WorldWideScience

Sample records for enable fuel efficiency

  1. Fuel properties to enable lifted-flame combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Eric [Ford Motor Company, Dearborn, MI (United States)

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  2. Materials Approach to Fuel Efficient Tires

    Energy Technology Data Exchange (ETDEWEB)

    Votruba-Drzal, Peter [PPG Industries, Monroeville, PA (United States); Kornish, Brian [PPG Industries, Monroeville, PA (United States)

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  3. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  4. Framing car fuel efficiency : linearity heuristic for fuel consumption and fuel-efficiency ratings

    NARCIS (Netherlands)

    Schouten, T.M.; Bolderdijk, J.W.; Steg, L.

    2014-01-01

    People are sensitive to the way information on fuel efficiency is conveyed. When the fuel efficiency of cars is framed in terms of fuel per distance (FPD; e.g. l/100 km), instead of distance per units of fuel (DPF; e.g. km/l), people have a more accurate perception of potential fuel savings. People

  5. The role of fuel cells and electrolysers in future efficient energy systems

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Vad Mathiesen, Brian; Pedersen, Allan Schrøder

    2012-01-01

    Fuel cells can increase the efficiency of the energy system and electrolysers can help enable a de-carbonisation of the energy supply. In this chapter we explain the role of fuel cells in future energy systems together with the role of electrolysers in smart energy systems with increasing penetra...... penetrations of intermittent renewable resources in the electricity grid increases the demand for smart energy systems.......Fuel cells can increase the efficiency of the energy system and electrolysers can help enable a de-carbonisation of the energy supply. In this chapter we explain the role of fuel cells in future energy systems together with the role of electrolysers in smart energy systems with increasing...

  6. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  7. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Splitter, Derek A [ORNL; Szybist, James P [ORNL

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  8. Biofunctionalized conductive polymers enable efficient CO2 electroreduction

    Science.gov (United States)

    Coskun, Halime; Aljabour, Abdalaziz; De Luna, Phil; Farka, Dominik; Greunz, Theresia; Stifter, David; Kus, Mahmut; Zheng, Xueli; Liu, Min; Hassel, Achim W.; Schöfberger, Wolfgang; Sargent, Edward H.; Sariciftci, Niyazi Serdar; Stadler, Philipp

    2017-01-01

    Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine—a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes—could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film–based processing. We achieve catalytic performance with geometric current densities of 18 mA cm−2 at 0.21 V overpotential (−0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm−1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications. PMID:28798958

  9. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  10. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    Science.gov (United States)

    Bowe, Aisha Ruth; Santiago, Confesor

    2012-01-01

    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  11. Technological growth of fuel efficiency in european automobile market 1975–2015

    International Nuclear Information System (INIS)

    Hu, Kejia; Chen, Yuche

    2016-01-01

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuel consumption per 100 km, and a 1% reduction in 0–100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target. - Highlights: • We evaluated fuel efficiency technological growth trends in European cars. • We quantified trade-offs between vehicle attributes and fuel consumption using statistical methods. • Technology development was offset by upsizing and upgrading of cars in 1975–2006. • Technology development and downsizing enabled large improvements in efficiency in 2006–2015. • Maintaining historical trend of efficiency improvement is not enough to achieve EU 2021 target.

  12. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang

    2012-12-26

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  13. Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

    International Nuclear Information System (INIS)

    Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

    2000-01-01

    The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments

  14. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    Science.gov (United States)

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  15. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    Science.gov (United States)

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  16. Greater Sudbury fuel efficient driving handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Reducing the amount of fuel that people use for personal driving saves money, improves local air quality, and reduces personal contributions to climate change. This handbook was developed to be used as a tool for a fuel efficient driving pilot program in Greater Sudbury in 2009-2010. Specifically, the purpose of the handbook was to provide greater Sudbury drivers with information on how to drive and maintain their personal vehicles in order to maximize fuel efficiency. The handbook also provides tips for purchasing fuel efficient vehicles. It outlines the benefits of fuel maximization, with particular reference to reducing contributions to climate change; reducing emissions of air pollutants; safe driving; and money savings. Some tips for efficient driving are to avoid aggressive driving; use cruise control; plan trips; and remove excess weight. Tips for efficient winter driving are to avoid idling to warm up the engine; use a block heater; remove snow and ice; use snow tires; and check tire pressure. The importance of car maintenance and tire pressure was emphasized. The handbook also explains how fuel consumption ratings are developed by vehicle manufacturers. refs., figs.

  17. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    Science.gov (United States)

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  18. Estimation of Gasoline Price Elasticities of Demand for Automobile Fuel Efficiency in Korea: A Hedonic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Tae [Sungkyunkwan University, Seoul (Korea); Lee, Myunghun [Keimyung University, Taegu (Korea)

    2001-03-01

    This paper estimates the gasoline price elasticities of demand for automobile fuel efficiency in Korea to examine indirectly whether the government policy of raising fuel prices is effective in inducing less consumption of fuel, relying on a hedonic technique developed by Atkinson and Halvorsen (1984). One of the advantages of this technique is that the data for a single year, without involving variation in the price of gasoline, is sufficient in implementing this study. Moreover, this technique enables us to circumvent the multicollinearity problem, which had reduced reliability of the results in previous hedonic studies. The estimated elasticities of demand for fuel efficiency with respect to the price of gasoline, on average, is 0.42. (author). 30 refs., 3 tabs.

  19. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  20. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  1. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol

    International Nuclear Information System (INIS)

    Irimescu, Adrian

    2012-01-01

    Highlights: ► Iso-butanol use in a port injection spark ignition engine. ► Fuel conversion efficiency calculated based on chassis dynamometer measurements. ► Combined study of engine efficiency and air–fuel mixture temperature. ► Excellent running characteristics with minor fuel system modifications. ► Up to 11% relative drop in part load efficiency due to incomplete fuel vaporization. -- Abstract: Alcohols are increasingly used as fuels for spark ignition engines. While ethanol is most commonly used, long chain alcohols such as butanol feature several advantages like increased heating value and reduced corrosive action. This study investigated the effect of fueling a port injection engine with iso-butanol, as compared to gasoline operation. Performance levels were maintained within the same limits as with the fossil fuel without modifications to any engine component. An additional electronic module was used for increasing fuel flow by extending the injection time. Fuel conversion efficiency decreased when the engine was fueled with iso-butanol by up to 9% at full load and by up to 11% at part load, calculated as relative values. Incomplete fuel evaporation was identified as the factor most likely to cause the drop in engine efficiency.

  2. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  3. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency

    International Nuclear Information System (INIS)

    Wang, Yifei; Leung, Dennis Y.C.; Xuan, Jin; Wang, Huizhi

    2015-01-01

    Highlights: • A microfluidic fuel cell with a vapor feed anode is investigated. • Its advantages include simpler design, direct usage of methanol and better performance. • The prototype achieves a peak power density of 55.4 mW cm −2 under room temperature. • The energy efficiency of 9.4% is much higher than its liquid feed counterpart. - Abstract: In this paper, a prototype of methanol microfluidic fuel cell with vapor feed anode configuration is proposed to improve the fuel and energy efficiency of the conventional liquid feed methanol microfluidic fuel cells. Peak power density of 55.4 mW cm −2 can be achieved with this prototype under room temperature, which is 30% higher than its conventional liquid feed counterpart. Moreover, an energy efficiency of 9.4% is achieved, which is 27.5 times higher than its liquid feed counterpart. This superiority on both cell performance and energy efficiency is directly benefitted from its vapor feed anode configuration, which alleviates the fuel crossover, eliminates the fuel depletion boundary layer, and avoids the bulk anolyte wastage. The tradeoff between cell performance and fuel utilization for conventional liquid feed microfluidic fuel cells is also evaded

  4. Automotive fuel efficiency

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1992-01-01

    For at least the remainder of this century, the United States faces a growing dependence on imported oil. Costs are substantial, and they will mount. In June 1992, net imports provided nearly 50% of supplies, and their cost was $4.3 billion. Cost of net imports of motor vehicles and parts amounted to $3.0 billion. The two items combined totaled more than the negative trade balance of $6.6 billion. The light-duty highway fleet alone accounted for 38.2% of U.S. oil consumption in 1988. Correspondingly, the fleet was a substantial emitter of air pollutants - NO x , CO, and nonmethane hydrocarbons. In addition, it was a major source of CO 2 . The twin problems of oil imports and pollution would be ameliorated if the fuel economy if cars and trucks could be improved and their emissions were also reduced. In principle, the mileage of US automobiles could be substantially improved. But on purchasing a car, U.S. buyers rank fuel efficiency eight when making their choice. They are attracted to options that lower mileage. Consumers also tend to prefer large cars over small ones for reasons of safety. Increasingly, buyers are purchasing light trucks and vans that have inferior fuel efficiency. As a result of the above trends, the average mileage of the US automotive fleet has been diminishing. As long as fuel is available at comparatively low prices and there is no federal requirement for better mileage, improvement is unlikely. Moreover, even if improvements were mandated, change would be slow

  5. Fuel-Efficient Road Vehicle Non-Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The need to address global energy issues, i.e. energy security and climate change, is more urgent than ever. Road vehicles dominate global oil consumption and are one of the fastest growing energy end-uses. This paper studies policies and measures to improve on-road fuel efficiency of vehicles by focusing on energy efficiency of automobile components not generally considered in official fuel efficiency test, namely tyres, cooling technologies and lightings. In this paper, current policies and industry activities on these components are reviewed, fuel saving potential by the components analysed and possible policies to realise the potential recommended.

  6. Modelling the effects of transport policy levers on fuel efficiency and national fuel consumption

    International Nuclear Information System (INIS)

    Kirby, H.R.; Hutton, B.; McQuaid, R.W.; Napier Univ., Edinburgh; Raeside, R.; Napier Univ., Edinburgh; Zhang, Xiayoan; Napier Univ., Edinburgh

    2000-01-01

    The paper provides an overview of the main features of a Vehicle Market Model (VMM) which estimates changes to vehicle stock/kilometrage, fuel consumed and CO 2 emitted. It is disaggregated into four basic vehicle types. The model includes: the trends in fuel consumption of new cars, including the role of fuel price: a sub-model to estimate the fuel consumption of vehicles on roads characterised by user-defined driving cycle regimes; procedures that reflect distribution of traffic across different area/road types; and the ability to vary the speed (or driving cycle) from one year to another, or as a result of traffic growth. The most significant variable influencing fuel consumption of vehicles was consumption in the previous year, followed by dummy variables related to engine size. the time trend (a proxy for technological improvements), and then fuel price. Indeed the effect of fuel price on car fuel efficiency was observed to be insignificant (at the 95% level) in two of the three versions of the model, and the size of fuel price term was also the smallest. This suggests that the effectiveness of using fuel prices as a direct policy tool to reduce fuel consumption may he limited. Fuel prices may have significant indirect impacts (such as influencing people to purchase more fuel efficient cars and vehicle manufacturers to invest in developing fuel efficient technology) as may other factors such as the threat of legislation. (Author)

  7. Fuel cell research: Towards efficient energy

    CSIR Research Space (South Africa)

    Rohwer, MB

    2008-11-01

    Full Text Available fuel cells by optimising the loading of catalyst (being expensive noble metals) and ionomer; 2) Improving conventional acidic direct alcohol fuel cells by developing more efficient catalysts and by investigating other fuels than methanol; 3... these components add significantly to the overall cost of a PEMFC. 1 We focused our research activities on: 1) The effect of the loading of catalytic ink on cell performance; 2) The effect of the ionomer content in the catalytic ink; 3) Testing...

  8. 75 FR 15893 - Tire Fuel Efficiency Consumer Information Program

    Science.gov (United States)

    2010-03-30

    ... how much the proposed consumer information program would affect consumer tire purchasing behavior and... 575 Tire Fuel Efficiency Consumer Information Program; Final Rule #0;#0;Federal Register / Vol. 75, No... 2127-AK45 Tire Fuel Efficiency Consumer Information Program AGENCY: National Highway Traffic Safety...

  9. 41 CFR 109-40.303-3 - Most fuel efficient carrier/mode.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Most fuel efficient...-3 Most fuel efficient carrier/mode. When more than one mode, or more than one carrier within a mode... cost, the carrier/mode determined to be the most fuel efficient will be selected. In determining the...

  10. Autonomy-Enabled Fuel Savings for Military Vehicles: Report on 2016 Aberdeen Test Center Testing

    Energy Technology Data Exchange (ETDEWEB)

    Ragatz, Adam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Prohaska, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gonder, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-26

    Fuel savings have never been the primary focus for autonomy-enabled military vehicles. However, studies have estimated that autonomy in passenger and commercial vehicles could improve fuel economy by as much as 22%-33% over various drive cycles. If even a fraction of this saving could be realized in military vehicles, significant cost savings could be realized each year through reduced fuel transport missions, reduced fuel purchases, less maintenance, fewer required personnel, and increased vehicle range. Researchers from the National Renewable Energy Laboratory installed advanced data logging equipment and instrumentation on two autonomy-enabled convoy vehicles configured with Lockheed Martin's Autonomous Mobility Applique System to determine system performance and improve on the overall vehicle control strategies of the vehicles. Initial test results from testing conducted at the U.S. Army Aberdeen Test Center at the Aberdeen Proving Grounds are included in this report. Lessons learned from in-use testing and performance results have been provided to the project partners for continued system refinement.

  11. On the efficiency of an advanced automotive fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Freunberger, S.A.; Reum, M.; Tsukada, A.; Dietrich, P. [Paul Scherrer Institut, Electrochemistry Laboratory, CH-5232 Villigen PSI (Switzerland); Paganelli, G.; Delfino, A. [Conception et Developpement Michelin, Route Andre-Piller 30, CH-1762 Givisiez (Switzerland)

    2007-04-15

    Efficiency is the key parameter for the application of fuel cells in automotive applications. The efficiency of a hydrogen/oxygen polymer electrolyte fuel cell system is analyzed and compared to hydrogen/air systems. The analysis is performed for the tank to electric power chain. Furthermore, the additional energy required for using pure oxygen as a second fuel is analyzed and included in the calculation. The results show that if hydrogen is produced from primary fossil energy carriers, such as natural gas and pure oxygen needs to be obtained by a conventional process; the fuel to electric current efficiency is comparable for hydrogen/oxygen and hydrogen/air systems. However, if hydrogen and oxygen are produced by the splitting of water, i.e., by electrolysis or by a thermochemical process, the fuel to electric current efficiency for the hydrogen/oxygen system is clearly superior. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Hydrogen utilization efficiency in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Metkemeyer, R; Achard, P; Rouveyre, L; Picot, D [Ecole des Mines de Paris, Centre D' energrtique, Sophia Antipolis (France)

    1998-07-01

    In this paper, we present the work carried out within the framework of the FEVER project (Fuel cell Electric Vehicle for Efficiency and Range), an European project coordinated by Renault, joining Ecole des Mines de Paris, Ansaldo, De Nora, Air Liquide and Volvo. For the FEVER project, where an electrical air compressor is used for oxidant supply, there is no need for hydrogen spill over, meaning that the hydrogen stoichiometry has to be as close to one as possible. To determine the optimum hydrogen utilization efficiency for a 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) fed with pure hydrogen, a 4 kW prototype fuel cell was tested with and without a hydrogen recirculator at the test facility of Ecole des Mines de Paris. Nitrogen cross over from the cathodic compartment to the anodic compartment limits the hydrogen utilization of the fuel cell without recirculator to 97.4 % whereas 100% is feasible when a recirculator is used. 5 refs.

  13. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  14. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  15. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  16. Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement

    International Nuclear Information System (INIS)

    Kempf, Nicholas; Zhang, Yanliang

    2016-01-01

    Highlights: • A three-dimensional automotive thermoelectric generator (TEG) model is developed. • Heat exchanger design and TEG configuration are optimized for maximum fuel efficiency increase. • Heat exchanger conductivity has a strong influence on maximum fuel efficiency increase. • TEG aspect ratio and fin height increase with heat exchanger thermal conductivity. • A 2.5% fuel efficiency increase is attainable with nanostructured half-Heusler modules. - Abstract: Automotive fuel efficiency can be increased by thermoelectric power generation using exhaust waste heat. A high-temperature thermoelectric generator (TEG) that converts engine exhaust waste heat into electricity is simulated based on a light-duty passenger vehicle with a 4-cylinder gasoline engine. Strategies to optimize TEG configuration and heat exchanger design for maximum fuel efficiency improvement are provided. Through comparison of stainless steel and silicon carbide heat exchangers, it is found that both the optimal TEG design and the maximum fuel efficiency increase are highly dependent on the thermal conductivity of the heat exchanger material. Significantly higher fuel efficiency increase can be obtained using silicon carbide heat exchangers at taller fins and a longer TEG along the exhaust flow direction when compared to stainless steel heat exchangers. Accounting for major parasitic losses, a maximum fuel efficiency increase of 2.5% is achievable using newly developed nanostructured bulk half-Heusler thermoelectric modules.

  17. Efficiency of poly-generating high temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Brown, Tim; Brouwer, Jacob; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2011-02-15

    High temperature fuel cells can be designed and operated to poly-generate electricity, heat, and useful chemicals (e.g., hydrogen) in a variety of configurations. The highly integrated and synergistic nature of poly-generating high temperature fuel cells, however, precludes a simple definition of efficiency for analysis and comparison of performance to traditional methods. There is a need to develop and define a methodology to calculate each of the co-product efficiencies that is useful for comparative analyses. Methodologies for calculating poly-generation efficiencies are defined and discussed. The methodologies are applied to analysis of a Hydrogen Energy Station (H{sub 2}ES) showing that high conversion efficiency can be achieved for poly-generation of electricity and hydrogen. (author)

  18. Fuel efficient stoves for the poorest two billion

    Science.gov (United States)

    Gadgil, Ashok

    2012-03-01

    About 2 billion people cook their daily meals on generally inefficient, polluting, biomass cookstoves. The fuels include twigs and leaves, agricultural waste, animal dung, firewood, and charcoal. Exposure to resulting smoke leads to acute respiratory illness, and cancers, particularly among women cooks, and their infant children near them. Resulting annual mortality estimate is almost 2 million deaths, higher than that from malaria or tuberculosis. There is a large diversity of cooking methods (baking, boiling, long simmers, brazing and roasting), and a diversity of pot shapes and sizes in which the cooking is undertaken. Fuel-efficiency and emissions depend on the tending of the fire (and thermal power), type of fuel, stove characteristics, and fit of the pot to the stove. Thus, no one perfect fuel-efficient low-emitting stove can suit all users. Affordability imposes a further severe constraint on the stove design. For various economic strata within the users, a variety of stove designs may be appropriate and affordable. In some regions, biomass is harvested non-renewably for cooking fuel. There is also increasing evidence that black carbon emitted from stoves is a significant contributor to atmospheric forcing. Thus improved biomass stoves can also help mitigate global climate change. The speaker will describe specific work undertaken to design, develop, test, and disseminate affordable fuel-efficient stoves for internally displaced persons (IDPs) of Darfur, Sudan, where the IDPs face hardship, humiliation, hunger, and risk of sexual assault owing to their dependence on local biomass for cooking their meals.

  19. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  20. Semiconductors enable efficient solutions in electric vehicles; Halbleiter ermoeglichen effiziente Loesungen in Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Adlkofer, Hans [Infineon Technologies AG, Muenchen (Germany)

    2010-07-01

    The automotive industry currently enters a new phase of the competition. The successful addressing of vehicles with electric motors is in the focus of he competition. Electric vehicles which save the electrical energy in batteries may not replace immediately all fuel-powered vehicles in the given transport infrastructure. The semiconductor industry needs to provide solutions and technologies in order to increase the efficiency of electric vehicles and further to reduce the operating costs. Thus, the author of the contribution under consideration reports on possible ways to this target using a battery balancing system considering the amortization of such a system. The presented active battery cell management system may monitor the charging and discharging of the battery by means of a software monitor so that an energy recovery system is supported optimally. It ensures a reliable operation, prevents accidental premature battery failure and enables cost savings of about 10 % for the whole set of batteries.

  1. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ermanoski, I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. In this paper, the material and energy requirements in two-step solar-thermochemical cycles are considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  2. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Xia, Lichao; Alvarado, Catalina; Kilduff, James E; Keating, John J; Belfort, Georges; Gadhamshetty, Venkataramana

    2017-06-15

    Municipal wastewater is an attractive alternative to freshwater sources to meet the cooling water needs of thermal power plants. Here we offer an energy-efficient integrated microbial fuel cell (MFC)/ultrafiltration (UF) process to purify primary clarifier effluent from a municipal wastewater treatment plant for use as cooling water. The microbial fuel cell was shown to significantly reduce chemical oxygen demand (COD) in the primary settled wastewater effluent upstream of the UF module, while eliminating the energy demand required to deliver dissolved oxygen in conventional aerobic treatment. We investigated surface modification of the UF membranes to control fouling. Two promising hydrophilic monomers were identified in a high-throughput search: zwitterion (2-(Methacryloyloxy)-ethyl-dimethyl-(3-sulfopropyl ammoniumhydroxide, abbreviated BET SO 3 - ), and amine (2-(Methacryloyloxy) ethyl trimethylammonium chloride, abbreviated N(CH 3 ) 3 + ). Monomers were grafted using UV-induced polymerization on commercial poly (ether sulfone) membranes. Filtration of MFC effluent by membranes modified with BET SO 3 - and N(CH 3 ) 3 + exhibited a lower rate of resistance increase and lower energy consumption than the commercially available membrane. The MFC/UF process produced high quality cooling water that meets the Electrical Power Research Institute (EPRI) recommendations for COD, a suite of metals (Fe, Al, Cu, Zn, Si, Mn, S, Ca and Mg), and offered extremely low corrosion rates (<0.05 mm/yr). A series of AC and DC diagnostic tests were used to evaluate the MFC performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interdependencies between transport fuel demand, efficiency and quality: An application to Austria

    International Nuclear Information System (INIS)

    Goerlich, Roland; Wirl, Franz

    2012-01-01

    This paper focuses on the interdependencies between technical efficiencies and energy demand which are often either treated in isolation or do not get the sufficient attention in the literature. More precisely, this paper uses technical efficiencies as one crucial determinant of energy demand in order to integrate at least two issues that are usually investigated separately from each other: the rebound effect resulting from improved technical efficiencies and the asymmetry of energy demand. In this regard, our paper sets out a theoretical framework which has the following implications: higher efficiency increases service demand (first order rebound), low fuel prices and higher efficiency increases the demand for quality (second order) which in turn increases service demand further (third order); ceteris paribus, energy price shocks should increase scrapping rates; fuel prices direct the R and D expenditures of car producers; those on engine efficiency are irreversible, which has the consequence that energy price elasticities depend on the history of energy prices rather than being asymmetrical. Derived implications are subsequently tested on Austrian data. In particular, the purchasing decision diesel versus gasoline powered cars allows to refute the myth that consumers apply high implicit rates for discounting the future benefit from efficient cars. - Research Highlights: ►Dependencies between efficiency, fuel price, quality and fuel demand are modelled. ►Austrian data supports model implications for the defined rounds of rebounds. ►R and D efforts are directed by fuel prices surpassing a threshold on large markets. ►Consumers apply low implicit discount rates for future benefits from efficient cars. ►Effects of policy instruments (fuel efficiency standard, taxes, etc.) are discussed.

  4. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  5. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  6. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  7. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  8. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoberg, Carl Magnus Goran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vuilleumier, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. A fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.

  9. High Efficiency Advanced Lightweight Fuel Cell (HEAL-FC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Infinity's High Efficiency Advanced Lightweight Fuel Cell (HEAL FC) is an improved version of its current fuel cell technology developed for space applications. The...

  10. Strategic research roadmap on ICT-enabled energy efficiency in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, A.S., Email: sami.kazi@vtt.fi

    2012-06-15

    The REEB Project (The European strategic research Roadmap to ICT-enabled Energy- Efficiency in Buildings and construction projects) was a Coordination Action project funded under the European Commission's Seventh Framework Programme. Its main purpose was to provide a strategic research roadmap on information and communications technology (ICT) support for energy efficiency in the built environment and a collection of implementation actions supporting the realisation of the roadmap. (orig.)

  11. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China

    International Nuclear Information System (INIS)

    Dai Du; Hu Zhiyuan; Pu Gengqiang; Li He; Wang Chengtao

    2006-01-01

    The Guangxi Zhuang autonomous region has plentiful cassava resources, which is an ideal feedstock for fuel ethanol production. The Guangxi government intends to promote cassava fuel ethanol as a substitute for gasoline. The purpose of this study was to quantify the energy efficiency and potentials of a cassava fuel ethanol project in the Guangxi region based on a 100 thousand ton fuel ethanol demonstration plant at Qinzhou of Guangxi. The net energy value (NEV) and net renewable energy value (NREV) are presented to assess the energy and renewable energy efficiency of the cassava fuel ethanol system during its life cycle. The cassava fuel ethanol system was divided into five subsystems including the cassava plantation/treatment, ethanol conversion, denaturing, refueling and transportation. All the energy and energy related materials inputs to each subsystem were estimated at the primary energy level. The total energy inputs were allocated between the fuel ethanol and its coproducts with market value and replacement value methods. Available lands for a cassava plantation were investigated and estimated. The results showed that the cassava fuel ethanol system was energy and renewable energy efficient as indicated by positive NEV and NREV values that were 7.475 MJ/L and 7.881 MJ/L, respectively. Cassava fuel ethanol production helps to convert the non-liquid fuel into fuel ethanol that can be used for transportation. Through fuel ethanol production, one Joule of petroleum fuel, plus other forms of energy inputs such as coal, can produce 9.8 J of fuel ethanol. Cassava fuel ethanol can substitute for gasoline and reduce oil imports. With the cassava output in 2003, it can substitute for 166.107 million liters of gasoline. With the cassava output potential, it can substitute for 618.162 million liters of gasoline. Cassava fuel ethanol is more energy efficient than gasoline, diesel fuel and corn fuel ethanol but less efficient than biodiesel

  12. Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Choi, Pyoungho; Smith, Franklyn; Bokerman, Gary [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2010-02-15

    In view of impending depletion of hydrocarbon fuel resources and their negative environmental impact, it is imperative to significantly increase the energy conversion efficiency of hydrocarbon-based power generation systems. The combination of a hydrocarbon decomposition reactor with a direct carbon and hydrogen fuel cells (FC) as a means for a significant increase in chemical-to-electrical energy conversion efficiency is discussed in this paper. The data on development and operation of a thermocatalytic hydrocarbon decomposition reactor and its coupling with a proton exchange membrane FC are presented. The analysis of the integrated power generating system including a hydrocarbon decomposition reactor, direct carbon and hydrogen FC using natural gas and propane as fuels is conducted. It was estimated that overall chemical-to-electrical energy conversion efficiency of the integrated system varied in the range of 49.4-82.5%, depending on the type of fuel and FC used, and CO{sub 2} emission per kW{sub el}h produced is less than half of that from conventional power generation sources. (author)

  13. Emf, maximum power and efficiency of fuel cells

    International Nuclear Information System (INIS)

    Gaggioli, R.A.; Dunbar, W.R.

    1990-01-01

    This paper discusses the ideal voltage of steady-flow fuel cells usually expressed by Emf = -ΔG/nF where ΔG is the Gibbs free energy of reaction for the oxidation of the fuel at the supposed temperature of operation of the cell. Furthermore, the ideal power of the cell is expressed as the product of the fuel flow rate with this emf, and the efficiency of a real fuel cell, sometimes called the Gibbs efficiency, is defined as the ratio of the actual power output to this ideal power. Such viewpoints are flawed in several respects. While it is true that if a cell operates isothermally the maximum conceivable work output is equal to the difference between the Gibbs free energy of the incoming reactants and that of the leaving products, nevertheless, even if the cell operates isothermally, the use of the conventional ΔG of reaction assumes that the products of reaction leave separately from one another (and from any unused fuel), and when ΔS of reaction is positive it assumes that a free heat source exists at the operating temperature, whereas if ΔS is negative it neglects the potential power which theoretically could be obtained form the heat released during oxidation. Moreover, the usual cell does not operate isothermally but (virtually) adiabatically

  14. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  15. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  16. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach.

    Science.gov (United States)

    Grey, Charlotte N B; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina; Poortinga, Wouter

    2017-08-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes.

  17. Alternative Practices to Improve Surface Fleet Fuel Efficiency

    Science.gov (United States)

    2014-09-01

    through changes in procedures and operational modifications. iENCON uses BBLs/hr (barrels per hour) to evaluate the change in fuel efficiency (Pehlivan...policies and procedures that can be changed to continue the Navy’s efforts in the reduction of fuel consumption. Chapter III addresses drift...and four main engines. In a “full power” lineup all four engines are online. In a “split plant” lineup two engines remain online, one per shaft

  18. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao, E-mail: jiangh@ornl.gov; Wang, Jy-An John; Wang, Hong

    2016-12-01

    Highlights: • To investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on its dynamic performance. • Flexural rigidity, EI = M/κ, estimated from FEA results were benchmarked with SNF dynamic experimental results, and used to evaluate interface bonding efficiency. • Interface bonding efficiency can significantly dictate the SNF system rigidity and the associated dynamic performance. • With consideration of interface bonding efficiency and fuel cracking, HBU SNF fuel property was estimated with SNF static and dynamic experimental data. - Abstract: Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets to the clad, which results in a reduction in composite rod system flexural rigidity. Therefore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.

  19. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  20. Fuel demand and fuel efficiency in the US commercial-airline industry and the trucking industry: an analysis of trends and implications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-31

    A study of trends in fuel use and efficiency in the US commercial airlines industry is extended back to 1967 in order to compare the relative contributions of the factors influencing efficiency during a period of stable fuel prices (1967 to 1972) versus a period of fuel price growth (1973 to 1980). A similar analysis disaggregates the components of truck efficiency and evaluates their relative impact on fuel consumption in the trucking industry. (LEW)

  1. Review of International Policies for Vehicle Fuel Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This paper reviews past and current voluntary and regulatory fuel efficiency programs and then assesses the effectiveness of these policies from the viewpoints of enforcement, standard design, standard stringency and standard related policies.

  2. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  3. Enabling alternate fuels for commercial aircraft

    OpenAIRE

    Daggett, D.

    2010-01-01

    The following reports on the past four years of work to examine the feasibility, sustainability and economic viability of developing a renewable, greenhouse-gas-neutral, liquid biofuel for commercial aircraft. The sharp increase in environmental concerns, such as global warming, as well as the volatile price fluctuations of fossil fuels, has ignited a search for alternative transportation fuels. However, commercial aircraft can not use present alternative fuels that are designed for ground...

  4. Fuel Efficiency in AWD-system

    OpenAIRE

    Fredriksson, Robert; Trkulja, Milovan

    2008-01-01

    This degree project has been made in cooperation with engineers working for GM Engineering/Saab Automobile AB in Trollhättan. The given name by Saab for the project is “Fuel efficiency improvements in All Wheel Drive(AWD)-system”. The main tasks of this thesis work were to investigate the size of the power losses in different parts on the propeller shaft, to design a computer program that calculates coordinates and angles on a propeller shaft and to investigate the possibilities to put togeth...

  5. Possibility to Increase Biofuels Energy Efficiency used for Compression Ignition Engines Fueling

    Directory of Open Access Journals (Sweden)

    Calin D. Iclodean

    2014-02-01

    Full Text Available The paper presents the possibilities of optimizing the use of biofuels in terms of energy efficiency in compression ignition (CI engines fueling. Based on the experimental results was determinate the law of variation of the rate of heat released by the combustion process for diesel fuel and different blends of biodiesel. Using this law, were changed parameters of the engine management system (fuel injection law and was obtain increased engine performance (in terms of energy efficiency for use of different biofuel blends.

  6. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  7. Residential carbon dioxide emissions in Canada. Impact of efficiency improvements and fuel substitution

    International Nuclear Information System (INIS)

    Ugursal, V.I.; FUng, A.S.

    1998-01-01

    The effect of improving house envelope, heating system and appliance efficiencies, and fuel substitution on the atmospheric emissions of carbon dioxide in the Canadian residential sector is studied based on simulation studies. The findings clearly indicate that improving appliance efficiency reduces the overall end-use energy consumption in the residential sector as well as the associated carbon dioxide emissions. However, the magnitude of the reduction in carbon dioxide emissions as a result of improving only appliance efficiencies is quite small. Significantly larger reductions can be obtained by improving house envelopes and heating/cooling systems in addition to improving appliance efficiencies. Fuel substitution for space and domestic hot water heating can also present a potential to reduce carbon dioxide emissions depending on the fuel substitution scenario adopted. (author)

  8. Energy analysis of an original steering technology that saves fuel and boosts efficiency

    International Nuclear Information System (INIS)

    Daher, Naseem; Ivantysynova, Monika

    2014-01-01

    Highlights: • A novel energy-saving steer-by-wire technology is introduced, dubbed “DC SbW”. • A prototype vehicle is retrofitted with “DC SbW” and tested for overall efficiency. • Energy analysis is conducted to compare “DC SbW” against state-of-the-art. • “DC SbW” achieves more work while consuming less fuel → higher efficiency. - Abstract: Stemmed by ever-increasing demand on fossil fuels and increased environmental awareness to reduce carbon emissions, improving the efficiency of components and systems has been receiving paramount attention in most industries during the past few years. This is especially true in the mobile machinery industry, which produces high power equipment with relatively low energy efficiency for the most part. Mobile machines strictly employ fluid power systems owing to the superlative power density of hydraulic components. Nevertheless, no major breakthrough technologies to significantly boost the efficiency of fluid power systems have emerged, except for the recent development of a throttle-less actuation technology, known as pump displacement control (DC), which has been proven to be an energy efficient alternative and a serious contender to state-of-the-art technologies. This paper deals with analyzing the energy efficiency of a DC steering system versus a more conventional valve controlled counterpart, which conveys how effectively the two systems convert the chemical energy stored in the diesel fuel into useful mechanical energy. Experimental testing on a prototype test vehicle showed that DC steering results in 14.5% fuel savings, 22.6% productivity gain, and a grand total of 43.5% fuel usage efficiency increase

  9. Thermodynamic comparison and efficiency enhancement mechanism of coal to alternative fuel systems

    International Nuclear Information System (INIS)

    Ji, Xiaozhou; Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Energy and exergy analysis are presented to three coal-to-alternative-fuels systems. • Internal reasons for performance differences for different systems are disclosed. • The temperature and heat release of synthesis reactions are key to plant efficiency. • The distillation unit and purge gas recovery are important to efficiency enhancement. - Abstract: Coal to alternative fuels is an important path to enforce energy security and to provide clean energy. In this paper, we use exergy analysis and energy utilization diagram (EUD) methods to disclose the internal reasons for performance differences in typical coal to alternative fuel processes. ASPEN plus software is used to simulate the coal-based energy systems, and the simulation results are verified with engineering data. Results show that coal to substitute natural gas (SNG) process has a higher exergy efficiency of 56.56%, while the exergy efficiency of traditional coal to methanol process is 48.65%. It is indicated that three key factors impact the performance enhancement of coal to alternative fuel process: (1) whether the fuel is distillated, (2) the synthesis temperature and the amount of heat release from reactions, and (3) whether the chemical purge gases from synthesis and distillation units are recovered. Distillation unit is not recommended and synthesis at high temperature and with large heat release is preferable for coal to alternative fuel systems. Gasification is identified as the main source of exergy destruction, and thereby how to decrease its destruction is the key direction of plant efficiency improvement in the future. Also, decreasing the power consumption in air separation unit by seeking for advanced technologies, i.e. membrane, or using another kind of oxidant is another direction to improve plant performance.

