behavioral analyses, led us to recognize, in hippocampus, presynaptic mGlu2 receptors, which inhibit glutamate release, as a stress-sensitive marker of individual differences to stress-induced mood disorders. Indeed, genetic mGlu2 deletion in mice results in a more severe susceptibility to stress, mimicking the susceptible mouse sub-population. Furthermore, we describe an underlying mechanism by which glucocorticoids, acting via mineralocorticoid receptors (MRs), decrease resilience to stress via downregulation of mGlu2 receptors. We also provide a mechanistic link between MRs and an epigenetic control of the glutamatergic synapse that underlies susceptibility to stressful experiences. The approach and the epigenetic allostasis concept introduced here serve as a model for identifying individual differences based upon biomarkers and underlying mechanisms and also provide molecular features that may be useful in translation to human behavior and psychopathology.

  5. Glucocorticoid receptor ChIP-sequencing of subcutaneous fat reveals modulation of inflammatory pathways.

    Science.gov (United States)

    Singh, Puneet; Brock, Clifton O; Volden, Paul A; Hernandez, Kyle; Skor, Maxwell; Kocherginsky, Masha; Park, Julie E; Brady, Matthew J; Conzen, Suzanne D

    2015-11-01

    To identify glucocorticoid receptor (GR)-associated chromatin sequences and target genes in primary human abdominal subcutaneous fat. GR chromatin immunoprecipitation (ChIP)-sequencing (seq) methodology in subcutaneous human adipocytes treated ex vivo with dexamethasone (dex) was optimized to identify genome-wide dex-dependent GR-binding regions (GBRs). Gene expression analyses were performed in parallel ± dex treatment. Fat was obtained from four female surgical patients without obesity with a median age of 50.5 years. ChIP-seq analysis revealed 219 dex-associated GBRs. Of these, 136 GBRs were located within 100 kb of the transcriptional start site and associated with 123 genes. Combining these data with dex-induced gene expression, 70 of the 123 putative direct target genes were significantly up- or downregulated following 4 hours of dex treatment. Gene expression analysis demonstrated that the top 10 pathways reflected regulation of cellular metabolism and inflammation. DEPTOR, an inhibitor of mTOR, was identified as a potential direct GR target gene. This is the first report of genome-wide GR ChIP-seq and gene expression analysis in human fat. The results implicate regulation of key GR target genes that are involved in dampening inflammation and promoting cellular metabolism. © 2015 The Obesity Society.

  6. Sustained Interleukin-1β Exposure Modulates Multiple Steps in Glucocorticoid Receptor Signaling, Promoting Split-Resistance to the Transactivation of Prominent Anti-Inflammatory Genes by Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Pedro Escoll

    2015-01-01

    Full Text Available Clinical treatment with glucocorticoids (GC can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR, a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR- driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GRSer203 and GRSer211 phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the “split GCR” model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.

  7. Ethernet-Enabled Power and Communication Module for Embedded Processors

    Science.gov (United States)

    Perotti, Jose; Oostdyk, Rebecca

    2010-01-01

    The power and communications module is a printed circuit board (PCB) that has the capability of providing power to an embedded processor and converting Ethernet packets into serial data to transfer to the processor. The purpose of the new design is to address the shortcomings of previous designs, including limited bandwidth and program memory, lack of control over packet processing, and lack of support for timing synchronization. The new design of the module creates a robust serial-to-Ethernet conversion that is powered using the existing Ethernet cable. This innovation has a small form factor that allows it to power processors and transducers with minimal space requirements.

  8. Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal Muscle of Overtrained Mice

    Directory of Open Access Journals (Sweden)

    Alisson L. da Rocha

    2017-10-01

    Full Text Available Overtraining (OT may be defined as an imbalance between excessive training and adequate recovery period. Recently, a downhill running-based overtraining (OTR/down protocol induced the nonfunctional overreaching state, which is defined as a performance decrement that may be associated with psychological and hormonal disruptions and promoted intramuscular and systemic inflammation. To discriminate the eccentric contraction effects on interleukin 1beta (IL-1β, IL-6, IL-10, IL-15, and SOCS-3, we compared the release of these cytokines in OTR/down with other two OT protocols with the same external load (i.e., the product between training intensity and volume, but performed in uphill (OTR/up and without inclination (OTR. Also, we evaluated the effects of these OT models on the muscle morphology and fiber type composition, serum levels of fatigue markers and corticosterone, as well as androgen receptor (AR and glucocorticoid receptor (GR expressions. For extensor digitorum longus (EDL, OTR/down and OTR groups increased the cytokines and exhibited micro-injuries with polymorphonuclear infiltration. While OTR/down group increased the cytokines in soleus muscle, OTR/up group only increased IL-6. All OT groups presented micro-injuries with polymorphonuclear infiltration. In serum, while OTR/down and OTR/up protocols increased IL-1β, IL-6, and tumor necrosis factor alpha, OTR group increased IL-1β, IL-6, IL-15, and corticosterone. The type II fibers in EDL and soleus, total and phosphorylated AR levels in soleus, and total GR levels in EDL and soleus were differentially modulated by the OT protocols. In summary, the proinflammatory cytokines were more sensitive for OTR/down than for OTR/up and OTR. Also, the specific treadmill inclination of each OT model influenced most of the other evaluated parameters.

  9. Antinociception induced by chronic glucocorticoid treatment is correlated to local modulation of spinal neurotransmitter content

    Directory of Open Access Journals (Sweden)

    Almeida Armando

    2009-07-01

    Full Text Available Abstract Background While acute effects of stress on pain are well described, those produced by chronic stress are still a matter of dispute. Previously we demonstrated that chronic unpredictable stress results in antinociception in the tail-flick test, an effect that is mediated by increased levels of corticosteroids. In the present study, we evaluated nociception in rats after chronic treatment with corticosterone (CORT and dexamethasone (DEX in order to discriminate the role of each type of corticosteroid receptors in antinociception. Results Both experimental groups exhibited a pronounced antinociceptive effect after three weeks of treatment when compared to controls (CONT; however, at four weeks the pain threshold in CORT-treated animals returned to basal levels whereas in DEX-treated rats antinociception was maintained. In order to assess if these differences are associated with altered expression of neuropeptides involved in nociceptive transmission we evaluated the density of substance P (SP, calcitonin gene-related peptide (CGRP, somatostatin (SS and B2-γ-aminobutiric acid receptors (GABAB2 expression in the spinal dorsal horn using light density measurements and stereological techniques. After three weeks of treatment the expression of CGRP in the superficial dorsal horn was significantly decreased in both CORT and DEX groups, while GABAB2 was significantly increased; the levels of SP for both experimental groups remained unchanged at this point. At 4 weeks, CGRP and SP are reduced in DEX-treated animals and GABAB2 unchanged, but all changes were restored to CONT levels in CORT-treated animals. The expression of SS remained unaltered throughout the experimental period. Conclusion These data indicate that corticosteroids modulate nociception since chronic corticosteroid treatment alters the expression of neuropeptides involved in nociceptive transmission at the spinal cord level. As previously observed in some supraspinal areas, the

  10. Glucocorticoid Regulation of Reproduction.

    Science.gov (United States)

    Geraghty, Anna C; Kaufer, Daniela

    2015-01-01

    It is well accepted that stress, measured by increased glucocorticoid secretion, leads to profound reproductive dysfunction. In times of stress, glucocorticoids activate many parts of the fight or flight response, mobilizing energy and enhancing survival, while inhibiting metabolic processes that are not necessary for survival in the moment. This includes reproduction, an energetically costly procedure that is very finely regulated. In the short term, this is meant to be beneficial, so that the organism does not waste precious energy needed for survival. However, long-term inhibition can lead to persistent reproductive dysfunction, even if no longer stressed. This response is mediated by the increased levels of circulating glucocorticoids, which orchestrate complex inhibition of the entire reproductive axis. Stress and glucocorticoids exhibits both central and peripheral inhibition of the reproductive hormonal axis. While this has long been recognized as an issue, understanding the complex signaling mechanism behind this inhibition remains somewhat of a mystery. What makes this especially difficult is attempting to differentiate the many parts of both of these hormonal axes, and new neuropeptide discoveries in the last decade in the reproductive field have added even more complexity to an already complicated system. Glucocorticoids (GCs) and other hormones within the hypothalamic-pituitary-adrenal (HPA) axis (as well as contributors in the sympathetic system) can modulate the hypothalamic-pituitary-gonadal (HPG) axis at all levels-GCs can inhibit release of GnRH from the hypothalamus, inhibit gonadotropin synthesis and release in the pituitary, and inhibit testosterone synthesis and release from the gonads, while also influencing gametogenesis and sexual behavior. This chapter is not an exhaustive review of all the known literature, however is aimed at giving a brief look at both the central and peripheral effects of glucocorticoids on the reproductive function.

  11. Membrane-associated glucocorticoid activity Is necessary for modulation of long-term memory via chromatin modification

    NARCIS (Netherlands)

    Roozendaal, Benno; Hernandez, Angelina; Cabrera, Sara M.; Hagewoud, Roelina; Malvaez, Melissa; Stefanko, Daniel P.; Haettig, Jakob; Wood, Marcelo A.

    2010-01-01

    Glucocorticoid hormones enhance the consolidation of long-term memory of emotionally arousing training experiences. This memory enhancement requires activation of the cAMP-dependent kinase pathway and the subsequent phosphorylation of cAMP response-element binding (CREB) protein. Here, we

  12. GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode

    KAUST Repository

    Shen, Chao

    2017-01-30

    A 404-nm emitting InGaN-based laser diode with integrated-waveguide-modulator showing a large extinction ratio of 11.3 dB was demonstrated on semipolar (2021) plane GaN substrate. The device shows a low modulation voltage of −2.5 V and ∼ GHz −3 dB bandwidth, enabling 1.7 Gbps data transmission.

  13. Regulation of triglyceride metabolism by glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Wang Jen-Chywan

    2012-05-01

    Full Text Available Abstract Glucocorticoids are steroid hormones that play critical and complex roles in the regulation of triglyceride (TG homeostasis. Depending on physiological states, glucocorticoids can modulate both TG synthesis and hydrolysis. More intriguingly, glucocorticoids can concurrently affect these two processes in adipocytes. The metabolic effects of glucocorticoids are conferred by intracellular glucocorticoid receptors (GR. GR is a transcription factor that, upon binding to glucocorticoids, regulates the transcriptional rate of specific genes. These GR primary target genes further initiate the physiological and pathological responses of glucocorticoids. In this article, we overview glucocorticoid-regulated genes, especially those potential GR primary target genes, involved in glucocorticoid-regulated TG metabolism. We also discuss transcriptional regulators that could act with GR to participate in these processes. This knowledge is not only important for the fundamental understanding of steroid hormone actions, but also are essential for future therapeutic interventions against metabolic diseases associated with aberrant glucocorticoid signaling, such as insulin resistance, dyslipidemia, central obesity and hepatic steatosis.

  14. Efficacy and Tolerability of an Inhaled Selective Glucocorticoid Receptor Modulator - AZD5423 - in Chronic Obstructive Pulmonary Disease Patients: Phase II Study Results.

    Science.gov (United States)

    Kuna, Piotr; Aurivillius, Magnus; Jorup, Carin; Prothon, Susanne; Taib, Ziad; Edsbäcker, Staffan

    2017-10-01

    AZD5423 is a novel, inhaled, selective glucocorticoid receptor modulator (SGRM), which in an allergen challenge model in asthma patients improved lung function and airway hyper-reactivity. In the current trial, AZD5423 was for the first time tested in patients with chronic obstructive pulmonary disease (COPD). In this double-blind, randomized and parallel group study, we examined airway and systemic effects of two doses of AZD5423, inhaled via Turbuhaler for 12 weeks, in 353 symptomatic patients with COPD (average pre-bronchodilator forced expiratory volume in one-second (FEV1) at screening was 50-52% of predicted normal). Pre-bronchodilator FEV1 was primary variable, with other lung function parameters plus symptoms and 24-hr plasma cortisol being secondary variables. Plasma concentrations of AZD5423 were also measured. Effects were compared against placebo and a reference glucocorticoid receptor agonist control. Neither AZD5423, at doses which have shown to be efficacious in allergen-induced asthma, nor the reference control, at double the approved dose, had any clinically meaningful effect in the patient population studied in regard to lung function or markers of inflammation. Both GR modulators were well tolerated and did suppress 24-hr cortisol. This study suggests that the selected population of patients with COPD does not respond to treatment with AZD5423 as regards lung function, while showing the expected systemic effects. It cannot be ruled out that a favourable lung function response of AZD5423 can be evoked using another experimental setting and/or within a different population of patients with COPD. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice.

    Science.gov (United States)

    Meyer, Maria; Gonzalez Deniselle, Maria Claudia; Hunt, Hazel; de Kloet, E Ronald; De Nicola, Alejandro F

    2014-09-01

    Mutant Wobbler mice are models for human amyotrophic lateral sclerosis (ALS). In addition to spinal cord degeneration, Wobbler mice show high levels of blood corticosterone, hyperactivity of the hypothalamic-pituitary-adrenal axis and abnormalities of the hippocampus. Hypersecretion of glucocorticoids increase hippocampus vulnerability, a process linked to an enriched content of glucocorticoid receptors (GR). Hence, we studied if a selective GR antagonist (CORT108297) with null affinity for other steroid receptors restored faulty hippocampus parameters of Wobbler mice. Three months old genotyped Wobbler mice received s.c. vehicle or CORT108297 during 4 days. We compared the response of doublecortin (DCX)+ neuroblasts in the subgranular layer of the dentate gyrus (DG), NeuN+ cells in the hilus of the DG, glial fibrillary acidic protein (GFAP)+ astrocytes and the phenotype of Iba1+ microglia in CORT108297-treated and vehicle-treated Wobblers. The number of DCX+ cells in Wobblers was lower than in control mice, whereas CORT108297 restored this parameter. After CORT108297 treatment, Wobblers showed diminished astrogliosis, and changed the phenotype of Iba1+ microglia from an activated to a quiescent form. These changes occurred without alterations in the hypercorticosteronemia or the number of NeuN+ cells of the Wobblers. In a separate experiment employing control NFR/NFR mice, treatment with corticosterone for 5 days reduced DCX+ neuroblasts and induced astrocyte hypertrophy, whereas treatment with CORT108297 antagonized these effects. Normalization of neuronal progenitors, astrogliosis and microglial phenotype by CORT108297 indicates the usefulness of this antagonist to normalize hippocampus parameters of Wobbler mice. Thus, CORT108297 opens new therapeutic options for the brain abnormalities of ALS patients and hyperadrenocorticisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging

    Science.gov (United States)

    Wright, Andrew A.; Martin, Richard D.; Schuetz, Christopher A.; Shi, Shouyuan; Zhang, Yifei; Yao, Peng; Shreve, Kevin P.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2016-05-01

    This paper will discuss the development of a millimeter-wave (mm-wave) receiver module used in a sparse array passive imaging system. Using liquid crystal polymer (LCP) technology and low power InP low noise amplifiers (LNA), enables the integration of the digital circuitry along with the RF components onto a single substrate significantly improves the size, weight, power, and cost (SWaP-C) of the mm-wave receiver module compared to previous iterations of the module. Also comparing with previous generation modules, the operating frequency has been pushed from 77 GHz to 95 GHz in order to improve the resolution of the captured image from the sparse array imaging system.

  17. Glucocorticoid receptor ChIP-sequencing of primary human abdominal subcutaneous fat reveals modulation of inflammatory pathways

    Science.gov (United States)

    Singh, Puneet; Brock, Clifton O.; Volden, Paul A.; Hernandez, Kyle; Skor, Maxwell; Kocherginsky, Masha; Park, Julie E.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Objective To identify glucocorticoid receptor (GR)-associated chromatin sequences and target genes in primary human abdominal subcutaneous fat. Methods GR chromatin immunoprecipitation (ChIP)-sequencing methodology in subcutaneous human adipocytes treated ex-vivo with dexamethasone (dex) was optimized to identify genome-wide dex-dependent GR binding regions (GBRs). Gene expression analyses were performed in parallel ± dex treatment. Results Fat was obtained from four non-obese female surgical patients with a median age of 50.5 years. ChIP-seq analysis revealed 219 dex-associated GBRs. Of these, 136 GBRs were located within 100 kb of the transcriptional start site and associated with 123 genes. Combining these data with dex-induced gene expression, 70 of the 123 putative direct target genes were significantly up- or downregulated following four hours of dex treatment. Gene expression analysis demonstrated that the top 10 pathways reflected regulation of cellular metabolism and inflammation. DEPTOR, an inhibitor of mTOR, was identified as a potential direct GR target gene. Conclusions To our knowledge, this is the first report of genome-wide GR ChIP-seq and gene expression analysis in human fat. The results implicate regulation of key GR target genes that are involved in dampening inflammation and promoting cellular metabolism. PMID:26408078

  18. Glucocorticoid programming of neuroimmune function.

    Science.gov (United States)

    Walker, David J; Spencer, Karen A

    2018-01-15

    Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. In ovo leptin administration modulates glucocorticoid receptor mRNA expression specifically in the hypothalamus of broiler chickens.

    Science.gov (United States)

    Yuan, Lixia; Wang, Yufeng; Hu, Yan; Zhao, Ruqian

    2017-01-18

    The glucocorticoid receptor (GR) is well documented to play a crucial role in the central control of energy homeostasis in mammals. However, the distribution and function of the GR in the chicken brain are less clear. Leptin is a key hormone regulating energy homeostasis in mammals, yet its action in the chicken is still under debate. In this study, the distribution of GR mRNA in the chicken brain and the effects of in ovo administration of leptin and its antagonist on early post-hatch growth and GR mRNA expression in different hypothalamic nuclei were investigated via in situ hybridization (ISH) and quantitative PCR. GR mRNA was widely expressed in the chicken brain, mainly in the corpus striatum, nucleus rotundus, dorsolateral nucleus, nucleus ovoidalis, nucleus reticularis superior and the hippocampus (Hp) and in the preoptic area of the hypothalamus. High doses of leptin (5.0μg) significantly promoted post-hatch growth, resulting in a significant high body weight increased by 24.64% at day (D) 21 of life. Meanwhile, hypothalamic expression of GR mRNA in the LL and HL groups was down-regulated significantly by 7.02% and 13.65% respectively (Phypothalamus of D21 broiler chickens. The leptin antagonist was able to reverse the effect of leptin on the growth rate and hypothalamic GR mRNA expression. These results provide evidence that in ovo administration of leptin influences early post-hatch growth and the hypothalamic expression of GR mRNA in broiler chickens. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. High Efficiency, Digitally Calibrated TR Modules Enabling Lightweight SweepSAR Architectures for DESDynI-Class Radar Instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and demonstrate a next-generation digitally calibrated, highly scalable, L-band Transmit/Receive (TR) module to enable a precision beamforming SweepSAR...

  1. Testicular Receptor-4: Novel Regulator of Glucocorticoid Resistance.

    Science.gov (United States)

    Zhang, Dongyun; Du, Li; Heaney, Anthony P

    2016-08-01

    Glucocorticoids are powerful steroid hormones that regulate development, metabolism, and immune response. However, glucocorticoid unresponsiveness or resistance is observed in the treatment of inflammatory, autoimmune, and lymphoproliferative diseases and significantly limits their efficacy. In Cushing's disease, although some glucocorticoid-mediated suppression of pituitary-derived ACTH is seen, corticotroph tumors exhibit relative resistance to glucocorticoid action. We previously demonstrated that testicular orphan receptor 4 (TR4) binds to the pro-opiomelanocortin (POMC) promoter to induce corticotroph tumor POMC expression and ACTH secretion, and we hypothesized that TR4 may interact with glucocorticoid signaling to modulate POMC expression and action. Here we demonstrate that TR4 abrogates glucocorticoid receptor (GR)- or dexamethasone-mediated POMC and activator protein-1 transrepression in both murine and human pituitary corticotroph tumor cells. Co-immunoprecipitation studies indicate that TR4 and GR interact directly with each other, resulting in TR4-mediated disruption of GR binding to the POMC promoter. These results demonstrate that TR4 binds GR to play an important role in glucocorticoid-directed corticotroph tumor POMC regulation in addition to modulating glucocorticoid actions on other GR targets. Characterization of this pathway may offer important insights into glucocorticoid resistance and may identify a novel approach for the treatment of Cushing's disease and the glucocorticoid-resistant states.

  2. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  3. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    Science.gov (United States)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  4. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  5. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion.

    Science.gov (United States)

    Astley, Henry C; Gong, Chaohui; Dai, Jin; Travers, Matthew; Serrano, Miguel M; Vela, Patricio A; Choset, Howie; Mendelson, Joseph R; Hu, David L; Goldman, Daniel I

    2015-05-12

    Many organisms move using traveling waves of body undulation, and most work has focused on single-plane undulations in fluids. Less attention has been paid to multiplane undulations, which are particularly important in terrestrial environments where vertical undulations can regulate substrate contact. A seemingly complex mode of snake locomotion, sidewinding, can be described by the superposition of two waves: horizontal and vertical body waves with a phase difference of ± 90°. We demonstrate that the high maneuverability displayed by sidewinder rattlesnakes (Crotalus cerastes) emerges from the animal's ability to independently modulate these waves. Sidewinder rattlesnakes used two distinct turning methods, which we term differential turning (26° change in orientation per wave cycle) and reversal turning (89°). Observations of the snakes suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave whereas in reversal turning they shifted the phase of the vertical wave by 180°. We tested these mechanisms using a multimodule snake robot as a physical model, successfully generating differential and reversal turning with performance comparable to that of the organisms. Further manipulations of the two-wave system revealed a third turning mode, frequency turning, not observed in biological snakes, which produced large (127°) in-place turns. The two-wave system thus functions as a template (a targeted motor pattern) that enables complex behaviors in a high-degree-of-freedom system to emerge from relatively simple modulations to a basic pattern. Our study reveals the utility of templates in understanding the control of biological movement as well as in developing control schemes for limbless robots.

  6. Chronic exposure to glucocorticoids shapes gene expression and modulates innate and adaptive activation pathways in macrophages with distinct changes in leukocyte attraction

    NARCIS (Netherlands)

    van de Garde, Martijn D. B.; Martinez, Fernando O.; Melgert, Barbro N.; Hylkema, Machteld N.; Jonkers, René E.; Hamann, Jörg

    2014-01-01

    Glucocorticoids (GCs) have been used for more than 50 y as immunosuppressive drugs, yet their efficacy in macrophage-dominated disorders, such as chronic obstructive pulmonary disease, is debated. Little is known how long-term GC treatment affects macrophage responses in inflammatory conditions. In

  7. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.

    Science.gov (United States)

    Rajapaksa, Anushi; Qi, Aisha; Yeo, Leslie Y; Coppel, Ross; Friend, James R

    2014-06-07

    A practical, commercially viable microfluidic device relies upon the miniaturization and integration of all its components--including pumps, circuitry, and power supply--onto a chip-based platform. Surface acoustic waves (SAW) have become popular in microfluidic manipulation, in solving the problems of microfluidic manipulation, but practical applications employing SAW still require more power than available via a battery. Introducing amplitude modulation at 0.5-40 kHz in SAW nebulization, which requires the highest energy input levels of all known SAW microfluidic processes, halves the power required to 1.5 W even while including the power in the sidebands, suitable for small lithium ion batteries, and maintains the nebulization rate, size, and size distributions vital to drug inhalation therapeutics. This simple yet effective means to enable an integrated SAW microfluidics device for nebulization exploits the relatively slow hydrodynamics and is furthermore shown to deliver shear-sensitive biomolecules--plasmid DNA and antibodies as exemplars of future pulmonary gene and vaccination therapies--undamaged in the nebulized mist. Altogether, the approach demonstrates a means to offer truly micro-scale microfluidics devices in a handheld, battery powered SAW nebulization device.

  8. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    Science.gov (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  9. Digitally Calibrated TR Modules Enabling Real-Time Beamforming SweepSAR Architectures

    Science.gov (United States)

    Hoffman, James P.; Veilleux, Louse A.; Peral, Eva; Chuang, Chung-Lun; Shaffer, Scott J.

    2013-01-01

    digitized and processed. All signal conditioning performed prior to digitization is done using analog hardware (which is less precise than digital signal conditioning and dependent on temperature). The DBF digitizes every signal prior to combining, and can therefore analyze and correct received signals, as well as analyze signals that are being transmitted through analog hardware (by sampling a copy and digitizing). Each channel of a DBF also has a powerful processor. With this combination, one is able to digitize, analyze, and correct each channel prior to its being combined. A unique factor is the ability to digitize and analyze (in real time) each of the array's channels independently, allowing one to achieve unprecedented knowledge of each channel's performance (gain and phase), and since the combining is done digitally, each receive channel can be corrected prior to combining. This enables an unprecedented level of accuracy and control through onboard processing. SweepSAR promises significant increases in instrument capability for solid earth and biomass remote sensing, while reducing mission mass and cost. This new instrument concept requires new methods for calibrating the multiple channels, which must be combined onboard, in real time. New methods are being developed for digitally calibrating digital beam-forming arrays to reduce development time, risk, and cost of precision calibrated TR modules for array architectures by accurately tracking modules' characteristics through closed-loop digital calibration, thus tracking systematic changes regardless of temperature.-

  10. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    OpenAIRE

    Roland Himmelhuber; Norwood, Robert A.; Yasufumi Enami; Nasser Peyghambarian

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator an...

  11. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    Directory of Open Access Journals (Sweden)

    Roland Himmelhuber

    2015-07-01

    Full Text Available Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed.

  12. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators.

    Science.gov (United States)

    Himmelhuber, Roland; Norwood, Robert A; Enami, Yasufumi; Peyghambarian, Nasser

    2015-07-27

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed.

  13. Glucocorticoid-induced hypertension.

    Science.gov (United States)

    Goodwin, Julie E; Geller, David S

    2012-07-01

    Glucocorticoid-induced hypertension is a common clinical problem that is poorly understood, thus rendering treatment strategies sub-optimal. This form of hypertension has been commonly thought to be mediated by excess sodium and water reabsorption by the renal mineralocorticoid receptor. However, experimental and clinical data in both humans and animal models suggest important roles for the glucocorticoid receptor as well, in both the pathogenesis and maintenance of this hypertension. The glucocorticoid receptor is widely expressed in a number of organ systems relevant to blood pressure regulation, including the kidney, the brain and the vasculature. In vitro studies in isolated kidney tissues as well as in vascular smooth muscle and vascular endothelial cells have attempted to elucidate the molecular physiology of glucocorticoid-induced hypertension, but have generally been limited by the inability to study signaling pathways in an intact organism. More recently, the power of mouse genetics has been employed to examine the tissue-specific contributions of vascular and extra-vascular tissues to this form of hypertension. Here we review recent developments in our understanding of the pathogenesis of glucocorticoid-induced hypertension.

  14. Selective glucocorticoid receptor modulator compound A, in contrast to prednisolone, does not induce leptin or the leptin receptor in human osteoarthritis synovial fibroblasts.

    Science.gov (United States)

    Malaise, Olivier; Relic, Biserka; Quesada-Calvo, Florence; Charlier, Edith; Zeddou, Mustapha; Neuville, Sophie; Gillet, Philippe; Louis, Edouard; de Seny, Dominique; Malaise, Michel G

    2015-06-01

    Glucocorticoids are powerful anti-inflammatory compounds that also induce the expression of leptin and leptin receptor (Ob-R) in synovial fibroblasts through TGF-βsignalling and Smad1/5 phosphorylation. Compound A (CpdA), a selective glucocorticoid receptor agonist, reduces inflammation in murine arthritis models and does not induce diabetes or osteoporosis, thus offering an improved risk:benefit ratio in comparison with glucocorticoids. Due to the detrimental role of leptin in OA pathogenesis, we sought to determine whether CpdA also induced leptin and Ob-R protein expression as observed with prednisolone. Human synovial fibroblasts and chondrocytes were isolated from the synovium and cartilage of OA patients after joint surgery. The cells were treated with prednisolone, TGF-β1, TNF-α and/or CpdA. Levels of leptin, IL-6, IL-8, MMP-1 and MMP-3 were measured by ELISA and expression levels of Ob-R phospho-Smad1/5, phospho-Smad2, α-tubulin and glyceraldehyde 3-phosphate dehydrogenase were analysed by western blotting. CpdA, unlike prednisolone, did not induce leptin secretion or Ob-R protein expression in OA synovial fibroblasts. Moreover, CpdA decreased endogenous Ob-R expression and down-regulated prednisolone-induced leptin secretion and Ob-R expression. Mechanistically, CpdA, unlike prednisolone, did not induce Smad1/5 phosphorylation. CpdA, similarly to prednisolone, down-regulated endogenous and TNF-α-induced IL-6, IL-8, MMP-1 and MMP-3 protein secretion. The dissociative effect of CpdA was confirmed using chondrocytes with no induction of leptin secretion, but with a significant decrease in IL-6, IL-8, MMP-1 and MMP-3 protein secretion. CpdA, unlike prednisolone, did not induce leptin or Ob-R in human OA synovial fibroblasts, thereby demonstrating an improved risk:benefit ratio. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes.

    Science.gov (United States)

    Yi, Fei; Ou, Fang; Liu, Boyang; Huang, Yingyan; Ho, Seng-Tiong; Wang, Yiliang; Liu, Jun; Marks, Tobin J; Huang, Su; Luo, Jingdong; Jen, Alex K-Y; Dinu, Raluca; Jin, Dan

    2010-03-29

    An EO phase modulator having transparent conducting oxide electrodes and an inverted rib waveguide structure is demonstrated. This new modulator geometry employs an EO polymer having an in-device r33 = 60pm/V. The measured half-wave voltage Vpi of these devices ranges from 5.3V to 11.2V for 3.8 and 1.5 mm long devices, respectively. The lowest VpiL figure-of-merit corresponds to 0.6V-cm (7.2mW-cm(2) of power length product) in a dual-drive configuration. The trade-off between Vpi, insertion loss and modulation bandwidth is systematically analyzed. An optimized high-speed structure is proposed, with numerical simulation showing that this new structure and an in-device r33 = 150pm/V, can achieve Vpi = 0.5V in a 5mm long active length with dual drive operation. The insertion loss is targeted at 6dB, and a 3dB optical modulation bandwidth can reach > 40GHz.

  16. [Glucocorticoids and metabolism].

    Science.gov (United States)

    Tourniaire, J; Daumont, M

    1976-01-01

    After a brief historical account, the physiological effect of glucocorticoid hormones are analysed. Their main point of impact is neoglucogenesis from proteins. To this is added their direct action on carbohydrates, their intervention in the use of lipids, and in the movement of water and salts. Cortisone penetrates into the cell, is fixed by a cortisone receptor in order to be transferred into the nucleus and to act on the transformation of ADN-ARN. Its relationships with cyclic AMP are discussed. The hormonal correlations of glucocorticoids are numerous. (insulin, catecholamine, glucagon, growth hormone, androgen). Synthetic cordicoids have biological actions which are close to those of glucocorticoids, but vary depending on their structure. These physiological and pharmacological notions imply certain precautions in the use of this type of hormone derivative.

  17. Osteoporosis inducida por glucocorticoides Glucocorticoid induced osteoporosis

    OpenAIRE

    R. Gutiérrez-Polo

    2003-01-01

    Los glucocorticoides son un grupo de fármacos que se emplean muy frecuentemente en la práctica médica por su indiscutible utilidad. La osteoporosis inducida por éstos supone el principal efecto adverso derivado de su administración sistémica y prolongada, constituyendo la causa más frecuente de osteoporosis secundaria. Comporta además una importante repercusión sanitaria y socioeconómica como consecuencia de las complicaciones que ocasiona, como son las diferentes fracturas óseas por fragilid...

  18. Integrated graphene based modulators enabled by interfacing plasmonic slot and silicon waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    to direct more optical energy to the material interface where graphene could reside. We propose and demonstrate efficient graphene plasmonic waveguide electro-optical modulators, which are fully integrated with the silicon-on-insulator platform. We experimentally achieve the tunability of 0.13 d......Graphene has offered a new paradigm for extremely fast and active optoelectronic devices due to its unique electronic and optical properties [1]. With the combination of high-index dielectric waveguides/resonators, several integrated graphene-based optical modulators have already been demonstrated...... [2,3]. However, the optical modes in these systems are inherently strongly localized in the high-index materials, thus jeopardizing light-graphene interactions. Surface plasmon polaritons have been shown the ability to manipulate light in the nanoscale, while at the same time giving possibility...

  19. On the retinal toxicity of intraocular glucocorticoids.

    Science.gov (United States)

    Torriglia, Alicia; Valamanesh, Fatemeh; Behar-Cohen, Francine

    2010-12-15

    Corticosteroids are hormones involved in many physiological responses such as stress, immune modulation, protein catabolism and water homeostasis. The subfamily of glucocorticoids is used systemically in the treatment of inflammatory diseases or allergic reactions. In the eye, glucocorticoides are used to treat macular edema, inflammation and neovascularization. The most commonly used glucocorticoid is triamcinolone acetonide (TA). The pharmaceutical formulation of TA is not adapted for intravitreal administration but has been selected by ophthalmologists because its very low intraocular solubility provides sustained effect. Visual benefits of intraocular TA do not clearly correlate with morpho-anatomical improvements, suggesting potential toxicity. We therefore studied, non-common, but deleterious effects of glucocorticoids on the retina. We found that the intravitreal administration of TA is beneficial in the treatment of neovascularization because it triggers cell death of endothelial cells of neovessels by a caspase-independent mechanism. However, this treatment is toxic for the retina because it induces a non-apoptotic, caspase-independent cell death related to paraptosis, mostly in the retinal pigmented epithelium cells and the Müller cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Digitally Calibrated TR Modules Enabling Real-Time Beamforming SweepSAR Architectures for DESDynI-Class Radar Instruments

    Science.gov (United States)

    Hoffman, James Patrick; Peral, Eva; Veilluex, Louise; Perkovic, Dragana; Shaffer, Scott

    2011-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures such as that of the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). SweepSAR promises significant increases in instrument capability for solid earth and biomass remote sensing, while reducing mission mass and cost. This new instrument concept requires new methods for calibrating the multiple channels, which must be combined on-board, in real-time. We are developing new methods for digitally calibrating digital beamforming arrays to reduce development time, risk and cost of precision calibrated TR modules for array architectures by accurately tracking modules' characteristics through closed-loop Digital Calibration, thus tracking systematic changes regardless of temperature

  1. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  2. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  3. W-Band Millimeter-Wave Vector Signal Generation Based on Precoding-Assisted Random Photonic Frequency Tripling Scheme Enabled by Phase Modulator

    National Research Council Canada - National Science Library

    Li, Xinying; Xu, Yuming; Xiao, Jiangnan; Yu, Jianjun

    2016-01-01

    We propose W-band photonic millimeter-wave (mm-wave) vector signal generation employing a precoding-assisted random frequency tripling scheme enabled by a single phase modulator cascaded with a wavelength selective switch (WSS...

  4. A Cyber Enabled Collaborative Environment for Creating, Sharing and Using Data and Modeling Driven Curriculum Modules for Hydrology Education

    Science.gov (United States)

    Merwade, V.; Ruddell, B. L.; Fox, S.; Iverson, E. A. R.

    2014-12-01

    With the access to emerging datasets and computational tools, there is a need to bring these capabilities into hydrology classrooms. However, developing curriculum modules using data and models to augment classroom teaching is hindered by a steep technology learning curve, rapid technology turnover, and lack of an organized community cyberinfrastructure (CI) for the dissemination, publication, and sharing of the latest tools and curriculum material for hydrology and geoscience education. The objective of this project is to overcome some of these limitations by developing a cyber enabled collaborative environment for publishing, sharing and adoption of data and modeling driven curriculum modules in hydrology and geosciences classroom. The CI is based on Carleton College's Science Education Resource Center (SERC) Content Management System. Building on its existing community authoring capabilities the system is being extended to allow assembly of new teaching activities by drawing on a collection of interchangeable building blocks; each of which represents a step in the modeling process. Currently the system hosts more than 30 modules or steps, which can be combined to create multiple learning units. Two specific units: Unit Hydrograph and Rational Method, have been used in undergraduate hydrology class-rooms at Purdue University and Arizona State University. The structure of the CI and the lessons learned from its implementation, including preliminary results from student assessments of learning will be presented.

  5. Glucocorticoids in nephrology I: pharmacology and side effects

    Directory of Open Access Journals (Sweden)

    Jernej Pajek

    2015-05-01

    Full Text Available Glucocorticoids have been used in clinical medicine since 1940s. Despite the time-long use they are still a subject of active ongoing research. We describe the mode of action, pharmacology and side effects to enable proper prescription of these drugs. Glucocorticoids exert genomic and non-genomic effects, the latter become important at higher doses. The nomenclature of dosage ranges and the principles of dosage adjustments are given. Glucocortioid use is associated with frequent and important side effects in numerous organ systems. Prophylactic treatments for osteoporosis and infections are described. The suppression of hypothalamic-hypophyseal hormonal axis determines the need for gradual glucocorticoid withdrawal and supplementation after discontinuation. Finally, glucocorticoid withdrawal syndrome is described.

  6. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  7. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency

  8. Clinical aspects of glucocorticoid sensitivity

    OpenAIRE

    Lamberts, Steven; Huizenga, Nannette; Lange, Pieter; Jong, Frank; Koper, Jan

    1996-01-01

    textabstractRecent studies demonstrate that primary (hereditary) abnormalities in the glucocorticoid receptor gene make 6.6% of the normal population relatively 'hypersensitive' to glucocorticoids, while 2.3% are relatively 'resistant.' These abnormalities might explain why some individuals develop severe adverse effects during low dose glucocorticoid therapy, while others do not develop side effects even during long-term therapy with a much higher dose. Awareness of this heterogeneity in glu...

  9. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics.

    Science.gov (United States)

    Kalafatakis, Konstantinos; Russell, Georgina M; Zarros, Apostolos; Lightman, Stafford L

    2016-02-01

    Glucocorticoids mediate plethora of actions throughout the human body. Within the brain, they modulate aspects of immune system and neuroinflammatory processes, interfere with cellular metabolism and viability, interact with systems of neurotransmission and regulate neural rhythms. The influence of glucocorticoids on memory and emotional behaviour is well known and there is increasing evidence for their involvement in many neuropsychiatric pathologies. These effects, which at times can be in opposing directions, depend not only on the concentration of glucocorticoids but also the duration of their presence, the temporal relationship between their fluctuations, the co-influence of other stimuli, and the overall state of brain activity. Moreover, they are region- and cell type-specific. The molecular basis of such diversity of effects lies on the orchestration of the spatiotemporal interplay between glucocorticoid- and mineralocorticoid receptors, and is achieved through complex dynamics, mainly mediated via the circadian and ultradian pattern of glucocorticoid secretion. More sophisticated methodologies are therefore required to better approach the study of these hormones and improve the effectiveness of glucocorticoid-based therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Clinical aspects of glucocorticoid sensitivity

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); N.A.T.M. Huizenga (Nannette); P. de Lange (Pieter); F.H. de Jong (Frank); J.W. Koper (Jan)

    1996-01-01

    textabstractRecent studies demonstrate that primary (hereditary) abnormalities in the glucocorticoid receptor gene make 6.6% of the normal population relatively 'hypersensitive' to glucocorticoids, while 2.3% are relatively 'resistant.' These abnormalities might explain why some individuals develop

  11. Glucocorticoids, chronic stress, and obesity

    NARCIS (Netherlands)

    Dallman, Mary F.; Pecoraro, Norman C.; la Fleur, Susanne E.; Warne, James P.; Ginsberg, Abigail B.; Akana, Susan F.; Laugero, Kevin C.; Houshyar, Hani; Strack, Alison M.; Bhatnagar, Seema; Bell, Mary E.

    2006-01-01

    Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a

  12. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes.

    Science.gov (United States)

    Emont, Margo P; Mantis, Stelios; Kahn, Jonathan H; Landeche, Michael; Han, Xuan; Sargis, Robert M; Cohen, Ronald N

    2015-05-15

    Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. TAK1 targeting by glucocorticoids determines JNK and IκB regulation in Toll-like receptor–stimulated macrophages

    Science.gov (United States)

    Ratajczak, Christine K.; Vogt, Sherri K.; Kelley, Crystal; Colonna, Marco; Schreiber, Robert D.; Muglia, Louis J.

    2010-01-01

    Glucocorticoids potently attenuate the production of inflammatory mediators by macrophages, a primary effector of innate immunity. Activation of different macrophage Toll-like receptors (TLRs) by their respective ligands presents a powerful system by which to evaluate stimulus-dependent glucocorticoid effects in the same cell type. Here, we test the hypothesis that glucocorticoids, acting through the glucocorticoid receptor, modulate macrophage activation preferentially depending upon the TLR-selective ligand and TLR adapters. We established that 2 adapters, Trif, MyD88, or both, determine the ability of glucocorticoids to suppress inhibitor of κB (IκB) degradation or Janus kinase (JNK) activation. Moreover, the sensitivity of transforming growth factor β–activated kinase 1 (TAK1) activation to glucocorticoids determines these effects. These findings identify TAK1 as a novel target for glucocorticoids that integrates their anti-inflammatory action in innate immunity signaling pathways. PMID:20065289

  14. [Glucocorticoids in rheumatology].

    Science.gov (United States)

    Dziurla, R; Buttgereit, F

    2008-11-01

    Glucocorticoids (GC) are effective drugs which are often used in rheumatology. However, they have a considerable potential for frequent and sometimes serious side effects that restrict their use. Their mechanisms of action are either receptor dependent (specific) or independent (unspecific) on the genomic as well as the non-genomic level. Many adverse effects are predominantly caused by transactivation while the desired effects are mostly mediated by transrepression. Treatment strategies are sub-classified into low, medium, high, very high dose and pulse therapy based on criteria such as dose, indication, duration of treatment and potential risk of adverse events. The musculoskeletal, gastrointestinal, neuro-endocrino-immunological, opthalmological and neuropsychiatric systems are examples where adverse effects may occur.

  15. Novel aspects of hypothalamic-pituitary-adrenal axis regulation and glucocorticoid actions

    Science.gov (United States)

    Uchoa, Ernane Torres; Aguilera, Greti; Herman, James P.; Fiedler, Jenny L.; Deak, Terrence; Cordeiro de Sousa, Maria Bernardete

    2014-01-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to rhythmic and episodic release of adrenal glucocorticoids is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, glucocorticoids regulate behavior, metabolic, cardiovascular, immune, and neuroendocrine activities. In contrast to chronic elevated levels, circadian and acute stress-induced increases in glucocorticoids are necessary for hippocampal neuronal survival and memory acquisition and consolidation, through inhibiting apoptosis, facilitating glutamate transmission and inducing immediate early genes and spine formation. In addition to its metabolic actions leading to increasing energy availability, glucocorticoids have profound effects on feeding behavior, mainly through modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that in addition to the recognized immune suppressive actions of glucocorticoids by counteracting adrenergic proinflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative feedback by glucocorticoids involves multiple mechanisms leading to limiting HPA axis activation and preventing deleterious effects of excessive glucocorticoid production. Adequate glucocorticoid secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin releasing hormone (CRH) and vasopressin secretion, the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving non-genomic actions of glucocorticoids, mediate immediate inhibition of hypothalamic CRH and ACTH secretion, while intermediate and delayed mechanisms mediated by genomic actions involve modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily

  16. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. (National Institutes of Health, Bethesda, MD (United States) Erasmus Univ. of Rotterdam (Netherlands))

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  17. Enabling 4-Lane Based 400 G Client-Side Transmission Links with MultiCAP Modulation

    DEFF Research Database (Denmark)

    Tatarczak, Anna; Iglesias Olmedo, Miguel; Zuo, Tianjian

    2015-01-01

    We propose a uniform solution for a future client-side 400 G Ethernet standard based on MultiCAP advanced modulation format, intensity modulation, and direct detection. It employs 4 local area networks-wavelength division multiplexing (LAN-WDM) lanes in 1300 nm wavelength band and parallel optics...

  18. Simplified flexible-PON upstream transmission using pulse position modulation at ONU and DSP-enabled soft-combining at OLT for adaptive link budgets.

    Science.gov (United States)

    Liu, Xiang; Effenberger, Frank; Chand, Naresh

    2015-03-09

    We demonstrate a flexible modulation and detection scheme for upstream transmission in passive optical networks using pulse position modulation at optical network unit, facilitating burst-mode detection with automatic decision threshold tracking, and DSP-enabled soft-combining at optical line terminal. Adaptive receiver sensitivities of -33.1 dBm, -36.6 dBm and -38.3 dBm at a bit error ratio of 10(-4) are respectively achieved for 2.5 Gb/s, 1.25 Gb/s and 625 Mb/s after transmission over a 20-km standard single-mode fiber without any optical amplification.

  19. Potential significance of physiological and pharmacological glucocorticoids in early pregnancy.

    Science.gov (United States)

    Michael, Anthony E; Papageorghiou, Aris T

    2008-01-01

    Despite extensive studies of the developmental consequences of increased glucocorticoid exposure in mid- to late pregnancy, relatively little is known regarding the significance of glucocorticoids in early pregnancy. The objective of this review was to consider potential roles for this family of corticosteroids that might relate to early pregnancy. Although this is a narrative review, 249 source articles addressing potential effects of glucocorticoids on aspects of early pregnancy and development (published between 1997 and 2007) were identified using a systematic literature search. Additional articles (115) were identified if cited by the primary reference articles identified in the systematic phase of the review. Much of the evidence to implicate glucocorticoids in early pregnancy comes from studies of steroid receptors and the 11beta-hydroxysteroid dehydrogenase enzymes, which modulate cortisol action in the endometrium/decidua, trophoblast, placenta and embryo/fetus. The evidence reviewed suggests that in early pregnancy the actions of glucocorticoids are balanced between positive effects that would promote pregnancy (e.g. stimulation of hCG secretion, suppression of uterine natural killer cells, and promotion of trophoblast growth/invasion) versus adverse effects that would be expected to compromise the pregnancy (e.g. inhibition of cytokine-prostaglandin signalling, restriction of trophoblast invasion following up-regulation of plasminogen activation inhibitor-1, induction of apoptosis, and inhibition of embryonic and placental growth). Glucocorticoids exert many actions that could impact both negatively and positively on key aspects of early pregnancy. These steroids may also be implicated in obstetric complications, including intra-uterine growth restriction, pre-term labour, pre-eclampsia and chorio-aminionitis.

  20. Stress, glucocorticoids and memory: implications for treating fear-related disorders.

    Science.gov (United States)

    de Quervain, Dominique; Schwabe, Lars; Roozendaal, Benno

    2017-01-01

    Glucocorticoid stress hormones are crucially involved in modulating mnemonic processing of emotionally arousing experiences. They enhance the consolidation of new memories, including those that extinguish older memories, but impair the retrieval of information stored in long-term memory. As strong aversive memories lie at the core of several fear-related disorders, including post-traumatic stress disorder and phobias, the memory-modulating properties of glucocorticoids have recently become of considerable translational interest. Clinical trials have provided the first evidence that glucocorticoid-based pharmacotherapies aimed at attenuating aversive memories might be helpful in the treatment of fear-related disorders. Here, we review important advances in the understanding of how glucocorticoids mediate stress effects on memory processes, and discuss the translational potential of these new conceptual insights.

  1. Comparative analysis of ginsenosides in human glucocorticoid receptor binding, transactivation, and transrepression.

    Science.gov (United States)

    Hu, Catherine; Lau, Aik Jiang; Wang, RuiQi; Chang, Thomas K H

    2017-11-15

    Conflicting data exist on the effect of ginsenosides on transactivation of human glucocorticoid receptor α (herein referred to as glucocorticoid receptor), and relatively little is known regarding the effect of these chemicals on transrepression of this receptor. We investigated the effect of 20(S)-protopanaxadiol (PPD), PPD-type ginsenosides (Rb1, Rb2, Rc, Rd, Rh2, and Compound K), 20(S)-protopanaxatriol (PPT), and PPT-type ginsenosides (Re, Rf, Rg1, and Rh1) on glucocorticoid receptor binding, transactivation, and transrepression. Each ginsenoside was less efficacious than dexamethasone (positive control) in binding to the ligand-binding domain of glucocorticoid receptor. Among the ginsenosides investigated, Rh2 had the smallest IC50 value (15 ± 1µM), whereas it was 0.02 ± 0.01µM for dexamethasone. In contrast to dexamethasone, none of the ginsenosides influenced glucocorticoid receptor transactivation or transrepression in LS180 human colorectal adenocarcinoma cells, as assessed in a dual-luciferase reporter gene assay. Rh2 did not affect the endogenous mRNA level of tyrosine aminotransferase (marker for glucocorticoid receptor transactivation) or corticosteroid-binding globulin (marker for glucocorticoid receptor transrepression) in HepG2 human hepatocellular carcinoma cells. This chemical also did not alter the response by a glucocorticoid receptor agonist (dexamethasone or Compound A) in the dual-luciferase reporter gene assay or target gene expression assay. In conclusion, ginsenosides were less efficacious and less potent than dexamethasone in binding to the ligand-binding domain of glucocorticoid receptor. The number of glycosylated groups was associated with a decrease in receptor binding potency. PPD-type and PPT-type ginsenosides are not modulators of glucocorticoid receptor transactivation or transrepression in LS180 and HepG2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Glucocorticoids in pediatrics].

    Science.gov (United States)

    Radmanović, S Z

    1995-06-01

    Glucocorticoids (GCs) are among the most commonly used drugs. They have been employed to treat almost every known disease, from urticaria to leukemia. GCs are so termed because of their action to increase plasma glucose as a result of enhanced hepatic gluconeogenesis, but they play, also, key regulatory roles in a wide variety of physiologic processes. They are essential for survival under stress. GC effect is mediated through receptors localised in cytosol. Receptor-GC complexes bind to hormone response elements in nuclear DNA, affect transcription of genes, either stimulating or inhibiting mRNAs. Proteins so produced (enzymes, hormones) are responsible for the steroid response. There is one type of GC receptor and all GCs will affect all tissues in the same way. At present rational use of GCs falls into two categories: replacement therapy (in Addison's diseasse and in congenital adrenal hyperplasia) and pharmacotherapy, mostly for their anti-inflammatory and immunosuppressive properties, but also to lyse leukemic lymphocytes or to reduce brain edema. GC therapy does not cure the primary disease--it only ameliorates its manifestations and provides time for the body natural defenses to work. After the withdrawal of steroid therapy manifestations of primary process usually return. So, as a result, there is no positive effect on long-term prognosis. Most common indications for prologned high-dose GC therapy are in organ transplantation, tumour chemotherapy, collagen vascular syndromes, ulcerative colitis, nephrotic syndrome and regional enteritis. Asthma, allergic diseases, inflammatory eye diseases and blood dyscrasias are also often treated with GCs. Used in pharmacological doses GCs have a number of adverse side effects. The use of alternate 0 day therapy can decrease most GC side effects (less suppression of hypothalamic-pituitary-adrenal axis, growth inhibition, cushingoid features, infections and myopathy). Discontinuation of long-term therapy is potentially

  3. EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation.

    Science.gov (United States)

    Chen, Hsing-Yu; Wei, Chia-Chien; Lu, I-Cheng; Chen, Yu-Chao; Chu, Hsuan-Hao; Chen, Jyehong

    2014-06-16

    In this study, a technique was developed to compensate for nonlinear distortion through cancelling subcarrier-to-subcarrier intermixing interference (SSII) in an electroabsorption modulator (EAM)-based orthogonal frequency-division multiplexing (OFDM) transmission system. The nonlinear distortion to be compensated for is induced by both EAM nonlinearity and fiber dispersion. Because an OFDM signal features an inherently high peak-to-average power ratio, a trade-off exists between the optical modulation index (OMI) and modulator nonlinearity. Therefore, the nonlinear distortion limits the operational tolerance of the bias voltage and the driving power to a small region. After applying the proposed SSII cancellation, the OMI of an OFDM signal was increased yielding only a small increment of nonlinear distortion, and the tolerance region of the operational conditions was also increased. By employing the proposed scheme, this study successfully demonstrates 50-Gbps OFDM transmission over 100-km dispersion-uncompensated single-mode fiber based on a single 10-GHz EAM.

  4. Molecular mechanisms of glucocorticoid receptor signaling Mecanismos moleculares de señalización del receptor de glucocorticoides

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.Esta revisión destaca los más recientes hallazgos sobre los mecanismos moleculares del receptor de glucocorticoides (GR. La mayoría de los efectos de los glucocorticoides son mediados por los GR intracelulares presentes en casi todos los tejidos y controlan la activación transcripcional por mecanismos directos e indirectos. Las respuestas a los glucocorticoides son específicas para cada gen y tejido. Los GR se asocian en forma selectiva con ligandos producidos en la glándula adrenal, corticosteroides, en respuesta a cambios neuroendocrinos. La interacción del ligando con el GR promueve: a la unión del GR a elementos genómicos de respuesta a glucocorticoides, modulando la transcripción; b la interacción de monómeros del GR con otros factores de transcripción activados por otras vías, llevando a la transrepresión. El GR regula un amplio espectro de funciones fisiológicas, incluyendo la

  5. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    Glucocorticoids are commonly used in treatment of paediatric diseases, but evidence of associated adverse cerebral effects is accumulating. The various pharmacokinetic profiles of the exogenous glucocorticoids and the changes in pharmacodynamics during childhood, result in different exposure...... of nervous tissue to exogenous glucocorticoids. Glucocorticoids activate two types of intracellular receptors, the mineralocorticoid receptor and the glucocorticoid receptor. The two receptors differ in cerebral distribution, affinity and effects. Exogenous glucocorticoids favor activation...... of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids...

  6. Enabling 4-Lane Based 400 G Client-Side Transmission Links with MultiCAP Modulation

    Directory of Open Access Journals (Sweden)

    Anna Tatarczak

    2015-01-01

    Full Text Available We propose a uniform solution for a future client-side 400 G Ethernet standard based on MultiCAP advanced modulation format, intensity modulation, and direct detection. It employs 4 local area networks-wavelength division multiplexing (LAN-WDM lanes in 1300 nm wavelength band and parallel optics links based on vertical cavity surface emitting lasers (VCSELs in 850 nm wavelength band. Total bit rate of 432 Gbps is transmitted over unamplified 20 km standard single mode fiber link and over 40 km link with semiconductor optical amplifier. 70.4 Gb/s transmission over 100 m of OM3 multimode fiber using off-the-shelf 850 nm VCSEL with 10.1 GHz 3 dB bandwidth is demonstrated indicating the feasibility of achieving 100 Gb/s per lane with a single 25 GHz VCSEL. In this review paper we introduce and present in one place the benefits of MultiCAP as versatile scheme for use in a number of client-side scenarios: short range, long range, and extended range.

  7. Glucocorticoid programming of the mesopontine cholinergic system

    Directory of Open Access Journals (Sweden)

    Sónia eBorges

    2013-12-01

    Full Text Available Stress perception, response, adaptation and coping strategies are individually distinct, and the sequel of stress and/or glucocorticoids is also distinct between subjects. In the last years, it has become clear that early life stress is a powerful modulator of neuroendocrine stress-responsive circuits, programming intrinsic susceptibility to stress, and potentiating the appearance of stress-related disorders such as depression, anxiety and addiction. Herein we were interested in understanding how early life experiences reset the normal processing of negative stimuli, leading to emotional dysfunction. Animals prenatally exposed to glucocorticoids (iuGC present hyperanxiety, increased fear behaviour and hyper-reactivity to negative stimuli. In parallel, we found a remarkable increase in the number of aversive 22kHz ultrasonic vocalizations in response to an aversive cue. Considering the suggested role of the mesopontine tegmentum cholinergic pathway, arising from the laterodorsal tegmental nucleus (LDT and pedunculopontine tegmental nucleus (PPT, in the initiation of 22kHz vocalizations and hypothetically in the control of emotional arousal and tone, we decided to evaluate the condition of this circuit in iuGC animals. Notably, in a basal situation, iuGC animals present increased choline acetyltransferase (ChAT expression in the LDT and PPT, but not in other cholinergic nuclei, namely in the nucleus basalis of Meynert. In addition, and in accordance with the amplified response to an adverse stimulus of iuGC animals, we found marked changes in the cholinergic activation pattern of LDT and PPT regions. Altogether, our results suggest a specific cholinergic pathway programing by prenatal GC, and hint that this may be of relevance in setting individuals stress vulnerability threshold.

  8. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens : current questions and tentative answers in rheumatology

    NARCIS (Netherlands)

    Buttgereit, F; da Silva, JAP; Burmester, GR; Cutolo, M; Jacobs, J; Kirwan, J; Kohler, L; van Riel, P; Vischer, T; Bijlsma, JWJ

    In rheumatology and other medical specialties there is a discrepancy between the widespread use and the imprecise designation of glucocorticoid treatment regimens. Verbal descriptions of glucocorticoid treatment regimens used in various phases of diseases vary between countries and institutions.

  9. Hormetic Influence of Glucocorticoids on Human Memory

    OpenAIRE

    Lupien, Sonia J.; Buss, Claudia; Schramek, Tania E.; Maheu, Francoise; Pruessner, Jens

    2005-01-01

    In this paper, we discuss the effects of glucocorticoids on human learning and memory using the recent model of hormesis proposed by Calabrese and collaborators. Although acute increases in glucocorticoids have been shown to impair memory function in humans, other studies report no such impairments or, in contrast, beneficial effects of acute glucocorticoid increases on human memory function. We summarize these studies and assess whether the wealth of data obtained in humans with regard to th...

  10. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  11. Peripheral and Central Glucocorticoid Signaling Contributes to Positive Energy Balance in Rats.

