WorldWideScience

Sample records for emsl bgc modeling

  1. Biome-BGC: Modeling Effects of Disturbance and Climate (Thornton et al. 2002)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This archived model product contains the directions, executables, and procedures for running Biome-BGC, Version 4.1.1, to recreate the results of the...

  2. Biome-BGC: Modeling Carbon Dynamics in Ponderosa Pine Stands (Law et al. 2003)

    Data.gov (United States)

    National Aeronautics and Space Administration — This archived model product contains the directions, executables, and procedures for running Biome-BGC, Version 4.1.2, to recreate the results of the following...

  3. PnET-BGC: Modeling Biogeochemical Processes in a Northern Hardwood Forest Ecosystem

    Data.gov (United States)

    National Aeronautics and Space Administration — This archived model product contains the directions, executables, and procedures for running PnET-BGC to recreate the results of: Gbondo-Tugbawa, S.S., C.T. Driscoll...

  4. PnET-BGC: Modeling Biogeochemical Processes in a Northern Hardwood Forest Ecosystem

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This archived model product contains the directions, executables, and procedures for running PnET-BGC to recreate the results of: Gbondo-Tugbawa, S.S.,...

  5. EMSL Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.

    2009-06-18

    This manual is a general resource tool to assist EMSL users and Laboratory staff within EMSL locate official policy, practice and subject matter experts. It is not intended to replace or amend any formal Battelle policy or practice. Users of this manual should rely only on Battelle’s Standard Based Management System (SBMS) for official policy. No contractual commitment or right of any kind is created by this manual. Battelle management reserves the right to alter, change, or delete any information contained within this manual without prior notice.

  6. EMSL Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.

    2009-03-25

    This manual is a general resource tool to assist EMSL users and Laboratory staff within EMSL locate official policy, practice and subject matter experts. It is not intended to replace or amend any formal Battelle policy or practice. Users of this manual should rely only on Battelle’s Standard Based Management System (SBMS) for official policy. No contractual commitment or right of any kind is created by this manual. Battelle management reserves the right to alter, change, or delete any information contained within this manual without prior notice.

  7. BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.

  8. A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E [ORNL; Wang, Weile [ORNL; Law, Beverly E. [Oregon State University; Nemani, Ramakrishna R [NASA Ames Research Center

    2009-01-01

    The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.

  9. Growing C4 perennial grass for bioenergy using a new Agro-BGC ecosystem model

    Science.gov (United States)

    di Vittorio, A. V.; Anderson, R. S.; Miller, N. L.; Running, S. W.

    2009-12-01

    Accurate, spatially gridded estimates of bioenergy crop yields require 1) biophysically accurate crop growth models and 2) careful parameterization of unavailable inputs to these models. To meet the first requirement we have added the capacity to simulate C4 perennial grass as a bioenergy crop to the Biome-BGC ecosystem model. This new model, hereafter referred to as Agro-BGC, includes enzyme driven C4 photosynthesis, individual live and dead leaf, stem, and root carbon/nitrogen pools, separate senescence and litter fall processes, fruit growth, optional annual seeding, flood irrigation, a growing degree day phenology with a killing frost option, and a disturbance handler that effectively simulates fertilization, harvest, fire, and incremental irrigation. There are four Agro-BGC vegetation parameters that are unavailable for Panicum virgatum (switchgrass), and to meet the second requirement we have optimized the model across multiple calibration sites to obtain representative values for these parameters. We have verified simulated switchgrass yields against observations at three non-calibration sites in IL. Agro-BGC simulates switchgrass growth and yield at harvest very well at a single site. Our results suggest that a multi-site optimization scheme would be adequate for producing regional-scale estimates of bioenergy crop yields on high spatial resolution grids.

  10. Modelling the carbon budget of intensive forest monitoring sites in Germany using the simulation model BIOME-BGC

    OpenAIRE

    Jochheim, H.; Puhlmann, M.; Beese, F.; Berthold, D.; Einert, P.; Kallweit, R.; Konopatzky, A.; Meesenburg, H.; Meiwes, K.-J.; Raspe, S.; Schulte-Bisping, H.; Schulz, C.

    2008-01-01

    It is shown that by calibrating the simulation model BIOME-BGC with mandatory and optional Level II data, within the ICP Forest programme, a well-founded calculation of the carbon budget of forest stands is achievable and, based on succeeded calibration, the modified BIOME-BGC model is a useful tool to assess the effect of climate change on forest ecosystems. peerReviewed

  11. EMSL 2008 Operational Review

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Allison A.

    2008-08-12

    The William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) is a national user facility that contains state-of-the-art instrumentation and expert resources available for use by researchers from academia, industry, and the national laboratory system. The facility is supported by the U.S. Department of Energy’s (DOE) Biological and Environmental Research Program, but the research conducted within the facility benefits many funding agencies, including other branches of DOE, the National Institutes of Health, the National Science Foundation, and the Department of Defense. EMSL requires the continued funding and support of its stakeholders and clients to continue to grow its mission, build its reputation as a sought-after national user facility with cutting-edge capabilities, and attract high-profile users who will work to solve the most critical scientific challenges that affect DOE and the nation. In this vein, this document has been compiled to provide these stakeholders and clients with a review document that provides an abundance of information on EMSL’s history, current research activities, and proposed future direction.