  10. C-5M Fuel Efficiency Through MFOQA Data Analysis

    Science.gov (United States)

    2015-03-26

    then contribute to more accurate fuel loading and more efficient fleet fuel usage. Flight Operations Quality Assurance (FOQA) data uses the quick access ...into the ranges in Table 2. Visual Basic ( VBA ) code was written to quickly parse an entire mission (one of the thirty samples) into usable cruise...segments within the Altitude ranges of Table 2. The logic for focusing upon stable cruise flight segments was outlined in Chapter II. The VBA code

  11. Soot Formation and Destruction in High-Pressure Flames with Real Fuels

    Science.gov (United States)

    2013-08-18

    Temperature and Oxygen Concentration on Diesel Spray Combustion Using a Single- Nozzle Injector in a Constant Volume Combustion Chamber, Combustion...enable the design of more efficient diesel engines. Higher efficiency will help reduce the logistical demand transportation fuels place on the entire...understanding of the soot formation processes at elevated pressure (e.g., 30 atm) will enable the design of more efficient diesel engines. Higher

  12. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  13. Efficient characterization of fuel depletion in boiling water reactor

    International Nuclear Information System (INIS)

    Kim, S.H.

    1980-01-01

    An efficient fuel depletion method for boiling water reactor (BWR) fuel assemblies has been developed for fuel cycle analysis. A computer program HISTORY based on this method was designed to carry out accurate and rapid fuel burnup calculation for the fuel assembly. It has been usefully employed to study the depletion characteristics of the fuel assemblies for the preparation of nodal code input data and the fuel management study. The adequacy and the effectiveness of the assessment of this method used in HISTORY were demonstrated by comparing HISTORY results with more detailed CASMO results. The computing cost of HISTORY typically has been less than one dollar for the fuel assembly-level depletion calculations over the full life of the assembly, in contrast to more than $1000 for CASMO. By combining CASMO and HISTORY, a large number of expensive CASMO calculations can be replaced by inexpensive HISTORY. For the depletion calculations via CASMO/HISTORY, CASMO calculations are required only for the reference conditions and just at the beginning of life for other cases such as changes in void fraction, control rod condition and temperature. The simple and inexpensive HISTORY is sufficienty accurate and fast to be used in conjunction with CASMO for fuel cycle analysis and some BWR design calculations

  14. Fuel-efficient driveline systems; Kraftstoffsparende Antriebssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, J. [ZF Getriebe GmbH, Kressbronn (Germany); Vahlensieck, B.; Mohr, M.; Casals, P. [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2009-07-01

    Passenger car automatic transmissions in transducer planet construction and double clutch construction developed to an important differentiation characteristic for the manufacturers of vehicles. While for the 1950ies traditionally over 90 % of customers in the U.S.A. and Japan prefer the automatic transmission, still recently, in the European market the automatic transmission almost exclusively were reserved to the premium automobiles with 6-cylinder engines, 8 cylinder engines and 12 cylinder engines. On the one hand, this was due to the high additional costs for the special equipment 'automatic transmission'. On the other hand, this also was due to the image of this kind of gear construction which was said to be very comfortably, above all using great amount of fuel and unsportsmanlike. This fundamentally changed with the introduction of automatic transmissions with up to eight gears and high translation spreading as well as with the extremely sporty double clutch transmissions. By means of optimized starting elements, intelligent arrangement of the wheel sets and efficiently working electro hydraulic controls, engineers succeeded in placing transmissions which differ both in cycle consumption and in real consumption only marginally from a manual transmission. With consideration of the immensely increasing fuel costs it is to be considered that on the basis of these automatic transmissions micro hybrid designs, mild hybrid designs and full hybrid designs as so-called parallel hybrid systems are introduced into the powertrain in a great extent. Thereby, the range of function is reaches from the asynchronous operation system with micro hybrid system over recuperation and boosting with mild hybrid system till to electrical driving with a full hybrid system. The contribution under consideration shows the influence of the individual systems on the fuel consumption on the basis of the transmission system portfolio and the hybrid system portfolio of ZF

  15. Fuel poverty and energy efficiency obligations – A critical assessment of the supplier obligation in the UK

    International Nuclear Information System (INIS)

    Rosenow, Jan; Platt, Reg; Flanagan, Brooke

    2013-01-01

    Energy efficiency obligations (or white certificates) are increasingly used to reduce carbon emissions. While the energy efficiency obligations were originally intended as carbon reduction and not fuel poverty policies, due to recognition of the potential for regressive outcomes they often include provisions for vulnerable and low-income customers. Intuitively, reducing carbon emissions and alleviating fuel poverty seem to be two sides of the same coin. There are, however, considerable tensions between the two when addressed through energy efficiency obligations, particularly arising from the potentially regressive impacts of rising energy prices resulting from such obligations, but also the complexity of targeting fuel poor households and the implications for deliverability. Despite those tensions, the UK government decided to use energy efficiency obligations, the supplier obligation, as the main policy for reducing fuel poverty. In light of the proposals, this paper provides an analysis of the main tensions between carbon reduction and fuel poverty alleviation within energy efficiency obligations, outlines the fuel poverty provisions of the British Supplier Obligation, assesses its rules for identifying the fuel poor, and provides a critical analysis of the planned policy changes. Based on this analysis, alternative approaches to targeting fuel poverty within future supplier obligations are proposed. - Highlights: • First comprehensive analysis of energy savings obligations and fuel poverty. • Systematic comparison of targeting efficiency of fuel poverty programmes. • Critical analysis of fuel poverty provisions in British supplier obligations. • Proposal of a new approach to targeting fuel poverty within energy savings obligations

  16. Trends in energy use and fuel efficiency in the US commercial airline industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.B.

    1981-12-01

    The record of the US commercial airline industry in improving fuel efficiency from 1973 to 1980 is examined. The components of the efficiency changes and how much fuel they saved are identified. The analysis focused only on the transportion of passengers, excluding helicopter service, commuter service, and flights devoted solely to transporting cargo. (MHR)

  17. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review

    Science.gov (United States)

    Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G.

    2013-01-01

    Background: Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. Objectives: We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. Methods: We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as “factors” relating to one of seven domains—fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms—and also recorded issues that impacted equity. Results: We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Conclusions: Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness. Citation: Rehfuess EA, Puzzolo E, Stanistreet D, Pope D, Bruce

  18. Fuel efficient stoves for the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Watts, P [Intermediate Technology Group Ltd., Rugby (GB)

    1990-12-01

    In developing countries particularly in rural areas, the majority of households depend on biomass fuels such as wood, charcoal, or animal dung for their cooking and heating needs. Formerly free, these materials are acquiring a monetary value and improved combustion efficiency leads to better utilisation as well as reduced pollution. This article describes the latest development in this field. (author).

  19. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2009-05-15

    The addition of a fast auxiliary power source like a supercapacitor bank in fuel cell-based vehicles has a great potential because permits a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. The Energy Management Strategies, commanding the power split between the power sources in the hybrid arrangement to fulfil the power requirement, perform a fundamental role to achieve this objective. In this work, three strategies based on the knowledge of the fuel cell efficiency map are proposed. These strategies are attractive due to the relative simplicity of the real time implementation and the good performance. The strategies are tested both in a simulation environment and in an experimental setup using a 1.2-kW PEM fuel cell. The results, in terms of hydrogen consumption, are compared with an optimal case, which is assessed trough an advantageous technique also introduced in this work and with a pure fuel cell vehicle as well. This comparative reveals high efficiency and good performance, allowing to save up to 26% of hydrogen in urban scenarios. (author)

  20. Fixing Detroit: how far, how fast, how fuel-efficient

    OpenAIRE

    Kleinbaum, Rob; McManus, Walter

    2009-01-01

    The Automotive Industry Crisis of 2009 is the worst the industry has ever experienced. This paper helps resolve the debate on how much and fast it should change and how it should it respond to demands for increased fuel efficiency. Looking at the actions of successful corporate turnarounds, the lessons are very clear: implement broad, deep, fast change, replace the management team, and transform the culture. We modeled the impacts of different fuel economy standards on profitability and sales...

  1. Efficiency versus cost of alternative fuels from renewable resources: outlining decision parameters

    International Nuclear Information System (INIS)

    Kaul, Sanjay; Edinger, Raphael

    2004-01-01

    In the discussion of traditional versus renewable energies and alternatives to conventional crude oil-based fuels in the transportation sector, efficiency calculations are but one decision making parameter. Comparing the assets and liabilities of fossil-based and renewable fuels in the transportation sector, further aspects such as centralized versus decentralized technologies, cost evaluations, taxation, and ecological/social benefits have to be taken into account. This paper outlines the driving parameters for shifting toward alternative fuels based on fossil or renewable resources and their use in innovative vehicle technologies such as advanced internal combustion and fuel cell electric drive systems. For the decision in favor or against an alternative fuel to be introduced to the mass market, automotive technologies and the energy supply system have to be examined in an integrated way. From an economic and technological perspective, some fuels may be even incompatible with the trend toward using renewable resources that have advantages in decentralized systems. Beyond efficiency calculations, political and industrial interests arise and may be influential to reshaping our currently crude oil-based mobility sector

  2. An efficient mathematical model for air-breathing PEM fuel cells

    International Nuclear Information System (INIS)

    Ismail, M.S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.

    2014-01-01

    Graphical abstract: The effects of the ambient humidity on the performance of air-breathing PEM fuel cells become more pronounced as the ambient temperature increases. The polarisation curves have been generated using the in-house developed MATLAB® application, Polarisation Curve Generator, which is available in the supplementary data. - Highlights: • An efficient mathematical model has been developed for an air-breathing PEM fuel cell. • The fuel cell performance is significantly over-predicted if the Joule and entropic heats are neglected. • The fuel cell performance is highly sensitive to the state of water at the thermodynamic equilibrium. • The cell potential dictates the favourable ambient conditions for the fuel cell. - Abstract: A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to

  3. To Estimation of Efficient Usage of Organic Fuel in the Cycle of Steam Power Installations

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available Tendencies of power engineering development in the world were shown in this article. There were carried out the thermodynamic Analysis of efficient usage of different types of fuel. This article shows the obtained result, which reflects that low-calorie fuel (from the point of thermodynamics is more efficient to use at steam power stations then high-energy fuel.

  4. Improving Energy Efficiency and Enabling Water Recycle in Biorefineries Using Bioelectrochemical Cells

    International Nuclear Information System (INIS)

    Borole, Abhijeet P.

    2010-01-01

    Improving biofuel yield and water reuse are two important issues in further development of biorefineries. The total energy content of liquid fuels (including ethanol and hydrocarbon) produced from cellulosic biomass via biochemical or hybrid bio-thermochemical routes can vary from 49% to 70% of the biomass entering the biorefinery, on an energy basis. Use of boiler for combustion of residual organics and lignin results in significant energy and water losses. An alternate process to improve energy recovery from the residual organic streams is via use of bioelectrochemical systems such as microbial fuel cells (MFCs) microbial electrolysis cells (MECs). The potential advantages of this alternative scheme in a biorefinery include minimization of heat loss and generation of a higher value product, hydrogen. The need for 5-15 gallons of water per gallon of ethanol can be reduced significantly via recycle of water after MEC treatment. Removal of inhibitory byproducts such as furans, phenolics and acetate in MFC/MECs to generate energy, thus, has dual advantages including improvements in energy efficiency and ability to recycle water. Conversion of the sugar- and lignin- degradation products to hydrogen is synergistic with biorefinery hydrogen requirements for upgrading F-T liquids and other byproducts to high-octane fuels and/or high value products. Some of these products include sorbitol, succinic acid, furan and levulinate derivatives, glycols, polyols, 1,4-butenadiol, phenolics polymers, etc. Potential process alternatives utilizing MECs in biorefineries capable of improving energy efficiency by up to 30% are discussed.

  5. The Fuel Efficiency of Maritime Transport. Potential for improvement and analysis of barriers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M. [CE Delft, Delft (Netherlands); Behrends, B. [Marena Ltd., s.l. (United Kingdom); Lee, D.S. [Manchester Metropolitan University, Machester (United Kingdom)

    2012-02-15

    There is significant potential to improve the fuel efficiency of ships and thus contribute to reducing greenhouse gas emissions from maritime transport. It has long been recognised that this potential is not being fully exploited, owing to the existence of non-market barriers. This report analyses the barriers to implementing fuel efficiency improvements, and concludes that the most important of these are the split incentive between ship owners and operators, a lack of trusted data on new technologies, and transaction costs associated with evaluating measures. As a result, in practice about a quarter of the cost-effective abatement potential is unavailable. There are several ways to overcome these barriers. The split incentive can - to some extent - be overcome by providing more detailed information on the fuel efficiency of vessels, making due allowance for operational profiles. This would allow fuel consumption to be more accurately projected and a larger share of efficiency benefits to accrue to ship owners, thus increasing the return on investment in fuel-saving technologies. This would also require changes to standard charter parties. The credibility of information on new technologies can be improved through intensive collaboration between suppliers of new technologies and shipping companies. In order to overcome risk, government subsidies could provide an incentive. This could have the additional benefit that governments could require publication of results.

  6. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-15

    ... CFR Parts 523, 534, and 535 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for...-2010-0079; FRL-9455-1] RIN 2060-AP61; 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency... Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road...

  7. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how......Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...... the fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes...

  8. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  9. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas

    Science.gov (United States)

    Heinzel, A.; Roes, J.; Brandt, H.

    The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.

  10. An examination of fuel consumption trends in construction projects

    International Nuclear Information System (INIS)

    Peters, Valerie A.; Manley, Dawn K.

    2012-01-01

    Recent estimates of fuel consumption in construction projects are highly variable. Lack of standards for reporting at both the equipment and project levels make it difficult to quantify the magnitude of fuel consumption and the associated opportunities for efficiency improvements in construction projects. In this study, we examined clusters of Environmental Impact Reports for seemingly similar construction projects in California. We observed that construction projects are not characterized consistently by task or equipment. We found wide variations in estimates for fuel use in terms of tasks, equipment, and overall projects, which may be attributed in part to inconsistencies in methodology and parameter ranges. Our analysis suggests that standardizing fuel consumption reporting and estimation methodologies for construction projects would enable quantification of opportunities for efficiency improvements at both the equipment and project levels. With increasing emphasis on reducing fossil fuel consumption, it will be important to quantify opportunities to increase fuel efficiency, including across the construction sector. - Highlights: ► An analysis of construction projects reveals inconsistencies in fuel use estimates. ► Fuel consumption estimates for similar construction equipment can vary greatly. ► Standards would help to quantify efficiency opportunities in construction.

  11. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  12. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    International Nuclear Information System (INIS)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R ampersand D issues

  13. Stratified Charge Rotary Engine Critical Technology Enablement, Volume 1

    Science.gov (United States)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This report summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation, and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems.

  14. Investigation into fuel pin reshuffling options in PWR in-core fuel management for enhancement of efficient use of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn, E-mail: atdaing@khu.ac.kr; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2014-07-01

    Highlights: • This paper discusses an alternative option, fuel pin reshuffling for maximization of cycle energy production. • The prediction results of isotopic compositions of each burnt pin are verified. • The operating performance is analyzed at equilibrium core with fuel pin reshuffling. • The possibility of reuse of spent fuel pins for reduction of fresh fuel assemblies is investigated. - Abstract: An alternative way to enhance efficient use of nuclear fuel is investigated through fuel pin reshuffling options within PWR fuel assembly (FA). In modeling FA with reshuffled pins, as prerequisite, the single pin calculation method is proposed to estimate the isotopic compositions of each pin of burnt FA in the core-wide environment. Subsequently, such estimation has been verified by comparing with the neutronic performance of the reference design. Two scenarios are concerned, i.e., first scenario was targeted on the improvement of the uniform flux spatial distribution and on the enhancement of neutron economy by simply reshuffling the existing fuel pins in once-burnt fuel assemblies, and second one was focused on reduction of fresh fuel loading and discharged fuel assemblies with more economic incentives by reusing some available spent fuel pins still carrying enough reactivity that are mechanically sound ascertained. In scenario-1, the operating time was merely somewhat increased for few minutes when treating eight FAs by keeping enough safety margins. The scenario-2 was proved to reduce four fresh FAs loading without largely losing any targeted parameters from the safety aspect despite loss of 14 effective full power days for operation at reference plant full rated power.

  15. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  16. Clean fuels for resource-poor settings: A systematic review of barriers and enablers to adoption and sustained use.

    Science.gov (United States)

    Puzzolo, Elisa; Pope, Daniel; Stanistreet, Debbi; Rehfuess, Eva A; Bruce, Nigel G

    2016-04-01

    Access to, and sustained adoption of, clean household fuels at scale remains an aspirational goal to achieve sufficient reductions in household air pollution (HAP) in order to impact on the substantial global health burden caused by reliance on solid fuels. To systematically appraise the current evidence base to identify: (i) which factors enable or limit adoption and sustained use of clean fuels (namely liquefied petroleum gas (LPG), biogas, solar cooking and alcohol fuels) in low- and middle-income countries; (ii) lessons learnt concerning equitable scaling-up of programmes of cleaner cooking fuels in relation to poverty, urban-rural settings and gender. A mixed-methods systematic review was conducted using established review methodology and extensive searches of published and grey literature sources. Data extraction and quality appraisal of quantitative, qualitative and case studies meeting inclusion criteria were conducted using standardised methods with reliability checking. Forty-four studies from Africa, Asia and Latin America met the inclusion criteria (17 on biogas, 12 on LPG, 9 on solar, 6 on alcohol fuels). A broad range of inter-related enabling and limiting factors were identified for all four types of intervention, operating across seven pre-specified domains (i.e. fuel and technology characteristics, household and setting characteristics, knowledge and perceptions, financial, tax and subsidy aspects, market development, regulation, legislation and standards, and programme and policy mechanisms) and multiple levels (i.e. household, community, national). All domains matter and the majority of factors are common to all clean fuels interventions reviewed although some are fuel and technology-specific. All factors should therefore be taken into account and carefully assessed during planning and implementation of any small- and large-scale initiative aiming at promoting clean fuels for household cooking. Despite limitations in quantity and quality of the

  17. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  18. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Inagaki, Toru; Nishiwaki, Futoshi; Kanou, Jirou; Yamasaki, Satoru; Hosoi, Kei; Miyazawa, Takashi; Yamada, Masaharu; Komada, Norikazu

    2006-01-01

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 o C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O 3-δ , Ni-(CeO 2 ) 1-x (SmO 1.5 ) x cermet anode, and Sm(Sr)CoO 3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 o C was obtained using high temperature off-gas from SOFC

  19. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan)]. E-mail: inagaki@rdd.kepco.co.jp; Nishiwaki, Futoshi [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Kanou, Jirou [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Yamasaki, Satoru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Miyazawa, Takashi [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Yamada, Masaharu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Komada, Norikazu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2006-02-09

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 {sup o}C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O{sub 3-{delta}}, Ni-(CeO{sub 2}){sub 1-x}(SmO{sub 1.5}) {sub x} cermet anode, and Sm(Sr)CoO{sub 3-{delta}} cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 {sup o}C was obtained using high temperature off-gas from SOFC.

  20. Study of the Platooning Fuel Efficiency under ETSI ITS-G5 Communications

    NARCIS (Netherlands)

    Lyamin, N.; Deng, Q.; Vinel, A

    2016-01-01

    In this paper we evaluate the performance of platoon enabled by contemporary ITS-G5 vehicular communications through the number of simulation experiments. We assess platooning fuel consumption performance under two communication setups and estimate the potential influence of the communication system

  1. Factors influencing efficient structure of fuel and energy complex

    Science.gov (United States)

    Sidorova, N. G.; Novikova, S. A.

    2017-10-01

    The development of the Russian fuel-energy complex is a priority for the national economic policy, and the Far East is a link between Russia and the Asia-Pacific region. Large-scale engineering of numerous resources of the Far East will force industrial development, increase living standard and strengthen Russia’s position in the global energy market. So, revealing the factors which influence rational structure of the fuel-energy complex is very urgent nowadays. With the use of depth analysis of development tendencies of the complex and its problems the authors show ways of its efficiency improvement.

  2. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Kumar, Raj; Zheng, Ming; Tjong, Jimi

    2015-01-01

    Highlights: • Concept of ethanol–diesel fueled Premixed Pilot Assisted Combustion (PPAC). • Ultra-low NOx and soot with diesel-like thermal efficiency across the load range. • Close to TDC pilot injection timing for direct combustion phasing control. • Minimum pilot quantity (15% of total energy input) for clean, stable operation. • Defined heat release profile distribution (HRPD) to optimize pilot-ethanol ratio. - Abstract: Low temperature combustion (LTC) in diesel engines offers the benefits of ultra-low NOx and smoke emissions but suffers from lowered energy efficiency due to the high reactivity and low volatility of diesel fuel. Ethanol from renewable biomass provides a viable alternate to the petroleum based transportation fuels. The high resistance to auto-ignition (low reactivity) and its high volatility make ethanol a suitable fuel for low temperature combustion (LTC) in compression-ignition engines. In this work, a Premixed Pilot Assisted Combustion (PPAC) strategy comprising of the port fuel injection of ethanol, ignited with a single diesel pilot injection near the top dead centre has been investigated on a single-cylinder high compression ratio diesel engine. The impact of the diesel pilot injection timing, ethanol to diesel quantity ratio and exhaust gas recirculation on the emissions and efficiency are studied at 10 bar IMEP. With the lessons learnt, successful ethanol–diesel PPAC has been demonstrated up to a load of 18 bar IMEP with ultra-low NOx and soot emissions across the full load range. The main challenge of PPAC is the reduced combustion efficiency especially at low loads; therefore, the authors have presented a combustion control strategy to allow high efficiency, clean combustion across the load range. This work entails to provide a detailed framework for the ethanol-fueled PPAC to be successfully implemented.

  3. Using Email to Enable E[superscript 3] (Effective, Efficient, and Engaging) Learning

    Science.gov (United States)

    Kim, ChanMin

    2008-01-01

    This article argues that technology that supports both noncognitive and cognitive aspects can make learning more effective, efficient, and engaging (e[superscript 3]-learning). The technology of interest in this article is email. The investigation focuses on characteristics of email that are likely to enable e[superscript 3]-learning. In addition,…

  4. Learning FuelPHP for effective PHP development

    CERN Document Server

    Tweedie, Ross

    2013-01-01

    The book follows a standard tutorial approach, which will enable readers to use the FuelPHP framework efficiently while developing PHP applications.If you are a PHP developer who is looking to learn more about using the FuelPHP framework for effective PHP development, this book is ideal for you. If you are interested in this book, you should already have a basic understanding of general PHP development.

  5. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  6. Properties and efficiency of a Pt/Al2O3 catalyst applied in a solid fuel thermo-accumulating furnace

    Directory of Open Access Journals (Sweden)

    SRDJAN BELOSEVIC

    2007-08-01

    Full Text Available A prototype of a solid fuel thermo-accumulating furnace has been developed. In order to achieve a higher combustion efficiency, a Pt/Al2O3 catalyst in the form of 3 ± 0.3 mm spheres was applied, which enabled further combustion of flue gases within the furnace. Experimental investigation of the influence of the catalyst on the conversion of CO has been done for different operation regimes and positions of the catalyst. Paper presents selected results regarding CO emission during wood and coal combustion. Investigations suggest a considerable effect of the catalyst and a strong influence of the catalyst position to CO emission reduction. The microstructure of the catalyst beads, characterized by selective chemisorption of CO, has shown the decrease of the number of Pt sites as a consequence of blockage by coke deposits formed during the combustion of solid fuel.

  7. Effect of operating conditions on energy efficiency for a small passive direct methanol fuel cell

    International Nuclear Information System (INIS)

    Chu Deryn; Jiang Rongzhong

    2006-01-01

    Energy conversion efficiency was studied in a direct methanol fuel cell (DMFC) with an air-breathing cathode using Nafion 117 as electrolyte membrane. The effect of operating conditions, such as methanol concentration, discharge voltage and temperature, on Faradic and energy conversion efficiencies was analyzed under constant voltage discharge with quantitative amount of fuel. Both of Faradic and energy conversion efficiencies decrease significantly with increasing methanol concentration and environmental temperature. The Faradic conversion efficiency can be as high as 94.8%, and the energy conversion efficiency can be as high as 23.9% if the environmental temperature is low enough (10 deg. C) under constant voltage discharge at 0.6 V with 3 M methanol for a DMFC bi-cell. Although higher temperature and higher methanol concentration can achieve higher discharge power, it will result in considerable losses of Faradic and energy conversion efficiencies for using Nafion electrolyte membrane. Development of alternative highly conductive membranes with significantly lower methanol crossover is necessary to avoid loss of Faradic conversion efficiency with temperature and with fuel concentration

  8. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Velde Van de, A.; Burtak, F.

    2001-01-01

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  9. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    Science.gov (United States)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  10. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks (aka AURORA: Areal Use and Reactant Optimization at Rated Amperage)

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Amedeo [Nuvera Fuel Cells, Inc., Billerica, MA (United States); Dross, Robert [Nuvera Fuel Cells, Inc., Billerica, MA (United States)

    2013-12-06

    Hydrogen fuel cells are recognized as one of the most viable solutions for mobility in the 21st century; however, there are technical challenges that must be addressed before the technology can become available for mass production. One of the most demanding aspects is the costs of present-day fuel cells which are prohibitively high for the majority of envisioned markets. The fuel cell community recognizes two major drivers to an effective cost reduction: (1) decreasing the noble metals content, and (2) increasing the power density in order to reduce the number of cells needed to achieve a specified power level. To date, the majority of development work aimed at increasing the value metric (i.e. W/mg-Pt) has focused on the reduction of precious metal loadings, and this important work continues. Efforts to increase power density have been limited by two main factors: (1) performance limitations associated with mass transport barriers, and (2) the historical prioritization of efficiency over cost. This program is driven by commercialization imperatives, and challenges both of these factors. The premise of this Program, supported by proprietary cost modeling by Nuvera, is that DOE 2015 cost targets can be met by simultaneously exceeding DOE 2015 targets for Platinum loadings (using materials with less than 0.2 mg-Pt/cm2) and MEA power density (operating at higher than 1.0 Watt/cm2). The approach of this program is to combine Nuvera’s stack technology, which has demonstrated the ability to operate stably at high current densities (> 1.5 A/cm2), with low Platinum loading MEAs developed by Johnson Matthey in order to maximize Pt specific power density and reduce stack cost. A predictive performance model developed by PSU/UTK is central to the program allowing the team to study the physics and optimize materials/conditions specific to low Pt loading electrodes and ultra-high current density and operation.

  11. Fuel cell-based CHP system modelling using Artificial Neural Networks aimed at developing techno-economic efficiency maximization control systems

    International Nuclear Information System (INIS)

    Asensio, F.J.; San Martín, J.I.; Zamora, I.; Garcia-Villalobos, J.

    2017-01-01

    This paper focuses on the modelling of the performance of a Polymer Electrolyte Membrane Fuel Cell (PEMFC)-based cogeneration system to integrate it in hybrid and/or connected to grid systems and enable the optimization of the techno-economic efficiency of the system in which it is integrated. To this end, experimental tests on a PEMFC-based cogeneration system of 600 W of electrical power have been performed to train an Artificial Neural Network (ANN). Once the learning of the ANN, it has been able to emulate real operating conditions, such as the cooling water out temperature and the hydrogen consumption of the PEMFC depending on several variables, such as the electric power demanded, temperature of the inlet water flow to the cooling circuit, cooling water flow and the heat demanded to the CHP system. After analysing the results, it is concluded that the presented model reproduces with enough accuracy and precision the performance of the experimented PEMFC, thus enabling the use of the model and the ANN learning methodology to model other PEMFC-based cogeneration systems and integrate them in techno-economic efficiency optimization control systems. - Highlights: • The effect of the energy demand variation on the PEMFC's efficiency is predicted. • The model relies on experimental data obtained from a 600 W PEMFC. • It provides the temperature and the hydrogen consumption with good accuracy. • The range in which the global energy efficiency could be improved is provided.

  12. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang; Wei, Bin; Luo, Yong; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32

  13. Efficiency of Polymer Electrolyte Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hans Bosma

    2011-08-01

    Full Text Available This paper applies a feedforward control of optimal oxygen excess ratio that maximize net power (improve efficiency of a NedStack P8.0-64 PEM fuel cell stack (FCS system. Net powers profile as a function of oxygen excess ratio for some points of operation are analyzed by using FCS model. The relationships between stack current and the corresponding control input voltage that gives an optimal oxygen excess ratio are used to design a feedforward control scheme. The results of this scheme are compared to the results of a feedforward control using a constant oxygen excess ratio. Simulation results show that optimal oxygen excess ratio improves fuel cell performance compared to the results of constant oxygen excess ratio. The same procedures are performed experimentally for the FCS system. The behaviour of the net power of the fuel cell stack with respect to the variation of oxygen excess ratio is analyzed to obtain optimal values. Data of stack current and the corresponding voltage input to the compressor that gives optimal values of oxygen excess ratio are used to develop a feedforward control. Feedforward control based on constant and optimal oxygen excess ratio control, are implemented in the NedStack P8.0-64 PEM fuel cell stack system by using LabVIEW. Implementation results shows that optimal oxygen excess ratio control improves the fuel cell performance compared to the constant oxygen excess ratio control.

  14. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  15. Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Gassner, Martin; D’Amelio, Matilde; Marechal, François; Favrat, Daniel

    2012-01-01

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673–773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion. This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis. The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration. -- Highlights: ► Hydrothermal gasification is a promising process for the valorization of waste wet biomass. ► Solid Oxide Fuel Cell – Gas Turbine hybrid cycle emerges as the best candidates for conversion of biofuels. ► A systematic process integration and optimization of a SOFC-GT hybrid cycle fuelled with hydrothermally gasified biomass is presented. ► The system may convert wet waste biomass to electricity at a First Law efficiency of 63% while separating the biogenic carbon dioxide. ► The process integration enables to improve the First Law efficiency of around 4% with respect to a non-integrated system.

  16. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems; FINAL

    International Nuclear Information System (INIS)

    Peter J. Blau

    2000-01-01

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35% fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials

  17. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  18. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  19. Thermal efficiency and particulate pollution estimation of four biomass fuels grown on wasteland

    Energy Technology Data Exchange (ETDEWEB)

    Kandpal, J.B.; Madan, M. [Indian Inst. of Tech., New Delhi (India). Centre for Rural Development and Technology

    1996-10-01

    The thermal performance and concentration of suspended particulate matter were studied for 1-hour combustion of four biomass fuels, namely Acacia nilotica, Leucaena leucocepholea, Jatropha curcus, and Morus alba grown in wasteland. Among the four biomass fuels, the highest thermal efficiency was achieved with Acacia nilotica. The suspended particulate matter concentration for 1-hour combustion of four biomass fuels ranged between 850 and 2,360 {micro}g/m{sup 3}.

  20. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    Zhang, Ning; Kong, Fanbin; Choi, Yongrok; Zhou, P.

    2014-01-01

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  1. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O' Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  2. Induced motor vehicle travel from improved fuel efficiency and road expansion

    Energy Technology Data Exchange (ETDEWEB)

    Su Qing, E-mail: suq1@nku.edu [Department of Marketing, Economics and Sports Business, Northern Kentucky University, AST Center, Office 338, Nunn Drive, Highland Heights, KY 41099 (United States)

    2011-11-15

    This paper investigates the impact of improved fuel efficiency and road network expansion on motor vehicle travel using a system dynamic panel data estimator and panel data at the state level for the 2001-2008 period. Our model accounts for endogenous changes in fuel efficiency, congestion, fuel cost per mile, and vehicle stock. Our regression results suggest that the short run rebound effect is 0.0276 while the long run rebound effect is 0.11. The short run effect of road capacity per capita is 0.066 while the long run effect is 0.26. - Highlights: > We estimate two effects: the rebound effect and induced travel effect at the state level. > System dynamic panel data approach is used to address endogeneity issue. > In the period of 2001-2008, the rebound effect is 0.0276 in the short run and 0.11 in the long run. > Increase in road capacity induces motor vehicle travel. > Induced travel effect is 0. 0.066 in the short run and 0.26 in the long run.

  3. Induced motor vehicle travel from improved fuel efficiency and road expansion

    International Nuclear Information System (INIS)

    Su Qing

    2011-01-01

    This paper investigates the impact of improved fuel efficiency and road network expansion on motor vehicle travel using a system dynamic panel data estimator and panel data at the state level for the 2001-2008 period. Our model accounts for endogenous changes in fuel efficiency, congestion, fuel cost per mile, and vehicle stock. Our regression results suggest that the short run rebound effect is 0.0276 while the long run rebound effect is 0.11. The short run effect of road capacity per capita is 0.066 while the long run effect is 0.26. - Highlights: → We estimate two effects: the rebound effect and induced travel effect at the state level. → System dynamic panel data approach is used to address endogeneity issue. → In the period of 2001-2008, the rebound effect is 0.0276 in the short run and 0.11 in the long run. → Increase in road capacity induces motor vehicle travel. → Induced travel effect is 0. 0.066 in the short run and 0.26 in the long run.