    Science.gov (United States)

    Borba, Tássia Karin; Galindo, Lígia Cristina Monteiro; Ferraz-Pereira, Kelli Nogueira; da Silva Aragão, Raquel; Toscano, Ana Elisa; Guzmán-Quevedo, Omar; Manhães-de-Castro, Raul

    2017-06-01

    The obesity epidemic has been the target of several studies to understand its etiology. The pathophysiological processes that take to obesity generally relate to the rupture of energy balance. This imbalance can result from environmental and/or endogenous events. Among the endogenous events, the hypothalamic-pituitary-adrenal axis, which promotes stress response via glucocorticoid activity, is considered a modulator of energy balance. However, it remains controversial whether the increase in plasma levels of glucocorticoids results in a positive or negative energy balance. Furthermore, there are no studies comparing different routes of administration of glucocorticoids in this context. Here, we investigated the effects of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of a specific agonist for glucocorticoid receptors on food intake and energy expenditure in rats. Sixty-day old rats were treated with i.p. or i.c.v. dexamethasone. Food intake and satiety were evaluated, as well as locomotor activity in order to determine energy expenditure. Both i.p. and i.c.v. dexamethasone increased food intake and decreased energy expenditure. Moreover, i.c.v. dexamethasone delayed the onset of satiety. Together, these results confirm that central glucocorticoid signaling promotes a positive energy balance and supports the role of the glucocorticoid system as the underlying cause of psychological stress-induced obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  12. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  13. Nonlinearities tolerant modulation format enabled Tb/s superchannel transmission over 420 km of unrepeated Raman amplified link

    Science.gov (United States)

    Bilal, Syed Muhammad; Goroshko, Kseniia; Louchet, Hadrien; Koltchanov, Igor; Richter, André

    2017-07-01

    the same transmission distance and capacity. So for practical realization the nonlinearity robust modulation format PM-QPSK using SRO has been identified as the most promising approach for superchannel implementation of unrepeated Raman amplified links.

  14. Nonsteroidal selective glucocorticoid modulators: the effect of C-10 substitution on receptor selectivity and functional potency of 5-allyl-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolines.

    Science.gov (United States)

    Kym, Philip R; Kort, Michael E; Coghlan, Michael J; Moore, Jimmie L; Tang, Rui; Ratajczyk, James D; Larson, Daniel P; Elmore, Steven W; Pratt, John K; Stashko, Michael A; Falls, H Douglass; Lin, Chun W; Nakane, Masake; Miller, Loan; Tyree, Curtis M; Miner, Jeffery N; Jacobson, Peer B; Wilcox, Denise M; Nguyen, Phong; Lane, Benjamin C

    2003-03-13

    The preparation and characterization of a series of C-10 substituted 5-allyl-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolines as a novel class of selective ligands for the glucocorticoid receptor is described. Substitution at the C-10 position of the tetracyclic core with linear, two-atom appendages (OCH(3), OCF(2)H, NHMe, SMe, CH=CH(2), Ctbd1;CH, CH(2)OH) provided molecules of high affinity (K(i) = 2-8 nM) for the human glucocorticoid receptor (hGR) with limited cross-reactivity with other steroid receptors (PR, MR, AR, ER). Optimal analogues showed slightly less potent but highly efficacious E-selectin repression with reduced levels of GRE activation efficacy in reporter gene assays relative to prednisolone. Preliminary SAR of analogues containing substitution at the C-9 and C-10 positions identified the 9-OH, 10-OMe analogue 50 and the 9-OH, 10-Cl analogue 58 as compounds that demonstrated potent, GR-mediated inhibition in a conconavalin A stimulated T-cell proliferation assay in both rodent and human whole blood monocytes. When evaluated for their in vivo effects in carrageenan-induced paw edema in rats, 50, 58, and 10-OCF(2)H analogue 35 showed dose-dependent anti-inflammatory effects (50, ED(50) = 16 mg/kg; 58, ED(50) = 15 mg/kg; 35, ED(50) = 21 mg/kg vs ED(50) = 15 mg/kg for 18 and ED(50) = 4 mg/kg for prednisolone).

  15. Role of Adrenal Glucocorticoid Signaling in Prefrontal Cortex Gene Expression and Acute Behavioral Responses to Ethanol

    Science.gov (United States)

    Costin, Blair N.; Wolen, Aaron R.; Fitting, Sylvia; Shelton, Keith L.; Miles, Michael F.

    2012-01-01

    Background Glucocorticoid hormones modulate acute and chronic behavioral and molecular responses to drugs of abuse including psychostimulants and opioids. There is growing evidence that glucocorticoids might also modulate behavioral responses to ethanol. Acute ethanol activates the HPA axis, causing release of adrenal glucocorticoid hormones. Our prior genomic studies suggest glucocorticoids play a role in regulating gene expression in the prefrontal cortex (PFC) of DBA2/J (D2) mice following acute ethanol administration. However, few studies have analyzed the role of glucocorticoid signaling in behavioral responses to acute ethanol. Such work could be significant, given the predictive value for level of response to acute ethanol in the risk for alcoholism. Methods We studied whether the glucocorticoid receptor (GR) antagonist, RU-486, or adrenalectomy (ADX) altered male D2 mouse behavioral responses to acute (locomotor activation, anxiolysis or loss-of-righting reflex (LORR)) or repeated (sensitization) ethanol treatment. Whole genome microarray analysis and bioinformatics approaches were used to identify PFC candidate genes possibly responsible for altered behavioral responses to ethanol following ADX. Results ADX and RU-486 both impaired acute ethanol (2 g/kg) induced locomotor activation in D2 mice without affecting basal locomotor activity. However, neither ADX nor RU-486 altered initiation of ethanol sensitization (locomotor activation or jump counts), ethanol-induced anxiolysis or LORR. ADX mice showed microarray gene expression changes in PFC that significantly overlapped with acute ethanol-responsive gene sets derived by our prior microarray studies. Q-rtPCR analysis verified that ADX decreased PFC expression of Fkbp5 while significantly increasing Gpr6 expression. In addition, high dose RU-486 pre-treatment blunted ethanol-induced Fkbp5 expression. Conclusions Our studies suggest that ethanol’s activation of adrenal glucocorticoid release and subsequent

  16. Advances in Glucocorticoid-induced Osteoporosis

    NARCIS (Netherlands)

    den Uyl, D.; Bultink, I.E.M.; Lems, W.F.

    2011-01-01

    Glucocorticoid-induced osteoporosis (GIOP) is one of the most important side effects of glucocorticoid use, as it leads to an increased risk of fractures. Recently, many published studies have focused on the cellular and molecular mechanisms of bone metabolism, the pathophysiology of GIOP, and the

  17. Hormetic Influence of Glucocorticoids on Human Memory

    Science.gov (United States)

    Lupien, Sonia J.; Buss, Claudia; Schramek, Tania E.; Maheu, Francoise; Pruessner, Jens

    2005-01-01

    In this paper, we discuss the effects of glucocorticoids on human learning and memory using the recent model of hormesis proposed by Calabrese and collaborators. Although acute increases in glucocorticoids have been shown to impair memory function in humans, other studies report no such impairments or, in contrast, beneficial effects of acute glucocorticoid increases on human memory function. We summarize these studies and assess whether the wealth of data obtained in humans with regard to the effects of acute increase of glucocorticoids on human cognition are in line with a hormetic function. We then discuss several factors that will have to be taken into account in order to confirm the presence of a hormetic function between glucocorticoids and human cognitive performance. PMID:19330155

  18. Glucocorticoids as mediators of developmental programming effects.

    Science.gov (United States)

    Khulan, Batbayar; Drake, Amanda J

    2012-10-01

    Epidemiological evidence suggests that exposure to an adverse environment in early life is associated with an increased risk of cardio-metabolic and behavioral disorders in adulthood, a phenomenon termed 'early life programming'. One major hypothesis for early life programming is fetal glucocorticoid overexposure. In animal studies, prenatal glucocorticoid excess as a consequence of maternal stress or through exogenous administration to the mother or fetus is associated with programming effects on cardiovascular and metabolic systems and on the brain. These effects can be transmitted to subsequent generations. Studies in humans provide some evidence that prenatal glucocorticoid exposure may exert similar programming effects on glucose/insulin homeostasis, blood pressure and neurodevelopment. The mechanisms by which glucocorticoids mediate these effects are unclear but may include a role for epigenetic modifications. This review discusses the evidence for glucocorticoid programming in animal models and in humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Exogenous Cushing's syndrome and glucocorticoid withdrawal.

    Science.gov (United States)

    Hopkins, Rachel L; Leinung, Matthew C

    2005-06-01

    Glucocorticoid therapy in various forms is extremely common for a wide range of inflammatory, autoimmune, and neoplastic disorders. It is therefore important for the physician to be aware of the possibility of both iatrogenic and factitious Cushing's syndrome. Although most common with oral therapy, it is also important to be alert to the fact that all forms of glucocorticoid delivery have the potential to cause Cushing's syndrome. Withdrawal from chronic glucocorticoid therapy presents significant challenges. These include the possibility of adrenal insufficiency after discontinuation of steroid therapy, recurrence of underlying disease as the glucocorticoid is being withdrawn, and the possibility of steroid withdrawal symptoms. Nonetheless, with patience and persistence, a reasonable approach to withdrawal of glucocorticoid therapy can be achieved.

  20. Differential regulation of interleukin-10 (IL-10) and IL-12 by glucocorticoids in vitro

    NARCIS (Netherlands)

    Visser, J.; Boxel-Dezaire, A. van; Methorst, D.; Brunt, T.; Kloet, E.R. de; Nagelkerken, L.

    1998-01-01

    Antigen-presenting cells are thought to modulate the development of Th1 and Th2 cells by the secretion of interleukin-10 (IL-10) and IL-12. Because glucocorticoids (GC) favor the development of Th2 responses, we determined whether dexamethasone (DEX) and hydrocortisone (HC) have differential effects

  1. Inhibition by insulin of glucocorticoid-induced gene transcription: involvement of the ligand-binding domain of the glucocorticoid receptor and independence from the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Pierreux, C E; Ursø, B; De Meyts, P; Rousseau, G G; Lemaigre, F P

    1998-09-01

    Insulin can inhibit the stimulatory effect of glucocorticoid hormones on the transcription of genes coding for enzymes involved in glucose metabolism. We reported earlier that insulin inhibits the glucocorticoid-stimulated transcription of the gene coding for liver 6-phosphofructo-2-kinase (PFK-2). To elucidate the mechanism of these hormonal effects, we have studied the regulatory regions of the PFK-2 gene in transfection experiments. We found that both glucocorticoids and insulin act via the glucocorticoid response unit (GRU) located in the first intron. Footprinting experiments showed that the GRU binds not only the glucocorticoid receptor (GR), but also ubiquitous [nuclear factor I (NF-I)] and liver-enriched [hepatocyte nuclear factor (HNF)-3, HNF-6, CAAT/enhancer binding protein (C/EBP)] transcription factors. Site-directed mutational analysis of the GRU revealed that these factors modulate glucocorticoid action but that none of them seems to be individually involved in the inhibitory effect of insulin. We did not find an insulin response element in the GRU, but we showed that insulin targets the GR. Insulin-induced inhibition of the glucocorticoid stimulation required the ligand-binding domain of the GR. Finally, the insulin-signaling cascade involved was independent of the phosphatidylinositol-3-kinase and mitogen-activated protein kinase pathways. Together, these results suggest that insulin acts on the PFK-2 gene via another pathway and targets either the GR in its ligand-binding domain or a cofactor interacting with this domain.

  2. Antenatal glucocorticoid treatment and polymorphisms of the glucocorticoid and mineralocorticoid receptors are associated with IQ and behavior in young adults born very preterm

    NARCIS (Netherlands)

    Voorn, B. van der; Pal, S.M. van der; Rotteveel, J.; Finken, M.J.

    2015-01-01

    Context: Preterm survivors exhibit neurodevelopmental impairments. Whether this association is influenced by antenatal glucocorticoid treatment and glucocorticoid sensitivity is unknown. Objectives: To study the effects of antenatal glucocorticoid treatment and glucocorticoid receptor (GR) and

  3. Timing of glucocorticoid therapy for liver failure

    Directory of Open Access Journals (Sweden)

    MENG Qinghua

    2017-09-01

    Full Text Available There are still controversies over the use of glucocorticoids in the treatment of liver failure, and current guidelines for liver failure recommend that glucocorticoids should be used with great caution. However, some latest studies have shown that the use of glucocorticoid therapy in the early stage of liver failure can bring more benefits to patients. Age, disease progression rate and severity, and complications of liver failure may affect the treatment outcome. Further studies are still needed for the selection of right patients, drugs and dose, and treatment timing.

  4. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Science.gov (United States)

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  5. Electroconvulsive stimulations normalizes stress-induced changes in the glucocorticoid receptor and behaviour

    DEFF Research Database (Denmark)

    Hageman, Ida; Nielsen, Marianne; Wörtwein, Gitta

    2009-01-01

    Animal models of chronic stress, such as 21 days of 6h/daily restraint stress cause changes in neuronal morphology in the hippocampus and alter behaviour. These changes are partly mediated by the glucocorticoids. The objective of this study was threefold: (1) to study how this particular chronic...... stress paradigm influences expression of hippocampal glucocorticoid receptor mRNA, (2) to study the effect of previous repeated restraint stress on the behaviours executed in the forced swim test (FST) (e.g. a novel inescapable stress situation) and (3) to investigate the modulating effect...... of electroconvulsive stimulations (ECS) on the neural and behavioural effects of the stress paradigm. The study shows that restraint stress lowered glucocorticoid receptor mRNA levels in all hippocampal regions, including the CA3 region which is the site of the characteristic dendritic reorganization seen...

  6. Glucocorticoids are ineffective in alcoholic hepatitis

    DEFF Research Database (Denmark)

    Christensen, E; Gluud, C

    1995-01-01

    The aim of this study was to perform a meta-analysis of controlled clinical trials of glucocorticoid treatment in clinical alcoholic hepatitis, adjusting for prognostic variables and their possible interaction with therapy, because these trials have given appreciably different results. Weighted...... may be different (beneficial or harmful) in special patient subgroups. These results do not support the routine use of glucocorticoids in patients with alcoholic hepatitis, including those with encephalopathy. Whether other subgroups may benefit needs further investigation using the individual patient...

  7. New Method For Modeling and Design Optical SDM Transmission System Using Long Haul FMF with PDM/DWDM Techniques Enabling QPSK Modulation Format

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdullah

    2017-07-01

    Full Text Available This paper presents the modeling and design of ultra high capacity Space Division Multiplexing (SDM transmission system. Polarization Division Multiplexing (PDM and Dense Wavelength Division Multiplexing (DWDM techniques are also proposed in this system to increase total system data rate. For the ultra-high capacity need of SDM, Few Mode Fiber (FMF was proposed as SDM best technology for obtaining ultra-high bit rates with long haul transmission. The description and design of 8-DWDM channels over 7 modes SDM/PDM system was explored as future of ultra-high capacity optical network. A long-haul transmission of 1080 Km recorded for 8-WDM channels-7modes-SDM/PDM system by using QPSK modulation format. The total bit rate achieved by our designed system is 4.48 Tb/s at 40Gb/s. Channel estimation techniques were proposed to enable the transmitter pre-shaping design for the linear effects mitigation by using different DSP algorithms. The presence of linear and nonlinear losses limits the acceptable range of input power that produce the required BER for our proposed system from -4dBm to 4dBm.

  8. Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex.

    Science.gov (United States)

    Lew, Sergio E; Tseng, Kuei Y

    2014-12-01

    Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine-GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons.

  9. Glucocorticoids and fetal programming part 2: Mechanisms.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    The lifelong health of an individual is shaped during critical periods of development. The fetus is particularly susceptible to internal and external stimuli, many of which can alter developmental trajectories and subsequent susceptibility to disease. Glucocorticoids are critical in normal development of the fetus, as they are involved in the growth and maturation of many organ systems. The surge in fetal glucocorticoid levels that occurs in most mammalian species over the last few days of pregnancy is an important developmental switch leading to fundamental changes in gene regulation in many organs, including the brain. These changes are important for the transition to postnatal life. Exposure of the fetus to increased levels of glucocorticoids, resulting from maternal stress or treatment with synthetic glucocorticoids, can lead to long-term 'programming' of hypothalamic-pituitary-adrenal function and behaviours. Glucocorticoids act at multiple levels within the fetal brain. Growing evidence indicates that they can exert powerful effects on the epigenome, including on DNA methylation, histone acetylation and microRNA, to influence gene expression. Such influences probably represent a critical component of the 'programming' process, and might be partly responsible for the transgenerational effects of antenatal glucocorticoid exposure on neurologic, cardiovascular and metabolic function.

  10. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation.

    Science.gov (United States)

    Ko, Jih-Yang; Chuang, Pei-Chin; Ke, Huei-Jin; Chen, Yu-Shan; Sun, Yi-Chih; Wang, Feng-Sheng

    2015-12-01

    Glucocorticoid treatment reportedly increases the morbidity of osteoporotic or osteonecrotic disorders. Exacerbated bone acquisition and escalated marrow adipogenesis are prominent pathological features of glucocorticoid-mediated skeletal disorders. MicroRNAs reportedly modulate tissue metabolism and remodeling. This study was undertaken to investigate the biological roles of microRNA-29a (miR-29a) in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Transgenic mice overexpressing miR-29a precursor or wild-type mice were given methylprednisolone. Bone mass, microarchitecture and histology were assessed by dual energy X-ray absorptiometry, μCT and histomorphometry. Differential gene expression and signaling components were delineated by quantitative RT-PCR and immunoblotting. Glucocorticoid treatment accelerated bone loss and marrow fat accumulation in association with decreased miR-29a expression. The miR-29a transgenic mice had high bone mineral density, trabecular microarchitecture and cortical thickness. miR-29a overexpression mitigated the glucocorticoid-induced impediment of bone mass, skeletal microstructure integrity and mineralization reaction and attenuated fatty marrow histopathology. Ex vivo, miR-29a increased osteogenic differentiation capacity and alleviated the glucocorticoid-induced promotion of adipocyte formation in primary bone-marrow mesenchymal progenitor cell cultures. Through inhibition of histone deacetylase 4 (HDAC4) expression, miR-29a restored acetylated Runx2 and β-catenin abundances and reduced RANKL, leptin and glucocorticoid receptor expression in glucocorticoid-mediated osteoporosis bone tissues. Taken together, glucocorticoid suppression of miR-29a signaling disturbed the balances between osteogenic and adipogenic activities, and thereby interrupted bone formation and skeletal homeostasis. miR-29a inhibition of HDAC4 stabilized the acetylation state of Runx2 and β-catenin that ameliorated the

  11. Impact of Stress and Glucocorticoids on Schema-Based Learning.

    Science.gov (United States)

    Kluen, Lisa Marieke; Nixon, Patricia; Agorastos, Agorastos; Wiedemann, Klaus; Schwabe, Lars

    2017-05-01

    Pre-existing knowledge, a 'schema', facilitates the encoding, consolidation, and retrieval of schema-relevant information. Such schema-based memory is key to every form of education and provides intriguing insights into the integration of new information and prior knowledge. Stress is known to have a critical impact on memory processes, mainly through the action of glucocorticoids and catecholamines. However, whether stress and these major stress mediators affect schema-based learning is completely unknown. To address this question, we performed two experiments, in which participants acquired a schema on day 1 and learned schema-related as well as schema-unrelated information on day 2. In the first experiment, participants underwent a stress or control manipulation either immediately or about 25 min before schema-based memory testing. The second experiment tested whether glucocorticoid and/or noradrenergic activation is sufficient to modulate schema-based memory. To this end, participants received orally a placebo, hydrocortisone, the α2-adrenoceptor-antagonist yohimbine, leading to increased noradrenergic stimulation, or both drugs, before completing the schema-based memory test. Our data indicate that stress, irrespective of the exact timing of the stress exposure, impaired schema-based learning, while leaving learning of schema-unrelated information intact. A very similar effect was obtained after hydrocortisone, but not yohimbine, administration. These data show that stress disrupts participants' ability to benefit from prior knowledge during learning and that glucocorticoid activation is sufficient to produce this effect. Our findings provide novel insights into the impact of stress and stress hormones on the dynamics of human memory and have important practical implications, specifically for educational contexts.

  12. Glucocorticoid Regulation of Food-Choice Behavior in Humans: Evidence from Cushing's Syndrome.

    Science.gov (United States)

    Moeller, Scott J; Couto, Lizette; Cohen, Vanessa; Lalazar, Yelena; Makotkine, Iouri; Williams, Nia; Yehuda, Rachel; Goldstein, Rita Z; Geer, Eliza B

    2016-01-01

    The mechanisms by which glucocorticoids regulate food intake and resulting body mass in humans are not well-understood. One potential mechanism could involve modulation of reward processing, but human stress models examining effects of glucocorticoids on behavior contain important confounds. Here, we studied individuals with Cushing's syndrome, a rare endocrine disorder characterized by chronic excess endogenous glucocorticoids. Twenty-three patients with Cushing's syndrome (13 with active disease; 10 with disease in remission) and 15 controls with a comparably high body mass index (BMI) completed two simulated food-choice tasks (one with "explicit" task contingencies and one with "probabilistic" task contingencies), during which they indicated their objective preference for viewing high calorie food images vs. standardized pleasant, unpleasant, and neutral images. All participants also completed measures of food craving, and approximately half of the participants provided 24-h urine samples for assessment of cortisol and cortisone concentrations. Results showed that on the explicit task (but not the probabilistic task), participants with active Cushing's syndrome made fewer food-related choices than participants with Cushing's syndrome in remission, who in turn made fewer food-related choices than overweight controls. Corroborating this group effect, higher urine cortisone was negatively correlated with food-related choice in the subsample of all participants for whom these data were available. On the probabilistic task, despite a lack of group differences, higher food-related choice correlated with higher state and trait food craving in active Cushing's patients. Taken together, relative to overweight controls, Cushing's patients, particularly those with active disease, displayed a reduced vigor of responding for food rewards that was presumably attributable to glucocorticoid abnormalities. Beyond Cushing's, these results may have relevance for elucidating

  13. Glucocorticoids and the regulation of memory in health and disease

    NARCIS (Netherlands)

    de Quervain, Dominique J. -F; Aerni, Amanda; Schelling, Gustav; Roozendaal, Benno

    Over the last decades considerable evidence has accumulated indicating that glucocorticoids - stress hormones released from the adrenal cortex - are crucially involved in the regulation of memory. Specifically, glucocorticoids have been shown to enhance memory consolidation of emotionally arousing

  14. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects

    NARCIS (Netherlands)

    Judd, L.L.; Schettler, P.J.; Brown, E.S.; Wolkowitz, O.M.; Sternberg, E.M.; Bender, B.G.; Bulloch, K.; Cidlowski, J.A.; Kloet, E.R. de; Fardet, L.; Joels, M.; Leung, D.Y.; McEwen, B.S.; Roozendaal, B.; Rossum, E.F. van; Ahn, J.; Brown, D.W.; Plitt, A.; Singh, G.

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  15. Glucocorticoid Receptors and the Pattern of Steroid Response in ...

    African Journals Online (AJOL)

    CD3+) expression of glucocorticoid receptors (GCR) and the response to glucocorticoid treatment in children with idiopathic nephrotic syndrome (NS). The aim of the current study is to determine whether steroid responsiveness is dependent on ...

  16. Adverse Consequences of Glucocorticoid Medication : Psychological, Cognitive, and Behavioral Effects

    NARCIS (Netherlands)

    Judd, Lewis L.; Schettler, Pamela J.; Brown, E. Sherwood; Wolkowitz, Owen M.; Sternberg, Esther M.; Bender, Bruce G.; Bulloch, Karen; Cidlowski, John A.; de Kloet, E. Ronald; Fardet, Laurence; Joëls, Marian; Leung, Donald Y. M.; McEwen, Bruce S.; Roozendaal, Benno; Van Rossum, Elisabeth F. C.; Ahn, Junyoung; Brown, David W.; Plitt, Aaron; Singh, Gagandeep

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  17. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis

    Directory of Open Access Journals (Sweden)

    Yiyun Lou

    2016-08-01

    Full Text Available The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1 is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC, voltage-gated sodium channel (Nav1.5, sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3, sodium-chloride symporter (NCC, and sodium-potassium-chloride cotransporter 2 (NKCC2; as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase and type A natriuretic peptide receptor (NPR-A. Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.

  18. The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: Dependence on the basolateral amygdala

    Science.gov (United States)

    Roozendaal, Benno; Griffith, Qyana K.; Buranday, Jason; de Quervain, Dominique J.-F.; McGaugh, James L.

    2003-01-01

    Previous studies have indicated that stress-activated glucocorticoid hormones induce temporary memory retrieval impairment. The present study examined whether adrenal steroid receptors in the hippocampus mediate such glucocorticoid effects on spatial memory retrieval. The specific glucocorticoid receptor (GR) agonist 11β, 17β-dihydroxy-6,21-dimethyl-17α-pregna-4,6-trien-20yn-3-one (RU 28362; 5 or 15 ng) infused into the hippocampus of male Sprague–Dawley rats 60 min before water-maze retention testing, 24 h after training, dose-dependently impaired probe-trial retention performance, as assessed both by time spent in the training quadrant and initial latency to cross the platform location. The GR agonist did not affect circulating corticosterone levels immediately after the probe trial, indicating that RU 28362 infusions did not influence retention by altering glucocorticoid feedback mechanisms. As infusions of the GR agonist into the hippocampus 60 min before training did not influence water-maze acquisition or immediate recall, the findings indicated that the GR agonist-induced retention impairment was induced selectively by an influence on information retrieval. In contrast, pretest infusions of the GR agonist administered into the basolateral complex of the amygdala (BLA; 2 or 6 ng) did not alter retention performance in the water maze. However, N-methyl-d-aspartate-induced lesions of the BLA, made 1 week before training, blocked the memory retrieval impairment induced by intrahippocampal infusions of RU 28362 given 60 min before the retention test. These findings indicate that the effects of glucocorticoids on retrieval of long-term spatial memory depend on the hippocampus and, additionally, that neuronal input from the BLA is critical in enabling hippocampal glucocorticoid effects on memory retrieval. PMID:12538851

  19. Glucocorticoids and fetal programming part 1: Outcomes.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic-pituitary-adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.

  20. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system.......Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  1. Glucocorticoid receptor haplotype and metabolic syndrome : the Lifelines cohort study

    NARCIS (Netherlands)

    Wester, Vincent L.; Koper, Jan W.; van den Akker, Erica L. T.; Franco, Oscar H.; Stolk, Ronald P.; van Rossum, Elisabeth F. C.

    2016-01-01

    Objective: An excess of glucocorticoids (Cushing's syndrome) is associated with metabolic syndrome (MetS) features. Several single-nucleotide polymorphisms (SNPs) in the glucocorticoid receptor (GR) gene influence sensitivity to glucocorticoids and have been associated with aspects of MetS. However,

  2. Perinatal glucocorticoid treatment and perspectives for antioxidat therapy

    NARCIS (Netherlands)

    Tijsseling, D.|info:eu-repo/dai/nl/338666885

    2014-01-01

    Pre- and postnatal glucocorticoids are a life-saving therapy for prematurely born infants. However, glucocorticoids also trigger unwanted side effects. In part I we investigated the effects of antenatal glucocorticoids on hippocampal development. First in a mice model using a clinically relevant

  3. Glucocorticoid Regulation of the Vitamin D Receptor

    Science.gov (United States)

    Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752

  4. Glucocorticoid receptor knockdown and adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Hooijdonk, Leonarda Wilhelmina Antonia van

    2010-01-01

    The research in this thesis is aimed at the elucidation of the role of the glucocorticoid receptor (GR) in hippocampal neuroplasticity and functioning. To achieve this, we have developed a novel method to specifically knockdown GR in a discrete cell population of the mouse brain. In this thesis I

  5. Bisphosphonates and glucocorticoid-induced osteoporosis: cons

    NARCIS (Netherlands)

    Lems, W.F.; Saag, K.

    2015-01-01

    During the use of glucocorticoids (GCs), both vertebral and nonvertebral fracture risk are increased, due to the direct and indirect negative effects of GCs on bone, muscles, and the activity of the underlying inflammatory diseases. Inhibition of bone formation and increased apoptosis of osteocytes

  6. Retinoids enhance glucocorticoid-induced apoptosis of T cells by facilitating glucocorticoid receptor-mediated transcription

    Science.gov (United States)

    Tóth, K; Sarang, Z; Scholtz, B; Brázda, P; Ghyselinck, N; Chambon, P; Fésüs, L; Szondy, Z

    2011-01-01

    Glucocorticoid-induced apoptosis of thymocytes is one of the first recognized forms of programmed cell death. It was shown to require gene activation induced by the glucocorticoid receptor (GR) translocated into the nucleus following ligand binding. In addition, the necessity of the glucocorticoid-induced, but transcription-independent phosphorylation of phosphatidylinositol-specific phospholipase C (PI-PLC) has also been shown. Here we report that retinoic acids, physiological ligands for the nuclear retinoid receptors, enhance glucocorticoid-induced death of mouse thymocytes both in vitro and in vivo. The effect is mediated by retinoic acid receptor (RAR) alpha/retinoid X receptor (RXR) heterodimers, and occurs when both RARα and RXR are ligated by retinoic acids. We show that the ligated RARα/RXR interacts with the ligated GR, resulting in an enhanced transcriptional activity of the GR. The mechanism through which this interaction promotes GR-mediated transcription does not require DNA binding of the retinoid receptors and does not alter the phosphorylation status of Ser232, known to regulate the transcriptional activity of GR. Phosphorylation of PI-PLC was not affected. Besides thymocytes, retinoids also promoted glucocorticoid-induced apoptosis of various T-cell lines, suggesting that they could be used in the therapy of glucocorticoid-sensitive T-cell malignancies. PMID:21072052

  7. Actions of PPARgamma agonism on adipose tissue remodeling, insulin sensitivity, and lipemia in absence of glucocorticoids.

    Science.gov (United States)

    Berthiaume, Magalie; Sell, Henrike; Lalonde, Josée; Gélinas, Yves; Tchernof, André; Richard, Denis; Deshaies, Yves

    2004-11-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists improve insulin sensitivity and lipemia partly through enhancing adipose tissue proliferation and capacity for lipid retention. The agonists also reduce local adipose glucocorticoid production, which may in turn contribute to their metabolic actions. This study assessed the effects of a PPARgamma agonist in the absence of glucocorticoids (adrenalectomy, ADX). Intact, ADX, and intact pair-fed (PF) rats were treated with the PPARgamma agonist rosiglitazone (RSG) for 2 wk. RSG increased inguinal (subcutaneous) white (50%) and brown adipose tissue (6-fold) weight but not that of retroperitoneal (visceral) white adipose tissue. ADX but not PF reduced fat accretion in both inguinal and retroperitoneal adipose depots but did not affect brown adipose mass. RSG no longer increased inguinal weight in ADX and PF rats but increased brown adipose mass, albeit less so than in intact rats. RSG increased cell proliferation in white (3-fold) and brown adipose tissue (6-fold), as assessed microscopically and by total DNA, an effect that was attenuated but not abrogated by ADX. RSG reduced the expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) in all adipose depots. RSG improved insulin sensitivity (reduction in fasting insulin and homeostasis model assessment of insulin resistance, both -50%) and triacylglycerolemia (-75%) regardless of the glucocorticoid status, these effects being fully additive to those of ADX and PF. In conclusion, RSG partially retained its ability to induce white and brown adipose cell proliferation and brown adipose fat accretion and further improved insulin sensitivity and lipemia in ADX rats, such effects being therefore independent from the PPARgamma-mediated modulation of glucocorticoids. Copyright 2004 American Physiological Society

  8. Differential action of glucocorticoids on apolipoprotein E gene expression in macrophages and hepatocytes.

    Directory of Open Access Journals (Sweden)

    Violeta Georgeta Trusca

    Full Text Available Apolipoprotein E (apoE has anti-atherosclerotic properties, being involved in the transport and clearance of cholesterol-rich lipoproteins as well as in cholesterol efflux from cells. We hypothesized that glucocorticoids may exert anti-inflammatory properties by increasing the level of macrophage-derived apoE. Our data showed that glucocorticoids increased apoE expression in macrophages in vitro as well as in vivo. Dexamethasone increased ~6 fold apoE mRNA levels in cultured peritoneal macrophages and RAW 264.7 cells. Administered to C57BL/6J mice, dexamethasone induced a two-fold increase in apoE expression in peritoneal macrophages. By contrast, glucocorticoids did not influence apoE expression in hepatocytes, in vitro and in vivo. Moreover, dexamethasone enhanced apoE promoter transcriptional activity in RAW 264.7 macrophages, but not in HepG2 cells, as tested by transient transfections. Analysis of apoE proximal promoter deletion mutants, complemented by protein-DNA interaction assays demonstrated the functionality of a putative glucocorticoid receptors (GR binding site predicted by in silico analysis in the -111/-104 region of the human apoE promoter. In hepatocytes, GR can bind to their specific site within apoE promoter but are not able to modulate the gene expression. The modulatory blockade in hepatocytes is a consequence of partial involvement of transcription factors and other signaling molecules activated through MEK1/2 and PLA2/PLC pathways. In conclusion, our study indicates that glucocorticoids (1 differentially target apoE gene expression; (2 induce a significant increase in apoE level specifically in macrophages. The local increase of apoE gene expression in macrophages at the level of the atheromatous plaque may have therapeutic implications in atherosclerosis.

  9. Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Benjamin D Weger

    2016-12-01

    Full Text Available Altered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism.

  10. Enabling Junction Temperature Estimation via Collector-Side Thermo-Sensitive Electrical Parameters through Emitter Stray Inductance in High-Power IGBT Modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Li, Wuhua; Iannuzzo, Francesco

    2017-01-01

    This paper proposes the adoption of the inherent emitter stray inductance LeE in high-power insulated gate bipolar transistor (IGBT) modules as a new dynamic thermo-sensitive electrical parameter (d-TSEP). Furthermore, a family of 14 derived dynamic TSEP candidates has been extracted and classified...

  11. Epidural glucocorticoid use for vertebrogenic pain

    Directory of Open Access Journals (Sweden)

    M.V. Churyukanov

    2014-01-01

    Full Text Available The literature review deals with the use of glucocorticoids (GC for nonspecific vertebrogenic pain and radiculopathy. The pathophysiology of radiculopathy and the role of mechanical and chemical components in the development of pain syndrome are discussed. The data of clinical trials analyzing the efficiency of epidural GC use, as well as possible indications for this therapy and its adverse reactions are under consideration. The available concepts of the analgesic effect of epidural CG are discussed.

  12. Management of glucocorticoids-induced osteoporosis: role of teriparatide

    Directory of Open Access Journals (Sweden)

    Silvia Migliaccio

    2009-04-01

    Full Text Available Silvia Migliaccio1, Marina Brama1, Nazzarena Malavolta21Dipartimento di Fisiopatologia Medica, Policlinico Umberto I, Università degli Studi Sapienza di Roma, Italy; 2Dipartimento di Medicina Interna, Policlinico S Orsola Malpighi, Bologna, ItalyAbstract: Glucocorticoids (GC-induced osteoporosis (GIOP is the most common cause of secondary osteoporosis, which leads to an increased fracture risk in patients. The normal bone turnover depends on a balance between osteoblasts and osteoclasts activity and GC can cause a rapid bone loss, decreasing bone formation and increasing bone resorption. The decreased bone formation is mainly due to the GC-induced apoptosis of both osteoblasts and osteocytes, while the increased bone resorption is due to the increased life-span of pre-existing osteoclasts. Bisphosphonates are clearly effective in preventing and treating GIOP but anabolic therapeutic strategies are the new promising therapeutic alternative. Experimental and clinical studies indicate that teriparatide, the active (1–34 parathyroid hormone (PTH molecule, is efficacious for the treatment of GIOP, being able to induce an increase in bone mass in these patients. Intermittent administration of human PTH (1–34 stimulates bone formation by increasing osteoblast number. Additionally, human PTH (1–34 modulates the level and/or activity of locally produced growth factors and cytokines. Teriparatide has been demonstrated in several clinical studies to significantly decrease the incidence of fractures in patients affected by GIOP. It has recently received an indication for GIOP and its label indication has also been expanded.Keywords: glucocorticoids, osteoblasts, osteoclasts, osteoporosis, teriparatide

  13. Biochemical endpoints of glucocorticoid hormone action

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Nicholson, M.L.; Guyette, W.A.; Giddings, S.J.; Mendelsohn, S.L.; Nordeen, S.K.; Lyons, R.T.

    1978-01-01

    Both the rapidly evolving metabolic effects of glucocorticoids and the more slowly developing lethal actions appear to be initiated via the synthesis of new mRNAs and proteins. The chronic suppression of cell growth may be the consequence of suppression of overall rates of protein synthesis (and probably RNA and DNA synthesis as well) that in turn may represent the cellular response to the small changes in ratios of adenine nucleotides that result from the suppression of oxidative ATP production. The inhibition of glucose transport may also play a role here to prevent a compensatory increase in glycolytic ATP production. Some other hormone actions, the decrease in the ability of cells to concentrate AIB and the increase in nuclear fragility are unrelated to, and evolve separately from, the hormonal inhibitions on energy production. Cell killing is not the result of suppression of protein synthesis, nor of hormone-induced increases in calcium uptake. While the mechanisms are unknown, the increase in nuclear fragility appears to be the earliest measure of their operation. In tumor cells resistance to lethal actions of glucocorticoids may emerge via the selection of cells with hardier membranes, that are better able to withstand the intracellular destructive events set in motion by high levels of glucocorticoids.

  14. Low-stress and high-stress singing have contrasting effects on glucocorticoid response

    Directory of Open Access Journals (Sweden)

    Daisy eFancourt

    2015-09-01

    Full Text Available Performing music in public is widely recognised as a potentially stress-inducing activity. However, despite the interest in music performance as an acute psychosocial stressor, there has been relatively little research on the effects of public performance on the endocrine system. This study examined the impact of singing in a low-stress performance situation and a high-stress live concert on levels of glucocorticoids (cortisol and cortisone in 15 professional singers. The results showed a significant decrease in both cortisol and cortisone across the low-stress condition, suggesting that singing in itself is a stress-reducing (and possibly health-promoting activity, but significant increases across the high-stress condition. This is the first study to demonstrate that singing affects glucocorticoid responses and that these responses are modulated by the conditions of performance.

  15. The glucocorticoid receptor: a revisited target for toxins.

    Science.gov (United States)

    Marketon, Jeanette I Webster; Sternberg, Esther M

    2010-06-01

    The hypothalamic-pituitary-adrenal (HPA) axis activation and glucocorticoid responses are critical for survival from a number of bacterial, viral and toxic insults, demonstrated by the fact that removal of the HPA axis or GR blockade enhances mortality rates. Replacement with synthetic glucocorticoids reverses these effects by providing protection against lethal effects. Glucocorticoid resistance/insensitivity is a common problem in the treatment of many diseases. Much research has focused on the molecular mechanism behind this resistance, but an area that has been neglected is the role of infectious agents and toxins. We have recently shown that the anthrax lethal toxin is able to repress glucocorticoid receptor function. Data suggesting that the glucocorticoid receptor may be a target for a variety of toxins is reviewed here. These studies have important implications for glucocorticoid therapy.

  16. The Glucocorticoid Receptor: A Revisited Target for Toxins

    Directory of Open Access Journals (Sweden)

    Jeanette I. Webster Marketon

    2010-06-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis activation and glucocorticoid responses are critical for survival from a number of bacterial, viral and toxic insults, demonstrated by the fact that removal of the HPA axis or GR blockade enhances mortality rates. Replacement with synthetic glucocorticoids reverses these effects by providing protection against lethal effects. Glucocorticoid resistance/insensitivity is a common problem in the treatment of many diseases. Much research has focused on the molecular mechanism behind this resistance, but an area that has been neglected is the role of infectious agents and toxins. We have recently shown that the anthrax lethal toxin is able to repress glucocorticoid receptor function. Data suggesting that the glucocorticoid receptor may be a target for a variety of toxins is reviewed here. These studies have important implications for glucocorticoid therapy.

  17. Glucocorticoid receptor action in metabolic and neuronal function [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Michael J. Garabedian

    2017-07-01

    Full Text Available Glucocorticoids via the glucocorticoid receptor (GR have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using in vitro and cell culture–based approaches, how GR responds to changes in external signals in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.

  18. Perioperative glucocorticoids in hip and knee surgery - benefit vs. harm?

    DEFF Research Database (Denmark)

    Lunn, T H; Kehlet, H

    2013-01-01

    Glucocorticoids are frequently used to prevent post-operative nausea and vomiting (PONV), and may be part of multimodal analgesic regimes. The objective of this review was to evaluate the overall benefit vs. harm of perioperative glucocorticoids in patients undergoing hip or knee surgery. A wide......-analysis was performed. In conclusion, in addition to PONV reduction with low-dose systemic glucocorticoid, this review supports high-dose systemic glucocorticoid to ameliorate post-operative pain after hip and knee surgery. However, large-scale safety and dose-finding studies are warranted before final recommendations....

  19. Why glucocorticoid withdrawal may sometimes be as dangerous as the treatment itself

    DEFF Research Database (Denmark)

    Dinsen, Stina; Baslund, Bo; Klose, Marianne

    2013-01-01

    Glucocorticoid therapy is widely used, but withdrawal from glucocorticoids comes with a potential life-threatening risk of adrenal insufficiency. Recent case reports document that adrenal crisis after glucocorticoid withdrawal remains a serious problem in clinical practice. Partly due to difficul......Glucocorticoid therapy is widely used, but withdrawal from glucocorticoids comes with a potential life-threatening risk of adrenal insufficiency. Recent case reports document that adrenal crisis after glucocorticoid withdrawal remains a serious problem in clinical practice. Partly due...

  20. The Regulation of Muscle Mass by Endogenous Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Daniel L Marks

    2015-02-01

    Full Text Available Glucocorticoids are highly conserved fundamental regulators of energy homeostasis. In response to stress in the form of perceived danger or acute inflammation, glucocorticoids are released from the adrenal gland, rapidly mobilizing energy from carbohydrate, fat and protein stores. In the case of inflammation, mobilized protein is critical for the rapid synthesis of acute phase reactants and an efficient immune response to infection. While adaptive in response to infection, chronic mobilization can lead to a p rofound depletion of energy stores. Skeletal muscle represents the major body store of protein, and can become substantially atrophied under conditions of chronic inflammation. Glucocorticoids elicit the atrophy of muscle by increasing the rate of protein degradation by the ubiquitin-proteasome system and autophagy lysosome system. Protein synthesis is also suppressed at the level of translational initiation, preventing the production of new myofibrillar protein. Glucocorticoids also antagonize the action of anabolic regulators such as insulin further exacerbating the loss of protein and muscle mass. The loss of muscle mass in the context of chronic disease is a key feature of cachexia and contributes substantially to morbidity and mortality. A growing body of evidence demonstrates that glucocorticoid signaling is a common mediator of wasting, irrespective of the underlying initiator or disease state. This review will highlight fundamental mechanisms of glucocorticoid signaling and detail the mechanisms of glucocorticoid-induced muscle atrophy. Additionally, the evidence for glucocorticoids as a driver of muscle wasting in numerous disease states will be discussed. Given the burden of wasting diseases and the nodal nature of glucocorticoid signaling, effective anti-glucocorticoid therapy would be a valuable clinical tool. Therefore, the progress and potential pitfalls in the development of glucocorticoid antagonists for muscle wasting will

  1. Glucocorticoid regulation of food-choice behavior in humans: Evidence from Cushing’s syndrome

    Directory of Open Access Journals (Sweden)

    Scott J Moeller

    2016-02-01

    Full Text Available The mechanisms by which glucocorticoids regulate food intake and resulting body mass in humans are not well-understood. One potential mechanism could involve modulation of reward processing, but human stress models examining effects of glucocorticoids on behavior contain important confounds. Here, we studied individuals with Cushing’s syndrome, a rare endocrine disorder characterized by chronic excess endogenous glucocorticoids. Twenty-three patients with Cushing’s syndrome (13 with active disease; 10 with disease in remission and 15 controls with a comparably high body mass index completed two simulated food-choice tasks (one with ‘explicit’ task contingencies and one with ‘probabilistic’ task contingencies, during which they indicated their objective preference for viewing high calorie food images versus standardized pleasant, unpleasant, and neutral images. All participants also completed measures of food craving, and approximately half of the participants provided 24-hour urine samples for assessment of cortisol and cortisone concentrations. Results showed that on the explicit task (but not the probabilistic task, participants with active Cushing’s syndrome made fewer food-related choices than participants with Cushing’s syndrome in remission, who in turn made fewer food-related choices than overweight controls. Corroborating this group effect, higher urine cortisone was negatively correlated with food-related choice in the subsample of all participants for whom these data were available. On the probabilistic task, despite a lack of group differences, higher food-related choice correlated with higher state and trait food craving in active Cushing’s patients. Taken together, relative to overweight controls, Cushing’s patients, particularly those with active disease, displayed a reduced vigor of responding for food rewards that was presumably attributable to glucocorticoid abnormalities. Beyond Cushing’s, these results

  2. Chromatin Architecture Defines the Glucocorticoid Response

    Science.gov (United States)

    Burd, Craig J.; Archer, Trevor K.

    2013-01-01

    The glucocorticoid receptor (GR) functions to regulate a wide group of physiological processes through hormone inducible interaction with genomic loci and subsequent manipulation of the transcriptional output of target genes. Despite expression in a wide variety of tissues, the GR has diverse roles that are regulated tightly in a cell type specific manner. With the advent of whole genome approaches, the details of that diversity and the mechanisms regulating them are beginning to be elucidated. This review aims describe the recent advances detailing the role chromatin structure plays in dictating GR specificity. PMID:23545159

  3. Glucocorticoid therapy-induced memory deficits: acute versus chronic effects.

    Science.gov (United States)

    Coluccia, Daniel; Wolf, Oliver T; Kollias, Spyros; Roozendaal, Benno; Forster, Adrian; de Quervain, Dominique J-F

    2008-03-26

    Conditions with chronically elevated glucocorticoid levels are usually associated with declarative memory deficits. Considerable evidence suggests that long-term glucocorticoid exposure may cause cognitive impairment via cumulative and long-lasting influences on hippocampal function and morphology. However, because elevated glucocorticoid levels at the time of retention testing are also known to have direct impairing effects on memory retrieval, it is possible that such acute hormonal influences on retrieval processes contribute to the memory deficits found with chronic glucocorticoid exposure. To investigate this issue, we examined memory functions and hippocampal volume in 24 patients with rheumatoid arthritis who were treated either chronically (5.3 +/- 1.0 years, mean +/- SE) with low to moderate doses of prednisone (7.5 +/- 0.8 mg, mean +/- SE) or without glucocorticoids. In both groups, delayed recall of words learned 24 h earlier was assessed under conditions of either elevated or basal glucocorticoid levels in a double-blind, placebo-controlled crossover design. Although the findings in this patient population did not provide evidence for harmful effects of a history of chronic prednisone treatment on memory performance or hippocampal volume per se, acute prednisone administration 1 h before retention testing to either the steroid or nonsteroid group impaired word recall. Thus, these findings indicate that memory deficits observed under chronically elevated glucocorticoid levels result, at least in part, from acute and reversible glucocorticoid effects on memory retrieval.

  4. Glucocorticoid receptors in monocytes in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Damm, P; Binder, C

    1989-01-01

    Glucocorticoid receptor binding characteristics were investigated in 8 males with poorly controlled Type 1 diabetes mellitus and 14 healthy males. The cell type studied was monocytes, and a method for correction for heterogeneity in glucocorticoid binding in a mononuclear leucocyte population was...

  5. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  6. The impact of insulin resistance, gender, genes, glucocorticoids and ...

    African Journals Online (AJOL)

    2010-11-15

    Nov 15, 2010 ... Review: The impact of insulin resistance, gender, genes, glucocorticoids and ethnicity on body fat distribution. 2010 Volume 15 No 3 ... Understanding the factors that regulate body fat distribution should not only give insight ... glucocorticoids may sculpture body fat and change the pathogenicity of obesity.

  7. Profound postanesthetic hypoglycemia attributable to glucocorticoid deficiency in 2 dogs.

    Science.gov (United States)

    Lane, I F; Matwichuk, C L; Carpenter, L G; Behrend, E N

    1999-01-01

    Glucocorticoid deficiency was diagnosed as the cause of severe postanesthetic hypoglycemia in 2 dogs. Prior signs of systemic illness were not described in either dog; however, preoperative hematologic findings were consistent with glucocorticoid deficiency. Fasting hypoglycemia is a possible complication of chronic adrenal insufficiency primarily because of impaired gluconeogenesis. PMID:10416071

  8. Lifetime achievement from a brain-adrenal perspective: on the CRF-urocortin-glucocorticoid balance.

    Science.gov (United States)

    de Kloet, E R

    2013-12-01

    This contribution dedicated to Wylie Vale is focused on the action of the glucocorticoid hormone aimed to counterbalance the stress response orchestrated by the corticotrophin releasing factor (CRF) and urocortin (Ucn) family of peptides. It appears that the release and action of these stress hormones themselves are subjected to intrinsic self-regulatory feedback loops that operate as checks and balances in stress adaptation. One of these feedback loops is operated by the mineralocorticoid (MR) and glucocorticoid receptors (GR) that mediate in complementary fashion the action of endogenous cortisol/corticosterone in brain circuits underlying the onset and termination of the stress response. By affecting appraisal processes MR has an important role in coordinating emotional expression and cognitive flexibility with the onset of the stress response, while GR's role is prominent in the management of behavioral and physiological adaptations during the recovery phase. Genetic variation in interaction with environmental input and experience-related factors can modulate this balance between susceptibility and recovery governed by a balanced MR:GR signaling. Thanks to the Wylie Vale School of scientists a parallel balanced regulation between the CRF/CRF-1 and Ucn/CRF-2 receptor systems is being uncovered, leading inexorably to the question: how do the CRF/Ucn and glucocorticoid systems interact in multiple brain sites to maintain homeostasis and health? Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids.

    Science.gov (United States)

    Oster, Henrik; Challet, Etienne; Ott, Volker; Arvat, Emanuela; de Kloet, E Ronald; Dijk, Derk-Jan; Lightman, Stafford; Vgontzas, Alexandros; Van Cauter, Eve

    2017-02-01

    Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has long been recognized that this 24-hour rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus. In the past decade, secondary circadian clocks based on the same molecular machinery as the central master pacemaker were found in other brain areas as well as in most peripheral tissues, including the adrenal glands. Evidence is rapidly accumulating to indicate that misalignment between central and peripheral clocks has a host of adverse effects. The robust rhythm in circulating glucocorticoid levels has been recognized as a major internal synchronizer of the circadian system. The present review examines the scientific foundation of these novel advances and their implications for health and disease prevention and treatment. Copyright © 2017 by the Endocrine Society.

  10. Non-canonical Glucocorticoid Receptor Transactivation of gilz by Alcohol Suppresses Cell Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Hang Pong Ng

    2017-06-01

    Full Text Available Acute alcohol exposure suppresses cell inflammatory response. The underlying mechanism has not been fully defined. Here we report that alcohol was able to activate glucocorticoid receptor (GR signaling in the absence of glucocorticoids (GCs and upregulated glucocorticoid-induced leucine zipper (gilz, a prominent GC-responsive gene. Such a non-canonical activation of GR was not blocked by mifepristone, a potent GC competitor. The proximal promoter of gilz, encompassing five GC-responsive elements (GREs, was incorporated and tested in a luciferase reporter system. Deletion and/or mutation of the GREs abrogated the promoter responsiveness to alcohol. Thus, the GR–GRE interaction transduced the alcohol action on gilz. Alcohol induced GR nuclear translocation, which was enhanced by the alcohol dehydrogenase inhibitor fomepizole, suggesting that it was alcohol, not its metabolites, that engendered the effect. Gel mobility shift assay showed that unliganded GR was able to bind GREs and such interaction withstood clinically relevant levels of alcohol. GR knockout via CRISPR/Cas9 gene targeting or GILZ depletion via small RNA interference diminished alcohol suppression of cell inflammatory response to LPS. Thus, a previously unrecognized, non-canonical GR activation of gilz is involved in alcohol modulation of cell immune response.

  11. Withdrawal of inhaled glucocorticoids and exacerbations of COPD

    DEFF Research Database (Denmark)

    Magnussen, Helgo; Disse, Bernd; Rodriguez-Roisin, Roberto

    2014-01-01

    BACKGROUND: Treatment with inhaled glucocorticoids in combination with long-acting bronchodilators is recommended in patients with frequent exacerbations of severe chronic obstructive pulmonary disease (COPD). However, the benefit of inhaled glucocorticoids in addition to two long......-acting bronchodilators has not been fully explored. METHODS: In this 12-month, double-blind, parallel-group study, 2485 patients with a history of exacerbation of COPD received triple therapy consisting of tiotropium (at a dose of 18 μg once daily), salmeterol (50 μg twice daily), and the inhaled glucocorticoid...... findings, health status, and dyspnea were also monitored. RESULTS: As compared with continued glucocorticoid use, glucocorticoid withdrawal met the prespecified noninferiority criterion of 1.20 for the upper limit of the 95% confidence interval (CI) with respect to the first moderate or severe COPD...

  12. Tall stature in familial glucocorticoid deficiency.

    Science.gov (United States)

    Elias, L L; Huebner, A; Metherell, L A; Canas, A; Warne, G L; Bitti, M L; Cianfarani, S; Clayton, P E; Savage, M O; Clark, A J

    2000-10-01

    Familial glucocorticoid deficiency (FGD) has frequently been associated with tall stature in affected individuals. The clinical, biochemical and genetic features of five such patients were studied with the aim of clarifying the underlying mechanisms of excessive growth in these patients. Five patients with a clinical diagnosis of FGD are described in whom the disorder resulted from a variety of novel or previously described missense or nonsense mutations of the ACTH receptor (MC2-R). All patients demonstrated excessive linear growth over that predicted from parental indices and increased head circumference. Growth hormone and IGF-I-values were normal. Growth charts suggest that the excessive growth is reduced to normal following the introduction of glucocorticoid replacement. A characteristic facial appearance including hypertelorism, marked epicanthic folds and prominent frontal bossing was noted. These findings indicate that ACTH resistance resulting from a defective ACTH receptor may be associated with abnormalities of cartilage and/or bone growth independently of the GH-IGF-I axis, but probably dependent on ACTH actions through other melanocortin receptors.

  13. Glucocorticoid-induced osteoporosis: 2013 update

    Directory of Open Access Journals (Sweden)

    M. Mazzantini

    2014-07-01

    Full Text Available Glucocorticoids are the most common cause of secondary osteoporosis leading to the so-called glucocorticoidinduced osteoporosis (GIO. A treatment with 10 mg/d of prednisone or equivalent for more than 3 months leads to a 7-fold increase in hip fractures and a 17-fold increase in vertebral fractures. The difference between bone quantity and quality in GIO makes bone mineral density measurements inadequate to detect patients at risk of fracture. The adverse effects of glucocorticoids on the skeleton derive from a direct impact on bone cells with a severe impairment of mechanical competence. Crucial to prevention of GIO is early timing of intervention. The World Health Organization has adopted a fracture prevention algorithm (FRAX intended to estimate fracture risk in GIO. The American College of Rhematology modified its prevention and treatment guidelines taking into account the individual risk of fracture calculated in GIO on the basis of the FRAX algorithm. Recently, also a joint Guideline Working Group of the International Osteoporosis Foundation (IOF and the European Calcified Tissue Society (ECTS published a framework for the development of national guidelines for the management of GIO. Bisphosphonates are the first-line drugs to treat GIO; teriparatide counteracts several fundamental pathophysiologic aspects of GIO; denosumab is useful in patients with renal failure and in potentially pregnant young women. Vertebroplasty and kyphoplasty may be less beneficial in GIO than in primary involutional osteoporosis.

  14. Effect of Glucocorticoids on Ultrastructure of Myocardial Muscle in the Course of Experimentally Induced Acute Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Piotr Kuropka

    2017-01-01

    Full Text Available The search for effective methods of myocardial cytoprotection against ischemia is the most significant issue in modern cardiology and cardiac surgery. Glucocorticoids are deemed very strong modulators of inflammatory response and thus can potentially protect heart muscle from postreperfusion injury and myocardial ischemia during cardiac surgery. Ultrastructural examination of the left ventricle heart samples revealed that the intravenous application of dexamethasone and hydrocortisone proved to exert cytoprotective effect on cardiomyocytes during experimentally induced acute ischemia in rats.

  15. Analysis of Chromatin Dynamics during Glucocorticoid Receptor Activation

    Science.gov (United States)

    Burd, Craig J.; Ward, James M.; Crusselle-Davis, Valerie J.; Kissling, Grace E.; Phadke, Dhiral; Shah, Ruchir R.

    2012-01-01

    Steroid hormone receptors initiate a genetic program tightly regulated by the chromatin environment of the responsive regions. Using the glucocorticoid receptor (GR) as a model factor for transcriptional initiation, we classified chromatin structure through formaldehyde-assisted isolation of regulatory elements (FAIRE). We looked at dynamic changes in FAIRE signals during GR activation specifically at regions of receptor interaction. We found a distribution of GR-responsive regions with diverse responses to activation and chromatin modulation. The majority of GR binding regions demonstrate increases in FAIRE signal in response to ligand. However, the majority GR-responsive regions shared a similar FAIRE signal in the basal chromatin state, suggesting a common chromatin structure for GR recruitment. Supporting this notion, global FAIRE sequencing (seq) data indicated an enrichment of signal surrounding the GR binding site prior to activation. Brg-1 knockdown showed response element-specific effects of ATPase-dependent chromatin remodeling. FAIRE induction was universally decreased by Brg-1 depletion, but to varying degrees in a target specific manner. Taken together, these data suggest classes of nuclear receptor response regions that react to activation through different chromatin regulatory events and identify a chromatin structure that classifies the majority of response elements tested. PMID:22451486

  16. [Effect of transfer factor on treatment with glucocorticoids in a group of pediatric patients with persistent moderate allergic asthma].