  12. EMSL Outlook Review 2005

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Allison A.

    2005-04-01

    The William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) is a national user facility that contains state-of-the-art instrumentation and expert resources available for use by researchers from academia, industry, and the national laboratory system. The facility is supported by the U.S. Department of Energy’s (DOE) Biological and Environmental Research Program, but the research conducted within the facility benefits many funding agencies, including other branches of DOE, the National Institutes of Health, the National Science Foundation, and the Department of Defense. EMSL requires the continued funding and support of its stakeholders and clients to continue to grow its mission, build its reputation as a sought-after national user facility with cutting-edge capabilities, and attract high-profile users who will work to solve the most critical scientific challenges that affect DOE and the nation. In this vein, this document has been compiled to provide these stakeholders and clients with a review document that provides an abundance of information on EMSL’s history, current research activities, and proposed future direction.

  13. Modelling the impacts of reoccurring fires in tropical savannahs using Biome-BGC.

    Science.gov (United States)

    Fletcher, Charlotte; Petritsch, Richard; Pietsch, Stephan

    2010-05-01

    Fires are a dominant feature of tropical savannahs and have occurred throughout history by natural as well as human-induced means. These fires have a profound influence on the landscape in terms of flux dynamics and vegetative species composition. This study attempts to understand the impacts of fire regimes on flux dynamics and vegetation composition in savannahs using the Biome-BGC model. The Batéké Plateau, Gabon - an area of savannah grasslands in the Congo basin, serves as a case-study. To achieve model validation for savannahs, data sets from stands with differing levels of past burning are used. It is hypothesised that the field measurements from those stands with lower-levels of past burning will correlate with the Biome-BGC model output, meaning that the model is validated for the savannah excluding fire regimes. However, in reality, fire is frequent in the savannah. Data on past fire events are available from the Moderate Resolution Imaging Spectroradiometer (MODIS) to provide the fire regimes of the model. As the field data-driven measurements of the burnt stands are influenced by fire in the savannah, this will therefore result in a Biome-BGC model validated for the impacts of fire on savannah ecology. The validated model can then be used to predict the savannah's flux dynamics under the fire scenarios expected with climate and/or human impact change.

  14. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    Science.gov (United States)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  15. Reimplementation of the Biome-BGC model to simulate successional change.

    Science.gov (United States)

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E

    2005-04-01

    Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.

  16. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    Science.gov (United States)

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Modeling Carbon and Water Budgets in the Lushi Basin with Biome-BGC

    Institute of Scientific and Technical Information of China (English)

    Dong Wenjuan; Qi Ye; Li Huimin; Zhou Dajie; Shi Duanhua; Sun Liying

    2005-01-01

    In this article, annual evapotranspiration (ET) and net primary productivity (NPP) of four types of vegetation were estimated for the Lushi basin,a subbasin of the Yellow River in China. These four vegetation types include: deciduous broadleaf forest,evergreen needle leaf forest, dwarf shrub and grass.Biome-BGC--a biogeochemical process model was used to calculate annual ET and NPP for each vegetation type in the study area from 1954 to 2000.Daily microclimate data of 47 years monitored by Lushi meteorological station was extrapolated to cover the basin using MT-CLIM, a mountain microclimate simulator. The output files of MTCLIM were used to feed Biome-BGC. We used average ecophysiological values of each type of vegetation supplied by Numerical Terradynamic Simulation Group (NTSG) in the University of Montana as input ecophysiological constants file.The estimates of daily NPP in early July and annual ET on these four biome groups were compared respectively with field measurements and other studies.Daily gross primary production (GPP) of evergreen needle leaf forest measurements were very dose to the output of Biome-BGC, but measurements of broadleaf forest and dwarf shrub were much smaller than the simulation result. Simulated annual ET and NPP had a significant correlation with precipitation,indicating precipitation is the major environmental factor affecting ET and NPP in the study area.Precipitation also is the key climatic factor for the interannual ET and NPP variations.

  18. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    Science.gov (United States)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  19. SENSITIVITY ANALYSIS OF BIOME-BGC MODEL FOR DRY TROPICAL FORESTS OF VINDHYAN HIGHLANDS, INDIA

    OpenAIRE

    M. Kumar; A. S. Raghubanshi

    2012-01-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to...