  4. Enabling factors for the improvement of nitride-based LED efficiency

    International Nuclear Information System (INIS)

    Laubsch, Ansgar; Bergbauer, Werner; Sabathil, Matthias; Peter, Matthias; Meyer, Tobias; Bruederl, Georg; Linder, Norbert; Streubel, Klaus; Oberschmid, Raimund; Hahn, Berthold; Wagner, Joachim

    2008-01-01

    Recent progress in the epitaxial growth of LEDs with InGaN/GaN quantum-well heterostructures has led to a significant enhancement of output power. In this talk, we will discuss the mechanisms limiting the devices' internal efficiency and identify enabling factors for further improvements. We compare samples with different Indium content as well as different design of the active layer. Although heteroepitaxial growth of GaN on sapphire generates high defect densities, non-radiative defect-related Shockley-Read-Hall recombination does not seem to substantially limit the efficiency of standard InGaN/GaN LED structures. We rather discuss a supplemental Auger-like non-radiative path for carrier recombination that becomes dominant at quantum-well carrier densities typical for LED operation. Additionally, the piezo-field induced reduced overlap of electron and hole wavefunction in standard c-plane grown InGaN quantum wells reduces the radiative recombination rate

  5. Market Analysis and Consumer Impacts Source Document. Part III. Consumer Behavior and Attitudes Toward Fuel Efficient Vehicles

    Science.gov (United States)

    1980-12-01

    This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part III consists of studies and reviews on: consumer awareness of fuel efficiency issues; consumer acceptance of fuel efficient vehicles; car size ch...

  6. Screening of tank-to-wheel efficiencies for CNG, DME and methanol-ethanol fuel blends in road transport

    Energy Technology Data Exchange (ETDEWEB)

    Kappel, J.; Vad Mathiesen, B.

    2013-04-15

    The purpose of this report is to evaluate the fuel efficiency of selected alternative fuels based on vehicle performance in a standardised drive cycle test. All studies reviewed are either based on computer modelling of current or future vehicles or tests of just one alternative fuel, under different conditions and concentrations against either petrol or diesel. No studies were found testing more than one type of alternative fuel in the same setup. Due to this one should be careful when comparing results on several alternative fuels. Only few studies have been focused on vehicle energy efficiency. This screening indicates methanol, methanol-ethanol blends and CNG to be readily availability, economic feasible and with the introduction of the DISI engine not technologically challenging compared to traditional fuels. Studies across fuel types indicate a marginally better fuel utilization for methanol-ethanol fuel mixes. (Author)

  7. The Transforming Mobility Ecosystem: Enabling in Energy-Efficient Future

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-31

    Over the next decade, the transportation sector is poised for rapid change, propelled toward a new mobility future by strong technology currents and the confluence of prevailing megatrends. These major forces hold the promise of shaping a new mobility future – one that unlocks tremendous economic value, provides unprecedented gains in safety, offers affordable and equal accessibility, and enables the transition to energy-efficient transport of people and goods. They come, however, with cautionary viewpoints on energy consumption of the entire sector, necessitating the need to carefully guide the emergent future. This report examines four possible mobility futures that could exist in 2050 and the positive and negative impacts of these futures on energy consumption and the broader economy.

  8. Fuel conversion efficiency and energy balance of a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    A 400 kW (thermal) dual-distributor type fluidized bed gasifier developed for the energy recovery from cereal straw was used to investigate the effects of equivalence ratio (actual air-fuel ratio: stoichiometric air-fuel ratio), fluidization velocity and bed height on the fuel conversion efficiency from wheat straw. The energy balance was also performed on the system under those operating conditions. The results indicated that the equivalence ratio was the most significant parameter affecting the fuel conversion efficiency and the energy recovered from the straw in the form of gas. Both the fuel conversion efficiency and the energy recovery increased with increases in the equivalence ratio. The fluidization velocity and bed height had minimal effects on these parameters. A fuel conversion efficiency as high as 98% was obtained at the equivalence ratio of 0.35. The energy recovered in the form of gas and the sensible heat of the produced gas were in the ranges of 40--70% and 9--17%, respectively. Unaccounted losses showed a dramatic increase at lower equivalence ratios and were in the range of 6--53% depending on the operating condition.

  9. Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly

    International Nuclear Information System (INIS)

    Kim, Joon-Hee; Yang, Min-Jee; Park, Jun-Young

    2014-01-01

    Highlights: • Faradaic efficiency and water transfer coefficient (WTC) of DMFC MEAs are calculated based on mass balance measurements. • Faradaic efficiency of the HC-based MEAs is generally improved over the Nafion-based MEAs. • Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of -2. • Low WTC of the HC-based MEAs indicates the back-diffusion of water from the cathode to the anode. • Performance of HC-based MEAs is improved as the fuel stoichiometry increases, maintaining high Faradaic efficiency. - Abstract: In order to improve the energy efficiency (fuel efficiency and electrical power) of direct methanol fuel cells (DMFCs), the hydrocarbon (HC) membrane-based membrane electrode assemblies (MEAs) are investigated under various operating conditions. The MEAs are then compared with the conventional Nafion-based MEA in terms of their efficiency and performance. The Faradaic efficiency and water transfer coefficient (WTC) are calculated based on mass balance measurements. The Faradaic efficiency of the HC-based MEAs is improved over the Nafion-based MEAs since methanol crossover decreased. The performance of HC-based MEAs shows strong dependency on the anode stoichiometry at high current densities probably because of the limited mass transport of fuel, which is not observed for the Nafion-based MEAs. The Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of −2, indicating the back-diffusion of water from the cathode to the anode. This may have limited mass transport by interrupting proton conduction at high current densities. The performance of HC-based MEAs at high current densities is improved as the fuel stoichiometry increases; High Faradaic efficiency is maintained by decreasing the cathode stoichiometry

  10. Increasing efficiency of TPP fuel suply system due to LNG usage as a reserve fuel

    Science.gov (United States)

    Zhigulina, E. V.; Khromchenkov, V. G.; Mischner, J.; Yavorovsky, Y. V.

    2017-11-01

    The paper is devoted to the analysis of fuel economy efficiency increase possibility at thermal power plants (TPP) due to the transition from the use of black oil as a reserve fuel to liquefied natural gas (LNG) produced at the very station. The work represents the technical solution that allows to generate, to store and to use LNG as the reserve fuel TPP. The annual amounts of black oil and natural gas that are needed to ensure the reliable operation of several power plants in Russia were assessed. Some original schemes of the liquefied natural gas production and storing as alternative reserve fuel generated by means of application of expansion turbines are proposed. The simulation results of the expansion process for two compositions of natural gas with different contents of high-boiling fractions are presented. The dependences of the condensation outlet and power generation from the flow initial parameters and from the natural gas composition are obtained and analysed. It was shown that the choice of a particular circuit design depends primarily on the specific natural gas composition. The calculations have proved the effectiveness and the technical ability to use liquefied natural gas as a backup fuel at reconstructed and newly designed gas power station.

  11. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2010-12-29

    ...-HQ-OAR-2010-0162; FRL-9219-4; NHTSA 2010-0079] RIN 2060-AP61; RIN 2127-AK74 Greenhouse Gas Emissions... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on...

  12. Lean Gasoline System Development for Fuel Efficient Small Cars

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stuart R. [General Motors LLC, Pontiac, MI (United States)

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  13. Enabling LTE and WiFi Coexisting in 5 GHz for Efficient Spectrum Utilization

    Directory of Open Access Journals (Sweden)

    Hongyu Sun

    2017-01-01

    Full Text Available Due to the increasing mobile traffic demands in cellular network, researchers have proposed the coexistence of LTE and WiFi technologies in 5 GHz unlicensed bands. Therefore, how to efficiently utilize the spectrum in 5 GHz becomes extremely important. To avoid the channel access conflicts, current LTE Unlicensed (LTE-U technology introduces the duty cycle of LTE, while License-Assisted Access (LAA technology introduces Listen-Before-Talk (LBT mechanism. While these two technologies improve the spectrum utilization by using time division access schema, we believe that more efficient spectrum utilization can be achieved by enabling simultaneous transmissions from LTE and WiFi. In this paper, we propose a novel method (i.e., Low Amplitude Stream Injection (LASI method to enable the simultaneous transmissions of WiFi and LTE frames in the same channel and recover the data from the conflicts. To further utilize the LASI method, we introduce the Conflict-Tolerant Channel Allocation (CTCA algorithm to optimize the channel allocation and achieve more efficient spectrum utilization in 5 GHz. Extensive simulation results show that our approach achieves lower latency and higher throughput. Compared with the state-of-the-art LTE-U and LAA technologies, our approach can improve the spectrum efficiency 2.9 times.

  14. Evaluation of fuel cell system efficiency and degradation at development and during commercialization

    Science.gov (United States)

    Gemmen, R. S.; Johnson, C. D.

    Two primary parameters stand out for characterizing fuel cell system performance. The first and most important parameter is system efficiency. This parameter is relatively easy to define, and protocols for its assessment are already available. Another important parameter yet to be fully considered is system degradation. Degradation is important because customers desire to know how long their purchased fuel cell unit will last. The measure of degradation describes this performance factor by quantifying, for example, how the efficiency of the unit degrades over time. While both efficiency and degradation concepts are readily understood, the coupling between these two parameters must also be understood so that proper testing and evaluation of fuel cell systems is achieved. Tests not properly performed, and results not properly understood, may result in improper use of the evaluation data, producing improper R&D planning decisions and financial investments. This paper presents an analysis of system degradation, recommends an approach to its measurement, and shows how these two parameters are related and how one can be "traded-off" for the other.

  15. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.

    Science.gov (United States)

    Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian

    2017-11-23

    Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fuel flexible distributed combustion for efficient and clean gas turbine engines

    International Nuclear Information System (INIS)

    Khalil, Ahmed E.E.; Gupta, Ashwani K.

    2013-01-01

    Highlights: • Examined distributed combustion for gas turbines applications using HiTAC. • Gaseous, liquid, conventional and bio-fuels are examined with ultra-low emissions. • Novel design of fuel flexibility without any atomizer for liquid fuel sprays. • Demonstrated fuel flexibility with emissions x and CO, low noise, enhanced stability, higher efficiency and alleviation of combustion instability. Distributed reaction conditions were achieved using swirl for desirable controlled mixing between the injected air, fuel and hot reactive gases from within the combustor prior to mixture ignition. In this paper, distributed combustion is further investigated using a variety of fuels. Gaseous (methane, diluted methane, hydrogen enriched methane and propane) and liquid fuels, including both traditional (kerosene) and alternate fuels (ethanol) that cover a wide range of calorific values are investigated with emphasis on pollutants emission and combustor performance with each fuel. For liquid fuels, no atomization or spray device was used. Performance evaluation with the different fuels was established to outline the flexibility of the combustor using a wide range of fuels of different composition, phase and calorific value with specific focus on ultra-low pollutants emission. Results obtained on pollutants emission and OH * chemiluminescence for the specific fuels at various equivalence ratios are presented. Near distributed combustion conditions with less than 8 PPM of NO emission were demonstrated under novel premixed conditions for the various fuels tested at heat (energy) release intensity (HRI) of 27 MW/m 3 -atm. and a rather high equivalence ratio of 0.6. Higher equivalence ratios lacked favorable distributed combustion conditions. For the same conditions, CO emission varied for each fuel; less than 10 ppm were demonstrated for methane based fuels, while heavier liquid fuels provided less than 40 ppm CO emissions. Lower emissions of NO ( x can be possible by

  17. Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO2 Reduction to Liquid Fuels with High Faradaic Efficiencies.

    Science.gov (United States)

    Duan, Yan-Xin; Meng, Fan-Lu; Liu, Kai-Hua; Yi, Sha-Sha; Li, Si-Jia; Yan, Jun-Min; Jiang, Qing

    2018-04-01

    Conversion of carbon dioxide (CO 2 ) into valuable chemicals, especially liquid fuels, through electrochemical reduction driven by sustainable energy sources, is a promising way to get rid of dependence on fossil fuels, wherein developing of highly efficient catalyst is still of paramount importance. In this study, as a proof-of-concept experiment, first a facile while very effective protocol is proposed to synthesize amorphous Cu NPs. Unexpectedly, superior electrochemical performances, including high catalytic activity and selectivity of CO 2 reduction to liquid fuels are achieved, that is, a total Faradaic efficiency of liquid fuels can sum up to the maximum value of 59% at -1.4 V, with formic acid (HCOOH) and ethanol (C 2 H 6 O) account for 37% and 22%, respectively, as well as a desirable long-term stability even up to 12 h. More importantly, this work opens a new avenue for improved electroreduction of CO 2 based on amorphous metal catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 49 CFR 575.106 - Tire fuel efficiency consumer information program.

    Science.gov (United States)

    2010-10-01

    ... to provide information indicating the relative performance of replacement passenger car tires in the... achieve the level of performance represented by each rating. (A) Ratings. Each tire shall be rated with... 49 Transportation 7 2010-10-01 2010-10-01 false Tire fuel efficiency consumer information program...

  19. Energy Conversion Efficiency Potential for Forward-Deployed Generation Using Direct Carbon Fuel Cells

    Science.gov (United States)

    2012-05-01

    fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid Molten car- bonate salt Ceramic Fused KNO3 Operating...air O2/air CO2/O2/air O2/air Humidified air Efficiency (Higher Heating Value [HHV]) 30–35% 40–50% 50–60% 45–55% 80% PEMFC : Proton Exchange... PEMFC proton-exchange membrane fuel cell SOFC solid oxide fuel cell SRI Statistical Research, Inc. TR technical report TRL technology readiness level

  20. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  1. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    Science.gov (United States)

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  2. E85 and fuel efficiency: An empirical analysis of 2007 EPA test data

    International Nuclear Information System (INIS)

    Roberts, Matthew C.

    2008-01-01

    It is well known that ethanol has less energy per unit volume than gasoline. Differences in engine design and fuel characteristics affect the efficiency with which the chemical energy in gasoline and ethanol is converted into mechanical energy, so that the change in fuel economy may not be a linear function of energy content. This study analyzes the fuel economy tests performed by the US Environmental Protection Agency (EPA) on 2007 model year E85-compliant vehicles and finds that the difference in average fuel economy is not statistically different from the differential in energy content

  3. Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency

    OpenAIRE

    Kurani, Ken; Turrentine, Thomas

    2004-01-01

    Much prior research into consumer automotive and fuel purchase behaviors and fuel economy has been shaped by the normative assumptions of economics. Among these assumptions are that consumers should pay attention to costs of fuel and that they are aware of their options to save on fuel over long periods of time, i.e., the life of a vehicle or at least their period of ownership. For example, researchers have analyzed in some depth consumer choices for more fuel economical vehicles in the 1980s...

  4. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  5. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  6. High Efficiency of Mixed Th-U Fuel Utilisation in Innovative Nuclear Burning Wave Reactor

    International Nuclear Information System (INIS)

    Fomin, Sergii; Fomin, A.; Mel’nik, Yu.; Pilipenko, V.; Shul’ga, N.

    2013-01-01

    The presentation provides information about nuclear fuel reproduction and the U-Pu fuel cycle; the history of the Breed and Burn concept and the traveling wave concept; the non-stationary theory of nuclear burning wave; the Nuclear Burning Wave in Fast Reactor with U-Pu Fuel; nuclear burning wave in 5m length cylindrical FR for different reactor radius R and about the Reactor Power Control by Reflector Efficiency

  7. TECHNOLOGY FOR EFFICIENT USAGE OF HYDROCARBON-CONTAINING WASTE IN PRODUCTION OF MULTI-COMPONENT SOLID FUEL

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2016-01-01

    Full Text Available The paper considers modern approaches to usage of hydrocarbon-containing waste as energy resources and presents description of investigations, statistic materials, analysis results on formation of hydrocarbon-containing waste in the Republic of Belarus. Main problems pertaining to usage of waste as a fuel and technologies for their application have been given in the paper. The paper describes main results of the investigations and a method for efficient application of viscous hydrocarbon-containing waste as an energy-packed component and a binding material while producing a solid fuel. A technological scheme, a prototype industrial unit which are necessary to realize a method for obtaining multi-component solid fuel are represented in the paper. A paper also provides a model of technological process with efficient sequence of technological operations and parameters of optimum component composition. Main factors exerting significant structure-formation influence in creation of structural composition of multi-component solid fuel have been presented in the paper. The paper gives a graphical representation of the principle for selection of mixture particles of various coarseness to form a solid fuel while using a briquetting method and comprising viscous hydrocarbon-containing waste. A dependence of dimensionless concentration g of emissions into atmosphere during burning of two-component solid fuel has been described in the paper. The paper analyzes an influence of the developed methodology for emission calculation of multi-component solid fuels and reveals a possibility to optimize the component composition in accordance with ecological function and individual peculiar features of fuel-burning equipment. Special features concerning storage and transportation, advantages and disadvantages, comparative characteristics, practical applicability of the developed multi-component solid fuel have been considered and presented in the paper. The paper

  8. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Corona ignition system for highly efficient gasoline engines; Corona-Zuendsystem fuer hocheffiziente Ottomotoren

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, John [Federal-Mogul Limited, Manchester (United Kingdom); Lykowski, Jim; Mixell, Kristapher [Federal-Mogul, Plymouth, MI (United States)

    2013-06-01

    Many future gasoline engines will require higher air/fuel ratios and higher mean effective pressures to further improve fuel efficiency. Federal-Mogul has taken up this challenge and has developed the Advanced Corona Ignition System (ACIS) as a new solution to reliably ignite a mix with high AFR/EGR and high MEP. During engine tests ACIS enabled a direct fuel economy improvement of up to 10 %. (orig.)

  10. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  11. Development of an Optimal Controller and Validation Test Stand for Fuel Efficient Engine Operation

    Science.gov (United States)

    Rehn, Jack G., III

    There are numerous motivations for improvements in automotive fuel efficiency. As concerns over the environment grow at a rate unmatched by hybrid and electric automotive technologies, the need for reductions in fuel consumed by current road vehicles has never been more present. Studies have shown that a major cause of poor fuel consumption in automobiles is improper driving behavior, which cannot be mitigated by purely technological means. The emergence of autonomous driving technologies has provided an opportunity to alleviate this inefficiency by removing the necessity of a driver. Before autonomous technology can be relied upon to reduce gasoline consumption on a large scale, robust programming strategies must be designed and tested. The goal of this thesis work was to design and deploy an autonomous control algorithm to navigate a four cylinder, gasoline combustion engine through a series of changing load profiles in a manner that prioritizes fuel efficiency. The experimental setup is analogous to a passenger vehicle driving over hilly terrain at highway speeds. The proposed approach accomplishes this using a model-predictive, real-time optimization algorithm that was calibrated to the engine. Performance of the optimal control algorithm was tested on the engine against contemporary cruise control. Results indicate that the "efficient'' strategy achieved one to two percent reductions in total fuel consumed for all load profiles tested. The consumption data gathered also suggests that further improvements could be realized on a different subject engine and using extended models and a slightly modified optimal control approach.

  12. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  13. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  14. High thermal efficiency and low emission performance of a methanol reformed gas fueled engine for hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K.; Nakajima, Y.; Shudo, T.; Hiruma, M. [Musahi Inst. of Tech., Tokyo (Japan); Komatsu, H.; Takagi, Y. [Nissan Motor Co., Ltd., Yokosuka (Japan)

    2000-07-01

    An internal combustion engine (ICE) operation was carried out experimentally by using the mixture of air and fuel simulating the reformed gas as the fuel. It has been found that the engine can expectedly attain ultra-low emission and high thermal efficiency, namely 35% brake thermal efficiency in the basis of the low heat value of the theoretically reformed gas or 42% in the basis of the low heat value of methanol. By using the result for the estimation of the total thermal efficiency at the end of the motor output shaft of a hybrid electric vehicle, it has been found that the total thermal efficiency of the reformed gas engine system is 34% in case of a 120% energy increment and 33% in case of a 116% energy increment with a little higher NOx emission of 60 ppm while the counterpart of the fuel cell system is 34%. When the emission level for EZEV is required, the total thermal efficiency falls to 32% in case of a 120% energy increment and 31% in case of a 116% energy increment. From the points of the reliability proved by the long history, higher specific power and low cost, the internal combustion engine system with the thermal efficiency almost equal to that of the fuel cell (FC) system is further more practical when methanol is used as the fuel. (orig.)

  15. Screening of tank-to-wheel efficiencies for CNG, DME and methanol-ethanol fuel blends in road transport

    DEFF Research Database (Denmark)

    Kappel, Jannik; Mathiesen, Brian Vad

    efficiency. This screening indicates methanol, methanol-ethanol blends and CNG to be readily availability, economic feasible and with the introduction of the DISI engine not technologically challenging compared to traditional fuels. Studies across fuel types indicate a marginally better fuel utilization...

  16. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    Science.gov (United States)

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  17. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenesh R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Clark, Ezra L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering; Bell, Alexis T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering

    2015-10-26

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  18. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  19. Pathways to Commercial Success: Technologies and Innovations Enabled by the U.S. Department of Energy Fuel Cell Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-11

    This report published in October 2017 updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  20. Efficient regeneration of partially spent ammonia borane fuel

    International Nuclear Information System (INIS)

    Davis, Benjamin Lee; Gordon, John C.; Stephens, Frances; Dixon, David A.; Matus, Myrna H.

    2008-01-01

    A necessary target in realizing a hydrogen (H 2 ) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's (DOE) Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical hydrogen storage has been dominated by one appealing material, ammonia borane (H 3 B-NH 3 , AB), due to its high gravimetric capacity of hydrogen (19.6 wt %) and low molecular weight (30.7 g mol -1 ). In addition, AB has both hydridic and protic moieties, yielding a material from which H2 can be readily released. As such, a number of publications have described H 2 release from amine boranes, yielding various rates depending on the method applied. Even though the viability of any chemical hydrogen storage system is critically dependent on efficient recyclability, reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. For example, the DOE recently decided to no longer pursue the use of NaBH 4 as a H 2 storage material, in part because of inefficient regeneration. We thus endeavored to find an energy efficient regeneration process for the spent fuel from H 2 depleted AB with a minimum number of steps.

  1. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  2. Stratified charge rotary engine critical technology enablement. Volume 2: Appendixes

    Science.gov (United States)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This second volume of appendixes is a companion to Volume 1 of this report which summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation; and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems. A family of four-stage third-order explicit Runge-Kutta schemes is derived that required only two locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  3. Influence of diffusion of fuel-efficient motor vehicles on gasoline demand for individual user owned passenger cars

    International Nuclear Information System (INIS)

    Sakaguchi, Takahiro

    2000-01-01

    Trends in the demand for petrol in Japan for cars owned by individuals are discussed with reference to expected improvements in fuel efficiency for new models and the results of a survey of user preferences for fuel-efficient vehicles. Demand for petrol in Japan has continued to increase in line with the number of cars used by individual owners. A questionnaire on motor vehicles sent to households found that, while cost and body style were the primary factors in car purchase, three-quarters of respondents would consider buying a low fuel consumption (LFC) version of the model chosen. The influence of LFC vehicles on future demand for petrol was estimated for up to 2015 by combining market timing with consumer preferences. Comparison of the estimated petrol consumption by LFC cars with the Government's requirement for reduced energy use by the transport sector in order to meet its climate change targets indicated a shortfall and a need to increase consumer demand for LFC vehicles. Government measures to reduce energy use in the transport sector, fuel efficiency targets for 2010, major LFC cars, fuel efficiency improvements by major Japanese motor manufacturers and scenarios for assessing the influence of LFC cars are summarised in five tables. Trends in petrol consumption and estimated use by individual user owned passenger cars are shown graphically

  4. Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat

    International Nuclear Information System (INIS)

    Nandan, Ravi; Goswami, Gopal Krishna; Nanda, Karuna Kar

    2017-01-01

    Graphical abstract: Direct-grown boron-doped carbon nanotubes on gas-diffusion layer as efficient Pt-free cathode catalyst for alcohol fuel cells, high boiling point fuels used to obtain hot fuels for the enhancement of cell performance that paves the way for the utilization of waste heat. Display Omitted -- Highlights: •One-step direct synthesis of boron-doped carbon nanotubes (BCNTs) on gas diffusion layer (GDL). •Home built fuel-cell testing using BCNTs on GDL as Pt-free cathode catalyst. •BCNTs exhibit concentration dependent oxygen reduction reaction and the cell performance. •Effective utilization of waste heat to raise the fuel temperature. •Fuel selectivity to raise the fuel temperature and the overall performance of the fuel cells. -- Abstract: Gas diffusion layers (GDL) and electrocatalysts are integral parts of fuel cells. It is, however, a challenging task to grow Pt-free robust electrocatalyst directly on GDL for oxygen reduction reaction (ORR) – a key reaction in fuel cells. Here, we demonstrate that boron-doped carbon nanotubes (BCNTs) grown directly on gas-diffusion layer (which avoid the need of ionomer solution used for catalyst loading) can be used as efficient Pt-free catalyst in alcohol fuel cells. Increase in boron concentration improves the electrochemical ORR activity in terms of onset and ORR peak positions, half-wave potentials and diffusion-limited current density that ensure the optimization of the device performance. The preferential 4e − pathway, excellent cell performance, superior tolerance to fuel crossover and long-term stability makes directly grown BCNTs as an efficient Pt-free cathode catalyst for cost-effective fuel cells. The maximum power density of the fuel cell is found to increase monotonically with boron concentration. In addition to the application of BCNTs in fuel cell, we have introduced the concept of hot fuels so that waste heat can effectively be used and external power sources can be avoided. The fuel

  5. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  6. Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet

    Science.gov (United States)

    Wang, Michael S.

    Today, the Internet traffic is growing at a near exponential rate, driven predominately by data center-based applications and Internet-of-Things services. This fast-paced growth in Internet traffic calls into question the ability of the existing optical network infrastructure to support this continued growth. The overall optical networking equipment efficiency has not been able to keep up with the traffic growth, creating a energy gap that makes energy and cost expenditures scale linearly with the traffic growth. The implication of this energy gap is that it is infeasible to continue using existing networking equipment to meet the growing bandwidth demand. A redesign of the optical networking platform is needed. The focus of this dissertation is on the design and implementation of energy efficient, cross-layer enabled, dynamic optical networking platforms, which is a promising approach to address the exponentially growing Internet bandwidth demand. Chapter 1 explains the motivation for this work by detailing the huge Internet traffic growth and the unsustainable energy growth of today's networking equipment. Chapter 2 describes the challenges and objectives of enabling agile, dynamic optical networking platforms and the vision of the Center for Integrated Access Networks (CIAN) to realize these objectives; the research objectives of this dissertation and the large body of related work in this field is also summarized. Chapter 3 details the design and implementation of dynamic networking platforms that support wavelength switching granularity. The main contribution of this work involves the experimental validation of deep cross-layer communication across the optical performance monitoring (OPM), data, and control planes. The first experiment shows QoS-aware video streaming over a metro-scale test-bed through optical power monitoring of the transmission wavelength and cross-layer feedback control of the power level. The second experiment extends the performance

  7. Ducted fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Charles J.

    2018-03-06

    Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas with low peak fuel to charge-gas ratios to enable minimal, or no, generation of soot and other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be located proximate to an opening in a tip of a fuel injector. The duct can comprise of one or more holes along its length to enable charge-gas to be drawn into the bore, and further, the duct can cool the fuel and/or charge-gas prior to combustion.

  8. Candu 6: versatile and practical fuel technology

    International Nuclear Information System (INIS)

    Hopwood, J. M.; Saroudis, J.

    2013-01-01

    CANDU reactor technology was originally developed in Canada as part of the original introduction of peaceful nuclear power in the 1960s and has been continuously evolving and improving ever since. The CANDU reactor system was defined with a requirement to be able to efficiently use natural uranium (NU) without the need for enrichment. This led to the adaptation of the pressure tube approach with heavy water coolant and moderator together with on-power fuelling, all of which contribute to excellent neutron efficiency. Since the beginning, CANDU reactors have used [NU] fuel as the fundamental basis of the design. The standard [NU] fuel bundle for CANDU is a very simple design and the simplicity of the fuel design adds to the cost effectiveness of CANDU fuelling because the fuel is relatively straightforward to manufacture and use. These characteristics -- excellent neutron efficiency and simple, readily-manufactured fuel -- together lead to the unique adaptability of CANDU to alternate fuel types, and advancements in fuel cycles. Europe has been an early pioneer in nuclear power; and over the years has accumulated various waste products from reactor fuelling and fuel reprocessing, all being stored safely but which with passing time and ever increasing stockpiles will become issues for both governments and utilities. Several European countries have also pioneered in fuel reprocessing and recycling (UK, France, Russia) in what can be viewed as a good neighbor policy to make most efficient use of fuel. The fact remains that CANDU is the most fuel efficient thermal reactor available today [NU] more efficient in MW per ton of U compared to LWR's and these same features of CANDU (on-power fuelling, D 2 O, etc) also enable flexibility to adapt to other fuel cycles, particularly recycling. Many years of research (including at ICN Pitesti) have shown CANDU capability: best at Thorium utilization; can use RU without re-enrichment; can readily use MOX. Our premise is that

  9. Efficient and Scalable Fabrication of Solid Oxide Fuel Cells via 3D-Printing

    Data.gov (United States)

    National Aeronautics and Space Administration — Although solid oxide fuel cells (SOFCs) are a source of both efficient and clean electricity, the brittle ceramic materials which comprise them are difficult to form...

  10. 77 FR 51499 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2012-08-24

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2012-0126] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium... purpose of reducing greenhouse gas (GHG) emissions because the GHG standards fundamentally regulate fuel...

  11. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    Science.gov (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  12. Mechanosensing Potentials Gate Fuel Consumption in a Bipedal DNA Nanowalker

    Science.gov (United States)

    Tee, Shern Ren; Hu, Xinpeng; Loh, Iong Ying; Wang, Zhisong

    2018-03-01

    A bipedal DNA nanowalker was recently reported to convert chemical energy into directional motion autonomously and efficiently. To elucidate its chemomechanical coupling mechanisms, three-dimensional molecular modeling is used to obtain coarse-grained foot-track binding potentials of the DNA nanowalker via unbiased and biased sampling techniques (for the potentials' basin and high-energy edges, respectively). The binding state that is protected against fuel-induced dissociation responds asymmetrically to forward versus backward forces, unlike the unprotected state, demonstrating a mechanosensing capability to gate fuel binding. Despite complex DNA mechanics, the foot-track potential exhibits a surprisingly neat three-part profile, offering some general guidelines to rationally design efficient nanowalkers. Subsequent modeling of the bipedal walker attached to the track gives estimates of the free energy for each bipedal state, showing how the mechanosensing foot-track binding breaks the symmetry between the rear and front feet, enabling the rear foot to be selectively dissociated by fuel and generating efficient chemomechanical coupling.

  13. A Cloud Computing-Enabled Spatio-Temporal Cyber-Physical Information Infrastructure for Efficient Soil Moisture Monitoring

    Directory of Open Access Journals (Sweden)

    Lianjie Zhou

    2016-06-01

    Full Text Available Comprehensive surface soil moisture (SM monitoring is a vital task in precision agriculture applications. SM monitoring includes remote sensing imagery monitoring and in situ sensor-based observational monitoring. Cloud computing can increase computational efficiency enormously. A geographical web service was developed to assist in agronomic decision making, and this tool can be scaled to any location and crop. By integrating cloud computing and the web service-enabled information infrastructure, this study uses the cloud computing-enabled spatio-temporal cyber-physical infrastructure (CESCI to provide an efficient solution for soil moisture monitoring in precision agriculture. On the server side of CESCI, diverse Open Geospatial Consortium web services work closely with each other. Hubei Province, located on the Jianghan Plain in central China, is selected as the remote sensing study area in the experiment. The Baoxie scientific experimental field in Wuhan City is selected as the in situ sensor study area. The results show that the proposed method enhances the efficiency of remote sensing imagery mapping and in situ soil moisture interpolation. In addition, the proposed method is compared to other existing precision agriculture infrastructures. In this comparison, the proposed infrastructure performs soil moisture mapping in Hubei Province in 1.4 min and near real-time in situ soil moisture interpolation in an efficient manner. Moreover, an enhanced performance monitoring method can help to reduce costs in precision agriculture monitoring, as well as increasing agricultural productivity and farmers’ net-income.

  14. Fuel taxes, motor vehicle emission standards and patents related to the fuel-efficiency and emissions of motor vehicles. Joint Meetings of Tax and Environment Experts

    International Nuclear Information System (INIS)

    Vollebergh, H.

    2010-01-01

    Contribution to the project on Taxation, Innovation and the Environment of OECD's Joint Meetings of Tax and Environment Experts. It studies the impacts of motor vehicle fuel taxes and mandatory fuel efficiency standards on relevant car-related innovation activity in selected car-producing countries.

  15. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    Science.gov (United States)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  16. PEAC: A Power-Efficient Adaptive Computing Technology for Enabling Swarm of Small Spacecraft and Deployable Mini-Payloads

    Data.gov (United States)

    National Aeronautics and Space Administration — This task is to develop and demonstrate a path-to-flight and power-adaptive avionics technology PEAC (Power Efficient Adaptive Computing). PEAC will enable emerging...

  17. Avoided emissions of a fuel-efficient biomass cookstove dwarf embodied emissions

    Directory of Open Access Journals (Sweden)

    D.L. Wilson

    2016-06-01

    Full Text Available Three billion people cook their food on biomass-fueled fires. This practice contributes to the anthropogenic radiative forcing. Fuel-efficient biomass cookstoves have the potential to reduce CO2-equivalent emissions from cooking, however, cookstoves made from modern materials and distributed through energy-intensive supply chains have higher embodied CO2-equivalent than traditional cookstoves. No studies exist examining whether lifetime emissions savings from fuel-efficient biomass cookstoves offset embodied emissions, and if so, by what margin. This paper is a complete life cycle inventory of “The Berkeley–Darfur Stove,” disseminated in Sudan by the non-profit Potential Energy. We estimate the embodied CO2-equivalent in the cookstove associated with materials, manufacturing, transportation, and end-of-life is 17 kg of CO2-equivalent. Assuming a mix of 55% non-renewable biomass and 45% renewable biomass, five years of service, and a conservative 35% reduction in fuel use relative to a three-stone fire, the cookstove will offset 7.5 tonnes of CO2-equivalent. A one-to-one replacement of a three-stone fire with the cookstove will save roughly 440 times more CO2-equivalent than it “costs” to create and distribute. Over its five-year life, we estimate the total use-phase emissions of the cookstove to be 13.5 tonnes CO2-equivalent, and the use-phase accounts for 99.9% of cookstove life cycle emissions. The dominance of use-phase emissions illuminate two important insights: (1 without a rigorous program to monitor use-phase emissions, an accurate estimate of life cycle emissions from biomass cookstoves is not possible, and (2 improving a cookstove's avoided emissions relies almost exclusively on reducing use-phase emissions even if use-phase reductions come at the cost of substantially increased non-use-phase emissions.