    Science.gov (United States)

    Espinosa Padilla, Sara E; Orozco, Socorro; Plaza, Angélica; Estrada Parra, Sergio; Estrada García, Iris; Rosales González, Manuel Gerardo; Villaverde Rosa, Rodrigo; Espinosa Rosales, Francisco J

    2009-01-01

    Inhaled glucocorticoids are the most effective and potent drugs used to control the inflammatory bronchial reaction in patients with asthma. There are several research projects evaluating the use of immune modulators in the treatment of the asthma related inflammatory process. To evaluate the effect of transfer factor in the treatment of pediatric patients with moderate persistent allergic asthma in terms of inhaled glucocorticoid dosing and time of using. Randomized, double blind, placebo controlled pilot clinical trial in a cohort of pediatric patients (6-17 years old) with moderate persistent allergic asthma. Two groups were formed. Group one received transfer factor and group two was given placebo. Both groups received conventional therapy with inhaled budesonide and formoterol. Daily respiratory symptoms (cough during day, or at night, and wheezing episodes) were recorded in a personal diary. Spirometric evaluations were performed before enrolling patients, and at 1, 3 and 6 months after. Eleven patients were enrolled in each group. Patients in the transfer factor group showed a statistical significant reduction in the inhaled glucocorticoid doping since month 3, and this difference was maintained until the end of study. Patients on TF group showed also a non statistical significant improvement in spirometrical findings and also showed a better asthma control. Transfer factor helps to reduce inhaled glucocorticoids dose in patients with allergic rhinitis; however, studies with a larger number of patients should be done in order to obtain better results.

  17. Primary and secondary prophylaxis to the use of inhaled glucocorticoid in primary health care

    DEFF Research Database (Denmark)

    Nielsen, Barbara Rubek; Jørgensen, Niklas Rye; Schwarz, Peter

    2008-01-01

    To investigate the extent of inhaled glucocorticoid (IGC) treatment in general and to what extent general practitioners (GPs) manage the risk of glucocorticoid-induced osteoporosis.......To investigate the extent of inhaled glucocorticoid (IGC) treatment in general and to what extent general practitioners (GPs) manage the risk of glucocorticoid-induced osteoporosis....

  18. The Effect of Glucocorticoid and Glucocorticoid Receptor Interactions on Brain, Spinal Cord, and Glial Cell Plasticity

    Directory of Open Access Journals (Sweden)

    Kathryn M. Madalena

    2017-01-01

    Full Text Available Stress, injury, and disease trigger glucocorticoid (GC elevation. Elevated GCs bind to the ubiquitously expressed glucocorticoid receptor (GR. While GRs are in every cell in the nervous system, the expression level varies, suggesting that diverse cell types react differently to GR activation. Stress/GCs induce structural plasticity in neurons, Schwann cells, microglia, oligodendrocytes, and astrocytes as well as affect neurotransmission by changing the release and reuptake of glutamate. While general nervous system plasticity is essential for adaptation and learning and memory, stress-induced plasticity is often maladaptive and contributes to neuropsychiatric disorders and neuropathic pain. In this brief review, we describe the evidence that stress/GCs activate GR to promote cell type-specific changes in cellular plasticity throughout the nervous system.

  19. Fetal glucocorticoid exposure is associated with preadolescent brain development.

    Science.gov (United States)

    Davis, Elysia Poggi; Sandman, Curt A; Buss, Claudia; Wing, Deborah A; Head, Kevin

    2013-11-01

    Glucocorticoids play a critical role in normative regulation of fetal brain development. Exposure to excessive levels may have detrimental consequences and disrupt maturational processes. This may especially be true when synthetic glucocorticoids are administered during the fetal period, as they are to women in preterm labor. This study investigated the consequences for brain development and affective problems of fetal exposure to synthetic glucocorticoids. Brain development and affective problems were evaluated in 54 children (56% female), aged 6 to 10, who were full term at birth. Children were recruited into two groups: those with and without fetal exposure to synthetic glucocorticoids. Structural magnetic resonance imaging scans were acquired and cortical thickness was determined. Child affective problems were assessed using the Child Behavior Checklist. Children in the fetal glucocorticoid exposure group showed significant and bilateral cortical thinning. The largest group differences were in the rostral anterior cingulate cortex (rACC). More than 30% of the rACC was thinner among children with fetal glucocorticoid exposure. Furthermore, children with more affective problems had a thinner left rACC. Fetal exposure to synthetic glucocorticoids has neurologic consequences that persist for at least 6 to 10 years. Children with fetal glucocorticoid exposure had a thinner cortex primarily in the rACC. Our data indicating that the rACC is associated with affective problems in conjunction with evidence that this region is involved in affective disorders raise the possibility that glucocorticoid-associated neurologic changes increase vulnerability to mental health problems. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Neuropsychiatric findings in Cushing syndrome and exogenous glucocorticoid administration.

    Science.gov (United States)

    Starkman, Monica N

    2013-09-01

    This article reviews the neuropsychiatric presentations elicited by spontaneous hypercortisolism and exogenous supraphysiologic glucocorticoids. Patients with Cushing disease and syndrome develop a depressive syndrome: irritable and depressed mood, decreased libido, disrupted sleep and cognitive decrements. Exogenous short-term glucocorticoid administration may elicit a hypomanic syndrome with mood, sleep and cognitive disruptions. Treatment options are discussed. Brain imaging and neuropsychological studies indicate elevated cortisol and other glucocorticoids are especially deleterious to hippocampus and frontal lobe. The research findings also shed light on neuropsychiatric abnormalities in conditions that have substantial subgroups exhibiting elevated and dysregulated cortisol: aging, major depressive disorder and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells ...... that in response to glucocorticoid administration, induced autophagy aids to maintain proliferation and prevent apoptosis of BMSCs. Thus, it is hypothesized that autophagy may be a novel target in the treatment or prevention of osteoporosis.......Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...

  2. Addison disease in patients treated with glucocorticoid therapy.

    LENUS (Irish Health Repository)

    Cronin, C C

    2012-02-03

    Acute adrenal crisis in patients with unrecognized chronic adrenocortical failure is difficult to diagnose and potentially fatal. We describe 2 patients with acute adrenal crisis whose diagnoses were hindered because of concomitant glucocorticoid treatment. Acute adrenal insufficiency is primarily a state of mineralocorticoid deficiency. Prednisolone and prednisone, the most frequently prescribed anti-inflammatory corticosteroid agents, have minimal mineralocorticoid activity. Several conditions that may be treated with pharmacological glucocorticoids are associated with an increased risk of Addison disease. An acute adrenal crisis, against which concurrent glucocorticoid therapy does not confer adequate protection, may develop in such patients.

  3. Glucocorticoid use and abuse in SLE.

    Science.gov (United States)

    Ruiz-Irastorza, Guillermo; Danza, Alvaro; Khamashta, Munther

    2012-07-01

    Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive agents. They act by two different mechanisms: the genomic and the non-genomic pathways. The genomic pathway is considered responsible for many adverse effects of GCs, most of them are time and dose dependent. Observational studies support a relationship between GCs and damage in SLE. GCs have been associated with the development of osteoporosis, osteonecrosis, cataracts, hyperglycaemia, coronary heart disease and cognitive impairment, among others. Although no clinical trial has compared high vs low doses of GCs, some studies have shown the efficacy of medium doses in severe forms of SLE. The dose below which treatment can be considered safe has not been defined, but daily doses <7.5 mg of prednisone seem to minimize adverse effects. Combination therapy with HCQ and the judicious use of immunosuppressive drugs help to keep prednisone therapy within those limits.

  4. Physiology and molecular mechanism of glucocorticoid action

    Directory of Open Access Journals (Sweden)

    Andrzej Nagalski

    2010-03-01

    Full Text Available Endogenous glucocorticoids (GCs are secreted into the systemic circulation from the adrenal cortex. This release is under the control of the circadian clock and can be enhanced at any time in response to a stressor. The levels of circulating GC are regulated systemically by the hypothalamo-pituitary-adrenal axis and locally by access to target cells and pre-receptor metabolism by 11β-hydroxysteroids dehydrogenase enzymes. GCs mediate their genomic action by binding to two different ligand-inducible transcription factors: high-affinity mineralocorticoid receptor (MR and 10-fold lower affinity glucocorticoid receptors (GRs. Responses to GCs vary among individuals, cells, and tissues. The diversity and specificity in the steroid hormone’s response in the cell is controlled at different levels, including receptor translocation, interaction with specific transcription factors and coregulators, and the regulation of receptor protein levels by microRNA. Moreover, multiple GR isoforms are generated from one single GR gene by alternative splicing and alternative translation initiation. These isoforms all have unique tissue distribution patterns and transcriptional regulatory profiles. Furthermore, each is subjected to various post-translational modifications that affect receptor function. Deciphering the molecular mechanisms of GC action is further complicated by the realization that GCs can induce rapid, non-genomic effects within the cytoplasm. A tight regulation of GC secretion and their cell-specific activity is essential for proper organism function. This is particularly seen under conditions of GC deficiency or excess, as in Addison’s disease and Cushing’s syndrome, respectively.

  5. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications

    Science.gov (United States)

    Nader, Nancy; Chrousos, George P.; Kino, Tomoshige

    2009-01-01

    Glucocorticoids, end products of the hypothalamic-pituitary-adrenal axis, influence functions of virtually all organs and tissues through the glucocorticoid receptor (GR). Circulating levels of glucocorticoids fluctuate naturally in a circadian fashion and regulate the transcriptional activity of GR in target tissues. The basic helix-loop-helix protein CLOCK, a histone acetyltransferase (HAT), and its heterodimer partner BMAL1 are self-oscillating transcription factors that generate circadian rhythms in both the central nervous system and periphery. We found that CLOCK/BMAL1 repressed GR-induced transcriptional activity in a HAT-activity- dependent fashion. In serum-shock-synchronized cells, transactivational activity of GR, accessed by mRNA expression of an endogenous-responsive gene, fluctuated spontaneously in a circadian fashion in reverse phase with CLOCK/BMAL1 mRNA expression. CLOCK and GR interacted with each other physically, and CLOCK suppressed binding of GR to its DNA recognition sequences by acetylating multiple lysine residues located in its hinge region. These findings indicate that CLOCK/BMAL1 functions as a reverse-phase negative regulator of glucocorticoid action in target tissues, possibly by antagonizing biological actions of diurnally fluctuating circulating glucocorticoids. Further, these results suggest that a peripheral target tissue circadian rhythm indirectly influences the functions of every organ and tissue inside the body through modulation of the ubiquitous and diverse actions of glucocorticoids.—Nader, N., Chrousos, G. P., Kino, T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. PMID:19141540

  6. Effects of Chronic Psychosocial Stress on Reduction of Basal Glucocorticoid Levels and Suppression of Glucocorticoid Levels Following Dexamethasone Administration in Animal Model of PTSD

    Directory of Open Access Journals (Sweden)

    Ana Starcevic

    2014-03-01

    Conclusion: Significant changes in HPA activity, reductions in basal glucocorticoid levels and enhanced dexamethasone induced inhibition of glucocorticoid levels have been manifested. All of this is manifested in PTSD patients also as many other stress induces changes.

  7. Hypersensitivity Reactions from Excipients in Systemic Glucocorticoid Formulations

    DEFF Research Database (Denmark)

    Calogiuri, Gianfranco; Garvey, Lene H; Romita, Paolo

    2016-01-01

    Glucocorticoids are the most widely used drugs for the treatment of hypersensitivity, however these drugs themselves and the excipients contained in commercial corticosteroid formulations are able to induce severe immediate-type hypersensitivity reactions. Reactions involving excipients have been...

  8. Distribution and Abundance of Glucocorticoid and Mineralocorticoid Receptors throughout the Brain of the Great Tit (Parus major.

    Directory of Open Access Journals (Sweden)

    Rebecca A Senft

    Full Text Available The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids-the mineralocorticoid receptor (MR and glucocorticoid receptor (GR-are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major, creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN and the hippocampus (HP-the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual's behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC, and moderate MR in robust nucleus of the arcopallium (RA. Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations

  9. Glucocorticoids and the regulation of memory in health and disease.

    Science.gov (United States)

    de Quervain, Dominique J-F; Aerni, Amanda; Schelling, Gustav; Roozendaal, Benno

    2009-08-01

    Over the last decades considerable evidence has accumulated indicating that glucocorticoids - stress hormones released from the adrenal cortex - are crucially involved in the regulation of memory. Specifically, glucocorticoids have been shown to enhance memory consolidation of emotionally arousing experiences, but impair memory retrieval and working memory during emotionally arousing test situations. Furthermore, growing evidence indicates that these different glucocorticoid effects all depend on emotional arousal-induced activation of noradrenergic transmission within the basolateral complex of the amygdala (BLA) and on interactions of the BLA with other brain regions, such as the hippocampus and neocortical regions. Here we review findings from both animal and human experiments and present an integrated perspective of how these opposite glucocorticoid effects might act together to serve adaptive processing of emotionally significant information. Furthermore, as intense emotional memories also play a crucial role in the pathogenesis and symptomatology of anxiety disorders, such as posttraumatic stress disorder (PTSD) or phobias, we discuss to what extent the basic findings on glucocorticoid effects on emotional memory might have implications for the understanding and treatment of these clinical conditions. In this context, we review data suggesting that the administration of glucocorticoids might ameliorate chronic anxiety by reducing retrieval of aversive memories and enhancing fear extinction.

  10. The influence of glucocorticoid signaling on tumor progression.

    Science.gov (United States)

    Volden, Paul A; Conzen, Suzanne D

    2013-03-01

    The diagnosis of cancer elicits a broad range of well-characterized stress-related biobehavioral responses. Recent studies also suggest that an individual's neuroendocrine stress response can influence tumor biology. One of the major physiological pathways altered by the response to unrelenting social stressors is the hypothalamic-pituitary-adrenal or HPA axis. Initially following acute stress exposure, an increased glucocorticoid response is observed; eventually, chronic stress exposure can lead to a blunting of the normal diurnal cortisol pattern. Interestingly, recent evidence also links high primary tumor glucocorticoid receptor expression (and associated increased glucocorticoid-mediated gene expression) to more rapid estrogen-independent breast cancer progression. Furthermore, animal models of human breast cancer suggest that glucocorticoids inhibit tumor cell apoptosis. These findings provide a conceptual basis for understanding the molecular mechanisms underlying the influence of the individual's stress response, and specifically glucocorticoid action, on breast cancer and other solid tumor biology. How this increased glucocorticoid signaling might contribute to cancer progression is the subject of this review. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. [Glucocorticoid and Bone. The effect of glucocorticoid and PTH in osteoblast apoptosis and differentiation via interleukin 11 expression].

    Science.gov (United States)

    Endo, Itsuro

    2014-09-01

    Intermittent PTH administration stimulates bone formation and counteracts the inhibition of bone formation by glucocorticoid excess. We have previously demonstrated that PTH enhances interleukin (IL) -11 gene transcription by a rapid induction of delta-fosB expression and Smad1/5 phosphorylation. On the other hand, glucocorticoid can suppress osteoblast differentiation and enhance apoptosis of osteoblast cells via down-regulation of IL-11 expression. PTH could reverse glucocorticoid-induced these damage of osteoblast via stimulation of IL-11 expression. Our data also suggested that IL-11 mediates stimulatory and inhibitory signals of osteoblast differentiation by affecting Wnt signaling. These data demonstrates that PTH and glucocorticoid may regulate osteoblast differentiation and apoptosis via their effect on IL-11 expression.

  12. Selective Glucocorticoid Receptor Properties of GSK866 Analogs with Cysteine Reactive Warheads

    Directory of Open Access Journals (Sweden)

    Chandra S. Chirumamilla

    2017-11-01

    Full Text Available Synthetic glucocorticoids (GC are the mainstay therapy for treatment of acute and chronic inflammatory disorders. Due to the high adverse effects associated with long-term use, GC pharmacology has focused since the nineties on more selective GC ligand-binding strategies, classified as selective glucocorticoid receptor (GR agonists (SEGRAs or selective glucocorticoid receptor modulators (SEGRMs. In the current study, GSK866 analogs with electrophilic covalent-binding warheads were developed with potential SEGRA properties to improve their clinical safety profile for long-lasting topical skin disease applications. Since the off-rate of a covalently binding drug is negligible compared to that of a non-covalent drug, its therapeutic effects can be prolonged and typically, smaller doses of the drug are necessary to reach the same level of therapeutic efficacy, thereby potentially reducing systemic side effects. Different analogs of SEGRA GSK866 coupled to cysteine reactive warheads were characterized for GR potency and selectivity in various biochemical and cellular assays. GR- and NFκB-dependent reporter gene studies show favorable anti-inflammatory properties with reduced GR transactivation of two non-steroidal GSK866 analogs UAMC-1217 and UAMC-1218, whereas UAMC-1158 and UAMC-1159 compounds failed to modulate cellular GR activity. These results were further supported by GR immuno-localization and S211 phospho-GR western analysis, illustrating significant GR phosphoactivation and nuclear translocation upon treatment of GSK866, UAMC-1217, or UAMC-1218, but not in case of UAMC-1158 or UAMC-1159. Furthermore, mass spectrometry analysis of tryptic peptides of recombinant GR ligand-binding domain (LBD bound to UAMC-1217 or UAMC-1218 confirmed covalent cysteine-dependent GR binding. Finally, molecular dynamics simulations, as well as glucocorticoid receptor ligand-binding domain (GR-LBD coregulator interaction profiling of the GR-LBD bound to GSK866 or

  13. Low-dose glucocorticoids in hyperandrogenism Efecto de bajas dosis de glucocorticoides en el hiperandrogenismo

    OpenAIRE

    Leonardo Rizzo; Viviana Dobrovsky; Karina Danilowicz; Martha Kral; Graciela Cross; Héctor A. Serra; Oscar D. Bruno

    2007-01-01

    To investigate the effect of low-doses of glucocorticoids on androgen and cortisol secretion during the course of the day, we evaluated clinical signs of hyperandrogenism and total, free and bioavailable testosterone, SHBG, and cortisol following two different protocols: A) fourteen patients received betamethasone 0.6 mg/day (n=8) or methylprednisolone 4 mg/day (n=6), as single daily oral dose at 11.00 PM, during 30 days, B) fourteen patients were evaluated under betamethasone 0.3 mg in a sin...

  14. Systematic review of the clinical effect of glucocorticoids on nonhematologic malignancy

    Directory of Open Access Journals (Sweden)

    Keith Bruce D

    2008-03-01

    Full Text Available Abstract Background Glucocorticoids are often used in the treatment of nonhematologic malignancy. This review summarizes the clinical evidence of the effect of glucocorticoid therapy on nonhematologic malignancy. Methods A systematic review of clinical studies of glucocorticoid therapy in patients with nonhematologic malignancy was undertaken. Only studies having endpoints of tumor response or tumor control or survival were included. PubMed, EMBASE, the Cochrane Register/Databases, conference proceedings (ASCO, AACR, ASTRO/ASTR, ESMO, ECCO and other resources were used. Data was extracted using a standard form. There was quality assessment of each study. There was a narrative synthesis of information, with presentation of results in tables. Where appropriate, meta-analyses were performed using data from published reports and a fixed effect model. Results Fifty four randomized controlled trials (RCTs, one meta-analysis, four phase l/ll trials and four case series met the eligibility criteria. Clinical trials of glucocorticoid monotherapy in breast and prostate cancer showed modest response rates. In advanced breast cancer meta-analyses, the addition of glucocorticoids to either chemotherapy or other endocrine therapy resulted in increased response rate, but not increased survival. In GI cancer, there was one RCT each of glucocorticoids vs. supportive care and chemotherapy +/- glucocorticoids; glucocorticoid effect was neutral. The only RCT found of chemotherapy +/- glucocorticoids, in which the glucocorticoid arm did worse, was in lung cancer. In glucocorticoid monotherapy, meta-analysis found that continuous high dose glucocorticoids had a detrimental effect on survival. The only other evidence, for a detrimental effect of glucocorticoid monotherapy, was in one of the two trials in lung cancer. Conclusion Glucocorticoid monotherapy has some benefit in breast and prostate cancer. In advanced breast cancer, the addition of glucocorticoids to other

  15. Glucocorticoids enhance extinction-based psychotherapy.

    Science.gov (United States)

    de Quervain, Dominique J-F; Bentz, Dorothée; Michael, Tanja; Bolt, Olivia C; Wiederhold, Brenda K; Margraf, Jürgen; Wilhelm, Frank H

    2011-04-19

    Behavioral exposure therapy of anxiety disorders is believed to rely on fear extinction. Because preclinical studies have shown that glucocorticoids can promote extinction processes, we aimed at investigating whether the administration of these hormones might be useful in enhancing exposure therapy. In a randomized, double-blind, placebo-controlled study, 40 patients with specific phobia for heights were treated with three sessions of exposure therapy using virtual reality exposure to heights. Cortisol (20 mg) or placebo was administered orally 1 h before each of the treatment sessions. Subjects returned for a posttreatment assessment 3-5 d after the last treatment session and for a follow-up assessment after 1 mo. Adding cortisol to exposure therapy resulted in a significantly greater reduction in fear of heights as measured with the acrophobia questionnaire (AQ) both at posttreatment and at follow-up, compared with placebo. Furthermore, subjects receiving cortisol showed a significantly greater reduction in acute anxiety during virtual exposure to a phobic situation at posttreatment and a significantly smaller exposure-induced increase in skin conductance level at follow-up. The present findings indicate that the administration of cortisol can enhance extinction-based psychotherapy.

  16. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    In this study, 18 female skeletally mature sheep were randomly allocated into three groups of six each. Group 1 (glucocorticoid-1) received prednisolone treatment (0.60 mg/kg/day, five times weekly) for 7 months. Group 2 (glucocorticoid-2) received the same treatment regime followed by observation...... months after glucocorticoid cessation, suggesting a delayed effect of glucocorticoid on cortical bone. Thus, changes in cortical bone beyond cancellous bone might further increase fracture risk in patients treated with glucocorticoids. This model might be used as a glucocorticoid-induced osteoporotic...

  17. Glucocorticoids enhance taste aversion memory via actions in the insular cortex and basolateral amygdala

    Science.gov (United States)

    Miranda, Maria Isabel; Quirarte, Gina L.; Rodriguez-Garcia, Gabriela; McGaugh, James L.; Roozendaal, Benno

    2008-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function. Corticosterone (1.0 or 3.0 mg/kg) administered subcutaneously to male Sprague–Dawley rats immediately after the pairing of saccharin consumption with the visceral malaise-inducing agent lithium chloride (LiCl) dose-dependently increased aversion to the saccharin taste on a 96-h retention test trial. In a second experiment, rats received corticosterone either immediately after saccharin consumption or after the LiCl injection, when both stimuli were separated by a 3-h time interval, to investigate whether corticosterone enhances memory of the gustatory or visceral stimulus presentation. Consistent with the finding that the LiCl injection, but not saccharin consumption, increases endogenous corticosterone levels, corticosterone selectively enhanced CTA memory when administered after the LiCl injection. Suppression of this training-induced release of corticosterone with the synthesis-inhibitor metyrapone (35 mg/kg) impaired CTA memory, and was dose-dependently reversed by post-training supplementation of corticosterone. Moreover, direct post-training infusions of corticosterone into the insular cortex or basolateral complex of the amygdala, two brain regions that are critically involved in the acquisition and consolidation of CTA, also enhanced CTA retention, whereas post-training infusions into the dorsal hippocampus were ineffective. These findings provide evidence that glucocorticoid effects on memory consolidation are not limited to hippocampus-dependent spatial/contextual information, but that these hormones also modulate memory consolidation of discrete-cue associative learning via actions in other brain regions. PMID

  18. Cortisol Induces Reactive Oxygen Species Through a Membrane Glucocorticoid Receptor in Rainbow Trout Myotubes.

    Science.gov (United States)

    Espinoza, Marlen B; Aedo, Jorge E; Zuloaga, Rodrigo; Valenzuela, Cristian; Molina, Alfredo; Valdés, Juan A

    2017-04-01

    Cortisol is an essential regulator of neuroendocrine stress responses in teleosts. Cortisol predominantly affects target tissues through the genomic pathway, which involves interacting with cytoplasmic glucocorticoid receptors, and thereby, modulating stress-response gene expressions. Cortisol also produces rapid effects via non-genomic pathways, which do not involve gene transcription. Although cortisol-mediated genomic pathways are well documented in teleosts, non-genomic pathways are not fully understood. Moreover, no studies have focused on the contribution of non-genomic cortisol pathways in compensatory stress responses in fish. In this study, rainbow trout (Oncorhynchus mykiss) skeletal myotubes were stimulated with physiological concentrations of cortisol and cortisol-BSA, a membrane-impermeable agent, resulting in an early induction of reactive oxygen species (ROS). This production was not suppressed by transcription or translation inhibitors, suggesting non-genomic pathway involvement. Moreover, myotube preincubation with RU486 and NAC completely suppressed cortisol- and cortisol-BSA-induced ROS production. Subcellular fractionation analysis revealed the presence of cell membrane glucocorticoid receptors. Finally, cortisol-BSA induced a significant increase in ERK1/2 and CREB phosphorylation, as well as in CREB-dependent transcriptional activation of the pgc1a gene expression. The obtained results strongly suggest that cortisol acts through a non-genomic glucocorticoid receptor-mediated pathway to induce ROS production and contribute to ERK/CREB/PGC1-α signaling pathway activation as stress compensation mechanisms. J. Cell. Biochem. 118: 718-725, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Glucocorticoid Receptor Polymorphisms and Outcomes in Pediatric Septic Shock.

    Science.gov (United States)

    Cvijanovich, Natalie Z; Anas, Nick; Allen, Geoffrey L; Thomas, Neal J; Bigham, Michael T; Weiss, Scott L; Fitzgerald, Julie; Checchia, Paul A; Meyer, Keith; Quasney, Michael; Gedeit, Rainer; Freishtat, Robert J; Nowak, Jeffrey; Raj, Shekhar S; Gertz, Shira; Grunwell, Jocelyn R; Opoka, Amy; Wong, Hector R

    2017-04-01

    Polymorphisms of the glucocorticoid receptor gene are associated with outcome and corticosteroid responsiveness among patients with inflammatory disorders. We conducted a candidate gene association study to test the hypothesis that these polymorphisms are associated with outcome and corticosteroid responsiveness among children with septic shock. We genotyped 482 children with septic shock for the presence of two glucocorticoid receptor polymorphisms (rs56149945 and rs41423247) associated with increased sensitivity and one glucocorticoid receptor polymorphism (rs6198) associated with decreased sensitivity to corticosteroids. The primary outcome variable was complicated course, defined as 28-day mortality or the persistence of two or more organ failures 7 days after a septic shock diagnosis. We used logistic regression to test for an association between corticosteroid exposure and outcome, within genotype group, and adjusted for illness severity. Multiple PICUs in the United States. Standard care. There were no differences in outcome when comparing the various genotype groups. Among patients homozygous for the wild-type glucocorticoid receptor allele, corticosteroids were independently associated with increased odds of complicated course (odds ratio, 2.30; 95% CI, 1.01-5.21; p = 0.047). Based on these glucocorticoid receptor polymorphisms, we could not detect a beneficial effect of corticosteroids among any genotype group. Among children homozygous for the wild-type allele, corticosteroids were independently associated with increased odds of poor outcome.

  20. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects.

    Science.gov (United States)

    Judd, Lewis L; Schettler, Pamela J; Brown, E Sherwood; Wolkowitz, Owen M; Sternberg, Esther M; Bender, Bruce G; Bulloch, Karen; Cidlowski, John A; de Kloet, E Ronald; Fardet, Laurence; Joëls, Marian; Leung, Donald Y M; McEwen, Bruce S; Roozendaal, Benno; Van Rossum, Elisabeth F C; Ahn, Junyoung; Brown, David W; Plitt, Aaron; Singh, Gagandeep

    2014-10-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as ways to prevent and treat these disturbances. An illustrative case vignette is presented describing a patient's experience of cycles of manic-like behavior and depression while on high-dosage prednisone, with long-term cognitive disorganization, vulnerability to stress, and personality changes. Severe neuropsychiatric consequences (including suicide, suicide attempt, psychosis, mania, depression, panic disorder, and delirium, confusion, or disorientation) have been reported to occur in 15.7 per 100 person-years at risk for all glucocorticoid courses, and 22.2 per 100 person-years at risk for first courses. The majority of patients experience less severe but distressing and possibly persistent changes in mood, cognition, memory, or behavior during glucocorticoid treatment or withdrawal. Although prediction of such effects is difficult, risks vary with age, gender, dosage, prior psychiatric history, and several biological markers. Key mechanisms thought to underlie these risk factors are briefly described. Recommendations are given for identifying individual risk factors and for monitoring and managing adverse neuropsychiatric effects of glucocorticoids.

  1. [Treatment of iatrogenic Cushing syndrome: questions of glucocorticoid withdrawal].

    Science.gov (United States)

    Igaz, Péter; Rácz, Károly; Tóth, Miklós; Gláz, Edit; Tulassay, Zsolt

    2007-02-04

    Iatrogenic Cushing's syndrome is the most common form of hypercortisolism. Glucocorticoids are widely used for the treatment of various diseases, often in high doses that may lead to the development of severe hypercortisolism. Iatrogenic hypercortisolism is unique, as the application of exogenous glucocorticoids leads to the simultaneous presence of symptoms specific for hypercortisolism and the suppression of the endogenous hypothalamic-pituitary-adrenal axis. The principal question of its therapy is related to the problem of glucocorticoid withdrawal. There is considerable interindividual variability in the suppression and recovery of the hypothalamic-pituitary-adrenal axis, therefore, glucocorticoid withdrawal and substitution can only be conducted in a stepwise manner with careful clinical follow-up and regular laboratory examinations regarding endogenous hypothalamic-pituitary-adrenal axis activity. Three major complications which can be associated with glucocorticoid withdrawal are: i. reactivation of the underlying disease, ii. secondary adrenal insufficiency, iii. steroid withdrawal syndrome. Here, the authors summarize the most important aspects of this area based on their clinical experience and the available literature data.

  2. Salivary cortisol day curves in assessing glucocorticoid replacement therapy in Addison's disease

    NARCIS (Netherlands)

    Smans, L.; Lentjes, E.G.W.M.; Hermus, A.R.; Zelissen, P.

    2013-01-01

    OBJECTIVE: Patients with Addison's disease require lifelong treatment with glucocorticoids. At present, no glucocorticoid replacement therapy (GRT) can exactly mimic normal physiology. As a consequence, under- and especially overtreatment can occur. Suboptimal GRT may lead to various side effects.

  3. ROLE OF THE ENDOCANNABINOID SYSTEM IN REGULATING GLUCOCORTICOID EFFECTS ON MEMORY FOR EMOTIONAL EXPERIENCES

    NARCIS (Netherlands)

    Atsak, P.; Roozendaal, B.; Campolongo, P.

    2012-01-01

    Glucocorticoids, stress hormones released from the adrenal cortex, have potent modulatory effects on emotional memory. Whereas early studies focused mostly on the detrimental effects of chronic stress and glucocorticoid exposure on cognitive performance and the classic genomic pathways that mediate

  4. Lymphocyte glucocorticoid receptor resistance and depressive symptoms severity : A preliminary report

    NARCIS (Netherlands)

    Tanke, M. A. C.; Bosker, F. J.; Gladkevich, An.; Medema, H. M.; den Boer, J. A.; Korf, J.

    2008-01-01

    Objective: Assessment of the temporal interrelationship of neuropsychiatric parameters requires technologies allowing frequent biological measurements. We propose glucocorticoid receptor (GR) function of lymphocytes to assess the temporal relationship between glucocorticoid resistance and the course

  5. Adrenal Insufficiency Caused by Locally Applied Glucocorticoids-Myth or Fact?

    DEFF Research Database (Denmark)

    Dinsen, Stina; Klose, Marianne; Rasmussen, Åse Krogh

    2015-01-01

    Case-reports have made it evident that both inhaled, percutaneous, intranasal, intraarticular and ophthalmic administered glucocorticoids have the potential to cause life threatening adrenal insufficiency. With few and sometimes conflicting data and study methodology the prevalence of adrenal...... insufficiency secondary to locally applied glucocorticoids is not clear. Adrenal insufficiency can only be correctly evaluated by a stimulation test, and has by this procedure been reported in up to 40-50% of patients treated with high-dose inhaled glucocorticoids. Medium- to low-dose inhaled glucocorticoids...... have been shown to cause adrenal suppression in 0-16% of patients. Glucocorticoid creams and nasal glucocorticoids can cause adrenal insufficiency, also when used within prescribed doses, but the frequency seems to be less than with inhaled glucocorticoids. Intraarticularly administered glucocorticoids...

  6. Inhibition of corticosteroid-binding globulin gene expression by glucocorticoids involves C/EBPβ.

    Directory of Open Access Journals (Sweden)

    Nicolette Verhoog

    Full Text Available Corticosteroid-binding globulin (CBG, a negative acute phase protein produced primarily in the liver, is responsible for the transport of glucocorticoids (GCs. It also modulates the bioavailability of GCs, as only free or unbound steroids are biologically active. Fluctuations in CBG levels therefore can directly affect GC bioavailability. This study investigates the molecular mechanism whereby GCs inhibit the expression of CBG. GCs regulate gene expression via the glucocorticoid receptor (GR, which either directly binds to DNA or acts indirectly via tethering to other DNA-bound transcription factors. Although no GC-response elements (GRE are present in the Cbg promoter, putative binding sites for C/EBPβ, able to tether to the GR, as well as HNF3α involved in GR signaling, are present. C/EBPβ, but not HNF3α, was identified as an important mediator of DEX-mediated inhibition of Cbg promoter activity by using specific deletion and mutant promoter reporter constructs of Cbg. Furthermore, knockdown of C/EBPβ protein expression reduced DEX-induced repression of CBG mRNA, confirming C/EBPβ's involvement in GC-mediated CBG repression. Chromatin immunoprecipitation (ChIP after DEX treatment indicated increased co-recruitment of C/EBPβ and GR to the Cbg promoter, while C/EBPβ knockdown prevented GR recruitment. Together, the results suggest that DEX repression of CBG involves tethering of the GR to C/EBPβ.

  7. Corticosteroids and redox potential modulate spontaneous contractions in isolated rat ventricular cardiomyocytes.

    Science.gov (United States)

    Rossier, Michel F; Lenglet, Sébastien; Vetterli, Laurène; Python, Magaly; Maturana, Andrés

    2008-10-01

    The mineralocorticoid receptor has been implicated in the development of several cardiac pathologies and could participate in the high incidence of lethal ventricular arrhythmias associated with hyperaldosteronism. We have observed previously that aldosterone markedly increases in vitro the rate of spontaneous contractions of isolated neonate rat ventricular myocytes, a putative proarrhythmogenic condition if occurring in vivo. In the present study, we investigated the effect of glucocorticoids, the involvement of the glucocorticoid receptor, and the modulation of their action by redox agents. Aldosterone and glucocorticoids exerted in vitro a similar, concentration-dependent chronotropic action on cardiomyocytes, which was mediated by both the mineralocorticoid and glucocorticoid receptors. However, the relative contribution of each receptor was different for each agonist, at each concentration. Angiotensin II induced a similar response that was entirely dependent on the activity of the glucocorticoid receptor. Corticosteroid action was modulated by the redox state of the cells, with oxidation increasing the response while reducing conditions partially preventing it. When only the mineralocorticoid receptor was functionally present in the cells, oxidation was necessary to reveal glucocorticoid action, but no obvious competition with mineralocorticoids was observed when both agonists where simultaneously present. In conclusion, corticosteroids exert a strong chronotropic action in ventricular cardiomyocytes, mediated by both the mineralocorticoid and glucocorticoid receptors and modulated by the redox state of the cell. This phenomenon is believed to be because of cell electric remodeling and could contribute in vivo to the deleterious consequence of inappropriate receptor activation, leading to increased susceptibility of patients to arrhythmias.

  8. Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey L Voorhees

    Full Text Available In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work reports some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation.

  9. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  10. Low-dose glucocorticoids in hyperandrogenism Efecto de bajas dosis de glucocorticoides en el hiperandrogenismo

    Directory of Open Access Journals (Sweden)

    Leonardo Rizzo

    2007-06-01

    Full Text Available To investigate the effect of low-doses of glucocorticoids on androgen and cortisol secretion during the course of the day, we evaluated clinical signs of hyperandrogenism and total, free and bioavailable testosterone, SHBG, and cortisol following two different protocols: A fourteen patients received betamethasone 0.6 mg/day (n=8 or methylprednisolone 4 mg/day (n=6, as single daily oral dose at 11.00 PM, during 30 days, B fourteen patients were evaluated under betamethasone 0.3 mg in a single daily dose at 11.00 PM during six months, 11 out of whom were re-evaluated six months later. Twenty eight women with hyperandrogenism were included and seven normal females were used as control. Blood samples were taken in follicular phase at 8 AM and 7 PM to determine SHBG, cortisol, total, free and bioavailable testosterone. In both protocols, a significant morning and evening decrease in cortisol and testosterone (pCon el objetivo de investigar el efecto de bajas dosis de glucocorticoides sobre la secreción de andrógenos y cortisol en el curso del día, evaluamos signos de hiperandrogenismo, testosterona total, libre y biodisponible y cortisol según dos protocolos diferentes: A catorce pacientes recibieron betametasona 0.6 mg/día (n= 8 o metilprednisolona 4 mg/día (n= 6 en dosis única cotidiana, a las 23 h, durante 30 días, B catorce pacientes fueron evaluadas bajo betametasona 0.3 mg en dosis única cotidiana a la 23 h, administrada durante 6 meses; de ellas, 11 pacientes fueron re-evaluadas 6 meses más tarde. Se incluyeron 28 mujeres con hiperandrogenismo y 7 controles normales. Se obtuvieron muestras de sangre en fase folicular a las 08:00 y 9:00 h para determinar SHBG, cortisol, testosterona total, libre y biodisponible. En ambos protocolos se observó una disminución significativa de cortisol y testosterona (p<0.05 a <0.01, más importante con betametasona (p<0.05. En el protocolo B, los niveles matutinos de SHBG aumentaron

  11. Glucocorticoid-induced myopathy in the intensive care unit

    DEFF Research Database (Denmark)

    Eddelien, Heidi Shil; Hoffmeyer, Henrik Westy; Lund, Eva Charlotte Løbner

    2015-01-01

    Glucocorticoids (GC) are used for intensive care unit (ICU) patients on several indications. We present a patient who was admitted to the ICU due to severe respiratory failure caused by bronchospasm requiring mechanical ventilation and treated with methylprednisolone 240 mg/day in addition...... to antibiotics and bronchiolytics. When the sedation was lifted on day 10, the patient was awake but quadriplegic. Blood samples revealed elevated muscle enzymes, electromyography showed myopathy, and a muscle biopsy was performed. Glucocorticoid-induced myopathy was suspected, GC treatment was tapered...

  12. Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval.

    Science.gov (United States)

    Roozendaal, Benno

    2002-11-01

    It is well established that glucocorticoid hormones, secreted by the adrenal cortex after a stressful event, influence cognitive performance. Some studies have found glucocorticoid-induced memory enhancement. However, many studies have reported impairing effects of glucocorticoids on memory function. This paper reviews recent findings from this laboratory on the acute effects of glucocorticoids in rats on specific memory phases, i.e., memory consolidation and memory retrieval. The evidence suggests that the consequences of glucocorticoid activation on cognition depend largely on the different memory phases investigated. Posttraining activation of glucocorticoid-sensitive pathways involving glucocorticoid receptors enhances memory consolidation in a pattern highly similar to that previously described for adrenal catecholamines. Also, similar to catecholamine effects on memory consolidation, glucocorticoid influences on memory consolidation depend on noradrenergic activation of the basolateral complex of the amygdala and interactions with other brain regions. By contrast, memory retrieval processes are usually impaired with high circulating levels of glucocorticoids or following infusions of glucocorticoid receptor agonists into the hippocampus. The hypothesis is proposed that these apparently dual effects of glucocorticoids on memory consolidation and memory retrieval might be related and that the basolateral complex of the amygdala is a key structure in a memory-modulatory system that regulates, in concert with other brain regions, stress and glucocorticoid effects on both memory consolidation and memory retrieval. Copyright 2002 Elsevier Science (USA)

  13. Structural variants of glucocorticoid receptor binding sites and different versions of positive glucocorticoid responsive elements: Analysis of GR-TRRD database.

    Science.gov (United States)

    Merkulov, Vasily M; Merkulova, Tatyana I

    2009-05-01

    The GR-TRRD section of the TRRD database contains the presently largest sample of published nucleotide sequences with experimentally confirmed binding to the glucocorticoid hormone receptor (GR). This sample comprises 160 glucocorticoid receptor binding sites (GRbs) from 77 vertebrate glucocorticoid-regulated genes. Analysis of this sample has demonstrated that the structure of only half GRbs (54%) corresponds to the generally accepted organization of glucocorticoid response element (GRE) as an inverted repeat of the TGTTCT hexanucleotide. As many as 40% of GRbs contain only the hexanucleotide, and the majority of such "half-sites" belong to the glucocorticoid-inducible genes. An expansion of the sample allowed the consensus of GRbs organized as an inverted repeat to be determined more precisely. Several possible mechanisms underlying the role of the noncanonical receptor binding sites (hexanucleotide half-sites) in the glucocorticoid induction are proposed based on analysis of the literature data.

  14. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    Science.gov (United States)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  15. Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape.

    Science.gov (United States)

    Stortz, Martin; Presman, Diego M; Bruno, Luciana; Annibale, Paolo; Dansey, Maria V; Burton, Gerardo; Gratton, Enrico; Pecci, Adali; Levi, Valeria

    2017-07-24

    The distribution of the transcription machinery among different sub-nuclear domains raises the question on how the architecture of the nucleus modulates the transcriptional response. Here, we used fluorescence fluctuation analyses to quantitatively explore the organization of the glucocorticoid receptor (GR) in the interphase nucleus of living cells. We found that this ligand-activated transcription factor diffuses within the nucleus and dynamically interacts with bodies enriched in the coregulator NCoA-2, DNA-dependent foci and chromatin targets. The distribution of the receptor among the nuclear compartments depends on NCoA-2 and the conformation of the receptor as assessed with synthetic ligands and GR mutants with impaired transcriptional abilities. Our results suggest that the partition of the receptor in different nuclear reservoirs ultimately regulates the concentration of receptor available for the interaction with specific targets, and thus has an impact on transcription regulation.

  16. X-ray Crystal Structure of the Novel Enhanced-Affinity Glucocorticoid Agonist Fluticasone Furoate in the Glucocorticoid Receptor−Ligand Binding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Biggadike, Keith; Bledsoe, Randy K.; Hassell, Anne M.; Kirk, Barrie E.; McLay, Iain M.; Shewchuk, Lisa M.; Stewart, Eugene L. (GSKNC); (GSK)

    2008-07-08

    An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17{alpha} furoate ester to occupy more fully the lipophilic 17{alpha} pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.

  17. Fluoxetine attenuates the inhibitory effect of glucocorticoid hormones on neurogenesis in vitro via a two-pore domain potassium channel, TREK-1.

    Science.gov (United States)

    Xi, Guangjun; Zhang, Xiangrong; Zhang, Ling; Sui, Yuxiu; Hui, Jiaojie; Liu, Shanshan; Wang, Yingxin; Li, Lingjiang; Zhang, Zhijun

    2011-04-01

    Sustained stress and elevated glucocorticoid reduces neurogenesis, whereas chronic treatment with antidepressants increases neurogenesis and blocks the effects of stress. Recently, TREK-1, a two-pore domain (K(2)p) potassium channel, has been shown to be involved in the mechanisms of major depression. This study aimed to investigate whether TREK-1 is involved in the alteration of neurogenesis according to glucocorticoids and antidepressants. The present study addressed the expression of TREK-1 in neural stem cells (NSCs) and found TREK-1 was only associated with NSC proliferation. Bupivacaine and curcumin, two strong TREK-1 channel inhibitors, significantly increased embryonic NSC viability and proliferation while transfection of hTREK-1 decreased cell proliferation in embryonic NSCs. Dexamethasone, a glucocorticoid hormone receptor agonist, upregulated both protein and mRNA levels of TREK-1 leading to decreased NSC proliferation which could be reversed by bupivacaine. Fluoxetine, a serotonin reuptake inhibitor antidepressant that has been previously found to inhibit TREK-1 channels, robustly, could attenuate the upregulation of TREK-1 expression and the inhibition of NSC proliferation induced by dexamethasone. Taken together, these data suggest that TREK-1 is associated with NSC proliferation and probably is a modulator of the effect that fluoxetine attenuates the inhibitory neurogenesis induced by glucocorticoid hormones.

  18. Concentration Dependent Actions of Glucocorticoids on Neuronal Viability and Survival

    NARCIS (Netherlands)

    Ábrahám, István M.; Meerlo, Peter; Luiten, Paul G.M.

    2006-01-01

    A growing body of evidence based on experimental data demonstrates that glucocorticoids (GCs) can play a potent role in the survival and death of neurons. However, these observations reflect paradoxical features of GCs, since these adrenal stress hormones are heavily involved in both

  19. Uso de glucocorticoides en enfermedades alérgicas

    Directory of Open Access Journals (Sweden)

    M Rodríguez-González

    2017-01-01

    Full Text Available Los glucocorticoides son análogos sintéticos de las hormonas adrenocorticales, de uso común, de gran utilidad en la práctica clínica del pediatra y se consideran la piedra angular del tratamiento farmacológico de enfermedades alérgicas.

  20. Chronic Glucocorticoid Hypersecretion in Cushing's Syndrome Exacerbates Cognitive Aging

    Science.gov (United States)

    Michaud, Kathy; Forget, Helene; Cohen, Henri

    2009-01-01

    Cumulative exposure to glucocorticoid hormones (GC) over the lifespan has been associated with cognitive impairment and may contribute to physical and cognitive degeneration in aging. The objective of the present study was to examine whether the pattern of cognitive deficits in patients with Cushing's syndrome (CS), a disorder characterized by…

  1. Stress, glucocorticoids and absences in a genetic epilepsy model

    NARCIS (Netherlands)

    Tolmacheva, E.A.; Oitzl, M.S.; Luijtelaar, E.L.J.M. van

    2012-01-01

    Although stress can alter the susceptibility of patients and animal models to convulsive epilepsy, little is known about the role of stress and glucocorticoid hormones in absence epilepsy. We measured the basal and acute stress-induced (foot-shocks: FS) concentrations of corticosterone in WAG/Rij

  2. Sensitivity to glucocorticoids is decreased in relapsing remitting multiple sclerosis

    NARCIS (Netherlands)

    van Winsen, Lisa M. L.; Muris, Daan F. R.; Polman, Chris H.; Dijkstra, Christine D.; van den Berg, Timo K.; Uitdehaag, Bernard M. J.

    2005-01-01

    Endogenous glucocorticoids (GC), which are under control of the hypothalamic-pituitary-adrenal axis, play an important role in controlling chronic inflammatory demyelinating diseases, like multiple sclerosis (MS). Increased hypothalamic-pituitary-adrenal axis activity has been found in MS patients

  3. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    reduces neurogenesis and cerebral volume, impairs memory and increases the incidence of cerebral palsy. Cerebral effects of glucocorticoids in later childhood have been less thoroughly studied, but apparent brain atrophy, reduced size of limbic structures and neuropsychiatric symptoms have been reported...

  4. Glucocorticoid management in rheumatoid arthritis: morning or night low dose?

    Science.gov (United States)

    Paolino, Sabrina; Cutolo, Maurizio; Pizzorni, Carmen

    2017-01-01

    Morning symptoms of rheumatoid arthritis (RA) are linked to circadian increase of night inflammation, supported by inadequate cortisol secretion in active disease. Therefore, exogenous glucocorticoid administration in RA is recommended by EULAR and ACR from the beginning of the diagnosis, since may partially act like a "replacement therapy". In addition, the prevention/treatment of the night up-regulation of the immune/inflammatory reaction has been shown more effective when exogenous glucocorticoid administration is managed with a night-time-release formulation. Despite a considerably higher cost than conventional prednisone (immediate release), chronotherapy with night-time-release prednisone has been recognized a cost-effective option for RA patients not on glucocorticoids who are eligible for therapy with biologic disease-modifying antirheumatic drugs (DMARDs). Interestingly, since different cell populations involved in the inflammatory process are particularly activated during the night (i.e. monocytes, macrophages), other therapeutical approaches used in RA, such as conventional DMARDs and non-steroidal anti-inflammatory drugs (NSAIDs) should follow the same concepts of glucocorticoid chronotherapy. Therefore, bedtime methotrexate chronotherapy was found to better manage RA symptoms, and several available NSAIDs (i.e. indomethacin, aceclofenac, ketoprofen, flurbiprofen, lornoxicam) have been recently modified in their formulation, in order to obtain more focused night action.

  5. Glucocorticoid receptor effects on the immune system and infl ammation

    NARCIS (Netherlands)

    E.L.T. van den Akker (Erica)

    2008-01-01

    textabstractThomas Addison’s discovery in the mid-1800s that the adrenal cortex was essential for survival preceded by nearly a century the demonstration that this gland produced at least two distinct hormones, each essential for normal life. How glucocorticoids sustained life remained a mystery for

  6. Impact of Preterm Birth on Glucocorticoid Variability in Human Milk.

    Science.gov (United States)

    Pundir, Shikha; Mitchell, Cameron J; Thorstensen, Eric B; Wall, Clare R; Perrella, Sharon L; Geddes, Donna T; Cameron-Smith, David

    2017-09-01

    Preterm birth is a stressful event for both the mother and infant. Whereas the initiation of breastfeeding is important for preterm infant health, little is known of the glucocorticoid hormones (cortisol and cortisone) in human milk following preterm birth. Research aim: The aim of this study was to investigate the relationship between human milk glucocorticoid concentrations and preterm birth. Human milk was sampled weekly for up to 6 weeks from 22 women who delivered a preterm infant at 28 to 32 weeks' gestation. Human milk was analyzed for total and free cortisol and cortisone concentrations using liquid chromatography-tandem mass spectrometry. Milk sampled from mothers of preterm infants had more cortisone than cortisol ( p milk of mothers who delivered infants after 30 weeks compared with those who delivered before 30 weeks of gestation ( p = .02). Glucocorticoid concentrations did not change over the sampling time (weeks 1 to 6 postpartum) and did not differ by infant gender. Glucocorticoids were present in all milk samples following preterm birth. Cortisone concentration tended to be higher in those who delivered after 30 weeks' gestation but did not increase further over the weeks following birth.

  7. Glucocorticoid-Induced Diabetes Mellitus: An Important but Overlooked Problem

    Directory of Open Access Journals (Sweden)

    Sunghwan Suh

    2017-05-01

    Full Text Available Glucocorticoids are widely used as potent anti-inflammatory and immunosuppressive drugs to treat a wide range of diseases. However, they are also associated with a number of side effects, including new-onset hyperglycemia in patients without a history of diabetes mellitus (DM or severely uncontrolled hyperglycemia in patients with known DM. Glucocorticoid-induced diabetes mellitus (GIDM is a common and potentially harmful problem in clinical practice, affecting almost all medical specialties, but is often difficult to detect in clinical settings. However, scientific evidence is lacking regarding the effects of GIDM, as well as strategies for prevention and treatment. Similarly to nonsteroid-related DM, the principles of early detection and risk factor modification apply. Screening for GIDM should be considered in all patients treated with medium to high doses of glucocorticoids. Challenges in the management of GIDM stem from wide fluctuations in postprandial hyperglycemia and the lack of clearly defined treatment protocols. Together with lifestyle measures, hypoglycemic drugs with insulin-sensitizing effects are indicated. However, insulin therapy is often unavoidable, to the point that insulin can be considered the drug of choice. The treatment of GIDM should take into account the degree and pattern of hyperglycemia, as well as the type, dose, and schedule of glucocorticoid used. Moreover, it is essential to instruct the patient and/or the patient's family about how to perform the necessary adjustments. Prospective studies are needed to answer the remaining questions regarding GIDM.

  8. The effect of early administration of glucocorticoids on learning and ...

    African Journals Online (AJOL)

    It has been observed that steroids administered postnatally may have transient retarding effect on learning and memory functions, and that animal age and sex may modify such effects. This study aims to illustrate the effect of early administration of glucocorticoids on learning and spatial memory. Wistar rat pups were ...

  9. Enhanced sensitivity to glucocorticoids in cytarabine-resistant AML.

    Science.gov (United States)

    Malani, D; Murumägi, A; Yadav, B; Kontro, M; Eldfors, S; Kumar, A; Karjalainen, R; Majumder, M M; Ojamies, P; Pemovska, T; Wennerberg, K; Heckman, C; Porkka, K; Wolf, M; Aittokallio, T; Kallioniemi, O

    2017-05-01

    We sought to identify drugs that could counteract cytarabine resistance in acute myeloid leukemia (AML) by generating eight resistant variants from MOLM-13 and SHI-1 AML cell lines by long-term drug treatment. These cells were compared with 66 ex vivo chemorefractory samples from cytarabine-treated AML patients. The models and patient cells were subjected to genomic and transcriptomic profiling and high-throughput testing with 250 emerging and clinical oncology compounds. Genomic profiling uncovered deletion of the deoxycytidine kinase (DCK) gene in both MOLM-13- and SHI-1-derived cytarabine-resistant variants and in an AML patient sample. Cytarabine-resistant SHI-1 variants and a subset of chemorefractory AML patient samples showed increased sensitivity to glucocorticoids that are often used in treatment of lymphoid leukemia but not AML. Paired samples taken from AML patients before treatment and at relapse also showed acquisition of glucocorticoid sensitivity. Enhanced glucocorticoid sensitivity was only seen in AML patient samples that were negative for the FLT3 mutation (P=0.0006). Our study shows that development of cytarabine resistance is associated with increased sensitivity to glucocorticoids in a subset of AML, suggesting a new therapeutic strategy that should be explored in a clinical trial of chemorefractory AML patients carrying wild-type FLT3.

  10. Glucocorticoids suppress vasopressin gene expression in human suprachiasmatic nucleus.

    NARCIS (Netherlands)

    Liu, R.-Y.; Unmehopa, U.A.; Zhou, J.-N.; Swaab, D.F.

    2006-01-01

    Sleep impairment is one of the major side effects of glucocorticoid therapy. The mechanism responsible for this circadian disorder is unknown, but alterations in the suprachiasmatic nucleus (SCN), the biological clock of the human brain, are presumed to play a major role. In the present study, the

  11. Glucocorticoids suppress vasopressin gene expression in human suprachiasmatic nucleus

    NARCIS (Netherlands)

    Liu, Rong-Yu; Unmehopa, Unga A.; Zhou, Jiang-Ning; Swaab, Dick F.

    2006-01-01

    Sleep impairment is one of the major side effects of glucocorticoid therapy. The mechanism responsible for this circadian disorder is unknown, but alterations in the suprachiasmatic nucleus (SCN), the biological clock of the human brain, are presumed to play a major role. In the present study, the

  12. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors.