  20. Structural development and web service based sensitivity analysis of the Biome-BGC MuSo model

    Science.gov (United States)

    Hidy, Dóra; Balogh, János; Churkina, Galina; Haszpra, László; Horváth, Ferenc; Ittzés, Péter; Ittzés, Dóra; Ma, Shaoxiu; Nagy, Zoltán; Pintér, Krisztina; Barcza, Zoltán

    2014-05-01

    Studying the greenhouse gas exchange, mainly the carbon dioxide sink and source character of ecosystems is still a highly relevant research topic in biogeochemistry. During the past few years research focused on managed ecosystems, because human intervention has an important role in the formation of the land surface through agricultural management, land use change, and other practices. In spite of considerable developments current biogeochemical models still have uncertainties to adequately quantify greenhouse gas exchange processes of managed ecosystem. Therefore, it is an important task to develop and test process-based biogeochemical models. Biome-BGC is a widely used, popular biogeochemical model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems. Biome-BGC was originally developed by the Numerical Terradynamic Simulation Group (NTSG) of University of Montana (http://www.ntsg.umt.edu/project/biome-bgc), and several other researchers used and modified it in the past. Our research group developed Biome-BGC version 4.1.1 to improve essentially the ability of the model to simulate carbon and water cycle in real managed ecosystems. The modifications included structural improvements of the model (e.g., implementation of multilayer soil module and drought related plant senescence; improved model phenology). Beside these improvements management modules and annually varying options were introduced and implemented (simulate mowing, grazing, planting, harvest, ploughing, application of fertilizers, forest thinning). Dynamic (annually varying) whole plant mortality was also enabled in the model to support more realistic simulation of forest stand development and natural disturbances. In the most recent model version separate pools have been defined for fruit. The model version which contains every former and new development is referred as Biome-BGC MuSo (Biome-BGC

  1. Adapting the Biome-BGC Model to New Zealand Pastoral Agriculture: Climate Change and Land-Use Change

    Science.gov (United States)

    Keller, E. D.; Baisden, W. T.; Timar, L.

    2011-12-01

    We have adapted the Biome-BGC model to make climate change and land-use scenario estimates of New Zealand's pasture production in 2020 and 2050, with comparison to a 2005 baseline. We take an integrated modelling approach with the aim of enabling the model's use for policy assessments across broadly related issues such as climate change mitigation and adaptation, land-use change, and greenhouse gas projections. The Biome-BGC model is a biogeochemical model that simulates carbon, water, and nitrogen cycles in terrestrial ecosystems. We introduce two new 'ecosystems', sheep/beef and dairy pasture, within the existing structure of the Biome-BGC model and calibrate its ecophysiological parameters against pasture clipping data from diverse sites around New Zealand to form a baseline estimate of total New Zealand pasture production. Using downscaled AR4 climate projections, we construct mid- and upper-range climate change scenarios in 2020 and 2050. We produce land-use change scenarios in the same years by combining the Biome-BGC model with the Land Use in Rural New Zealand (LURNZ) model. The LURNZ model uses econometric approaches to predict future land-use change driven by changes in net profits driven by expected pricing, including the introduction of an emission trading system. We estimate the relative change in national pasture production from our 2005 baseline levels for both sheep/beef and dairy systems under each scenario.

  2. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biome-BGC is a computer program that estimates fluxes and storage of energy, water, carbon, and nitrogen for the vegetation and soil components of...

  3. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Biome-BGC is a computer program that estimates fluxes and storage of energy, water, carbon, and nitrogen for the vegetation and soil components of terrestrial...

  4. Assessing the protection function of Alpine forest ecosystems using BGC modelling theory

    Science.gov (United States)

    Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.

    2009-04-01

    The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (

  5. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    Science.gov (United States)

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.

  6. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    Science.gov (United States)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  7. Evaluation of forest management practices through application of a biogeochemical model, PnET-BGC

    Science.gov (United States)

    Valipour, M.; Driscoll, C. T.; Johnson, C. E.; Campbell, J. L.; Fahey, T.; Zeng, T.

    2017-12-01

    Forest ecosystem response to logging disturbance varies significantly, depending on site conditions, species composition, land use history, and the method and frequency of harvesting. The long-term effects of forest cuttings are less clear due to limited information on land use history and long-term time series observations. The hydrochemical model, PnET-BGC was modified and verified using field data from multiple experimentally harvested northern hardwood watersheds at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, including a commercial whole-tree harvest (Watershed 5), a devegetation experiment (Watershed 2; devegetation and herbicide treatment), a commercial strip-cut (Watershed 4) to simulate the hydrology, biomass accumulation, and soil solution and stream water chemistry responses to clear-cutting. The confirmed model was used to investigate temporal changes in aboveground biomass accumulation and nutrient dynamics under three different harvesting intensities (40%, 60%, 80%) over four varied rotation lengths (20, 40, 60, 80 years) with results compared with a scenario of no forest harvesting. The total ecosystem carbon pool (biomass, soil and litter) was reduced over harvesting events. The greatest decline occurred in litter by 40%-70%, while the pool of carbon stored in aboveground biomass decreased by 30%-60% for 80% cutting levels at 40 and 20 year rotation lengths, respectively. The large pool of soil organic carbon remained relatively stable, with only minor declines over logging regimes. Stream water simulations demonstrated increased loss of major elements over cutting events. Ca+2 and NO3- were the most sensitive elements to leaching over frequent intensive logging. Accumulated leaching of Ca+2 and NO3- varied between 90-520 t Ca/ha and 40-420 t N/ha from conservative (80-year period and 40% cutting) to aggressive (20-year period and 80% cutting) cutting regimes, respectively. Moreover, a reduction in nutrient plant uptake over