  18. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    Science.gov (United States)

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  19. Solid Oxide Fuel Cells coupled with a biomass gasification unit

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available A possibility of fuelling a solid oxide fuel cell stack (SOFC with biomass fuels can be realized by coupling a SOFC system with a self-standing gasification unit. Such a solution enables multi-fuel operation, elasticity of the system as well as the increase of the efficiency of small-scale biomass-to-electricity conversion units. A system of this type, consisting of biomass gasification unit, gas purification unit, SOFC stack, anode off-gas afterburner and peripherals was constructed and operated successfully. During the process, biomass fuel (wood chips was gasified with air as gasification agent. The gasifier was capable of converting up to 30 kW of fuel to syngas with efficiencies up to 75%. Syngas leaving the gasification unit is delivered to a medium temperature adsorber for sulphur compounds removal. Steam is added to the purified fuel to maintain steam to carbon ratio higher than 2. The syngas then is passed to a SOFC stack through a fuel preheater. In such a configuration it was possible to operate a commercial 1.3 kW stack within its working regime. Conducted tests confirmed successful operation of a SOFC stack fuelled by biomass-sourced syngas.

  20. Disturbance rejection in diesel engines for low emissions and high fuel efficiency

    NARCIS (Netherlands)

    Criens, C. H. A.; Willems, F. P. T.; Van Keulen, T. A. C.; Steinbuch, M.

    2015-01-01

    This brief presents a novel and time-efficient control design for modern heavy-duty diesel engines using a variable geometry turbine and an exhaust gas recirculation valve. The goal is to simultaneously and robustly achieve low fuel consumption and low emissions of nitrogen oxides (NOx) and

  1. Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Anand R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sharpe, Ben [International Council on Clean Transportation (United States); Delgado, Oscar [International Council on Clean Transportation (United States); Bandivadekar, Anup [International Council on Clean Transportation (United States); Garg, Mehul [International Council on Clean Transportation (United States)

    2017-06-14

    The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data and vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the

  2. The ENABLER---based on proven NERVA technology

    International Nuclear Information System (INIS)

    Livingston, J.M.; Pierce, B.L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs

  3. The ENABLER - Based on proven NERVA technology

    International Nuclear Information System (INIS)

    Livingston, J.M.; Pierce, B.L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs

  4. The ENABLER - Based on proven NERVA technology

    Science.gov (United States)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  5. Energy efficiency with QoS control in dynamic optical networks with SDN enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Chen, Xin; Phillips, Chris

    2014-01-01

    The paper presents energy efficient routing algorithms based on a novel integrated control plane platform. The centralized control plane structure enables the use of flexible heuristic algorithms for route selection in optical networks. Differentiated routing for various traffic types is used in ...

  6. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.

    2018-01-02

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  7. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.; Kutbee, Arwa T.; Khan, Sherjeel M.; Sepulveda, Adrian C.; Wicaksono, Irmandy; Nour, Maha A.; Wehbe, Nimer; Almislem, Amani Saleh Saad; Ghoneim, Mohamed T.; Sevilla, Galo T.; Syed, Ahad; Shaikh, Sohail F.; Hussain, Muhammad Mustafa

    2018-01-01

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  8. 76 FR 59922 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-28

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel... comprehensive Heavy-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions...

  9. Handbook of fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  10. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    Science.gov (United States)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  11. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.K. [National Chinyi University of Technology (Taiwan). Dept. of Mechanical Engineering; Cheng, H.C. [Point Environmental Protection Technology Company Limited (Taiwan)

    2011-07-28

    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series of burning tests, the fuel saving can be 8--15%. Also, from the comparison of decline for the heat value and total energy output of emulsified fuel, one can find that the water as the dispersed phase in the combustion process will lead to a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, meaning the reduction of the exhaust gas is truly effective. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  12. Criticality impacts on LWR fuel storage efficiency

    International Nuclear Information System (INIS)

    Napolitano, D.

    1992-01-01

    This presentation discusses the criticality impacts throughout storage of fuel onsite including new fuel storage, spent fuel storage, consolidation, and dry storage. The general principles for criticality safety are also be discussed. There is first an introduction which explains today's situation for criticality safety concerns. This is followed by a discussion of criticality safety Regulatory Guides, safety limits and fundamental principles. Design objectives for criticality safety in the 1990's include higher burnups, longer cycles, and higher enrichments which impact the criticality safety design. Criticality safety for new fuel storage, spent fuel storage, fuel consolidation, and dry storage are followed by conclusions. Today's situation is one in which the US does not reprocess, and does not have an operating MRS facility or repository. High density fuel storage rack designs of the 1980s, are filling up. Dry cask storage systems for spent fuel storage are being utilized. Enrichments continue to increase PWR fuel assemblies with enrichments of 4.5 to 5.0 weight percent U-235 and BWR fuel assemblies with enrichments of 3.25 to 3.5 weight percent U-235 are common. Criticality concerns affect the capacity and the economics of light water reactor (LWR) fuel storage arrays by dictating the spacing of fuel assemblies in a storage system, or the use of poisons or exotic materials in the storage system design

  13. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  14. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  15. Overall efficiencies for conversion of solar energy to a chemical fuel

    Science.gov (United States)

    Fish, J. D.

    A complete and consistent scheme for determining the overall efficiency of a generalized process for the conversion of solar energy into a chemical fuel (e.g. hydrogen) is developed and applied to seven conversion processes: thermal, thermochemical, photovoltaic, photogalvanic, photoelectrolysis, photosynthesis and photochemical conversion. It is demonstrated that the overall efficiency of each of these processes is determined by ten common factors: maximum theoretical efficiency, inherent absorption losses, inherent internal losses, rate limiting effects, reflection losses, transmission losses, coverage losses, system construction requirements, parasitic losses and harvesting and conversion losses. Both state-of-the-art and optimistic values are assigned to each factor for each of the seven conversion processes. State-of-the-art overall efficiencies ranged from 5% for thermal conversion down to essentially zero for thermochemical. Optimistic values in the range of about 10 to 15% are calculated for several of the processes.

  16. Effects of miles per gallon feedback on fuel efficiency in gas-powered cars.

    Science.gov (United States)

    2009-10-01

    This study tested the impact of continuous miles per gallon (MPG) feedback on driving : behavior and fuel efficiency in gas-powered cars. We compared an experimental condition, : where drivers received real-time MPG feedback and a tip sheet, to a con...

  17. Analytical method to evaluate fuel consumption of hybrid electric vehicles at balanced energy content of the electric storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Katrasnik, Tomaz [University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana (Slovenia)

    2010-11-15

    Innovative analytically based method to calculate corrected fuel consumption of parallel and series hybrid electric vehicles (HEVs) at balanced energy content of the electric storage devices is proposed and validated in the paper. The proposed analytical method is generally applicable and features highly accurate corrected fuel consumption results. It enables calculation of the corrected fuel consumption out of a single fuel consumption test run in a single analytic post-processing step. An additional fuel consumption test run might be needed to obtain highly accurate results if ratio of the energy content deviation of the electric storage devices to the energy used for vehicle propulsion over the test cycle is high. Proposed method enables consideration of non-linear energy flow changes and non-linear HEV component efficiency changes caused by the energy management strategy or by the component characteristics. The method therefore features highly accurate results out of the minimum number of fuel consumption test runs and thus optimizes workload for development or optimization of HEVs. The input data of the method are characteristic energy flows and efficiencies that are derived from the energy flows on selected energy paths of HEVs. (author)

  18. Notes on 'Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis'

    NARCIS (Netherlands)

    van Valkenhoef, Gert; Tervonen, Tommi; Postmus, Douwe

    2014-01-01

    In our previous work published in this journal, we showed how the Hit-And-Run (HAR) procedure enables efficient sampling of criteria weights from a space formed by restricting a simplex with arbitrary linear inequality constraints. In this short communication, we note that the method for generating

  19. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J [Elsam/Elkraft/TU Denmark (Denmark)

    1999-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  20. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J. [Elsam/Elkraft/TU Denmark (Denmark)

    1998-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  1. Development and evaluation of the 5 kW fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose Geraldo de Melo; Silva Junior, Fernando Rodrigues da; Soares, Guilherme Fleury Wanderley; Lopes, Francisco da Costa; Gutierrez, Taisa Eva Fuziger; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], Email: furtado@cepel.br; Codeceira Neto, Alcides [Companhia Hidroeletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2010-07-01

    Power systems based on fuel cells have been considered for residential and commercial applications in electrical energy Distributed Generation (DG) markets. In this work we present an analysis of the main results obtained in a DG demonstration project developed by CEPEL, which consists in the implementation, operation and evaluation of a DG power generation system formed by a 5 k W proton exchange membrane fuel cell (PEMFC) unit electrical generation and a natural gas reformer (fuel processor) for local hydrogen production. This demonstration project aims to evaluate a fuel cell technology for stationary application in the Brazilian electric sector. Under this project the performance analysis developed simultaneously the energy and the economic viewpoints, allowing the determination of the best technical and economic conditions of this energy generation power plant, as well as the best operating strategies, enabling the optimization of the overall performance of the stationary cogeneration fuel cell system. It was determined the electrical performance and the overall and subsystems efficiencies of the cogeneration system as a function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic steam reforming provided the system operation with excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economicity of the cogeneration power plant. The results indicate that the fuel cell-based power generation system evaluated can operate with potential of 0.60 V per single fuel cell or higher throughout the power range of the system and the efficiency of the generation system is almost stable for electric power higher than 1.5 k W, with fuel cell electrical efficiency peak of 38%. (author)

  2. Enhancing instruction in Fuels and Combustion Laboratory via a developed computer-assisted program for establishing efficient coal-diesel oil mixture (CDOM) fuel proportions

    Energy Technology Data Exchange (ETDEWEB)

    Maglaya, A.B. [La Salle University, Manila (Philippines). Dept. of Mechanical Engineering

    2004-07-01

    This paper discusses the relevance of digital computation in Fuels and Combustion Laboratory experiments used by the senior students of the Department of Mechanical Engineering, De La Salle University-Manila, Philippines. One of the students' experiments involved the determination of the most efficient CDOM fuel proportion as alternative fuel to diesel oil for steam generators and other industrial applications. Theoretical calculations show that it requires tedious and repetitive computations. A computer-assisted program was developed to lessen the time-consuming activities. The formulation of algorithms were based on the system of equations of the heat interaction between the CDOM fuel, combustion air and products of combustion and by applying the principles of mass and energy equations (or the First Law of Thermodynamics) for reacting systems were utilized. The developed computer-assisted program output verified alternative fuel selected through actual experimentation.

  3. Modulated diesel fuel injection strategy for efficient-clean utilization of low-grade biogas

    International Nuclear Information System (INIS)

    Wang, Xiaole; Qian, Yong; Zhou, Qiyan; Lu, Xingcai

    2016-01-01

    Highlights: • Influences of direct injection strategy on biogas RCCI mode are researched. • Excessive early pilot injection timing leads to the retard of combustion. • Overall indicated thermal efficiency of low-grade biogas can be higher than 40%. • Pilot injection timing has strong influence on particle size distribution. • Composition of biogas has a great influence on the gas emissions. - Abstract: Recently, as a kind of renewable fuel, low-grade biogas has been researched to apply in internal combustion engine. In this paper, an experimental study was conducted to study the influence of injection strategies on the efficient utilization of low-grade biogas in Reactivity Controlled Compression Ignition (RCCI) mode with port fuel injection of biogas and in-cylinder direct injection of diesel based on a modified electronic controlled high-pressure directly injected compression ignition engine. Considered the high proportion of inert gas in biogas, a four-components simulated gas (H_2:CO:CH_4:N_2 = 5:40:5:50 vol%) has been selected as test fuels to simulate biogas. The effects of several injection control parameters such as pilot injection timing, main injection timing, common rail pressure and pilot injection ratio on the combustion and emissions are analyzed in detail. The research demonstrates that the main injection timing can effectively control the combustion phase and excessive early pilot injection timing leads to retard of combustion. CO emissions are relatively high due to homogenous charge of biogas. NOx and smoke emissions can be effectively controlled. In RCCI mode, the indicated thermal efficiency of biogas/diesel can reach 40%.

  4. Solid oxide fuel cell/gas turbine hybrid system analysis for high-altitude long-endurance unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, P.; Brandon, N.P. [Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Brett, D.J.L. [The Centre for CO{sub 2} Technology, University College London, London WC1E 7JE (United Kingdom)

    2008-12-15

    High-altitude long-endurance (HALE) unmanned aerial vehicles (UAVs) are ideally suited to provide surveillance, remote sensing and communication relay capabilities for both military and civilian applications. HALE UAVs typically cruise at an altitude between 15 km and 20 km, travelling at low speed and circling specific areas of interest. The work reported aims to investigate alternative power system architectures that enable an efficiency increase and consequent fuel consumption reduction to realise a one-week endurance target. Specifically, the application of a solid oxide fuel cell combined with a gas turbine is considered; with different system configurations modelled with a view to maximising overall efficiency. It is found that modularising the fuel cell capacity into a number of discrete stacks such that the fuel is distributed in parallel and air is fed in series results in an increased system efficiency compared with a single-stack design. An overall system efficiency of 66.3% (LHV) when operating on hydrogen is predicted for a three-stack system. (author)

  5. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    Science.gov (United States)

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  6. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  7. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Ronald [Chrysler Group LLC., Auburn Hills, MI (United States)

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were; Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009

  8. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  9. Fuel efficiency of conventional design tractors diesel engines in relation to new design

    Directory of Open Access Journals (Sweden)

    Jevtić Jeremija

    2006-01-01

    Full Text Available Total consumption of all types of energies is rather high nowadays with constant tendency of increasing. Transport section is one of the highest consumers of energy obtained from fossil fuels. It is absolutely clear that the reduction of energy consumption and the protection of environment - exhaust emission reduction, i. e. cleaner air, will be one of the main tasks of automotive industry in the first decades of the 21st century. In spite of its superiority over the petrol engine in respect of the fuel consumption, a diesel engine "suffers" from the increased exhaust emission, particles and NOx first of all and also from the noise and vibrations. The paper gives a review of fuel efficiency of conventional design tractors diesel engines in relation to new design. .

  10. Enhanced Emission Performance and Fuel Efficiency for HD Methane Engines. Literature Study. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Broman, R.; Staalhammar, P.; Erlandsson, L.

    2010-05-15

    A literature survey has been conducted in order to define state-of-the-art for methane fuelled engines to be used in heavy duty vehicles. Use of methane can be favourable to increase security of supply and mitigate CO2 emissions, especially when the methane origins from biomass. Furthermore, methane used as a fuel in heavy duty engines has a potential to reduce toxic exhaust emissions. Historically, use of methane in heavy duty engines has often been hampered by poor efficiency, i.e. high fuel consumption when using the Otto-cycle. However, current generation technology engines might be within 5-10 % of the efficiency of Diesel engine technology. In this context it is worth mentioning that compliance-driven changes for meeting future emission regulations for Diesel engines may have a negative impact on fuel efficiency, thereby narrowing the gap. This may present an opportunity for heavy methane fuelled engines. The reliability and durability of the exhaust aftertreatment devices for methane fuelled engines has also given rise to some concerns. Some concepts are performing acceptable while others do not meet expectations. This is partly due to difficulties in handling methane in the aftertreatment device and partly to issues in the design of the ignition system. Methane is a fuel used worldwide and has a potential to be an important complement to Diesel oil. There are two categories of HD methane engines available to end-users: Retrofitted engines, which often include computer controlled retrofit systems developed as 'bolt-on' technologies that can be removed if necessary, to resell the vehicle with a normal diesel engine, and those developed specifically for and in conjunction with engine manufacturers and delivered to customers as factory-built engines or vehicles (OEM). Additionally, both these categories can include engines that use the Otto- or Diesel combustion cycles. When adapting a HD Diesel engine to run on methane there are two options, either

  11. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    Science.gov (United States)

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  12. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  13. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang

    2013-09-01

    High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17%-55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%-50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors. © 2013 Elsevier B.V. All rights reserved.

  14. Control strategy for power management, efficiency-optimization and operating-safety of a 5-kW solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Zhang, Lin; Jiang, Jianhua; Cheng, Huan; Deng, Zhonghua; Li, Xi

    2015-01-01

    Highlights: • Efficiency optimization associated with simultaneous power and thermal management. • Fast load tracing, fuel starvation, high efficiency and operating safety are considered. • Open loop pre-conditioning current strategy is proposed for load step-up transients. • Feedback control scheme is proposed for load step-up transients. - Abstract: The slow power tracking, operating safety, especially the fuel exhaustion, and high efficiency considerations are the key issues for integrated solid oxide fuel cell (SOFC) systems during power step up transients, resulting in the relatively poor dynamic capabilities and make the transient load following very challenging and must be enhanced. To this end, this paper first focus on addressing the efficiency optimization associated with simultaneous power and thermal management of a 5-kW SOFC system. Particularly, a traverse optimization process including cubic convolution interpolation algorithm are proposed to obtain optimal operating points (OOPs) with the maximum efficiency. Then this paper investigate the current implications on system step-up transient performance, then a two stage pre-conditioning current strategy and a feedback power reference control scheme is proposed for load step-up transients to balance fast load following and fuel starvation, after that safe thermal transient is validated. Simulation results show the efficacy of the control design by demonstrating the fast load following ability while maintaining the safe operation, thus safe; efficient and fast load transition can be achieved

  15. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  16. Local flow management/profile descent algorithm. Fuel-efficient, time-controlled profiles for the NASA TSRV airplane

    Science.gov (United States)

    Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.

    1986-01-01

    The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.

  17. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  18. Solid-fuel cook stoves: Fuel efficiency and emissions testing--Austin

    Science.gov (United States)

    The World Health Organization estimates that approximately 1.6 million people prematurely die each year due to exposure to air pollutants from burning solid fuels for residential cooking and heating (WHO, 2010). Residential solid-fuel use accounts for approximately 25 percent of ...

  19. The Need for a Higher Fuel Efficiency of the Electricity Sector - An Analysis of Opportunities and Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Klimstra, J.

    2007-07-01

    The electricity sector is the single largest user of primary energy in the world. The issues of fuel prices, security of supply and greenhouse gas emissions are therefore closely connected with electricity generation. The total energy efficiency of the electricity sector is only 32.5% so that quick improvements are required. However, the uncertainty over fuel prices and technology preferences is such that most investors are hesitant. The life of existing, often low-efficiency, power plants is therefore extended. At the same time, the demand for electricity is rapidly increasing and the gap between capacity and demand decreases. This paper intends to bring more clarity into the economic and environmental boundary conditions of power plants. The goal is to find an attractive way for rapid efficiency improvement with an even better system reliability without increasing the costs. The paper discusses fuel price developments and the costs of generating technologies in connection with the typical demand pattern of electricity. Ultimately, it appears that local generation, preferably coupled with cogeneration, can be an important part of the solution. (auth)

  20. Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Science.gov (United States)

    Neftci, Emre O.; Pedroni, Bruno U.; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert

    2016-01-01

    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware. PMID:27445650

  1. Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Jensen, Søren Højgaard

    2012-01-01

    A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables...... improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired......, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher...

  2. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  3. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  4. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    International Nuclear Information System (INIS)

    Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E.

    2013-01-01

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  6. Enabling MPEG-2 video playback in embedded systems through improved data cache efficiency

    Science.gov (United States)

    Soderquist, Peter; Leeser, Miriam E.

    1999-01-01

    Digital video decoding, enabled by the MPEG-2 Video standard, is an important future application for embedded systems, particularly PDAs and other information appliances. Many such system require portability and wireless communication capabilities, and thus face severe limitations in size and power consumption. This places a premium on integration and efficiency, and favors software solutions for video functionality over specialized hardware. The processors in most embedded system currently lack the computational power needed to perform video decoding, but a related and equally important problem is the required data bandwidth, and the need to cost-effectively insure adequate data supply. MPEG data sets are very large, and generate significant amounts of excess memory traffic for standard data caches, up to 100 times the amount required for decoding. Meanwhile, cost and power limitations restrict cache sizes in embedded systems. Some systems, including many media processors, eliminate caches in favor of memories under direct, painstaking software control in the manner of digital signal processors. Yet MPEG data has locality which caches can exploit if properly optimized, providing fast, flexible, and automatic data supply. We propose a set of enhancements which target the specific needs of the heterogeneous types within the MPEG decoder working set. These optimizations significantly improve the efficiency of small caches, reducing cache-memory traffic by almost 70 percent, and can make an enhanced 4 KB cache perform better than a standard 1 MB cache. This performance improvement can enable high-resolution, full frame rate video playback in cheaper, smaller system than woudl otherwise be possible.

  7. Implementing energy efficient pavements: A socio-economic analysis of the development and implementation of energy efficient pavements with low rolling resistance

    DEFF Research Database (Denmark)

    Axelsen, Christian; Pettinari, Matteo; Schmidt, Bjarne

    2017-01-01

    for the transportation sector is to make road networks more energy efficient by implementing pavements with low rolling resistance, leading to lower fuel consumption. Through a series of projects focusing on reducing rolling resistance conducted since 2010, the Danish Road Directorate (DRD) has developed a durable......, energy-efficient asphalt pavement. Socio-economic analyses conducted to quantify the benefit to society associated with implementing these asphalt pavements have demonstrated very high benefits. The demonstrated results in terms of durability, energy efficiency and socio-economics have resulted...... in substantial government funding being provided for demonstration trials on 50 kilometers of energy-efficient pavement in 2018. The implementation of energy-efficient pavements will enable Denmark to contribute to the out-of-quota 2030-emission cuts in line with EU regulations....

  8. Evaluation of Ultra Clean Fuels from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  9. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  10. Evaluation of the performance of a dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshiharu [The Japan Gas Association, Tokyo (Japan). NGV Project Dept.; Daisho, Yasuhiro; Saito, Takeshi [Waseda Univ., Tokyo (Japan)

    1998-12-31

    Dual fuel operation, in which natural gas is mixed with the diesel engine intake air and ignition is by diesel fuel spray, has the advantage that engine conversion is simple. Under high load it has the same high efficiency as a diesel engine and it can be switched to normal diesel operation for long distance running. Also, NO{sub x} and black smoke emissions can also be reduced. However, the disadvantages are to increase HC and CO emissions, to reduce efficiency under low load, and to emit the large amount of NO{sub x} under high load. Waseda University was commissioned by Tokyo Gas Co., Ltd. to conduct research program involving experimentation ragarding a dual fuel engine. It was then discovered that the most effective means of solving the problems mentioned above is Exhaust Gas Recirculation (EGR) and that the effect can be increased by heating the intake air. An old engine before the current emission standard was converted to dual fuel operation. It was found that these measures enables NO{sub x}, black smoke and CO{sub 2} to be reduced while high thermal efficiency was maintained. They did not reach the point of satisfying latest Japanese emission standard. But it seemed that good results would have been obtained, if a base engine with good emissions had been converted for dual fuel operation. The results of assessing the performance of the dual fuel engine at this time are reported here, centered on the effect of EGR and intake heating. (orig.)

  11. Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell

    Science.gov (United States)

    Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam

    2011-05-01

    We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.

  12. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    Science.gov (United States)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  13. Fuel Application Efficiency in Ideal Cycle of Gas Turbine Plant with Isobaric Heat Supply

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available The paper reveals expediency to use in prospect fuels with maximum value  Qнр∑Vi and minimum theoretical burning temperature in order to obtain maximum efficiency of the ideal cycle in GTP with isobaric heat supply.

  14. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  15. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  16. Energy efficiency impact of EGR on organizing clean combustion in diesel engines

    International Nuclear Information System (INIS)

    Divekar, Prasad S.; Chen, Xiang; Tjong, Jimi; Zheng, Ming

    2016-01-01

    Highlights: • Studied EGR impact on efficiency and emissions of diesel and dual-fuel combustion. • Quantified effectiveness of intake dilution for NOx reduction using EGR. • Identified suitable EGR ranges for mitigating emissions–efficiency trade-off. • Developed careful control of intake dilution and in-cylinder excess ratio. • Enabled ultra-low NOx in both diesel and dual-fuel combustion via EGR control. - Abstract: Exhaust gas recirculation (EGR) is a commonly recognized primary technique for reducing NOx emissions in IC engines. However, depending on the extent of its use, the application of EGR in diesel engines is associated with an increase in smoke emissions and a reduction in thermal efficiency. In this work, empirical investigations and parametric analyses are carried out to assess the impact of EGR in attaining ultra-low NOx emissions while minimizing the smoke and efficiency penalties. Two fuelling strategies are studied, namely diesel-only injection and dual-fuel injection. In the dual-fuel strategy, a high volatility liquid fuel is injected into the intake ports, and a diesel fuel is injected directly into the cylinder. The results suggest that the reduction in NOx can be directly correlated with the intake dilution caused by EGR and the correlation is largely independent of the fuelling strategy, the intake boost, and the engine load level. Simultaneously ultra-low NOx and smoke emissions can be achieved at high intake boost and intake dilution levels in the diesel-only combustion strategy and at high ethanol fractions in the dual-fuel strategy. The efficiency penalty associated with EGR is attributed to two primary factors; the combustion off-phasing and the reduction in combustion efficiency. The combustion off-phasing can be minimized by the closed loop control of the diesel injection timing in both the fuelling strategies, whereas the combustion efficiency can be improved by limiting the intake dilution to moderate levels. The

  17. The role of nuclear energy in the more efficient exploitation of fossil fuel resources

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-01-01

    The energy theory of value, being a valuable addition to the debate on the rational exploitation of man's energy reserves, is applied in order to clarify the presently confused energy input/output relations for nuclear and solar systems as they interact with fossil fuel. It is shown on the basis of purely energetics considerations that the nuclear route - at present and in future - is a very efficient way to stretch out and finally to substitute for the limited fossil fuel resources. This is particularly true if one considers the transitory phase where the substituting process has to exhibit a rapid exponential growth rate. The energetical effectiveness of the production of a synthetic fuel, as for example hydrogen by water splitting processes, is addressed at the end and serves to give an idea how effectively the energy available in fossil fuels can be amplified by virtue of the coupling of nuclear energy into the process. (author)

  18. Method for pre-processing LWR spent fuel

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Ebihara, Hikoe.

    1986-01-01

    Purpose: To facilitate the decladding of spent fuel, cladding tube processing, and waste gas recovery, and to enable the efficient execution of main re-processing process thereafter. Constitution: Spent fuel assemblies are sent to a cutting process where they are cut into chips of easy-to-process size. The chips, in a thermal decladding process, undergo a thermal cycle processing in air with the processing temperatures increased and decreased within the range of from 700 deg C to 1200 deg C, oxidizing zircaloy comprising the cladding tubes into zirconia. The oxidized cladding tubes have a number of fine cracks and become very brittle and easy to loosen off from fuel pellets when even a slight mechanical force is applied thereto, thus changing into a form of powder. Processed products are then separated into zirconia sand and fuel pellets by a gravitational selection method or by a sifting method, the zirconia sand being sent to a waste processing process and the fuel pellets to a melting-refining process. (Yoshino, Y.)

  19. Case Study on Incentive Mechanism of Energy Efficiency Retrofit in Coal-Fueled Power Plant in China

    Science.gov (United States)

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO2e per annum. The internal rate of return (IRR) of the project is only −0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO2, the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO2 emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China. PMID:23365532

  20. Case Study on Incentive Mechanism of Energy Efficiency Retrofit in Coal-Fueled Power Plant in China

    Directory of Open Access Journals (Sweden)

    Donghai Yuan

    2012-01-01

    Full Text Available An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO2e per annum. The internal rate of return (IRR of the project is only −0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO2, the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO2 emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China.

  1. Case study on incentive mechanism of energy efficiency retrofit in coal-fueled power plant in China.

    Science.gov (United States)

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO(2)e per annum. The internal rate of return (IRR) of the project is only -0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO(2), the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO(2) emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China.

  2. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  3. Energy efficiency improvement by gear shifting optimization

    Directory of Open Access Journals (Sweden)

    Blagojevic Ivan A.

    2013-01-01

    Full Text Available Many studies have proved that elements of driver’s behavior related to gear selection have considerable influence on the fuel consumption. Optimal gear shifting is a complex task, especially for inexperienced drivers. This paper presents an implemented idea for gear shifting optimization with the aim of fuel consumption minimization with more efficient engine working regimes. Optimized gear shifting enables the best possible relation between vehicle motion regimes and engine working regimes. New theoretical-experimental approach has been developed using On-Board Diagnostic technology which so far has not been used for this purpose. The matrix of driving modes according to which tests were performed is obtained and special data acquisition system and analysis process have been developed. Functional relations between experimental test modes and adequate engine working parameters have been obtained and all necessary operations have been conducted to enable their use as inputs for the designed algorithm. The created Model has been tested in real exploitation conditions on passenger car with Otto fuel injection engine and On-Board Diagnostic connection without any changes on it. The conducted tests have shown that the presented Model has significantly positive effects on fuel consumption which is an important ecological aspect. Further development and testing of the Model allows implementation in wide range of motor vehicles with various types of internal combustion engines.

  4. A review on DC/DC converter architectures for power fuel cell applications

    International Nuclear Information System (INIS)

    Kolli, Abdelfatah; Gaillard, Arnaud; De Bernardinis, Alexandre; Bethoux, Olivier; Hissel, Daniel; Khatir, Zoubir

    2015-01-01

    Highlights: • Different DC/DC power converter topologies for Fuel Cell systems are presented. • Advantages and drawbacks of the DC/DC power converter topologies are detailed. • Wide-BandGap semiconductors are attractive candidates for design of converters. • Wide-BandGap semiconductors improve efficiency and thermal limits of converters. • Different semiconductor technologies are assessed. - Abstract: Fuel cell-based power sources are attractive devices. Through multi-stack architecture, they offer flexibility, reliability, and efficiency. Keys to accessing the market are simplifying its architecture and each components. These include, among others, the power converter enabling the output voltage regulation. This article focuses on this specific component. The present paper gives a comprehensive overview of the power converter interfaces potentially favorable for the automotive, railways, aircrafts and small stationary domains. First, with respect to the strategic development of a modular design, it defines the specifications of a basic interface. Second, it inventories the best architecture opportunities with respect to these requirements. Based on this study, it fully designs a basic module and points out the outstanding contribution of the new developed silicon carbide switch technology. In conclusion, this review article exhibits the importance of choosing the right power converter architecture and the related technology. In this context it is highlighted that the output power interface can be efficient, compact and modular. In addition, its features enable a thermal compatibility with many ways of integrating this component in the global fuel cell based power source.

  5. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Zou, Long; Qiao, Yan; Zhong, Canyu; Li, Chang Ming

    2017-01-01

    Both physical structure and chemical property of an electrode play critical roles in extracellular electron transfer from microbes to electrodes in microbial fuel cells (MFCs). Herein a novel polyaniline hybridized large mesoporous carbon (PANI-LMC) anode is fabricated from natural biomass by nanostructured CaCO 3 template-assisted carbonization followed by in situ chemical polymerizing PANI to enable fast extracellular electron transfer, in which the LMC with rich disorder-interconnected large mesopores (∼20−50 nm) and large surface area facilitates a fast mediated electron transfer through electron mediators, while the decorated PANI on LMC surface enables the direct electron transfer via bacterial outer-membrane redox centers. Owing to the unique synergistic effect from both excellent electron transfer paths, the PANI-LMC hybrid anode harvests high power electricity with a maximum output power density of 1280 mW m −2 in Shewanella putrefaciens CN32 MFCs, 10-fold higher than that of conventional carbon cloth. The findings from this work suggest a new insight on design of high-efficient anode according to the multiple and flexible electrochemical process for practical MFC applications.

  6. EFFECT SIGNIFICANCE ASSESSMENT OF THE THERMODYNAMICAL FACTORS ON THE SOLID OXIDE FUEL CELL OPERATION

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2015-01-01

    Full Text Available Technologies of direct conversion of the fuel energy into electrical power are an upcoming trend in power economy. Over the last decades a number of countries have created industrial prototypes of power plants on fuel elements (cells, while fuel cells themselves became a commercial product on the world energy market. High electrical efficiency of the fuel cells allows predictting their further spread as part of hybrid installations jointly with gas and steam turbines which specifically enables achieving the electrical efficiency greater than 70 %. Nevertheless, investigations in the area of increasing efficiency and reliability of the fuel cells continue. Inter alia, research into the effects of oxidizing reaction thermodynamic parameters, fuel composition and oxidation reaction products on effectiveness of the solid oxide fuel cells (SOFC is of specific scientific interest. The article presents a concise analysis of the fuel type effects on the SOFC efficiency. Based on the open publications experimental data and the data of numerical model studies, the authors adduce results of the statistical analysis of the SOFC thermodynamic parameters effect on the effectiveness of its functioning as well as of the reciprocative factors of these parameters and gas composition at the inlet and at the outlet of the cell. The presented diagrams reflect dimension of the indicated parameters on the SOFC operation effectiveness. The significance levels of the above listed factors are ascertained. Statistical analysis of the effects of the SOFC functionning process thermodynamical, consumption and concentration parameters demonstrates quintessential influence of the reciprocative factors (temperature – flow-rate and pressure – flow-rate and the nitrogen N2 and oxygen O2 concentrations on the operation efficiency in the researched range of its functioning. These are the parameters to be considered on a first-priority basis while developing mathematical models

  7. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  8. Device for separating ruthenium ion from spent fuel material

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Sasahira, Akira; Ozawa, Yoshihiro; Kawamura, Fumio.

    1988-01-01

    Purpose: To separate plutonium ions efficiently and selectively from organic solvent containing tributyl phosphate used in the main step of reprocessing process. Constitution: The device comprises, as the main constituent factor, a liquid-liquid contact device for bringing not water soluble organic solvent into contact with a nitric acid solution of spent fuel substances and a liquid-liquid contact-separation device for bringing an organic solvent solution containing spent fuel substances separated with nitric acid into contact again with nitric acid. Then, a device is disposed between two liquid-liquid contact devices for staying ruthenium ions and organic solvent for a sufficient time. In this way, ruthenium ions in the organic solvent containing butyl phosphate are gradually converted into complex compounds combined with tributyl phosphate thereby enabling to separate ruthenium ions efficiently and remarkably reduce the corrosion of equipments. (Horiuchi, T.)