    Science.gov (United States)

    Gray, J D; Milner, T A; McEwen, B S

    2013-06-03

    Brain-derived neurotrophic factor (BDNF) is a secreted protein that has been linked to numerous aspects of plasticity in the central nervous system (CNS). Stress-induced remodeling of the hippocampus, prefrontal cortex and amygdala is coincident with changes in the levels of BDNF, which has been shown to act as a trophic factor facilitating the survival of existing and newly born neurons. Initially, hippocampal atrophy after chronic stress was associated with reduced BDNF, leading to the hypothesis that stress-related learning deficits resulted from suppressed hippocampal neurogenesis. However, recent evidence suggests that BDNF also plays a rapid and essential role in regulating synaptic plasticity, providing another mechanism through which BDNF can modulate learning and memory after a stressful event. Numerous reports have shown BDNF levels are highly dynamic in response to stress, and not only vary across brain regions but also fluctuate rapidly, both immediately after a stressor and over the course of a chronic stress paradigm. Yet, BDNF alone is not sufficient to effect many of the changes observed after stress. Glucocorticoids and other molecules have been shown to act in conjunction with BDNF to facilitate both the morphological and molecular changes that occur, particularly changes in spine density and gene expression. This review briefly summarizes the evidence supporting BDNF's role as a trophic factor modulating neuronal survival, and will primarily focus on the interactions between BDNF and other systems within the brain to facilitate synaptic plasticity. This growing body of evidence suggests a more nuanced role for BDNF in stress-related learning and memory, where it acts primarily as a facilitator of plasticity and is dependent upon the coactivation of glucocorticoids and other factors as the determinants of the final cellular response. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Differential targeting of androgen and glucocorticoid receptors induces ER stress and apoptosis in prostate cancer cells

    Science.gov (United States)

    Bhalla, Pankaj; Yang, Ximing; Ugolkov, Andrey; Iwadate, Kenichi; Karseladze, Apollon; Budunova, Irina

    2012-01-01

    Androgen (AR) and glucocorticoid (GR) receptor signaling play opposing roles in prostate tumorigenesis: in prostate, AR acts as an oncogene, and GR is a tumor suppressor. Recently, we found that non-steroidal phyto-chemical compound A (CpdA) is AR/GR modulator acting as anti-inflammatory anti-androgen. CpdA inhibits AR and prevents GR transactivation while enhancing GR transrepression. GR and AR are controlled by proteasomal degradation. We found that prolonged exposure of LNCaP, LNCaP-GR, DU145 and PC3 prostate carcinoma (PCa) cells to proteasome inhibitor Bortezomib (BZ) caused AR degradation and GR accumulation. BZ enhanced CpdA ability to inhibit AR and to augment GR transrepression. We also found that CpdA+BZ differentially regulated GR/AR to cooperatively suppress PCa cell growth and survival and to induce endoplasmic reticulum stress (ERS). Importantly, CpdA+BZ differentially regulated GR-responsive genes. CpdA+BZ blocked activation of glucocorticoid-responsive pro-survival genes, including SGK1, but activated BZ-induced ERS-related genes BIP/HSPA5 and CHOP/GADD153. Using ChIP, we showed that SGK1, BIP/HSPA5 and CHOP regulation was due to effects of CpdA and CpdA+BZ on GR loading on their promoters. We also found that AR and GR are abundant in advanced PCa from patients treated by androgen ablation and/or chemotherapy: 56% of carcinomas from treated patients expressed both receptors, and the other 27% expressed either GR or AR. Overall, our data validate the concept of dual AR/GR targeting in prostate cancer (PC) and suggest that BZ combination with dual-target steroid receptor modulator CpdA has high potential for PC therapy. PMID:22223138

  14. Glucocorticoids for acute viral bronchiolitis in infants and young children.

    Science.gov (United States)

    Fernandes, Ricardo M; Bialy, Liza M; Vandermeer, Ben; Tjosvold, Lisa; Plint, Amy C; Patel, Hema; Johnson, David W; Klassen, Terry P; Hartling, Lisa

    2013-06-04

    Previous systematic reviews have not shown clear benefit of glucocorticoids for acute viral bronchiolitis, but their use remains considerable. Recent large trials add substantially to current evidence and suggest novel glucocorticoid-including treatment approaches. To review the efficacy and safety of systemic and inhaled glucocorticoids in children with acute viral bronchiolitis. We searched the Cochrane Central Register of Controlled Trials (CENTRAL 2012, Issue 12), MEDLINE (1950 to January week 2, 2013), EMBASE (1980 to January 2013), LILACS (1982 to January 2013), Scopus® (1823 to January 2013) and IRAN MedEx (1998 to November 2009). Randomised controlled trials (RCTs) comparing short-term systemic or inhaled glucocorticoids versus placebo or another intervention in children under 24 months with acute bronchiolitis (first episode with wheezing). Our primary outcomes were: admissions by days 1 and 7 for outpatient studies; and length of stay (LOS) for inpatient studies. Secondary outcomes included clinical severity parameters, healthcare use, pulmonary function, symptoms, quality of life and harms. Two authors independently extracted data on study and participant characteristics, interventions and outcomes. We assessed risk of bias and graded strength of evidence. We meta-analysed inpatient and outpatient results separately using random-effects models. We pre-specified subgroup analyses, including the combined use of bronchodilators used in a protocol. We included 17 trials (2596 participants); three had low overall risk of bias. Baseline severity, glucocorticoid schemes, comparators and outcomes were heterogeneous. Glucocorticoids did not significantly reduce outpatient admissions by days 1 and 7 when compared to placebo (pooled risk ratios (RRs) 0.92; 95% confidence interval (CI) 0.78 to 1.08 and 0.86; 95% CI 0.7 to 1.06, respectively). There was no benefit in LOS for inpatients (mean difference -0.18 days; 95% CI -0.39 to 0.04). Unadjusted results from a

  15. Glucocorticoid-induced osteoporosis – a disorder of mesenchymal stromal cells?

    Directory of Open Access Journals (Sweden)

    Mark Stuart Cooper

    2011-08-01

    Full Text Available Glucocorticoids are a class of steroid hormones that are essential to life but cause serious harm in excess. The main clinical features of glucocorticoid excess are due to adverse effects on cells and tissues that arise from a common developmental precursor – the mesenchymal stromal cell (MSC; sometimes referred to as the mesenchymal stem cell. Interestingly glucocorticoids appear essential for the differentiation of cells and tissues that arise from MSCs. High levels of glucocorticoids are used in tissue engineering strategies to enhance the formation of tissues such as bone, cartilage and muscle. This article discusses the paradox that glucocorticoids both enhance and impair MSC development and function. It will describe how endogenous glucocorticoids are likely to be important in these processes in vivo and will discuss the implications for therapies aimed at reducing the damage associated with the use of therapeutic glucocorticoids.

  16. Evaluating Glucocorticoid Administration on Biomechanical Properties of Rats’ Tibial Diaphysis

    Science.gov (United States)

    Freidouni, Mohammadjavad; Nejati, Hossein; Salimi, Maryam; Bayat, Mohammad; Amini, Abdollah; Noruzian, Mohsen; Asgharie, Mohammad Ali; Rezaian, Milad

    2015-01-01

    Background: Osteoporosis is a disease, which causes bone loss and fractures. Although glucocorticoids effectively suppress inflammation, their chronic use is accompanied by bone loss with a tendency toward secondary osteoporosis. Objectives: This study took into consideration the importance of cortical bone in the entire bone's mechanical competence. Hence, the aim of this study was to assess the effects of different protocols of glucocorticoid administration on the biomechanical properties of tibial bone diaphysis in rats compared to control and low-level laser-treated rats. Materials and Methods: This experimental study was conducted at Shahid Beheshti University of Medical Sciences, Tehran, Iran. We used systematic random sampling to divide 40 adult male rats into 8 groups with 5 rats in each group. Groups were as follows: 1) control, 2) dexamethasone (7 mg/week), 3) dexamethasone (0.7 mg/week), 4) methylprednisolone (7 mg/kg/week), 5) methylprednisolone (5 mg/kg twice weekly), 6) dexamethasone (7 mg/kg three times per week), 7) dexamethasone (0.7 mg/kg thrice per week), and 8) low-level laser-treated rats. The study periods were 4-7 weeks. At the end of the treatment periods, we examined the mechanical properties of tibial bone diaphysis. Data were analyzed by statistical analyses. Results: Glucocorticoid-treated rats showed weight loss and considerable mortality (21%). The biomechanical properties (maximum force) of glucocorticoid-treated rats in groups 4 (62 ± 2.9), 6 (63 ± 5.1), and 7 (60 ± 5.3) were comparable with the control (46 ± 1.5) and low-level laser-treated (57 ± 3.2) rats. Conclusions: In contrast to the findings in humans and certain other species, glucocorticoid administration caused anabolic effect on the cortical bone of tibia diaphysis bone in rats. PMID:26019900

  17. Glucocorticoid receptor haplotype and metabolic syndrome: the Lifelines cohort study.

    Science.gov (United States)

    Wester, Vincent L; Koper, Jan W; van den Akker, Erica L T; Franco, Oscar H; Stolk, Ronald P; van Rossum, Elisabeth F C

    2016-12-01

    An excess of glucocorticoids (Cushing's syndrome) is associated with metabolic syndrome (MetS) features. Several single-nucleotide polymorphisms (SNPs) in the glucocorticoid receptor (GR) gene influence sensitivity to glucocorticoids and have been associated with aspects of MetS. However, results are inconsistent, perhaps due to the heterogeneity of the studied populations and limited samples. Furthermore, the possible association between functional GR SNPs and prevalence of MetS remains unexplored. Cross-sectional population-based cohort study. MetS presence and carriage of functional GR SNPs (BclI, N363S, ER22/23EK, GR-9beta) were determined in 12 552 adult participants from Lifelines, a population-based cohort study in the Netherlands. GR SNPs were used to construct GR haplotypes. Five haplotypes accounted for 99.9% of all GR haplotypes found. No main effects of functional GR haplotypes on MetS were found, but the association of GR haplotype 4 (containing N363S) with MetS was influenced by interaction with age, sex and education status (P haplotype 4 increased MetS presence in younger men (at or below the median age of 47; odds ratio 1.77, P = 0.005) and in people of low education status (odds ratio 1.48, P = 0.039). A glucocorticoid receptor haplotype that confers increased sensitivity to glucocorticoids appears to increase the risk of metabolic syndrome, but only among younger men and less educated individuals, suggesting gene-environment interactions. © 2016 European Society of Endocrinology.

  18. Five patients with biochemical and/or clinical generalized glucocorticoid resistance without alterations in the glucocorticoid receptor gene

    NARCIS (Netherlands)

    N.A.T.M. Huizenga (Nannette); P. de Lange (Pieter); J.W. Koper (Jan); W.W. de Herder (Wouter); R. Abs; J.H. Kasteren; F.H. de Jong (Frank); S.W.J. Lamberts (Steven)

    2000-01-01

    textabstractCortisol resistance (CR) is a rare disease characterized by a generalized reduced sensitivity of end-organs to the actions of glucocorticoids (GCs). GC effects are mediated by the GC receptor (GR). The molecular alterations in CR described thus far were

  19. Glucocorticoid Induced Cerebellar Toxicity in the Developing Neonate: Implications for Glucocorticoid Therapy during Bronchopulmonary Dysplasia

    Directory of Open Access Journals (Sweden)

    Kevin K. Noguchi

    2014-01-01

    Full Text Available Prematurely born infants commonly suffer respiratory dysfunction due to the immature state of their lungs. As a result, clinicians often administer glucocorticoid (GC therapy to accelerate lung maturation and reduce inflammation. Unfortunately, several studies have found GC therapy can also produce neuromotor/cognitive deficits and selectively stunt the cerebellum. However, despite its continued use, relatively little is known about how exposure to this hormone might produce neurodevelopmental deficits. In this review, we use rodent and human research to provide evidence that GC therapy may disrupt cerebellar development through the rapid induction of apoptosis in the cerebellar external granule layer (EGL. The EGL is a transient proliferative region responsible for the production of over 90% of the neurons in the cerebellum. During normal development, endogenous GC stimulation is thought to selectively signal the elimination of the EGL once production of new neurons is complete. As a result, GC therapy may precociously eliminate the EGL before it can produce enough neurons for normal cerebellar function. It is hoped that this review may provide information for future clinical research in addition to translational guidance for the safer use of GC therapy.

  20. Glucocorticoid suppression of intraovarian levels of prostaglandins and plasminogen activator activity at ovulation in the rat ovary.

    Science.gov (United States)

    Mikuni, Masato; Mitsube, Kenrokure; Peterson, C Matthew; Brännström, Mats

    2009-12-01

    Ovulation is a local physiological inflammatory process with active participation of inflammatory mediators and immune cells. To prevent extensive inflammatory injury to the follicle at ovulation there is also a local anti-inflammatory system at ovulation, converting the inactive glucocorticoid cortisone to the more potent cortisol. The aim of this study was to examine the effects of the potent glucocorticoid analogue, dexamethasone (DEX), on ovulation rate and the ovarian production of the ovulatory mediators prostaglandins (PG) and plasminogen activators (PA). DEX (0.3, 3, or 100 microM) was administered to an in vitro rat ovarian perfusion system prior to the addition of an ovulation-inducing dose of luteinizing hormone (LH) and 3-isobutyl-1-methylxanthine (IBMX). Control ovaries were perfused only with LH + IBMX. Each perfusion experiment extended over 20 h with ovulation occurring in vitro around 12-15 h after hormonal stimulation. In a second set of perfusion experiments, extending over 10 h, the tissue levels of PG and PA activity in the ovary were evaluated at a time 2-5 h before anticipated ovulation. The median numbers of ovulated oocytes in the groups with DEX of 0.3, 3, and 100 microM were 17.0, 8.5 and 11.0 per treated ovary, respectively. These numbers were not different from those of LH + IBMX-controls (12.5). DEX (100 microM) suppressed tissue levels of PGE(2) and PA activity and decreased (DEX 3 microM, 100 microM) estradiol levels in the perfusion media. These results indicate that certain degrees of suppression of PG, PA activity, and estradiol are not sufficient to modulate ovulation rate and/or that glucocorticoids may positively modulate other mediator pathways that exert inhibitory influence on ovulation.

  1. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  2. Is There a Renaissance of Glucocorticoids in Rheumatoid Arthritis?

    Science.gov (United States)

    Kirwan, J R; Gunasekera, Wma

    2017-10-01

    The first therapeutic use of glucocorticoids was in a patient with severe rheumatoid arthritis and the symptomatic benefit was astounding. Adverse effects from increasingly large doses led to them being overshadowed, dismissed as inappropriate treatment, and ignored for 20 years - but in the last 2 decades, the accumulating evidence and clinical practice suggest there is a justified renaissance in their use as a first-line treatment. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  3. Pharmaceutical topical dosage forms as carriers for glucocorticoids

    OpenAIRE

    Raposo, Sara Sofia Caliço, 1984-

    2013-01-01

    Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2013 With rapid developments in materials science, pharmaceutics and biotechnology, new systems have emerged for topical glucocorticoids delivery. Despite being a mature class of drugs, they are still the most frequently prescribed drugs by dermatologists, explaining the interest on this field. Over the years, research has focused on strategies to optimize the potency of steroids while ...

  4. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity.

    Science.gov (United States)

    Lee, Mi-Jeong; Pramyothin, Pornpoj; Karastergiou, Kalypso; Fried, Susan K

    2014-03-01

    Central obesity is associated with insulin resistance and dyslipidemia. Thus, the mechanisms that control fat distribution and its impact on systemic metabolism have importance for understanding the risk for diabetes and cardiovascular disease. Hypercortisolemia at the systemic (Cushing's syndrome) or local levels (due to adipose-specific overproduction via 11β-hydroxysteroid dehydrogenase 1) results in the preferential expansion of central, especially visceral fat depots. At the same time, peripheral subcutaneous depots can become depleted. The biochemical and molecular mechanisms underlying the depot-specific actions of glucocorticoids (GCs) on adipose tissue function remain poorly understood. GCs exert pleiotropic effects on adipocyte metabolic, endocrine and immune functions, and dampen adipose tissue inflammation. GCs also regulate multiple steps in the process of adipogenesis. Acting synergistically with insulin, GCs increase the expression of numerous genes involved in fat deposition. Variable effects of GC on lipolysis are reported, and GC can improve or impair insulin action depending on the experimental conditions. Thus, the net effect of GC on fat storage appears to depend on the physiologic context. The preferential effects of GC on visceral adipose tissue have been linked to higher cortisol production and glucocorticoid receptor expression, but the molecular details of the depot-dependent actions of GCs are only beginning to be understood. In addition, increasing evidence underlines the importance of circadian variations in GCs in relationship to the timing of meals for determining their anabolic actions on the adipocyte. In summary, although the molecular mechanisms remain to be fully elucidated, there is increasing evidence that GCs have multiple, depot-dependent effects on adipocyte gene expression and metabolism that promote central fat deposition. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease

  5. Glucocorticoids entrain molecular clock components in human peripheral cells.

    Science.gov (United States)

    Cuesta, Marc; Cermakian, Nicolas; Boivin, Diane B

    2015-04-01

    In humans, shift work induces a desynchronization between the circadian system and the outside world, which contributes to shift work-associated medical disorders. Using a simulated night shift experiment, we previously showed that 3 d of bright light at night fully synchronize the central clock to the inverted sleep schedule, whereas the peripheral clocks located in peripheral blood mononuclear cells (PBMCs) took longer to reset. This underlines the need for testing the effects of synchronizers on both the central and peripheral clocks. Glucocorticoids display circadian rhythms controlled by the central clock and are thought to act as synchronizers of rodent peripheral clocks. In the present study, we tested whether the human central and peripheral clocks were sensitive to exogenous glucocorticoids (Cortef) administered in the late afternoon. We showed that 20 mg Cortef taken orally acutely increased PER1 expression in PBMC peripheral clocks. After 6 d of Cortef administration, the phases of central markers were not affected, whereas those of PER2-3 and BMAL1 expression in PBMCs were shifted by ∼ 9.5-11.5 h. These results demonstrate, for the first time, that human peripheral clocks are entrained by glucocorticoids. Importantly, they suggest innovative interventions for shift workers and jet-lag travelers, combining synchronizing agents for the central and peripheral clocks. © FASEB.

  6. Adipocyte glucocorticoid receptors mediate fat-to-brain signaling.

    Science.gov (United States)

    de Kloet, Annette D; Krause, Eric G; Solomon, Matia B; Flak, Jonathan N; Scott, Karen A; Kim, Dong-Hoon; Myers, Brent; Ulrich-Lai, Yvonne M; Woods, Stephen C; Seeley, Randy J; Herman, James P

    2015-06-01

    Stress-related (e.g., depression) and metabolic pathologies (e.g., obesity) are important and often co-morbid public health concerns. Here we identify a connection between peripheral glucocorticoid receptor (GR) signaling originating in fat with the brain control of both stress and metabolism. Mice with reduced adipocyte GR hypersecrete glucocorticoids following acute psychogenic stress and are resistant to diet-induced obesity. This hypersecretion gives rise to deficits in responsiveness to exogenous glucocorticoids, consistent with reduced negative feedback via adipocytes. Increased stress reactivity occurs in the context of elevated hypothalamic expression of hypothalamic-pituitary-adrenal (HPA) axis-excitatory neuropeptides and in the absence of altered adrenal sensitivity, consistent with a central cite of action. Our results identify a novel mechanism whereby activation of the adipocyte GR promotes peripheral energy storage while inhibiting the HPA axis, and provide functional evidence for a fat-to-brain regulatory feedback network that serves to regulate not just homeostatic energy balance but also responses to psychogenic stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Glucocorticoids play a key role in circadian cell cycle rhythms.

    Directory of Open Access Journals (Sweden)

    Thomas Dickmeis

    2007-04-01

    Full Text Available Clock output pathways play a pivotal role by relaying timing information from the circadian clock to a diversity of physiological systems. Both cell-autonomous and systemic mechanisms have been implicated as clock outputs; however, the relative importance and interplay between these mechanisms are poorly understood. The cell cycle represents a highly conserved regulatory target of the circadian timing system. Previously, we have demonstrated that in zebrafish, the circadian clock has the capacity to generate daily rhythms of S phase by a cell-autonomous mechanism in vitro. Here, by studying a panel of zebrafish mutants, we reveal that the pituitary-adrenal axis also plays an essential role in establishing these rhythms in the whole animal. Mutants with a reduction or a complete absence of corticotrope pituitary cells show attenuated cell-proliferation rhythms, whereas expression of circadian clock genes is not affected. We show that the corticotrope deficiency is associated with reduced cortisol levels, implicating glucocorticoids as a component of a systemic signaling pathway required for circadian cell cycle rhythmicity. Strikingly, high-amplitude rhythms can be rescued by exposing mutant larvae to a tonic concentration of a glucocorticoid agonist. Our work suggests that cell-autonomous clock mechanisms are not sufficient to establish circadian cell cycle rhythms at the whole-animal level. Instead, they act in concert with a systemic signaling environment of which glucocorticoids are an essential part.

  8. Environmental disturbance confounds prenatal glucocorticoid programming experiments in Wistar rats.

    Science.gov (United States)

    O'Regan, D; Kenyon, C J; Seckl, J R; Holmes, M C

    2010-07-01

    Low birth weight in humans is predictive of hypertension in adult life, and while the mechanisms underlying this link remain unknown, fetal overexposure to glucocorticoids has been implicated. We have previously shown that prenatal dexamethasone (DEX) exposure in the rat lowers birth weight and programmes adult hypertension. This current study aimed to unravel the molecular nature of this hypertension. However, unknowingly, post hoc investigations revealed that our animals had been subjected to environmental noise stresses from an adjacent construction site, which were sufficient to confound our prenatal DEX-programming experiments. This perinatal stress successfully established low birth weight, hypercorticosteronaemia, insulin resistance, hypertension and hypothalamic-pituitary-adrenal axis dysfunction in vehicle (VEH)-treated offspring, such that the typical distinctions between both treatment groups were ameliorated. The lack of an additional effect on DEX-treated offspring is suggestive of a maximal effect of perinatal stress and glucocorticoids, serving to prevent against the potentially detrimental effects of sustained glucocorticoid hyper-exposure. Finally, this paper serves to inform researchers of the potential detrimental effects of neighbouring construction sites to their experiments.

  9. I.c.v. administration of the nonsteroidal glucocorticoid receptor antagonist, CP-472555, prevents exacerbated hypoglycemia during repeated insulin administration.

    Science.gov (United States)

    Kale, A Y; Paranjape, S A; Briski, K P

    2006-06-30

    Hypoglycemia elicits an integrated array of CNS-mediated counterregulatory responses, including activation of the hypothalamic-pituitary-adrenal axis. The role of antecedent adrenocortical hypersecretion in impaired glucose counterregulation remains controversial. The present studies utilized the selective, nonsteroidal glucocorticoid receptor antagonist, CP-472555, as a pharmacological tool to investigate the hypothesis that hypoglycemic hypercorticosteronemia modulates CNS efferent autonomic and neuroendocrine motor responses to recurring insulin-induced hypoglycemia via glucocorticoid receptor-dependent mechanisms. Groups of adult male rats were injected s.c. with either one or four doses of the intermediate-acting insulin, Humulin neutral protamine Hagedorn (NPH), on as many days, while controls were injected with diluent alone. Animals injected with four doses of insulin were pretreated by i.c.v. administration of graded doses of the glucocorticoid receptor antagonist or vehicle alone prior to the first three doses of insulin. Repeated daily injection of NPH exacerbated hypoglycemia, attenuated patterns of glucagon and epinephrine secretion, and diminished neuronal transcriptional activation in discrete CNS metabolic loci, including the lateral hypothalamic area, dorsomedial hypothalamic nucleus, paraventricular hypothalamic nucleus, and nucleus of the solitary tract. While i.c.v. delivery of 25 or 100 ng doses of CP-472555 did not alter any of these parameters, animals treated with 500 ng exhibited circulating glucose, glucagon, and epinephrine levels that were similar to those in rats injected with one dose of insulin, as well as a reversal of recurring insulin-induced hypoglycemia-associated reductions in Fos immunolabeling in the lateral hypothalamic area, dorsomedial hypothalamic nucleus, and paraventricular hypothalamic nucleus. These results provide unique pharmacological evidence that antecedent activation of central glucocorticoid receptor is required

  10. Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data

    Science.gov (United States)

    Da Silva, J A P; Jacobs, J W G; Kirwan, J R; Boers, M; Saag, K G; Inês, L B S; de Koning, E J P; Buttgereit, F; Cutolo, M; Capell, H; Rau, R; Bijlsma, J W J

    2006-01-01

    Adverse effects of glucocorticoids have been abundantly reported. Published reports on low dose glucocorticoid treatment show that few of the commonly held beliefs about their incidence, prevalence, and impact are supported by clear scientific evidence. Safety data from recent randomised controlled clinical trials of low dose glucocorticoid treatment in RA suggest that adverse effects associated with this drug are modest, and often not statistically different from those of placebo. PMID:16107513

  11. Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing’s syndrome: cohort study

    OpenAIRE

    Fardet, Laurence; Petersen, Irene; Nazareth, Irwin

    2012-01-01

    Objective To investigate whether there is an increased risk of cardiovascular events in people who exhibit iatrogenic Cushing’s syndrome during treatment with glucocorticoids. Design Cohort study. Setting 424 UK general practices contributing to The Health Improvement Network database. Participants People prescribed systemic glucocorticoids and with a diagnosis of iatrogenic Cushing’s syndrome (n=547) and two comparison groups: those prescribed glucocorticoids and with no diagnosis of iatroge...

  12. Glucocorticoid-induced leucine zipper (GILZ) is involved in glucocorticoid-induced and mineralocorticoid-induced leptin production by osteoarthritis synovial fibroblasts.

    Science.gov (United States)

    Malaise, Olivier; Relic, Biserka; Charlier, Edith; Zeddou, Mustapha; Neuville, Sophie; Deroyer, Céline; Gillet, Philippe; Louis, Edouard; Malaise, Michel G; de Seny, Dominique

    2016-10-04

    Glucocorticoid-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory activities of glucocorticoids. However, GILZ deletion does not impair the anti-inflammatory activities of exogenous glucocorticoids in mice arthritis models and GILZ could also mediate some glucocorticoid-related adverse events. Osteoarthritis (OA) is a metabolic disorder that is partly attributed to adipokines such as leptin, and we previously observed that glucocorticoids induced leptin secretion in OA synovial fibroblasts. The purpose of this study was to position GILZ in OA through its involvement in the anti-inflammatory activities of glucocorticoids and/or in the metabolic pathway of leptin induction. The influences of mineralocorticoids on GILZ and leptin expression were also investigated. Human synovial fibroblasts were isolated from OA patients during knee replacement surgery. Then, the cells were treated with a glucocorticoid (prednisolone), a mineralocorticoid (aldosterone), a glucocorticoid receptor (GR) antagonist (mifepristone), a selective glucocorticoid receptor agonist (Compound A), mineralocorticoid receptor (MR) antagonists (eplerenone and spironolactone), TNF-α or transforming growth factor (TGF)-β. Cells were transfected with shRNA lentiviruses for the silencing of GILZ and GR. The leptin, IL-6, IL-8 and matrix metalloproteinase (MMP)-1 levels were measured by ELISA. Leptin, the leptin receptor (Ob-R), GR and GILZ expression levels were analyzed by western blotting and/or RT-qPCR. (1) The glucocorticoid prednisolone and the mineralocorticoid aldosterone induced GILZ expression dose-dependently in OA synovial fibroblasts, through GR but not MR. Similar effects on leptin and Ob-R were observed: leptin secretion and Ob-R expression were also induced by prednisolone and aldosterone through GR; (2) GILZ silencing experiments demonstrated that GILZ was involved in the glucocorticoid-induced and mineralocorticoid-induced leptin secretion and Ob-R expression in OA

  13. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids

    National Research Council Canada - National Science Library

    Niwa, Minae; Jaaro-Peled, Hanna; Tankou, Stephanie; Seshadri, Saurav; Hikida, Takatoshi; Matsumoto, Yurie; Cascella, Nicola G; Kano, Shin-ichi; Ozaki, Norio; Nabeshima, Toshitaka; Sawa, Akira

    2013-01-01

    .... Accordingly, excess stressors result in adult-onset neuropsychiatric disorders. We describe an underlying mechanism in which glucocorticoids link adolescent stressors to epigenetic controls in neurons...

  14. Treatment of frozen shoulder with subcutaneous TNF-alpha blockade compared with local glucocorticoid injection

    DEFF Research Database (Denmark)

    Schydlowsky, Pierre; Szkudlarek, Marcin; Madsen, Ole Rintek

    2012-01-01

    We compared the effect of subcutaneous adalimumab injections with intraarticular glucocorticoid injections on frozen shoulder of 18 patients with unilateral joint involvement. Ten patients were randomised to subcutaneous injections with adalimumab and eight to intraarticular glucocorticoid inject...... injections administered every other week for a total of three administrations. The evaluation included validated scores. No effect of subcutaneous injections of adalimumab on frozen shoulder symptoms was demonstrated.......We compared the effect of subcutaneous adalimumab injections with intraarticular glucocorticoid injections on frozen shoulder of 18 patients with unilateral joint involvement. Ten patients were randomised to subcutaneous injections with adalimumab and eight to intraarticular glucocorticoid...

  15. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M

    Science.gov (United States)

    Miyata, Masanori; Lee, Ji-Yun; Susuki-Miyata, Seiko; Wang, Wenzhuo Y.; Xu, Haidong; Kai, Hirofumi; Kobayashi, Koichi S.; Flavell, Richard A.; Li, Jian-Dong

    2015-01-01

    Glucocorticoids are among the most commonly used anti-inflammatory agents. Despite the enormous efforts in elucidating the glucocorticoid-mediated anti-inflammatory actions, how glucocorticoids tightly control overactive inflammatory response is not fully understood. Here we show that glucocorticoids suppress bacteria-induced inflammation by enhancing IRAK-M, a central negative regulator of Toll-like receptor signalling. The ability of glucocorticoids to suppress pulmonary inflammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IRAK-M-deficient mice. Glucocorticoids improve the survival rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but not in IRAK-M-deficient mice. Moreover, we show that glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M expression via mutually and synergistically enhancing p65 and glucocorticoid receptor binding to the IRAK-M promoter. Together, our studies unveil a mechanism by which glucocorticoids tightly control the inflammatory response and host defense via the induction of IRAK-M and may lead to further development of anti-inflammatory therapeutic strategies. PMID:25585690

  16. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    Science.gov (United States)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  17. Systematic review on the effect of glucocorticoid use on procoagulant, anti-coagulant and fibrinolytic factors.

    Science.gov (United States)

    van Zaane, B; Nur, E; Squizzato, A; Gerdes, V E A; Büller, H R; Dekkers, O M; Brandjes, D P M

    2010-11-01

    Whether glucocorticoid use contributes to a hypercoagulable state, and thereby enhances the thrombotic risk, is controversial. We aimed to examine the effects of glucocorticoid use on coagulation and fibrinolysis. MEDLINE and EMBASE databases were searched to identify published studies comparing glucocorticoid treatment with a glucocorticoid-free control situation. Subjects could be either patients or healthy volunteers. Two investigators independently performed study selection and data extraction. Results were expressed as standardized mean difference, if possible; data were pooled with a random-effects model. Of the 1967 identified publications, 36 papers were included. In healthy volunteers, a clear rise in factor (F)VII, VIII and XI activity was observed after glucocorticoid treatment, but these data alone provided insufficient evidence to support hypercoagulability. However, during active inflammation, glucocorticoids significantly increased levels of plasminogen activator inhibitor-1 (PAI-1), whereas levels of von Willebrand factor (VWF) and fibrinogen decreased. Peri-operative use of glucocorticoids inhibited the increase in tissue-type plasminogen activator induced by surgery. The present study showed differential effects of glucocorticoids depending on the clinical situation in which it is given, most likely as a result of their disease modifying properties. Clinical outcome studies are needed to adequately assess the risk-benefit of glucocorticoid use per population when thrombotic complication is the focus. © 2010 International Society on Thrombosis and Haemostasis.

  18. Glucocorticoid receptor mediated suppression of natural killer cell activity: identification of associated deacetylase and corepressor molecules.

    Science.gov (United States)

    Bush, Kristin A; Krukowski, Karen; Eddy, Justin L; Janusek, Linda Witek; Mathews, Herbert L

    2012-01-01

    Physical and psychological stressors reduce natural killer cell function. This reduction in cellular function results from stress-induced release of glucocorticoids. Glucocorticoids act upon natural killer cells to deacetylate and transrepress immune response genes through epigenetic processes. However, other than the glucocorticoid receptor, the proteins that participate in this process are not well described in natural killer cells. The purpose of this study was to identify the proteins associated with the glucocorticoid receptor that are likely epigenetic participants in this process. Treatment of natural killer cells with the synthetic glucocorticoid, dexamethasone, produced a significant time dependent reduction in natural killer cell activity as early as 8h post treatment. This reduction in natural killer cell activity was preceded by nuclear localization of the glucocorticoid receptor with histone deacetylase 1 and the corepressor, SMRT. Other class I histone deacetylases were not associated with the glucocorticoid receptor nor was the corepressor NCoR. These results demonstrate histone deacetylase 1 and SMRT to associate with the ligand activated glucocorticoid receptor within the nuclei of natural killer cells and to be the likely participants in the histone deacetylation and transrepression that accompanies glucocorticoid mediated reductions in natural killer cell function. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. INVITED REVIEW: The usefulness of measuring glucocorticoids for assessing animal welfare.

    Science.gov (United States)

    Ralph, C R; Tilbrook, A J

    2016-02-01

    Glucocorticoids (corticosterone in birds and rodents and cortisol in all other mammals) are glucoregulatory hormones that are synthesized in response to a range of stimuli including stress and are regularly measured in the assessment of animal welfare. Glucocorticoids have many normal or non-stress-related functions, and glucocorticoid synthesis can increase in response to pleasure, excitement, and arousal as well as fear, anxiety, and pain. Often, when assessing animal welfare, little consideration is given to normal non-stress-related glucocorticoid functions or the complex mechanisms that regulate the effects of glucocorticoids on physiology. In addition, it is rarely acknowledged that increased glucocorticoid synthesis can indicate positive welfare states or that a stress response can increase fitness and improve the welfare of an animal. In this paper, we review how and when glucocorticoid synthesis increases, the actions mediated through type I and type II glucocorticoid receptors, the importance of corticosteroid-binding globulin, the role of 11 β-hydroxysteroid dehydrogenase, and the key aspects of neurophysiology relevant to activating the hypothalamo-pituitary-adrenal axis. This is discussed in the context of animal welfare assessment, particularly under the biological functioning and affective states frameworks. We contend that extending the assessment of animal welfare to key brain regions afferent to the hypothalamus and incorporating the aspects of glucocorticoid physiology that affect change in target tissue will advance animal welfare science and inspire more comprehensive assessment of the welfare of animals.

  20. Topical glucocorticoids and the skin-mechanisms of action: an update

    Directory of Open Access Journals (Sweden)

    A. Ahluwalia

    1998-01-01

    Full Text Available The topical glucocorticoids (GCs represent the treatment of choice for many types of inflammatory dermatoses. Despite the extensive use of this class of drugs as first line therapy the mechanism of their action is uncertain. It is clear that the multiplicity of actions of the topical GCs is an important facet of their scope in the treatment of dermal disorders. The aim of this update is to review past and current theories regarding how these agents might work. Current understanding of the molecular mechanism s of GC action has advanced significantly over the past decade with the realisation that multiple systems are responsible for transduction of GC effects at a molecular level. The two primary modes of action are via interaction directly with DNA or indirectly through modulation of specific transcription factors: the endpoint in both cases being modulation of specific protein synthesis. Both of these mechanisms will be discussed. In particular this review will concentrate on the possibility that a GC-inducible protein, termed lipocortin 1, may have a significant role to play in the anti-inflammatory actions of these drugs. Additionally it has become apparent that several inflammatory enzymes induced in inflamm ation are sites of inhibitory action of the GCs, and the possibility that this occurs in the skin will be discussed paying particular attention to the inducible phospholipase A2, nitric oxide synthase and cyclooxygenase systems.

  1. Adiponectin is associated with dynamic hyperinflation and a favourable response to inhaled glucocorticoids in patients with COPD.

    Science.gov (United States)

    Leivo-Korpela, Sirpa; Lehtimäki, Lauri; Vuolteenaho, Katriina; Nieminen, Riina; Kööbi, Lea; Järvenpää, Ritva; Kankaanranta, Hannu; Saarelainen, Seppo; Moilanen, Eeva

    2014-01-01

    Adipokines are protein mediators first described as products of adipose tissue regulating energy metabolism and appetite. Recently, adipokines have also been found to modulate inflammation and smooth muscle cell responses. Therefore we investigated the association of two adipokines, adiponectin and leptin, with the degree of emphysema, pulmonary function, symptoms and glucocorticoid responsiveness in patients with COPD. Plasma adiponectin and leptin levels, spirometry, body plethysmography and symptoms were measured in 43 male COPD patients with smoking history ≥ 20 pack-years, post bronchodilator FEV1/FVC COPD, plasma adiponectin levels correlated positively with airway resistance (Raw) (r = 0.362, p = 0.019) and functional residual capacity (FRC) (r = 0.355, p = 0.046). Furthermore, the baseline adiponectin concentration correlated negatively with the fluticasone induced changes in St George's Respiratory questionnaire (SGRQ) symptom score (r = -0.413, p = 0.040) and in FRC % pred (r = -0.428, p = 0.003), i.e. a higher baseline plasma adiponectin level was associated with more pronounced alleviation of symptoms and dynamic hyperinflation. Plasma leptin levels were not related to the measures of lung function, symptoms or glucocorticoid responsiveness. Plasma adiponectin levels were associated with peripheral airway obstruction and dynamic hyperinflation in patients with COPD. A higher adiponectin level predicted more favourable relief of symptoms and hyperinflation during glucocorticoid treatment. Adiponectin may have a role in the COPD pathogenesis; it may also be a biomarker of disease severity and treatment responses in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat.

    Directory of Open Access Journals (Sweden)

    Irina Bogdarina

    2010-02-01

    Full Text Available Adverse events in pregnancy may 'programme' offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11beta-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence.

  3. Stress-induced enhancement of mouse amygdalar synaptic plasticity depends on glucocorticoid and ß-adrenergic activity.

    Directory of Open Access Journals (Sweden)

    Ratna Angela Sarabdjitsingh

    Full Text Available BACKGROUND: Glucocorticoid hormones, in interaction with noradrenaline, enable the consolidation of emotionally arousing and stressful experiences in rodents and humans. Such interaction is thought to occur at least partly in the basolateral nucleus of the amygdala (BLA which is crucially involved in emotional memory formation. Extensive evidence points to long-term synaptic potentiation (LTP as a mechanism contributing to memory formation. Here we determined in adolescent C57/Bl6 mice the effects of stress on LTP in the LA-BLA pathway and the specific roles of corticosteroid and β-adrenergic receptor activation in this process. PRINCIPAL FINDINGS: Exposure to 20 min of restraint stress (compared to control treatment prior to slice preparation enhanced subsequent LTP induction in vitro, without affecting baseline fEPSP responses. The role of glucocorticoid receptors, mineralocorticoid receptors and β2-adrenoceptors in the effects of stress was studied by treating mice with the antagonists mifepristone, spironolactone or propranolol respectively (or the corresponding vehicles prior to stress or control treatment. In undisturbed controls, mifepristone and propranolol administration in vivo did not influence LTP induced in vitro. By contrast, spironolactone caused a gradually attenuating form of LTP, both in unstressed and stressed mice. Mifepristone treatment prior to stress strongly reduced the ability to induce LTP in vitro. Propranolol normalized the stress-induced enhancement of LTP to control levels during the first 10 min after high frequency stimulation, after which synaptic responses further declined. CONCLUSIONS: Acute stress changes BLA electrical properties such that subsequent LTP induction is facilitated. Both β-adrenergic and glucocorticoid receptors are involved in the development of these changes. Mineralocorticoid receptors are important for the maintenance of LTP in the BLA, irrespective of stress-induced changes in the

  4. Use of day 1 early morning cortisol to predict the need for glucocorticoid replacement after pituitary surgery.

    Science.gov (United States)

    Bondugulapati, L N Rao; Campbell, Christopher; Chowdhury, Sharmistha Roy; Goetz, Pablo; Davies, J Stephen; Rees, D Aled; Hayhurst, Caroline

    2016-01-01

    Assessment of adrenal reserve in patients who have undergone pituitary surgery is crucial. However, there is no clear consensus with regards to the type and timing of the test that should be used in the immediate post-operative period. Recently, there has been increased interest in measuring post-operative cortisol levels. We present our data utilising day 1 post-operative early morning cortisol as a tool to assess adrenal reserve in steroid-naive patients. A retrospective analysis of endoscopic pituitary surgery undertaken over a 2-year period. 82 patients underwent 84 surgeries in total. Patients who were already on glucocorticoids pre-operatively and patients with Cushing's disease, pituitary apoplexy and those without follow-up data were excluded, leaving a study group of 44 patients with 45 operations. A 9am day 1 post-operative cortisol value of > 400 nmol/L was taken as an indicator of adequate adrenal reserve. All the patients were reassessed at 6 weeks with a standard short synacthen test (SST) using 250 micrograms of intravenous synacthen. 22 out of 45 patients had a cortisol value of > 400 nmol/L on day 1 post-operatively and were discharged without glucocorticoid supplementation. Of these, only 2 patients subsequently failed the SST when reassessed at 6-8 weeks. The remaining 23 patients had a cortisol value of cortisol levels whereas the remaining fourteen patients showed adequate adrenal reserve. The 9 am cortisol value had high specificity (81.8%) and positive predictive value (90.9%) for integrity of the HPA axis. Sensitivity was 58.8% and negative predictive value was 39.1%. A day 1 post-operative early morning cortisol is a useful tool to predict adrenal reserve post-pituitary surgery, enabling clinicians to avoid unnecessary blanket glucocorticoid replacement.

  5. Organising to Enable Innovation

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approach....... The findings reveal a continous organising process between individual/ team creativity and organisational structures/control to enable innovation at firm level. Organising provides a dynamic approach and contains the integrated reconstruction of creativity, structures and boundaries for enhanced balance...... of explorative and exploitative learning in uncertain environments. Shedding light on the cross-disciplinary theories to organise innovation provides a contribution at the firm level to enable innovation....

  6. Synergistic stimulation of myogenesis by glucocorticoid and IGF-I signaling.

    Science.gov (United States)

    Pansters, N A; Langen, R C; Wouters, E F; Schols, A M

    2013-05-01

    Muscle wasting is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Exercise stimulates muscle recovery, but its efficacy is variable, depending on the clinical condition and medical treatment. Systemic glucocorticoids, commonly administered in high doses during acute disease exacerbations or as maintenance treatment in end-stage disease, are known to contribute to muscle wasting. As muscle mass recovery involves insulin-like growth factor (IGF)-I signaling, which can be stimulated by anabolic steroids, the impact of glucocorticoids and the effect of simultaneous IGF-I stimulation by anabolic steroids on muscle recovery and growth were investigated. The effects of, and interactions between, glucocorticoid and IGF-I signaling on skeletal muscle growth were assessed in differentiating C2C12 myocytes. As proof of principle, we performed a post hoc analysis stratifying patients by glucocorticoid use of a clinical trial investigating the efficacy of anabolic steroid supplementation on muscle recovery in muscle-wasted patients with COPD. Glucocorticoids strongly impaired protein synthesis signaling, myotube formation, and muscle-specific protein expression. In contrast, in the presence of glucocorticoids, IGF-I synergistically stimulated myotube fusion and myofibrillar protein expression, which corresponded with restored protein synthesis signaling by IGF-I and increased transcriptional activation of muscle-specific genes by glucocorticoids. In COPD patients on maintenance glucocorticoid treatment, the clinical trial also revealed an enhanced effect of anabolic steroids on muscle mass and respiratory muscle strength. In conclusion, synergistic effects of anabolic steroids and glucocorticoids on muscle recovery may be caused by relief of the glucocorticoid-imposed blockade on protein synthesis signaling, allowing effective translation of glucocorticoid-induced accumulation of muscle-specific gene transcripts.

  7. O papel dos glicocorticóides na expressão dos sintomas de humor: uma revisão El rol de los glicocorticóides en la expresión de los síntomas de humor: una revisión The role of glucocorticoids in the modulation of mood symptoms: a review

    Directory of Open Access Journals (Sweden)

    Flávio Valdozende Alheira

    2005-08-01

    entrecruce de las palabras clave: cortisol, corticosteróides, depresión, trastorno bipolar e psicosis. Fueron inclusos artículos originales (33 y de revisión (22 y excluidos relatos de caso. Algunos estudios sugieren que altas concentraciones plasmáticas de cortisol, a largo plazo, pueden llevar a una depresión, proponiendo que la utilización de drogas antiglicocorticóides tendría un efecto antidepresivo. Otros, por otro lado, indican no haber asociación entre hipercortisolemia e episodios decisivos.The objective of this study was to make a literature review on associations between high plasma levels of corticosteroids and psychiatry symptoms, as well as to identify the most common clinical manifestations and treatments suggested. Hipercortisolemia resulting from alterations in the HPA axis would be associated with mood disorders, especially depression, whereas the use of glucocorticoid drugs would be related to the occurrence of psychiatric symptoms such as mania, depression, affective lability and psychosis. The review was performed via Medline and Bireme indexes, and articles published in English, French and Spanish between 1993 and 2003 were included. The following keywords were used: cortisol, corticosteroids, depression, bipolar disorder and psychosis. Original (33 and review (22 articles were included in the review; case reports were excluded. Some studies suggest that long-term high plasma cortisol concentrations may cause depression, and that the use of antiglucocorticoid drugs would have an antidepressant effect. On the other hand, other studies do not show association between hypercortisolemia and depressive episodes.

  8. Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems.

    Science.gov (United States)

    Zhang, Q W; Hugues-Salas, E; Giddings, R P; Wang, M; Tang, J M

    2013-04-08

    Record-high 19.25Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) colorless transmissions across the entire C-band are experimentally demonstrated, for the first time, in reflective electro-absorption modulator (REAM)-based 25km standard SMF systems using intensity modulation and direct detection. Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting signal line rates of 9.75Gb/s and 9.5Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100MHz as well as DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically multiplexed for intensity modulation of a single optical carrier by an 8GHz REAM. The REAM colorlessness is experimentally characterized, based on which optimum REAM operating conditions are identified. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive transceiver optimization functions and live performance monitoring are fully exploited to optimize key OOFDM transceiver and system parameters. For different wavelengths within the C-band, corresponding minimum received optical powers at the FEC limit vary in a range of <0.5dB and bit error rate performances for both baseband and passband signals are almost identical. Furthermore, detailed investigations are also undertaken of the maximum aggregated signal line rate sensitivity to electrical sub-band power variation. It is shown that the aforementioned system has approximately 3dB tolerance to RF sub-band power variation.

  9. Very high frequency of fragility fractures associated with high-dose glucocorticoids in postmenopausal women: A retrospective study

    Directory of Open Access Journals (Sweden)

    Goichi Kageyama

    2017-06-01

    Fragility fractures associated with high-dose glucocorticoid therapy are common among postmenopausal women. Extreme care should be taken especially for postmenopausal women when high-dose glucocorticoid therapy is required.

  10. Glucocorticoid administration for Graves' hyperthyroidism treated by radioiodine. A questionnaire survey among members of the European Thyroid Association

    NARCIS (Netherlands)

    Lazarus, J. H.; Bartalena, L.; Marcocci, C.; Kahaly, G. J.; Krassas, G.; Wiersinga, W. M.; Baldeschi, L.; Boboridis, K.; Boschi, A.; Currò, N.; Daumerie, C.; Dickinson, A. J.; Eckstein, A.; Kendall-Taylor, P.; Lane, C. M.; Ludgate, M. E.; Mann, K.; Marinò, M.; Mourits, M. P.; Nardi, M.; Neoh, C.; Orgiazzi, J.; Pearce, S.; Perros, P.; Pinchera, A.; Pitz, S.; Salvi, M.; Sivelli, P.; Stahl, M.; von Arx, G.

    2010-01-01

    Background: Glucocorticoid prophylaxis is required in some instances after radioiodine (RAI) treatment for Graves' hyperthyroidism to prevent progression of Graves' orbitopathy (GO). However, no randomized clinical trial has been performed to ascertain the optimum glucocorticoid therapy. Aim and

  11. Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice.

    Science.gov (United States)

    Cuffe, James S M; Saif, Zarqa; Perkins, Anthony V; Moritz, Karen M; Clifton, Vicki L

    2017-08-01

    Maternal dexamethasone exposure in the mouse impairs placental development and programs adult disease in a sexually dimorphic manner. Glucocorticoids bind to different glucocorticoid receptor (GR) isoforms to regulate gene transcription and cellular signaling. We hypothesized that sexually dimorphic placental responses to glucocorticoids are due to differences in GR isoforms present in the placenta. Pregnant C57Bl6 mice were exposed to saline or dexamethasone from E12.5 until E14.5 (1 µg/kg/h) before the collection of placentae. Cytoplasmic and nuclear protein fractions were extracted from placentae of male and female fetuses for Western blot analysis of GR isoforms. Eight known isoforms of the GR were detected in the mouse placenta including the translational isoforms GRα-A, B, C and D1-3 and the splice variants GRA and GRP. The expression of GRA, GRP and each of the GRα isoforms were altered by dexamethasone in relation to fetal sex and cellular location. Placentae of female fetuses had higher GRα-A and GRP expression in the cytoplasm than males, and GRα-C was more highly expressed in the nucleus of females than that in males. Dexamethasone significantly increased the cytoplasmic expression of GRα-A, but reduced the expression of GRα-C in placentae of males. Dexamethasone increased the expression of the GRα-C-regulated genes Sgk1 and Bcl2l11, particularly in females. The cleaved caspase-3 staining in placental sections indicated GRα-C may mediate sex differences in dexamethasone-induced apoptosis. These findings may underlie the sex-specific placental adaptations that regulate different growth profiles in males and females and different risks for programmed disease outcomes in offspring. © 2017 Society for Endocrinology.

  12. Behavioral neuroadaptation to alcohol : from glucocorticoids to histone acetylation

    Directory of Open Access Journals (Sweden)

    Daniel Beracochea

    2016-10-01

    Full Text Available A prime mechanism that contributes to the development and maintenance of alcoholism is the dysregulation of the hypothalamic-pituitary-adrenal (HPA axis activity and the release of glucocorticoids (cortisol in humans and primates, corticosterone in rodents from the adrenal glands. In the brain, sustained, local elevation of glucocorticoid concentration even long after cessation of chronic alcohol consumption compromises functional integrity of a circuit including the prefrontal cortex, the hippocampus and the amygdala. These structures are implicated in learning and memory processes as well as in orchestrating neuroadaptive responses to stress and anxiety responses. Thus, potentiation of anxiety-related neuroadaptation by alcohol is characterized by an abnormally amygdala hyperactivity coupled with a hypofunction of the prefrontal cortex and the hippocampus. This review describes research on molecular and epigenetic mechanisms by which alcohol causes distinct region-specific adaptive changes in gene expression patterns and ultimately, leads to a variety of cognitive and behavioral impairments on prefrontal- and hippocampal-based tasks. Alcohol-induced neuroadaptations involve the dysregulation of numerous signaling cascades, leading to long-term changes in transcriptional profiles of genes, through the actions of transcription factors such as CREB (cAMP response element binding protein and chromatin remodeling due to post-translational modifications of histone proteins. We describe the role of prefrontal-hippocampus-amygdala circuit in mediating the effects of acute and chronic alcohol on learning and memory, and region-specific molecular and epigenetic mechanisms involved in this process. This review first discusses the importance of brain region-specific dysregulation of glucocorticoid concentration in the development of alcohol dependence and describes on how persistently increased glucocorticoid levels in prefrontal cortex may be involved in

  13. OSTEOPENIA in cancellous bone of sheep induced by Glucocorticoid alone

    DEFF Research Database (Denmark)

    Ding, Ming; Cheng, L.; Bollen, Peter

    2008-01-01

    ) treatment for a long period of time after ovariectomy (OVX) to induce osteoporosis (1). However, no information in literature is available whether osteoporosis (OP) in sheep can be induced by application of GC alone. This study aimed to investigate effects of GC alone without OVX on three-dimensional (3-D......Introduction: There is a great need for suitable large animal models that closely resemble osteoporosis in humans, and that they have adequate bone size for bone prosthesis and biomaterial research. Previous investigations have shown that osteoporotic sheep model requires glucocorticoid (GC...

  14. Glucocorticoid supplementation during ovarian stimulation for IVF or ICSI.

    Science.gov (United States)

    Kalampokas, Theodoros; Pandian, Zabeena; Keay, Stephen D; Bhattacharya, Siladitya

    2017-03-27

    Ovarian response to stimulation during in-vitro fertilisation (IVF) and intra-cytoplasmic sperm injection (ICSI) plays an important role in determining live birth rates. Adjuvant treatments during ovarian stimulation that have different modes of action have been used to improve ovarian response to stimulation and outcome of IVF. Glucocorticoids (GCs) are a class of steroid hormones that have been used either alone or in combination with other stimulatory regimens in order to improve folliculogenesis and pregnancy rates. However, considerable uncertainty remains over whether administration of glucocorticoid during ovarian stimulation until oocyte recovery is superior to no glucocorticoid in improving live birth rates in women undergoing IVF/ICSI. To determine the safety and effectiveness of systemic glucocorticoids during ovarian stimulation for IVF and ICSI cycles. We searched the Cochrane Gynaecology and Fertility Group Specialised Register, the Cochrane Central Register of Studies Online (CRSO), MEDLINE, Embase, CINAHL and PsycINFO from inception to 10 October 2016. We handsearched reference lists of articles, trial registers and relevant conference proceedings and contacted researchers in the field. We included randomised controlled trials (RCTs) comparing adjuvant treatment with systemic glucocorticoids during ovarian stimulation for IVF or ICSI cycles versus no adjuvant treatment. Two review authors independently selected studies, assessed risk of bias and extracted the data. Our primary outcome was live birth. Secondary outcomes included clinical pregnancy, multiple pregnancy, miscarriage, ovarian hyperstimulation syndrome (OHSS) and side-effects. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) and pooled the data using a fixed-effect model. The quality of the evidence was assessed using GRADE methods. Four RCTs were included in the review (416 women). The trials compared glucocorticoid supplementation during IVF stimulation versus placebo

  15. Glucocorticoid hypersensitivity syndrome resulting from inhaled corticosteroid: a case report

    Directory of Open Access Journals (Sweden)

    Ejiofor T Ugwu

    2017-01-01

    Full Text Available The term ‘glucocorticoid hypersensitivity syndrome’ is very sparse in the literature. It describes a very rare entity characterized by the appearance of typical Cushingoid features in the presence of normal or low serum cortisol levels. It is also known as cortisol hyper-reactive syndrome or normocortisolemic Cushing’s syndrome. This report illustrates this unusual phenomenon accompanied by metabolic syndrome-like manifestations in a young Nigerian man who was receiving inhaled corticosteroid for bronchial asthma and who experienced a significant improvement following withdrawal of the steroid treatment.

  16. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor

    DEFF Research Database (Denmark)

    Presman, Diego M; Ogara, M Florencia; Stortz, Martín

    2014-01-01

    Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation wi...

  17. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress.

    NARCIS (Netherlands)

    Oomen, C.A.; Mayer, J.L.; de Kloet, E.R.; Joëls, M.; Lucassen, P.J.

    2007-01-01

    In rodents, stress suppresses adult neurogenesis. This is thought to involve activation of glucocorticoid receptors in the brain. In the present study, we therefore questioned whether glucocorticoid receptor blockade by mifepristone can normalize the effects of chronic stress on adult neurogenesis.

  18. A chemical screening procedure for glucocorticoid signaling with a zebrafish larva luciferase reporter system.

    Science.gov (United States)

    Weger, Benjamin D; Weger, Meltem; Jung, Nicole; Lederer, Christin; Bräse, Stefan; Dickmeis, Thomas

    2013-09-10

    Glucocorticoid stress hormones and their artificial derivatives are widely used drugs to treat inflammation, but long-term treatment with glucocorticoids can lead to severe side effects. Test systems are needed to search for novel compounds influencing glucocorticoid signaling in vivo or to determine unwanted effects of compounds on the glucocorticoid signaling pathway. We have established a transgenic zebrafish assay which allows the measurement of glucocorticoid signaling activity in vivo and in real-time, the GRIZLY assay (Glucocorticoid Responsive In vivo Zebrafish Luciferase activitY). The luciferase-based assay detects effects on glucocorticoid signaling with high sensitivity and specificity, including effects by compounds that require metabolization or affect endogenous glucocorticoid production. We present here a detailed protocol for conducting chemical screens with this assay. We describe data acquisition, normalization, and analysis, placing a focus on quality control and data visualization. The assay provides a simple, time-resolved, and quantitative readout. It can be operated as a stand-alone platform, but is also easily integrated into high-throughput screening workflows. It furthermore allows for many applications beyond chemical screening, such as environmental monitoring of endocrine disruptors or stress research.

  19. Instructions for producing a mouse model of glucocorticoid-induced osteoporosis

    DEFF Research Database (Denmark)

    Thiele, S.; Baschant, U.; Rauch, A.

    2014-01-01

    with a compromised bone quality and an increased fracture risk. At the cellular level, glucocorticoids suppress bone formation and stimulate bone resorption, which leads to loss of bone mass. To investigate the underlying mechanisms and new therapeutic strategies, the in vivo model for glucocorticoid-induced bone...

  20. Glucocorticoid-induced osteoporosis: an update on current pharmacotherapy and future directions

    NARCIS (Netherlands)

    Bultink, I.E.M.; Baden, M.; Lems, W.F.

    2013-01-01

    Introduction: Glucocorticoid-induced osteoporosis (GIOP) is one of the most devastating side-effects of glucocorticoid (GC) use, as it is associated with an increased fracture risk. The importance of GIOP as a health problem is underlined by the frequent use of GC treatment in patients with various

  1. FXR agonist GW4064 increases plasma glucocorticoid levels in C57BL/6 mice

    NARCIS (Netherlands)

    Hoekstra, Menno; van der Sluis, Ronald J.; Li, Zhaosha; Oosterveer, Maaike H.; Groen, Albert K.; Van Berkel, Theo J. C.

    2012-01-01

    Since high expression of farnesoid X receptor (FXR) has been detected in glucocorticoid-producing adrenocortical cells, we evaluated the potential role of FXR in adrenal glucocorticoid production. FXR agonist GW4064 increased fasting plasma corticosterone levels (+45%; P <0.01) in C57BL/6 mice,

  2. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding

  3. Fatal and non-fatal adverse events of glucocorticoid therapy for Graves' orbitopathy

    DEFF Research Database (Denmark)

    Marcocci, Claudio; Watt, Torquil; Altea, Maria Antonietta

    2012-01-01

    The objective of this study was to investigate the side effects of glucocorticoid (GC) therapy observed by European thyroidologists during the treatment of Graves' orbitopathy (GO).......The objective of this study was to investigate the side effects of glucocorticoid (GC) therapy observed by European thyroidologists during the treatment of Graves' orbitopathy (GO)....

  4. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors.

    Science.gov (United States)

    Lehrner, Amy; Bierer, Linda M; Passarelli, Vincent; Pratchett, Laura C; Flory, Janine D; Bader, Heather N; Harris, Iris R; Bedi, Aarti; Daskalakis, Nikolaos P; Makotkine, Iouri; Yehuda, Rachel

    2014-02-01

    Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24-h urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DST and 24-h urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation. Published by Elsevier Ltd.

  5. Regulation of structural plasticity and neurogenesis during stress and diabetes; protective effects of glucocorticoid receptor antagonists

    NARCIS (Netherlands)

    Lucassen, P.J.; Fitzsimons, C.P.; Vreugdenhil, E.; Hu, P.; Oomen, C.; Revsin, Y.; Joëls, M.; de Kloet, E.R.; Gravanis, A.G.; Mellon, S.H.

    2011-01-01

    In this chapter, we will review changes in structural plasticity of the adult hippocampus during stress and exposure to glucocorticoids (GCs). We further discuss the protective and normalizing role of glucocorticoid receptor (GR) antagonist treatment under these conditions and its implications for

  6. Glucocorticoids exert context-dependent effects on cells of the joint in vitro

    DEFF Research Database (Denmark)

    Madsen, Suzi H; Andreassen, Kim V; Christensen, Søren T

    2011-01-01

    Glucocorticoids are known to attenuate bone formation in vivo leading to decreased bone volume and increased risk of fractures, whereas effects on the joint tissue are less characterized. However, glucocorticoids appear to have a reducing effect on inflammation and pain in osteoarthritis. This st...