  8. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  9. Modeling the Ecosystem Services Provided by Trees in Urban Ecosystems: Using Biome-BGC to Improve i-Tree Eco

    Science.gov (United States)

    Brown, Molly E.; McGroddy, Megan; Spence, Caitlin; Flake, Leah; Sarfraz, Amna; Nowak, David J.; Milesi, Cristina

    2012-01-01

    As the world becomes increasingly urban, the need to quantify the effect of trees in urban environments on energy usage, air pollution, local climate and nutrient run-off has increased. By identifying, quantifying and valuing the ecological activity that provides services in urban areas, stronger policies and improved quality of life for urban residents can be obtained. Here we focus on two radically different models that can be used to characterize urban forests. The i-Tree Eco model (formerly UFORE model) quantifies ecosystem services (e.g., air pollution removal, carbon storage) and values derived from urban trees based on field measurements of trees and local ancillary data sets. Biome-BGC (Biome BioGeoChemistry) is used to simulate the fluxes and storage of carbon, water, and nitrogen in natural environments. This paper compares i-Tree Eco's methods to those of Biome-BGC, which estimates the fluxes and storage of energy, carbon, water and nitrogen for vegetation and soil components of the ecosystem. We describe the two models and their differences in the way they calculate similar properties, with a focus on carbon and nitrogen. Finally, we discuss the implications of further integration of these two communities for land managers such as those in Maryland.

  10. EMSL Bimonthly Report: June 2007 through July 2007

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2007-10-03

    The W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL operates EMSL for the DOE Office of Biological and Environmental Research. At one location, EMSL offers a comprehensive array of leading-edge resources in six research facilities. Access to the capabilities and instrumentation in EMSL facilities is obtained through a peer-reviewed proposal process. The Bimonthly Report documents research activities and accomplishments of EMSL users and staff. Topics covered in the Bimonthly Report include Research Highlights of EMSL user projects, Scientific Grand Challenge Highlights, Awards and Recognition, Professional/Community Service, Major Facility Upgrades, News Coverage, Visitors and Users, New EMSL Staff, Publications, Presentations, Patents, and Journal Covers featuring EMSL user research.

  11. Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model.

    Science.gov (United States)

    Mao, Fangjie; Zhou, Guomo; Li, Pingheng; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2017-04-15

    The selective cutting method currently used in Moso bamboo forests has resulted in a reduction of stand productivity and carbon sequestration capacity. Given the time and labor expense involved in addressing this problem manually, simulation using an ecosystem model is the most suitable approach. The BIOME-BGC model was improved to suit managed Moso bamboo forests, which was adapted to include age structure, specific ecological processes and management measures of Moso bamboo forest. A field selective cutting experiment was done in nine plots with three cutting intensities (high-intensity, moderate-intensity and low-intensity) during 2010-2013, and biomass of these plots was measured for model validation. Then four selective cutting scenarios were simulated by the improved BIOME-BGC model to optimize the selective cutting timings, intervals, retained ages and intensities. The improved model matched the observed aboveground carbon density and yield of different plots, with a range of relative error from 9.83% to 15.74%. The results of different selective cutting scenarios suggested that the optimal selective cutting measure should be cutting 30% culms of age 6, 80% culms of age 7, and all culms thereafter (above age 8) in winter every other year. The vegetation carbon density and harvested carbon density of this selective cutting method can increase by 74.63% and 21.5%, respectively, compared with the current selective cutting measure. The optimized selective cutting measure developed in this study can significantly promote carbon density, yield, and carbon sink capacity in Moso bamboo forests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    Science.gov (United States)

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation

  13. Copula Multivariate analysis of Gross primary production and its hydro-environmental driver; A BIOME-BGC model applied to the Antisana páramos

    Science.gov (United States)

    Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Galarraga, Remigio; Mynett, Arthur

    2014-05-01

    Simulations of carbon cycling are prone to uncertainties from different sources, which in general are related to input data, parameters and the model representation capacities itself. The gross carbon uptake in the cycle is represented by the gross primary production (GPP), which deals with the spatio-temporal variability of the precipitation and the soil moisture dynamics. This variability associated with uncertainty of the parameters can be modelled by multivariate probabilistic distributions. Our study presents a novel methodology that uses multivariate Copulas analysis to assess the GPP. Multi-species and elevations variables are included in a first scenario of the analysis. Hydro-meteorological conditions that might generate a change in the next 50 or more years are included in a second scenario of this analysis. The biogeochemical model BIOME-BGC was applied in the Ecuadorian Andean region in elevations greater than 4000 masl with the presence of typical vegetation of páramo. The change of GPP over time is crucial for climate scenarios of the carbon cycling in this type of ecosystem. The results help to improve our understanding of the ecosystem function and clarify the dynamics and the relationship with the change of climate variables. Keywords: multivariate analysis, Copula, BIOME-BGC, NPP, páramos

  14. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  15. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  16. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  17. A spatial implementation of the BIOME-BGC to model grassland GPP production and water budgets in the Ecuadorian Andean Region

    Science.gov (United States)

    Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Mynett, Arthur

    2016-04-01

    Many terrestrial biogeochemistry process models have been applied around the world at different scales and for a large range of ecosystems. Grasslands, and in particular the ones located in the Andean Region are essential ecosystems that sustain important ecological processes; however, just a few efforts have been made to estimate the gross primary production (GPP) and the hydrological budgets for this specific ecosystem along an altitudinal gradient. A previous study, which is one of the few available in the region, considered the heterogeneity of the main properties of the páramo vegetation and showed significant differences in plant functional types, site/soil parameters and daily meteorology. This study extends the work above mentioned and uses spatio-temporal analysis of the BIOME-BGC model results. This was done to simulate the GPP and the water fluxes in space and time, by applying altitudinal analysis. The catchment located at the southwestern slope of the Antisana volcano in Ecuador was selected as a representative area of the Andean páramos and its hydrological importance as one of the main sources of a water supply reservoir in the region. An accurate estimation of temporal changes in GPP in the region is important for carbon budget assessments, evaluation of the impact of climate change and biomass productivity. This complex and yet interesting problem was integrated by the ecosystem process model BIOME-BGC, the results were evaluated and associated to the land cover map where the growth forms of vegetation were identified. The responses of GPP and the water fluxes were not only dependent on the environmental drivers but also on the ecophysiology and the site specific parameters. The model estimated that the GPP at lower elevations doubles the amount estimated at higher elevations, which might have a large implication during extrapolations at larger spatio-temporal scales. The outcomes of the stand hydrological processes demonstrated a wrong

  18. Applications of neural networks to real-time data processing at the Environmental and Molecular Sciences Laboratory (EMSL)

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1993-06-01

    Detailed design of the Environmental and Molecular Sciences Laboratory (EMSL) at the Pacific Northwest Laboratory (PNL) is nearing completion and construction is scheduled to begin later this year. This facility will assist in the environmental restoration and waste management mission at the Hanford Site. This paper identifies several real-time data processing applications within the EMSL where neural networks can potentially be beneficial. These applications include real-time sensor data acquisition and analysis, spectral analysis, process control, theoretical modeling, and data compression

  19. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    Science.gov (United States)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  20. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Charles T.; Datye, Abhaya K.; Henkelman, Graeme A.; Lobo, Raul F.; Schneider, William F.; Spicer, Leonard D.; Tysoe, Wilfred T.; Vohs, John M.; Baer, Donald R.; Hoyt, David W.; Thevuthasan, Suntharampillai; Mueller, Karl T.; Wang, Chong M.; Washton, Nancy M.; Lyubinetsky, Igor; Teller, Raymond G.; Andersen, Amity; Govind, Niranjan; Kowalski, Karol; Kabius, Bernd C.; Wang, Hongfei; Campbell, Allison A.; Shelton, William A.; Bylaska, Eric J.; Peden, Charles HF; Wang, Yong; King, David L.; Henderson, Michael A.; Rousseau, Roger J.; Szanyi, Janos; Dohnalek, Zdenek; Mei, Donghai; Garrett, Bruce C.; Ray, Douglas; Futrell, Jean H.; Laskin, Julia; DuBois, Daniel L.; Kuprat, Laura R.; Plata, Charity

    2011-05-24

    Within the context of significantly accelerating scientific progress in research areas that address important societal problems, a workshop was held in November 2010 at EMSL to identify specific and topically important areas of research and capability needs in catalysis-related science.

  1. EMSL Quarterly Highlights Report Second Quarter, Fiscal Year 2010 (January 1, 2010 through March 31, 2010)

    Energy Technology Data Exchange (ETDEWEB)

    West, Staci A.; Showalter, Mary Ann; Manke, Kristin L.; Carper, Ross R.; Wiley, Julie G.; Beckman, Mary T.

    2010-04-20

    The Environmental Molecular Sciences Laboratory (EMSL) is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. EMSL is operated by PNNL for the DOE-Office of Biological and Environmental Research. At one location, EMSL offers a comprehensive array of leading-edge resources and expertise. Access to the instrumentation and expertise is obtained on a peer-reviewed proposal basis. Staff members work with researchers to expedite access to these capabilities. The "EMSL Quarterly Highlights Report" documents current research and activities of EMSL staff and users.

  2. The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Riley, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Randerson, James T. [Univ. of California, Irvine, CA (United States)

    2016-06-01

    The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).

  3. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    Science.gov (United States)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2010-03-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially

  4. Estimation and modeling of forest attributes across large spatial scales using BiomeBGC, high-resolution imagery, LiDAR data, and inventory data

    Science.gov (United States)

    Golinkoff, Jordan Seth

    The accurate estimation of forest attributes at many different spatial scales is a critical problem. Forest landowners may be interested in estimating timber volume, forest biomass, and forest structure to determine their forest's condition and value. Counties and states may be interested to learn about their forests to develop sustainable management plans and policies related to forests, wildlife, and climate change. Countries and consortiums of countries need information about their forests to set global and national targets to deal with issues of climate change and deforestation as well as to set national targets and understand the state of their forest at a given point in time. This dissertation approaches these questions from two perspectives. The first perspective uses the process model Biome-BGC paired with inventory and remote sensing data to make inferences about a current forest state given known climate and site variables. Using a model of this type, future climate data can be used to make predictions about future forest states as well. An example of this work applied to a forest in northern California is presented. The second perspective of estimating forest attributes uses high resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing data to develop statistical estimates of forest structure. Two approaches within this perspective are presented: a pixel based approach and an object based approach. Both approaches can serve as the platform on which models (either empirical growth and yield models or process models) can be run to generate inferences about future forest state and current forest biogeochemical cycling.