  9. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    Science.gov (United States)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  10. Why aircraft will fly more fuel-efficiently on FRIDAY : The FRIDAY route charges method

    NARCIS (Netherlands)

    Verbeek, R.J.D.; Visser, H.G.; Lovell, D.; Fricke, H.

    2016-01-01

    The Single European Sky is being introduced to improve the efficiency of flight and traffic operations by reforming the air traffic management system. Despite all of these technical advances, airlines choose detours to avoid high route charges. This mechanism is intensified when fuel prices are low.

  11. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  12. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    Science.gov (United States)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  13. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  14. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest.

    Science.gov (United States)

    Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip

    2010-05-15

    The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.

  15. CONTROLLING AS A MECHANISM TO INCREASE THE EFFICIENCY OF MANAGEMENT ENTERPRISES OF FUEL-ENERGY COMPLEX

    Directory of Open Access Journals (Sweden)

    M. A. Ostashkin

    2013-01-01

    Full Text Available This article discusses the possibility of application of controlling as mechanism of increasing the efficiency of management of enterprises of fuel- energy complex. The research was conducted on the materials of the JSC «Gazprom».

  16. Back-end fuel cycle efficiencies with respect to improved uranium utilization

    International Nuclear Information System (INIS)

    Kuczera, B.; Hennies, H.H.

    1983-01-01

    The world-wide nuclear power plant (NPP) capacity is at present 160 GW(e). If one adds the power stations under construction and ordered, a plant capacity of approximately 480 GW(e) is obtained for 1990, with the share of LWRs making up more than 80%. A modern LWR consumes in the open fuel cycle about 4400 metric tonnes of natural uranium per GW(e), assuming a lifetime of 30 years and a load factor of 70%. Considering the natural uranium reserves known at present and exploitable under economic conditions, it can be conveniently estimated that, with the present NPP capacity extension perspective, the natural uranium resources may be exhausted in a few decades. This trend can be counteracted in a flexible manner by various approaches in fuel cycle technology and strategy: (i) by steady further development of the established LWR technology the uranium consumption can be reduced by about 15%; (ii) closing the nuclear fuel cycle on the basis of LWRs (i.e. thermal uranium and plutonium recycling) implies up to 40% savings in natural uranium consumption; (iii) more recent considerations include the advanced pressurized water reactor (APWR). The APWR combines the proven PWR technology with a newly developed tight lattice core with greatly improved conversion characteristics (conversion ratio = 0.90 to 0.95). In terms of uranium utilization, the APWR has an efficiency three to five times higher than a PWR; (iv) Commercial introduction of FBR systems results in an optimal utilization of uranium which, at the same time, guarantees the supply of nuclear fuel well beyond the present century. For a corresponding transition period an energy supply system can be conceived which relies essentially on extended back-end fuel cycle capacities. These would facilitate a symbiosis of PWR, APWR and FBR, characterized by high flexibility with respect to long-term developments on the energy market. (author)

  17. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle

    International Nuclear Information System (INIS)

    Guo, Fang; Wang, Xin; Yang, Xiaoyi

    2017-01-01

    Highlights: • High lipid content in microalgae increases energy conversion efficiency. • Indirect pathway has the highest mass ratio, energy ratio and energy efficiency. • The Isochrysis indirect pathway produces most kerosene component precursor. • The Isochrysis indirect pyrolysis pathway shows the best performance in LCA. - Abstract: Although the research of microalgae pyrolysis has been conducted for many years, there is a lack of investigations on energy efficiency and life cycle assessment. In this study, we investigated the biocrude yield and energy efficiency of direct pyrolysis, microalgae residue pyrolysis after lipid extraction (indirect pyrolysis), and different microalgae co-pyrolysis. This research also investigated the life cycle assessment of the three different pyrolysis pathways. A system boundary of Well-to-Wake (WTWa) was defined and included sub-process models, such as feedstock production, fuel production and pump-to-wheels (PTW) stages. The pathway of Isochrysis indirect pyrolysis shows the best performance in the mass ratio and energy ratio, produces the most kerosene component precursor, has the lowest WTWa total energy input, fossil fuel consumption and greenhouse gas emissions, and resultes in the best energy efficiency. All the evidence indicates that Isochrysis R2 pathway is a potential and optimal pyrolysis pathway to liquid biofuels. The mass ratio of pyrolysis biocrude is shown to be the decisive factor for different microalgae species. The sensitivity analysis results also indicates that the life cycle indicators are particularly sensitive to the mass ratio of pyrolysis biocrude for microalgae-based hydrotreated pyrolysis aviation fuel.

  18. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokun [Univ. of Nevada, Reno, NV (United States); Li, Teng [Washington State Univ., Pullman, WA (United States); Tang, Kan [Washington State Univ., Pullman, WA (United States); Zhou, Xinpei [Univ. of Nevada, Reno, NV (United States); Lu, Mi [Univ. of Nevada, Reno, NV (United States); Ounkham, Whalmany L. [Univ. of Nevada, Reno, NV (United States); Spain, Stephen M. [Univ. of Nevada, Reno, NV (United States); Frost, Brian J. [Univ. of Nevada, Reno, NV (United States); Lin, Hongfei [Washington State Univ., Pullman, WA (United States)

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reaction mechanism is discussed.

  20. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    Science.gov (United States)

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  2. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  3. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  4. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  5. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  6. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Dilts, Gary A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2015-04-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  7. High Efficiency - Reduced Emissions Boiler Systems for Steam, Heat, and Processing

    Science.gov (United States)

    2012-07-01

    enable energy saving necessary for obtaining Energy Star certification for the whole boiler system. Widespread boiler control updates could be possible...adaptability to different boiler and oil/gas burner configurations, and extensibility to operation with nonconventional fuels (e.g., biogas and syngas...typically operating below or slightly above 80%. Higher efficiency improvements can certainly be obtained via boiler replacement and adoption of

  8. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  9. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.

    2017-11-01

    One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and

  10. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  11. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  12. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  13. Discrimination of irradiated MOX fuel from UOX fuel by multivariate statistical analysis of simulated activities of gamma-emitting isotopes

    Science.gov (United States)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.

    2018-03-01

    This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.

  14. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    Science.gov (United States)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  15. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2018-05-01

    Full Text Available Summary: Clinical transplantation of tissue fragments, including islets, faces a critical challenge because of a lack of effective strategies that ensure efficient engraftment through the timely integration of vascular networks. We recently developed a complex organoid engineering method by “self-condensation” culture based on mesenchymal cell-dependent contraction, thereby enabling dissociated heterotypic lineages including endothelial cells to self-organize in a spatiotemporal manner. Here, we report the successful adaptation of this method for generating complex tissues from diverse tissue fragments derived from various organs, including pancreatic islets. The self-condensation of human and mouse islets with endothelial cells not only promoted functionalization in culture but also massively improved post-transplant engraftment. Therapeutically, fulminant diabetic mice were more efficiently treated by a vascularized islet transplant compared with the conventional approach. Given the general limitations of post-transplant vascularization associated with 3D tissue-based therapy, our approach offers a promising means of enhancing efficacy in the context of therapeutic tissue transplantation. : Takahashi et al. report on generating vascularized islet tissue from humans and mice. After transplantation, vascularized islets significantly improve survival of diabetic mice, demonstrating the quick normalization of blood glucose compared with conventional islet transplantation. Keywords: tissue engineering, tissue-based therapy, vascularization, islet transplantation, organoid

  16. Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells

    International Nuclear Information System (INIS)

    San Martin, J.I.; Zamora, I.; San Martin, J.J.; Aperribay, V.; Torres, E.; Eguia, P.

    2010-01-01

    Fuel cells are clean generators that provide both electrical and thermal energy with a high global efficiency level. The characteristics of these devices depend on numerous parameters such as: temperature, fuel and oxidizer pressures, fuel and oxidizer flows, etc. Therefore, their influence should be evaluated to appropriately characterize behaviour of the fuel cell, in order to enable its integration in the electric system. This paper presents a theoretical and experimental analysis of the performance of two commercial Proton Exchange Membrane (PEM) fuel cells of 40 and 1200 W, and introduces the application of the principle of geometrical similarity. Using the principle of geometrical similarity it is possible to extrapolate the results obtained from the evaluation of one fuel cell to other fuel cells with different ratings. An illustrating example is included.

  17. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  18. Design of a fuel-efficient guidance system for a STOL aircraft

    Science.gov (United States)

    Mclean, J. D.; Erzberger, H.

    1981-01-01

    In the predictive mode, the system synthesizes a horizontal path from an initial aircraft position and heading to a desired final position and heading and then synthesizes a fuel-efficient speed-altitude profile along the path. In the track mode, the synthesized trajectory is reconstructed and tracked automatically. An analytical basis for the design of the system is presented and a description of the airborne computer implementation is given. A detailed discussion of the software, which should be helpful to those who use the actual software developed for these tests, is also provided.

  19. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  20. Increased fuel burn-up and fuel cycle equilibrium

    International Nuclear Information System (INIS)

    Debes, M.

    2001-01-01

    Improvement of nuclear competitiveness will rely mainly on increased fuel performance, with higher burn-up, and reactors sustained life. Regarding spent fuel management, the EDF current policy relies on UO 2 fuel reprocessing (around 850 MTHM/year at La Hague) and MOX recycling to ensure plutonium flux adequacy (around 100 MTHM/year, with an electricity production equivalent to 30 TWh). This policy enables to reuse fuel material, while maintaining global kWh economy with existing facilities. It goes along with current perspective to increase fuel burn-up up to 57 GWday/t mean in 2010. The following presentation describes the consequences of higher fuel burn-up on fuel cycle and waste management and implementation of a long term and global equilibrium for decades in spent fuel management resulting from this strategy. (author)

  1. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seshaiah, N. [Mechanical Engineering Department, M.I.T.S, Madanapalle, Angallu-517325, A.P. (India)

    2010-07-01

    Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene), and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  2. Improvement of operation efficiency for WWER-440 and WWER-1000 for TRIGON fuel assembly design features

    Energy Technology Data Exchange (ETDEWEB)

    Silberstein, A [European WWER Fuels GmbH, Lyon (France)

    1994-12-31

    TRIGON 440 and TRIGON 1000 fuel assemblies and their assembly matching counterparts are described. Their role in increasing the efficiency of WWER reactors is stressed. Special attention is paid to their design features as well as calibrated means of predicting behaviour under irradiation from light water reactor core operation. They reduce the fuel cycle cost as a result of the reduced need for natural uranium which have to be enriched and of the smaller number of fuel assemblies which have to be fabricated, stored or reprocessed. The improved control assemblies bring comfort to the plant operator due to intrinsic progress in safety with respect to accidental situation, trouble-free behaviour and long time utilization in the reactor. 14 figs.

  3. Thermally and Chemically responsive nanoporous materials for efficient capture of fission product gases.

    Energy Technology Data Exchange (ETDEWEB)

    Stroeve, Pieter; Faller, Roland

    2018-04-24

    The objective of this project was to develop robust, high-efficiency materials for capture of fission product gases such as He, Xe and Kr in scenarios relevant for both reactor fuels and reprocessing operations. The relevant environments are extremely harsh, encompassing temperatures up to 1500 °C, high levels of radiation, as well as potential exposures to highly-reactive chemicals such as nitric acid and organic solvents such as kerosene. The requirement for nanostructured capture materials is driven in part by the very short (few micron) diffusion distances for product gases in nuclear fuel.1-2 We achieved synthesis, characterization and detailed modeling of the materials. Although not all materials reviewed in this report will be feasible for the ultimate goal of integration in nuclear fuel, nevertheless each material studied has particular properties which will enable an optimized material to be efficiently developed and characterized.

  4. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  5. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector

    Science.gov (United States)

    Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry; Saxena, Nikita T.; Hendricks, Robert C.

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566-Annex standards and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 aF (533 K), 125 psia (0.86 MPa) at 625 aF (603 K), 175 psia (1.21 MPa) at 725 aF (658 K), and 225 psia (1.55 MPa) at 790 aF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% P) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life. In general, 100% SPK-FT fuel and blends with JP-8+100 produce less particulates and less smoke and have lower thermal impact on combustor hardware.

  6. Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel

    International Nuclear Information System (INIS)

    Kuprianov, Vladimir I.; Kaewklum, Rachadaporn; Chakritthakul, Songpol

    2011-01-01

    This work reports an experimental study on firing 80 kg/h rice husk in a swirling fluidized-bed combustor (SFBC) using an annular air distributor as the swirl generator. Two NO x emission control techniques were investigated in this work: (1) air staging of the combustion process, and (2) firing rice husk as moisturized fuel. In the first test series for the air-staged combustion, CO, NO and C x H y emissions and combustion efficiency were determined for burning 'as-received' rice husk at fixed excess air of 40%, while secondary-to-primary air ratio (SA/PA) was ranged from 0.26 to 0.75. The effects of SA/PA on CO and NO emissions from the combustor were found to be quite weak, whereas C x H y emissions exhibited an apparent influence of air staging. In the second test series, rice husks with the fuel-moisture content of 8.4% to 35% were fired at excess air varied from 20% to 80%, while the flow rate of secondary air was fixed. Radial and axial temperature and gas concentration (O 2 , CO, NO) profiles in the reactor, as well as CO and NO emissions, are discussed for the selected operating conditions. The temperature and gas concentration profiles for variable fuel quality exhibited significant effects of both fuel-moisture and excess air. As revealed by experimental results, the emission of NO from this SFBC can be substantially reduced through moisturizing rice husk, while CO is effectively mitigated by injection of secondary air into the bed splash zone, resulting in a rather low emission of CO and high (over 99%) combustion efficiency of the combustor for the ranges of operating conditions and fuel properties.

  7. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  8. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.

    Science.gov (United States)

    Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L

    2017-08-01

    The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.

  9. New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles

    Science.gov (United States)

    Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.

    2015-10-01

    Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.

  10. Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace

    Science.gov (United States)

    Coopenbarger, Richard A.

    2010-01-01

    Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.

  11. Parameterization of Fuel-Optimal Synchronous Approach Trajectories to Tumbling Targets

    Directory of Open Access Journals (Sweden)

    David Charles Sternberg

    2018-04-01

    Full Text Available Docking with potentially tumbling Targets is a common element of many mission architectures, including on-orbit servicing and active debris removal. This paper studies synchronized docking trajectories as a way to ensure the Chaser satellite remains on the docking axis of the tumbling Target, thereby reducing collision risks and enabling persistent onboard sensing of the docking location. Chaser satellites have limited computational power available to them and the time allowed for the determination of a fuel optimal trajectory may be limited. Consequently, parameterized trajectories that approximate the fuel optimal trajectory while following synchronous approaches may be used to provide a computationally efficient means of determining near optimal trajectories to a tumbling Target. This paper presents a method of balancing the computation cost with the added fuel expenditure required for parameterization, including the selection of a parameterization scheme, the number of parameters in the parameterization, and a means of incorporating the dynamics of a tumbling satellite into the parameterization process. Comparisons of the parameterized trajectories are made with the fuel optimal trajectory, which is computed through the numerical propagation of Euler’s equations. Additionally, various tumble types are considered to demonstrate the efficacy of the presented computation scheme. With this parameterized trajectory determination method, Chaser satellites may perform terminal approach and docking maneuvers with both fuel and computational efficiency.

  12. Computer modelling of the influences of a subsystems’ interaction on energetic efficiency of biofuel production systems

    Directory of Open Access Journals (Sweden)

    Wasiak Andrzej

    2017-01-01

    Full Text Available Energetic efficiency of biofuel production systems, as well as that of other fuels production systems, can be evaluated on the basis of modified EROEI indicator. In earlier papers, a new definition of the EROEI indicator was introduced. This approach enables the determination of this indicator separately for individual subsystems of a chosen production system, and therefore enables the studies of the influence of every subsystem on the energetic efficiency of the system as a whole. The method has been applied to the analysis of interactions between agricultural, internal transport subsystems, as well as preliminary studies of the effect of industrial subsystem.

  13. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  14. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained....... For example, plant efficiency of 45%, 54% and 50.5% can be achieved if the hydrogen, ethanol and methanol are used respectively....

  15. Durability and efficiency tests for direct methanol fuel cell's long-term performance assessment

    International Nuclear Information System (INIS)

    Yeh, Pulin; Chang, Chu Hsiang; Shih, Naichien; Yeh, Naichia

    2016-01-01

    This research assessed the long-term performance of direct methanol fuel cells. The experiment was performed at room temperature using 0.51 mol/L ∼0.651 mol/L methanol with a fuel consumption rate of 0.8 ± 0.1 cc/Wh at stack temperature of 60 °C–70 °C. DuPont Nafion115 proton exchange membrane was used as the base material of MEA (membrane electrode assembly), which is then examined via a series of processes that include I−V curve test, humidity cycle test, load cycle test, and hydrogen penetration test. The study employs membrane modification and cell structure adjustment approaches to reduce the methanol crossover in the cathode and identify the cell performance effect of the carbon paper gas diffusion layer. The test results indicated an efficiency of 25% can be achieved with a three-piece MEA assembly. According to the durability test, the stack power-generation efficiency has maintained at 15%–25% level. With such efficiency, the stack voltage output has been able to stay above 7.8-V for over 5000 h. This result is in line with industry standard. - Highlights: • Assess DMFC performance under non-optimal conditions for production readiness. • Output of 26-cell DMFC stack stays beyond 7.8v after 5000 operation hours. • Power-generation efficiency of 26-cell DMFC stack maintains between 15%–20%.

  16. Fuel performance experience

    International Nuclear Information System (INIS)

    Sofer, G.A.

    1986-01-01

    The history of LWR fuel supply has been characterized by a wide range of design developments and fuel cycle cost improvements. Exxon Nuclear Company, Inc. has pursued an aggressive fuel research and development program aimed at improved fuel performance. Exxon Nuclear has introduced many design innovations which have improved fuel cycle economics and operating flexibility while fuel failures remain at very low levels. The removable upper tie plate feature of Exxon Nuclear assemblies has helped accelerate this development, enabling repeated inspections during successive plant outages. Also, this design feature has made it possible to repair damaged fuel assemblies during refueling outages, thereby minimizing the economic impact of fuel failure from all causes

  17. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    logo, Direct FuelCell and “DFC” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat... of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency

  18. NREL Fuels and Engines Research: Maximizing Vehicle Efficiency and

    Science.gov (United States)

    chemistry, conversion, and combustion to the evaluation of advanced fuels in actual engines and vehicles . With fuel chemistry, our scientific discoveries start out small. We use quantum mechanical modeling to explore how fuels with varying chemistry interact with engine and vehicle design. At our Fuel Combustion

  19. REVA Advanced Fuel Design and Codes and Methods - Increasing Reliability, Operating Margin and Efficiency in Operation

    Energy Technology Data Exchange (ETDEWEB)

    Frichet, A.; Mollard, P.; Gentet, G.; Lippert, H. J.; Curva-Tivig, F.; Cole, S.; Garner, N.

    2014-07-01

    Since three decades, AREVA has been incrementally implementing upgrades in the BWR and PWR Fuel design and codes and methods leading to an ever greater fuel efficiency and easier licensing. For PWRs, AREVA is implementing upgraded versions of its HTP{sup T}M and AFA 3G technologies called HTP{sup T}M-I and AFA3G-I. These fuel assemblies feature improved robustness and dimensional stability through the ultimate optimization of their hold down system, the use of Q12, the AREVA advanced quaternary alloy for guide tube, the increase in their wall thickness and the stiffening of the spacer to guide tube connection. But an even bigger step forward has been achieved a s AREVA has successfully developed and introduces to the market the GAIA product which maintains the resistance to grid to rod fretting (GTRF) of the HTP{sup T}M product while providing addition al thermal-hydraulic margin and high resistance to Fuel Assembly bow. (Author)

  20. CANDU fuel cycle economic efficiency assessments using the IAEA-MESSAGE-V code

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2007-01-01

    The main goal of the paper is to evaluate different electricity generation costs in a CANDU Nuclear Power Plant (NPP) using different nuclear fuel cycles. The IAEA-MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. This complex tool was supplied by International Atomic Energy Agency (IAEA) in 2002 at 'IAEA-Regional Training Course on Development and Evaluation of Alternative Energy Strategies in Support of Sustainable Development' held in Institute for Nuclear Research Pitesti. It is worthy to remind that the sustainable development requires satisfying the energy demand of present generations without compromising the possibility of future generations to meet their own needs. Based on the latest public information in the next 10-15 years four CANDU-6 based NPP could be in operation in Romania. Two of them will have some enhancements not clearly specified, yet. Therefore we consider being necessary to investigate possibility to enhance the economic efficiency of existing in-service CANDU-6 power reactors. The MESSAGE program can satisfy these requirements if appropriate input models will be built. As it is mentioned in the dedicated issues, a major inherent feature of CANDU is its fuel cycle flexibility. Keeping this in mind, some proposed CANDU fuel cycles will be analyzed in the paper: Natural Uranium (NU), Slightly Enriched Uranium (SEU), Recovered Uranium (RU) with and without reprocessing. Finally, based on optimization of the MESSAGE objective function an economic hierarchy of CANDU fuel cycles will be proposed. The authors used mainly public information on different costs required by analysis. (authors)

  1. Efficiency measurement and uncertainty discussion of an electric engine powered by a ``self-breathing'' and ``self-humidified'' proton exchange membrane fuel cell

    Science.gov (United States)

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H2 high heating value (HHV), a tank-to-wheel integral efficiency of (18.2±0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5±1.3)% in complete dead-end operation mode.

  2. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  3. Development of oxygen scavenger additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, B.D.; Demunshi, R.; Sharief, V.; Tian, D.; Teng, Y. [Duquesne Univ., Pittsburgh, PA (United States)

    1995-05-01

    Our current research program is in response to the US Air Force`s FY93 New Initiative entitled {open_quotes}Advanced Fuel Composition and Use.{close_quotes} The critical goal of this initiative is to develop aircraft fuels which can operate at supercritical conditions. This is a vital objective since future aircraft designs will transfer much higher heat loads into the fuel as compared with current heat loads. In this paper it is argued that the thermal stability of most jet fuels would be dramatically improved by the efficient in flight-removal of a fuel`s dissolved oxygen. It is proposed herein to stabilize the bulk fuel by the addition of an additive which will be judiciously designed and programmed to react with oxygen and produce an innocuous product. It is envisioned that a thermally activated reaction will occur, between the oxygen scavenging additive and dissolved oxygen, in a controlled and directed manner. Consequently formation of insoluble thermal degradation products will be limited. It is believed that successful completion of this project will result in the development of a new type of jet fuel additive which will enable current conventional jet fuels to obtain sufficient thermal stability to function in significantly higher temperature regimes. In addition, it is postulated that the successful development of thermally activated oxygen scavengers will also provide the sub-critical thermal stability necessary for future development of endothermic fuels.

  4. Assesment criteria improvement for operational economical efficiency of NPP with WWER typr reactors

    International Nuclear Information System (INIS)

    Abagyan, A.A.; Matveev, A.A.; Ignatenko, E.I.; Pshechenkova, T.V.

    1983-01-01

    A new technique for calculating fuel component of the cost of NPP electric power generation is suggested. To calculate the variable part of fuel component it is suggested to consider the acquisition cost of fuel assemblies, unloaded from the reactor on fuel cycle completion instead of acquisition cost of fresh fuel assemblies, loaded into the reactor for organization of this cycle; it is also suggested to include the acquisition cost of fuel assemblies, remaining in reactop core on completion of the last fuel cycle+ in constant fuel expenses. The fuel component of the cost of WWER-440 reactor electric power generation for desigh operating conditions with 700 full power days period of steady-state fuel cycle was calculated. The suggested technique enables to reveal the deviation of the real fuel cycling conditions from the standard ones and calculate the value of this deviation, establish the reasons, disturbing the economical conditions of reactor operation, to approximate the real conditions of fuel cycling to the optimal ones by influencing on technological process, resulting in the change of factors, determining the fuel cycling efficiency during electric power generation and refueling in considered cycle

  5. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels

    International Nuclear Information System (INIS)

    Permchart, W.; Kouprianov, V.I.

    2004-01-01

    This paper summarizes the results of an experimental study on combustion of three distinct biomass fuels (sawdust, rice husk and pre-dried sugar cane bagasse) in a single fluidized-bed combustor (FBC) with a conical bed using silica sand as the inert bed material. Temperature, CO, NO and O 2 concentrations along the combustor height as well as in flue (stack) gas were measured in the experimental tests. The effects of fuel properties and operating conditions (load and excess air) on these variables were investigated. Both CO and NO axial profiles were found to have a maximum whose location divides conventionally the combustor volume into formation (lower) and reduction (upper) regions for these pollutants. Based on CO emission and unburned carbon content in fly ash, the combustion efficiency of the conical FBC was quantified for the selected biomass fuels fired under different operating conditions. (Author)

  6. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants

    International Nuclear Information System (INIS)

    Kunze, Christian; Spliethoff, Hartmut

    2012-01-01

    Highlights: ► Hot gas cleanup is a highly favorable technology for all selected IGCC concepts. ► Proposed high pressure IGCC with membrane reactor enables direct CO 2 condensation. ► IGCC with OTM and carbonate looping enable significant synergy effects. ► Combining IGCC and oxy-fuel is technically challenging but energetically favorable. ► All selected IGCC concepts are able to realize CO 2 capture rates up to 99%. -- Abstract: Environmental damage due to the emission of greenhouse gases from conventional coal-based power plants is a growing concern. Various carbon capture strategies to minimize CO 2 emissions are currently being investigated. Unfortunately, the efficiency drop due to de-carbonization is still significant and the capture rate is limited. Therefore three future hard coal IGCC concepts are assessed here, applying emerging technologies and various carbon capture approaches. The advanced pre-combustion capture concept is based on hot gas clean-up, membrane-enhanced CO conversion and direct CO 2 condensation. The concept reached a net efficiency of 45.1% (LHV), representing an improvement of 6.46% compared to the conventional IGCC base case. The second IGCC concept, based on post-combustion capture via calcination–carbonation loops, hot gas clean-up and oxygen membranes, showed a net efficiency of 45.87% (LHV). The third IGCC concept applies hot gas clean-up and combustion of the unconverted fuel gas using pure oxygen. The oxygen is supplied by an integrated oxygen membrane. The combination of IGCC and oxy-fuel process reached a net efficiency of 45.74% (LHV). In addition to their increased efficiency, all of the concepts showed significantly improved carbon capture rates up to 99%, resulting in virtually carbon-free fossil power plants.

  7. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  8. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  9. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture

    International Nuclear Information System (INIS)

    Chen, Shiyi; Lior, Noam; Xiang, Wenguo

    2015-01-01

    Highlights: • A novel power system integrating coal gasification with SOFC and chemical looping combustion. • The plant net power efficiency reaches 49.8% with complete CO 2 separation. • Energy and exergy analysis of the entire plant is conducted. • Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. • NiO oxygen carrier shows higher plant efficiency than using Fe 2 O 3 and CuO. - Abstract: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemical looping combustion (CLC) is a process for fuel conversion with inherent CO 2 separation, a novel combined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to investigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with ∼100% CO 2 capture for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor temperature = 950 °C, using NiO as the oxygen carrier in the CLC unit. (2) In this parameter neighborhood the fuel utilization factor, the SOFC temperature and SOFC pressure have small effects on the plant net power efficiency because changes in pressure and temperature that increase the power generation by the SOFC tend to decrease the power generation by the gas turbine and steam cycle, and v.v.; an advantage of this system characteristic is that it maintains a nearly constant power output even when the temperature and pressure vary. (3) The largest exergy loss is in the gasification process, followed by those in the CO 2 compression and the SOFC. (4) Compared with the CLC Fe 2 O 3 and CuO oxygen carriers, NiO results in higher plant net power efficiency. To the authors’ knowledge, this is the first

  10. Enabling online studies of conceptual relationships between medical terms: developing an efficient web platform.

    Science.gov (United States)

    Albin, Aaron; Ji, Xiaonan; Borlawsky, Tara B; Ye, Zhan; Lin, Simon; Payne, Philip Ro; Huang, Kun; Xiang, Yang

    2014-10-07

    The Unified Medical Language System (UMLS) contains many important ontologies in which terms are connected by semantic relations. For many studies on the relationships between biomedical concepts, the use of transitively associated information from ontologies and the UMLS has been shown to be effective. Although there are a few tools and methods available for extracting transitive relationships from the UMLS, they usually have major restrictions on the length of transitive relations or on the number of data sources. Our goal was to design an efficient online platform that enables efficient studies on the conceptual relationships between any medical terms. To overcome the restrictions of available methods and to facilitate studies on the conceptual relationships between medical terms, we developed a Web platform, onGrid, that supports efficient transitive queries and conceptual relationship studies using the UMLS. This framework uses the latest technique in converting natural language queries into UMLS concepts, performs efficient transitive queries, and visualizes the result paths. It also dynamically builds a relationship matrix for two sets of input biomedical terms. We are thus able to perform effective studies on conceptual relationships between medical terms based on their relationship matrix. The advantage of onGrid is that it can be applied to study any two sets of biomedical concept relations and the relations within one set of biomedical concepts. We use onGrid to study the disease-disease relationships in the Online Mendelian Inheritance in Man (OMIM). By crossvalidating our results with an external database, the Comparative Toxicogenomics Database (CTD), we demonstrated that onGrid is effective for the study of conceptual relationships between medical terms. onGrid is an efficient tool for querying the UMLS for transitive relations, studying the relationship between medical terms, and generating hypotheses.

  11. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  12. Fuel cells - a perspective

    International Nuclear Information System (INIS)

    Biegler, T.

    2005-01-01

    Unfortunately, fuel cell publicity conveys expectations and hopes that are often based on uncritical interpretations of the underlying science. The aim here is to use that science to analyse how the technology has developed and what can realistically be delivered by fuel cells. There have been great achievements in fuel cell technology over the past decade, with most types reaching an advanced stage of engineering development. But there has been some muddled thinking about one critical aspect, fuel cell energy efficiency. The 'Carnot cycle' argument, that fuel cells must be much more efficient than heat engines, is a red herring, of no help in predicting real efficiencies. In practice, fuel cells are not always particularly efficient and there are good scientific reasons for this. Cost reduction is a big issue for fuel cells. They are not in principle especially simple devices. Better engineering and mass production will presumably bring costs down, but because of their inherent complexity there is no reason to expect them to be cheap. It is fair to conclude that predictions of fuel cells as commonplace components of energy systems (including a hydrogen economy) need to be treated with caution, at least until major improvements eventuate. However, one type, the direct methanol fuel cell, is aimed at a clear existing market in consumer electronics

  13. Efficiency analyses of the CANDU spent fuel repository using modified disposal canisters for a deep geological disposal system design

    International Nuclear Information System (INIS)

    Lee, J.Y.; Cho, D.K.; Lee, M.S.; Kook, D.H.; Choi, H.J.; Choi, J.W.; Wang, L.M.

    2012-01-01

    Highlights: ► A reference disposal concept for spent nuclear fuels in Korea has been reviewed. ► To enhance the disposal efficiency, alternative disposal concepts were developed. ► Thermal analyses for alternative disposal concepts were performed. ► From the result of the analyses, the disposal efficiency of the concepts was reviewed. ► The most effective concept was suggested. - Abstract: Deep geological disposal concept is considered to be the most preferable for isolating high-level radioactive waste (HLW), including nuclear spent fuels, from the biosphere in a safe manner. The purpose of deep geological disposal of HLW is to isolate radioactive waste and to inhibit its release of for a long time, so that its toxicity does not affect the human beings and the biosphere. One of the most important requirements of HLW repository design for a deep geological disposal system is to keep the buffer temperature below 100 °C in order to maintain the integrity of the engineered barrier system. In this study, a reference disposal concept for spent nuclear fuels in Korea has been reviewed, and based on this concept, efficient alternative concepts that consider modified CANDU spent fuels disposal canister, were developed. To meet the thermal requirement of the disposal system, the spacing of the disposal tunnels and that of the disposal pits for each alternative concept, were drawn following heat transfer analyses. From the result of the thermal analyses, the disposal efficiency of the alternative concepts was reviewed and the most effective concept suggested. The results of these analyses can be used for a deep geological repository design and detailed analyses, based on exact site characteristics data, will reduce the uncertainty of the results.

  14. Microfabricated fuel heating value monitoring device

    Science.gov (United States)

    Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  15. Enabling renewable energy and energy efficiency technologies. Opportunities in Eastern Europe, Caucasus, Central Asia, Southern and Eastern Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Barnsley, Ingrid; Blank, Amanda; Brown, Adam

    2015-06-01

    The increased deployment of renewable energy and energy efficiency technologies (RE&EET) in the South Eastern Mediterranean (SEMED) region and in the Early Transition Countries (ETC) could bring a host of benefits, including enhanced energy security, increased national revenues and environmental gains. A new IEA Insights paper considers policy options for supporting the deployment of RE&EET, as well as the surrounding factors that can enable – or indeed impede – the successful implementation of such support policies in both regions. Drawing on a wealth of IEA analyses and policy experiences globally, the paper: provides a summary of the energy profiles of the ETC and SEMED regions; highlights overarching, ''enabling'' factors that can help to set the necessary foundations for the successful implementation of policy to support RE&EET deployment; analyses policy options for both RE and EE, drawing on practical examples and highlighting indicative policies that correspond with varying levels of market maturity; and provides a checklist for assessing the level of supportiveness of national policy frameworks for RE&EET. The paper concludes by pointing to the significant potential for energy efficiency and renewable energy gains in both regions.

  16. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  17. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Nomata, Terumitsu.

    1993-01-01

    Among fuel pellets to be loaded to fuel cans of a fuel assembly, fuel pellets having a small thermal power are charged in a region from the end of each of spacers up to about 50mm on the upstream of coolants that flow vertically at the periphery of fuel rods. Coolants at the periphery of fuel rods are heated by the heat generation, to result in voids. However, since cooling effect on the upstream of the spacers is low due to influences of the spacers. Further, since the fuel pellets disposed in the upstream region have small thermal power, a void coefficient is not increased. Even if a thermal power exceeding cooling performance should be generated, there is no worry of causing burnout in the upstream region. Even if burnout should be caused, safety margin and reliability relative to burnout are improved, to increase an allowable thermal power, thereby enabling to improve integrity and reliability of fuel rods and fuel assemblies. (N.H.)