  7. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis ?

    Directory of Open Access Journals (Sweden)

    Damien eBonhomme

    2014-02-01

    Full Text Available A disruption of the vitamin A signaling pathway has been involved in age-related memory decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD, a nutritional model leading to a hyposignaling of the retinoid pathway, we have recently demonstrated that retinoic acid (RA, the active metabolite of vitamin A, is efficient to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis alterations. Besides, excess of glucocorticoids (GCs occurring with aging is known to strongly inhibit hippocampal plasticity and functions and few studies report on the counteracting effects of RA signaling pathway on GCs action. Here, we have addressed whether the modulation of brain GCs availability could be one of the biological mechanisms involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus, we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin A supplementation on plasma and hippocampal corticosterone (CORT levels in Wistar rats. We have also investigated corticosteroid binding globulin (CBG binding capacity and 11beta-Hydrosteroid Dehydrogenase type 1 (11β-HSD1 activity, both important modulators of CORT availability at the peripheral and hippocampal levels respectively. Interestingly, we show that the vitamin A status regulates levels of free plasma CORT and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and 11β-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats could have some deleterious consequences on spatial memory, anxiety-like behavior and adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin A supplementation. Thus, the modulation of GCs availability by vitamin A status is an important biological mechanism that should be taken into account in order to prevent age-related cognitive decline and hippocampal plasticity alterations.

  8. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis?

    Science.gov (United States)

    Bonhomme, Damien; Minni, Amandine M; Alfos, Serge; Roux, Pascale; Richard, Emmanuel; Higueret, Paul; Moisan, Marie-Pierre; Pallet, Véronique; Touyarot, Katia

    2014-01-01

    A disruption of the vitamin A signaling pathway has been involved in age-related memory decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD), a nutritional model leading to a hyposignaling of the retinoid pathway, we have recently demonstrated that retinoic acid (RA), the active metabolite of vitamin A, is efficient to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis alterations. Besides, excess of glucocorticoids (GCs) occurring with aging is known to strongly inhibit hippocampal plasticity and functions and few studies report on the counteracting effects of RA signaling pathway on GCs action. Here, we have addressed whether the modulation of brain GCs availability could be one of the biological mechanisms involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus, we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin A supplementation on plasma and hippocampal corticosterone (CORT) levels in Wistar rats. We have also investigated corticosteroid binding globulin (CBG) binding capacity and 11beta-Hydrosteroid Dehydrogenase type 1 (11β-HSD1) activity, both important modulators of CORT availability at the peripheral and hippocampal levels respectively. Interestingly, we show that the vitamin A status regulates levels of free plasma CORT and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and 11β-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats could have some deleterious consequences on spatial memory, anxiety-like behavior and adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin A supplementation. Thus, the modulation of GCs availability by vitamin A status is an important biological mechanism that should be taken into account in order to prevent age-related cognitive decline and hippocampal plasticity alterations.

  9. Antenatal glucocorticoid treatment and polymorphisms of the glucocorticoid and mineralocorticoid receptors are associated with IQ and behavior in young adults born very preterm.

    Science.gov (United States)

    van der Voorn, Bibian; Wit, Jan M; van der Pal, Sylvia M; Rotteveel, Joost; Finken, Martijn J J

    2015-02-01

    Preterm survivors exhibit neurodevelopmental impairments. Whether this association is influenced by antenatal glucocorticoid treatment and glucocorticoid sensitivity is unknown. This study aimed to study the effects of antenatal glucocorticoid treatment and glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) polymorphisms on behavior and intelligence quotient (IQ). This study was part of the 19-year follow-up of the Project On Preterm and Small-for-gestational-age birth cohort. Multicenter study. Three hundred forty-four 19-year-olds born very preterm (gestational age Behavior (Young Adult Self Report and Young Adult Behavior Checklist for parents) and IQ (digital Multicultural Capacity Test-intermediate level). Data were analyzed by linear regression and presented as regression coefficient (95% confidence interval [CI]). Sex ratio, GR (R23K; N363S) and MR (-2G/C; I180V) genotypes were equally distributed between treated and nontreated subjects. Independent of treatment, R23K carriers had improved IQ scores (β 9.3; 95% CI, 3.4 to 15.1) and a tendency toward more favorable total problem behavior scores (β -8.5; 95% CI, -17.3 to 0.2) ; -2G/C CC carriers had poorer IQ scores (β -6.2; 95% CI, -10.5 to -1.9); I180V carriers had more favorable internalizing behavior scores (β -2.0; 95% CI, -3.9 to -0.1). Antenatal glucocorticoid treatment was associated with more unfavorable behavior scores, especially internalizing behavior (β 2.4; 95% CI, 0.3 to 4.5). Interaction between GR and MR polymorphisms and antenatal glucocorticoid treatment was observed, with poorer IQ scores for exposed N363S carriers; poorer intellectual subdomain scores for exposed I180V-carriers; more favorable total problem behavior scores for exposed R23K carriers. Genetic variations in glucocorticoid sensitivity and antenatal glucocorticoid treatment are associated with IQ and behavior in young adult preterm survivors.

  10. Glucocorticoid treatment earlier in childhood and adolescence show dose-response associations with diurnal cortisol levels

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Holm, Sara K; Uldall, Peter

    2017-01-01

    Heightened levels of glucocorticoids in children and adolescents have previously been linked to prolonged changes in the diurnal regulation of the stress-hormone cortisol, a glucocorticoid regulated by the hypothalamic-pituitary-adrenal-axis (HPA-axis). To address this question, we examined...... the salivary cortisol awakening response (CAR) and daily cortisol output in 36 children and adolescents (25 girls/11 boys) aged 7-16 years previously treated with glucocorticoids for nephrotic syndrome or rheumatic disorder and 36 healthy controls. Patients and controls did not significantly differ in the CAR...... patients showed a positive linear relationship with the mean daily glucocorticoid doses administered during treatment. The observed dose-response associations suggest that glucocorticoid therapy during childhood and adolescence might trigger long-term changes in HPA-axis regulation, which may differ...

  11. Insulin inhibition of glucocorticoid-stimulated gene transcription: requirement for an insulin response element?

    Science.gov (United States)

    Pierreux, C E; Rousseau, G G; Lemaigre, F P

    1999-01-25

    The glucocorticoid hormone receptor binds to regulatory elements of target genes and activates transcription through interactions with coactivators. For a subset of genes, glucocorticoid receptor activity is inhibited by insulin. The present paper analyzes recent data on the molecular mechanisms whereby insulin exerts this antiglucocorticoid effect. Two models are proposed. In the first model insulin controls the activity of an insulin-responsive factor bound to an insulin-responsive DNA element. In a second model, insulin targets a non-DNA bound coactivator of the glucocorticoid receptor. Here, the gene-specificity of the effect of insulin is conferred by the combined action of the glucocorticoid receptor, of DNA-bound transcription factors and of coactivators, which form a higher order structure that binds to a DNA sequence called glucocorticoid/insulin responsive unit.

  12. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia

    Science.gov (United States)

    Koyanagi, Satoru; Kusunose, Naoki; Taniguchi, Marie; Akamine, Takahiro; Kanado, Yuki; Ozono, Yui; Masuda, Takahiro; Kohro, Yuta; Matsunaga, Naoya; Tsuda, Makoto; Salter, Michael W.; Inoue, Kazuhide; Ohdo, Shigehiro

    2016-01-01

    Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated by glucocorticoid-induced enhancement of the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. We identify serum- and glucocorticoid-inducible kinase-1 (SGK-1) as the key molecule responsible for the glucocorticoid-enhanced release of ATP from astrocytes. SGK-1 protein levels in spinal astrocytes are increased in response to glucocorticoid stimuli and enhanced ATP release by opening the pannexin-1 hemichannels. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, thus opening up novel approaches to the management of chronic pain. PMID:27739425

  13. High faecal glucocorticoid levels predict mortality in ring-tailed lemurs (Lemur catta).

    Science.gov (United States)

    Ethan Pride, R

    2005-03-22

    Glucocorticoid levels are commonly used as measures of stress in wild animal populations, but their relevance to individual fitness in a wild population has not been demonstrated. In this study I followed 93 ring-tailed lemurs (Lemur catta) at Berenty Reserve in Madagascar, collecting 1089 faecal samples from individually recognized animals, and recording their survival over a 2 year period. I evaluated faecal glucocorticoid levels as predictors of individual survival to the end of the study. Animals with high glucocorticoid levels had a significantly higher mortality rate. This result suggests that glucocorticoid measures can be useful predictors of individual survival probabilities in wild populations. The 'stress landscape' indicated by glucocorticoid patterns may approximate the fitness landscape to which animals adapt.

  14. Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle

    DEFF Research Database (Denmark)

    Søe, Kent; Delaissé, Jean-Marie

    2010-01-01

    that glucocorticoids deeply modify this resorptive behavior. First, glucocorticoids gradually induce excavations with a trenchlike morphology while reducing the time-dependent increase in excavation numbers. This indicates that glucocorticoids make osteoclasts elongate the excavations they initiated rather than...... migrating to a new resorption site, as in control conditions. Second, the round excavations in control conditions contain undegraded demineralized collagen as repeatedly reported earlier, whereas the excavations with a trenchlike morphology generated under glucocorticoid exposure appear devoid of leftovers...... of demineralized collagen. This indicates that collagenolysis proceeds generally at a lower rate than demineralization under control conditions, whereas collagenolysis rates are increased up to the level of demineralization rates in the presence of glucocorticoids. Taking these observations together leads...

  15. Total brain, cortical and white matter volumes in children previously treated with glucocorticoids

    DEFF Research Database (Denmark)

    Holm, Sara K; Madsen, Kathrine S; Vestergaard, Martin

    2018-01-01

    BACKGROUND: Perinatal exposure to glucocorticoids and elevated endogenous glucocorticoid-levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid-treatment during childhood on brain volumes. METHODS: Thirty children and adolescents...... with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical grey and white matter, brain, and intracranial volume, and total cortical thickness and surface area were...... were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures. CONCLUSION: Observed smaller total brain...

  16. Expression and function of nuclear receptor coregulators in brain : understanding the cell-specific effects of glucocorticoids

    NARCIS (Netherlands)

    Laan, Siem van der

    2008-01-01

    Currently, the raising awareness of the role of glucocorticoids in the onset of numerous (neuro)-pathologies constitutes the increasing necessity of understanding the mechanisms of action of glucocorticoids in bodily processes and brain functioning. Glucocorticoids mediate their effects by binding

  17. A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined with Enzalutamide in Castrate Resistant Prostate Cancer

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-14-1-0021 TITLE: A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined...way it adapts is by upregulating another hormone receptor, the glucocorticoid receptor (GR), which may compensate for diminished AR activity. The

  18. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, T.; Nygren, C.; Slaug, B.

    2014-01-01

    This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument...... was translated from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland, and Iceland. This iterative process involved occupational therapists, architects, building engineers, and professional translators...... Enabler. Inter-rater reliability was calculated by means of percentage agreement and kappa statistics. Overall good percentage agreement for the personal and environmental components of the instrument was shown, indicating that the instrument was sufficiently reliable for application in practice...

  19. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Slaug, Bjørn; Brandt, Åse

    2010-01-01

    This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients and their home environments. The instrument was translated...... from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland and Iceland. This iterative process involved occupational therapists, architects, building engineers and professional translators...... Enabler. Inter-rater reliability was calculated by means of percentage agreement and kappa statistics. Overall good percentage agreement for the personal and environmental components of the instrument was shown, indicating that the instrument was sufficiently reliable for application in practice...

  20. Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Brandt, Åse

    2009-01-01

    , however, the built environment shows serious deficits when it comes to accessibility. This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of inter-rater reliability, when used in occupational therapy practice. The instrument was translated from...... statistics. Overall good percentage agreement for all parts of the instrument was shown, indicating that the Nordic Housing Enabler is sufficiently reliable for application in practice and research in the Nordic context. The kappa results varied and possible explanations are discussed, which should be kept......Development and reliability testing of the Nordic Housing Enabler – an instrument for accessibility assessment of the physical housing. Tina Helle & Åse Brandt University of Lund, Health Sciences, Faculty of Medicine (SE) and University College Northern Jutland, Occupational Therapy department (DK...

  1. Impact of glucocorticoid hormones on adipokine secretion and human adipose tissue metabolism.

    Science.gov (United States)

    Fain, John N

    2013-08-01

    The glucocorticoid hormones alter the metabolism of the adipose tissue after an approximately 2-h lag period. The effects are mediated through the nuclear receptors that alter the expression of a wide variety of genes through the mechanisms that are similar to those seen in the other cells. There are many direct metabolic effects of the glucocorticoids on the adipose tissue metabolism, and every year, new effects are added to the list of proteins whose expression is influenced by the glucocorticoids. Furthermore, some enzymatic processes are affected by these hormones only in the presence of the other hormones such as growth hormone (GH) or insulin. Most of the effects of the glucocorticoids are on the gene transcription, and the effects on the mRNA are reflected in the altered levels of the target proteins. The glucocorticoids enhance the leptin release, while reducing that of the inflammatory adipokines and stimulating that of the lipoprotein lipase (LPL) in the presence of insulin. The activity of 11β-hydroxysteroid dehydrogenase type 1 (HSD1) is enhanced by the glucocorticoids along with that of α1 glycoprotein 1 and serum amyloid A release by the adipose tissue. In contrast, the tumor necrosis factor α (TNF)-stimulated lipolysis in the adipose tissue is blocked by the glucocorticoids. It is still unclear which, if any, of these effects account for the insulin resistance due to the glucocorticoids in the adipose tissue. However, recent work suggests that, at least in mice, the reduction in the osteocalcin release by the osteoblasts in the presence of the glucocorticoids accounts for much of the in vivo insulin resistance. In summary, there are multiple direct effects of the glucocorticoids, both anti-inflammatory and proinflammatory, on the adipose tissue.

  2. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, David; Strom, Joshua; Chen, Qin M., E-mail: qchen@email.arizona.edu

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  4. Glucocorticoid augmentation of prolonged exposure therapy: rationale and case report.

    Science.gov (United States)

    Yehuda, Rachel; Bierer, Linda M; Pratchett, Laura; Malowney, Monica

    2010-01-01

    Prolonged exposure (PE) therapy has been found to reduce symptoms of posttraumatic stress disorder (PTSD); however, it is difficult for many patients to engage fully in the obligatory retelling of their traumatic experiences. This problem is compounded by the fact that habituation and cognitive restructuring - the main mechanisms through which PE is hypothesized to work - are not instantaneous processes, and often require several weeks before the distress associated with imaginal exposure abates. Two cases are described that respectively illustrate the use of hydrocortisone and placebo, in combination with PE, for the treatment of combat-related PTSD. Based on known effects of glucocorticoids on learning and memory performance, we hypothesized that augmentation with hydrocortisone would improve the therapeutic effects of PE by hastening "new" learning and facilitating decreases in the emotional impact of fear memories during the course of treatment. The veteran receiving hydrocortisone augmentation of PE displayed an accelerated and ultimately greater decline in PTSD symptoms than the veteran receiving placebo. While no general conclusion can be derived from comparison of two patients, the findings are consistent with the rationale for augmentation. These case reports support the potential for an appropriately designed and powered clinical trial to examine the efficacy of glucocorticoids in augmenting the effects of psychotherapy for PTSD.

  5. Glucocorticoid augmentation of prolonged exposure therapy: rationale and case report

    Directory of Open Access Journals (Sweden)

    Laura Pratchett

    2010-12-01

    Full Text Available Rationale: Prolonged exposure (PE therapy has been found to reduce symptoms of posttraumatic stress disorder (PTSD; however, it is difficult for many patients to engage fully in the obligatory retelling of their traumatic experiences. This problem is compounded by the fact that habituation and cognitive restructuring – the main mechanisms through which PE is hypothesized to work – are not instantaneous processes, and often require several weeks before the distress associated with imaginal exposure abates. Case reports: Two cases are described that respectively illustrate the use of hydrocortisone and placebo, in combination with PE, for the treatment of combat-related PTSD. Based on known effects of glucocorticoids on learning and memory performance, we hypothesized that augmentation with hydrocortisone would improve the therapeutic effects of PE by hastening “new” learning and facilitating decreases in the emotional impact of fear memories during the course of treatment. The veteran receiving hydrocortisone augmentation of PE displayed an accelerated and ultimately greater decline in PTSD symptoms than the veteran receiving placebo. Conclusions: While no general conclusion can be derived from comparison of two patients, the findings are consistent with the rationale for augmentation. These case reports support the potential for an appropriately designed and powered clinical trial to examine the efficacy of glucocorticoids in augmenting the effects of psychotherapy for PTSD.

  6. Iatrogenic Cushing syndrome caused by ocular glucocorticoids in a child.

    Science.gov (United States)

    Messina, Maria Francesca; Valenzise, Mariella; Aversa, Salvatore; Arrigo, Teresa; De Luca, Filippo

    2009-01-01

    A boy aged 7.6 years presented to our Unit of Paediatric Endocrinology for evaluation of obesity. Progressive weight gain (10 kg) started 6 months earlier after an accidental penetrating orbital injury on the right eye. During this period the child has been treated with oral betamethasone (0.5 mg/day) for 1 month and dexamethasone 2% ocular drops (2 hourly by day) for 6 months. Physical examination showed he was 113.5 cm in height (-1.5 SD), weight 36.0 kg, blood pressure 110/90 mmHg (90th centile), body mass index 28 (+5 SD), truncal obesity, buffalo hump, "moon-face", increased lanugo hair and supraclavicular fullness. Endocrinological work-up revealed undetectable levels of basal adrenocorticotropic hormone (ACTH), basal and ACTH-stimulated cortisol and 24 h urine excretion cortisol, confirming the diagnosis of iatrogenic Cushing syndrome. The abrupt withdrawal of ocular glucocorticoids by the parents evoked two adrenal crises; 4 months later the patient recovered. In conclusion, we would alert doctors that every formulation of glucocorticoids, no ocular drops excluded, can determine severe systemic side effects and iatrogenic Cushing syndrome.

  7. A Case of Glucocorticoid Remediable Aldosteronism and Thoracoabdominal Aneurysms

    Directory of Open Access Journals (Sweden)

    Anahita Shahrrava

    2016-01-01

    Full Text Available Glucocorticoid remediable aldosteronism (GRA is rare familial form of primary aldosteronism characterized by a normalization of hypertension with the administration of glucocorticoids. We present a case of GRA and thoracoabdominal aneurysm complicated by multiple aortic dissections requiring complex surgical and endovascular repairs. Registry studies have shown a high rate of intracranial aneurysms in GRA patients with high case fatality rates. The association of thoracoabdominal aneurysms with GRA has not been described, thus far, in literature. Studies have shown that high tissue aldosterone levels concomitant with salt intake have a significant role in the pathogenesis of aneurysms and this may explain the formation of aneurysms in the intracranial vasculature and aorta. The association of GRA with thoracic aortic aneurysms needs to be further studied to develop screening recommendations for early identification and optimal treatment. Also, the early use of mineralocorticoid antagonists may have a significant preventive and attenuating effect in aneurysm formation, an association which needs to be confirmed in future studies.

  8. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  9. Safety and tolerability of high doses of glucocorticoides

    Directory of Open Access Journals (Sweden)

    Rakić Branislava D.

    2016-01-01

    Full Text Available Introduction: Treatment of acute lymphoblastic leukemia includes the use of high doses of glucocorticoides (prednisone and dexamethasone, which significantly increase the success of therapy due to lymphocytolitic effect. The aim: The aim of the study was to determine tolerability of high doses of prednisone and dexamethasone in children with acute lymphoblastic leukemia and the structure and the intensity of adverse effects, occurred after application of these medicines. Subjects and methods: In a prospective study, we analyzed adverse effects of high doses of glucocorticoides in children suffering acute lymphoblastic leukemia treated in the Institute for Child and Youth Health Care of Vojvodina, since December 2010. until October 2014, were analyzed. This study included 18 patients, aged from 2 to 15 years. Results: Hyperglycemia appeared in 89% of patients treated with prednisone and in 61% of patients treated with dexamethasone. In order to control the high blood glucose level (above 10 mmol /L, in 11% of patients insulin was used. Hypertension appeared in 28% patients treated with prednisone and dexamethasone. Antihypertensives were needed for regulation in 17% patients. Hypopotassemia and hypocalcaemia were significantly more expressed after the use of prednisone in comparison to dexamethasone. In 11% of patients, the treatment with dexamethasone caused depressive behavior, followed by agitation. Conclusion: Adverse effects of dexamethasone and prednisone, administered in high doses in children with ALL were known, expected and reversible. Adverse reactions usually disappeared spontaneously or after short-term symptomatic therapy.

  10. Glucocorticoid regulation of transcription at an amplified, episomal promoter

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, M.C.; Richard-Foy, H.; Wolford, R.G.; Berard, D.S.; Hager, G.L.

    1983-11-01

    The mouse mammary tumor virus long terminal repeat (MMTV LTR) has been introduced into cultured murine cells, using the 69% transforming fragment of bovine papiloma virus type 1 (BVP). Transformed cells contain up to 200 copies of the chimeric molecules per diploid genome. The restriction endonuclease map of the acquired recombinants, as well as the physical structure of the DNA, indicates that the LTR-BVP molecules present in these cells occur exclusively as unintegrated, extrachromosomal episome. When a 72-base pair direct repeat ''enhancer'' element (derived from the Harvey sarcoma retrovirus) was included in the MMTV LTR-BPV chimeric plasmids, DNA acquired through transfection, with a single exception, was integrated or rearranged or both. Two approaches showed that the MMTV LTR present in the episomal state was capable of supporting glucocorticoid hormone-regulated transcription. The authors have therefore demonstrated the hormone response for the first time in a totally defined primary sequence environment. Significant differences both in the basal level of MMTV-initiated transcription and in the extend of glucocorticoid induction were observed in individual cell lines with similar episomal copy numbers. These phenotypic variations suggest that epigenetic structure is an important component of the mechanism of regulation.

  11. Pilot project as enabler?

    DEFF Research Database (Denmark)

    Neisig, Margit; Glimø, Helle; Holm, Catrine Granzow

    This article deals with a systemic perspective on transition. The field of study addressed is a pilot project as enabler of transition in a highly complex polycentric context. From a Luhmannian systemic approach, a framework is created to understand and address barriers of change occurred using...

  12. BPR - Enabled Systems Engineering

    OpenAIRE

    Johnson, Leslie; Stergiou, Maria

    1999-01-01

    As traditional management techniques were no longer appropriate in the changing business environment, companies employed Business Process Reengineering (BPR) to achieve elevated business performance. Similarly, as traditional systems development approaches delivered disappointing results, system developers experimented with other models, including Evolutionary Delivery and Evolutionary Development, in order to enable successful technology exploitation by businesses. Both these business and sy...

  13. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples being...

  14. Clinical efficacy of glucocorticoid therapy in treatment of drug-induced cholestatic liver disease

    Directory of Open Access Journals (Sweden)

    GE Hongyan

    2015-10-01

    Full Text Available ObjectiveTo analyze the clinical efficacy of glucocorticoid therapy in addition to conventional treatment for patients with drug-induced cholestatic liver disease. MethodsA total of 115 patients with drug-induced cholestatic liver disease who were admitted to Affiliated Hospital of Inner Mongolia University for the Nationalities from January 2010 to December 2014 were collected and divided into glucocorticoid treatment group and non-glucocorticoid treatment group. The glucocorticoid treatment group was given methylprednisolone sodium succinate 120 mg once daily by intravenous injection in addition to conventional treatment. The indicator for glucocorticoid response was defined as 10% decrease of total bilirubin (TBil on the third day or 30% decrease on the seventh day. Then the patients were orally given prednisone tablets 10 mg three times daily based on the level of TBil, and the administration of prednisone tablets was adjusted to twice daily a week later. The course of treatment was less than three weeks. Comparison of continuous data in normal distribution between the two groups was made by t test, and comparison of continuous data not in normal distribution between the two groups was made by rank sum test. ResultsThe levels of gamma-glutamyl transpeptidase (GGT, alanine aminotransferase (ALT, and TBil in the glucocorticoid treatment group decreased significantly on days 3, 7, and 14 of treatment compared with those before treatment (tGGT=3.64, 13.08, 16.22; tALT=2.39, 4.73, 8.36; tTBil=3.46, 7.41, 13.17; all P<0.05. Compared with the non-glucocorticoid treatment group, the glucocorticoid treatment group had significantly lower AST and ALT levels before treatment and on days 3 and 7 of treatment (all P>0.05. The GGT, AST, and TBil levels in the glucocorticoid treatment group were significantly lower than those in the non-glucocorticoid treatment group on day 14 of treatment (t=7.074, 2.929, 2.018; all P<0.05. The average decreasing

  15. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus.

    Directory of Open Access Journals (Sweden)

    Yoshimasa Komatsuzaki

    Full Text Available BACKGROUND: Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrated the mechanisms of rapid effect (∼1 h of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices. The application of CORT at 100-1000 nM induced a rapid increase in the density of spines of CA1 pyramidal neurons. The density of small-head spines (0.2-0.4 µm was increased even at low CORT levels (100-200 nM. The density of middle-head spines (0.4-0.5 µm was increased at high CORT levels between 400-1000 nM. The density of large-head spines (0.5-1.0 µm was increased only at 1000 nM CORT. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, such as MAPK, PKA, PKC or PI3K, suppressed CORT-induced enhancement of spinogenesis. Blocking NMDA receptors suppressed the CORT effect. CONCLUSIONS/SIGNIFICANCE: These results imply that stress levels of CORT (100-1000 nM drive the spinogenesis via synaptic GR and multiple kinase pathways.

  16. High glucocorticoid receptor expression predicts short progression-free survival in ovarian cancer.

    Science.gov (United States)

    Veneris, Jennifer Taylor; Darcy, Kathleen M; Mhawech-Fauceglia, Paulette; Tian, Chunqiao; Lengyel, Ernst; Lastra, Ricardo R; Pejovic, Tanja; Conzen, Suzanne D; Fleming, Gini F

    2017-07-01

    To investigate the association of tumor glucocorticoid receptor (GR) expression and patient outcome in ovarian cancer. GR expression was evaluated by immunohistochemistry using tissue microarrays of specimens from 481 patients with ovarian cancer and 4 patients with benign conditions. Low GR expression was defined as an intensity of 0 or 1+ and high GR as 2+ or 3+ in >1% of tumor cells. Analyses were performed to evaluate the relationship of GR expression with clinical characteristics, progression-free survival (PFS) and overall survival (OS). GR protein was highly expressed in 133 of 341 (39.0%) tumors from patients who underwent upfront cytoreduction surgery followed by adjuvant chemotherapy. High GR expression was more common in serous tumors (p<0.001), high grade tumors (p<0.001), and advanced stage tumors (p=0.037). Median PFS was significantly decreased in cases with high GR (20.4months) compared to those with low GR (36.0months, HR=1.66, 95% CI 1.29-2.14, p<0.001). GR remained an independent prognostic factor for PFS in multivariate analysis. OS was not associated with GR status. These data suggest that high GR expression correlates with poor prognosis and support the hypothesis that modulating GR activity in combination with chemotherapy may improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Glucocorticoid-Induced Leucine Zipper Protein Controls Macropinocytosis in Dendritic Cells.

    Science.gov (United States)

    Calmette, Joseph; Bertrand, Matthieu; Vétillard, Mathias; Ellouze, Mehdi; Flint, Shaun; Nicolas, Valérie; Biola-Vidamment, Armelle; Pallardy, Marc; Morand, Eric; Bachelerie, Françoise; Godot, Véronique; Schlecht-Louf, Géraldine

    2016-12-01

    Ag sampling is a key process in dendritic cell (DC) biology. DCs use constitutive macropinocytosis, receptor-mediated endocytosis, and phagocytosis to capture exogenous Ags for presentation to T cells. We investigated the mechanisms that regulate Ag uptake by DCs in the steady-state and after a short-term LPS exposure in vitro and in vivo. We show that the glucocorticoid-induced leucine zipper protein (GILZ), already known to regulate effector versus regulatory T cell activation by DCs, selectively limits macropinocytosis, but not receptor-mediated phagocytosis, in immature and recently activated DCs. In vivo, the GILZ-mediated inhibition of Ag uptake is restricted to the CD8α + DC subset, which expresses the highest GILZ level among splenic DC subsets. In recently activated DCs, we further establish that GILZ limits p38 MAPK phosphorylation, providing a possible mechanism for GILZ-mediated macropinocytosis control. Finally, our results demonstrate that the modulation of Ag uptake by GILZ does not result in altered Ag presentation to CD4 T cells but impacts the efficiency of cross-presentation to CD8 T cells. Altogether, our results identify GILZ as an endogenous inhibitor of macropinocytosis in DCs, the action of which contributes to the fine-tuning of Ag cross-presentation. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    Science.gov (United States)

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  19. Airway Epithelial Cells Are Crucial Targets of Glucocorticoids in a Mouse Model of Allergic Asthma.

    Science.gov (United States)

    Klaßen, Carina; Karabinskaya, Anna; Dejager, Lien; Vettorazzi, Sabine; Van Moorleghem, Justine; Lühder, Fred; Meijsing, Sebastiaan H; Tuckermann, Jan P; Bohnenberger, Hanibal; Libert, Claude; Reichardt, Holger M

    2017-07-01

    Although glucocorticoids (GCs) are a mainstay in the clinical management of asthma, the target cells that mediate their therapeutic effects are unknown. Contrary to our expectation, we found that GC receptor (GR) expression in immune cells was dispensable for successful therapy of allergic airway inflammation (AAI) with dexamethasone. Instead, GC treatment was compromised in mice expressing a defective GR in the nonhematopoietic compartment or selectively lacking the GR in airway epithelial cells. Further, we found that an intact GR dimerization interface was a prerequisite for the suppression of AAI and airway hyperresponsiveness by GCs. Our observation that the ability of dexamethasone to modulate gene expression in airway epithelial cells coincided with its potency to resolve AAI supports a crucial role for transcriptional regulation by the GR in this cell type. Taken together, we identified an unknown mode of GC action in the treatment of allergic asthma that might help to develop more specific therapies in the future. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Intracellular glucocorticoid receptors in spleen, but not skin, vary seasonally in wild house sparrows (Passer domesticus).

    Science.gov (United States)

    Lattin, Christine R; Waldron-Francis, K; Romero, L Michael

    2013-04-07

    Over the short-term and at physiological doses, acute increases in corticosterone (CORT) titres can enhance immune function. There are predictable seasonal patterns in both circulating CORT and immune function across many animal species, but whether CORT receptor density in immune tissues varies seasonally is currently unknown. Using radioligand binding assays, we examined changes in concentrations of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in spleen and skin in wild-caught house sparrows in Massachusetts during six different life-history stages: moult, early winter, late winter, pre-egg-laying, breeding and late breeding. Splenic GR and MR binding were highest during the pre-laying period. This may help animals respond to immune threats through increased lymphocyte proliferation and/or an increase in delayed-type hypersensitivity reactions, both of which CORT can stimulate and in which spleen is involved. A decrease in splenic GR and MR during the late breeding period coincides with low baseline and stress-induced CORT, suggesting immune function in spleen may be relatively CORT-independent during this period. We saw no seasonal patterns in GR or MR in skin, suggesting skin's response to CORT is modulated primarily via changes in circulating CORT titres and/or via local production of CORT in response to wounding and other noxious stimuli.

  1. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands.

    Directory of Open Access Journals (Sweden)

    Christopher F Rider

    Full Text Available Acting on the glucocorticoid receptor (NR3C1, glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3

  2. Modifications to glucocorticoid and progesterone receptors alter cell fate in breast cancer.

    Science.gov (United States)

    Leehy, Katherine A; Regan Anderson, Tarah M; Daniel, Andrea R; Lange, Carol A; Ostrander, Julie H

    2016-04-01

    Steroid hormone receptors (SRs) are heavily posttranslationally modified by the reversible addition of a variety of molecular moieties, including phosphorylation, acetylation, methylation, SUMOylation, and ubiquitination. These rapid and dynamic modifications may be combinatorial and interact (i.e. may be sequential, complement, or oppose each other), creating a vast array of uniquely modified receptor subspecies that allow for diverse receptor behaviors that enable highly sensitive and context-dependent hormone action. For example, in response to hormone or growth factor membrane-initiated signaling events, posttranslational modifications (PTMs) to SRs alter protein-protein interactions that govern the complex process of promoter or gene-set selection coupled to transcriptional repression or activation. Unique phosphorylation events allow SRs to associate or disassociate with specific cofactors that may include pioneer factors and other tethering partners, which specify the resulting transcriptome and ultimately change cell fate. The impact of PTMs on SR action is particularly profound in the context of breast tumorigenesis, in which frequent alterations in growth factor-initiated signaling pathways occur early and act as drivers of breast cancer progression toward endocrine resistance. In this article, with primary focus on breast cancer relevance, we review the mechanisms by which PTMs, including reversible phosphorylation events, regulate the closely related SRs, glucocorticoid receptor and progesterone receptor, allowing for precise biological responses to ever-changing hormonal stimuli. © 2016 Society for Endocrinology.

  3. Improved androgen specificity of AR-EcoScreen by CRISPR based glucocorticoid receptor knockout.

    Science.gov (United States)

    Zwart, Nick; Andringa, Dave; de Leeuw, Willem-Jan; Kojima, Hiroyuki; Iida, Mitsuru; Houtman, Corine J; de Boer, Jacob; Kool, Jeroen; Lamoree, Marja H; Hamers, Timo

    2017-12-01

    The AR-EcoScreen is a widely used reporter assay for the detection of androgens and anti-androgens. Endogenous expression of glucocorticoid receptors and their affinity for the androgen responsive element that drives reporter expression, however, makes the reporter cells sensitive to interference by glucocorticoids and less specific for (anti-)androgens. To create a glucocorticoid insensitive derivative of the AR-EcoScreen, CRISPR/Cas9 genome editing was used to develop glucocorticoid receptor knockout mutants by targeting various sites in the glucocorticoid gene. Two mutant cell lines were further characterized and validated against the unmodified AR-EcoScreen with a set of 19 environmentally relevant chemicals and a series of environmental passive sampler extracts with (anti-)androgenic activity. Sequencing of the targeted sites revealed premature stop codons following frame-shift mutations, leading to an absence of functional glucocorticoid receptor expression. The introduced mutations rendered cell lines insensitive to glucocorticoid activation and caused no significant difference in the responsiveness towards (anti-)androgens, compared to the unmodified AR-EcoScreen cells, allowing the selective, GR-independent, determination of (anti-)androgenicity in environmental passive sampler extracts. The increase in selectivity for (anti-)androgens improves reliability of the AR-EcoScreen and will provide higher accuracy in determining (anti-)androgenic potential when applied in toxicity screening and environmental monitoring of both single compounds and mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Long-term safety, efficacy, and patient acceptability of teriparatide in the management of glucocorticoid-induced osteoporosis

    Directory of Open Access Journals (Sweden)

    Dore RK

    2013-05-01

    Full Text Available Robin K DoreDavid Geffen School of Medicine, University of California, Los Angeles, CA, USAAbstract: Glucocorticoids are commonly prescribed medications to treat multiple diseases across many medical specialties. One of the most common yet largely unappreciated side effect of glucocorticoid use is increased risk of fracture. Many different therapies are indicated to prevent and treat this condition; many guidelines exist that suggest appropriate use of both glucocorticoids and the medications approved to prevent this common side effect of glucocorticoid therapy. Nevertheless, 30%–50% of patients on long-term glucocorticoid therapy sustain a fracture. Teriparatide, recombinant human parathyroid hormone (1–34, is a daily self-injectable therapy for 24 months approved for use in patients taking long-term glucocorticoids. Teriparatide has been shown to increase bone mineral density and reduce vertebral fracture risk in glucocorticoid-treated patients. Glucocorticoids have many adverse effects on bone that teriparatide has been shown to prevent or negate. Given the fact that preventive therapy for glucocorticoid-induced osteoporosis is often not prescribed, one wonders whether a daily self-injectable therapy for this condition would be prescribed by physicians and accepted by patients. This article reviews the epidemiology, pathophysiology, treatment, guidelines, and persistence data (when available for patients with glucocorticoid-induced osteoporosis treated with teriparatide.Keywords: glucocorticoid-induced osteoporosis, teriparatide, anabolic, PTH, parathyroid hormone

  5. The glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension.

    Science.gov (United States)

    Goodwin, Julie E; Zhang, Junhui; Velazquez, Heino; Geller, David S

    2010-04-02

    Glucocorticoids are used as a treatment for a variety of conditions and hypertension is a well-recognized side effect of their use. The mechanism of glucocorticoid-induced hypertension is incompletely understood and has traditionally been attributed to promiscuous activation of the mineralocorticoid receptor by cortisol. Multiple lines of evidence, however, point to the glucocorticoid receptor as an important mediator as well. We have developed a mouse model of glucocorticoid-induced hypertension, which is dependent on the glucocorticoid receptor. To determine the site(s) of glucocorticoid receptor action relevant to the development of hypertension, we studied glucocorticoid-induced hypertension in a mouse with a tissue-specific knockout of the glucocorticoid receptor in the distal nephron. Although knockout mice had similar body weight, nephron number and renal histology compared to littermate controls, their baseline blood pressure was mildly elevated. Nevertheless, distal nephron glucocorticoid receptor knockout mice and controls had a similar hypertensive response to dexamethasone. Urinary excretion of electrolytes, both before and after administration of glucocorticoid was also indistinguishable between the two groups. We conclude that the glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension in our model. 2010 Elsevier Inc. All rights reserved.

  6. Spatially enabled land administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    enabling of land administration systems managing tenure, valuation, planning, and development will allow the information generated by these activities to be much more useful. Also, the services available to private and public sectors and to community organisations should commensurably improve. Knowledge....... In other words: Good governance and sustainable development is not attainable without sound land administration or - more broadly – sound land management. The paper presents a land management vision that incorporates the benefits of ICT enabled land administration functions. The idea is that spatial...... the communication between administrative systems and also establish more reliable data due to the use the original data instead of copies. In Denmark, such governmental guidelines for a service-oriented ITarchitecture in support of e-government are recently adopted. Finally, the paper presents the role of FIG...

  7. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  8. Pioneer Factors FOXA1 and FOXA2 Assist Selective Glucocorticoid Receptor Signaling in Human Endometrial Cells.

    Science.gov (United States)

    Whirledge, Shannon; Kisanga, Edwina P; Taylor, Robert N; Cidlowski, John A

    2017-11-01

    Successful pregnancy relies on dynamic control of cell signaling to achieve uterine receptivity and the necessary biological changes required for endometrial decidualization, embryo implantation, and fetal development. Glucocorticoids are master regulators of intracellular signaling and can directly regulate embryo implantation and endometrial remodeling during murine pregnancy. In immortalized human uterine cells, we have shown that glucocorticoids and estradiol (E2) coregulate thousands of genes. Recently, glucocorticoids and E2 were shown to coregulate the expression of Left-right determination factor 1 (LEFTY1), previously implicated in the regulation of decidualization. To elucidate the molecular mechanism by which glucocorticoids and E2 regulate the expression of LEFTY1, immortalized and primary human endometrial cells were evaluated for gene expression and receptor recruitment to regulatory regions of the LEFTY1 gene. Glucocorticoid administration induced expression of LEFTY1 messenger RNA and protein and recruitment of the glucocorticoid receptor (GR) and activated polymerase 2 to the promoter of LEFTY1. Glucocorticoid-mediated recruitment of GR was dependent on pioneer factors FOXA1 and FOXA2. E2 was found to antagonize glucocorticoid-mediated induction of LEFTY1 by reducing recruitment of GR, FOXA1, FOXA2, and activated polymerase 2 to the LEFTY1 promoter. Gene expression analysis identified several genes whose glucocorticoid-dependent induction required FOXA1 and FOXA2 in endometrial cells. These results suggest a molecular mechanism by which E2 antagonizes GR-dependent induction of specific genes by preventing the recruitment of the pioneer factors FOXA1 and FOXA2 in a physiologically relevant model. Copyright © 2017 Endocrine Society.

  9. Expressão dos genes que codificam as proteínas anexina-1 e galectina-1 nos pólipos rinossinusais e sua modulação pelo glicocorticoide Expression of genes that encode the annexin-1 and galectin-1 proteins in nasal polyposis and their modulation by glucocorticoid

    Directory of Open Access Journals (Sweden)

    Atílio Maximino Fernandes

    2010-04-01

    Full Text Available A fisiopatologia da polipose rinossinusal não é totalmente compreendida, apesar de várias hipóteses em relação ao seu processo inflamatório. OBJETIVOS: Estudo prospectivo da expressão dos genes das proteínas, anexina-1 e a galectina-1, que têm ação anti-inflamatória, e sua modulação pelo glicocorticoide. MATERIAL E MÉTODOS: Onze pacientes portadores de polipose rinossinusal tiveram biopsiados seus pólipos em dois momentos: na ausência de glicocorticoide sistêmico, e na sua presença. Nas duas amostras, foi avaliada a expressão desses genes e comparada com a expressão na mucosa nasal normal do meato médio. RESULTADOS: Verificou-se que a média de expressão dos genes que codifica a anexina-1 e galectina-1 estava predominantemente aumentada, independente do uso do glicocorticoide em relação à mucosa nasal controle. Entretanto, nos pólipos sem uso de corticoide, a média de expressão do gene da anexina-1 foi significativamente maior do que nos pólipos que estavam sob uso de glicocorticoide. Com relação à galectina-1 não houve diferença significativa entre as médias de expressão antes e após o uso de glicocorticoide sistêmico. CONCLUSÃO: Os genes apresentaram um aumento da expressão na mucosa nasal polipoide, independente do uso do glicocorticoide, porém a relação destes dois genes das proteínas anti-inflamatórias com o glicocorticoide não ocorreu da mesma maneira.Rhinosinusal polyps physiopathology is not fully understand, despite numerous hypotheses regarding its inflammatory process. AIMS: a prospective study regarding the gene expression of proteins: anexin-1 and galectin-1, which has an anti-inflammatory action and is modulated by steroids. MATERIALS AND METHODS: eleven patients with rhinosinusal polyps suffered a biopsy of their polyps at two moments: in the absence of systemic steroids and during its use. In the two samples we assessed the expression of these genes and compared it to the normal

  10. Pathway interactions between MAPKs, mTOR, PKA, and the glucocorticoid receptor in lymphoid cells

    Directory of Open Access Journals (Sweden)

    Thompson E Brad

    2007-03-01

    Full Text Available Abstract Background Glucocorticoids are frequently used as a primary chemotherapeutic agent in many types of human lymphoid malignancies because they induce apoptosis through activation of the glucocorticoid receptor, with subsequent alteration of a complex network of cellular mechanisms. Despite clinical usage for over fifty years, the complete mechanism responsible for glucocorticoid-related apoptosis or resistance remains elusive. The mitogen-activated protein kinase pathway is a signal transduction network that influences a variety of cellular responses through phosphorylation of specific target substrates, including the glucocorticoid receptor. In this study we have evaluated the pharmaceutical scenarios which converge on the mitogen-activated protein kinase pathway to alter glucocorticoid sensitivity in clones of human acute lymphoblastic CEM cells sensitive and refractory to apoptosis in response to the synthetic glucocorticoid dexamethasone. Results The glucocorticoid-resistant clone CEM-C1-15 displays a combination of high constitutive JNK activity and dexamethasone-induced ERK activity with a weak induction of p38 upon glucocorticoid treatment. The cells become sensitive to glucocorticoid-evoked apoptosis after: (1 inhibition of JNK and ERK activity, (2 stimulation of the cAMP/PKA pathway with forskolin, or (3 inhibition of mTOR with rapamycin. Treatments 1–3 in combination with dexamethasone alter the intracellular balance of phospho-MAPKs by lowering JNK phosphorylation and increasing the level of glucocorticoid receptor phosphorylated at serine 211, a modification known to enhance receptor activity. Conclusion Our data support the hypothesis that mitogen-activated protein kinases influence the ability of certain malignant lymphoid cells to undergo apoptosis when treated with glucocorticoid. Activated/phosphorylated JNK and ERK appear to counteract corticoid-dependent apoptosis. Inhibiting these MAPKs restores corticoid sensitivity

  11. The Ups and Downs of Glucocorticoid Signaling | Center for Cancer Research

    Science.gov (United States)

    Glucocorticoids are steroids that react to stress by regulating inflammation and controlling metabolism. Because of their anti-inflammatory and immunosuppressive properties, corticosteroids are among the most frequently prescribed drugs. Glucocorticoids are often used to treat arthritis and autoimmune diseases and are also given in combination with other drugs to treat cancers—such as leukemias and lymphomas—or to alleviate side effects from chemotherapy and radiation. In humans, a glucocorticoid called cortisol is released from the adrenal gland approximately every hour to send signals to cells throughout the body. This pulsed release of hormone is called ultradian secretion.  

  12. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  13. Antenatal glucocorticoid treatment affects hippocampal development in mice.

    Directory of Open Access Journals (Sweden)

    Cornelle W Noorlander

    Full Text Available Synthetic glucocorticoids are administered to pregnant women at risk for preterm delivery, to enhance fetal lung maturation. The benefit of this treatment is well established, however caution is necessary because of possible unwanted side effects on development of different organ systems, including the brain. Actions of glucocorticoids are mediated by corticosteroid receptors, which are highly expressed in the hippocampus, a brain structure involved in cognitive functions. Therefore, we analyzed the effects of a single antenatal dexamethasone treatment on the development of the mouse hippocampus. A clinically relevant dose of dexamethasone (0.4 mg/kg was administered to pregnant mice at embryonic day 15.5 and the hippocampus was analyzed from embryonic day 16 until adulthood. We investigated the effects of dexamethasone treatment on anatomical changes, apoptosis and proliferation in the hippocampus, hippocampal volume and on total body weight. Our results show that dexamethasone treatment reduced body weight and hippocampal volume transiently during development, but these effects were no longer detected at adulthood. Dexamethasone treatment increased the number of apoptotic cells in the hippocampus until birth, but postnatally no effects of dexamethasone treatment on apoptosis were found. During the phase with increased apoptosis, dexamethasone treatment reduced the number of proliferating cells in the subgranular zone of the dentate gyrus. The number of proliferative cells was increased at postnatal day 5 and 10, but was decreased again at the adult stage. This latter long-term and negative effect of antenatal dexamethasone treatment on the number of proliferative cells in the hippocampus may have important implications for hippocampal network function.

  14. New possibilities for the treatment of glucocorticoid-induced osteoporosis

    Directory of Open Access Journals (Sweden)

    I.A. Baranova

    2014-01-01

    Full Text Available Glucocorticoid-induced osteoporosis (GIO is the most common cause of secondary osteoporosis (OP and a main cause of drug-induced OP. Fractures of the skeleton are registered in 30–50% of patients who have taken oral glucocorticoids (GCs for a long time, during which the frac- tures develop with the use of any daily GC dose and with higher bone mineral density (BMD than in postmenopausal OP. In patients who have taken oral GCs long or in high daily doses, decrease of BMD and low bone tissue quality leading to fractures are largely associated with the reduction of bone formation. This gives proof to the administration of antiosteoporotic agents that enhance the formation of bone during its remodeling. Teriparatide, a recombinant human parathyroid hormone, enhances osteoblast function, decreases the apoptosis of osteoblasts and osteocytes, increases the differentiation of osteoblast precursors, and can prevent the negative effect of exogenous GCs on bone. According to clinical trials results, teriparatide treatment increases BMD and reduces the risk of vertebral fractures in patients who have taken oral GCs long. In accordance of the clinical recommendations for the diagnosis, prevention, and treatment of GIO, which have been developed by the Russian Osteoporosis Association jointly with the Association of Rheumatologists of Russia and the Russian Respiratory Society, teriparatide is the drug of first choice for the treatment of GIO in men and women at high risk for fractures (with the history of fragility fractures or having high FRAX 10-year absolute fracture risk. Teriparatide may be prescribed in case of previous antiosteoporotic treatment failure (new fractures occurring during treatment and/or continuing to decrease BMD, as well as when other drugs to treat OP are intolerable or when there are contraindications to their use. 

  15. Inflammation in Parkinson’s disease: Role of glucocorticoids

    Directory of Open Access Journals (Sweden)

    Maria Trinidad eHerrero

    2015-04-01

    Full Text Available Chronic inflammation is a major characteristic feature of Parkinson’s disease (PD. Studies in PDpatients show evidence of augmented levels of potent pro-inflammatory molecules e.g. TNF-α, iNOS,IL-1β whereas in experimental Parkinsonism it has been consistently demonstrated that dopaminergicneurons are particularly vulnerable to activated glia releasing these toxic factors. Recent geneticstudies point to the role of immune system in the etiology of PD, thus in combination withenvironmental factors, both peripheral and CNS-mediated immune responses could play importantroles in onset and progression of PD. Whereas microglia, astrocytes and infiltrating T cells are knownto mediate chronic inflammation, the roles of other immune-competent cells are less well understood.Inflammation is a tightly controlled process. One major effector system of regulation is HPA axis.Glucocorticoids released from adrenal glands upon stimulation of HPA axis, in response to either cellinjury or presence of pathogen, activate their receptor, GR. GR regulates inflammation both throughdirect transcriptional action on target genes and by indirectly inhibiting transcriptional activities oftranscriptional factors such as NF-kB, AP-1 or interferon regulatory factors. In PD patients, the HPAaxis is unbalanced and the cortisol levels are significantly increased, implying a deregulation of GRfunction in immune cells. In experimental Parkinsonism, the activation of microglial GR has a crucialeffect in diminishing microglial cell activation and reducing dopaminergic degeneration. Moreover,glucocorticoids are also known to regulate human brain vasculature as well as blood brain barrierpermeability, any dysfunction in their actions may influence infiltration of cytotoxic moleculesresulting in increased vulnerability of dopamine neurons in PD. Overall, deregulation ofGR actions is likely important in dopamine neuron degeneration throughestablishment of chronic inflammation.

  16. Covariation among glucocorticoid regulatory elements varies seasonally in house sparrows.

    Science.gov (United States)

    Liebl, Andrea L; Shimizu, Toru; Martin, Lynn B

    2013-03-01

    Glucocorticoids (GCs) help individuals cope with changes throughout life; one such change is the seasonal transition through life-history stages. Previous research shows that many animals exhibit seasonal variation in baseline GCs and GC responses to stressors, but the effects of season on other aspects of GC regulation have been less studied. Moreover, whether elements of GC regulation covary within individuals and whether covariation changes seasonally has been not been investigated. Evolutionarily, strong linkages among GC regulatory elements is predicted to enhance system efficiency and regulation, however may reduce the plasticity necessary to ensure appropriate responses under varying conditions. Here, we measured corticosterone (CORT), the major avian GC, at baseline, after exposure to a restraint stressor, and in response to dexamethasone (to assess negative feedback capacity) in wild house sparrows (Passer domesticus) during the breeding and molting seasons. We also measured hippocampal mRNA expression of the two receptors primarily responsible for CORT regulation: the mineralocorticoid and glucocorticoid receptors (MR and GR, respectively). Consistent with previous studies, restraint-induced CORT was lower during molt than breeding, but negative-feedback was not influenced by season. Receptor gene expression was affected by season, however, as during breeding, the ratio of MR to GR expression was significantly lower than during molt. Furthermore, MR expression was negatively correlated with CORT released in response to a stressor, but only during molt. We found that individuals that most strongly up-regulated CORT in response to restraint were also most effective at reducing CORT via negative feedback; although these relationships were independent of season, they were stronger during molt. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. EnableATIS strategy assessment.

    Science.gov (United States)

    2014-02-01

    Enabling Advanced Traveler Information Systems (EnableATIS) is the traveler information component of the Dynamic Mobility Application (DMA) program. The objective of : the EnableATIS effort is to foster transformative traveler information application...

  18. A pilot study evaluating therapeutic response of different dosage of oral glucocorticoid in two children with familial glucocorticoid deficiency presenting with diffuse mucocutaneous hyperpigmentation

    Directory of Open Access Journals (Sweden)

    Uttam Kumar Sarkar

    2017-01-01

    Full Text Available Introduction: Familial glucocorticoid deficiency (FGD is a rare autosomal recessive potentially life-threatening condition, characterized by glucocorticoid deficiency, preserved aldosterone/renin secretion, and secondary rise in plasma adrenocorticotropic hormone level. This occurs due to either mutation in adrenocorticotropic receptor (25%, FGD Type-1 or in the MC2 receptor accessory protein (15%–20%. However, in about 50% patients, no identifiable mutations have been identified. Clinically, it manifests with weakness, fatigue, weight loss, anorexia, nausea, vomiting, diarrhea, abdominal pain, hypoglycemia, and hypothermia. Progressive mucocutaneous pigmentation is a conspicuous presentation. Repeated hypoglycemia may result in seizure, persistent neurological, severe mental disability, and even sudden death. Standard therapy is oral glucocorticoids (10–15 mg/m2. Patients and Results: Two familial cases of FGD were put on progressively increasing doses of oral glucocorticoids (10 mg, 15 mg, and 20 mg/m2/day, each for 6 weeks to achieve the best response without any adverse effects. One patient had excellent improvement with 15 mg/m2/day, and another required 20 mg/m2/day. The latter patient had excellent overall improvement with only moderate improvement in pigmentation. Conclusion: Glucocorticoids replacement with optimum dose is necessary in FGD to promote physical and neurological growth and to prevent adrenal crises, hypotension, hypoglycemia, and sudden death. Higher dose than mentioned in literature (15 mg/m2/day may be required in selected cases. Mucocutaneous pigmentation may require even higher dose than we used. More studies are required.

  19. Enabling Digital Literacy

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Georgsen, Marianne

    2010-01-01

    There are some tensions between high-level policy definitions of “digital literacy” and actual teaching practice. We need to find workable definitions of digital literacy; obtain a better understanding of what digital literacy might look like in practice; and identify pedagogical approaches, which...... support teachers in designing digital literacy learning. We suggest that frameworks such as Problem Based Learning (PBL) are approaches that enable digital literacy learning because they provide good settings for engaging with digital literacy. We illustrate this through analysis of a case. Furthermore......, these operate on a meso-level mediating between high-level concepts of digital literacy and classroom practice....

  20. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  1. Loss of glucocorticoid receptor expression by DNA methylation prevents glucocorticoid induced apoptosis in human small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Paul Kay

    Full Text Available Human small cell lung cancer (SCLC is highly aggressive, and quickly develops resistance to therapy. SCLC cells are typically insensitive to glucocorticoids due to impaired glucocorticoid receptor (GR expression. This is important as we have previously shown that expression of a GR transgene induces cell death in-vitro, and inhibits tumor growth in-vivo. However, the underlying mechanism for loss of GR expression is unknown. The SCLC cell line, DMS79, has low GR expression, compared to non-SCLC cell lines and normal bronchial epithelial cells. Retroviral GR expression in DMS79 cells caused activation of the apoptotic pathway as evidenced by marked induction of caspase-3 activity. Methylation analysis of the GR promoter revealed some methylation in the 1D, and 1E promoters of the GR gene, however the ubiquitous constitutively active 1C promoter was heavily methylated. In the 1C promoter there was a highly significant increase in DNA methylation in a panel of 14 human SCLC cell lines compared to a mixed panel of GR expressing, and non-expressing cell lines, and to peripheral blood mononuclear cells. Furthermore, within the panel of SCLC cell lines there was a significant negative correlation seen between methylation of the 1C promoter, and GR protein expression. Reversal of GR gene methylation with DNA methyltransferase inhibition caused increased GR mRNA and protein expression in SCLC but not non-SCLC cells. This resulted in increased Gc sensitivity, decreased Bcl-2 expression and increased caspase-3 activity in SCLC cells. These data suggest that DNA methylation decreases GR gene expression in human SCLC cells, in a similar manner to that for conventional tumor suppressor genes.

  2. Action of glucocorticoids on survival of nerve cells : Promoting neurodegeneration or neuroprotection?

    NARCIS (Netherlands)

    Abraham, I.; Harkany, T.; Horvath, K.M.; Luiten, P.G.M.

    Extensive studies during the past decades provided compelling evidence that glucocorticoids (GCs) have the potential to affect the development, survival and death of neurones. These observations, however, reflect paradoxical features of GCs, as they may be critically involved in both

  3. Basolateral Amygdala Interacts with Other Brain Regions in Regulating Glucocorticoid Effects on Different Memory Functions

    National Research Council Canada - National Science Library

    NATHAN, SHEILA V; GRIFFITH, QYANA K; MCREYNOLDS, JAYME R; HAHN, EMILY L; ROOZENDAAL, BENNO

    2004-01-01

    ...‐dependently enhance long‐term memory consolidation. We previously reported that such glucocorticoid effects on memory consolidation rely on noradrenergic activation of the basolateral complex of the amygdala (BLA...

  4. Increase in prophylaxis of glucocorticoid-induced osteoporosis by pharmacist feedback : a randomised controlled trial

    NARCIS (Netherlands)

    Klop, C; de Vries, F|info:eu-repo/dai/nl/303546670; Vinks, T; Kooij, M J|info:eu-repo/dai/nl/357575695; van Staa, T P|info:eu-repo/dai/nl/304827762; Bijlsma, J W J; Egberts, A C G|info:eu-repo/dai/nl/162850050; Bouvy, M L|info:eu-repo/dai/nl/153182210

    UNLABELLED: The aim of this study was to determine whether feedback by pharmacists to prescribers of patients eligible for glucocorticoid-induced osteoporosis prophylaxis would stimulate the prescribing of osteoporosis prophylaxis. The intervention did not significantly increase the prescribing of

  5. Regulation of hippocampal neurogenesis by systemic factors including stress, glucocorticoids, sleep, and inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.; van Dam, A.-M.; Czéh, B.; Gage, F.H.; Kempermann, G.; Song, H.

    2008-01-01

    This review summarizes and discusses the regulation of adult neurogenesis and hippocampal cellular plasticity by systemic factors. We focus on the role of stress, glucocorticoids, and related factors such as sleep deprivation and inflammation.