  5. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    Directory of Open Access Journals (Sweden)

    M. Ueyama

    2010-03-01

    Full Text Available Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales.

    The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE, gross primary productivity (GPP, ecosystem respiration (RE, and evapotranspiration (ET. Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values.

    The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation

  6. Use of BIOME-BGC to simulate water and carbon fluxes within Mediterranean macchia

    OpenAIRE

    Chiesi M; Chirici G; Corona P; Duce P; Salvati R; Spano D; Vaccari FP; Maselli F

    2012-01-01

    The biogeochemical model BIOME-BGC is capable to estimate the main ecophysiological processes characterising all terrestrial ecosystems. To this aim it needs to be properly adapted to reproduce the behaviour of each biome type through a calibration phase. The aim of this paper is to adapt BIOME-BGC to reproduce the evapotranspiration (ET) and photosynthesis (GPP) of Mediterranean macchia spread all over Italy. Ten different sites were selected in the Centre-South of Italy and their gross prim...

  7. Sensibility and time heterogeneity of Biome-BGC model parameters%Biome-BGC模型参数的敏感性和时间异质性

    Institute of Scientific and Technical Information of China (English)

    刘秋雨; 张廷龙; 孙睿; 王博闻; 叶欣欣; 李一哲

    2017-01-01

    water and carbon flux in Harvard Forest area.Firstly,the sensitivity of parameters was analyzed.Additionally,in order to acquire monthly optimal values of parameters,the values of parameters were changed repeatedly in reasonable range,simulated annealing algorithm was used and objective function was built.Also,the time heterogeneity of sensitive parameter was analyzed through coefficient of variation.The results showed that the ecological model parameters were not constants,and the property of parameters changed with time.In addition,the heterogeneity of parameters was different.In this paper,the sensitive parameters in the Biome-BGC model were divided into corresponding levels based on their time heterogeneity.The results of this study could promote in-depth understanding of ecological model parameters and provide an idea for identification and optimization of these parameters,which is helpful to improve the accuracy and effectiveness of model and data assimilation.

  8. [Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on BIOME-BGC model and tree-ring data].

    Science.gov (United States)

    He, Jun-Jie; Peng, Xing-Yuan; Chen, Zhen-Ju; Cui, Ming-Xing; Zhang, Xian-Liang; Zhou, Chang-Hong

    2012-07-01

    Based on BIOME-BGC model and tree-ring data, a modeling study was conducted to estimate the dynamic changes of the net primary productivity (NPP) of Pinus tabulaeformis forest ecosystem in North China in 1952-2008, and explore the responses of the radial growth and NPP to regional climate warming as well as the dynamics of the NPP in the future climate change scenarios. The simulation results indicated the annual NPP of the P. tabulaeformis ecosystem in 1952-2008 fluctuated from 244.12 to 645.31 g C x m(-2) x a(-1), with a mean value of 418.6 g C x m(-2) x a(-1) The mean air temperature in May-June and the precipitation from previous August to current July were the main factors limiting the radial growth of P. tabulaeformis and the NPP of P. tabulaeformis ecosystem. In the study period, both the radial growth and the NPP presented a decreasing trend due to the regional warming and drying climate condition. In the future climate scenarios, the NPP would have positive responses to the increase of air temperature, precipitation, and their combination. The elevated CO2 would benefit the increase of the NPP, and the increment would be about 16.1% due to the CO2 fertilization. At both ecosystem and regional scales, the tree-ring data would be an ideal proxy to predict the ecosystem dynamic change, and could be used to validate and calibrate the process-based ecosystem models including BIOME-BGC.

  9. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    Science.gov (United States)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also

  10. FIFE data analysis: Testing BIOME-BGC predictions for grasslands

    Science.gov (United States)

    Hunt, E. Raymond, Jr.