  19. Core fuel management using TVS-2M fuel assembly and economic analysis

    International Nuclear Information System (INIS)

    Xu Min; Wang Hongxia; Li Youyi

    2014-01-01

    To improve the economic efficiency, TVS-2M fuel assembly was considered to apply in Tianwan Nuclear Power Plant units 3, 4. Using KASKAD program package, a preliminary research and design was carried out for the Tianwan Nuclear Power Plant loading TVS-2M fuel assembly from the first cycle to equilibrium cycle. An improved fuel management program was obtained, and the economic analysis of the two fuel management programs with or without TVS-2M assembly was studied. The analysis results show that TVS-2M fuel assembly can improve the economic efficiency of the plant remarkably. (authors)

  20. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523 and 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions... fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles, responding to the...

  1. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  2. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  3. Fuel assembly

    International Nuclear Information System (INIS)

    Bando, Masaru.

    1993-01-01

    As neutron irradiation progresses on a fuel assembly of an FBR type reactor, a strong force is exerted to cause ruptures if the arrangement of fuel elements is not displaced, whereas the fuel elements may be brought into direct contact with each other not by way of spacers to cause burning damages if the arrangement is displaced. In the present invention, the circumference of fuel elements arranged in a normal triangle lattice is surrounded by a wrapper tube having a hexagonal cross section, wire spacers are wound therearound, and deformable spacers are distributed to optional positions for fuel elements in the wrapper tube. Interaction between the fuel elements caused by irradiation is effectively absorbed, thereby enabling to delay the occurrence of the rupture and burning damages of the elements. (N.H.)

  4. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    Energy Technology Data Exchange (ETDEWEB)

    Lanzi, Elisa [Fondazione Eni Enrico Mattei (Italy); Verdolini, Elena, E-mail: elena.verdolini@feem.it [Fondazione Eni Enrico Mattei (Italy); Universita Cattolica, del Sacro Cuore di Milano (Italy); Hascic, Ivan [OECD Environment Directorate (France)

    2011-11-15

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: > We study innovation in efficiency-improving electricity generation technologies. > Relevant patents are identified and used as an indicator of innovation. > We show that there is significant technology transfer in this field. > Most patents are first filed in OECD countries and then in non-OECD countries. > Patents in non-OECD countries are mostly marketed domestically.

  5. Pyroprocessing oxide spent nuclear fuels for efficient disposal

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P.

    1994-01-01

    Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment

  6. Nuclear Energy R and D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    International Nuclear Information System (INIS)

    Petti, David; Herring, J. Stephen

    2010-01-01

    As described in the Department of Energy Office of Nuclear Energy's Nuclear Energy R and D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R and D Roadmap, entitled 'Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors', addresses this need. This document presents an Implementation Plan for R and D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: (1) Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, (2) Produce hydrogen for industrial processes and transportation fuels, and (3) Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation

  7. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily

  8. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael R; Morrison, James A; Spomer, Eric; Thimot, Carol A

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heat and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.

  9. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  10. Nickel(0)-catalyzed enantioselective annulations of alkynes and arylenoates enabled by a chiral NHC ligand: efficient access to cyclopentenones.

    Science.gov (United States)

    Ahlin, Joachim S E; Donets, Pavel A; Cramer, Nicolai

    2014-11-24

    Cyclopentenones are versatile structural motifs of natural products as well as reactive synthetic intermediates. The nickel-catalyzed reductive [3+2] cycloaddition of α,β-unsaturated aromatic esters and alkynes constitutes an efficient method for their synthesis. Here, nickel(0) catalysts comprising a chiral bulky C1-symmetric N-heterocyclic carbene ligand were shown to enable an efficient asymmetric synthesis of cyclopentenones from mesityl enoates and internal alkynes under mild conditions. The bulky NHC ligand provided the cyclopentenone products in very high enantioselectivity and led to a regioselective incorporation of unsymmetrically substituted alkynes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  12. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  13. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  14. High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals.

    Science.gov (United States)

    Meng, Fan-Li; Wu, Jiao-Jiao; Zhao, Er-Fei; Zheng, Yan-Zhen; Huang, Mei-Lan; Dai, Li-Ming; Tao, Xia; Chen, Jian-Feng

    2017-11-30

    Integration of the upconversion effect in perovskite solar cells (PSCs) is a facile approach towards extending the spectral absorption from the visible to the near infrared (NIR) range and reducing the non-absorption loss of solar photons. However, the big challenge for practical application of UCNCs in planar PSCs is the poor compatibility between UCNCs and the perovskite precursor. Herein, we have subtly overcome the tough compatibility issue using a ligand-exchange strategy. For the first time, β-NaYF 4 :Yb,Er UCNCs have been embedded in situ into a CH 3 NH 3 PbI 3 layer to fabricate NIR-enabled planar PSCs. The CH 3 NH 3 I-capped UCNCs generated from the ligand-exchange were mixed with the perovskite precursor and served as nucleation sites for the UCNC-mediated heteroepitaxial growth of perovskite; moreover, the in situ embedding of UCNCs into the perovskite layer was realized during a spin-coating process. The resulting UCNC-embedded perovskite layer attained a uniform pinhole-free morphology with enlarged crystal grains and enabled NIR absorption. It also contributed to the energy transfer from the UCNCs to the perovskite and electron transport to the collecting electrode surface. The device fabricated using the UCNC-embedded perovskite film achieved an average power-conversion efficiency of 18.60% (19.70% for the best) under AM 1.5G and 0.37% under 980 nm laser, corresponding to 54% and 740-fold increase as compared to that of its counterpart without UCNCs.

  15. Ionic liquids in proton exchange membrane fuel cells: Efficient systems for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; Basso, Juliana; da Trindade, Leticia G.; Martini, Emilse M.A.; de Souza, Michele O.; de Souza, Roberto F. [Institute of Chemistry, UFRGS, Av. Bento Goncalves 9500, Porto Alegre 91501-970, P.O. Box 15003 (Brazil)

    2010-10-01

    Proton exchange membrane fuel cells (PEMFCs) are used in portable devices to generate electrical energy; however, the efficiency of the PEMFC is currently only 40%. This study demonstrates that the efficiency of a PEMFC can be increased to 61% when 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}) ionic liquid (IL) is used together with the membrane electrode assembly (MEA). The results for ionic liquids (ILs) 1-butyl-3-methylimidazolium chloride (BMI.Cl) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}) in aqueous solutions are better than those obtained with pure water. The current and the power densities with IL are at least 50 times higher than those obtained for the PEMFC wetted with pure water. This increase in PEMFC performance can greatly facilitate the use of renewable energy sources. (author)

  16. Theory and practice. Possible ways of putting fossil fuels to more efficient use in thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Peter, F

    1986-02-01

    In the past decade, the development of fuel and investment costs as it occurred has not given any crucial incentive for a necessary change in thermal efficiency. This can be partly attributed to the high level of technology, but also to the fact that the money spent on efficiency-improving measures increases exponentially for the most part. In any case, it should always be borne in mind in planning a new power station plant that the economic efficiency not only of the plant as a whole must be optimized, but also each individual component and system involved. All efforts to improve economic efficiency in systems and components should be harmonised to fit in with one another.

  17. Fuel management approach in IRIS Reactor

    International Nuclear Information System (INIS)

    Petrovic, B.; Franceschini, F.

    2004-01-01

    This paper provides an overview of fuel management approach employed in IRIS (International Reactor Innovative and Secure). It introduces the initial, rather ambitious, fuel management goals and discusses their evolution that reflected the fast pace of progress of the overall project. The updated objectives rely on using currently licensed fuel technology, thus enabling near-term deployment of IRIS, while still providing improved fuel utilization. The paper focuses on the reference core design and fuel management strategy that is considered in pre-application licensing, which enables extended cycle of three to four years. The extended cycle reduces maintenance outage time and increases capacity factor, thus reducing the cost of electricity. Approaches to achieving this goal are discussed, including use of different reloading strategies. Additional fuel management options, which are not part of the licensing process, but are pursued as long-term research for possible future implementation, are presented as well. (Author)

  18. Fuel consumption impacts of auto roof racks

    International Nuclear Information System (INIS)

    Chen, Yuche; Meier, Alan

    2016-01-01

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks’ fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks—if successful—could save more fuel nationally. - Highlights: •First estimate of national energy impacts of auto roof racks—about 1‰. •A bottom-up approach reveals details of the fuel consumption penalty caused by racks. •Two novel data collection techniques, on-line forums and crowd-sourcing, improve estimate. •Technical and behavioral policies could significantly cut fuel penalties from roof racks.

  19. Effect of pilot fuel quantity on the performance of a dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2000-04-01

    It is well known that the operation of dual fuel engines at lower loads suffers from lower thermal efficiency and higher unburned percentages of fuel. To rectify this problem, tests have been conducted on a special single cylinder compression ignition research engine (Ricardo E6) to investigate the effect of pilot fuel quantity on the performance of an indirect injection diesel engine fuelled with gaseous fuel. Diesel fuel was used as the pilot fuel and methane or propane was used as the main fuel which was inducted into the intake manifold to mix with the intake air. Through experimental investigations, it is shown that, the low efficiency and excess emissions at light loads can be improved significantly by increasing the amount of pilot fuel, while increasing the amount of pilot fuel at high loads led to early knocking. (author)

  20. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  1. Challenges of efficient and clean use of fossil fuels for power production

    Energy Technology Data Exchange (ETDEWEB)

    Vortmeyer, Nicolas; Zimmermann, Gerhard

    2010-09-15

    Constantly increasing resource efficiency together with the broad introduction of CCS technologies is fundamental for a continuous use of fossil fuels in power generation against the background of up-coming requirements for CO2 emission reduction. In principle, CCS means up-grading conventional power plant technology with proven CO2 removal processes. However, this leads to additional losses, auxiliary power demand and cost. System integration, development or at least adaption of components and processes are the main requirements in this context. Different technology solutions and recent developments will be addressed as well as challenges when implementing in demonstration projects.

  2. Fuel cells make gains in power generation market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The ultra-low emission, highly efficient natural gas-fueled fuel cell system is beginning to penetrate the electric power generation market in the US and abroad as the fuel cell industry lowers product costs. And, even as the current market continues to grow, fuel cell companies are developing new technology with even higher levels of energy efficiency. The paper discusses fuel cell efficiency, business opportunities, work to reduce costs, and evolving fuel cell technology

  3. An efficient method of fuel ice formation in moving free-standing ICF/IFE targets

    Science.gov (United States)

    Aleksandrova, I. V.; Bazdenkov, S. V.; Chtcherbakov, V. I.; Gromov, A. I.; Koresheva, E. R.; Koshelev, E. A.; Osipov, I. E.; Yaguzinskiy, L. S.

    2004-04-01

    Currently, research fields related to the elaboration of efficient layering methods for ICF/IFE applications are rapidly expanding. Significant progress has been made in the technology development based on rapid fuel layering inside moving free-standing targets (FST) which is referred to as the FST layering method. This paper presents our new results obtained in this area and describes technologically elegant solutions towards demonstrating a credible pathway for mass production of IFE cryogenic targets.

  4. An efficient method of fuel ice formation in moving free-standing ICF/IFE targets

    International Nuclear Information System (INIS)

    Aleksandrova, I V; Bazdenkov, S V; Chtcherbakov, V I; Gromov, A I; Koresheva, E R; Koshelev, E A; Osipov, I E; Yaguzinskiy, L S

    2004-01-01

    Currently, research fields related to the elaboration of efficient layering methods for ICF/IFE applications are rapidly expanding. Significant progress has been made in the technology development based on rapid fuel layering inside moving free-standing targets (FST) which is referred to as the FST layering method. This paper presents our new results obtained in this area and describes technologically elegant solutions towards demonstrating a credible pathway for mass production of IFE cryogenic targets

  5. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang; Zhang, Fang; Logan, Bruce E.; Hickner, Michael A.

    2013-01-01

    enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17

  6. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  7. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  8. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    International Nuclear Information System (INIS)

    Lanzi, Elisa; Verdolini, Elena; Hascic, Ivan

    2011-01-01

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: → We study innovation in efficiency-improving electricity generation technologies. → Relevant patents are identified and used as an indicator of innovation. → We show that there is significant technology transfer in this field. → Most patents are first filed in OECD countries and then in non-OECD countries. → Patents in non-OECD countries are mostly marketed domestically.

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  10. Failed fuel rod detector

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Katsuya; Matsuda, Yasuhiko

    1984-05-02

    The purpose of the project is to enable failed fuel rod detection simply with no requirement for dismantling the fuel assembly. A gamma-ray detection section is arranged so as to attend on the optional fuel rods in the fuel assembly. The fuel assembly is adapted such that a gamma-ray shielding plate is detachably inserted into optional gaps of the fuel rods or, alternatively, the fuel assembly can detachably be inserted to the gamma-ray shielding plate. In this way, amount of gaseous fission products accumulated in all of the plenum portions in the fuel rods as the object of the measurement can be determined without dismantling the fuel assembly. Accordingly, by comparing the amounts of the gaseous fission products, the failed fuel rod can be detected.

  11. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    Energy Technology Data Exchange (ETDEWEB)

    Pannone, Greg [Novation Analytics; Thomas, John F [ORNL; Reale, Michael [Novation Analytics; Betz, Brian [Novation Analytics

    2017-01-01

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily available from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.

  12. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active...... power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...

  13. The efficiency and fidelity of the in-core nuclear fuel management code FORMOSA-P

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1994-01-01

    The second-order generalized perturbation theory (GPT), nodal neutronic model utilized within the nuclear fuel management optimization code FORMOSA-P is presented within the context of prediction fidelity and computational efficiency versus forward solution. Key features of thr GPT neutronics model as implemented within the Simulated Annealing optimization adaptive control algorithm are discussed. Supporting results are then presented demonstrating the superior consistency of adaptive control for both global and local optimization searches. (authors). 15 refs., 1 fig., 4 tabs

  14. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.

    Science.gov (United States)

    Li, Feng; Yin, Changji; Sun, Liming; Li, Yuanxiu; Guo, Xuewu; Song, Hao

    2018-05-01

    Microbial fuel cell (MFC) is an eco-friendly bio-electrochemical sys-tem that uses microorganism as biocatalyst to convert biomass into electricity. Glycerol, as a waste in the biodiesel refinery processes, is an appealing substrate for MFC. Nevertheless, glycerol cannot be utilized as carbon source by well-known exoelectrogens such as Shewanella oneidensis. Herein, to generate electricity by rapidly harnessing glycerol, the authors rationally constructed a Klebsiella pneumoniae-Shewanella oneidensis microbial consortium to efficiently harvest electricity from glyc-erol, in which K. pneumoniae converted glycerol into lactate, fed to S. oneidensis as carbon source and electron donor. To improve electricity output, the authors systematically engineered the consortium in terms of carbon flux distribution and efficiency of extracellular electron transfer (EET). To direct more carbon flux to lactate biosynthesis in K. pneumoniae, the authors eliminated the ethanol pathway by knocking out the alcohol dehydrogenase gene (adhE), and enhanced lactate biosynthesis by heterologously expressing a lactate dehydrogen-ase gene (ldhD) from Lactobacillus bulgaricus and a lactate transporter gene (lldP) from Escherichia coli. To facilitate EET between S. oneidensis and anode surfaces, a biosynthetic flavins pathway from Bacillus subtilis is introduced into S. oneidensis. The author further optimized the glycerol concentration, thus S. oneidensis could be continuously fed with lactate synthesized from K. pneumoniae at a constant rate. Our glycerol-fed MFC generated a maximum power density of 19.9 mW/m 2 , significantly higher than that of the wild-type consor-tium. This work suggested that engineering microbial consortia is an effi-cient strategy to expand the spectrum of usable carbon sources and promote electricity power production in MFCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Weizhen Rao

    2016-01-01

    Full Text Available The classical model of vehicle routing problem (VRP generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS. TOHLS is based on a hybrid local search algorithm (HLS that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.

  16. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    ) and biofuels have received the most attention, similar hydrocarbons can be produced without using fossil fuels or biomass. Using renewable and/or nuclear energy, carbon dioxide and water can be recycled into liquid hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse...... of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. This article critically reviews the many possible technological pathways for recycling CO2 into fuels using renewable or nuclear energy, considering three stages—CO2 capture, H2O and CO2...... by Fischer–Tropsch synthesis is identified as one of the most promising, feasible routes. An analysis of the energy balance and economics of this CO2 recycling process is presented. We estimate that the full system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis...

  17. 1366 Project Automate: Enabling Automation for <$0.10/W High-Efficiency Kerfless Wafers Manufactured in the US

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2017-05-10

    For photovoltaic (PV) manufacturing to thrive in the U.S., there must be an innovative core to the technology. Project Automate builds on 1366’s proprietary Direct Wafer® kerfless wafer technology and aims to unlock the cost and efficiency advantages of thin kerfless wafers. Direct Wafer is an innovative, U.S.-friendly (efficient, low-labor content) manufacturing process that addresses the main cost barrier limiting silicon PV cost-reductions – the 35-year-old grand challenge of manufacturing quality wafers (40% of the cost of modules) without the cost and waste of sawing. This simple, scalable process will allow 1366 to manufacture “drop-in” replacement wafers for the $10 billion silicon PV wafer market at 50% of the cost, 60% of the capital, and 30% of the electricity of conventional casting and sawing manufacturing processes. This SolarMat project developed the Direct Wafer processes’ unique capability to tailor the shape of wafers to simultaneously make thinner AND stronger wafers (with lower silicon usage) that enable high-efficiency cell architectures. By producing wafers with a unique target geometry including a thick border (which determines handling characteristics) and thin interior regions (which control light capture and electron transport and therefore determine efficiency), 1366 can simultaneously improve quality and lower cost (using less silicon).

  18. Thermal properties and burning efficiency of crude oils and refined fuel oil

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Alva, Wilson Ulises Rojas; Mindykowski, Pierrick Anthony

    2017-01-01

    The thermal properties and burning efficiencies of fresh and weathered crude oils and a refined fuel oil were studied in order to improve the available input data for field ignition systems for the in-situ burning of crude oil on water. The time to ignition, surface temperature upon ignition, heat......-cooled holder for a cone calorimeter under incident heat fluxes of 0, 5, 10, 20, 30, 40 and 50 kW/m2. The results clearly showed that the weathered oils were the hardest to ignite, with increased ignition times and critical heat fluxes of 5-10 kW/m2. Evaporation and emulsification were shown...

  19. Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will

    2016-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.

  20. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  1. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  2. Status and prospects of fuel cell technology in Europe

    International Nuclear Information System (INIS)

    Van Dijkum

    1998-01-01

    Fuel Cells attract a lot of press attention today and an some example of a recent press heading is: ''Orders for Onsi's fuel cells hit $111 million''. The principle of fuel cell technology is explained and examples of realized applications given. In short: fuel cells can be used everywhere where power (and heat) is needed. Regarding the status of fuel cells, Europe is way behind Japan and the US. The 15 PAFC-200 kWe units in operation in Europe (worldwide > 90 units) produced 46,796 MWhe during 296,704 cumulative operating hours with an availability % over 70.00. The world record on continuous operation is held by Japan with 9,478 hours reached at 14th September 1996 and two PAFC-units passed their 40,000 hours of cumulative operation (US and Japan). In Japan, market enabling support is continued with subsidies of one third of the costs for 7 PAFC-units. In the Netherlands, Energy Distribution Companies test their tubular 100 kWe SOFC-unit. During 1,335 hours of continuous operation, the unit produced 165 MWhe in total at 3rd March. EnergieNed, CLC/Ansaldo and Gastec evaluated changes for co-generation and small power production with packaged fuel cell power plants in EU and EFTA countries. In general the authors concluded that implementation of fuel cell power plants in all EU and EFTA countries will be probably possible with today' s technical regulations. On might wonder: What has fuel cell technology to offer in one of the most efficient and low-priced gas economies in Europe, the Netherlands. An example of efficient energy use are greenhouses with artificial lighting and CO 2 -fertilization and energy (heat) storage device. Applying relatively favorable depreciation periods and (utility) interest rate, a PAFC 200 kWe generates just a positive return (IRR = 1.7 % after taxes and subsidies) when part of a gas-engine capacity is replaced

  3. Fuel element cellular grid structure and procedure to insert and withdraw fuel rods from that structure

    International Nuclear Information System (INIS)

    1975-01-01

    A typical embodiment of the invention provides a means for selectively inserting and withdrawing one or more fuel rods from a fuel element cellular grid structure. The transverse stubs on one side of a long, thin bar are turned through 90deg to extend across the gap between mutually perpendicular grid structure plates. The extreme ends of these stubs engage the adhacent portions of the associated plates that form part of the grid cells. Pressing the stubs against the plate portions through the application of appropriate force in a longitudinal direction relative to the bar deflects the engaged plates through a sufficient distance to enable fuel rods to be inserted into or withdrawn from respective cells. After rod insertion, the force applied to the bar is released to enable the plates to relax and engage the fuel rods. The bars are rotated once more through 90deg and withdrawn from the grid structure. A similar procedure is employed to withdraw fuel rods from the grid structure

  4. From fuel to wheel: how modern fuels behave in combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, S.; Muether, M.; Fricke, F. [RWTH Aachen (Germany). Inst. for Combustion Engines; Kolbeck, A. [FEV Motorentechnik GmbH und Co KG, Aachen (Germany)

    2007-07-01

    Fuel consumption/CO{sub 2}-emission reduction for spark-ignited (SI) gasoline engines and pollutant emission reduction for compression-ignited (CI) Diesel engines remain the major challenges for future combustion engine research and development. Currently a variety of technological developments is followed. The fuel has significant influence on the fuel injection and mixing, the self-ignition behaviour and the subsequent combustion process, and hence has considerable impact on the engine conversion efficiency and the emission characteristics. Therefore, a very promising approach to improve the engine efficiency and to lower the pollutant emission is to optimize the fuel composition. Several diesel-like fuels with varying aromatic concentrations (mono-, di-, tri- and total aromatics) and oxygenating components have already shown potential for soot reduction in diesel engines, which is of interest when looking at future biofuel components, which will most likely have particular higher oxygen content. 2nd generation biofuels, e.g. ethanol for SI engines and Fischer-Tropsch diesel for CI engines, have already demonstrated their positive influence on the engine performance, when the combustion system is specifically adapted. The full potential for future high efficient and low emission combustion systems can only be exploited by a simultaneous optimisation of the fuel and the internal combustion engine. (orig.)

  5. Towards 40% efficiency with BMEP exceeding 30 bar in directly injected, turbocharged, spark ignition ethanol engines

    International Nuclear Information System (INIS)

    Boretti, Alberto

    2012-01-01

    Highlights: ► The main advantages of ethanol vs. gasoline are higher knock resistance and heat of vaporization. ► Direct injection and turbo charging are the key features of high efficiency and high power density ethanol engines. ► Advanced ethanol engines are enablers of vehicle fuel energy economy similar to Diesel engines. ► Waste bio mass ethanol may cut the nonrenewable energy costs of fossil fuels passenger cars by almost 90%. - Abstract: Current flexi fuel gasoline and ethanol engines have efficiencies generally lower than dedicated gasoline engines. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results when targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger than gasoline top engine brake thermal efficiencies and peak power and torque, while the variable valve actuation produces smaller penalties in efficiency changing the load than in conventional throttle controlled engines.

  6. Fuel charging machine

    International Nuclear Information System (INIS)

    Uchikawa, Sadao.

    1978-01-01

    Purpose: To enable continuous fuel discharging and charging steps in a bwr type reactor by effecting positioning only for once by providing a plurality of fuel assembly grippers and their drives co-axially on a rotatable surface. Constitution: A plurality of fuel assembly grippers and their drives are provided co-axially on a rotatable surface. For example, a gripper A, a drive B, a gripper C and a drive D are arranged co-axially in symmetric positions on a disk rotated on rails by wheels and rotational drives. A new fuel in a fuel pool is gripped by the gripper A and transported above the reactor core. Then, the disk is positioned so that the gripper C can grip the spent fuel in the core, and the fuel to be discharged is gripped and raised by the gripper C. Then the disk is rotated by 180 0 and the new fuel in the gripper A is charged into the position from which the old fuel has been discharged and, finally, the discharged fuel is sent to the fuel pool for storage. (Seki, T.)

  7. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells.

    Science.gov (United States)

    Dong, Fengping; Xie, Kabin; Chen, Yueying; Yang, Yinong; Mao, Yingwei

    2017-01-22

    CRISPR/Cas9 has been widely used for genomic editing in many organisms. Many human diseases are caused by multiple mutations. The CRISPR/Cas9 system provides a potential tool to introduce multiple mutations in a genome. To mimic complicated genomic variants in human diseases, such as multiple gene deletions or mutations, two or more small guide RNAs (sgRNAs) need to be introduced all together. This can be achieved by separate Pol III promoters in a construct. However, limited enzyme sites and increased insertion size lower the efficiency to make a construct. Here, we report a strategy to quickly assembly multiple sgRNAs in one construct using a polycistronic-tRNA-gRNA (PTG) strategy. Taking advantage of the endogenous tRNA processing system in mammalian cells, we efficiently express multiple sgRNAs driven using only one Pol III promoter. Using an all-in-one construct carrying PTG, we disrupt the deacetylase domain in multiple histone deacetylases (HDACs) in human cells simultaneously. We demonstrate that multiple HDAC deletions significantly affect the activation of the Wnt-signaling pathway. Thus, this method enables to efficiently target multiple genes and provide a useful tool to establish mutated cells mimicking human diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Kang, Min Kyoung

    2017-01-01

    Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7–C13) by yeast Saccharomyces cerevisiae...

  9. Quantifying the prevalence of fuel poverty across the European Union

    International Nuclear Information System (INIS)

    Thomson, Harriet; Snell, Carolyn

    2013-01-01

    The literature and policy base for fuel poverty in the UK and Ireland is well established, and there is a growing body of single country studies beyond these two EU member states (for example Brunner et al. (2012), Dubois (2012), and Tirado Herrero and Ürge-Vorsatz (2010)), however, on a European level, the last analysis of fuel poverty was conducted in 2004, prior to the enlargement of the EU. Using survey data this paper presents an updated overview of the prevalence of European fuel poverty in the context of the accession of numerous former social states, and rising fuel prices. Analysis reveals the phenomenon of fuel poverty is occurring across the EU, with particularly high levels of fuel poverty found in Eastern and Southern European states. It is argued that there are both EU and national policy frameworks in place that address climate change and these could be used as a starting point for countries to address fuel poverty through improved domestic energy efficiency measures. This paper reflects research undertaken in 2011, supported by eaga Charitable Trust, within the umbrella of work examining issues of poverty and social exclusion across the EU, which has enabled access to the EU-SILC dataset. - Highlights: ► This research is the first comparative analysis of European fuel poverty since 2004. ► Fuel poverty is a particular problem for eastern and southern European member states. ► Recommendations include the improved integration with current EU climate policies.

  10. Gasoline taxes or efficiency standards? A heterogeneous household demand analysis

    International Nuclear Information System (INIS)

    Liu, Weiwei

    2015-01-01

    Using detailed consumer expenditure survey data and a flexible semiparametric dynamic demand model, this paper estimates the price elasticity and fuel efficiency elasticity of gasoline demand at the household level. The goal is to assess the effectiveness of gasoline taxes and vehicle fuel efficiency standards on fuel consumption. The results reveal substantial interaction between vehicle fuel efficiency and the price elasticity of gasoline demand: the improvement of vehicle fuel efficiency leads to lower price elasticity and weakens consumers’ sensitivity to gasoline price changes. The offsetting effect also differs across households due to demographic heterogeneity. These findings imply that when gasoline taxes are in place, tightening efficiency standards will partially offset the strength of taxes on reducing fuel consumption. - Highlights: • Model household gasoline demand using a semiparametric approach. • Estimate heterogeneous price elasticity and fuel efficiency elasticity. • Assess the effectiveness of gasoline taxes and efficiency standards. • Efficiency standards offset the impact of gasoline taxes on fuel consumption. • The offsetting effect differs by household demographics

  11. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO 2 , MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  12. Fuel Efficiency Assessment with DEA

    Science.gov (United States)

    2010-03-01

    weighted with regard to their relative importance. The weights are subjectively de - fined by subject experts, which makes the FEI vulnerable to...Energy Information Administration, Imports, Exports and Movements. The US government consumes only a small amount of fuel/energy of the US de - mand...it takes every measure to conserve energy and this is stated in their mission statement. Gen. Arthur J. Lichte stated AMC’s new five focus areas as

  13. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  14. Last Mile Towards Efficient Healthcare Delivery in Switzerland: eHealth Enabled Applications Could Speed Up the Care Process.

    Science.gov (United States)

    Deng, Yihan; Bürkle, Thomas; Holm, Jürgen; Zetz, Erwin; Denecke, Kerstin

    2018-01-01

    A precise and timely care delivery depends on an efficient triage performed by primary care providers and smooth collaboration with other medical specialities. In recent years telemedicine gained increasing importance for efficient care delivery. It's use, however, has been limited by legal issues, missing digital infrastructures, restricted support from health insurances and the digital divide in the population. A new era towards eHealth and telemedicine starts with the establishment of national eHealth regulations and laws. In Switzerland, a nation-wide digital infrastructure and electronic health record will be established. But appropriate healthcare apps to improve patient care based on this infrastructure remain rare. In this paper, we present two applications (self-anamnesis and eMedication assistant) for eHealth enabled care delivery which have the potential to speed up diagnosis and treatment.

  15. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals.

    Science.gov (United States)

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-09-27

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner.

  16. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of

  17. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. M. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  18. D-3He fueled FRC reactor 'ARTEMIS-L'

    International Nuclear Information System (INIS)

    Momota, Hiromu; Tomita, Yukihiro; Ishida, Akio; Kohzaki, Yasuji; Nakao, Yasuyuki; Nishikawa, Masabumi; Ohi, Shoichi; Ohnishi, Masami.

    1992-09-01

    A neutron-lean D- 3 He fueled field reversed configuration (FRC) fusion reactor is studied on the bases of former high-efficiency ARTEMIS design. Certain improvements such as effective axial contracting plasma heating and cusp-type direct energy converters as well as an empirical scale of the energy confinement are introduced. The resultant total neutron load onto the first wall of the plasma chamber is as low as 0.1 MW/m 2 , which enable the life of the first wall or the structural materials to be longer than the whole life of the reactor. The attractive characteristics of the neutron-lean reactor follow in the ARTEMIS design: it is socially acceptable in views of radioactivity and fuel resources, and the cost of electricity appears to be cheap compared with that from a light water reactor. Critical physics and engineering issues for performing the ARTEMIS-L reactor are clarified. (author)

  19. Fuel Production from Seawater and Fuel Cells Using Seawater.

    Science.gov (United States)

    Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo

    2017-11-23

    Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  1. Emission constrained multiple-pulse fuel injection optimisation and control for fuel-efficient diesel engines

    NARCIS (Netherlands)

    Luo, X.; Jager, de A.G.; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injec- tion profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of

  2. Fuel efficiency of the Austrian passenger vehicle fleet-Analysis of trends in the technological profile and related impacts on CO2 emissions

    International Nuclear Information System (INIS)

    Meyer, I.; Wessely, S.

    2009-01-01

    This paper analyzes trends in the technological profile of the Austrian personnel vehicle fleet from 1990 to 2007. This includes the parameters of power, engine size and weight, which beyond the technological efficiency of the motor engine itself, are considered to be the main determinants of the fuel efficiency of the average car stock. Investigating the drivers of ever rising transport related greenhouse gas emissions is crucial in order to derive policies that strive towards more energy-efficient on-road passenger mobility. We focus on the efficacy of technological efficiency improvements in mitigating climate-relevant emissions from car use in light of shifting demand patterns towards bigger, heavier and more powerful cars. The analysis is descriptive in nature and based on a bottom-up database that was originally collated for the purpose of the present study. Technological data on car models, which includes tested fuel consumption, engine size, power and weight, is related to registered car stock and, in parts, to newly registered cars. From this, we obtain an original database of the Austrian passenger car fleet, i.e. information on consumer choice of specific car models, segregated by gasoline and diesel fuelled engines. Conclusions are derived for policies aimed at reducing the fossil fuel consumption of the moving vehicle fleet in order to contribute to a low carbon society.

  3. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology is one of the most attractive candidates for transportation applications due to its inherently high efficiency and high power density. However, the fuel cell system efficiency can suffer because of the need for forced air supply and water-cooling systems. Hence the operating strategy of the fuel cell system can have a significant impact on the fuel cell system efficiency and thus vehicle fuel economy. The key issues are how the fuel cell b...

  4. Development of low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, W.T.; Goldstein, R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-12-31

    The historical focus of the electric utility industry has been central station power plants. These plants are usually sited outside urban areas and electricity was delivered via high voltage transmission lines. Several things are beginning to change this historical precedent One is the popular concern with EMF as a health hazard. This has rendered the construction of new lines as well as upgrading old ones very difficult. Installation of power generating equipment near the customer enables the utility to better utilize existing transmission and distribution networks and defer investments. Power quality and lark of disturbances and interruptions is also becoming increasingly more important to many customers. Grid connected, but dedicated small power plants can greatly improve power quality. Finally the development of high efficiency, low emission, modular fuel cells promises near pollution free localized power generation with an efficiency equal to or exceeding that of even the most efficient central power stations.

  5. Software to improve spent fuel measurements using the FDET

    International Nuclear Information System (INIS)

    Staples, P.; Beddingfield, D.; Lestone, J.; Pelowitz, D.; Sprinkle, J.; Bytchkov, V.; Starovich, Z.; Harizanov, I.; Vellejo-Luna, J.; Lavender, C.