  6. Risk of catecholaminergic crisis following glucocorticoid administration in patients with an adrenal mass: a literature review

    NARCIS (Netherlands)

    Barrett, C.; Uum, S.H. van; Lenders, J.W.M.

    2015-01-01

    BACKGROUND: Glucocorticoids as diagnostic or therapeutic agents have been reported to carry an increased risk of catecholaminergic crisis (CC) in patients with pheochromocytoma or paraganglioma (PPGL). METHODS: We searched literature databases using the following terms: pheochromocytoma,

  7. Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity

    DEFF Research Database (Denmark)

    Quarta, Carmelo; Clemmensen, Christoffer; Zhu, Zhimeng

    2017-01-01

    Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases...

  8. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Science.gov (United States)

    Zhu, Li-Juan; Liu, Meng-Ying; Li, Huan; Liu, Xiao; Chen, Chen; Han, Zhou; Wu, Hai-Yin; Jing, Xing; Zhou, Hai-Hui; Suh, Hoonkyo; Zhu, Dong-Ya; Zhou, Qi-Gang

    2014-01-01

    Hypothalamus-pituitary-adrenal (HPA) hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR) - neuronal nitric oxide synthesis enzyme (nNOS) - nitric oxide (NO) pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  9. The Different Roles of Glucocorticoids in the Hippocampus and Hypothalamus in Chronic Stress-Induced HPA Axis Hyperactivity

    Science.gov (United States)

    Liu, Xiao; Chen, Chen; Han, Zhou; Wu, Hai-Yin; Jing, Xing; Zhou, Hai-Hui; Suh, Hoonkyo; Zhu, Dong-Ya; Zhou, Qi-Gang

    2014-01-01

    Hypothalamus-pituitary-adrenal (HPA) hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR) - neuronal nitric oxide synthesis enzyme (nNOS) - nitric oxide (NO) pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression. PMID:24831808

  10. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhu

    Full Text Available Hypothalamus-pituitary-adrenal (HPA hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR - neuronal nitric oxide synthesis enzyme (nNOS - nitric oxide (NO pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  11. Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing’s syndrome: cohort study

    Science.gov (United States)

    Petersen, Irene; Nazareth, Irwin

    2012-01-01

    Objective To investigate whether there is an increased risk of cardiovascular events in people who exhibit iatrogenic Cushing’s syndrome during treatment with glucocorticoids. Design Cohort study. Setting 424 UK general practices contributing to The Health Improvement Network database. Participants People prescribed systemic glucocorticoids and with a diagnosis of iatrogenic Cushing’s syndrome (n=547) and two comparison groups: those prescribed glucocorticoids and with no diagnosis of iatrogenic Cushing’s syndrome (n=3231) and those not prescribed systemic glucocorticoids (n=3282). Main outcome measures Incidence of cardiovascular events within a year after diagnosis of iatrogenic Cushing’s syndrome or after a randomly selected date, and association between iatrogenic Cushing’s syndrome and risk of cardiovascular events. Results 417 cardiovascular events occurred in 341 patients. Taking into account only the first event by patient (coronary heart disease n=177, heart failure n=101, ischaemic stroke n=63), the incidence rates of cardiovascular events per 100 person years at risk were 15.1 (95% confidence interval 11.8 to 18.4) in those prescribed glucocorticoids and with a diagnosis of iatrogenic Cushing’s syndrome, 6.4 (5.5 to 7.3) in those prescribed glucocorticoids without a diagnosis of iatrogenic Cushing’s syndrome, and 4.1 (3.4 to 4.8) in those not prescribed glucocorticoids. In multivariate analyses adjusted for sex, age, intensity of glucocorticoid use, underlying disease, smoking status, and use of aspirin, diabetes drugs, antihypertensive drugs, lipid lowering drugs, or oral anticoagulant drugs, the relation between iatrogenic Cushing’s syndrome and cardiovascular events was strong (adjusted hazard ratios 2.27 (95% confidence interval 1.48 to 3.47) for coronary heart disease, 3.77 (2.41 to 5.90) for heart failure, and 2.23 (0.96 to 5.17) for ischaemic cerebrovascular events). The adjusted hazard ratio for any cardiovascular event was 4

  12. Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing's syndrome: cohort study.

    Science.gov (United States)

    Fardet, Laurence; Petersen, Irene; Nazareth, Irwin

    2012-07-30

    To investigate whether there is an increased risk of cardiovascular events in people who exhibit iatrogenic Cushing's syndrome during treatment with glucocorticoids. Cohort study. 424 UK general practices contributing to The Health Improvement Network database. People prescribed systemic glucocorticoids and with a diagnosis of iatrogenic Cushing's syndrome (n = 547) and two comparison groups: those prescribed glucocorticoids and with no diagnosis of iatrogenic Cushing's syndrome (n = 3231) and those not prescribed systemic glucocorticoids (n = 3282). Incidence of cardiovascular events within a year after diagnosis of iatrogenic Cushing's syndrome or after a randomly selected date, and association between iatrogenic Cushing's syndrome and risk of cardiovascular events. 417 cardiovascular events occurred in 341 patients. Taking into account only the first event by patient (coronary heart disease n = 177, heart failure n = 101, ischaemic stroke n = 63), the incidence rates of cardiovascular events per 100 person years at risk were 15.1 (95% confidence interval 11.8 to 18.4) in those prescribed glucocorticoids and with a diagnosis of iatrogenic Cushing's syndrome, 6.4 (5.5 to 7.3) in those prescribed glucocorticoids without a diagnosis of iatrogenic Cushing's syndrome, and 4.1 (3.4 to 4.8) in those not prescribed glucocorticoids. In multivariate analyses adjusted for sex, age, intensity of glucocorticoid use, underlying disease, smoking status, and use of aspirin, diabetes drugs, antihypertensive drugs, lipid lowering drugs, or oral anticoagulant drugs, the relation between iatrogenic Cushing's syndrome and cardiovascular events was strong (adjusted hazard ratios 2.27 (95% confidence interval 1.48 to 3.47) for coronary heart disease, 3.77 (2.41 to 5.90) for heart failure, and 2.23 (0.96 to 5.17) for ischaemic cerebrovascular events). The adjusted hazard ratio for any cardiovascular event was 4.16 (2.98 to 5.82) when the group prescribed glucocorticoids and with

  13. Do the interactions between glucocorticoids and sex hormones regulate the development of the Metabolic Syndrome?

    Directory of Open Access Journals (Sweden)

    Marià eAlemany

    2012-02-01

    Full Text Available The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic or defense responses are practically immediate, the procrastinated response don't seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release. These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e. levels of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment. Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.

  14. Peripheral CLOCK Regulates Target-Tissue Glucocorticoid Receptor Transcriptional Activity in a Circadian Fashion in Man

    Science.gov (United States)

    Charmandari, Evangelia; Chrousos, George P.; Lambrou, George I.; Pavlaki, Aikaterini; Koide, Hisashi; Ng, Sinnie Sin Man; Kino, Tomoshige

    2011-01-01

    Context and Objective Circulating cortisol fluctuates diurnally under the control of the “master” circadian CLOCK, while the peripheral “slave” counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR) at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. Design and Participants We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs) obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs) as non-synchronized controls. Results GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. Conclusions Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night. PMID:21980503

  15. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  16. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans.We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls.GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo.Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  17. Safety aspects of preoperative high-dose glucocorticoid in primary total knee replacement

    DEFF Research Database (Denmark)

    Jørgensen, C C; Pitter, F T; Kehlet, H

    2017-01-01

    Background: Preoperative single high-dose glucocorticoid may have early outcome benefits in total hip arthroplasty (THA) and knee arthroplasty (TKA), but long-term safety aspects have not been evaluated. Methods: From October 2013, the departments reporting to the prospective Lundbeck Foundation....... Conclusions: In this detailed prospective cohort study, preoperative high-dose glucocorticoid administration was not associated with LOS >4 days, readmissions or infectious complications in TKA patients without contraindications....

  18. Glucocorticoid-dependent hypoadrenocorticism with thrombocytopenia and neutropenia mimicking sepsis in a Labrador retriever dog.

    Science.gov (United States)

    Snead, Elisabeth; Vargo, Cheryl; Myers, Sherry

    2011-10-01

    Glucocorticoid-deficient hypoadrenocorticism (GDH) with immune-mediated-neutropenia (IMN) and -thrombocytopenia (IMT) were diagnosed in a 3-year-old Labrador retriever dog. Glucocorticoid-deficient hypoadrenocorticism is rare and diagnostically challenging as clinical signs and laboratory abnormalities are often nonspecific. Immune-mediated cytopenias and other autoimmune disorders, as part of an autoimmune polyglandular syndrome have been reported with hypoadrenocorticism in humans. This is the first reported case of hypoadrenocorticism and bicytopenia in a dog.

  19. Glucocorticoid-dependent hypoadrenocorticism with thrombocytopenia and neutropenia mimicking sepsis in a Labrador retriever dog

    OpenAIRE

    Snead, Elisabeth; Vargo, Cheryl; Myers, Sherry

    2011-01-01

    Glucocorticoid-deficient hypoadrenocorticism (GDH) with immune-mediated-neutropenia (IMN) and -thrombocytopenia (IMT) were diagnosed in a 3-year-old Labrador retriever dog. Glucocorticoid-deficient hypoadrenocorticism is rare and diagnostically challenging as clinical signs and laboratory abnormalities are often nonspecific. Immune-mediated cytopenias and other autoimmune disorders, as part of an autoimmune polyglandular syndrome have been reported with hypoadrenocorticism in humans. This is ...

  20. Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects.

    Science.gov (United States)

    Shaqura, Mohammed; Li, Xiongjuan; Al-Khrasani, Mahmoud; Shakibaei, Mehdi; Tafelski, Sascha; Fürst, Susanna; Beyer, Antje; Kawata, Mitsuhiro; Schäfer, Michael; Mousa, Shaaban A

    2016-12-01

    Glucocorticoids were long believed to primarily function through cytosolic glucocorticoid receptor (GR) activation and subsequent classical genomic pathways. Recently, however, evidence has emerged that suggests the presence of rapid non-genomic GR-dependent signaling pathways within the brain, though their existence in spinal and peripheral nociceptive neurons remains elusive. In this paper, we aim to systemically identify GR within the spinal cord and periphery, to verify their putative membrane location and to characterize possible G protein coupling and pain modulating properties. Double immunofluorescence confocal microscopy revealed that GR predominantly localized in peripheral peptidergic and non-peptidergic nociceptive C- and Aδ-neurons and existed only marginally in myelinated mechanoreceptive and proprioreceptive neurons. Within the spinal cord, GR predominantly localized in incoming presynaptic nociceptive neurons, in pre- and postsynaptic structures of the dorsal horn, as well as in microglia. GR saturation binding revealed that these receptors are linked to the cell membrane of sensory neurons and, upon activation, they trigger membrane targeted [(35)S]GTPγS binding, indicating G protein coupling to a putative receptor. Importantly, subcutaneous dexamethasone immediately and dose-dependently attenuated acute nociceptive behavior elicited in an animal model of formalin-induced pain hypersensitivity compared to naive rats. Overall, this study provides firm evidence for a novel neuronal mechanism of GR agonists that is rapid, non-genomic, dependent on membrane binding and G protein coupling, and acutely modulates nociceptive behavior, thus unraveling a yet unconsidered mechanism of pain relief. Copyright © 2016. Published by Elsevier Ltd.

  1. Enabling graphene nanoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  2. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M.

    2013-01-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the effects of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the

  3. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies.

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M

    2014-07-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of

  4. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis.

    Science.gov (United States)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd

    2015-05-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. β-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal.

    Science.gov (United States)

    Flygare, Johan; Rayon Estrada, Violeta; Shin, Chanseok; Gupta, Sumeet; Lodish, Harvey F

    2011-03-24

    With the aim of finding small molecules that stimulate erythropoiesis earlier than erythropoietin and that enhance erythroid colony-forming unit (CFU-E) production, we studied the mechanism by which glucocorticoids increase CFU-E formation. Using erythroid burst-forming unit (BFU-E) and CFU-E progenitors purified by a new technique, we demonstrate that glucocorticoids stimulate the earliest (BFU-E) progenitors to undergo limited self-renewal, which increases formation of CFU-E cells > 20-fold. Interestingly, glucocorticoids induce expression of genes in BFU-E cells that contain promoter regions highly enriched for hypoxia-induced factor 1α (HIF1α) binding sites. This suggests activation of HIF1α may enhance or replace the effect of glucocorticoids on BFU-E self-renewal. Indeed, HIF1α activation by a prolyl hydroxylase inhibitor (PHI) synergizes with glucocorticoids and enhances production of CFU-Es 170-fold. Because PHIs are able to increase erythroblast production at very low concentrations of glucocorticoids, PHI-induced stimulation of BFU-E progenitors thus represents a conceptually new therapeutic window for treating erythropoietin-resistant anemia.

  6. Glucocorticoid Cell Priming Enhances Transfection Outcomes in Adult Human Mesenchymal Stem Cells

    Science.gov (United States)

    Kelly, Abby M; Plautz, Sarah A; Zempleni, Janos; Pannier, Angela K

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are one of the most widely researched stem cell types with broad applications from basic research to therapeutics, the majority of which require introduction of exogenous DNA. However, safety and scalability issues hinder viral delivery, while poor efficiency hinders nonviral gene delivery, particularly to hMSCs. Here, we present the use of a pharmacologic agent (glucocorticoid) to overcome barriers to hMSC DNA transfer to enhance transfection using three common nonviral vectors. Glucocorticoid priming significantly enhances transfection in hMSCs, demonstrated by a 3-fold increase in efficiency, 4–15-fold increase in transgene expression, and prolonged transgene expression when compared to transfection without glucocorticoids. These effects are dependent on glucocorticoid receptor binding and caused in part by maintenance of normal metabolic function and increased cellular (5-fold) and nuclear (6–10-fold) DNA uptake over hMSCs transfected without glucocorticoids. Results were consistent across five human donors and in cells up to passage five. Glucocorticoid cell priming is a simple and effective technique to significantly enhance nonviral transfection of hMSCs that should enhance their clinical use, accelerate new research, and decrease reliance on early passage cells. PMID:26478250

  7. Stress Response Recruits the Hippocampal Endocannabinoid System for the Modulation of Fear Memory

    Science.gov (United States)

    Alvares, Lucas de Oliveira; Engelke, Douglas Senna; Diehl, Felipe; Scheffer-Teixeira, Robson; Haubrich, Josue; Cassini, Lindsey de Freitas; Molina, Victor Alejandro; Quillfeldt, Jorge Alberto

    2010-01-01

    The modulation of memory processes is one of the several functions of the endocannabinoid system (ECS) in the brain, with CB1 receptors highly expressed in areas such as the dorsal hippocampus. Experimental evidence suggested an important role of the ECS in aversively motivated memories. Similarly, glucocorticoids released in response to stress…

  8. Decreased comfort food intake and allostatic load in adolescents carrying the A3669G variant of the glucocorticoid receptor gene.

    Science.gov (United States)

    Rodrigues, Danitsa Marcos; Reis, Roberta Sena; Dalle Molle, Roberta; Machado, Tania Diniz; Mucellini, Amanda Brondani; Bortoluzzi, Andressa; Toazza, Rudineia; Pérez, Juliano Adams; Salum, Giovanni Abrahão; Agranonik, Marilyn; Minuzzi, Luciano; Levitan, Robert D; Buchweitz, Augusto; Franco, Alexandre Rosa; Manfro, Gisele Gus; Silveira, Patrícia Pelufo

    2017-09-01

    The A3669G single nucleotide polymorphism (SNP) of the glucocorticoid receptor (GR) gene NR3C1 is associated with altered tissue sensitivity to glucocorticoids (GCs). GCs modulate the food reward circuitry and are implicated in increased intake of palatable foods, which can lead to the metabolic syndrome and obesity. We hypothesized that presence of the G variant of the A3669G SNP would affect preferences for palatable foods and alter metabolic, behavioural, and neural outcomes. One hundred thirty-one adolescents were genotyped for the A3669G polymorphism, underwent anthropometric assessment and nutritional evaluations, and completed behavioural measures. A subsample of 74 subjects was followed for 5 years and performed a brain functional magnetic resonance imaging (fMRI) paradigm to verify brain activity in response to food cues. Sugar and total energy consumption were lower in A3669G G allele variant carriers. On follow-up, this group also had reduced serum insulin concentrations, increased insulin sensitivity, and lower anxiety scores. Because of our unbalanced sample sizes (31/37 participants non-G allele carriers/total), our imaging data analysis failed to find whole brain-corrected significant results in between-group t-tests. These results highlight that a genetic variation in the GR gene is associated, at the cellular level, with significant reduction in GC sensitivity, which, at cognitive and behavioural levels, translates to altered food intake and emotional stress response. This genetic variant might play a major role in decreasing risk for metabolic and psychiatric diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Altered placental development in undernourished rats: role of maternal glucocorticoids

    Directory of Open Access Journals (Sweden)

    Chen Chun-Hung

    2011-08-01

    Full Text Available Abstract Maternal undernutrition (MUN during pregnancy may lead to fetal intrauterine growth restriction (IUGR, which itself predisposes to adult risk of obesity, hypertension, and diabetes. IUGR may stem from insufficient maternal nutrient supply or reduced placental nutrient transfer. In addition, a critical role for maternal stress-induced glucocorticoids (GCs has been suggested to contribute to both IUGR and the ensuing risk of adult metabolic syndrome. While GC-induced fetal organ defects have been examined, there have been few studies on placental responses to MUN-induced maternal stress. Therefore, we hypothesize that 50% MUN associates with increased maternal GC levels and decreased placental HSD11B. This in turn leads to decreased placental and fetal growth, hence the need to investigate nutrient transporters. We measured maternal serum levels of corticosterone, and the placental basal and labyrinth zone expression of glucocorticoid receptor (NR3C1, 11-hydroxysteroid dehydrogenase B 1 (HSD11B-1 predominantly activates cortisone to cortisol and 11-dehydrocorticosterone (11-DHC to corticosterone, although can sometimes drive the opposing (inactivating reaction, and HSD11B-2 (only inactivates and converts corticosterone to 11-DHC in rodents in control and MUN rats at embryonic day 20 (E20. Moreover, we evaluated the expression of nutrient transporters for glucose (SLC2A1, SLC2A3 and amino acids (SLC38A1, 2, and 4. Our results show that MUN dams displayed significantly increased plasma corticosterone levels compared to control dams. Further, a reduction in fetal and placental weights was observed in both the mid-horn and proximal-horn positions. Notably, the placental labyrinth zone, the site of feto-maternal exchange, showed decreased expression of HSD11B1-2 in both horns, and increased HSD11B-1 in proximal-horn placentas, but no change in NR3C1. The reduced placental GCs catabolic capacity was accompanied by downregulation of SLC2A3, SLC

  10. Exenatide improves glucocorticoid-induced glucose intolerance in mice

    Directory of Open Access Journals (Sweden)

    Ruiying Zhao

    2011-01-01

    Full Text Available Ruiying Zhao1,2*, Enrique Fuentes-Mattei1,2*, Guermarie Velazquez-Torres1,3, Chun-Hui Su1,2, Jian Chen1, Mong-Hong Lee1,2, Sai-Ching Jim Yeung4,51Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Program in Genes and Development, 3Program in Cancer Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center in Houston, Houston, TX, USA; 4Department of Endocrine Neoplasia and Hormonal Disorders, 5Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA *Both authors contributed equally.Abstract: Exenatide is an incretin mimetic that is recently available in the US for the treatment of diabetes. There is a paucity of information on the effects of exenatide in glucocorticoid (GC-induced diabetes. Although the effect of continuous intravenous infusion of exenatide on GC-induced glucose intolerance has been investigated before in healthy human males receiving oral prednisolone, we investigated the efficacy of a single subcutaneous dose of exenatide (3 µg/kg in lowering blood glucose in GC-induced glucose intolerance in C57BL/6 mice. In a longitudinal experiment, the area under the curve (AUC of oral glucose tolerance tests (OGTT significantly increased after dexamethasone (P = 0.004, which was subsequently decreased by exenatide (P < 0.001. A cross-sectional experiment showed that exenatide improved glucose tolerance compared with placebo in a mouse model of dexamethasone-induced glucose intolerance. AUC of OGTT in the exenatide group were significantly (P < 0.001 lower than in the placebo group. Insulin tolerance tests (ITT demonstrated that exenatide decreased the ability of the mice to tolerate insulin compared with placebo. The AUC of ITT in the exenatide group were also significantly (P = 0.006 lower than in the placebo group. In conclusion, a single dose of exenatide was able to decrease glucose intolerance and

  11. Clinical significance of peripheral blood lymphocyte sensitivity to glucocorticoids for the differentiation of high-risk patients with decreased allograft function after glucocorticoid withdrawal in renal transplantation.

    Science.gov (United States)

    Muhetaer, Gulimire; Takeuchi, Hironori; Unezaki, Sakae; Kawachi, Shigeyuki; Iwamoto, Hitoshi; Nakamura, Yuki; Shimazu, Motohide; Sugiyama, Kentaro; Hirano, Toshihiko

    2014-08-01

    A reliable biomarker to differentiate high-risk recipients who will experience a decrease in allograft function after glucocorticoid withdrawal has not been established in renal transplantation. We examined the clinical significance of peripheral blood lymphocyte sensitivity to glucocorticoids in vitro for the differentiation of the high-risk patients after glucocorticoid reduction/withdrawal in renal transplant recipients. The study included 44 renal transplant recipients with stable allograft function. Peripheral lymphocyte responses to suppressive effects of cortisol, methylprednisolone, cyclosporine, and tacrolimus in mitogen assay procedures in vitro were examined. Clinical outcome after glucocorticoid reduction/withdrawal was retrospectively compared between recipients with lymphocytes normally sensitive to the drugs and those with hyposensitivity. The receiver-operating characteristic (ROC) curve analysis was undertaken for setting the cutoff IC50 values of the drugs against the T cell mitogen-induced lymphocyte proliferation to differentiate the high-risk recipients with decreased allograft function after glucocorticoid withdrawal. The median (range) IC50 value for cortisol in the recipients who showed decreased renal function due to glucocorticoid withdrawal was 10,000 (570.9-72,279.3) ng/mL (n = 9), which was significantly higher than the value of 351.6 (2.0-10,000) ng/mL in the recipients who had not experienced glucocorticoid withdrawal symptoms (n = 35) (P significantly higher than the value of 13.8 (0.7-1000) ng/mL in the recipients who had not experienced glucocorticoid withdrawal symptoms (n = 30) (P significant difference in the median IC50 values of cyclosporine and tacrolimus between the 2 recipient subgroups. The ROC curve analyses for the IC50 values of the immunosuppressive drugs estimated the cutoff value of cortisol and methylprednisolone to be 3580.0 and 21.5 ng/mL, respectively. The ROC AUCs for cortisol and methylprednisolone were 0

  12. Bronchial Epithelial Cells and Peptidases: Modulation by cytokincs and glucocorticoids ill vitro and in asthma

    NARCIS (Netherlands)

    V.H.J. van der Velden (Vincent)

    1998-01-01

    textabstractThe airways can be divided in the upper respiratory tract, including the nose, the pharynx, and the larynx. and the lower respiratory tract. consisting of the trachea, bronchi, bronchioles, and alveoli. This structure provides an enormous surface area where the exchange of oxygen and

  13. Social support modulates splenocyte glucocorticoid sensitivity in piglets exposed to social deprivation stress.

    Science.gov (United States)

    Tuchscherer, Margret; Kanitz, Ellen; Puppe, Birger; Hameister, Theresa; Tuchscherer, Armin

    2014-05-28

    There is growing evidence that positive social interactions can attenuate the effects of stressful life experiences. However, little is known about the benefits of social partners on stress responses in farm animals. Therefore, in this study we examined the effects of social support on the endocrine and immune stress responses to a single 4h social deprivation in domestic piglets at 7, 21 or 35days of age. The piglets were socially deprived of their mother and littermates. They were left alone (DA) or in the presence of a familiar (DF) or unfamiliar (DU) age-matched piglet. Non-socially deprived piglets served as a control. DA piglets displayed elevated plasma cortisol levels, higher lipopolysaccharide (LPS)-stimulated proliferation of splenocytes and increased TNF-α and IL-6 production in splenocyte cultures than the control piglets. There were no significant buffering effects of social partners on stress-induced plasma cortisol levels and splenocyte proliferation in response to LPS. However, the presence of an age-matched conspecific diminished the IL-6 production by splenocytes in younger, socially deprived piglets, and it reduced the TNF-α release in the older piglets. Compared to the controls, LPS-stimulated splenocytes from DA piglets were more resistant to the inhibitory effects of cortisol, which was demonstrated by a higher proliferative response and increased production of pro-inflammatory cytokines. The dose-dependent cortisol resistance was attenuated by the presence of a familiar or an unfamiliar conspecific at each of the three age categories. Indeed, in the present study, the familiarity level of the social partners did not seem to play a role in the alleviation of social stress-induced inflammatory activity and splenocyte cortisol resistance. In addition, the buffering effect of social support provided by an age-matched conspecific was more pronounced in older piglets. Conclusively, these findings suggest that social support is an important factor for enhancing piglets' abilities to cope with stressful challenges, and it may be a key approach needed to improve the health and welfare of farm animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Enabling immersive simulation.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Josh (University of California Santa Cruz, Santa Cruz, CA); Mateas, Michael (University of California Santa Cruz, Santa Cruz, CA); Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  15. Sex differences in glucocorticoid sensitivity of proinflammatory cytokine production after psychosocial stress.

    Science.gov (United States)

    Rohleder, N; Schommer, N C; Hellhammer, D H; Engel, R; Kirschbaum, C

    2001-01-01

    Men and women show marked differences in susceptibility to disorders related to the immune system. These gender differences have been proposed to be mediated by functional interactions of the hypothalamus-pituitary-adrenal (HPA) and hypothalamus-pituitary-gonadal (HPG) axes. A potential mechanism involved in this interaction is the glucocorticoid (GC) sensitivity of relevant target tissues for GC. Therefore, the aim of the study reported here was to investigate the impact of psychosocial stress and HPA axis activation on the GC sensitivity of proinflammatory cytokine production in men and women. A total of 45 healthy subjects were investigated. Eighteen women in the luteal phase of their menstrual cycle and 27 men were exposed to a psychosocial stress test (Trier Social Stress Test). Salivary free cortisol levels were measured repeatedly after exposure to the stressor. GC sensitivity was assessed in vitro by dexamethasone inhibition of lipopolysaccharide-stimulated production of interleukin-6 and tumor necrosis factor-alpha. The stress test induced significant increases in salivary free cortisol with no significant differences between men and women. In contrast, GC sensitivity and lipopolysaccharide-stimulated cytokine production showed large gender differences. In men GC sensitivity was markedly increased 1 hour after stress, whereas GC sensitivity decreased significantly in women. Similarly, lipopolysaccharide-induced cytokine production decreased in response to stress in men but increased in women. These results demonstrate that despite similar free cortisol responses of men and women (studied in the luteal phase) to psychosocial stress, gender may exert differential effects on the immune system by modulating GC sensitivity of proinflammatory cytokine production.

  16. Differential contribution of mineralocorticoid and glucocorticoid receptors to memory formation during sleep.

    Science.gov (United States)

    Groch, Sabine; Wilhelm, Ines; Lange, Tanja; Born, Jan

    2013-12-01

    Corticosteroids are known to modulate the consolidation of memories during sleep, specifically in the hippocampus-dependent declarative memory system. However, effects of the major human corticosteroid cortisol are conveyed via two different receptors, i.e., mineralocorticoid (MRs) and glucocorticoid receptors (GRs) whose specific contributions to memory consolidation are unclear. Whereas a shift in the balance between MR and GR activation toward predominant GR activation has been found to impair sleep-dependent consolidation of declarative memories, the effect of predominant MR activation is not well characterized. Here, we examined differential corticosteroid receptor contributions to memory consolidation during post-learning sleep in two placebo-controlled double-blind studies in humans, by comparing the effects of the selective MR agonist fludrocortisone (0.2 mg, orally, Study 1) and of hydrocortisone (22 mg, intravenously, Study 2) with strong binding affinity to both MR and GR. We hypothesized increased activation of MRs during sleep to enhance declarative memory consolidation, but the joint MR/GR activation to impair it. Participants (16 men in each study) learned a declarative (word pair associates) and a procedural task (mirror tracing) before a 7-h period of nocturnal retention sleep, with the substances administered before sleep (Study 1) and during sleep (Study 2), respectively. As hypothesized, retention of word pairs, but not of mirror tracing skill, was selectively enhanced by the MR agonist fludrocortisone. An impairing effect of hydrocortisone on word pair retention remained non-significant possibly reflecting that hydrocortisone administration failed to establish robust predominance of GR activation. Our results show that predominant MR activation benefits declarative memory consolidation presumably by enhancing the sleep-dependent reactivation of hippocampal memories and resultant synaptic plastic processes. The effect is counteracted by

  17. Glucocorticoids Have Opposing Effects on Liver Fibrosis in Hepatic Stellate and Immune Cells.

    Science.gov (United States)

    Kim, Kang Ho; Lee, Jae Man; Zhou, Ying; Harpavat, Sanjiv; Moore, David D

    2016-08-01

    Liver fibrosis is a reversible wound-healing process that is protective in the short term, but prolonged fibrotic responses lead to excessive accumulation of extracellular matrix components that suppresses hepatocyte regeneration, resulting in permanent liver damage. Upon liver damage, nonparenchymal cells including immune cells and hepatic stellate cells (HSCs) have crucial roles in the progression and regression of liver fibrosis. Here, we report differential roles of the glucocorticoid receptor (GR), acting in immune cells and HSCs, in liver fibrosis. In the carbon tetrachloride hepatotoxin-induced fibrosis model, both steroidal and nonsteroidal GR ligands suppressed expression of fibrotic genes and decreased extracellular matrix deposition but also inhibited immune cell infiltration and exacerbated liver injury. These counteracting effects of GR ligands were dissociated in mice with conditional GR knockout in immune cells (GR(LysM)) or HSC (GR(hGFAP)): the impacts of dexamethasone on immune cell infiltration and liver injury were totally blunted in GR(LysM) mice, whereas the suppression of fibrotic gene expression was diminished in GR(hGFAP) mice. The effect of GR activation in HSC was further confirmed in the LX-2 HSC cell line, in which antifibrotic effects were mediated by GR ligand inhibition of Sma and mad-related protein 3 (SMAD3) expression. We conclude that GR has differential roles in immune cells and HSCs to modulate liver injury and liver fibrosis. Specific activation of HSC-GR without alteration of GR activity in immune cells provides a potential therapeutic approach to treatment of hepatic fibrosis.

  18. Distinct modifications of hippocampal glucocorticoid receptor phosphorylation and FKBPs by lipopolysaccharide in depressive female and male rats.

    Science.gov (United States)

    Brkic, Zeljka; Francija, Ester; Petrovic, Zorica; Franic, Dusanka; Lukic, Iva; Mitic, Milos; Adzic, Miroslav

    2017-09-01

    Inflammation plays a critical role in pathogenesis of depression and can affect the hypothalamic-pituitary-adrenal axis activity. Accordingly, in this study we investigated the role of hippocampal glucocorticoid receptor in mediating the effects of inflammation on behaviour of female and male Wistar rats. We studied the effects of lipopolysaccharide on the levels of glucocorticoid receptors and its co-chaperones FK506 binding protein 52 and FK506 binding protein 51, the levels of glucocorticoid receptor phospho-isoforms, pGR-232 and pGR-246, and glucocorticoid receptor up-stream kinases. In order to assess transcriptional activity of glucocorticoid receptor, we measured mRNA levels of several glucocorticoid receptor-regulated genes. We demonstrated that lipopolysaccharide induced depressive-like behaviour and elevated serum corticosterone in both sexes. However, it affected glucocorticoid receptor signalling in the nucleus of females and males differently - in females it elevated levels of glucocorticoid receptors, pGR-246 and FK506 binding protein 52, while in males it decreased levels of glucocorticoid receptor, both co-chaperons and pGR-246. Alterations in pGR-246 were associated with alterations of c-Jun N-terminal kinases. Altered nuclear levels of total glucocorticoid receptors and pGR-246 were accompanied by sex-specific reduction in brain-derived neurotrophic factor and cyclooxygenase-2 mRNA and sex-unspecific reduction in the expression of p11 and glucocorticoid receptor genes. These alterations may ultimately affect different glucocorticoid receptor -associated processes involved in depressive-like behaviour in males and females.

  19. DMPD: Glucocorticoids and the innate immune system: crosstalk with the toll-likereceptor signaling network. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17576036 Glucocorticoids and the innate immune system: crosstalk with the toll-like...07 May 13. (.png) (.svg) (.html) (.csml) Show Glucocorticoids and the innate immune system: crosstalk with t...he toll-likereceptor signaling network. PubmedID 17576036 Title Glucocorticoids and the innate immune syst...em: crosstalk with the toll-likereceptor signaling network. Authors Chinenov Y, Rog

  20. Duration of Suppression of Adrenal Steroids after Glucocorticoid Administration

    Directory of Open Access Journals (Sweden)

    John S. Fuqua

    2010-01-01

    Full Text Available Hydrocortisone has long been the treatment of choice for congenital adrenal hyperplasia (CAH. However, treatment with this medication remains problematic. Patients with 21-hydroxylase deficiency CAH have significant diurnal variation in the secretion of 17-hydroxyprogesterone (17OHP. When considering treatment strategies, this variation must be considered along with the pharmacokinetic and pharmacodynamic properties of exogenous glucocorticoids. Orally administered hydrocortisone is highly bioavailable, but it has a short time to maximum concentration (Tmax⁡ and half life (T1/2. While prednisone has a somewhat longer Tmax⁡ and T1/2, they remain relatively short. There have been several studies of the pharmacodynamics of hydrocortisone. We present data indicating that the maximum effect of hydrocortisone in CAH patients is seen 3 hours after a morning dose. After an evening dose, suppression of adrenal hormones continues until approximately 0500 the next day. In both situations, however, there is a large degree of intersubject variability. These data are consistent with earlier published studies. Use of alternate specimen types, possibly in conjunction with delayed release hydrocortisone preparations under development, may allow the practitioner to design a medication regimen that provides improved control of androgen secretion. Whatever dosing strategy is used, clinical judgment is required to ensure the best outcome.

  1. Duration of Suppression of Adrenal Steroids after Glucocorticoid Administration

    Directory of Open Access Journals (Sweden)

    Lee PeterA

    2010-03-01

    Full Text Available Hydrocortisone has long been the treatment of choice for congenital adrenal hyperplasia (CAH. However, treatment with this medication remains problematic. Patients with 21-hydroxylase deficiency CAH have significant diurnal variation in the secretion of 17-hydroxyprogesterone (17OHP. When considering treatment strategies, this variation must be considered along with the pharmacokinetic and pharmacodynamic properties of exogenous glucocorticoids. Orally administered hydrocortisone is highly bioavailable, but it has a short time to maximum concentration ( and half life (. While prednisone has a somewhat longer and , they remain relatively short. There have been several studies of the pharmacodynamics of hydrocortisone. We present data indicating that the maximum effect of hydrocortisone in CAH patients is seen 3 hours after a morning dose. After an evening dose, suppression of adrenal hormones continues until approximately 0500 the next day. In both situations, however, there is a large degree of intersubject variability. These data are consistent with earlier published studies. Use of alternate specimen types, possibly in conjunction with delayed release hydrocortisone preparations under development, may allow the practitioner to design a medication regimen that provides improved control of androgen secretion. Whatever dosing strategy is used, clinical judgment is required to ensure the best outcome.

  2. Glucocorticoid-Induced Osteoporosis in Children with 21-Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Annamaria Ventura

    2013-01-01

    Full Text Available 21-Hydroxylase deficiency (21-OHD is the most common cause of congenital adrenal hyperplasia (CAH, resulting from deletions or mutations of the P450 21-hydroxylase gene (CYP21A2. Children with 21-OHD need chronic glucocorticoid (cGC therapy, both to replace congenital deficit in cortisol synthesis and to reduce androgen secretion by adrenal cortex. GC-induced osteoporosis (GIO is the most common form of secondary osteoporosis that results in an early, transient increase in bone resorption accompanied by a decrease in bone formation, maintained for the duration of GC therapy. Despite the conflicting results in the literature about the bone status on GC-treated patients with 21-OHD, many reports consider these subjects to be at risk for osteoporosis and fractures. In bone cells, at the molecular level, GCs regulate various functions including osteoblastogenesis, osteoclastogenesis, and the apoptosis of osteoblasts and osteocytes. In this paper, we focus on the physiology and biosynthesis of endogenous steroid hormones as well as on the effects of GCs on bone cells, highlighting the pathogenetic mechanism of GIO in children with 21-OHD.

  3. Stress, glucocorticoids and ageing of the immune system.

    Science.gov (United States)

    Bauer, Moisés Evandro

    2005-03-01

    Ageing has been associated with immunological changes (immunosenescence) that resemble those observed following chronic stress or glucocorticoid (GC) treatment. These changes include thymic involution, lower number of naïve T cells, reduced cell-mediated immunity, and poor vaccination response to new antigens. It follows that immunosenescence could be associated with changes of peripheral GC levels. Indeed, when compared with young subjects, healthy elders are more stressed and show activation of the hypothalamus-pituitary-adrenal (HPA) axis. However, both beneficial and undesirable effects of GCs ultimately depend on the target tissue sensitivity to these steroids. Recent data indicate that peripheral lymphocytes from elders respond poorly to GC treatment in vitro. The present review summarizes recent findings which suggest that immunosenescence may be closely related to both psychological distress and stress hormones. Furthermore, chronically stressed elderly subjects may be particularly at risk of stress-related pathology because of further alterations in GC-immune signalling. Finally, the neuroendocrine hypothesis of immunosenescence is finally reconsidered in which the age-related increase in the cortisol/DHEA ratio is major determinant of immunological changes observed during ageing.

  4. Acute glucocorticoid effects on the multicomponent model of working memory.

    Science.gov (United States)

    Vaz, Leonardo José; Pradella-Hallinan, Márcia; Bueno, Orlando Francisco Amodeo; Pompéia, Sabine

    2011-10-01

    In comparison with basal physiological levels, acute, high levels of cortisol affect learning and memory. Despite reports of cortisol-induced episodic memory effects, no study has used a comprehensive battery of tests to evaluate glucocorticoid effects on the multicomponent model of working memory. Here, we report the results of a double-blind, placebo-controlled, between-subjects study. Twenty healthy young men were randomly assigned to either acute cortisol (30 mg hydrocortisone) or placebo administration. Participants were subjected to an extensive cognitive test battery that evaluated all systems of the multicomponent model of working memory, including various executive domains (shifting, updating, inhibition, planning and access to long-term memory). Compared with placebo, hydrocortisone administration increased cortisol blood levels and impaired working memory in storage of multimodal information in the episodic buffer and maintenance/reverberation of information in the phonological loop. Hydrocortisone also decreased performance in planning and inhibition tasks, the latter having been explained by changes in storage of information in working memory. Thus, hydrocortisone acutely impairs various components of working memory, including executive functioning. This effect must be considered when administering similar drugs, which are widely used for the treatment of many clinical disorders. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  6. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation.

    Science.gov (United States)

    Banuelos, Jesus; Shin, Soon Cheon; Lu, Nick Z

    2015-04-01

    Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting that the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Antcin A, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids.

    Science.gov (United States)

    Chen, Yi-ching; Liu, Ya-lin; Li, Feng-yin; Chang, Chi-I; Wang, Sheng-yang; Lee, Kuo-yang; Li, Shun-lai; Chen, Yi-peng; Jinn, Tzyy-rong; Tzen, Jason T C

    2011-07-01

    To determine the active ingredient of Niuchangchih (Antrodia camphorata) responsible for its anti-inflammatory effects and the relevant molecular mechanisms. Five major antcins (A, B, C, H, and K) were isolated from fruiting bodies of Niuchangchih. Structural similarity between the antcins and 2 glucocorticoids (cortisone and dexamethasone) was compared. After incubation with each compound, the cytosolic glucocorticoid receptor (GR) was examined for its migration into the nucleus. Mo lecular docking was performed to model the tertiary structure of GR associated with antcins. Incubation with cortisone, dexamethasone or antcin A (but not antcins B, C, H, and K) led to the migration of glucocorticoid receptor into the nucleus. The minimal concentration of antcin A, cortisone and dexamethasone to induce nuclear migration of glucocorticoid receptor was 10, 1, and 0.1 mol/L, respectively. The results are in agreement with the simulated binding affinity scores of these three ligands docking to the glucocorticoid receptor. Molecular modeling indicates that C-7 of antcin A or glucocorticoids is exposed to a hydrophobic region in the binding cavity of the glucocorticoid receptor, and the attachment of a hydrophilic group to C-7 of the other four antcins presumably results in their being expelled when docking to the cavity. The anti-inflammatory effect of Niuchangchih is, at least, partly attributed to antcin A that mimics glucocorticoids and triggers translocation of glucocorticoid receptor into nucleus to initiate the suppressing inflammation.

  8. Investigation of subclinical bacteriuria in cats with dermatological disease receiving long-term glucocorticoids and/or ciclosporin.

    Science.gov (United States)

    Lockwood, Samantha L; Schick, Anthea E; Lewis, Thomas P; Newton, Heide

    2017-08-18

    Dogs receiving long-term glucocorticoids or ciclosporin have an increased frequency of bacteriuria. No studies have investigated the frequency of bacteriuria in cats receiving long-term glucocorticoids and/or ciclosporin. To document whether subclinical bacteriuria occurs in cats receiving long-term glucocorticoid and/or ciclosporin for management of chronic disease. Thirty two cats treated with parenteral glucocorticoids and/or oral glucocorticoids and/or ciclosporin were included. Thirty two cats receiving oral glucocorticoids and/or ciclosporin for at least three months or at least two injections of long-acting glucocorticoids within the preceding six months were evaluated. Thirty four healthy cats were used as a control group. Urinalysis and urine culture was performed on urine samples collected by cystocentesis from each cat. In the glucocorticoid/ciclosporin group, none of 32 cats had a positive urine culture. In the control group, one of 34 cats had a positive urine culture. There were no statistically significant differences between the urinalyses from either group. There was no evidence to suggest that administration of long-term glucocorticoids and/or ciclosporin is associated with bacteriuria in cats. © 2017 ESVD and ACVD.

  9. Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters

    Data.gov (United States)

    U.S. Environmental Protection Agency — In vitro bioactivity concentrations and chemical concentrations of estrogens, androgens, and glucocorticoids from a nationwide screen of United States stream water...

  10. Short-term versus longer duration of glucocorticoid therapy for exacerbations of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Ma, Zhao; Zhang, Wei

    2016-10-01

    Systemic glucocorticoid has been shown to improve the outcome of acute exacerbation of chronic obstructive pulmonary disease (COPD). However, the optimal duration remains controversial. To investigate whether a short-term (seven days or fewer) systemic glucocorticoid treatment in patients with COPD exacerbation is non inferior to longer duration (more than seven days) treatment in clinical outcome. We searched PubMed, EMBASE, CENTRAL databases, China Clinical Trials, CNKI, The Chinese biomedical literature database (CBM) and wanfang database to identify randomized controlled trials using systemic glucocorticoid in COPD. At least two review authors independently assessed each potentially eligible trial for its inclusion in the review and its quality. Glucocorticoid is given for a period of seven days or fewer versus systemic given for more than seven days. We retrieved time from building to Apr 20, 2016, and supplemented by manual retrieval into literature references. By adopting the combination of keywords and free word retrieval methods, we performed a routine meta-analysis to evaluate the effects of glucocorticoid on FEV1, FEV1/FVC, PaO2, clinical symptoms, relapse, treatment failure, mortality and side-effects between the two treatment groups. Our search yielded 9 studies involving 874 patients. Six studies were fully published and three were published as abstracts. We obtained data for one study published as abstracts from authors. Short-term treatment varied between three and seven days and longer duration 10-15 days, at equivalent daily doses of glucocorticoid. Mean ages of participants ranged from 60 to 90 years. The FEV1, FEV1/FVC, PaO2 and clinical symptoms between the two treatment groups did not differ significantly by treatment duration. There was no significant difference of relapse, treatment failure, mortality and side-effects between the two treatment groups. These data show that short-term glucocorticoid is as effective as and possibly safer than

  11. The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness.

    Science.gov (United States)

    Beehner, Jacinta C; Bergman, Thore J

    2017-05-01

    Glucocorticoids are hormones that mediate the energetic demands that accompany environmental challenges. It is therefore not surprising that these metabolic hormones have come to dominate endocrine research on the health and fitness of wild populations. Yet, several problems have been identified in the vertebrate research that also apply to the non-human primate research. First, glucocorticoids should not be used as a proxy for fitness (unless a link has previously been established between glucocorticoids and fitness for a particular population). Second, stress research in behavioral ecology has been overly focused on "chronic stress" despite little evidence that chronic stress hampers fitness in wild animals. Third, research effort has been disproportionately focused on the causes of glucocorticoid variation rather than the fitness consequences. With these problems in mind, we have three objectives for this review. We describe the conceptual framework behind the "stress concept", emphasizing that high glucocorticoids do not necessarily indicate a stress response, and that a stress response does not necessarily indicate an animal is in poor health. Then, we conduct a comprehensive review of all studies on "stress" in wild primates, including any study that examined environmental factors, the stress response, and/or fitness (or proxies for fitness). Remarkably, not a single primate study establishes a connection between all three. Finally, we provide several recommendations for future research in the field of primate behavioral endocrinology, primarily the need to move beyond identifying the factors that cause glucocorticoid secretion to additionally focus on the relationship between glucocorticoids and fitness. We believe that this is an important next step for research on stress physiology in primates. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ex vivo stimulation of whole blood as a means to determine glucocorticoid sensitivity

    Directory of Open Access Journals (Sweden)

    Burnsides C

    2012-08-01

    Full Text Available Christopher Burnsides,1,* Jacqueline Corry,1,* Jacob Alexander,1 Catherine Balint,1 David Cosmar,1 Gary Phillips,2 Jeanette I Webster Marketon1,31Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, 2Center for Biostatistics, 3Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, Columbus, OH, USA*JC and CB have equally contributed to this workPurpose: Glucocorticoids are commonly prescribed to treat a number of diseases including the majority of inflammatory diseases. Despite considerable interpersonal variability in response to glucocorticoids, an insensitivity rate of about 30%, and the risk of adverse side effects of glucocorticoid therapy, currently no assay is performed to determine sensitivity.Patients and methods: Here we propose a whole blood ex vivo stimulation assay to interrogate known glucocorticoid receptor (GR up- and downregulated genes to indicate glucocorticoid sensitivity. We have chosen to employ real-time PCR in order to provide a relatively fast and inexpensive assay.Results: We show that the GR-regulated genes, GILZ and FKBP51, are upregulated in whole blood by treatment with dexamethasone and that LPS-induction of cytokines (IL-6 and TNFα are repressed by dexamethasone in a dose responsive manner. There is considerable interpersonal variability in the maximum induction of these genes but little variation in the EC50 and IC50 concentrations. The regulation of the GR-induced genes differs throughout the day whereas the suppression of LPS-induced cytokines is not as sensitive to time of day.Conclusion: In all, this assay would provide a method to determine glucocorticoid receptor responsiveness in whole blood.Keywords: glucocorticoid responsiveness, gene regulation, nuclear receptor, GILZ, FKBP51, cytokines

  13. Vitamin D3 Adjuvant Treatment Stimulate Interleukin-10 Expression in Children with Nephrotic Syndrome Without Affecting to Clinical Outcome and Glucocorticoid Receptor Expression

    Directory of Open Access Journals (Sweden)

    Husnul Asariati

    2014-11-01

    Full Text Available Idiopathic nephrotic syndrome (INS is the most glomerular disease that occurred in childhood with high rate morbidity. Glucocorticoid is drug of choice for INS and responsiveness to this drug determined prognosis.Glucocorticoid upregulate transcription of anti-inflammatory cytokines such as IL-4 and IL-10. IL-10 is an anti-inflammatory cytokine and has multiple role in immune response include modulate Th1/Th2 response. Vitamin D3 interact with glucocorticoid signaling. Administered active form of vitamin D3 increase dexamethasone-induced IL-10 expression by regulatory T cells in steroid resistant asthmatic patient. Here we showed increase of CD4+ IL10+ expression after treatment both prednisone only and combination prednison with vitamin D3. Both in new-onset NS or rare relaps NS, combination treatment prednisone + vitamin D3 increase CD4+ IL10+ expression significantly compared to prednisone-only treated group (p= 0.003, which first group (new-onset nephrotic syndrome + prednisone and vitamin D3 treatment showed the most CD4+ IL10+ expression enhancement (9.53±3.89. However this study failed to show a correlation between CD4+ IL-10+ expression after prednisone and vitamin D3 treatment with clinical outcome (linear regression test, p= 0,125. This study also showed that there was a no correlation between CD4+ IL-10+ expression and CD3+ GR expression after prednison + vitamin D3 treatment (p= 0.088. CD4+ IL-10+ expression in new-onset and rarely relapsing nephrotic syndrome patients higher in prednisone + vitamin D3 treated group than prednisone-only treated group. There is no correlation between CD4+ IL-10+ expression and CD3+ GR expression nor CD4+ IL-10+ expression and clinical outcome.

  14. Modulation of sulfur metabolism enables efficient glucosinolate engineering

    Directory of Open Access Journals (Sweden)

    Geu-Flores Fernando

    2011-01-01

    Full Text Available Abstract Background Metabolic engineering in heterologous organisms is an attractive approach to achieve efficient production of valuable natural products. Glucosinolates represent a good example of such compounds as they are thought to be the cancer-preventive agents in cruciferous plants. We have recently demonstrated that it is feasible to engineer benzylglucosinolate (BGLS in the non-cruciferous plant Nicotiana benthamiana by transient expression of five genes from Arabidopsis thaliana. In the same study, we showed that co-expression of a sixth Arabidopsis gene, γ-glutamyl peptidase 1 (GGP1, resolved a metabolic bottleneck, thereby increasing BGLS accumulation. However, the accumulation did not reach the expected levels, leaving room for further optimization. Results To optimize heterologous glucosinolate production, we have in this study performed a comparative metabolite analysis of BGLS-producing N. benthamiana leaves in the presence or absence of GGP1. The analysis revealed that the increased BGLS levels in the presence of GGP1 were accompanied by a high accumulation of the last intermediate, desulfoBGLS, and a derivative thereof. This evidenced a bottleneck in the last step of the pathway, the transfer of sulfate from 3'-phosphoadenosine-5'-phosphosulfate (PAPS to desulfoBGLS by the sulfotransferase AtSOT16. While substitution of AtSOT16 with alternative sulfotransferases did not alleviate the bottleneck, experiments with the three genes involved in the formation and recycling of PAPS showed that co-expression of adenosine 5'-phosphosulfate kinase 2 (APK2 alone reduced the accumulation of desulfoBGLS and its derivative by more than 98% and increased BGLS accumulation 16-fold. Conclusion Adjusting sulfur metabolism by directing sulfur from primary to secondary metabolism leads to a remarkable improvement in BGLS accumulation and thereby represents an important step towards a clean and efficient production of glucosinolates in heterologous hosts. Our study emphasizes the importance of considering co-substrates and their biological nature in metabolic engineering projects.

  15. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses

    NARCIS (Netherlands)

    Limpens, E.H.M.; Zeijl, van A.L.; Geurts, R.

    2015-01-01

    Symbiotic nitrogen-fixing rhizobium bacteria and arbuscular mycorrhizal fungi use lipochitooligosaccharide (LCO) signals to communicate with potential host plants. Upon a compatible match, an intimate relation is established during which the microsymbiont is allowed to enter root (-derived) cells.

  16. FOILFEST :community enabled security.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.; Drayer, Darryl Donald; Cummings, John C., Jr. (.,; .)

    2005-09-01

    The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological

  17. Variation of Human Milk Glucocorticoids over 24 hour Period.

    Science.gov (United States)

    Pundir, Shikha; Wall, Clare R; Mitchell, Cameron J; Thorstensen, Eric B; Lai, Ching T; Geddes, Donna T; Cameron-Smith, David

    2017-03-01

    Human milk (HM) contains a complex array of hormones, including members of the glucocorticoid family. The predominant glucocorticoids, cortisol and cortisone may influence the growth and behaviour of the breastfed infant. However, little is understood of the factors regulating the levels of these hormones within HM. The aim of the study was to examine HM cortisol and cortisone concentration, measured in samples collected at each feed during a 24 hour period. Twenty three exclusively breastfeeding mothers collected milk, prior to and after each breastfeeding session over 24 hour period at 3.2(1.60) months. HM cortisol and cortisone levels were measured using high pressure liquid chromatography mass spectroscopy. Cortisone was the predominant glucocorticoid (3.40 ng/ml), and cortisol was detected in all samples (1.62 ng/ml). A positive correlation was found between cortisone and cortisol (r = 0.61, y = 1.93 ± 0.24, p milk expressed for collection either before or immediately after the breastfeed, or between milk collected from the left or right breast. This study shows that HM glucocorticoid concentrations exhibit a 24 hour pattern, with highest peak levels in the early morning, reflecting the circadian pattern as previously reported in plasma. Thus, HM glucocorticoid concentrations are likely to reflect those in the maternal circulation.

  18. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kato, Toshiki; Khanh, Vuong Cat; Sato, Kazutoshi; Takeuchi, Kosuke; Carolina, Erica; Yamashita, Toshiharu; Sugaya, Hisashi; Yoshioka, Tomokazu; Mishima, Hajime; Ohneda, Osamu

    2017-11-18

    Glucocorticoids cause the delayed wound healing by suppressing inflammation that is required for wound healing process. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) play an important role for wound healing by their cytokine productions including stromal derived factor 1 (SDF-1). However, it has not been clear how glucocorticoids affect the wound healing ability of AT-MSCs. In this study, we found that glucocorticoid downregulated SDF-1 expression in AT-MSCs. In addition, glucocorticoid-treated AT-MSCs induced less migration of inflammatory cells and impaired wound healing capacity compared with glucocorticoid-untreated AT-MSCs. Of note, prostaglandin E2 (PGE2) synthesis-related gene expression was downregulated by glucocorticoid and PGE2 treatment rescued not only SDF-1 expression in the presence of glucocorticoid but also their wound healing capacity in vivo. Furthermore, we found SDF-1-overexpressed AT-MSCs restored wound healing capacity even after treatment of glucocorticoid. Consistent with the results obtained from glucocorticoid-treated AT-MSCs, we found that AT-MSCs isolated from steroidal osteonecrosis donors (sAT-MSCs) who received chronic glucocorticoid therapy showed less SDF-1 expression and impaired wound healing capacity compared with traumatic osteonecrosis donor-derived AT-MSCs (nAT-MSCs). Moreover, the SDF-1 level was also reduced in plasma derived from steroidal osteonecrosis donors compared with traumatic osteonecrosis donors. These results provide the evidence that concomitant application of AT-MSCs with glucocorticoid shows impaired biological modulatory effects that induce impaired wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Glucocorticoid therapy: what is the information sought by patients? Traffic analysis of the website cortisone-info.fr].

    Science.gov (United States)

    Poisson, J; Six, M; Morin, C; Fardet, L

    2013-05-01

    About 1% of the general population are receiving systemic glucocorticoids. The information about this treatment sought by patients is unknown. The website www.cortisone-info.fr aims to provide therapeutic information about glucocorticoids and glucocorticoid therapy. It was posted on January 16, 2012. The information available on the website is documented and based on the recent medical literature. The website is made of 43 pages divided into five main sections (generalities about glucocorticoids, adverse events, measures associated with glucocorticoid therapy, discontinuation of glucocorticoids and, situations requiring attention). The website traffic between February 1st, 2012 and January 4, 2013 was analyzed using Google Analytics. During the study period, the website was visited by 67,496 people (average number of visitors per day: 33 in February 2012, 326 in December 2012). The number of page views was 230,496 or an average of 3.5 pages per visitor. Of these 230,496 page views, 145,431 (63.1%) were related to adverse events and 37,722 (16.4%) were related to generalities about glucocorticoids (e.g., what is cortisone? For which disease? How does it work?). Information particularly sought by visitors was related to the diet to follow during glucocorticoid therapy (page accessed 11,946 times), data about what cortisone is (page accessed 11,829 times) and the effects of glucocorticoids on weight (page accessed 10,442 times). Knowledge of glucocorticoid-treated patients' expectations may help physicians to optimize information they give, thereby helping to reduce patients' concerns about glucocorticoids and to improve adherence to the treatment. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  20. Osteoporosis due to glucocorticoid use in children with chronic illness.