    1994-01-01

    The First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) was conducted in a 15 km by 15 km research area located 8 km south of Manhattan, Kansas. The site consists primarily of native tallgrass prairie mixed with gallery oak forests and croplands. The objectives of FIFE are to better understand the role of biology in controlling the interactions between the land and the atmosphere, and to determine the value of remotely sensed data for estimating climatological parameters. The goals of FIFE are twofold: the upscale integration of models, and algorithm development for satellite remote sensing. The specific objectives of the field campaigns carried out in 1987 and 1989 were the simultaneous acquisition of satellite, atmospheric, and surface data; and the understanding of the processes controlling surface energy and mass exchange. Collected data were used to study the dynamics of various ecosystem processes (photosynthesis, evaporation and transpiration, autotrophic and heterotrophic respiration, etc.). Modelling terrestrial ecosystems at scales larger than that of a homogeneous plot led to the development of simple, generalized models of biogeochemical cycles that can be accurately applied to different biomes through the use of remotely sensed data. A model was developed called BIOME-BGC (for BioGeochemical Cycles) from a coniferous forest ecosystem model, FOREST-BGC, where a biome is considered a combination of a life forms in a specified climate. A predominately C4-photosynthetic grassland is probably the most different from a coniferous forest possible, hence the FIFE site was an excellent study area for testing BIOME-BGC. The transition from an essentially one-dimensional calculation to three-dimensional, landscape scale simulations requires the introduction of such factors as meteorology, climatology, and geomorphology. By using remotely sensed geographic information data for important model inputs, process

  11. 改进Biome-BGC模型模拟哈佛森林地区水、碳通量%Simulation of water and carbon fluxes in Harvard forest area by using improved BiomeBGC model.

    Institute of Scientific and Technical Information of China (English)

    张廷龙; 孙睿; 胡波; 冯丽超; 张荣华

    2011-01-01

    Biome-BGC模型通过耦合植被、土壤与大气间的水分与CO2交换过程,实现植被生产力的模拟,但土壤水平衡模块的不够完善,导致在长时间无降水情况下植被生产力模拟存在较大误差.针对这一问题,本文对Biome-BGC模型中土壤水分胁迫气孔导度方程、蒸散计算公式及土壤水分流失过程等3方面进行了改进和调整,利用改进的Biome-BGC模型模拟美国哈佛森林地区蒸散、植被生产力,并与地面通量观测值进行了比较.结果表明,改进后模拟精度有明显的提高,蒸散、植被生态系统生产力(NEE)与观测值间的决定系数分别由0.483和0.658提高到0.617和O.813,蒸散逐年均方根误差平均下降了48.7%,NEE逐年误差平方和平均下降了39.8%.改进后的模型模拟结果更接近观测值.%Using Biome-BGC model can simulate vegetation productivity through the coupling of water and CO2 exchange processes between vegetation, soil and atmosphere, but the soil water balance module is not perfect enough, leading to a large deviation between simulated and observed values under condition of a long time no precipitation. Aiming at this problem, this paper improved and adjusted the equation of stomatal conductance stressed by soil water, the calculation formula of evapotranspiration, and the process of soil water loss in Biome-BGC model. Using this improved model, the evapotranspiration and vegetation productivity in Harvard Forest area were simulated, and compared with field observations. The accuracy of simulated results by the improved model enhanced obviously, with the evapotranspiration R between simulated and observed values increased from 0. 483 to 0. 617, NEE R2 increased from 0. 658 to 0. 813, root mean square error (RMSE) of annual evapotranspiration decreased averagely by 48. 7% , and annual sum squared error ( ASSE) of NEE decreased averagely by 39. 8% , which suggested that the simulated results by using the improved model

  12. Improved simulation of poorly drained forests using Biome-BGC.

    Science.gov (United States)

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E

    2007-05-01

    Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.

  13. Using simulated annealing algorithm to optimize the parameters of Biome-BGC model%利用模拟退火算法优化Biome-BGC模型参数

    Institute of Scientific and Technical Information of China (English)

    张廷龙; 孙睿; 胡波; 冯丽超

    2011-01-01

    生态过程模型建立在明确的机理之上,能够较好地模拟陆地生态系统的行为和特征,但模型众多的参数,成为模型具体应用的瓶颈.本文以Biome-BGC模型为例,采用模拟退火算法,对其生理、生态参数进行优化.在优化过程中,先对待优化参数进行了选择,然后采取逐步优化的方法进行优化.结果表明,使用优化后的参数,模型模拟结果与实际观测更为接近,参数优化能有效地降低模型模拟的不确定性.文中参数优化的过程和方法,可为生态模型的参数识别和优化提供一种实例和思路,有助于生态模型应用区域的扩展.%Ecological process model based on defined mechanism can well simulate the dynamic behaviors and features of terrestrial ecosystem, but could become a bottleneck in application because of numerous parameters needed to be confirmed. In this paper, simulated annealing algorithm was used to optimize the physiological and ecological parameters of Biome-BGC model. The first step was to choose some of these parameters to optimize, and then, gradually optimized these parameters. By using the optimized parameters, the model simulation results were much more close to the observed data, and the parameter optimization could effectively reduce the uncertainty of model simulation. The parameter optimization method used in this paper could provide a case and an idea for the parameter identification and optimization of ecological process models,and also, help to expand the application area of the models.

  14. Reply: “Use of BIOME-BGC to simulate Mediterranean forest carbon stocks”

    OpenAIRE

    Maselli F; Salvati R; Barbati A; Chirici G; Chiesi M

    2011-01-01

    The current note responds to the critical contribution of Dr. Eastaugh on Chiesi et al. (Chiesi et al. 2011). That paper did not aim at applying BIOME-BGC to simulate stand growth, which requires a thorough modification of the model functions. In contrast, only a parameter setting was changed in order to adjust the predicted carbon storages during the simulation of quasi-equilibrium conditions. The adjustment was calibrated on volume statistics derived from the Tuscany forest inventory and is...