    2001-01-01

    Full text: Vast quantities of spent fuel are available for safeguard measurements, primarily in Commonwealth of Independent States (CIS) of the former Soviet Union. This spent fuel, much of which consists of long cooling time material, is going to become less unique in the world safeguards arena as reprocessing projects or permanent repositories continue to be delayed or postponed. The long cooling time of many of the spent fuel assemblies in the CIS countries being prepared for intermediate term storage promotes the possibility of increased accuracy in spent fuel assays. An important point to consider for the future that could advance safeguards measurements for re-verification and inspection measurements would be to determine what safeguards requirements should be imposed upon this 'new' class of spent fuel. Improvements in measurement capability will obviously affect the safeguards requirements. What most significantly enables this progress in spent fuel measurements is the improvement in computer processing power and software enhancements leading to user-friendly Graphical User Interfaces (GUI's). The software used for these projects significantly reduces the IAEA inspector's time both learning and operating computer and data acquisition systems. While at the same time by standardizing the spent fuel measurements it is possible to increase reproducibility and reliability of the measurement data. The inclusion of various analysis algorithms into the operating environment, which can be performed in real time upon the measurement data, can also lead to increases in safeguard reliability and improvements in efficiency to plant operations. (author)

  6. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  7. The Usage of Biogas in Fuel Cell Systems; Utilizacion de Biogas en Pilas de Combustible

    Energy Technology Data Exchange (ETDEWEB)

    Perez Martinez, M; Cuesta Santianes, M J; Nunez Crespi, S; Cabrera Jimenez, J A

    2008-08-06

    The usage of biogas in fuel cell systems is nowadays considered as a promising alternative for energy production worldwide as it involves the use of a valuable residual biomass resource that could enable the obtention of combined heat, cold and power generation very efficiently, while additionally avoiding greenhouse gas emissions to the atmosphere. Both development lines (biogas and fuel cells) and their associated technologies are receiving a great support from the different states, pioneer countries being Japan and U.S.A. The objective of this study is to make a detail analysis of the state of the art of biogas-powered fuel cell systems worldwide. Most representative players in the field are identified through the search of the scientific publications, projects and patent documents in which they are involved. (Author) 18 refs.

  8. Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery.

    Science.gov (United States)

    Liu, Jie; Qian, Tao; Wang, Mengfan; Liu, Xuejun; Xu, Na; You, Yizhou; Yan, Chenglin

    2017-08-09

    Using molecularly imprinted polymer to recognize various target molecules emerges as a fascinating research field. Herein, we applied this strategy for the first time to efficiently recognize and trap long-chain polysulfides (Li 2 S x , x = 6-8) in lithium sulfur battery to minimize the polysulfide shuttling between anode and cathode, which enables us to achieve remarkable electrochemical performance including a high specific capacity of 1262 mAh g -1 at 0.2 C and superior capacity retention of over 82.5% after 400 cycles at 1 C. The outstanding performance is attributed to the significantly reduced concentration of long-chain polysulfides in electrolyte as evidenced by in situ UV/vis spectroscopy and Li 2 S nucleation tests, which were further confirmed by density functional theory calculations. The molecular imprinting is demonstrated as a promising approach to effectively prevent the free diffusion of long-chain polysulfides, providing a new avenue to efficiently recognize and trap lithium polysulfides for high-performance lithium sulfur battery with greatly suppressed shuttle effect.

  9. Fuel assembly, channel box of fuel assembly, fuel spacer of fuel assembly and method of manufacturing channel box

    International Nuclear Information System (INIS)

    Chaki, Masao; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Nishida, Koji; Kawasaki, Terufumi.

    1997-01-01

    In a fuel assembly of a BWR type reactor, fuel rods disposed at corners of side walls of a channel box or in the periphery of the side walls are partially removed, and recessed portions are formed on the side walls of the channel box from which the fuel rods are removed. Spaces closed at the sides are formed in the inner side of the corner portions. Openings are formed for communicating the closed space with the outside of the channel box. Then, the channel area of the outer side of the channel box is increased, through which much water flows to increase the amount of water in the reactor core thereby promoting the moderation of neutrons and providing thermal neutrons suitable to nuclear fission. The degree of freedom for distribution of the spaces in the reactor core is increased to improve neutron economy thereby enabling to utilize reactor fuels effectively. (N.H.)

  10. Method of decladding spent fuel

    International Nuclear Information System (INIS)

    Fukutome, Kazuyuki; Kitagawa, Kazuo.

    1988-01-01

    Purpose: To enable to safety and easy decladding of nuclear fuels thereby reduce the processing cost. Constitution: Upon dismantling of a spent fuel rod, the fuel rod is heated at least to such a temperature that the ductility of a fuel can is recovered, then transported by using seizing rollers, by which the fuel rod is pressurized from the outer circumference to break the nuclear fuels at the inside thereof. Then, the destructed fuels are recovered from both ends of the fuel can. With such a constitution, since the ductility of the fuel can is recovered by heating, when the fuel rod is passed through the rollers in this state, the fuel can is deformed to destroy the nuclear fuels at the inside thereof. Since the nuclear fuels are destroyed into small pieces, they can be taken out easily from both ends of the fuel can. (Kawakami, Y.)

  11. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.; Nathanson, D. [Ztek Corp., Waltham, MA (United States); Bradshaw, D.T. [Tennessee Valley Authority, Chattanooga, TN (United States)] [and others

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  12. Fissile fuel doubling time characteristics for reactor lifetime fuel logistics

    International Nuclear Information System (INIS)

    Heindler, M.; Harms, A.A.

    1978-01-01

    The establishment of nuclear fuel requirements and their efficient utilization requires a detailed knowledge of some aspects of fuel dynamics and processing during the reactor lifetime. It is shown here that the use of the fuel stockpile inventory concept can serve effectively for this fuel management purpose. The temporal variation of the fissile fuel doubling time as well as nonequilibrium core conditions are among the characteristics which thus become more evident. These characteristics - rather than a single figure-of-merit - clearly provide an improved description of the expansion capacity and/or fuel requirements of a nuclear reactor energy system

  13. Modeling and Parameterization of Fuel Economy in Heavy Duty Vehicles (HDVs

    Directory of Open Access Journals (Sweden)

    Yunjung Oh

    2014-08-01

    Full Text Available The present paper suggests fuel consumption modeling for HDVs based on the code from the Japanese Ministry of the Environment. Two interpolation models (inversed distance weighted (IDW and Hermite and three types of fuel efficiency maps (coarse, medium, and dense were adopted to determine the most appropriate combination for further studies. Finally, sensitivity analysis studies were conducted to determine which parameters greatly impact the fuel efficiency prediction results for HDVs. While vitiating each parameter at specific percentages (±1%, ±3%, ±5%, ±10%, the change rate of the fuel efficiency results was analyzed, and the main factors affecting fuel efficiency were summarized. As a result, the Japanese transformation algorithm program showed good agreement with slightly increased prediction accuracy for the fuel efficiency test results when applying the Hermite interpolation method compared to IDW interpolation. The prediction accuracy of fuel efficiency remained unchanged regardless of the chosen fuel efficiency map data density. According to the sensitivity analysis study, three parameters (fuel consumption map data, driving force, and gross vehicle weight have the greatest impact on fuel efficiency (±5% to ±10% changes.

  14. Experimental investigations and modeling of direct internal reforming of biogases in tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lanzini, A.; Leone, P.; Pieroni, M.; Santarelli, M. [Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129, Torino (Italy); Beretta, D.; Ginocchio, S. [Centro Ricerca e Sviluppo, Edison S.p.a, Via La Pira 2, IT-10028 Trofarello, Torino (Italy)

    2011-10-15

    Biogas-fed Solid Oxide Fuel Cell (SOFC) systems can be considered as interesting integrated systems in the framework of distributed power generation. In particular, bio-methane and bio-hydrogen produced from anaerobic digestion of organic wastes represent renewable carbon-neutral fuels for high efficiency electrochemical generators. With such non-conventional mixtures fed to the anode of the SOFC, the interest lies in understanding the multi-physics phenomena there occurring and optimizing the geometric and operation parameters of the SOFC, while avoiding operating and fuel conditions that can lead to or accelerate degradation processes. In this study, an anode-supported (Ni-YSZ) tubular SOFC was considered; the tubular geometry enables a relatively easy separation of the air and fuel reactants and it allows one to evaluate the temperature field of the fuel gas inside the tube, which is strictly related to the electrochemical and heterogeneous chemical reactions occurring within the anode volume. The experiments have been designed to analyze the behavior of the cell under different load and fuel utilization (FU) conditions, providing efficiency maps for both fuels. The experimental results were used to validate a multi-physics model of the tubular cell. The model showed to be in good agreement with the experimental data, and was used to study the sensitive of some selected geometrical parameters modification over the cell performances. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. From here to efficiency : time lags between the introduction of new technology and the achievement of fuel savings

    International Nuclear Information System (INIS)

    Mintz, M.; Vyas, A.; Wang, M.; Stodolsky, F.; Cuenca, R.; Gaines, L.

    1999-01-01

    In this paper, the energy savings of new technology offering significant improvements in fuel efficiency are tracked for over 20 years as vehicles incorporating that technology enter the fleet and replace conventional light-duty vehicles. Two separate analyses are discussed: a life-cycle analysis of aluminum-intensive vehicles and a fuel-cycle analysis of the energy and greenhouse gas emissions of double vs. triple fuel-economy vehicles. In both efforts, market-penetration modeling is used to simulate the rate at which new technology enters the new fleet, and stock-adjustment modeling is used to capture the inertia in turnover of new and existing current-technology vehicles. Together, these two effects--slowed market penetration and delayed vehicle replacement--increase the time lag between market introduction and the achievement of substantial energy savings. In both cases, 15-20 years elapse, before savings approach these levels

  16. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Trucks, Daimler [Daimler Trucks North America Llc, Portland, OR (United States)

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  17. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    OpenAIRE

    D. Čundev

    2008-01-01

    This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Fac...

  18. Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A.; Subbotin, S. A.; Chibinyaev, A. V.

    2011-01-01

    Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

  19. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  20. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  1. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  2. Fuel cells

    NARCIS (Netherlands)

    Veen, van J.A.R.; Janssen, F.J.J.G.; Santen, van R.A.

    1999-01-01

    The principles and present-day embodiments of fuel cells are discussed. Nearly all cells are hydrogen/oxygen ones, where the hydrogen fuel is usually obtained on-site from the reforming of methane or methanol. There exists a tension between the promise of high efficiency in the conversion of

  3. Some regional costs of a synthetic fuel industry: The case of illinois

    Science.gov (United States)

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    The Federal Government's efforts to induce development of a coal-based synthetic fuel industry include direct subsidies, tax concessions, and assurances that it will purchase the industry's output, even if above the market price. In this note it is argued that these subsidies will enable this industry to secure a region's largest and lowest-cost coal deposits and that the costs imposed on other coal users will be substantial. Moreover, because the lowest-cost coal deposits will be committed to synthetic fuels production regardless of the industry's commercial viability, distortions in regional coal markets will develop. If economic efficiency requires that the price of the resource reflect its replacement value, then a State government is justified in imposing a tax on coal destined for subsidized synthetic fuel plants. Amounts of such a tax, based on the higher costs of coal that must be accepted by other users as the result of the subsidized synthetic fuel plants' preempting the largest and lowest-cost deposits, are estimated for the case of Illinois strippable coal. ?? 1981 Annals of Regional Science.

  4. Technical basis for the proposed high efficiency nuclear fuel program

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Herring, J.S.; Crawford, D.C.; Neimark, L.E.

    1999-01-01

    Greenhouse gas emissions from fossil fired electricity generating stations will dramatically increase over the next 20 years. Nuclear energy is the only fully developed technology able to supply large amounts of electricity without generation of greenhouse gases. However, the problem of noncompetitive economics and public concerns about radioactive waste disposal, safety, and nuclear weapons proliferation may prevent the reemergence of nuclear power as a preferred option for new electric energy generation in the U.S. This paper discusses a new research program to help address these issues, by developing fuel designs capable of burnup values in excess of 60 MWD/kgU. The objectives of the program are to: improve the reliability and robustness of light water reactor fuel, thereby improving safety margins; Significantly increase the energy generated by each fuel loading, thereby achieving longer operating cycles, higher capacity factors, and lower cost electric power; Significantly reduce the volume of spent nuclear fuel discharged for disposal by allowing more energy to be extracted from each fuel element prior to discharge; Develop fuel that is much more proliferation resistant. (author)

  5. Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode

    International Nuclear Information System (INIS)

    Basavaraja, R.J.; Jayanti, S.

    2015-01-01

    CLC (chemical looping combustion) promises to be a more efficient way of CO 2 capture than conventional oxy-fuel combustion or post-combustion absorption. While much work has been done on CLC in the past two decades, the issue of multi-fuel compatibility has not been addressed sufficiently, especially with regard to plant layout and reactor design. In the present work, it is shown that this is non-trivial in the case of a CLC-based power plant. The underlying factors have been examined in depth and design criteria for fuel compatibility have been formulated. Based on these, a layout has been developed for a power plant which can run with either natural gas or syngas without requiring equipment changes either on the steam side or on the furnace side. The layout accounts for the higher CO 2 compression costs associated with the use of syngas in place of natural gas. The ideal thermodynamic cycle efficiency, after accounting for the energy penalty of CO 2 compression, is 43.11% and 41.08%, when a supercritical steam cycle is used with natural gas and syngas, respectively. It is shown that fuel switching can be enabled by incorporating the compatibility conditions at the design stage itself. - Highlights: • Concept of fuel sensitivity of plant layout with carbon capture and sequestration. • Power plant layout for natural gas and syngas as fuels. • Criteria for compatibility of air and fuel reactors for dual fuel mode operation. • Layout of a plant for carbon-neutral or carbon negative power generation

  6. STUDY OF ALTERNATIVE FUELS AND EFFECTS OF COMPRESSION RATIO ON THERMAL EFFICIENCY AND ENGINE POWER

    Directory of Open Access Journals (Sweden)

    Sarjito Sarjito

    2017-01-01

    Full Text Available This paper was a case study during the sabatical program at Kingston University London in February 2007. It has been studied by team of motorsport automotive department Kingston University London and it has been elaborated as a final project on Master Program. This study takes into account some of the issues surrounding the debate about alcohol fuels in Motorsport and the wider automotive sector and is primarily concerned to add data where there seems to be little existing research since Motorsport is a secretive business. Motorsport plays an important part in the automotive industry and is a sport enjoyed worldwide. Racing practice is regarded as using the best available resources and technology as it requires optimal performance. The racing arena gives engineers the opportunity to test valuable technological solutions to prove their merits. Therefore, racing is the natural starting point for introducing new technological solutions to the public and could lead to the wholesale conversion to renewable fuels to meet our automotive energy needs. Alcohol has unique properties that make superior in many ways to ordinary gasoline. The higher knock resistance allows for higher compression ratios to be utilized resulting in higher power outputs and thermal efficiency. The efficient use of energy is of growing concern in all spheres of life and the automotive sector needs to be front runner in these efforts.

  7. Energy and fuel efficient parallel mild hybrids for urban roads

    International Nuclear Information System (INIS)

    Babu, Ajay; Ashok, S.

    2016-01-01

    Highlights: • Energy and fuel savings depend on battery charge variations and the vehicle speed parameters. • Indian urban conditions provide lot of scope for energy and fuel savings in mild hybrids. • Energy saving strategy has lower payback periods than the fuel saving one in mild hybrids. • Sensitivity to parameter variations is the least for energy saving strategy in a mild hybrid. - Abstract: Fuel economy improvements and battery energy savings can promote the adoption of parallel mild hybrids for urban driving conditions. The aim of this study is to establish these benefits through two operating modes: an energy saving mode and a fuel saving mode. The performances of a typical parallel mild hybrid using these modes were analysed over urban driving cycles, in the US, Europe, and India, with a particular focus on the Indian urban conditions. The energy pack available from the proposed energy-saving operating mode, in addition to the energy already available from the conventional mode, was observed to be the highest for the representative urban driving cycle of the US. The extra energy pack available was found to be approximately 21.9 times that available from the conventional mode. By employing the proposed fuel saving operating mode, the fuel economy improvement achievable in New York City was observed to be approximately 22.69% of the fuel economy with the conventional strategy. The energy saving strategy was found to possess the lowest payback periods and highest immunity to variations in various cost parameters.

  8. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-04-01

    High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.

  9. The influence of the types of marine fuel over the Energy Efficiency Operational Index

    Science.gov (United States)

    Acomi, Nicoleta; Acomi, Ovidiu

    2014-05-01

    One of the main concerns of our society is certainly the environment protection. The international efforts for maintaining the environment clean are various and this paper refers to the efforts in the maritime transport field. Marine pollution consists of the water pollution and also the air pollution. Regardless of the delay in recognizing the later type of pollution, it rapidly gains many organizations to argue on it. The first step was including a dedicated annex (Annex VI) in the International Convention for the Prevention of Pollution from Ships, in 1997, which seeks to minimize the airborne emissions from ships. In order to control and minimize the air pollution, the International Maritime Organization has also developed a series of measures for monitoring the emissions. These measures are grouped in three main directions: technical, operational and management related. The subject of our study is the concept of Energy Efficiency Operational Index (EEOI), developed to provide ship-owners with assistance in the process of establishing the emissions from ships in operation, and to suggest the methods for achieving their reduction. As a monitoring tool, EEOI represents the mass of CO2 emitted per unit of transport work. The actual CO2 emission from combustion of fuel on board a ship during each voyage is calculated by multiplying total fuel consumption for each type of fuel (e.g. diesel oil, gas oil, light fuel oil, heavy fuel oil, liquefied petroleum gas, liquefied natural gas) with the carbon to CO2 conversion factor for the fuel in question. The performed transport work is calculated by multiplying mass of cargo (tonnes, number of TEU/cars, or number of passengers) with the distance in nautical miles corresponding to the transport work done. Using the software developed by the author it will be emphasized the variation of the EEOI value for one vessel using different types of fuel for the voyage's legs (distance to discharge port, distance to loading port, the

  10. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  11. Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions

    International Nuclear Information System (INIS)

    Jeon, Seung Won; Cha, Dowon; Kim, Hyung Soon; Kim, Yongchan

    2016-01-01

    Highlights: • System efficiency of PEMFC is evaluated at elevated temperature and humidity. • Operating parameters are optimized using response surface methodology. • The optimal operating parameters are T = 90.6 °C, RH = 100.0%, and ζ = 2.07. • The power output and system efficiency are 1.28 W and 15.8% at the optimum. • The system efficiency can be effectively improved by increasing relative humidity. - Abstract: Humidification of the membrane is very important in a proton exchange membrane fuel cell (PEMFC), to maintain high ionic conductivity. At an elevated temperature, a large amount of thermal energy is required for humidification because of the exponentially increased saturation vapor pressure. In this study, the system efficiency of a PEMFC was evaluated by considering the heat required for preheating/humidification and compression work. Three-dimensional steady-state simulations were conducted using Fluent 14 to simulate the electrochemical reactions. The operating conditions were optimized using response surface methodology by considering both the fuel cell output and system efficiency. In addition, the effects of operating parameters such as the temperature, relative humidity, and stoichiometric ratio were investigated. The system efficiency can be improved more effectively by increasing relative humidity rather than increasing operating temperature because the ionic conductivity of the membrane was strongly influenced by the relative humidity.

  12. System-level energy efficiency is the greatest barrier to development of the hydrogen economy

    International Nuclear Information System (INIS)

    Page, Shannon; Krumdieck, Susan

    2009-01-01

    Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier.

  13. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  14. FY 2000 report on the survey of the calculation of the overall conversion efficiency in case of using natural gas for fuel cells, etc.; 2000 nendo chosa hokokusho. Tennengas wo nenryodenchi ni mochiita baai no sogo henkan koritsu no santei ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of evaluating the efficiency of fuel cell including the fuel supply system, survey was made of drilling of gas resource, conversion to liquid base fuel, transportation, storage, etc., the energy conversion efficiency was studied considering reforming characteristics of various fuels. In the comparison between LNG, methanol, DME and GTL that originate in natural gas and LPG and naphtha that originate in oil, a big difference is that methanol, DME and GTL were made through the conversion process with the large energy consumption. Namely, by the time before the reforming into hydrogen, the oil base indicated a higher efficiency in secondary energy fuel production than the natural gas base. Further, the reforming efficiency is the highest in methanol and DME, and there is a little difference between the integrated fuel cell (normal pressure) and the hydrogen production use fuel cell (pressurized). Concerning city gas and GTL, the efficiency is lower, affected by S/C. The overall efficiency is determined considering the conversion efficiency in other stages since it is determined by the conversion efficiency of up to the raw fuel and the energy conversion efficiency at PEFC. (NEDO)

  15. Fuel cells show promise as vehicle power source

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Fuel-cell-powered vehicles appear to offer great promise for energy-saving, high-efficiency transportation. Fuel cells are both highly efficient (50% thermal efficiency has been demonstrated by some) and non-polluting (water being the main by-product). Dramatic improvements in performance have occurred recently due to aerospace and utility RandD efforts. The primary vehicle considered at workshops of laboratory and industrial investigators was a fuel cell/battery hybrid, in which fuel cells are paralleled by batteries. Fuel cells are used for cruising power and battery recharge, while batteries supply transient power for acceleration and starting

  16. Enablers towards establishing and growing South Africa's waste to electricity industry.

    Science.gov (United States)

    Amsterdam, Heinrich; Thopil, George Alex

    2017-10-01

    In South Africa the electricity generation mix is relatively un-diverse whereas globally the transformation of the sector is advancing rapidly. Coal remains the predominant fuel source and limited success has to date been achieved in the renewable energy sector. The electricity generation sector is therefore hindered from moving towards an electricity generation landscape where alternative fuel sources is utilised. This research is aimed at gaining insight into the enablers that led towards an increasing trend (observed globally) in exploiting waste as a fuel for electricity generation, and to outline the presence of obstacles that hinder separation of waste for electricity use in the South African context. Furthermore it is an attempt at informing what appropriate interventions (operational and policy) may be considered suitable for South Africa to overcome these barriers in order to enable a sustainable South African waste to electricity (WTE) Industry. Findings show that numerous barriers to a WTE exists in the South African context, however overcoming these barriers is not as simple as adopting the European model with the aim to modify the electricity generation mix and waste management landscape. Selected enablers deemed appropriate in the South African context are adapted from the European model, and are greatly influenced by the prevailing socio-economic status of South Africa. Primary enablers identified were, (i) government support is needed especially in the form of subsidisation for green energy, (ii) increase landfill costs through the implementation of a landfill tax, (iii) streamline the process for Independent Private Power Producers (IPPPs) to connect to the national grid with off-take guaranteed and the inclusion of WTE into an electricity roadmap (effectively government's strategy). The proposed enabling interventions would help in overcoming the barriers for a South African WTE industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Motor Fuel Excise Taxes

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  18. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  19. Waste to Watts and Water: Enabling Self-Contained Facilities Using Microbial Fuel Cells

    Science.gov (United States)

    2009-03-01

    98; “Project to Turn Beer Wastewater into Power,” ; Yokoyama et al., “Treatment of Cow-Waste Slurry,” 634; Catal et al., “Electricity Production...Fuel Cells Bulletin 2006, no. 7 (2006): 7. “Project to Turn Beer Wastewater into Power.” Fuel Cells Bulletin 2007, no. 7 (2007): 11. Rabaey, K., J...Biomass Fermentation , edited by Piet Lens, Peter Westermann, Marianne Haberbauer, and Angelo Moreno, 377–400. Integrated Environmental Technology Series

  20. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  1. Can Differentiated Production Planning and Control enable both Responsiveness and Efficiency in Food Production?

    Directory of Open Access Journals (Sweden)

    Anita Romsdal

    2014-07-01

    Full Text Available This paper addresses the complex production planning and control (PPC challenges in food supply chains. The study illustrates how food producers' traditional make‐to‐stock (MTS approach is not well suited to meet the trends of increasing product variety, higher demand uncertainty, increasing sales of fresh food products and more demanding customers. The paper proposes a framework for differentiated PPC that combines MTS with make‐to‐order (MTO.The framework matches products with the most appropriate PPC approaches and buffering techniques depending on market and product characteristics. The core idea is to achieve more volume flexibility in the production system by exploiting favourable product and market characteristics (high demand predictability, long customer order leadtime allowances and low product perishability. A case study is used to demonstrate how the framework can enable food producers to achieve efficiency in production, inventory and PPC processes – and simultaneously be responsive to market requirements.

  2. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    Science.gov (United States)

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  3. Innovative Fuel Cell Health Monitoring IC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy storage devices, including fuel cells, are needed to enable future robotic and human exploration missions. Historically, the reliability of the fuel cells has...

  4. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  5. Metal hydride store for hydrogen supply and cooling of fuel cell vehicles; Metallhydridspeicher zur Wasserstoffversorgung und Kuehlung von Brennstoffzellenfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, David

    2009-07-01

    In the context of the author's work, a compact, dynamic metal hydride store was developed which in addition to storing hydrogen can also support the thermomanagement of fuel cell vehicles in extreme situations. The requirements were identified using a semiphysical model of a fuel cell vehicle, and a store was dimensioned accordingly. Additionally, a metal hydride store model was developed on the basis of the balance equations. The model was validated by experiments on a specially designed and constructed store. The simulations enable the optimisation of the store geometry and the prediction of its efficiency in a given operating cycle. (orig.)

  6. Comparative economic efficiency, operating costs and fuel consumption rates of freight transport modes between the largest industrial cities and seaports in South Africa

    Directory of Open Access Journals (Sweden)

    W J (Wessel Pienaar

    2013-09-01

    Full Text Available The paper deals with aspects of efficiency within the five modes of freight transport, with special reference to the operating cost and fuel consumption rates between South Africa’s largest industrial cities and seaports. In particular, the paper deals with (a the opportunities that exist for the achievement of efficiency in freight transport; (b the subgroups of economies that can enhance efficiency attainment in the freight transport industry; (c prevailing cost structures, operating cost and fuel consumption rates within the five modes of freight transport; and (d the salient economic features of the freight transport market. The research approach and methodology combine (a a literature survey; (b empiric research, (c an analysis of the cost structures of freight transport operators from different modes of transport; and (d interviews conducted with specialists in the freight transport industry.

  7. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P. [Russian Academy of Sciences, High Energy Density Research Center, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3}, the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.

  8. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  9. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  10. Conversion of hydrocarbons and alcohols for fuel cells

    Science.gov (United States)

    Joensen, Finn; Rostrup-Nielsen, Jens R.

    The growing demand for clean and efficient energy systems is the driving force in the development of fuel processing technology for providing hydrogen or hydrogen-containing gaseous fuels for power generation in fuel cells. Successful development of low cost, efficient fuel processing systems will be critical to the commercialisation of this technology. This article reviews various reforming technologies available for the generation of such fuels from hydrocarbons and alcohols. It also briefly addresses the issue of carbon monoxide clean-up and the question of selecting the appropriate fuel(s) for small/medium scale fuel processors for stationary and automotive applications.

  11. The efficient future of deep-space travel - electric rockets; Das Zeitalter der Elektrischen Raketen

    Energy Technology Data Exchange (ETDEWEB)

    Choueiri, Edgar Y. [Princeton Univ., NJ (United States). Electric Propulsion and Plasma Dynamics Lab.

    2010-01-15

    Conventional rockets generate thrust by burning chemical fuel. Electric rockets propel space vehicles by applying electric or electromagnetic fields to clouds of charged particles, or plasmas, to accelerate them. Although electric rockets offer much lower thrust levels than their chemical cousins, they can eventually enable spacecraft to reach greater speeds for the same amount of propellant. Electric rockets' high-speed capabilities and their efficient use of propellant make them valuable for deep-space missions. (orig.)

  12. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    Science.gov (United States)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  13. Towards an efficient conversion of ethanol in low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vineet [Technische Universitaet Muenchen, Physik Department E19, James-Franck-Str. 1, D-85747 Garching (Germany); Stimming, Ulrich [Technische Universitaet Muenchen, Physik Department E19, James-Franck-Str. 1, D-85747 Garching (Germany); ZAE Bayern, Abteilung 1, Walther-Meissner-Str. 6, D-85748 Garching (Germany)

    2009-07-01

    Direct conversion of ethanol in low temperature fuel cells is a major goal in the development of fuel cells. Advantages of ethanol are its availability from biomass and the high energy density of such liquid fuel. Nevertheless, a major drawback is the incomplete oxidation of ethanol. Recent research focused mainly on novel catalyst materials for the ethanol oxidation reaction (EOR) based on e.g. Pt-Sn. Furthermore, some groups have carried out tests on solid OH- ion exchange membrane fuel cells. Better kinetics of fuel cell processes in such exchange membrane fuel cells could allow using also higher alcohols as fuel. Ethanol has slower kinetics of oxidation in acidic media and several by-products are formed because of incomplete oxidation. In our studies we investigated EOR in alkaline membrane electrode assemblies (MEA). Here, ethanol undergoes significantly more complete electro-oxidation to CO{sub 2} than in case of acidic MEA with same Pt anode.

  14. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  15. Methodical Approach to Estimation of Energy Efficiency Parameters of the Economy Under the Structural Changes in the Fuel And Energy Balance (on the Example of Baikal Region

    Directory of Open Access Journals (Sweden)

    Boris Grigorievich Saneev

    2013-12-01

    Full Text Available The authors consider a methodical approach which allows estimating energy efficiency parameters of the region’s economy using a fuel and energy balance (FEB. This approach was tested on the specific case of Baikal region. During the testing process the authors have developed ex ante and ex post FEBs and estimated energy efficiency parameters such as energy-, electro- and heat capacity of GRP, coefficients of useful utilization of fuel and energy resources and a monetary version of FEB. Forecast estimations are based on assumptions and limitations of technologically-intensive development scenario of the region. Authors show that the main factor of structural changes in the fuel and energy balance will be the large-scale development of hydrocarbon resources in Baikal region. It will cause structural changes in the composition of both the debit and credit of FEB (namely the structure of export and final consumption of fuel and energy resources. Authors assume that the forecast structural changes of the region’s FEB will significantly improve energy efficiency parameters of the economy: energy capacity of GRP will decrease by 1,5 times in 2010– 2030, electro and heat capacity – 1,9 times; coefficients of useful utilization of fuel and energy resources will increase by 3–5 p.p. This will save about 20 million tons of fuel equivalent (about 210 billion rubles in 2011 the prices until 2030

  16. Modern approach to the problem of fossil gas fuels replacement by alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, Boris [Gas Institute, National Academy of Sciences, Kiev (Ukraine)

    2013-07-01

    New scientific and engineering fundamentals of fuels substitution have been developed instead of obsolete methodology “Interchangeability of Fuel Gases” developed in USA and existing from the middle of XX{sup th} century. To perform the complex prediction of total or partial substitution of given flow rate of natural gas NG for alternative gases AG the following parameters are to be predicted: plant utilization efficiencies – regarding fuel and energy utilization, the last in form of heat Ș{sub H} and exergy Ș{sub eff} efficiencies, saving or overexpenditure of the NG flow rate in the gas mixture with AG, specific fuel consumption b f and specific issue of harmful substances C{sub t} – pollutants in the combustion products (C{sub NO{sub x}} ) and greenhouse gases (C {sub CO{sub 2}} ). Certification of alternative gas fuels and fuel mixtures as a commodity products is carried out in frame of our approach with necessary set of characteristics, similar to those accepted in the world practice. Key words: alternative fuel, fuel replacement (substitution), natural gas, process gases, theoretical combustion temperature, thermodynamic equilibrium computations, total enthalpy.

  17. SEA for strategic grid planning in South Africa: Enabling the efficient and effective roll out of strategic electricity transmission infrastructure

    CSIR Research Space (South Africa)

    Fischer, TD

    2016-05-01

    Full Text Available | Resilience and Sustainability 36th Annual Conference of the International Association for Impact Assessment 11 - 14 May 2016 | Nagoya Congress Center | Aichi-Nagoya | Japan | www.iaia.org SEA FOR STRATEGIC GRID PLANNING IN SOUTH AFRICA: Enabling... the efficient and effective roll out of strategic electricity transmission infrastructure Abstract ID: 409 Authors: Marshall Mabin(1) , Paul Lochner and Dee Fischer Council for Scientific and Industrial Research (CSIR), PO Box 320 Stellenbosch 7599 South...

  18. Fuel cells for electricity generation from carbonaceous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff-Hey, K; Formanski, V; Roes, J [Gerhard-Mercator- Universitaet - Gesamthochschule Duisburg, Fachbereich Maschinenbau/Fachgebiet Energietechnik, Duisburg (Germany); Heinzel, A [Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)

    1998-09-01

    Fuel cells, which are electrochemical systems converting chemical energy directly into electrical energy with water and heat as by-products, are of interest as a means of generating electricity which is environmentally friendly, clean and highly efficient. They are classified according to the electrolyte used. The main types of cell in order of operating temperature are described. These are: alkaline fuel cells, the polymer electrolyte membrane fuel cell (PEMFC); the phosphoric acid fuel cell (PAFC); the molten carbonate fuel cell (MCFC); the solid oxide fuel cell (SOFC). Applications depend on the type of cell and may range from power generation on a large scale to mobile application in cars or portable systems. One of the most promising options is the PEM-fuel cell stack where there has been significant improvement in power density in recent years. The production from carbonaceous fuels and purification of the cell fuel, hydrogen, is considered. Of the purification methods available, hydrogen separation by means of palladium alloy membranes seems particular effective in reducing CO concentrations to the low levels required for PEM cells. (UK)

  19. Artificial neural networks application for solid fuel slagging intensity predictions

    Directory of Open Access Journals (Sweden)

    Kakietek Sławomir

    2017-01-01

    Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.

  20. On-Line Fuel Deoxygenation for Coke Suppression ASME GT-2002-30071

    National Research Council Canada - National Science Library

    Spadaccini, Louis

    2002-01-01

    Fuel deoxygenation is being developed as a means for suppressing autoxidative coke formation in aircraft fuel systems, thereby increasing the exploitable cooling capacity of the fuel, enabling major...

  1. Materials for fuel cells

    OpenAIRE

    Haile, Sossina M

    2003-01-01

    Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cell...

  2. Gasification: in search of efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Whysall, M. [UOP N.V., Antwerp (Belgium)

    2007-07-01

    Gasification of low cost feed stocks such as coal and heavy residues enables the supply of synthesis gas, hydrogen, power and utilities at a lower cost relative to conventional methodologies. The resulting synthesis gas can be used, after cleaning and sulphur removal, as a fuel or to produce other chemicals such as ammonia, methanol, or Fischer-Tropsch liquids. The paper covers coal and residue upgrading through the use of gasification, conversion and hydroprocessing and its integration with synthesis gas treatment and hydrogen recovery. Residue conversion choices can be influenced by hydrogen cost which can be controlled by integrating hydrogen production, recovery and purification into the gasification complex. Flow-schemes that maximize generation efficiency and minimize capital and operating costs and offer possibilities for CO{sub 2} capture are discussed. 3 figs.

  3. 2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.

    2000-12-11

    The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

  4. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals

    Science.gov (United States)

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-01-01

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner. PMID:27621436

  5. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  6. Fireplaces and Fireplace Fuels.