    Science.gov (United States)

    Ward, Leanne M

    2005-01-01

    Osteoporosis is increasingly recognized as a complication of chronic childhood illnesses, particularly when glucocorticoids (GCs) are necessary for treatment. Elucidation of the mechanisms leading to bone fragility in these settings requires disentanglement of the relative contributions of myriad risk factors, including disease activity, muscle weakness, immobilization, delayed growth and puberty, compromised nutrition, and osteotoxic medications. Over the years, bone mass and density evaluations by dual energy X-ray absorptiometry (DXA) have become popular for assessing bone health in children; however, such measurements are difficult to interpret because of the confounding effect of bone size and the lack of DXA-based densitometric criteria for defining osteoporosis in childhood. Recently, a new diagnostic approach for evaluation of densitometric data in children has been suggested, driven by Frost's mechanostat theory. A diagnostic algorithm based on the mechanostat theory of bone-muscle development is proposed for the characterization of bone disease in children with chronic illness. In addition to DXA-based assessments, techniques such as peripheral quantitative computerized tomography and ilial histomorphometry, for which there are pediatric reference data, are gaining ground in the characterization of skeletal changes due to chronic illness. Although these diagnostic techniques expand our understanding of osteoporosis in children, they do not replace clinical assessment. Concrete clinical evidence for GC-induced bone fragility can be seen in spinal changes due to vertebral compression, with spinal morphometry emerging as an essential, but frequently overlooked, tool in the evaluation of children's bone health. Presently, osteoporosis treatment in the chronic illness setting remains experimental and should be restricted to clinical studies. Following an understanding of the natural history of GC-induced osteoporosis in children, randomized, placebo

  1. Glucocorticoid programming of the fetal male hippocampal epigenome.

    Science.gov (United States)

    Crudo, Ariann; Suderman, Matthew; Moisiadis, Vasilis G; Petropoulos, Sophie; Kostaki, Alisa; Hallett, Michael; Szyf, Moshe; Matthews, Stephen G

    2013-03-01

    The late-gestation surge in fetal plasma cortisol is critical for maturation of fetal organ systems. As a result, synthetic glucocorticoids (sGCs) are administered to pregnant women at risk of delivering preterm. However, animal studies have shown that fetal exposure to sGC results in increased risk of behavioral, endocrine, and metabolic abnormalities in offspring. Here, we test the hypothesis that prenatal GC exposure resulting from the fetal cortisol surge or after sGC exposure results in promoter-specific epigenetic changes in the hippocampus. Fetal guinea pig hippocampi were collected before (gestational day [GD52]) and after (GD65) the fetal plasma cortisol surge (Term∼GD67) and 24 hours after (GD52) and 14 days after (GD65) two repeat courses of maternal sGC (betamethasone) treatment (n = 3-4/gp). We identified extensive genome-wide alterations in promoter methylation in late fetal development (coincident with the fetal cortisol surge), whereby the majority of the affected promoters exhibited hypomethylation. Fetuses exposed to sGC in late gestation exhibited substantial differences in DNA methylation and histone h3 lysine 9 (H3K9) acetylation in specific gene promoters; 24 hours after the sGC treatment, the majority of genes affected were hypomethylated or hyperacetylated. However, 14 days after sGC exposure these differences did not persist, whereas other promoters became hypermethylated or hyperacetylated. These data support the hypothesis that the fetal GC surge is responsible, in part, for significant variations in genome-wide promoter methylation and that prenatal sGC treatment profoundly changes the epigenetic landscape, affecting both DNA methylation and H3K9 acetylation. This is important given the widespread use of sGC in the management of women in preterm labor.

  2. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome.

    Science.gov (United States)

    Rajeevan, M S; Smith, A K; Dimulescu, I; Unger, E R; Vernon, S D; Heim, C; Reeves, W C

    2007-03-01

    Chronic fatigue syndrome (CFS) is a significant public health problem of unknown etiology, the pathophysiology has not been elucidated, and there are no characteristic physical signs or laboratory abnormalities. Some studies have indicated an association of CFS with deregulation of immune functions and hypothalamic-pituitary-adrenal (HPA) axis activity. In this study, we examined the association of sequence variations in the glucocorticoid receptor gene (NR3C1) with CFS because NR3C1 is a major effector of the HPA axis. There were 137 study participants (40 with CFS, 55 with insufficient symptoms or fatigue, termed as ISF, and 42 non-fatigued controls) who were clinically evaluated and identified from the general population of Wichita, KS. Nine single nucleotide polymorphisms (SNPs) in NR3C1 were tested for association of polymorphisms and haplotypes with CFS. We observed an association of multiple SNPs with chronic fatigue compared to non-fatigued (NF) subjects (P fatigue (by the Multidimensional Fatigue Inventory) and with symptoms (assessed by the Centers for Disease Control Symptom Inventory). Subjects homozygous for the major allele of all associated SNPs were at increased risk for CFS with odds ratios ranging from 2.61 (CI 1.05-6.45) to 3.00 (CI 1.12-8.05). Five SNPs, covering a region of approximately 80 kb, demonstrated high linkage disequilibrium (LD) in CFS, but LD gradually declined in ISF to NF subjects. Furthermore, haplotype analysis of the region in LD identified two associated haplotypes with opposite alleles: one protective and the other conferring risk of CFS. These results demonstrate NR3C1 as a potential mediator of chronic fatigue, and implicate variations in the 5' region of NR3C1 as a possible mechanism through which the alterations in HPA axis regulation and behavioural characteristics of CFS may manifest.

  3. Iatrogenic Cushing's Syndrome Due to Topical Ocular Glucocorticoid Treatment.

    Science.gov (United States)

    Fukuhara, Daisuke; Takiura, Toshihiko; Keino, Hiroshi; Okada, Annabelle A; Yan, Kunimasa

    2017-02-01

    Iatrogenic Cushing's syndrome (CS) is a severe adverse effect of systemic glucocorticoid (GC) therapy in children, but is extremely rare in the setting of topical ocular GC therapy. In this article, we report the case of a 9-year-old girl suffering from idiopathic uveitis who developed CS due to topical ocular GC treatment. She was referred to the ophthalmology department with a complaint of painful eyes, at which time she was diagnosed with bilateral iridocyclitis and started on a treatment of betamethasone sodium phosphate eye drops. Six months after the initiation of topical ocular GC treatment, she was referred to our pediatric department with stunted growth, truncal obesity, purple skin striate, buffalo hump, and moon face. Because her serum cortisol and plasma adrenocorticotropic hormone levels were undetectable, she was diagnosed with iatrogenic CS. After the doses of topical ocular GC were reduced, the clinical symptoms of CS were improved. The fact that the amount of topical ocular GC with our patient was apparently less than that of similar previous cases tempted us to perform genetic analysis of her NR3C1 gene. We found that our patient had a single heterozygous nucleotide substitution in the 3' untranslated region of the NR3C1 gene, which may explain why she developed CS. However, additional investigations are required to determine if our findings can be extrapolated to other patients. In conclusion, clinicians should be aware that even extremely low doses of topical ocular steroid therapy can cause iatrogenic CS. Copyright © 2017 by the American Academy of Pediatrics.

  4. A rat model of early stage osteonecrosis induced by glucocorticoids

    Directory of Open Access Journals (Sweden)

    Kerachian Mohammad

    2011-12-01

    Full Text Available Abstract Background Glucocorticoid (GC-induced osteonecrosis (ON is an important complication of medical therapy. The exact pathomechanisms of ON has not been clearly elucidated. There is a need for a reproducible animal model that better approximates the clinical scenario. Methods To determine the genetic susceptibility of rats to develop GC-induced femoral head ON, we evaluated 5 different inbred strains of rats (Spontaneous Hypertensive Rat, Wistar Kyoto, Wistar Furth, SASCO Fisher and Lewis. Prednisone pellets (dosage of 1.82-2.56 mg/kg/day were implanted subcutaneously for 90. After 90 days, the femurs were resected and examined histologically and radiographically. Pathological and histological examination was performed. Hematoxylin and eosin (H & E staining was used to delineate the femoral head osteonecrosis lesions as well as abnormalities of articular cartilage and growth plate. Results The greatest differences in H & E staining were seen in the Wistar Kyoto and Wistar Furth groups. In these groups 4 out of 5 and 3 out of 5, respectively, steroid-induced rats revealed growth plate disruption with acellular areas. The TUNEL apoptosis staining assay for apoptosis revealed that 4 out of 5 of Wistar Kyoto rats, 5 out of 5 of Wistar Furth, 2 out of 4 of surviving Lewis and 2 out of 2 of the surviving spontaneous hypertensive rats had apoptotic osteocytes in trabeculae, whereas none of the Fisher rats showed apoptotic osteocytes. Conclusions We postulate that Wistar Kyoto, Wistar Furth and spontaneous hypertensive rats may be strains of rats more susceptible to develop ON of the femoral head while Fisher rats were the most resistant.

  5. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse.

    Science.gov (United States)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T; Morales, Manuel B; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse (Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  6. Dynamic glucocorticoid-dependent regulation of Sgk1 expression in oligodendrocytes of adult male rat brain by acute stress and time of day.

    Science.gov (United States)

    Hinds, Laura R; Chun, Lauren E; Woodruff, Elizabeth R; Christensen, Jennifer A; Hartsock, Matthew J; Spencer, Robert L

    2017-01-01

    Recent studies support plasticity in adult brain white matter structure and myelination in response to various experiential factors. One possible contributor to this plasticity may be activity-dependent modulation of serum- and glucocorticoid-inducible kinase 1 (Sgk1) expression in oligodendrocytes. We examined whether Sgk1 expression in adult rat brain white matter is increased by acute stress-induced elevations in endogenous corticosterone and whether it fluctuates with diurnal variations in corticosterone. We observed rapid increases (within 30 min) in Sgk1 mRNA in the corpus callosum in response to acute stress, as well as large increases at the beginning of the rat's active period (the time of peak corticosterone secretion). These increases were absent in adrenalectomized rats. Corticosterone treatment of adrenalectomized rats also rapidly increased corpus callosum Sgk1 mRNA. The majority of Sgk1 mRNA in corpus callosum was co-localized with myelin basic protein mRNA, suggesting that mature oligodendrocytes respond dynamically to acute stress and circadian rhythms. The regulation of Sgk1 expression by acute stress and time of day was selective for white matter, with limited alteration of Sgk1 expression by these factors in hippocampus and somatosensory cortex. These results indicate a unique sensitivity of oligodendrocyte Sgk1 expression to activity-dependent fluctuations in corticosterone hormone secretion, and raises the prospect that hypothalamic-pituitary-adrenal axis dysregulation or glucocorticoid pharmacotherapy may compromise the normal activity-dependent interactions between oligodendrocytes and neurons.

  7. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse

    Science.gov (United States)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T.; Morales, Manuel B.; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse ( Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  8. Learned Avoidance in the Male Syrian Hamster: Investigating the Outcome of a Glucocorticoid Antagonist on Reconsolidation

    Directory of Open Access Journals (Sweden)

    Erik Haugsnes

    2015-02-01

    Full Text Available In this experiment, we used our Conflict Alleyway Apparatus and a glucocorticoid antagonist, mifepristone, to investigate the role of glucocorticoids in the reconsolidation of learned avoidance in defeated male Syrian hamsters. Subjects were tested for memory deficits 48 hours and 96 hours after the drug/vehicle was administered. It were hypothesized that mifepristone administration would produce memory deficits when the defeat memory had been reactivated, and that this deficit would be present 48 hours and 96 hours after the administration. Prolonged deficits that are dependent upon memory reactivation would suggest that glucocorticoids play a role in reconsolidation of learned avoidance. Our results indicated a strong evidence for learned avoidance after defeat; however, we did not find any significant drug effect.

  9. Central actions of glucocorticoids in the control of body fluid homeostasis: Review

    Directory of Open Access Journals (Sweden)

    S.G. Ruginsk

    2009-01-01

    Full Text Available The involvement of the hypothalamic-pituitary-adrenal axis in the control of body fluid homeostasis has been extensively investigated in the past few years. In the present study, we reviewed the recent results obtained using different approaches to investigate the effects of glucocorticoids on the mechanisms of oxytocin and vasopressin synthesis and secretion in response to acute and chronic plasma volume and osmolality changes. The data presented here suggest that glucocorticoids are not only involved in the mechanisms underlying the fast release but also in the transcriptional events that lead to decreased synthesis and secretion of these neuropeptides, particularly oxytocin, under diverse experimental conditions of altered fluid volume and tonicity. The endocannabinoid system, through its effects on glutamatergic neurotransmission within the hypothalamus and the nuclear factor κB-mediated transcriptional activity, seems to be also involved in the specific mechanisms by which glucocorticoids exert their central effects on neurohypophyseal hormone synthesis and secretion.

  10. Efficacy of Puls-therapy with Glucocorticoids in Patients with Autoimmune Ophtalmopatay

    Directory of Open Access Journals (Sweden)

    E V Bogomazova

    2008-09-01

    Full Text Available The article is presents the results of estimation efficiency of various schemes pathogenetic glucocorticoids treatment of autoimmune ophthalmopathy. Research of clinical parameters dynamics including subjective and objective attributes, proptosis, dynamics of the soluble form of intercellular molecule adhesion-1 levels was made before treatment and at the end of research (in 6 month follow up after complete course of pathogenetic treatment. The study has demonstrated that combination of glucocorticoids pulse-therapy and mean volume plasmapheresis is the most effective pathogenetic method of autoimmune ophthalmopathy treatment; absence of advantages of the used schemes of treatment for reduction proptosis. Advantages of use of the combined therapy are marked in comparison with monotherapy by glucocorticoids at estimation of subjective attributes.

  11. Glucocorticoid-deficient hypoadrenocorticism secondary to intravascular lymphoma in the adrenal glands of a dog.

    Science.gov (United States)

    Buckley, M E; Chapman, P S; Walsh, A

    2017-03-01

    A 2-year-old neutered male German Shepherd dog was presented with weakness, poor appetite and weight loss. Glucocorticoid-deficient hypoadrenocorticism was diagnosed with undetectable pre- and post-ACTH cortisol concentrations but normal sodium and potassium concentrations. Despite appropriate supplementation with glucocorticoids, the patient's weakness progressed and neurological deficits developed. The patient was euthanased. Histopathological analysis of multiple organs, including the adrenal glands, showed an accumulation of neoplastic lymphocytes within blood vessels, consistent with a diagnosis of intravascular lymphoma. Histologically, in both adrenal glands, the architecture of the zona fasciculata and reticularis was disrupted by blood vessels congested with a neoplastic population of T-lymphocytes; the zona glomerulosa remained intact. This is the first report of intravascular lymphoma causing glucocorticoid-deficient hypoadrenocorticism in a dog. © 2017 Australian Veterinary Association.

  12. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory...... of glucocorticoid on cortical bone. Thus, changes in cortical bone beyond cancellous bone might further increase fracture risk. Key works: glucocorticoid induced osteoporosis; microarchitecture; mechanical property; collagen and mineral; sheep cortical bone; tissue engineering......, Department of Orthopaedics and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark 2Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark Osteopenia in sheep has been successfully induced...

  13. Primary care veterinary usage of systemic glucocorticoids in cats and dogs in three UK practices.

    Science.gov (United States)

    O'Neill, D; Hendricks, A; Summers, J; Brodbelt, D

    2012-04-01

    To describe systemic glucocorticoid usage in cats and dogs by three primary care -veterinary practices in England and to ascertain risk factors for clinical use. To evaluate consistency of prescribing patterns across clinics. To validate a merged database of primary veterinary clinical data as a functional tool for clinical epidemiological research. A merged database was established from clinical data on 31,273 cat and dog consultations with pharmacotherapy from three veterinary practices in England. Descriptive statistics described systemic glucocorticoid drug use in cats and dogs while mixed-effects logistic regression modelling evaluated risk factors. Individual clinic usage was compared. Overall, 1877 (16·68%) cat consultations and 2913 (14·55%) dog consultations resulted in systemic glucocorticoid therapy. Cats received higher parenteral (Pveterinary clinical database was effective for epidemiological research. © 2012 British Small Animal Veterinary Association.

  14. Fat-brain connections: Adipocyte glucocorticoid control of stress and metabolism.

    Science.gov (United States)

    de Kloet, Annette D; Herman, James P

    2017-10-16

    Glucocorticoids act via multiple mechanisms to mobilize energy for maintenance and restoration of homeostasis. In adipose tissue, glucocorticoids can promote lipolysis and facilitate adipocyte differentiation/growth, serving both energy-mobilizing and restorative processes during negative energy balance. Recent data suggest that adipose-dependent feedback may also be involved in regulation of stress responses. Adipocyte glucocorticoid receptor (GR) deletion causes increased HPA axis stress reactivity, due to a loss of negative feedback signals into the CNS. The fat-to-brain signal may be mediated by neuronal mechanisms, release of adipokines or increased lipolysis. The ability of adipose GRs to inhibit psychogenic as well as metabolic stress responses suggests that (1) feedback regulation of the HPA axis occurs across multiple bodily compartments, and (2) fat tissue integrates psychogenic stress signals. These studies support a link between stress biology and energy metabolism, a connection that has clear relevance for numerous disease states and their comorbidities. Copyright © 2017. Published by Elsevier Inc.

  15. The distorting effect of varying diets on fecal glucocorticoid measurements as indicators of stress

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Teilmann, A. Charlotte; Abelson, Klas S. P.

    2015-01-01

    concentrations of glucocorticoids be artificially inflated? Can this effect be overcome by measuring the total output of glucocorticoids in excreta? In a controlled laboratory setting we explored the effect in mice. When standard mouse chow – high in dietary fiber – was replaced with a 17% more energy-dense diet......The physiological stress response is frequently gauged in animals, non-invasively, through measuring glucocorticoids in excreta. A concern with this method is, however, the unknown effect of variations in diets on the measurements. With an energy dense diet, leading to reduced defecation, will low...... results were obtained for testosterone metabolites. Although measuring the total output is not feasible in, for example, wildlife studies, the present findings highlight the perilousness of relying on concentrations of hormones in excreta with no associated information of the dietary intake as even...

  16. Obesity is accompanied by disturbances in peripheral glucocorticoid metabolism and changes in FA recycling

    DEFF Research Database (Denmark)

    Simonyte, Kotryna; Rask, Eva; Näslund, Ingmar

    2009-01-01

    The glucocorticoid activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) is of major interest in obesity-related morbidity. Alterations in tissue-specific cortisol levels may influence lipogenetic and gluco/glyceroneogenetic pathways in fat and liver. We analyzed the expression....... The expression of 11betaHSD1 correlated with PEPCK in both AT depots (P = 0.05 for SAT and P = 0.0001 for OmAT). Hepatic 11betaHSD1 activity correlated negatively with abdominal adipose area (P = 0.002) and expression positively with PEPCK (P = 0.003). In human obesity, glucocorticoid regeneration in the SAT...... is associated with central fat accumulation indicating that the importance of this specific fat depot is underestimated. Central fat accumulation is negatively associated with hepatic 11betaHSD1 activity. A disturbance in peripheral glucocorticoid metabolism is associated with changes in genes involved in fatty...

  17. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus

    NARCIS (Netherlands)

    Chameau, P.; Qin, Y.; Spijker, S.; Smit, A.B.; Joels, M.

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover,

  18. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    NARCIS (Netherlands)

    Chameau, P.J.P.; Qin, Y.J.; Smit, G.; Joëls, M.

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover,

  19. Glucocorticoid administration into the dorsolateral but not dorsomedial striatum accelerates the shift from a spatial toward procedural memory

    NARCIS (Netherlands)

    Siller-Perez, C.; Serafin, N.; Prado-Alcala, R.A.; Roozendaal, B.; Quirarte, G.L.

    2017-01-01

    Glucocorticoid stress hormones are known to enhance the consolidation of hippocampus-dependent spatial and contextual memory. Recent findings indicate that glucocorticoids also enhance the consolidation of procedural memory that relies on the dorsal striatum. The dorsal striatum can be functionally

  20. How does stress affect human being—a molecular dynamic simulation study on cortisol and its glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-03-01

    Full Text Available Stress can be either positive or negative to human beings. Under stressful conditions, the mental and physical conditions of human can be affected. There exists certain relation between stress and illness. The cortisol and other glucocorticoids bind to the same receptor, which is called glucocorticoid receptor. Some evidences indicated that cortisol molecule binding to its glucocorticoid receptor was necessary for the stress response. Up to now, the structure–function relationships between cortisol molecule and its glucocorticoid receptor have not been deliberated from the atomic-level. In order to get a detailed understanding of the structure–function relationships between the cortisol molecule and glucocorticoids receptor, we have carried out molecular dynamic (MD simulations on glucocorticoid receptor (Apo system and cortisol with its glucocorticoid receptor complex (HCY system. On the basis of molecular dynamic simulations, a couple of key residues were identified, which were crucial for the binding of cortisol molecule. The results of binding free energy calculations are in good agreement with the experiment data. Our research gives clear insights from atomic-level into the structural–functional aspects of cortisol molecule and its glucocorticoid receptor, and also provides valuable information for the design of drug which can treat stress related illnesses.

  1. Insulin dose during glucocorticoid treatment for fetal lung maturation in diabetic pregnancy: test of an algorithm [correction of analgoritm

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R; Christensen, Ann-Birgitte L; Hellmuth, Ellinor

    2002-01-01

    Poor glycemic control is often a serious clinical problem during glucocorticoid treatment for fetal lung maturation in pregnant women with diabetes. An algorithm for improved subcutaneous insulin treatment during glucocorticoid treatment in insulin-dependent diabetic women was developed and tested....

  2. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Jesse M Damsker

    Full Text Available Asthma is a chronic inflammatory condition of the lower respiratory tract associated with airway hyperreactivity and mucus obstruction in which a majority of cases are due to an allergic response to environmental allergens. Glucocorticoids such as prednisone have been standard treatment for many inflammatory diseases for the past 60 years. However, despite their effectiveness, long-term treatment is often limited by adverse side effects believed to be caused by glucocorticoid receptor-mediated gene transcription. This has led to the pursuit of compounds that retain the anti-inflammatory properties yet lack the adverse side effects associated with traditional glucocorticoids. We have developed a novel series of steroidal analogues (VBP compounds that have been previously shown to maintain anti-inflammatory properties such as NFκB-inhibition without inducing glucocorticoid receptor-mediated gene transcription. This study was undertaken to determine the effectiveness of the lead compound, VBP15, in a mouse model of allergic lung inflammation. We show that VBP15 is as effective as the traditional glucocorticoid, prednisolone, at reducing three major hallmarks of lung inflammation--NFκB activity, leukocyte degranulation, and pro-inflammatory cytokine release from human bronchial epithelial cells obtained from patients with asthma. Moreover, we found that VBP15 is capable of reducing inflammation of the lung in vivo to an extent similar to that of prednisone. We found that prednisolone--but not VBP15 shortens the tibia in mice upon a 5 week treatment regimen suggesting effective dissociation of side effects from efficacy. These findings suggest that VBP15 may represent a potent and safer alternative to traditional glucocorticoids in the treatment of asthma and other inflammatory diseases.

  3. Knockout of the vascular endothelial glucocorticoid receptor abrogates dexamethasone-induced hypertension.

    Science.gov (United States)

    Goodwin, Julie E; Zhang, Junhui; Gonzalez, David; Albinsson, Sebastian; Geller, David S

    2011-07-01

    Glucocorticoid-mediated hypertension is incompletely understood. Recent studies have suggested the primary mechanism of this form of hypertension may be through the effects of glucocorticoids on vascular tissues and not to excess sodium and water re-absorption as traditionally believed. The goal of this study was to better understand the role of the vasculature in the generation and maintenance of glucocorticoid-mediated hypertension. We created a mouse model with a tissue-specific knockout of the glucocorticoid receptor in the vascular endothelium. We show that these mice are relatively resistant to dexamethasone-induced hypertension. After 1 week of dexamethasone treatment, control animals have a mean blood pressure (BP) increase of 13.1 mmHg, whereas knockout animals have only a 2.7 mmHg increase (P < 0.001). Interestingly, the knockout mice have slightly elevated baseline BP compared with the controls (112.2 ± 2.5 vs. 104.6 ± 1.2 mmHg, P = 0.04), a finding which is not entirely explained by our data. Furthermore, we demonstrate that the knockout resistance arterioles have a decreased contractile response to dexamethasone with only 6.6% contraction in knockout vessels compared with 13.4% contraction in control vessels (P = 0.034). Finally, we show that in contrast to control animals, the knockout animals are able to recover a significant portion of their normal circadian BP rhythm, suggesting that the vascular endothelial glucocorticoid receptor may function as a peripheral circadian clock. Our study highlights the importance of the vascular endothelial glucocorticoid receptor in several fundamental physiologic processes, namely BP homeostasis and circadian rhythm.

  4. 11β-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of Tissue Glucocorticoid Action

    Science.gov (United States)

    Chapman, Karen; Holmes, Megan

    2013-01-01

    Glucocorticoid action on target tissues is determined by the density of “nuclear” receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental “programming.” The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues. PMID:23899562

  5. The "steroid dementia syndrome": a possible model of human glucocorticoid neurotoxicity.

    Science.gov (United States)

    Wolkowitz, Owen M; Lupien, Sonia J; Bigler, Erin D

    2007-06-01

    Glucocorticoid medications cause neurotoxicity in animals under certain circumstances, but it is not known if this occurs in humans. We present the case of a 10-year-old boy with no prior psychiatric history and no prior exposure to glucocorticoid medication who received a single 5-week course of glucocorticoids for an acute asthma flare. Beginning during steroid treatment, and persisting for over 3 years after stopping treatment, he showed a significant decline from his pre-morbid academic performance and estimated IQ, verified by longitudinally administered testing and school records. Neuropsychological tests that are sensitive to glucocorticoid-induced cognitive impairments revealed global cognitive deficits consistent with primary hippocampal and prefrontal cortical dysfunction. The patient has a fraternal twin brother, who had previously achieved academic milestones in parallel with him; the patient began falling behind his twin in academic, developmental and social areas shortly after the steroid treatment. In the 3 years since stopping steroid medication, the patient has shown gradual but possibly incomplete resolution of his cognitive deficits. Quantitative brain magnetic resonance imaging (MRI), performed 38 months after steroid exposure revealed no gross abnormalities, but the patient's hippocampal volume was 19.5% smaller than that of his twin, despite the patient having a larger overall intracranial volume. Single photon emission computed tomography (SPECT) imaging, performed at the same time, suggested subtly decreased activity in the left posterior frontal and left parietal lobes. This case, along with others reported in the literature, suggests that certain individuals develop a "steroid dementia syndrome" after glucocorticoid treatment. Although this syndrome is uncommon, it is consistent with evolving theories of the neurotoxic or neuroendangering potential of glucocorticoids in some situations.

  6. Antenatal Treatment with Glucocorticoids and the Hypotalamic-Pituitary-Adrenal Axis

    Directory of Open Access Journals (Sweden)

    Manojlović-Stojanoski Milica

    2014-09-01

    Full Text Available Fetal development is a critical period in the life cycle which is why the placenta provides a structural and physiological barrier that protects the fetus from the outer fluctuations and inner disturbances. A variety of influences from the environment, however, might induce fetal overexposure to glucocorticoids that target the fetal hypothalamic-pituitary-adrenal (HPA axis and influence the fetal growth trajecto-r y. Development of the HPA axis starts in the early stages of pregnancy, but the timing of HPA axis maturation and the glucocorticoid receptor (GR expression in relation to birth is highly species-specific. The functional state of the fetal HPA axis plays a key role in the maturation of many organs necessary for intrauterine development and existence after birth. A functional HPA axis in near-term fetuses provides an adequate response to stress and also affects the timing of parturition. Due to their potent effect on the maturation of fetal tissues, synthetic glucocorticoids are used in human pregnancy at risk of preterm delivery. Dexamethasone and betamethasone, as the ones most commonly used, cross the placental enzymatic barrier (11b-hydroxysteroid dehydrogenase type 2 – 11b-HSD2 and have 25-fold higher affinity to the GR than endogenous glucocorticoids, stimulating many aspects of fetal maturation. Despite the numerous positive effects, exposure to synthetic glucocorticoids during fetal development may result in intrauterine growth retardation and fetal programming of the HPA axis function which is associated with cardiovascular, metabolic and psychiatric disorders manifested later in life. Long-term consequences indicate the need for the implementation of new studies that will provide a better understanding of the link between glucocorti-coid overexposure during fetal development and adverse outcomes in adulthood.

  7. Involvement of the insular cortex in regulating glucocorticoid effects on memory consolidation of inhibitory avoidance training

    Directory of Open Access Journals (Sweden)

    Raquel eFornari

    2012-03-01

    Full Text Available Glucocorticoids are known to enhance the consolidation of memory of emotionally arousing experiences by acting upon a network of interconnected brain regions. Although animal studies typically do not consider the insular cortex (IC to be part of this network, the present findings indicate that the IC is importantly involved in regulating glucocorticoid effects on memory consolidation of emotionally arousing inhibitory avoidance training. The specific glucocorticoid receptor agonist RU 28362 (3 or 10 ng in 0.5 l infused bilaterally into the IC of male Sprague-Dawley rats immediately after one-trial inhibitory avoidance training dose-dependently enhanced 48-h retention performance. Moreover, training on the inhibitory avoidance task increased neuronal activity of the IC, as assessed by an increased number of cells expressing immunoreactivity for phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2. However, systemic administration of a memory-enhancing dose of corticosterone (1 mg/kg after inhibitory avoidance training rapidly reduced the number of pERK1/2-positive cells in the IC, suggesting that glucocorticoid administration reduces overall neuronal activity of the IC. To investigate which components of the inhibitory avoidance training experience were influenced by the intra-IC glucocorticoid administration, in the last experiment rats were trained on a modified inhibitory avoidance task in which context exposure and footshock training occur on two sequential days. RU 28362 administration into the IC enhanced later retention when infused immediately after either the context or footshock training. Thus, these findings indicate that the IC mediates glucocorticoid effects on the consolidation of memory of different components of inhibitory avoidance training and suggest that the IC might be an important element of the rodent brain network involved in emotional regulation of learning and memory.

  8. Protective effect of chlorpromazine on endotoxin toxicity and TNF production in glucocorticoid-sensitive and glucocorticoid-resistant models of endotoxic shock

    OpenAIRE

    1991-01-01

    The present study was designed to define the potential of chlorpromazine (CPZ) as a protective agent against lipopolysaccharide (LPS) toxicity in comparison with glucocorticoids, and to obtain initial correlations with its effects on the levels of tumor necrosis factor (TNF), a pivotal mediator of endotoxic shock. It was found that CPZ protects mice, normal or adrenalectomized, and guinea pigs against lethality of LPS, and inhibited TNF serum levels, like dexamethasone (DEX), a well-known inh...

  9. Multimode Communication Protocols Enabling Reconfigurable Radios

    Directory of Open Access Journals (Sweden)

    Berlemann Lars

    2005-01-01

    Full Text Available This paper focuses on the realization and application of a generic protocol stack for reconfigurable wireless communication systems. This focus extends the field of software-defined radios which usually concentrates on the physical layer. The generic protocol stack comprises common protocol functionality and behavior which are extended through specific parts of the targeted radio access technology. This paper considers parameterizable modules of basic protocol functions residing in the data link layer of the ISO/OSI model. System-specific functionality of the protocol software is realized through adequate parameterization and composition of the generic modules. The generic protocol stack allows an efficient realization of reconfigurable protocol software and enables a completely reconfigurable wireless communication system. It is a first step from side-by-side realized, preinstalled modes in a terminal towards a dynamic reconfigurable anymode terminal. The presented modules of the generic protocol stack can also be regarded as a toolbox for the accelerated and cost-efficient development of future communication protocols.

  10. A Wireless Sensor Enabled by Wireless Power

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  11. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard

    2006-01-01

    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me...

  12. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Toyoda, Maki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Kato, Kohsuke [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Yoshikawa, Hiroyuki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan)

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  13. Glucocorticoides: paradigma de medicina traslacional. De lo molecular al uso clínico Glucocorticoids: examples of translational medicine; from molecular aspects to bedside

    Directory of Open Access Journals (Sweden)

    Héctor A. Serra

    2012-04-01

    Full Text Available Los glucocorticoides o corticosteroides son fármacos antiinflamatorios, antialérgicos e inmunosupresores derivados del cortisol o hidrocortisona, hormona producida por la corteza adrenal. Su uso terapéutico fuera de la endocrinología data de la observación hecha por el reumatólogo Philip Hench quien, suponiendo que los pacientes con artritis reumatoidea tenían un déficit adrenal, inyectó en algunos cortisona, molécula de reciente producción industrial. El resultado obtenido fue tan contundente que se toma como ejemplo de la medicina traslacional. En la actualidad, los glucocorticoides figuran entre las drogas más usadas y, paralelamente, más temidas. Así, el objetivo de esta revisión es señalar los aspectos destacados de su farmacología para su uso racional en la práctica clínica.Glucocorticoids are anti-inflammatory, immunosuppressant and anti-allergic drugs derived from hydrocortisone. Their widespread use was originated from Hench's observations in patients with rheumatoid arthritis. These drugs are examples of translational medicine and they can be envisaged as one of the most prescribed and feared drugs. The objective of this review is to highlight their pharmacological properties and thus, allow a more suitable prescription.

  14. Does insulin resistance co-exist with glucocorticoid resistance in the metabolic syndrome? Studies comparing skin sensitivity to glucocorticoids in individuals with and without acanthosis nigricans

    Directory of Open Access Journals (Sweden)

    Teelucksingh Surujpal

    2012-03-01

    Full Text Available Abstract Background The metabolic syndrome is associated with increased risk for both diabetes and coronary artery disease, which insulin resistance alone does not satisfactorily explain. We propose an additional and complementary underlying mechanism of glucocorticoid resistance. Results Using acanthosis nigricans (AN and skin vasoconstrictor (SVC response to topically applied beclomethasone dipropionate as markers of insulin and glucocorticoid resistance, respectively, we compared anthropometric, biochemical, pro-inflammatory markers and the SVC response in subjects with AN in two studies: STUDY 1 was used to compare subjects with AN (Grade 4, n = 32, with those without AN (n = 68 while STUDY 2 compared these responses among a cross-section of diabetic patients (n = 109 with varying grades of AN (grade 0, n = 30; grade 1, n = 24; grade 2, n = 18; grade 3, n = 25; grade 4, n = 12. Findings In both studies there was an inverse relationship between AN Grade 4 and the SVC response, (P Conclusion An absent SVC response represents a new biomarker for the metabolic syndrome and the exaggerated inflammatory response, which characterizes the metabolic syndrome, may be an outcome of deficient glucocorticoid action in vascular tissue.

  15. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  16. Relationship between the Balance of Hypertrophic/Hyperplastic Adipose Tissue Expansion and the Metabolic Profile in a High Glucocorticoids Model

    Directory of Open Access Journals (Sweden)

    María Guillermina Zubiría

    2016-07-01

    Full Text Available Adipose tissue (AT expansion is the result of two processes: hyperplasia and hypertrophy; and both, directly or indirectly, depend on the adipogenic potential of adipocyte precursor cells (APCs. Glucocorticoids (GCs have a potent stimulatory effect on terminal adipogenesis; while their effects on early stages of adipogenesis are largely unknown. In the present work, we study, in a model of high GC levels, the adipogenic potential of APCs from retroperitoneal AT (RPAT and its relationship with RPAT mass expansion. We employed a model of hyper-adiposity (30- and 60-day-old rats due to high endogenous GC levels induced by neonatal treatment with l-monosodium glutamate (MSG. We found that the RPAT APCs from 30-day-old MSG rats showed an increased adipogenic capacity, depending on the APCs’ competency, but not in their number. Analyses of RPAT adipocyte diameter revealed an increase in cell size, regardless of the rat age, indicating the prevalence of a hypertrophic process. Moreover, functional RPAT alterations worsened in 60-day-old rats, suggesting that the hyperplastic AT expansion found in 30-day-old animals might have a protective role. We conclude that GCs chronic excess affects APCs’ adipogenic capacity, modifying their competency. This change would modulate the hyperplastic/hypertrophic balance determining healthy or unhealthy RPAT expansion and, therefore, its functionality.

  17. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone (GH) is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A){sup +} RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A){sup +}RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with ({sup 3}H)uridine, and quantitating ({sup 3}H)GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones.

  18. Transfection of chicken cerebellar granule neurons used to study glucocorticoid receptor regulation by nuclear receptor 4A (NR4A).

    Science.gov (United States)

    Strøm, Bjørn O; Aden, Petra; Mathisen, Gro H; Lømo, Jon; Davanger, Svend; Paulsen, Ragnhild E

    2010-10-30

    Transfection is a useful tool for studying molecular signalling pathways. However, neurons have proven hard to transfect. In the present paper we have optimized a new electroporation procedure using the Cellaxess(®) system for transient transfection of adherent primary neurons from chicken (Gallus gallus) and compared it to a liposome based procedure using Metafectene(®) Pro. In order to evaluate the two methods, glucocorticoid receptor (GR) function was chosen as a test. GRs are expressed in high amounts in the cerebellum. GR is regulated by another nuclear receptor (NGFI-B, the first member found in the NR4A family). We first showed that forskolin and phorbol ester activated an NR4A-dependent reporter gene indicating that members of the NR4A nuclear receptor family are present endogenously and upregulated by external stimuli. Then, transfected NGFI-B was shown to antagonize the dexamethasone-activated transcriptional activation by endogenous GR, leading to the conclusion that NR4A-family members are important modulators of GR mediated regulatory processes in the cerebellum, as in other cell types. Both transfection methods proved useful. While the electroporation technique yielded small rings with many transfected cells optimal for microscopy studies, the liposome based method resulted in transfected cells evenly distributed in the dish rendering this method well suited for biochemical studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr

    Science.gov (United States)

    Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.

    2004-01-01

    We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.

  20. Glucocorticoid-induced impairment of long-term memory retrieval in female rats: influences of estrous cycle and estrogen.

    Science.gov (United States)

    Mohammadkhani, Raziyeh; Darbandi, Niloufar; Vafaei, Abbas Ali; Ahmadalipour, Ali; Rashidy-Pour, Ali

    2015-02-01

    Using an inhibitory avoidance (IA) task, the effects of glucocorticoids on memory retrieval in intact and ovariectomized (OVX) female rats were investigated. Young adult female rats were trained in a one trial IA task (1-mA, 3-s footshock). The latency to reenter the dark compartment of the apparatus was recorded in the retention test performed 48h after training. Pre-retrieval injection of corticosterone (CORT, 1, 3, and 10mg/kg) to OVX rats impaired memory retrieval at all doses tested. Similar administration of CORT (3mg/kg) in intact female rats impaired memory retrieval in the estrus phase (when endogenous plasma levels of estrogen are low) but not in the proestrus phase (when endogenous levels of estrogen are high). Concurrent administration of CORT (3mg/kg) and 17-β-estradiol (15μg/kg) in both proestrus and estrous phases impaired memory retrieval. Our findings indicate that the effects of corticosterone on memory retrieval are modulated by the estrous cycle and 17-β-estradiol. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Glucocorticoid regulation of gonadotropin release from gonadotropes of ovine pituitary gland in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Nangalama, A.W.

    1989-01-01

    In order to understand the role of glucocorticoids in the regulation of gonadotropin release by the pituitary gland, the short-term effects of cortisol perifusion (1.5 h to 8 hrs) on GnRH-induced LH secretion were investigated. To determine the biochemical mechanism(s) by which cortisol can act to modulate GnRH-induced LH release, the interactions of cortisol and arachidonic acid in GnRH-stimulated LH release were examined. Cortisol perifusion for 1.5 hr had no effect on GnRH-induced LH release, but longer treatment periods (4 hr-8 hrs) significantly reduced GnRH-stimulated LH release (4.0 hr, p < 0.01; 6.0 hr, p < 0.001; 8.0 hr, p < 0.01). Treatment and animal effects were highly significant (p < 0.001). There were significant interactions (p < 0.001) between treatment and animal as determined by a two-way ANOVA. Cortisol treatment also produced progressive increases in basal LH secretion with time (1.5 hr, p < 0.05; 4.0 hr, p < 0.01; 6.0 hr, p < 0.01; 8.0 hr, p < 0.001). Incubation of pituitary tissue with arachidonic acid (AA) resulted in a linear dose-response of LH (p < 0.001). Cortisol infusion failed to inhibit GnRH-induced LH release in which 10{sup {minus}4}M AA was administered for 20 min before a 10 min, 10{sup {minus}10}M GnRH pulse. Like cortisol, chloroquine also failed to inhibit AA-induced LH release. Perifusion with 10{sup {minus}6}M cortisol for 6.0 hours significantly (p < 0.001) blocked GnRH-stimulated (H{sup 3})AA release 24% below the basal (100%) ({sup 3}H)AA secretion. Reduction of ({sup 3}H)AA release was accompanied by decreased GnRH-stimulated LH secretion.

  2. Low affinity glucocorticoid binding site ligands as potential anti-fibrogenics.

    Science.gov (United States)

    Marek, Carylyn J; Wallace, Karen; Durward, Elaine; Koruth, Matthew; Leel, Val; Leiper, Lucy J; Wright, Matthew C

    2009-05-11

    Pregnane X receptor (PXR) agonists inhibit liver fibrosis. However, the rodent PXR activator pregnenolone 16alpha carbonitrile (PCN) blocks, in vitro, hepatic stellate cell-to-myofibroblast trans-differentiation and proliferation in cells from mice with a disrupted PXR gene, suggesting there is an additional anti-fibrogenic drug target for PCN. The role of the low affinity glucocorticoid binding site (LAGS) - which may be identical or associated with the progesterone receptor membrane component 1 (PGRMC1) - in mediating this anti-fibrogenic effect has been examined, since binding of dexamethasone to the LAGS in liver microsomal membranes has previously been shown to be inhibited by PCN. Quiescent rat and human hepatic stellate cells (HSC) were isolated from livers and cultured to generate liver myofibroblasts. HSC and myofibroblasts expressed PGRMC1 as determined by RT-PCR and Western blotting. Quiescent rat HSC also expressed the truncated HC5 variant of rPGRMC1. Rat PGRMC1 was cloned and expression in COS-7 cells gave rise to specific binding of radiolabelled dexamethasone in cell extracts that was inhibited by PCN, suggesting that PGRMC1 may be identical to LAGS or activates LAGS binding activity. Liver microsomes were used to screen a range of structurally related compounds for their ability to inhibit radiolabelled dexamethasone binding to rat LAGS. These compounds were also screened for their ability to activate rat and human PXR and to inhibit rat HSC-to-myofibroblast trans-differentiation/proliferation. A compound (4 androstene-3-one 17beta-carboxylic acid methyl ester) was identified which bound rat LAGS with high affinity and inhibited both rat and human HSC trans-differentiation/proliferation to fibrogenic myofibroblasts without showing evidence of rat or human PXR agonism. However, despite potent anti-fibrogenic effects in vitro, this compound did not modulate liver fibrosis severity in a rat model of liver fibrosis. Immunohistochemical analysis showed

  3. Glucocorticoids suppress corticotropin-releasing hormone and vasopressin expression in human hypothalamic neurons

    NARCIS (Netherlands)

    Erkut, Z. A.; Pool, C.; Swaab, D. F.

    1998-01-01

    Glucocorticoids are widely used in clinical practice in a variety of immune-mediated and neoplastic diseases, mostly for their immunosuppressive, leukopenic, antiedematous, or malignancy-suppressive actions. However, their usage is limited because of serious and sometimes life-threatening

  4. [Effect of atopy on serum glucocorticoid receptor levels in children with bronchiolitis].

    Science.gov (United States)

    Yao, Huan-Yin; Liu, Wei-Rong; Zhang, Hang-Hu; Li, Hua-Jun; Wang, Xiao-Xian; Liu, Shu-Mei; Chen, Xiao-Hong

    2017-02-01

    To investigate the effect of atopy on the expression of glucocorticoid receptors in children with bronchiolitis. ELISA was used to measure the changes in the serum levels of glucocorticoid receptor α (GRα) and glucocorticoid receptor β (GRβ) in the bronchiolitis group (77 children, including 34 children with atopy) and pneumonia group (68 children). Thirty-eight children who were prepared to undergo surgeries for non-infectious diseases and had no atopy or family history of allergic diseases were enrolled as the control group. The bronchiolitis group and the pneumonia group had significant increases in the serum levels of GRα and GRβ compared with the control group (Pbronchiolitis group had significant increases in these levels compared with the pneumonia group (Pbronchiolitis group had a significant increase in the GRα/GRβ ratio (Pbronchiolitis group had significant increases in the serum levels of GRα and GRβ (Pbronchiolitis group had a significant increase in the serum level of GRβ compared with the atopic children (Pbronchiolitis group had a significant increase in the GRα/GRβ ratio compared with the control group and non-atopic children in the bronchiolitis group (Pbronchiolitis have increased serum levels of GRα and GRβ. The children with atopy have an increased GRα/GRβ ratio, suggesting that the atopic children with bronchiolitis are highly sensitive to glucocorticoids.

  5. The glucocorticoid receptor in the limbic system of the human brain

    NARCIS (Netherlands)

    Wang, Qian

    2016-01-01

    Glucocorticoid hormones (GCs) are important mediators of the stress response in mammals including humans. GCs are released from the adrenal in response to stress and affect numerous processes in the body and brain. Their levels are controlled via negative feedback exerted by GC binding to brain

  6. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis

    NARCIS (Netherlands)

    Drift, van der S.G.A.; Houweling, M.; Bouman, Marina; Koets, A.P.; Tielens, A.G.M.; Nielen, M.; Jorritsma, R.

    2015-01-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene

  7. The Role of Glucocorticoids and Neuroinflammation in Mediating the Effects of Stress on Drug Abuse

    Science.gov (United States)

    2013-10-01

    increase in adrenal glucocorticoids (GCs) ( cortisol in the human, corticosterone in the rodent), and it is known that the GC response to stressors...Tocharus et al., 2010. Melatonin attenuates methamphetamine-induced overexpression of pro- inflammatory cytokines in microglial cell lines. J Pineal Res

  8. Longitudinal changes in glucocorticoid receptor exon 1(F) methylation and psychopathology after military deployment

    NARCIS (Netherlands)

    Schur, R. R.; Boks, M. P.; Rutten, B. P. F.; Daskalakis, N. P.; de Nijs, L.; van Zuiden, M.; Kavelaars, A.; Heijnen, C. J.; Joels, M.; Kahn, R. S.; Geuze, E.; Vermetten, E.; Vinkers, C. H.

    2017-01-01

    Several cross-sectional studies have demonstrated the relevance of DNA methylation of the glucocorticoid receptor exon 1(F) region (GR-1(F)) for trauma-related psychopathology. We conducted a longitudinal study to examine GR-1(F) methylation changes over time in relation to trauma exposure and the

  9. Glucocorticoid receptor number predicts increase in amygdala activity after severe stress

    NARCIS (Netherlands)

    Geuze, Elbert; van Wingen, Guido A.; van Zuiden, Mirjam; Rademaker, Arthur R.; Vermetten, Eric; Kavelaars, Annemieke; Fernández, Guillén; Heijnen, Cobi J.

    2012-01-01

    Introduction: Individuals who are exposed to a traumatic event are at increased risk of developing psychiatric disorders such as posttraumatic stress disorder (PTSD). Studies have shown that increased amygdala activity is frequently found in patients with PTSD. In addition, pre-trauma glucocorticoid

  10. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala

    NARCIS (Netherlands)

    Roozendaal, B; Okuda, S; Van der Zee, EA; McGaugh, JL; McGaugh, James L.

    2006-01-01

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of long-term memories for emotionally arousing experiences but not that for less arousing or neutral information. However, previous studies have not determined the basis of such arousal-induced selectivity. Here

  11. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory

    NARCIS (Netherlands)

    Atsak, P.; Guenzel, F.M.; Kantar-Gok, D.; Zalachoras, I.; Yargicoglu, P.; Meijer, O.C.; Quirarte, G.L.; Wolf, O.T.; Schwabe, L.; Roozendaal, B.

    2016-01-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was

  12. Early Life Stress Effects on the Glucocorticoid - BDNF interplay in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Nikolaos P Daskalakis

    2015-11-01

    Full Text Available Early life stress (ELS is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid and/or neurotrophin signaling pathways. Glucocorticoid (GC signaling mediates the regulation of the stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and glucocorticoid signaling pathways co-exist throughout the central nervous system (CNS, particularly in the hippocampus, which has high expression of glucocorticoid and mineralocorticoid receptors (GR and MR as well as brain-derived neurotrophic factor (BDNF and its receptor, tropomyosin-related kinase receptor B (TrkB. This review addresses the effects of ELS paradigms on GC- and BDNF- dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.

  13. Determination of Glucocorticoids in UPLC-MS in Environmental Samples from an Occupational Setting

    Directory of Open Access Journals (Sweden)

    Enrico Oddone

    2015-01-01

    Full Text Available Occupational exposures to glucocorticoids are still a neglected issue in some work environments, including pharmaceutical plants. We developed an analytical method to quantify simultaneously 21 glucocorticoids using UPLC coupled with mass spectrometry to provide a basis to carry out environmental monitoring. Samples were taken from air, hand-washing tests, pad-tests and wipe-tests. This paper reports the contents of the analytical methodology, along with the results of this extensive environmental and personal monitoring of glucocorticoids. The method in UPLC-MS turned out to be suitable and effective for the aim of the study. Wipe-test and pad-test desorption was carried out using 50 mL syringes, a simple technique that saves time without adversely affecting analyte recovery. Results showed a widespread environmental pollution due to glucocorticoids. This is of particular concern. Evaluation of the dose absorbed by each worker and identification of a biomarker for occupational exposure will contribute to assessment and prevention of occupational exposure.

  14. [Treatment of patients with severe glucocorticoid-refractory ulcerative colitis: cyclosporine or infliximab?

    NARCIS (Netherlands)

    Lowenberg, M.; Boer, N.K. de; Dewint, P.; Hoentjen, F.

    2013-01-01

    - Cyclosporine and infliximab are so-called 'rescue-therapies' as last resort for the treatment of patients with severe glucocorticoid-refractory ulcerative colitis.- A recent study found that cyclosporine and infliximab are similar in terms of efficacy in the treatment of patients with severe

  15. Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining

    NARCIS (Netherlands)

    Fleuren, W.W.M.; Toonen, E.J.M.; Verhoeven, S.; Frijters, R.J.J.M.; Hulsen, T.; Rullmann, T.; Schaik, R. van; Vlieg, J. de; Alkema, W.

    2013-01-01

    BACKGROUND: Glucocorticoids are potent anti-inflammatory agents used for the treatment of diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease and psoriasis. Unfortunately, usage is limited because of metabolic side-effects, e.g. insulin resistance, glucose intolerance and

  16. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  17. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  18. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat

    Science.gov (United States)

    Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are...

  19. Stress, Glucocorticoid Hormones and Hippocampal Neural Progenitor Cells: Implications to Mood Disorders

    Directory of Open Access Journals (Sweden)

    Tomoshige eKino

    2015-08-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  20. Tumour necrosis factor-α inhibitors are glucocorticoid-sparing in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Nilsson, Anna Christine; Christensen, Anne Friesgaard; Junker, Peter

    2011-01-01

    Rheumatoid arthritis (RA) is a chronic disease with autoimmune traits of unknown aetiology which primarily affects synovial joints. Glucocorticoids (GCs) are still widely used in RA treatment despite the expanding use of targeted and very efficient agents. The objective of this study was to assess...

  1. Use of glucocorticoids during pregnancy and risk of attention-deficit/hyperactivity disorder in offspring

    DEFF Research Database (Denmark)

    Laugesen, Kristina; Byrjalsen, Anna; Frøslev, Trine

    2017-01-01

    OBJECTIVE: Prenatal exposure to excess endogenous glucocorticoid (GC) has been linked to attention-deficit/hyperactivity disorder (ADHD). We investigated whether prenatal exposure to exogenous GC is associated with ADHD. DESIGN: Nationwide cohort study. SETTING: A cohort of 875 996 singletons born...

  2. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent

  3. Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.A.; Naninck, E.F.G.; Fitzsimons, C.P.; van Dam, A.M.; Czeh, B.; Korosi, A.

    2015-01-01

    Exposure to stress is one of the best-known negative regulators of adult neurogenesis (AN). We discuss changes in neurogenesis in relation to exposure to stress, glucocorticoid hormones, and inflammation, with a particular focus on early development and on lasting effects of stress. Although the

  4. EMF radiation at 2450 MHz triggers changes in the morphology and expression of heat shock proteins and glucocorticoid receptors in rat thymus.

    Science.gov (United States)

    Misa-Agustiño, M J; Leiro-Vidal, J M; Gomez-Amoza, J L; Jorge-Mora, M T; Jorge-Barreiro, F J; Salas-Sánchez, A A; Ares-Pena, F J; López-Martín, E

    2015-04-15

    Electromagnetic fields (EMFs) can act as inducers or mediators of stress response through the production of heat shock proteins (HSPs) that modulate immune response and thymus functions. In this study, we analyzed cellular stress levels in rat thymus after exposure of the rats to a 2.45 GHz radio frequency (RF) using an experimental diathermic model in a Gigahertz Transverse Electromagnetic (GTEM) chamber. In this experiment, we used H&E staining, the ELISA test and immunohistochemistry to examine Hsp70 and Hsp90 expression in the thymus and glucocorticoid receptors (GR) of 64 female Sprague–Dawley rats exposed individually to 2.45 GHz (at 0, 1.5, 3.0 or 12.0 W power). The 1 g averaged peak and mean SAR values in the thymus and whole body of each rat to ensure that sub-thermal levels of radiation were being reached. The thymus tissue presented several morphological changes, including increased distribution of blood vessels along with the appearance of red blood cells and hemorrhagic reticuloepithelial cells. Levels of Hsp90 decreased in the thymus when animals were exposed to the highest power level (12 W), but only one group did not show recovery after 24 h. Hsp70 presented no significant modifications in any of the groups. The glucocorticoid receptors presented greater immunomarking on the thymic cortex in exposed animals. Our results indicate that non-ionizing sub-thermal radiation causes changes in the endothelial permeability and vascularization of the thymus, and is a tissue-modulating agent for Hsp90 and GR.

  5. A Bluetooth-enabled HiperLAN/2 receiver

    NARCIS (Netherlands)

    Schiphorst, Roelof; Hoeksema, F.W.; Slump, Cornelis H.

    2003-01-01

    n our SDR project we aim to combine a GFSK receiver (Bluetooth) with an OFDM receiver (HiperLAN/2). Other WLAN standards use the same frequency bands and modulation techniques. So our Bluetooth-enabled HiperLAN/2 receiver can easily be adapted to other WLAN standards. This paper focuses on the

  6. A Bluetooth-enabled HiperLan/2 Receiver

    NARCIS (Netherlands)

    Schiphorst, Roelof; Hoeksema, F.W.; Slump, Cornelis H.

    2003-01-01

    In our SDR project we aim to combine a GFSK receiver (Bluetooth) with an OFDM receiver (HiperLAN/2). Other WLAN standards use the same frequency bands and modulation techniques. So our Bluetooth-enabled HiperLAN/2 receiver can easily be adapted to other WLAN standards. This paper focuses on the

  7. Ethanol regulation of serum glucocorticoid kinase 1 expression in DBA2/J mouse prefrontal cortex.

    Science.gov (United States)

    Costin, Blair N; Dever, Seth M; Miles, Michael F

    2013-01-01

    We previously identified a group of glucocorticoid-responsive genes, including Serum Glucocorticoid kinase 1 (Sgk1), regulated by acute ethanol in prefrontal cortex of DBA2/J mice. Acute ethanol activates the hypothalamic pituitary adrenal axis (HPA) causing release of glucocorticoids. Chronic ethanol dysregulates the HPA response in both humans and rodents, possibly contributing to important interactions between stress and alcoholism. Because Sgk1 regulates ion channels and learning and memory, we hypothesized that Sgk1 contributes to HPA-dependent acute and adaptive neuronal responses to ethanol. These studies characterized acute and chronic ethanol regulation of Sgk1 mRNA and protein and their relationship with ethanol actions on the HPA axis. Acute ethanol increased Sgk1 mRNA expression in a dose and time dependent manner. Three separate results suggested that ethanol regulated Sgk1 via circulating glucocorticoids: acute ethanol increased glucocorticoid receptor binding to the Sgk1 promoter; adrenalectomy blocked ethanol induction of Sgk1 mRNA; and chronic ethanol exposure during locomotor sensitization down-regulated HPA axis activation and Sgk1 induction by acute ethanol. SGK1 protein had complex temporal responses to acute ethanol with rapid and transient increases in Ser422 phosphorylation at 15 min. following ethanol administration. This activating phosphorylation had functional consequences, as suggested by increased phosphorylation of the known SGK1 target, N-myc downstream-regulated gene 1 (NDRG1). After repeated ethanol administration during locomotor sensitization, basal SGK1 protein phosphorylation increased despite blunting of Sgk1 mRNA induction by ethanol. These results suggest that HPA axis and glucocorticoid receptor signaling mediate acute ethanol induction of Sgk1 transcription in mouse prefrontal cortex. However, acute ethanol also causes complex changes in SGK1 protein expression and activity. Chronic ethanol modifies both SGK1 protein and

  8. Ethanol Regulation of Serum Glucocorticoid Kinase 1 Expression in DBA2/J Mouse Prefrontal Cortex

    Science.gov (United States)

    Costin, Blair N.; Dever, Seth M.; Miles, Michael F.

    2013-01-01

    Background We previously identified a group of glucocorticoid-responsive genes, including Serum Glucocorticoid kinase 1 (Sgk1), regulated by acute ethanol in prefrontal cortex of DBA2/J mice. Acute ethanol activates the hypothalamic pituitary adrenal axis (HPA) causing release of glucocorticoids. Chronic ethanol dysregulates the HPA response in both humans and rodents, possibly contributing to important interactions between stress and alcoholism. Because Sgk1 regulates ion channels and learning and memory, we hypothesized that Sgk1 contributes to HPA-dependent acute and adaptive neuronal responses to ethanol. These studies characterized acute and chronic ethanol regulation of Sgk1 mRNA and protein and their relationship with ethanol actions on the HPA axis. Results Acute ethanol increased Sgk1 mRNA expression in a dose and time dependent manner. Three separate results suggested that ethanol regulated Sgk1 via circulating glucocorticoids: acute ethanol increased glucocorticoid receptor binding to the Sgk1 promoter; adrenalectomy blocked ethanol induction of Sgk1 mRNA; and chronic ethanol exposure during locomotor sensitization down-regulated HPA axis activation and Sgk1 induction by acute ethanol. SGK1 protein had complex temporal responses to acute ethanol with rapid and transient increases in Ser422 phosphorylation at 15 min. following ethanol administration. This activating phosphorylation had functional consequences, as suggested by increased phosphorylation of the known SGK1 target, N-myc downstream-regulated gene 1 (NDRG1). After repeated ethanol administration during locomotor sensitization, basal SGK1 protein phosphorylation increased despite blunting of Sgk1 mRNA induction by ethanol. Conclusions These results suggest that HPA axis and glucocorticoid receptor signaling mediate acute ethanol induction of Sgk1 transcription in mouse prefrontal cortex. However, acute ethanol also causes complex changes in SGK1 protein expression and activity. Chronic ethanol

  9. Ape conservation physiology: fecal glucocorticoid responses in wild Pongo pygmaeus morio following human visitation.

    Directory of Open Access Journals (Sweden)

    Michael P Muehlenbein

    Full Text Available Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53 from 2 wild habituated orangutans (Pongo pygmaeus morio (in addition to 26 fecal samples from 4 wild unhabituated orangutans in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation. Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental

  10. Effects of elevated glucocorticoids on reproduction and development: relevance to endocrine disruptor screening.

    Science.gov (United States)

    Witorsch, Raphael J

    2016-01-01

    This article reviews the influence of the hypothalamo-pituitary-adrenocortical (HPA) axis on mammalian male and female reproduction and development of offspring and its potential impact on the identification of endocrine disruptive chemicals by in vivo assays. In the adult male rat and baboon, stress suppresses testosterone secretion via a direct inhibitory effect of elevated glucocorticoids on Leydig cells. In adult female sheep, stress disrupts reproductive function via multi-stage mechanisms involving glucocorticoid-mediated suppression of LH secretion, LH action on the ovary and the action of estradiol on its target cells (e.g., uterus). While physiological concentrations of endogenous glucocorticoids are supportive of fetal development, excessive glucocorticoids in utero (i.e., maternal stress) adversely affect mammalian offspring by "programing" abnormalities that are primarily manifest postpartum. The influence of stress on reproduction and development can also be mediated by 11β-hydroxysteroid dehydrogenase (HSD), a bi-directional oxidative:reductive pathway, which governs the balance between biologically active (reduced) endogenous glucocorticoid and inactive (oxidized) metabolites. This pathway is mediated primarily by two isozymes, 11β - HSD1 (reductase) and 11β-HSD2 (oxidase) which act both in an intracrine (intracellular) and endocrine (systemic) fashion. The 11β-HSD pathway appears to play a variety of physiological roles in mammalian reproduction and development and is a target for selected xenobiotics. The effects of the HPA axis on mammalian reproduction and development are potential confounders for in vivo bioassays in rodents employed to identify endocrine disruptive chemicals. Accordingly, consideration of the impact of the HPA axis should be incorporated into the design of bioassays for evaluating endocrine disruptors.

  11. Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining

    Directory of Open Access Journals (Sweden)

    Fleuren Wilco WM

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are potent anti-inflammatory agents used for the treatment of diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease and psoriasis. Unfortunately, usage is limited because of metabolic side-effects, e.g. insulin resistance, glucose intolerance and diabetes. To gain more insight into the mechanisms behind glucocorticoid induced insulin resistance, it is important to understand which genes play a role in the development of insulin resistance and which genes are affected by glucocorticoids. Medline abstracts contain many studies about insulin resistance and the molecular effects of glucocorticoids and thus are a good resource to study these effects. Results We developed CoPubGene a method to automatically identify gene-disease associations in Medline abstracts. We used this method to create a literature network of genes related to insulin resistance and to evaluate the importance of the genes in this network for glucocorticoid induced metabolic side effects and anti-inflammatory processes. With this approach we found several genes that already are considered markers of GC induced IR, such as phosphoenolpyruvate carboxykinase (PCK and glucose-6-phosphatase, catalytic subunit (G6PC. In addition, we found genes involved in steroid synthesis that have not yet been recognized as mediators of GC induced IR. Conclusions With this approach we are able to construct a robust informative literature network of insulin resistance related genes that gave new insights to better understand the mechanisms behind GC induced IR. The method has been set up in a generic way so it can be applied to a wide variety of disease networks.

  12. Glucocorticoids for the treatment of post-traumatic stress disorder and phobias: a novel therapeutic approach.

    Science.gov (United States)

    de Quervain, Dominique J-F; Margraf, Jürgen

    2008-04-07

    Post-traumatic stress disorder (PTSD) and phobias belong to the most common anxiety disorders and to the most common psychiatric illnesses in general. In both disorders, aversive memories are thought to play an important role in the pathogenesis and symptomatology. Previously, we have reported that elevated glucocorticoid levels inhibit memory retrieval in animals and healthy humans. We therefore hypothesized that the administration of glucocorticoids might also inhibit the retrieval of aversive memory, thereby reducing symptoms in patients with PTSD and phobias. In recent clinical studies, we found first evidence to support this hypothesis. In patients with PTSD, low-dose cortisol treatment for one month reduced symptoms of traumatic memories without causing adverse side effects. Furthermore, we found evidence for a prolonged effect of the cortisol treatment. Persistent retrieval and reconsolidation of traumatic memories is a process that keeps these memories vivid and thereby the disorder alive. By inhibiting memory retrieval, cortisol may weaken the traumatic memory trace, and thus reduce symptoms even beyond the treatment period. In patients with social phobia, we found that a single oral administration of cortisone 1 h before a socio-evaluative stressor significantly reduced self-reported fear during the anticipation-, exposure-, and recovery phase of the stressor. In subjects with spider phobia, repeated oral administration of cortisol 1 h before exposure to a spider photograph induced a progressive reduction of stimulus-induced fear. This effect was maintained when subjects were exposed to the stimulus again two days after the last cortisol administration, indicating that cortisol facilitated the extinction of phobic fear. In conclusion, by a common mechanism of reducing the retrieval of aversive memories, glucocorticoids may be suited for the treatment of PTSD as well as phobias. More studies are needed to further evaluate the therapeutic efficacy of

  13. Glucocorticoid-cholinergic interactions in the dorsal striatum in memory consolidation of inhibitory avoidance training

    Science.gov (United States)

    Sánchez-Resendis, Oscar; Medina, Andrea C.; Serafín, Norma; Prado-Alcalá, Roberto A.; Roozendaal, Benno; Quirarte, Gina L.

    2012-01-01

    Extensive evidence indicates that glucocorticoid hormones act in a variety of brain regions to enhance the consolidation of memory of emotionally motivated training experiences. We previously reported that corticosterone, the major glucocorticoid in the rat, administered into the dorsal striatum immediately after inhibitory avoidance training dose-dependently enhances memory consolidation of this training. There is also abundant evidence that the intrinsic cholinergic system of the dorsal striatum is importantly involved in memory consolidation of inhibitory avoidance training. However, it is presently unknown whether these two neuromodulatory systems interact within the dorsal striatum in the formation of long-term memory. To address this issue, we first investigated in male Wistar rats whether the muscarinic receptor agonist oxotremorine administered into the dorsal striatum immediately after inhibitory avoidance training enhances 48 h retention of the training. Subsequently, we examined whether an attenuation of glucocorticoid signaling by either a systemic administration of the corticosterone-synthesis inhibitor metyrapone or an intra-striatal infusion of the glucocorticoid receptor (GR) antagonist RU 38486 would block the memory enhancement induced by oxotremorine. Our findings indicate that oxotremorine dose-dependently enhanced 48 h retention latencies, but that the administration of either metyrapone or RU 38486 prevented the memory-enhancing effect of oxotremorine. In the last experiment, corticosterone was infused into the dorsal striatum together with the muscarinic receptor antagonist scopolamine immediately after inhibitory avoidance training. Scopolamine blocked the enhancing effect of corticosterone on 48 h retention performance. These findings indicate that there are mutual interactions between glucocorticoids and the striatal cholinergic system in enhancing the consolidation of memory of inhibitory avoidance training. PMID:22737110

  14. Impact of total cumulative glucocorticoid dose on bone mineral density in patients with 21-hydroxylase deficiency.

    Science.gov (United States)

    Chakhtoura, Zeina; Bachelot, Anne; Samara-Boustani, Dinane; Ruiz, Jean-Charles; Donadille, Bruno; Dulon, Jérôme; Christin-Maître, Sophie; Bouvattier, Claire; Raux-Demay, Marie-Charles; Bouchard, Philippe; Carel, Jean-Claude; Leger, Juliane; Kuttenn, Frédérique; Polak, Michel; Touraine, Philippe

    2008-06-01

    It remains controversial whether long-term glucocorticoids are charged of bone demineralization in patients with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency. The aim of this study was to know whether cumulative glucocorticoid dose from the diagnosis in childhood to adulthood in patients with CAH had a negative impact on bone mineral density (BMD). This was a retrospective study. Thirty-eight adult patients with classical and non-classical CAH were included. BMD was measured in the lumbar spine and femoral neck. Total cumulative glucocorticoid (TCG) and total average glucocorticoid (TAG) doses were calculated from pediatric and adult files. We showed a difference between final and target heights (-0.82+/-0.92 s.d. for women and -1.31+/-0.84 s.d. for men; P<0.001). Seventeen patients (44.7%) had bone demineralization (35.7% of women and 70% of men). The 28 women had higher BMD than the 10 men for lumbar (-0.26+/-1.20 vs -1.25+/-1.33 s.d.; P=0.02) and femoral T-scores (0.21+/-1.30 s.d. versus -1.08+/-1.10 s.d.; P=0.007). In the salt-wasting group, women were almost significantly endowed with a better BMD than men (P=0.053). We found negative effects of TCG, TAG on lumbar (P<0.001, P=0.002) and femoral T-scores (P=0.006, P<0.001), predominantly during puberty. BMI was protective on BMD (P=0.006). The TCG is an important factor especially during puberty for a bone demineralization in patients with 21-hydroxylase deficiency. The glucocorticoid treatment should be adapted particularly at this life period and preventive measures should be discussed in order to limit this effect.

  15. Diabetes insipidus is an unfavorable prognostic factor for response to glucocorticoids in patients with autoimmune hypophysitis.

    Science.gov (United States)

    Lupi, Isabella; Cosottini, Mirco; Caturegli, Patrizio; Manetti, Luca; Urbani, Claudio; Cappellani, Daniele; Scattina, Ilaria; Martino, Enio; Marcocci, Claudio; Bogazzi, Fausto

    2017-08-01

    Autoimmune hypophysitis (AH) has a variable clinical presentation and natural history; likewise, its response to glucocorticoid therapy is often unpredictable. To identify clinical and radiological findings associated with response to glucocorticoids. 12 consecutive patients with AH, evaluated from 2008 to 2016. AH was the exclusion diagnosis after ruling out other pituitary masses and secondary causes of hypophysitis. Mean follow-up time was 30 ± 27 months (range 12-96 months). MRI identified two main patterns of presentation: global enlargement of the pituitary gland or panhypophysitis ( n  = 4, PH), and pituitary stalk abnormality only, or infundibulo-neuro-hypophysitis ( n  = 8, INH). Multiple tropin defects were more common in PH (100%) than those in INH (28% P  = 0.014), whereas diabetes insipidus was more common in INH (100%) than that in PH (50%; P  = 0.028). All 4 PH and 4 out of 8 INH were treated with glucocorticoids. Pituitary volume significantly reduced in all PH patients ( P  = 0.012), defective anterior pituitary function recovered only in the two patients without diabetes insipidus (50%) and panhypopituitarism persisted, along with diabetes insipidus, in the remaining 2 (50%). In all INH patients, either treated or untreated, pituitary stalk diameter reduced ( P  = 0.008) but diabetes insipidus persisted in all. Glucocorticoid therapy may improve anterior pituitary function in a subset of patients but has no effect on restoring posterior pituitary function. Diabetes insipidus appears as a negative prognostic factor for response to glucocorticoids. © 2017 European Society of Endocrinology.

  16. Effects of Proportions of Dietary Macronutrients on Glucocorticoid Metabolism in Diet-Induced Obesity in Rats

    Science.gov (United States)

    Stimson, Roland H.; Lobley, Gerald E.; Maraki, Ioanna; Morton, Nicholas M.; Andrew, Ruth; Walker, Brian R.

    2010-01-01

    Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and inactivation by 5α- and 5β-reductases. A low carbohydrate diet increases hepatic 11β-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum ‘Western’ diet (37% fat, n = 36) for 22 weeks, then randomised to continue this diet (n = 12) or to switch to either a low carbohydrate (n = 12) or a moderate carbohydrate (n = 12) diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12) throughout. The low and moderate carbohydrate diets decreased hepatic 11β-HSD1 mRNA compared with the Western diet (both 0.7±0.0 vs 0.9±0.1 AU; pdiet. Compared with lean controls, the Western diet decreased 11β-HSD1 activity (1.6±0.1 vs 2.8±0.1 nmol/mcg protein/hr; pobesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue), a low carbohydrate diet does not increase hepatic 11β-HSD1 in obese rats as occurs in humans. PMID:20098742

  17. Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining.

    Science.gov (United States)

    Fleuren, Wilco Wm; Toonen, Erik Jm; Verhoeven, Stefan; Frijters, Raoul; Hulsen, Tim; Rullmann, Ton; van Schaik, René; de Vlieg, Jacob; Alkema, Wynand

    2013-02-04

    Glucocorticoids are potent anti-inflammatory agents used for the treatment of diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease and psoriasis. Unfortunately, usage is limited because of metabolic side-effects, e.g. insulin resistance, glucose intolerance and diabetes. To gain more insight into the mechanisms behind glucocorticoid induced insulin resistance, it is important to understand which genes play a role in the development of insulin resistance and which genes are affected by glucocorticoids.Medline abstracts contain many studies about insulin resistance and the molecular effects of glucocorticoids and thus are a good resource to study these effects. We developed CoPubGene a method to automatically identify gene-disease associations in Medline abstracts. We used this method to create a literature network of genes related to insulin resistance and to evaluate the importance of the genes in this network for glucocorticoid induced metabolic side effects and anti-inflammatory processes.With this approach we found several genes that already are considered markers of GC induced IR, such as phosphoenolpyruvate carboxykinase (PCK) and glucose-6-phosphatase, catalytic subunit (G6PC). In addition, we found genes involved in steroid synthesis that have not yet been recognized as mediators of GC induced IR. With this approach we are able to construct a robust informative literature network of insulin resistance related genes that gave new insights to better understand the mechanisms behind GC induced IR. The method has been set up in a generic way so it can be applied to a wide variety of disease networks.

  18. Dominance rank causally affects personality and glucocorticoid regulation in female rhesus macaques.

    Science.gov (United States)

    Kohn, Jordan N; Snyder-Mackler, Noah; Barreiro, Luis B; Johnson, Zachary P; Tung, Jenny; Wilson, Mark E

    2016-12-01

    Low social status is frequently associated with heightened exposure to social stressors and altered glucocorticoid regulation by the hypothalamic-pituitary-adrenal (HPA) axis. Additionally, personality differences can affect how individuals behave in response to social conditions, and thus may aggravate or protect against the effects of low status on HPA function. Disentangling the relative importance of personality from the effects of the social environment on the HPA axis has been challenging, since social status can predict aspects of behavior, and both can remain stable across the lifespan. To do so here, we studied an animal model of social status and social behavior, the rhesus macaque (Macaca mulatta). We performed two sequential experimental manipulations of dominance rank (i.e., social status) in 45 adult females, allowing us to characterize personality and glucocorticoid regulation (based on sensitivity to the exogenous glucocorticoid dexamethasone) in each individual while she occupied two different dominance ranks. We identified two behavioral characteristics, termed 'social approachability' and 'boldness,' which were highly social status-dependent. Social approachability and a third dimension, anxiousness, were also associated with cortisol dynamics in low status females, suggesting that behavioral tendencies may sensitize individuals to the effects of low status on HPA axis function. Finally, we found that improvements in dominance rank increased dexamethasone-induced acute cortisol suppression and glucocorticoid negative feedback. Our findings indicate that social status causally affects both behavioral tendencies and glucocorticoid regulation, and that some behavioral tendencies also independently affect cortisol levels, beyond the effects of rank. Together, they highlight the importance of considering personality and social status together when investigating their effects on HPA axis function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Glucocorticoid-resistant Th17 cells are selectively attenuated by cyclosporine A

    Science.gov (United States)

    Schewitz-Bowers, Lauren P.; Lait, Philippa J. P.; Copland, David A.; Chen, Ping; Wu, Wenting; Dhanda, Ashwin D.; Vistica, Barbara P.; Williams, Emily L.; Liu, Baoying; Jawad, Shayma; Li, Zhiyu; Tucker, William; Hirani, Sima; Wakabayashi, Yoshiyuki; Zhu, Jun; Sen, Nida; Conway-Campbell, Becky L.; Gery, Igal; Dick, Andrew D.; Wei, Lai; Nussenblatt, Robert B.; Lee, Richard W. J.

    2015-01-01

    Glucocorticoids remain the cornerstone of treatment for inflammatory conditions, but their utility is limited by a plethora of side effects. One of the key goals of immunotherapy across medical disciplines is to minimize patients’ glucocorticoid use. Increasing evidence suggests that variations in the adaptive immune response play a critical role in defining the dose of glucocorticoids required to control an individual’s disease, and Th17 cells are strong candidate drivers for nonresponsiveness [also called steroid resistance (SR)]. Here we use gene-expression profiling to further characterize the SR phenotype in T cells and show that Th17 cells generated from both SR and steroid-sensitive individuals exhibit restricted genome-wide responses to glucocorticoids in vitro, and that this is independent of glucocorticoid receptor translocation or isoform expression. In addition, we demonstrate, both in transgenic murine T cells in vitro and in an in vivo murine model of autoimmunity, that Th17 cells are reciprocally sensitive to suppression with the calcineurin inhibitor, cyclosporine A. This result was replicated in human Th17 cells in vitro, which were found to have a conversely large genome-wide shift in response to cyclosporine A. These observations suggest that the clinical efficacy of cyclosporine A in the treatment of SR diseases may be because of its selective attenuation of Th17 cells, and also that novel therapeutics, which target either Th17 cells themselves or the effector memory T-helper cell population from which they are derived, would be strong candidates for drug development in the context of SR inflammation. PMID:25775512

  20. Ape conservation physiology: fecal glucocorticoid responses in wild Pongo pygmaeus morio following human visitation.

    Science.gov (United States)

    Muehlenbein, Michael P; Ancrenaz, Marc; Sakong, Rosman; Ambu, Laurentius; Prall, Sean; Fuller, Grace; Raghanti, Mary Ann

    2012-01-01

    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results

  1. Steatohepatitis secondary to long-term glucocorticoid treatment for congenital adrenal hyperplasia: a potential diagnostic pitfall.

    Science.gov (United States)

    Ding, Xianzhong; Thung, Swan N; Grewal, Priya

    2013-11-01

    A 24-year-old woman with congenital adrenal hyperplasia (CAH) was referred for evaluation of elevated liver enzyme activities over the preceding 6 months. The patient was diagnosed with CAH at the age 12 when she presented with irregular menses and hirsutism. Since then, she had been on dexamethasone to maintain a normal menstrual cycle and prevent hirsutism and acne. She had no history of chronic liver disease and drank alcohol socially. An extensive workup for other treatable causes of liver disease was unrevealing. Therefore, a liver biopsy was performed, which revealed extensive ballooned degenerative hepatocytes containing Mallory-Denk hyalines. The ballooned hepatocytes were located predominantly in centrilobular areas and without any accompanying steatosis. Even though the histopathologic features are most compatible with alcoholic and/or nonalcoholic steatohepatitis, it was not supported by the patient's medical history and clinical presentation. The patient had a normal body mass index and only occasional alcohol use. Based on the biopsy finding and clinical presentation, we postulated that the abnormal liver enzyme and pathological features seen on the liver biopsy were secondary to CAH and long-term use of glucocorticoid. A few studies have shown that patients with CAH often develop metabolic abnormalities and insulin resistance, particularly women treated with glucocorticoid for several years. To our knowledge, this is the first report describing steatohepatitis secondary to CAH and prolonged glucocorticoid treatment. It is important to be aware that steatohepatitis can develop in these patients due to long-term glucocorticoid use and potentially lead to progressive liver damage. Furthermore, in patients with CAH who develop abnormal liver enzyme activities a liver biopsy is warranted to assess for steatohepatitis and any associated fibrosis. If indeed fibrosis is already present, a consultation with the endocrinologist should be undertaken in an effort

  2. Familial glucocorticoid deficiency presenting with generalized hyperpigmentation in an Egyptian child: a case report

    Directory of Open Access Journals (Sweden)

    Metwalley Kotb A

    2012-04-01

    Full Text Available Abstract Introduction Familial glucocorticoid deficiency, or hereditary unresponsiveness to adrenocorticotropic hormone, is a rare autosomal recessive disease characterized by glucocorticoid deficiency in the absence of mineralocorticoid deficiency. It may present in infancy or early childhood with hyperpigmentation, failure to thrive, recurrent infections, hypoglycemic attacks and convulsions that may result in coma or death. Here, we report the case of an 18-month-old Egyptian boy with familial glucocorticoid deficiency. Case presentation An 18-month-old Egyptian boy was referred to our institution for evaluation of generalized hyperpigmentation of the body associated with recurrent convulsions; one of his siblings, who had died at the age of nine months, also had generalized hyperpigmentation of the body. The initial clinical examination revealed generalized symmetrical deep hyperpigmentation of the body as well as hypotonia, normal blood pressure and normal male genitalia. He had low blood glucose and cortisol levels, normal aldosterone and high adrenocorticotropic hormone levels. Based on the above mentioned data, a provisional diagnosis of familial glucocorticoid deficiency was made, which was confirmed by a molecular genetics study. Oral hydrocortisone treatment at a dose of 10 mg/m2/day was started. The child was followed up after two months of treatment; the hyperpigmentation has lessened in comparison with his initial presentation and his blood sugar and cortisol levels were normalized. Conclusion Familial glucocorticoid deficiency is a rare, treatable disease that can be easily missed due to nonspecific presentations. The consequences of delayed diagnosis and treatment are associated with high rates of morbidity and mortality.

  3. Taxonomy Enabled Discovery (TED) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal addresses the NASA's need to enable scientific discovery and the topic's requirements for: processing large volumes of data, commonly available on the...

  4. Computer Security Systems Enable Access.

    Science.gov (United States)

    Riggen, Gary

    1989-01-01

    A good security system enables access and protects information from damage or tampering, but the most important aspects of a security system aren't technical. A security procedures manual addresses the human element of computer security. (MLW)

  5. Secure Enclaves-Enabled Technologies

    Science.gov (United States)

    2014-04-25

    William Vine , Benjamin Vowell Team Advisor: Capt Nick Mastronardi UNITED STATES AIR FORCE ACADEMY Introduction Secure Enclaves-Enabled...hardware solution to cyber security is unique in an industry dominated by software solutions which hackers inevitably find ways to circumnavigate

  6. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo

    Directory of Open Access Journals (Sweden)

    Bradley S. Carter

    2013-08-01

    Full Text Available Previous studies have primarily interpreted gene expression regulation by glucocorticoids in the brain in terms of impact on neurons; however, less is known about the corresponding impact of glucocorticoids on glia and specifically astrocytes in vivo. Recent microarray experiments have identified glucocorticoid-sensitive mRNAs in primary astrocyte cell culture, including a number of mRNAs that have reported astrocyte-enriched expression patterns relative to other brain cell types. Here, we have tested whether elevations of glucocorticoids regulate a subset of these mRNAs in vivo following acute and chronic corticosterone exposure in adult mice. Acute corticosterone exposure was achieved by a single injection of 10 mg/kg corticosterone, and tissue samples were harvested two hours post-injection. Chronic corticosterone exposure was achieved by administering 10 mg/mL corticosterone via drinking water for two weeks. Gene expression was then assessed in two brain regions associated with glucocorticoid action (prefrontal cortex and hippocampus by qPCR and by in situ hybridization. The majority of measured mRNAs regulated by glucocorticoids in astrocytes in vitro were similarly regulated by acute and/or chronic glucocorticoid exposure in vivo. In addition, the expression levels for mRNAs regulated in at least one corticosterone exposure condition (acute/chronic demonstrated moderate positive correlation between the two conditions by brain region. In situ hybridization analyses suggest that select mRNAs are regulated by chronic corticosterone exposure specifically in astroctyes based on (1 similar general expression patterns between corticosterone-treated and vehicle-treated animals and (2 similar expression patterns to the pan-astrocyte marker Aldh1l1. Our findings demonstrate that glucocorticoids regulate astrocyte-enriched mRNAs in vivo and suggest that glucocorticoids regulate gene expression in the brain in a cell type-dependent fashion.

  7. The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment

    Directory of Open Access Journals (Sweden)

    Greta B Raglan

    2017-02-01

    Full Text Available The stress response has been linked to the expression of anxiety and depression, but the mechanisms for these connections are under continued consideration. The activation and expression of glucocorticoids and CRH are variable and may hold important clues to individual experiences of mood disorders. This paper explores the interactions of glucocorticoids and CRH in the presentation of anxiety and depressive disorders in an effort to better describe their differing roles in each of these clinical presentations. In addition, it focuses on ways in which extra-hypothalamic glucocorticoids and CRH, often overlooked, may play important roles in the presentation of clinical disorders.

  8. Glucocorticoids curtail stimuli-induced CREB phosphorylation in TRH neurons through interaction of the glucocorticoid receptor with the catalytic subunit of protein kinase A.

    Science.gov (United States)

    Sotelo-Rivera, Israim; Cote-Vélez, Antonieta; Uribe, Rosa-María; Charli, Jean-Louis; Joseph-Bravo, Patricia

    2017-03-01

    Corticosterone prevents cold-induced stimulation of thyrotropin-releasing hormone (Trh) expression in rats, and the stimulatory effect of dibutyryl cyclic-adenosine monophosphate (dB-cAMP) on Trh transcription in hypothalamic cultures. We searched for the mechanism of this interference. Immunohistochemical analyses of phosphorylated cAMP-response element binding protein (pCREB) were performed in the paraventricular nucleus (PVN) of Wistar rats, and in cell cultures of 17-day old rat hypothalami, or neuroblastoma SH-SY5Y cells. Cultures were incubated 1h with dB-cAMP, dexamethasone and both drugs combined; their nuclear extracts were used for chromatin immunoprecipitation; cytosolic or nuclear extracts for coimmunoprecipitation analyses of catalytic subunit of protein kinase A (PKAc) and of glucocorticoid receptor (GR); their subcellular distribution was analyzed by immunocytochemistry. Cold exposure increased pCREB in TRH neurons of rats PVN, effect blunted by corticosterone previous injection. Dexamethasone interfered with forskolin increase in nuclear pCREB and its binding to Trh promoter; antibodies against histone deacetylase-3 precipitated chromatin from nuclear extracts of hypothalamic cells treated with tri-iodothyronine but not with dB-cAMP + dexamethasone, discarding chromatin compaction as responsible mechanism. Co-immunoprecipitation analyses of cytosolic or nuclear extracts showed protein:protein interactions between activated GR and PKAc. Immunocytochemical analyses of hypothalamic or SH-SY5Y cells revealed diminished nuclear translocation of PKAc and GR in cells incubated with forskolin + dexamethasone, compared to either forskolin or dexamethasone alone. Glucocorticoids and cAMP exert mutual inhibition of Trh transcription through interaction of activated glucocorticoid receptor with protein kinase A catalytic subunit, reducing their nuclear translocation, limiting cAMP-response element binding protein phosphorylation and its binding to Trh promoter.

  9. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells

    Directory of Open Access Journals (Sweden)

    Polman J Annelies E

    2012-10-01

    Full Text Available Abstract Background Glucocorticoids, secreted by the adrenals in response to stress, profoundly affect structure and plasticity of neurons. Glucocorticoid action in neurons is mediated by glucocorticoid receptors (GR that operate as transcription factors in the regulation of gene expression and either bind directly to genomic glucocorticoid response elements (GREs or indirectly to the genome via interactions with bound transcription factors. These two modes of action, respectively called transactivation and transrepression, result in the regulation of a wide variety of genes important for neuronal function. The objective of the present study was to identify genome-wide glucocorticoid receptor binding sites in neuronal PC12 cells using Chromatin ImmunoPrecipitation combined with next generation sequencing (ChIP-Seq. Results In total we identified 1183 genomic binding sites of GR, the majority of which were novel and not identified in other ChIP-Seq studies on GR binding. More than half (58% of the binding sites contained a GRE. The remaining 42% of the GBS did not harbour a GRE and therefore likely bind GR via an intermediate transcription factor tethering GR to the DNA. While the GRE-containing binding sites were more often located nearby genes involved in general cell functions and processes such as apoptosis, cell motion, protein dimerization activity and vasculature development, the binding sites without a GRE were located nearby genes with a clear role in neuronal processes such as neuron projection morphogenesis, neuron projection regeneration, synaptic transmission and catecholamine biosynthetic process. A closer look at the sequence of the GR binding sites revealed the presence of several motifs for transcription factors that are highly divergent from those previously linked to GR-signaling, including Gabpa, Prrx2, Zfp281, Gata1 and Zbtb3. These transcription factors may represent novel crosstalk partners of GR in a neuronal context

  10. Liver X Receptors Regulate the Transcriptional Activity of the Glucocorticoid Receptor: Implications for the Carbohydrate Metabolism

    Science.gov (United States)

    Nader, Nancy; Ng, Sinnie Sin Man; Wang, Yonghong; Abel, Brent S.; Chrousos, George P.; Kino, Tomoshige

    2012-01-01

    GLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase), a key enzyme of gluconeogenesis, and suppress the immune system through the glucocorticoid receptor (GR). The liver X receptors (LXRs), on the other hand, bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. Since the actions of these receptors overlap with each other, we evaluated the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats. It also suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells, whereas endogenous, unliganded LXRs were required for dexamethasone-induced mRNA expression of phosphoenolpyruvate carboxylase. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. To examine the mechanism through which activated LXRs attenuated GR transcriptional activity, we examined LXRα/RXRα binding to GREs. Endogenous LXRα/RXRα bound GREs and inhibited GR binding to these DNA sequences both in in vitro and in vivo chromatin immunoprecipitation assays, while their recombinant proteins did so on classic or G6Pase GREs in gel mobility shift assays. We propose that administration of

  11. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    NARCIS (Netherlands)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be

  12. DOSAGEM DE METABÓLITOS DE GLUCOCORTICOIDES E PROGESTERONA EM FEZES DE PAPAGAIO-VERDADEIRO (AMAZONA AESTIVA

    Directory of Open Access Journals (Sweden)

    Caroline Junko Fujihara

    2014-09-01

    Full Text Available The objectives of the present study were to evaluate fecal concentrations of metabolites of glucocorticoids, measured by enzyme immunoassay with a cortisol antibody and by radioimmunoassay with a corticosterone antibody, and progesterone by radioimmunoassay with a progesterone antibody in blue-fronted parrot (Amazona aestiva after ACTH challenge. The adrenal stimulation with ACTH (25 UI/animal resulted in an increase of fecal glucocorticoids metabolites concentration, but it did not affect the concentrations of fecal progesterone metabolites. Although there were no synchronized peaks of glucocorticoid metabolites excretion measured by enzyme immunoassay and radioimmunoassay, there were two peaks of excretion, one at 2-4 hours and other at 8-10 hours. Despite the occurrence of peaks, the analysis of fecal glucocorticoids metabolites and progesterone metabolites showed no effect of group (control and treatment, moment (hours of sampling and sex.

  13. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements

    DEFF Research Database (Denmark)

    Grøntved, Lars; John, Sam; Baek, Songjoon

    2013-01-01

    Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocortico...

  14. Steps in Modular Specifications for Concurrent Modules

    DEFF Research Database (Denmark)

    Da Rocha Pinto, Pedro; Dinsdale-Young, Thomas; Gardner, Philippa

    2015-01-01

    The specification of a concurrent program module is a difficult problem. The specifications must be strong enough to enable reasoning about the intended clients without reference to the underlying module implementation. We survey a range of verification techniques for specifying concurrent modules......, in particular highlighting four key concepts: auxiliary state, interference abstraction, resource ownership and atomicity. We show how these concepts combine to provide powerful approaches to specifying concurrent modules....

  15. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Chantong Boonrat

    2012-11-01

    Full Text Available Abstract Background Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR and glucocorticoid receptors (GR. Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB pathway in murine BV-2 microglial cells were studied. Methods BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6, tumor necrosis factor receptor 2 (TNFR2, and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays. Results GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF

  16. A search for variables predicting cortisol response to low-dose corticotropin stimulation following supraphysiological doses of glucocorticoids.

    Science.gov (United States)

    Wildi-Runge, Stefanie; Deladoëy, Johnny; Bélanger, Carole; Deal, Cheri L; Van Vliet, Guy; Alos, Nathalie; Huot, Céline

    2013-08-01

    To determine which biological or clinical variables may predict cortisol response to low-dose adrenocorticotropic hormone (ACTH) stimulation following supraphysiological doses of glucocorticoids in children. This retrospective study included all patients who underwent ACTH testing (1 μg) between October 2008 and June 2010 at the Sainte-Justine University Hospital Center, Montreal, after supraphysiological doses of glucocorticoids. Data from 103 patients (median age, 8.0 years; range, 0.6-18.5 years; 57 girls) were analyzed, revealing growth deceleration in 37% and excessive weight gain in 33%. Reasons for glucocorticoid treatment included asthma (n = 30) and hematologic (n = 22), dermatologic (n = 19), rheumatologic (n = 16), and miscellaneous (n = 16) disorders. The following information was recorded: duration of glucocorticoid treatment (median, 374 days; range, 5-4226 days); duration of physiological hydrocortisone replacement (median, 118 days; range, 0-1089 days); maximum daily (median, 200 mg/m(2)/day; range, 12-3750 mg/m(2)/day) and cumulative (median, 16 728 mg/m(2); range, 82-178 209 mg/m(2)) doses, in hydrocortisone equivalents; and interval since the last dose (median, 43 days; range, 1-1584 days). Sixty-two patients (58%) exhibited a normal response (ie, peak cortisol >500 nmol/L) to ACTH stimulation. Peak cortisol level was not related to sex, prior morning cortisol level, duration of treatment, or cumulative glucocorticoid dose; 28% of the patients with normal baseline cortisol levels nevertheless demonstrated a subnormal response to ACTH. Given the absence of clinical or biological predictors of the cortisol response to ACTH after suppressive doses of glucocorticoids, physicians have only 2 options: (1) empirically advocate glucocorticoid stress coverage during 18 months after cessation of high-dose glucocorticoid treatment; or (2) perform serial ACTH testing in all such patients until a normal peak cortisol level is attained. Copyright © 2013

  17. Pharmacogenetics of glucocorticoid replacement could optimize the treatment of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Ricardo P. P. Moreira

    2011-01-01

    Full Text Available INTRODUCTION: 21-hydroxylase deficiency is an autosomal recessive disorder that causes glucocorticoid deficiency and increased androgen production. Treatment is based on glucocorticoid replacement; however, interindividual variability in the glucocorticoid dose required to achieve adequate hormonal control has been observed. OBJECTIVE: The present study aimed to evaluate the association between polymorphic variants involved inglucocorticoid action and/or metabolism and the mean daily glucocorticoid dose in 21-hydroxylase deficiency patients. METHODS: We evaluated 53 patients with classical forms of 21-hydroxylase deficiency who were receiving cortisone acetate. All patients were between four and six years of age and had normal androgen levels. RESULTS: The P450 oxidoreductase A503V, HSD11B1 rs12086634, and CYP3A7*1C variants were found in 19%, 11.3% and 3.8% of the patients, respectively. The mean ± SD glucocorticoid dose in patients with the CYP3A7*1C and wild-type alleles was 13.9 ± 0.8 and 19.5 ± 3.2 mg/m²/d, respectively. We did not identify an association between the P450 oxidoreductase or HSD11B1 allelic variants and the mean glucocorticoid dose. CONCLUSION: Patients carrying the CYP3A7*1C variant required a significantly lower mean glucocorticoid dose. Indeed, the CYP3A7*1C allele accounted for 20% of the variability in the cortisone acetate dose. The analysis of genes involved in glucocorticoid metabolism may be useful in the optimization of treatment of 21-hydroxylase deficiency.

  18. Glucocorticoides como reguladores de la expresión génica en macrófagos humanos

    OpenAIRE

    Díaz Ludovico, Ivo; Ledda, A.; Esteve Rafols, M.; Grasa, M.; Toledo, Juan Domingo; Garda, Horacio Alberto; González, Marina Cecilia

    2014-01-01

    Los glucocorticoides son antiinflamatorios que actúan en la resolución de la inflamación mediante la activación de macrófagos por la vía alternativa M2c anti-inflamatorios, entre otras acciones. Se considera que los glucocorticoides están implicados en el desencadenamiento y/o mantenimiento de la obesidad, tal como se ha postulado para la aterosclerosis.

  19. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle.

    OpenAIRE

    Dimitriadis, G; Leighton, B; Parry-Billings, M.; Sasson, S; Young, M; Krause, U.; Bevan, S.; Piva, T; Wegener, G.; Newsholme, E A

    1997-01-01

    GENBANK/dy examines the mechanisms of glucocorticoid-induced insulin resistance in rat soleus muscle. Glucocorticoid excess was induced by administration of dexamethasone to rats for 5 days. Dexamethasone decreased the sensitivity of 3-O-methylglucose transport, 2-deoxyglucose phosphorylation, glycogen synthesis and glucose oxidation to insulin. The total content of GLUT4 glucose transporters was not decreased by dexamethasone; however, the increase in these transporters in the plasma membran...

  20. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...

  1. Editorial: Schools as enabling environments

    African Journals Online (AJOL)

    Hennie

    South African Journal of Education, Volume 34, Number 4, November 2014. 1. Editorial, 6 pages, http://www.sajournalofeducation.co.za. Editorial: Schools as enabling environments. Guest Editors: Mahlapahlapana Themane and David Osher. Children and youth need safe and supportive schools if they are to succeed in ...

  2. Isoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression.

    Science.gov (United States)

    Zalachoras, I; Verhoeve, S L; Toonen, L J; van Weert, L T C M; van Vlodrop, A M; Mol, I M; Meelis, W; de Kloet, E R; Meijer, O C

    2016-12-01

    Maladaptive glucocorticoid effects contribute to stress-related psychopathology. The glucocorticoid receptor (GR) that mediates many of these effects uses multiple signaling pathways. We have tested the hypothesis that manipulation of downstream factors ('coregulators') can abrogate potentially maladaptive GR-mediated effects on fear-motivated behavior that are linked to corticotropin releasing hormone (CRH). For this purpose the expression ratio of two splice variants of steroid receptor coactivator-1 (SRC-1) was altered via antisense-mediated 'exon-skipping' in the central amygdala of the mouse brain. We observed that a change in splicing towards the repressive isoform SRC-1a strongly reduced glucocorticoid-induced responsiveness of Crh mRNA expression and increased methylation of the Crh promoter. The transcriptional GR target gene Fkbp5 remained responsive to glucocorticoids, indicating gene specificity of the effect. The shift of the SRC-1 splice variants altered glucocorticoid-dependent exploratory behavior and attenuated consolidation of contextual fear memory. In conclusion, our findings demonstrate that manipulation of GR signaling pathways related to the Crh gene can selectively diminish potentially maladaptive effects of glucocorticoids.

  3. Glucocorticoids induce CCN5/WISP-2 expression and attenuate invasion in oestrogen receptor-negative human breast cancer cells.

    Science.gov (United States)

    Ferrand, Nathalie; Stragier, Emilien; Redeuilh, Gérard; Sabbah, Michèle

    2012-10-01

    CCN5 (cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed 5)/WISP-2 [WNT1 (wingless-type MMTV integration site family, member 1)-inducible signalling pathway protein 2] is an oestrogen-regulated member of the CCN family. CCN5 is a transcriptional repressor of genes associated with the EMT (epithelial-mesenchymal transition) and plays an important role in maintenance of the differentiated phenotype in ER (oestrogen receptor)-positive breast cancer cells. In contrast, CCN5 is undetectable in more aggressive ER-negative breast cancer cells. We now report that CCN5 is induced in ER-negative breast cancer cells such as MDA-MB-231 following glucocorticoid exposure, due to interaction of the endogenous glucocorticoid receptor with a functional glucocorticoid-response element in the CCN5 gene promoter. Glucocorticoid treatment of MDA-MB-231 cells is accompanied by morphological alterations, decreased invasiveness and attenuated expression of mesenchymal markers, including vimentin, cadherin 11 and ZEB1 (zinc finger E-box binding homeobox 1). Interestingly, glucocorticoid exposure did not increase CCN5 expression in ER-positive breast cancer cells, but rather down-regulated ER expression, thereby attenuating oestrogen pathway signalling. Taken together, our results indicate that glucocorticoid treatment of ER-negative breast cancer cells induces high levels of CCN5 expression and is accompanied by the appearance of a more differentiated and less invasive epithelial phenotype. These findings propose a novel therapeutic strategy for high-risk breast cancer patients.

  4. [Use of preoperative glucocorticoid to risk reduction of complications after esophagectomy by esophagus carcinoma: meta-analysis].

    Science.gov (United States)

    Raimondi, Antônio Marcos

    2006-12-01

    Preoperative glucocorticoid administration has been proposed for reducing postoperative morbidity. This is not widely used before esophageal resection because of incomplete knowledge regarding its effectiveness. The aim here was to assess the effects of preoperative glucocorticoid administration in adults undergoing esophageal resection for esophageal carcinoma. Studies were identified by searching the Cochrane Controlled Trials Register, MEDLINE, EMBASE, CancerLit, SCIELO and Cochrane Library, and by manual searching from relevant articles. The last search for clinical trials for this systematic review was performed in December 2005. This review included randomized studies of patients with potentially resectable carcinomas of the esophagus that compared preoperative glucocorticoid administration with placebo. Data were extracted by the reviewer, and the trial quality was assessed using Jadad scoring. Odds ratio with 95% confidence limits and bayesian relative risk were used to assess the significance of the difference between the treatment arms. Four randomized trials involving 169 patients were found. There were no differences in postoperative mortality, anastomotic leakage, hepatic and renal failure between the glucocorticoid and placebo groups. There were fewer postoperative respiratory complications (95% CI = 0.09-0.46), sepsis (95% CI = 0.10-0.81), and total postoperative complications (95% CI = 0.06-0.23) with preoperative glucocorticoid administration. Prophylactic administration of glucocorticoids is associated with decreased postoperative complications.

  5. Hormones, stress, and cognition: The effects of glucocorticoids and oxytocin on memory

    Science.gov (United States)

    Wirth, Michelle M.

    2014-01-01

    Hormones have nuanced effects on learning and memory processes. The degree and direction of the effect (e.g., is memory impaired or enhanced?) depends on the dose, type and stage of memory, and type of material being learned, among other factors. This review will focus on two specific topics within the realm of effects of hormones on memory: (1) How glucocorticoids (the output hormones of the hypothalamic-pituitary-adrenal axis) affect long-term memory consolidation, retrieval, and working memory, with a focus on neural mechanisms and effects of emotion; and (2) How oxytocin affects memory, with emphasis on a speculative hypothesis that oxytocin might exert its myriad effects on human social cognition and behavior via impacts on more general cognitive processes. Oxytocin-glucocorticoid interactions will be briefly addressed. These effects of hormones on memory will also be considered from an evolutionary perspective. PMID:25893159

  6. Serotonergic Mechanisms Influence the Response to Glucocorticoid Treatment in TMJ Arthritis

    Directory of Open Access Journals (Sweden)

    Lars Fredriksson

    2005-01-01

    Full Text Available The aims of this study were to investigate the influence of serotonin (5-HT on the effects of intra-articular injections of glucocorticoid on pain of the temporomandibular joint (TMJ in patients with inflammatory disorders of the TMJ. The pretreatment synovial fluid 5-HT was negatively, and plasma 5-HT positively, correlated to change in TMJ pain after treatment. The pretreatment plasma 5-HT was positively correlated to change in pressure-pain threshold after treatment. In conclusion, this study shows that local and systemic serotonergic mechanisms partly determine the effect of intra-articular glucocorticoid treatment on TMJ pain in patients with chronic TMJ arthritis of systemic nature, while change in pressure-pain threshold over the TMJ is influenced by systemic serotonergic mechanisms.

  7. Glucocorticoids as an adjuvant treatment to intravenous antibiotics for cystic fibrosis pulmonary exacerbations: a UK Survey.

    Science.gov (United States)

    Hester, K L M; Powell, T; Downey, D G; Elborn, J S; Jarad, N A

    2007-07-01

    Oral glucocorticoids are widely used to treat exacerbations of asthma and COPD. A role for their use in treating exacerbations in Cystic Fibrosis (CF) is not proven. We describe the current practice, amongst UK adult CF physicians, of oral glucocorticoid use as an adjuvant to intravenous (IV) antibiotic treatment during CF pulmonary exacerbation (P EX). The survey also examined whether physicians thought a randomised controlled trial (RCT) was necessary and their willingness to participate patients in such a trial. Eighty one percent of physicians replied. All of them used corticosteroids with P EX. Most physicians supported the need for a RCT and would be willing to enroll consenting patients in the trial. This survey highlighted the need for a RCT which would examine the role of adjuvant corticosteroids to IV antibiotics in CF P EX.

  8. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review.

    Science.gov (United States)

    Zhang, Zhida; Ren, Hui; Shen, Gengyang; Qiu, Ting; Liang, De; Yang, Zhidong; Yao, Zhensong; Tang, Jingjing; Jiang, Xiaobing; Wei, Qiushi

    2016-12-01

    Glucocorticoid-induced postmenopausal osteoporosis is a severe osteoporosis, with high risk of major osteoporotic fractures. This severe osteoporosis urges more extensive and deeper basic study, in which suitable animal models are indispensable. However, no relevant review is available introducing this model systematically. Based on the recent studies on GI-PMOP, this brief review introduces the GI-PMOP animal model in terms of its establishment, evaluation of bone mass and discuss its molecular mechanism. Rat, rabbit and sheep with their respective merits were chosen. Both direct and indirect evaluation of bone mass help to understand the bone metabolism under different intervention. The crucial signaling pathways, miRNAs, osteogenic- or adipogenic- related factors and estrogen level may be the predominant contributors to the development of glucocorticoid-induced postmenopausal osteoporosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Primary and secondary prophylaxis to the use of inhaled glucocorticoid in primary health care

    DEFF Research Database (Denmark)

    Nielsen, B.R.; Jorgensen, N.R.; Schwarz, P.

    2008-01-01

    OBJECTIVES: To investigate the extent of inhaled glucocorticoid (IGC) treatment in general and to what extent general practitioners (GPs) manage the risk of glucocorticoid-induced osteoporosis. METHOD: A questionnaire was sent to all 3,617 GPs in Denmark. RESULTS: The results are divided...... into criteria for recommending prophylaxis with calcium and vitamin D for patients in actual IGC treatment, routine examinations for osteoporosis before starting asthma or chronic obstructive pulmonary disease (COPD) treatment with IGC, and criteria for starting anti-osteoporotic treatment (bisphosphonates...... with or without risk factors of osteoporosis. CONCLUSION: More studies are warranted to verify the effects of IGC treatment on bone health and the importance of prophylaxis to prevent osteoporosis in IGC-treated patients before outlining specific recommendations for the management of the disease Udgivelsesdato...

  10. Glucocorticoid-Induced Changes in the Geometry of Osteoclast Resorption Cavities Affect Trabecular Bone Stiffness

    DEFF Research Database (Denmark)

    Vanderoost, Jef; Søe, Kent; Merrild, Ditte Marie Horslev

    2012-01-01

    Bone fracture risk can increase through bone microstructural changes observed in bone pathologies, such as glucocorticoid-induced osteoporosis. Resorption cavities present one of these microstructural aspects. We recently found that glucocorticoids (GCs) affect the shape of the resorption cavities...... of trabecular bone. We demonstrated that a change in the geometry of resorption cavities is sufficient to affect bone competence. After correcting for the increased EV/BV with GCs, the difference to the control condition was no longer significant, indicating that the GC-induced increase in EV/BV, which...... is closely related to the shape of the cavities, highly determines the stiffness effect. The lumbar spine was the anatomic site most affected by the GC-induced changes on the shape of the cavities. These findings might explain the clinical observation that the prevalence of vertebral fractures during GC...

  11. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Directory of Open Access Journals (Sweden)

    Carmen Sandi

    1998-01-01

    integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning and rats (spatial orientation in the Morris water maze and contextual fear conditioning, a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i glutamatergic transmission and (ii cell adhesion molecules.

  12. Efectos del tratamiento con glucocorticoides durante el embarazo. A propósito de un caso

    Directory of Open Access Journals (Sweden)

    Diana Machado Ramírez

    2015-06-01

    Full Text Available The use of anti-inflammatory glucocorticoids may be necessary during pregnancy to treat some maternal conditions. Its effects in pregnant women are virtually the same as those described in the general adult population. Avascular necrosis is the death of bone tissue due to the interruption of the blood supply, and is mainly associated with the use of high-dose corticosteroids for long periods. We present the case of a 21-year-old patient at 34 weeks’ gestation admitted to the Intensive Care Unit of the Enrique Cabrera Hospital because of decompensated hypertension, obesity and congenital adrenal hyperplasia treated with suppressive doses of steroids. Subsequently, she was diagnosed with an avascular necrosis of both femoral heads. Iatrogenic Cushing’s syndrome resulting from all these factors was found. The newborn developed a seborrheic dermatitis of the scalp. The purpose of this presentation is to describe the side effects of the chronic use of glucocorticoids in pregnant women.

  13. [High-dosage glucocorticoid therapy in acute heart infarct and in cardiogenic shock].

    Science.gov (United States)

    Krosch, H; Schäbitz, J

    1977-11-15

    40 patients with cardiogenic shock in consequence of contractility insufficiency of the heart were treated with high doses of prednisolon for short time. In 10 cases a good result of the treatment was to be seen so that the lethality quota was smaller than that of a reference group of the same age. The pharmacodynamic effect is seen in an improvement of the micro-circulation by a peripheric vasodilatation. 10 patients with acute myocardial infarction got a therapy with glucocorticoid combined with a treatment with anti-coagulants during the first both weeks. In this connection modern experimental examinations of animals are discussed which showed that glucocorticoides improve the anoxy tolerance of the heart muscle cell.

  14. Gene expression profiling in patients with polymyalgia rheumatica before and after symptom-abolishing glucocorticoid treatment

    DEFF Research Database (Denmark)

    Kreiner, Frederik Flindt; Borup, Rehannah; Nielsen, Finn Cilius

    2017-01-01

    > 30, and p treatment, 131 genes responded to treatment in a given direction only in patients, and 44 fulfilled both these criteria. In 43 of the 44 genes, treatment counteracted the initial difference. Functional clustering......BACKGROUND: The pathophysiology, including the impact of gene expression, of polymyalgia rheumatica (PMR) remains elusive. We profiled the gene expression in muscle tissue in PMR patients before and after glucocorticoid treatment. METHODS: Gene expression was measured using Affymetrix Human Genome...... U133 Plus 2.0 arrays in muscle biopsies from 8 glucocorticoid-naive patients with PMR and 10 controls before and after prednisolone-treatment for 14 days. For 14 genes, quantitative real-time PCR (qRT-PCR, n = 9 in both groups) was used to validate the microarray findings and to further investigate...

  15. Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate

    Science.gov (United States)

    Laresgoiti, Usua; Rao, Chandrika; Brady, Jane L.; Richardson, Rachel V.; Batchen, Emma J.; Chapman, Karen E.

    2016-01-01

    Insufficient alveolar gas exchange capacity is a major contributor to lung disease. During lung development, a population of distal epithelial progenitors first produce bronchiolar-fated and subsequently alveolar-fated progeny. The mechanisms controlling this bronchiolar-to-alveolar developmental transition remain largely unknown. We developed a novel grafting assay to test if lung epithelial progenitors are intrinsically programmed or if alveolar cell identity is determined by environmental factors. These experiments revealed that embryonic lung epithelial identity is extrinsically determined. We show that both glucocorticoid and STAT3 signalling can control the timing of alveolar initiation, but that neither pathway is absolutely required for alveolar fate specification; rather, glucocorticoid receptor and STAT3 work in parallel to promote alveolar differentiation. Thus, developmental acquisition of lung alveolar fate is a robust process controlled by at least two independent extrinsic signalling inputs. Further elucidation of these pathways might provide therapeutic opportunities for restoring alveolar capacity. PMID:27578791

  16. The evolution, structure and function of the ray finned fish (Actinopterygii) glucocorticoid receptors.

    Science.gov (United States)

    Bury, Nic R

    2017-09-15

    Basal ray-finned fish (Actinopterygii) possess a single glucocorticoid receptor (GR) and when compared to the lobe-finned vertebrate (Sarcopterygii) GR possess nine additional amino acids between the zinc-finger of the DNA binding domain. A whole genome duplication event which occurred between 320 and 350MYA in the teleost lineage following the split from the basal ray-finned fish resulted in 2 GRs: one GR group, GR1, has retained the 9 amino acids insert whereas the other group, GR2, has not. The exception to this is the zebrafish, that have lost one of the GRs, but they do possess 2 GRs with a splice variant that lacks the C-terminal portion of the GR to form GRβ which acts as a dominant-repressor of the wildtype GR. Another splice variant sees the basal ray-finned GR and teleost GR1 without the 9 amino acids insert. The molecular basis for GRs retention is beginning to be unravelled. In Pantadon buchholzi, rainbow trout, carp, marine and Japanese medaka GR2 is more sensitive to glucocorticoids (GC), thus potentially playing a more significant role in regulating gene expression at basal circulatory GC concentrations. However, this division in GC sensitivity is not seen in other species. The few studies to evaluate the significance of the 9 amino acid insert have shown that it affect maximal transactivational activity the extent to which is dependent on the number of glucocorticoid response elements (GREs) present in the reporter plasmid. The retention of these GRs would suggest there was an evolutionary advantage, which saw the development of a complex regulatory process to mediate the actions of the glucocorticoids. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Association between umbilical cord glucocorticoids and blood pressure at age 3 years

    Directory of Open Access Journals (Sweden)

    Rich-Edwards Janet W

    2008-08-01

    Full Text Available Abstract Background Animal data show that decreased activity of placental 11-beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2, which potently inactivates glucocorticoids (e.g. cortisol to inert forms (cortisone, allows increased access of maternal glucocorticoids to the fetus and 'programs' hypertension. Data in humans are limited. We examined in humans the association between venous umbilical cord blood glucocorticoids, a potential marker for placental 11β-HSD2 enzyme activity, and blood pressure at age 3 years. Methods Among 286 newborns in Project Viva, a prospective pre-birth cohort study based in eastern Massachusetts, we measured cortisol (F and cortisone (E in venous cord blood and used the ratio of F/E as a marker for placental 11β-HSD2 activity. We measured blood pressure (BP when the offspring reached age 3 years. Using mixed effects regression models to control for BP measurement conditions, maternal and child characteristics, we examined the association between the F/E ratio and child BP. Results At age 3 years, each unit increase in the F/E ratio was associated with a 1.6 mm Hg increase in systolic BP (95% CI 0.0 to 3.1. The F/E ratio was not associated with diastolic blood pressure or birth weight for gestational age z-score. Conclusion A higher F/E ratio in umbilical venous cord blood, likely reflecting reduced placental 11β-HSD2 activity, was associated with higher systolic blood pressure at age 3 years. Our data suggest that increased fetal exposure to active maternal glucocorticoids may program later systolic blood pressure.

  18. Tumour necrosis factor-α inhibitors are glucocorticoid-sparing in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Nilsson, Anna Christine; Christensen, Anne Friesgaard; Junker, Peter

    2011-01-01

    Rheumatoid arthritis (RA) is a chronic disease with autoimmune traits of unknown aetiology which primarily affects synovial joints. Glucocorticoids (GCs) are still widely used in RA treatment despite the expanding use of targeted and very efficient agents. The objective of this study was to asses...... the impact of treatment with tumour necrosis factor-α inhibitors (TNFi) on GC utilization in real-life practice among Danish RA patients....

  19. Prolonged glucocorticoid treatment in ARDS: impact on intensive care unit acquired weakness.

    Directory of Open Access Journals (Sweden)

    Gianfranco Umberto Meduri

    2016-08-01

    Full Text Available AbstractSystemic inflammation and duration of immobilization are strong independent risk factors for development of intensive care unit- acquired weakness (ICUAW. Activation of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB results in muscle wasting during disuse-induced skeletal muscle atrophy (ICU bed rest and septic shock. In addition, NF-κB-mediated signaling plays a significant role in mechanical ventilation-induced diaphragmatic atrophy and contractile dysfunction. Older trials investigating high dose glucocorticoid treatment reported a lack of a sustained anti-inflammatory effects and an association with ICUAW. However, prolonged low-to-moderate dose glucocorticoid treatment of sepsis and ARDS is associated with a reduction in NF-κB DNA-binding, decreased transcription of inflammatory cytokines, enhanced resolution of systemic and pulmonary inflammation, leading to fewer days of mechanical ventilation, and lower mortality. Importantly, meta-analyses of a large number of randomized controlled trials (RCTs investigating low-to-moderate glucocorticoid treatment in severe sepsis and ARDS found no increase in ICUAW. Furthermore, while the ARDS network trial investigating methylprednisolone treatment in persistent ARDS is frequently cited to support an association with ICUAW, a re-analysis of the data showed a similar incidence with the control group. Our review concludes that in patients with sepsis and ARDS any potential direct harmful neuromuscular effect of glucocorticoids appears outweighed by the overall clinical improvement and reduced duration of organ failure, in particular ventilator dependency and associated immobilization, which are key risk factors for ICUAW. Acknowledgements: The NHLBI ARDSnetwork graciously provided and assisted with the ARDSnet02 Dataset on the Efficacy of Corticosteroids as Rescue Therapy for the Late Phase of Acute Respiratory Distress Syndrome (LaSRS.

  20. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice.

    Science.gov (United States)

    Solomon, Matia B; Loftspring, Matthew; de Kloet, Annette D; Ghosal, Sriparna; Jankord, Ryan; Flak, Jonathan N; Wulsin, Aynara C; Krause, Eric G; Zhang, Rong; Rice, Taylor; McKlveen, Jessica; Myers, Brent; Tasker, Jeffrey G; Herman, James P

    2015-08-01

    Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.