    Science.gov (United States)

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  7. Characteristics of a direct methanol fuel cell system with the time shared fuel supplying approach

    International Nuclear Information System (INIS)

    Na, Youngseung; Kwon, Jungmin; Kim, Hyun; Cho, Hyejung; Song, Inseob

    2013-01-01

    DMFC (direct methanol fuel cell) systems usually employ two pumps for supplying the methanol solution. The conventional system configuration, however, may bring about free flow from the methanol reservoir and malfunctions in the self-priming of the pumps. When instruments such as check valves and pressure regulators are applied, they result in excessive weight and control system malfunctions. In this paper, a light and robust DMFC system is proposed. By using the time sharing approach to supply fuel with a 3-way valve, free flow does not occur because only one inlet is opened at one time which means that both the circulation flow from gas liquid separator and the fuel flow from the methanol cartridge are not allowed to be opened at same time. As a result, back flow and self-priming problems do not occur. This makes the system stable and robust due to the removal of both the check valves and the fluctuation from unstable back pressure. Stabilized system doesn't need excessive battery buffering and recycling water any more, which are responsible for the heavy system. The proposed system performs the same level of power and efficiency with the conventional system. Adaptability is also carried out in various environmental temperature conditions. - Highlights: ►A light and robust DMFC system is proposed. ► The circulation pump is able to self-prime by itself after long term storage. ► The time sharing approach to supply fuel enables to control the methanol concentration precisely. ► The methanol concentration is controlled without free flow and the back flow from the fuel feeding pump. ► The excessive buffer of the batteries and the recycling water level are reduced

  8. Fuel cell APU for commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daggett, D.L. [Boeing Commercial Airplane, Seattle, WA (United States); Lowery, N. [Princeton Univ., Princeton, NJ (United States); Wittmann, J. [Technische Univ. Muenchen (Germany)

    2005-07-01

    The Boeing Company has always sought to improve fuel efficiency in commercial aircraft. An opportunity now exists to explore technology that will allow fuel efficiency improvements to be achieved while simultaneously reducing emissions. Replacing the current aircraft gas turbine-powered Auxiliary Power Unit with a hybrid Solid Oxide Fuel Cell is anticipated to greatly improve fuel efficiency, reduce emissions and noise as well as improve airplane performance. However, there are several technology hurdles that need to be overcome. If SOFC technology is to be matured for the betterment of the earth community, the fuel cell industry, aerospace manufacturers and other end users all need to work together to overcome these challenges. Aviation has many of the same needs in fuel cell technology as other sectors, such as reducing cost and improving reliability and fuel efficiency in order to commercialize the technology. However, there are other distinct aerospace needs that will not necessarily be addressed by the industrial sector. These include development of lightweight materials and small-volume fuel cell systems that can reform hydrocarbon fuels. Aviation also has higher levels of safety requirements. Other transportation modes share the same requirement for vibration and shock tolerant fuel cell stacks. Lastly, as fuel cells are anticipated to be operated in flight, they must be capable of operating over a wide range of atmospheric conditions. By itself, the aviation sector does not appear to offer enough of a potential market to justify the investment required by any one manufacturer to develop fuel cells for APU replacements. Therefore, means must be found to modularize components and make SOFC stacks sufficiently similar to industrial units so that manufacturing economy of scales can be brought to bear. Government R and D and industry support are required to advance the technology. Because aerospace fuel cells will be higher performing units, the benefits of

  9. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  10. Low-cost high-efficiency GDCI engines for low octane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, Christopher P.; Sellnau, Mark C.

    2018-01-09

    A GDCI engine has a piston arranged within a cylinder to provide a combustion chamber. According to one embodiment, the GDCI engine operates using a method that includes the steps of supplying a hydrocarbon fuel to the combustion chamber with a research octane number in the range of about 30-65. The hydrocarbon fuel is injected in completely stratified, multiple fuel injections before a start of combustion and supplying a naturally aspirated air charge to the combustion chamber.

  11. Fuel improvement and WWER-1000 FA main operational results

    International Nuclear Information System (INIS)

    Rozhkov, V.; Enin, A.; Bezborodov, Y.; Petrov, V.

    2003-01-01

    The JSC NCCP experience of WWER-1000 Fuel Assemblies (FAs) fabrication and operation confirms the adequate feasibility and efficiency of fuel operation in 3-4-x fuel cycles, high operating reliability and competitive capacity as compared with foreign analogues. The work on fuel improvement is aimed at an improvement of the operating reliability and an enhancement of the fuel use efficiency in WWER-1000 advanced FAs

  12. 3-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cell Using Different Fuels

    Science.gov (United States)

    2011-01-01

    major types of fuel cells in practice are listed below: Polymer Electrolyte Membrane Fuel Cell ( PEMFC ) Alkaline Fuel cell (AFC) Phosphoric Acid...Material Operating Temperature (oC) Efficiency (%) PEMFC H2, Methanol, Formic Acid Hydrated Organic Polymer < 90 40-50 AFC Pure H2 Aqueous

  13. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  14. Fuel Services

    International Nuclear Information System (INIS)

    Silberstein, A.

    1982-09-01

    FRAGEMA has developed most types of inspection equipments to work on irradiated fuel assemblies and on single fuel rods during reactor outages with an efficiency compatible with the utilities operating priorities. In order to illustrate this statement, two specific examples of inspection equipments are shortly described: the on-site removable fuel rod assembly examination stand, and the fuel assembly multiple examination device. FRAGEMA has developed techniques for the identifiction of the leaking fuel rods in the fuel assembly and the tooling necessary to perform the replacement of the faulted element. These examples of methods, techniques and equipments described and the experience accumulated through their use allow FRAGEMA to qualify for offering the supply of the corresponding software, hardware or both whenever an accurate understanding of the fuel behaviour is necessary and whenever direct intervention on the assembly and associated components is necessary due to safety, operating or economical reasons

  15. HTS machines as enabling technology for all-electric airborne vehicles

    International Nuclear Information System (INIS)

    Masson, P J; Brown, G V; Soban, D S; Luongo, C A

    2007-01-01

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development

  16. HTS machines as enabling technology for all-electric airborne vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Masson, P J [FAMU-FSU College of Engineering and the Center for Advanced Power Systems, Tallahassee, FL 32310 (United States); Brown, G V [NASA Glenn Research Center, Cleveland, OH (United States); Soban, D S [Aerospace System Design Laboratory/Georgia Tech, Atlanta, GA 32332 (United States); Luongo, C A [FAMU-FSU College of Engineering and the Center for Advanced Power Systems, Tallahassee, FL 32310 (United States)

    2007-08-15

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.

  17. IAEA/NEA Fuel Incident Notification and Analysis System (FINAS) guidelines

    International Nuclear Information System (INIS)

    2006-01-01

    The Fuel Incident Notification and Analysis System (FINAS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development (OECD/NEA). The fundamental objective of FINAS is to contribute to improving the safety of fuel cycle facilities, which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance, which occur at these facilities. The purpose of these guidelines, which supersede the previous NEA FINAS guidelines is to describe the system and to give users the necessary background and guidance to enable them to produce FINAS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating FCFs. These guidelines have been jointly developed and approved by the NEA/IAEA

  18. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  19. Efficiency improvements in transport

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Christensen, Linda; Jensen, Thomas C. [Technical Univ. of Denmark. DTU Transport, Kgs. Lyngby (Denmark)

    2012-11-15

    Transport of people, personal belongings and goods in private cars is fundamental to our modern welfare society and economic growth, and has grown steadily over many decades. Motor fuels have been based almost entirely on crude oil for the last century. During the last couple of decades engines built for traditional fuels have become more advanced and efficient; this has reduced fuel consumption by around 40% and emissions by more than 90%. Only in the same time span have we begun to look at alternatives to fossil fuels. Biofuels such as biodiesel, bioethanol, biomethanol and biogas can replace petrol and diesel, and in recent years algae have shown a new potential for diesel fuel. Natural gas is also becoming an interesting fuel due to its large resources worldwide. GTL, CTL and BTL are liquid fuels produced from solid or gaseous sources. GTL and CTL are expensive to produce and not very CO{sub 2}-friendly, but they are easily introduced and need little investment in infrastructure and vehicles. DME is an excellent fuel for diesel engines. Methanol and DME produced from biomass are among the most CO{sub 2}-reducing fuels and at the same time the most energy-efficient renewable fuels. Fuel cell vehicles (FCVs) are currently fuelled by hydrogen, but other fuels are also possible. There are, however, several barriers to the implementation of fuel cell vehicles. In particular, a hydrogen infrastructure needs to be developed. Electric vehicles (EVs) have the advantage that energy conversion is centralised at the power plant where it can be done at optimum efficiency and emissions. EVs have to be charged at home, and also away from home when travelling longer distances. With an acceptable fast charging infrastructure at least 85% of the one-car families in Denmark could be potential EV customers. Range improvements resulting from better batteries are expected to create a large increase in the number of EVs in Denmark between 2020 and 2030. The hybrid electric vehicle

  20. Fuel and helium confinement in fusion reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger, S.E.

    1993-01-01

    An expanded macroscopic model for particle confinement is used to investigate both fuel and helium confinement in reactor plasmas. The authors illustrate the relative effects of external sources of fuel, divertor pumping, and wall and divertory recycle on core, edge and scrape-off layer densities by using separate particle confinement times for open-quote core close-quote fueling (deep pellet or beam penetration, τ c ), open-quote shallow close-quote fueling (shallow pellet penetration or neutral atoms that penetrate the scrape-off layer, τ s ) and fueling in the scrape-off layer (τ sol ). Because τ s is determined by the parallel flow velocity and characteristic distance to the divertor plate, it can be orders of magnitude lower than either τ c or τ sol . A dense scrape-off region, desirable for reduced divertor erosion, leads to a high fraction of the recycled neutrals being ionized in the scrape-off region and poor core fueling efficiency. The overall fueling efficiency can then be dramatically improved with either shallow or deep auxillary fueling. Helium recycle is nearly always coupled to the scrape-off region and does not lead to strong core accumulation unless the helium pumping efficiency is much less than the fuel pumping efficiency, or the plasma preferentially retains helium over hydrogenic ions. Differences between the results of this model, single-τ p macroscopic models, and 1-D and 2-D models are discussed in terms of assumptions and boundary conditions

  1. Fuel cells for future transportation: The Department of Energy OTT/OUT partnership

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies; Ohi, J. [National Renewable Energy Lab., Golden, CO (United States). Center for Transportation Technologies and Systems

    1997-12-31

    The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and

  2. The fuel cell yesterday, today and tomorrow

    Directory of Open Access Journals (Sweden)

    Stanojević Dušan D.

    2005-01-01

    Full Text Available The fuel cell has some characteristics of a battery carrying out direct chemical conversion into electric energy. In relation to classical systems used for chemical energy conversion into electric power, through heat energy and mechanical operation, the fuel cell has considerably higher efficiency. The thermo-mechanical conversion of chemical into electric energy, in thermal power plants is carried out with 30% efficiency, while the efficiency of chemical conversion into electric energy, using a fuel cell is up to 60%. With the exception of the space programme, the commercial usage of the fuel cell did not exist up to 1990, when the most developed countries started extensive financial support of this source of energy. By 1995, more than a hundred fuel cells were installed in the process of electricity generation in Europe, USA and Japan, while nowadays there are thousands of installations, of efficient energetic capacity. Because of its superior characteristics, the fuel cell compared to other commercial electric energy producers, fulfills the most important condition - it does not pollute or if it does, the level is minimal. With such characteristics the fuel cell can help solve the growing conflict between the further economic development of mankind and the preservation of a clean and healthy natural environment.

  3. Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Boronat, Vicente

    2017-01-01

    Highlights: • Optimized dual-fuel strategy to cover the whole engine load-speed map. • EURO VI NOx levels up to 14 bar IMEP with fully and highly premixed RCCI strategies. • Dual-fuel provides up to 7% higher efficiency than CDC if urea consumption is considered. - Abstract: This experimental work investigates the capabilities of the reactivity controlled compression ignition combustion concept to be operated in the whole engine map and discusses its benefits when compared to conventional diesel combustion. The experiments were conducted using a single-cylinder medium-duty diesel engine fueled with regular gasoline and diesel fuels. The main modification on the stock engine architecture was the addition of a port fuel injector in the intake manifold. In addition, with the aim of extending the reactivity controlled compression ignition operating range towards higher loads, the piston bowl volume was increased to reduce the compression ratio of the engine from 17.5:1 (stock) down to 15.3:1. To allow the dual-fuel operation over the whole engine map without exceeding the mechanical limitations of the engine, an optimized dual-fuel combustion strategy is proposed in this research. The combustion strategy changes as the engine load increases, starting from a fully premixed reactivity controlled compression ignition combustion up to around 8 bar IMEP, then switching to a highly premixed reactivity controlled compression ignition combustion up to 15 bar IMEP, and finally moving to a mainly diffusive dual-fuel combustion to reach the full load operation. The engine mapping results obtained using this combustion strategy show that reactivity controlled compression ignition combustion allows fulfilling the EURO VI NOx limit up to 14 bar IMEP. Ultra-low soot emissions are also achieved when the fully premixed combustion is promoted, however, the soot levels rise notably as the combustion strategy moves to a less premixed pattern. Finally, the direct comparison of

  4. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    Science.gov (United States)

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  5. Strategic Partnerships in Fuel Cell Development

    Science.gov (United States)

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  6. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  7. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    Directory of Open Access Journals (Sweden)

    D. Čundev

    2008-01-01

    Full Text Available This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Faculty of Electrical Engineering (FEE at CTU in Prague. 

  8. FY 2000 report on the results of development of technology for commercializing high-efficiency fuel cell systems. Development of technology for commercializing high-efficiency fuel cell systems (Development of technology for effective utilization of power produced by polymer electrolyte fuel cell systems); 2000 nendo kokoritsu nenryo denchi system jitsuyoka gijutsu kaihatsu seika hokokusho. Kotai kobunshigata nenryo denchi no shutsuryoku yuko riyo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at development of technologies for effective utilization of power produced by polymer electrolyte fuel cell (PEFC) systems and waste heat, to spread cogeneration systems incorporating PEFC systems for residential purposes. Described herein are the FY 2000 results. The program for high-efficiency peripherals for residential PFEC systems attempts use of GaN-FET as the semiconductor device of wide band gap and high breakdown voltage to realize conversion efficiency over 90% by improving inverter efficiency. Two types of the prototype heat recovery systems are developed for the PEFC, one incorporating a latent heat cooling system and the other a water cooling system, to improve heat recovery efficiency and increase heat recovery temperature. The program for technology to fit PEFC output to energy demand develops hot water supply systems provided with a hot water storage function for stable supply of hot water irrespective of the heat recovery conditions, and also with a back-up function with burners. The program also develops the PEFC system of fine load following characteristics, for which pure hydrogen is used as the fuel to allow the system to instantaneously follow fluctuating loads. The program for high-efficiency partial load operation technology studies a 1kW-class residential PEFC cogeneration system incorporating a power storage device for high-efficiency operation at partial loads, where the former operates in a high output mode while the latter absorbs fluctuating loads. (NEDO)

  9. Fuels and Combustion | Transportation Research | NREL

    Science.gov (United States)

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  10. Fuel cell systems

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  11. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    Science.gov (United States)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  12. Method of transporting fuel assemblies

    International Nuclear Information System (INIS)

    Okada, Katsutoshi.

    1979-01-01

    Purpose: To enable safety transportation of fuel assemblies for FBR type reactors by surrounding each of fuel elements in a wrapper tube by a rubbery, hollow cylindrical container and by sealing medium such as air to the inside of the container. Method: A fuel element is contained in a hollow cylindrical rubber-like tube. The fuel element has an upper end plug, a lower end plug and a wire spirally wound around the outer periphery. Upon transportation of the fuel assemblies, each of the fuel elements is covered with the container and arranged in the wrapper tube and then the fuel assemblies are assembled. Then, medium such as air is sealed for each of the fuel elements by way of an opening and then the opening is tightly closed. Before loading the transported fuel assemblies in the reactor, the medium is discharged through the opening and the container is completely extracted and removed from the inside of the wrapper tube. (Seki, T.)

  13. ComfortPower. Design, construction and evaluation of a combined fuel-cell and heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik (Catator AB, Lund (Sweden))

    2010-12-15

    Catator AB has constructed, commissioned and evaluated a combined fuel-cell and heat-pump system (ComfortPower). The basic idea behind the project was to demonstrate the possibility to achieve ultrahigh thermal efficiencies when combining fuel-cell technologies and heat pumps. Moreover, the system should provide a great flexibility with respect to the fuel mix and should in addition to heat provide surplus electricity and cooling. The system was built on a HT-PEM platform (high temperature polymer electrolyte fuel cell from Serenergy a/s), which was operated by Catators proprietary Optiformer technology. The power generator was combined with a heat pump module (F1145-5, 230 V), supplied by Nibe. The system was packaged into a cabinet (1.65 x 0.6 x 0.6 m) comprising the power module, the heat pump, all necessary balance-of-plant components and the control system. The power output from the fuel-cell system was around 1.35 kW, which enabled operation of the heat pump compressor. By utilizing surplus heat energy from the fuel cell it was possible to achieve a favourable operation point in the heat pump system, resulting in a high overall COP (coefficient of performance). The heat output from the system was as high as 10 kW whereas 6 kW cooling could be provided. The thermal efficiencies measured in experiments were normally around 200%, calculated on the lower heating value of the fuel. A number of fuels have been investigated in the fuel cell system, including both gaseous (natural gas/LPG) and liquid fuels (alcohols and kerosene). Indeed, the system has a wide fuel flexibility, which opens up for a variety of applications in campus villages and buildings. This study has demonstrated the possibility to reduce the carbon dioxide footprint by a factor of 2 over conventional boilers in heating applications. In addition the unit can be operated on a variety of fuels and can produce cooling and electricity in addition to heat. A fully working system has been designed

  14. Effect of fuel oxygen on the energetic and exergetic efficiency of a compression ignition engine fuelled separately with palm and karanja biodiesels

    International Nuclear Information System (INIS)

    Jena, Jibanananda; Misra, Rahul Dev

    2014-01-01

    Exergy analysis of any thermodynamic system can take care of the limitations of energy analysis such as irreversible losses, their magnitude and the source of thermodynamic inefficiencies apart from energy losses. In the present study, both the analyses along with heat release analysis are conducted on a natural aspirated diesel engine fuelled separately with palm biodiesel (PB), karanja biodiesel (KB), and petrodiesel (PD) using the experimental data. Since the engine performs best at about 85% loading condition, the energetic and exergetic performance parameters of the engine are evaluated at 85% loading condition for each type of fuel. The aim of the study is to determine the effect of fuel oxygen on energy and exergy efficiencies of a CI (compression ignition) engine. Various exergy losses, exergy destruction and their ratios associated with the heat transfer through cooling water, radiation, exhaust gas, friction, and some uncounted exergy destruction are investigated. Apart from exergy loss due to heat transfer; the uncounted exergy destruction (due to combustion) also plays a major role in the system inefficiency. Based on the comparative assessment of the obtained results, it is concluded that a better combustion with less irreversibility is possible with the increase in O 2 content in the fuel. - Highlights: • Efficiency of a CI engine increases with the increase in oxygen quantity in the fuel. • Irreversibility of a CI engine decreases with increase in oxygen content in the fuel. • Palm biodiesel performs better than karanja biodiesel and petrodiesel for a CI engine

  15. Fuel Economy Impacts of Manual, Conventional Cruise Control, and Predictive Eco-Cruise Control Driving

    Directory of Open Access Journals (Sweden)

    Sangjun Park

    2013-09-01

    Full Text Available The paper presents the results of a field experiment that was designed to compare manual driving, conventional cruise control (CCC driving, and Eco-cruise control (ECC driving with regard to fuel economy. The field experiment was conducted on five test vehicles along a section of Interstate 81 that was comprised of ±4% uphill and downhill grade sections. Using an Onboard Diagnostic II reader, instantaneous fuel consumption rates and other driving parameters were collected with and without the CCC system enabled. The collected data were compared with regard to fuel economy, throttle control, and travel time. The results demonstrate that CCC enhances vehicle fuel economy by 3.3 percent on average relative to manual driving, however this difference was not found to be statistically significant at a 5 percent significance level. The results demonstrate that CCC driving is more efficient on downhill versus uphill sections. In addition, the study demonstrates that an ECC system can produce fuel savings ranging between 8 and 16 percent with increases in travel times ranging between 3 and 6 percent. These benefits appear to be largest for heavier vehicles (SUVs.

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Sato, Kenji; Goto, Masakazu.

    1984-01-01

    Purpose: To facilitate identification of a fuel assembly upon fuel exchange in BWR type reactors. Constitution: Fluorescent material is coated or metal plating is applied to the impressed portion of a upper tie plate handle of a fuel assembly, and the fluorescent material or the metal plating surface is covered with a protective membrane made of transparent material. This enables to distinguish the impressed surface from a distant place and chemical reaction between the impressed surface and the reactor water can be prevented. Furthermore, since the protective membrane is formed such that it protrudes toward the upper side relative to the impressed surface, there is no risk of depositions of claddings thereover. (Moriyama, K.)

  17. Economic Efficiency of Establishing Domestic Production of Synthetic Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Kyzym Mykola O.

    2017-06-01

    Full Text Available The article notes a stable tendency to increasing the oil dependence of Ukraine, which creates a threat to the national economic security, and proves an expediency of establishing domestic production of synthetic liquid fuel. The technical, organizational and economic features of establishing synthetic liquid fuel production in Ukraine are presented. There proved a hypothesis on the expediency of organizing the production of synthetic liquid fuels based on steam-plasma coal gasification technology. The forecast resource cycle of the country until 2020 under conditions of developing this technology is modeled.

  18. The role of the fuel injection system for combustion process optimization of highly turbocharged PC diesel engines; Die Rolle des Einspritzsystems bei der Brennverfahrensoptimierung von hochaufgeladenen Pkw-Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Juergen; Leonhard, Rolf; Krueger, Michael; Naber, Dirk; Pitt, J. [Robert Bosch GmbH, Stuttgart (Germany)

    2008-07-01

    In order to comply with continuously rising requirements from emission legislation and fuel economy enhancement, modern Diesel engines for passenger cars still offer a variety of measures. Focus of this paper is the importance of a highly flexible fuel-injection system and an optimized injection strategy as direct measures to improve both, tail-pipe emission as well as vehicle fuel economy. An integrated system approach of high pressure pump, injector and nozzle provides the latest injection patterns combined with an increased rail pressure level with a best-in-class hydraulic efficiency. The resulting improvement in the injection system and thus in the combustion also enables the introduction of additional indirect, very effective measures for fuel consumption reduction, such as downsizing and downspeeding. In order to fully utilize the potent of the mentioned approaches, the application of advanced boosting technology is an additional key factor. Bosch Diesel injection technology and optimized combustion systems pave the way to achieve the goal of efficient emission reduction. (orig.)

  19. Fuel cell opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Harris, K. [Hydrogenics Corporation, Mississauga, ON (Canada)

    2002-07-01

    The opportunities for fuel cell development are discussed. Fuel cells are highly efficient, reliable and require little maintenance. They also produce virtually zero emissions. The author stated that there are some complicated issues to resolve before fuel cells can be widely used. These include hydrogen availability and infrastructure. While the cost of fuel cells is currently very high, these costs are constantly coming down. The industry is still in the early stages of development. The driving forces for the development of fuel cells are: deregulation of energy markets, growing expectations for distributed power generation, discontinuity between energy supply and demand, and environmental concerns. 12 figs.

  20. The ways of SOFC systems efficiency increasing

    Energy Technology Data Exchange (ETDEWEB)

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  1. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  2. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

    International Nuclear Information System (INIS)

    Pratt, Joseph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2013-01-01

    Highlights: ► We examine proton exchange membrane fuel cells on-board commercial airplanes. ► We model the added fuel cell system’s effect on overall airplane performance. ► It is feasible to implement an on-board fuel cell system with current technology. ► Systems that maximize waste heat recovery are the best performing. ► Current PEM and H 2 storage technology results in an airplane performance penalty. -- Abstract: Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies. Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. The best performance is achieved when the fuel cell is coupled to a load that utilizes the full output of the fuel cell for the entire flight. The effects of location are small and location may be better determined by other considerations such as safety and modularity. Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane’s overall performance we found that an overall

  3. Status of SFR Metal Fuel Development

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byoung Oon; Kim, Ki Hwan; Kim, Sung Ho

    2013-01-01

    Conclusion: • Metal fuel recycling in SFR: - Enhanced utilization of uranium resource; - Efficient transmutation of minor actinides; - Inherent passive reactor safety; - Proliferation resistance with pyro-electrochemical fuel recycling. • Demonstration of technical feasibility of recycling TRU metal fuel by 2020: - Remote fuel fabrication; - Irradiation performance up to high burnup

  4. Probabilistic analysis of the efficiency of the damping devices against nuclear fuel container falling

    Science.gov (United States)

    Králik, Juraj

    2017-07-01

    The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.

  5. Fuel element services

    International Nuclear Information System (INIS)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  6. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  7. High Octane Fuel: Terminal Backgrounder

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    The Bioenergy Technologies Office of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy sponsored a scoping study to assess the potential of ethanol-based high octane fuel (HOF) to reduce energy consumption and greenhouse gas emissions. When the HOF blend is made with 25%-40% ethanol by volume, this energy efficiency improvement is potentially sufficient to offset the reduced vehicle range often associated with the decreased volumetric energy density of ethanol. The purpose of this study is to assess the ability of the fuel supply chain to accommodate more ethanol at fuel terminals. Fuel terminals are midstream in the transportation fuel supply chain and serve to store and distribute fuels to end users. While there are no technical issues to storing more ethanol at fuel terminals, there are several factors that could impact the ability to deploy more ethanol. The most significant of these issues include the availability of land to add more infrastructure and accommodate more truck traffic for ethanol deliveries as well as a lengthy permitting process to erect more tanks.

  8. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  9. Catalyst design for clean and efficient fuels

    DEFF Research Database (Denmark)

    Šaric, Manuel

    cobalt promoted MoS2 catalyst. Reactivity of a series of model molecules, found in oil prior to desulfurization, is studied on cobalt promoted MoS2. Such an approach has the potential to explain the underlying processes involved in the removal of sulfur at each specific site of the catalyst. The goal...... is to identify which sites are active towards specific molecules and in getting insight to what the ideal catalyst should look like in terms of morphology. Dimethyl carbonate is an environmentally benign compound that can be used as a solvent and precursor in chemical synthesis or as a fuel and fuel additive...... processes currently used. It is found that noble metals can be used as electrocatalysts for the synthesis of dimethyl carbonate, significantly lowering the potential when using copper instead of gold. Besides being active, copper was found to be selective towards dimethyl carbonate. A non-selective catalyst...

  10. Active Duty C-17 Aircraft Commander Fuel Efficiency Metrics and Goal Evaluation

    Science.gov (United States)

    2015-03-26

    options. Finally, Nicholson’s (2009:1-61) work was primarily focused on cost-effectiveness of replacing petroleum-based fuel with biodiesel . Fuel...Gillson, A. “Flight Fuel Planning Policy Letter,” HQ AMC/A3V, 2014. Hileman, J.I., R.W. Stratton. “Alternative jet fuel feasibility,” Transport Policy

  11. Solid fuel block as an alternate fuel for cooking and barbecuing: Preliminary results

    International Nuclear Information System (INIS)

    Sharma, Monikankana; Mukunda, H.S.; Sridhar, G.

    2009-01-01

    A large part of the rural people of developing countries use traditional biomass stoves to meet their cooking and heating energy demands. These stoves possess very low thermal efficiency; besides, most of them cannot handle agricultural wastes. Thus, there is a need to develop an alternate cooking contrivance which is simple, efficient and can handle a range of biomass including agricultural wastes. In this reported work, a highly densified solid fuel block using a range of low cost agro residues has been developed to meet the cooking and heating needs. A strategy was adopted to determine the best suitable raw materials, which was optimized in terms of cost and performance. Several experiments were conducted using solid fuel block which was manufactured using various raw materials in different proportions; it was found that fuel block composed of 40% biomass, 40% charcoal powder, 15% binder and 5% oxidizer fulfilled the requirement. Based on this finding, fuel blocks of two different configurations viz. cylindrical shape with single and multi-holes (3, 6, 9 and 13) were constructed and its performance was evaluated. For instance, the 13 hole solid fuel block met the requirement of domestic cooking; the mean thermal power was 1.6 kW th with a burn time of 1.5 h. Furthermore, the maximum thermal efficiency recorded for this particular design was 58%. Whereas, the power level of single hole solid fuel block was found to be lower but adequate for barbecue cooking application

  12. Projection of fossil fuels consumption in the Venezuelan electricity generation industry

    International Nuclear Information System (INIS)

    Vidoza, Jorge A.; Gallo, Waldyr L.R.

    2016-01-01

    This study presents a prospective analysis on the impacts of recent efficient energy policies application in Venezuela, integrating both oil production and electricity supply to assess energy resources balance in a quantitative manner. A special focus is given to main fossil fuels used in the electric power industry; natural gas, diesel oil and fuel oil. Four scenarios were proposed, ranging from a low-economy-growth/low-efficiency scenario to an optimist high-economy-growth/high-efficiency scenario. Efficiency effects are more notorious for high-economy-growth case, fuel consumption for electricity generation reduces 38% for natural gas, 12% for diesel and 29% for fuel oil, in the established time period. Deficits in oil and gas Venezuelan production were also determined, deficits are highly affected by economical forecasting, and by fuel smuggling in Venezuelan borders. Results showed the high importance of energy efficiency policies development for Venezuela, in order to reduce fossil fuel domestic consumption to allocate them in a more profitable market. - Highlights: • We made a prospective analysis on efficient energy policies impacts in Venezuela. • Reduced fuel consumption was obtained for efficient scenarios. • Current energy regulations are not enough to encourage energy efficiency. • Hydroelectricity projects need more promotion to have deeper impacts.

  13. Computational methods for more fuel-efficient ship

    NARCIS (Netherlands)

    Koren, B.

    2008-01-01

    The flow of water around a ship powered by a combustion engine is a key factor in the ship's fuel consumption. The simulation of flow patterns around ship hulls is therefore an important aspect of ship design. While lengthy computations are required for such simulations, research by Jeroen Wackers

  14. Alternative fuels: how real? how soon?

    International Nuclear Information System (INIS)

    Tertzakian, P.

    2003-01-01

    Nations of the Organization for Economic Cooperation and Development (OECD) are looking for politically stable sources of oil in response to the ever growing demand for fuel. World oil consumption has reached 76.5 MMB/d and demand is expected to be 80 MMB/d by 2005. More restrictive environmental policies are resulting in improved conversion efficiency of oil dependent supply chains and the switching to alternative fuels. The adoption of new fuels however, depends on many factors such as the economic advantage, technological superiority, and convenience. The dominant electrical supply chains at the moment are nuclear, coal, hydropower, hydrocarbons, and renewable energy alternatives such as wind, solar and hydrogen fuels. The paper presented graphs illustrating adoption patterns for various fuels over the past century and presented a potential adoption pattern for fuel cell vehicles. Also included in this presentation were graphs depicting how price can drive supply chain demand and allow other fuels to gain market share. The impact of fuel substitution, efficiency and price effects was mentioned along with the impact of recent policy changes on vehicle fuel efficiency and carbon dioxide emissions. The role of government incentives to promote alternative fuel sales was also discussed along with a broad assessment of renewable supply chains. It was noted that most new fuels are linked to hydrocarbons. For example, hydrogen generation through water electrolysis requires petroleum generated electricity or the steam reforming of natural gas. Ethanol processes also require hydrocarbon consumption indirectly. It was noted that the average efficiencies of coal and natural gas plants has increased in the past decade and the incumbent price trends in electricity in the United States have decreased for fuels such as oil, gas, coal and nuclear energy. With ongoing innovation in the internal combustion engine in the past 30 years, the incumbents have also improved with

  15. Efficiency of SOFC type fuel cells; Eficiencia de celulas combustiveis do tipo SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Alexandre Alves do; Matos, Francisco F.; Boaventura, Jaime S.; Benedicto, Joao Paulo S.; Alencar, Marcelo [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica. Dept. de Fisico-Quimica

    2006-07-01

    production of electric energy, mainly due to the fact that it is virtually no pollutant. Typically, the SOFC is constituted of at least seven distinct phases: fuel, anode, electrolyte substrate (separating the two electrodes), cathode, air, and electrical inter connectors (completing the electrical circuit). Thermodynamics clearly shows that electrochemical systems only can be reversible when homogeneous, what it is not case of the Sofc. Therefore, the application of equilibrium thermodynamics to these systems is incorrect. This work proposes that the Sofc can be better depicted from reactions between adsorbed species. The efficiency then is calculated as the ratio between the free energy of these reactions to the combustion heat. Thermodynamic parameter estimative is developed for the global and adsorbed species reactions. (author)

  16. Nondestructive verification and assay systems for spent fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Phillips, J.R.; Bosler, G.E.; Eccleston, G.W.; Halbig, J.K.; Hatcher, C.R.; Hsue, S.T.

    1982-04-01

    This is an interim report of a study concerning the potential application of nondestructive measurements on irradiated light-water-reactor (LWR) fuels at spent-fuel storage facilities. It describes nondestructive measurement techniques and instruments that can provide useful data for more effective in-plant nuclear materials management, better safeguards and criticality safety, and more efficient storage of spent LWR fuel. In particular, several nondestructive measurement devices are already available so that utilities can implement new fuel-management and storage technologies for better use of existing spent-fuel storage capacity. The design of an engineered prototype in-plant spent-fuel measurement system is approx. 80% complete. This system would support improved spent-fuel storage and also efficient fissile recovery if spent-fuel reprocessing becomes a reality

  17. Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    KAUST Repository

    Bhavani Shankar, Vijai Shankar; Sajid, Muhammad Bilal; Al-Qurashi, Khalid; Atef, Nour; Al Khesho, Issam; Ahmed, Ahfaz; Chung, Suk-Ho; Roberts, William L.; Morganti, Kai; Sarathy, Mani

    2016-01-01

    This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  19. Liquid fuel cells

    Directory of Open Access Journals (Sweden)

    Grigorii L. Soloveichik

    2014-08-01

    Full Text Available The advantages of liquid fuel cells (LFCs over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  20. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    International Nuclear Information System (INIS)

    Townes, G.A.

    1979-10-01

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than full fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day