  15. Calibration and Application of FOREST-BGC in NorthWestern of Portugal

    Science.gov (United States)

    Rodrigues, M. A.; Lopes, D. M.; Leite, M. S.; Tabuada, V. M.

    2010-05-01

    Net primary production (NPP) is one of the most important variables in terms of ecosystems inventory and management, because it quantifies its growth and reflects the impact of biotic and abiotic factors, which could affect it. Interest in NP has increased recently because of the increasing interesting in climate change and the need in understanding its impact on the environment. There are ecophysiologic models, as Forest-BGC that allow for estimating NPP. The types of models offer a possible methodology to test these phenomena, beyond temporal and spatial scales, not available with tradicional inventory methodologies. To analyze the Forest-BGC performance, NPP data obtained with model were compared with collected data in the field, in the same sampling plots. For a parameterization and validation of the FOREST-BGC, this study was carried on based on 500m2 sampling plots from the National Forest Inventory 2006 and are located in several County Halls of the district of Vila Real, Portugal (Montalegre, Chaves, Valpaços, Boticas, Vila Pouca de Aguiar, Murça, Mondim de Basto, Alijó, Sabrosa and Vila Real). In order to quantify Biomass dinamics, we have selected 45 sampling plots: 19 from Pinus pinaster stands, 17 from Quercus pyreneica and 10 from mixed of Quercus with Pinus. Adaptation strategies for climate change impacts can be proposed based on these research results.

  16. 基于Biome-BGC模型的西双版纳橡胶林碳收支模拟%Simulation of carbon budget in rubber plantations in Xishuangbanna based on the Biome-BGC model

    Institute of Scientific and Technical Information of China (English)

    孙燕瓷; 马友鑫; 曹坤芳; 沈金祥; 张一平; 梅岑岑; 刘文俊

    2017-01-01

    以西双版纳橡胶适宜种植区(海拔550-600m)的橡胶林(Hevea brasiliensis)为研究对象,应用参数同化后的Biome-BGC模型模拟了1959-2012年橡胶林的碳循环.结果表明,(1)与涡度相关监测结果相比,橡胶林年总初级生产力(Gross Primary Productivity,GPP)、年总呼吸(Total Respiration,Rt)的模拟精度分别为98.37%和90%.由于对年GPP的过低估计和对年Rt的过高估计,年净生态系统交换量(Net Ecosystem Exchange,NEE)的模拟值比实测值低157.35 g C m-2 a-1.但若考虑干胶碳(139gCm-2a-1),模拟值与实测值十分接近;(2)橡胶林在模拟进行的前8年里因异养呼吸较高,以碳排放为主,NEE平均约357 gC m-2a-1;之后转为以碳固定为主,NEE平均约-146 g C m-2a-1;(3)橡胶林在40年的更新周期中可固定碳1835 g C m-2,是一个弱的碳汇.但与热带雨林相同周期固碳6720 g C m-2相比,仍为碳源.以上结果为深入了解橡胶种植对区域碳循环的影响提供了科学依据,建议当地政府一方面要有计划的对老胶林进行更新,以维持当前橡胶林生态系统中的碳平衡;另一方面要注重对热带雨林的保护,从而实现区域经济和生态环境保护的协调发展.%The carbon (C) cycle in rubber plantations,which are located in a suitable planting region (altitude 550-600 m) in Xishuangbanna,was simulated using the Biome-BGC model for the period 1959-2012.We obtained the following results.(1) Compared with the actual measurements,the accuracy was 98.37% and 90% for the simulated annual gross primary productivity (GPP) and total respiration (Rt),respectively.Because of an underestimate of GPP and an overestimate of Rt,the simulated annual net ecosystem exchange (NEE) was 157.35 g C m-2 a-1 lower than the measured value.However,the accuracy was greatly enhanced when dry rubber C stock (139 g C m-2 a-1) was taken into account.(2) During the initial 8 years,rubber plantation acted as a C source because of the higher

  17. Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example%生态过程模型敏感参数最优取值的时空异质性分析——以BIOME-BGC模型为例

    Institute of Scientific and Technical Information of China (English)

    李一哲; 张廷龙; 刘秋雨; 李英

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present.However,there are many parameters for these models,and weather the reasonable values of these parameters were taken,have important impact on the models simulation results.In the past,the sensitivity and the optimization of model parameters were analyzed and discussed in many researches.But the temporal and spatial heterogeneity of the optimal parameters is less concerned.In this paper,the BIOME-BGC model was used as an example.In the evergreen broad-leaved forest,deciduous broad-leaved forest and C3 grassland,the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type.The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site.Then we constructed the temporal heterogeneity judgment index,the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters.The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types,but the selected sensitive parameters were mostly consistent.The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types.The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity.In addition,the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial

  18. Comment on Chiesi et al. (2011): “Use of BIOME-BGC to simulate Mediterranean forest carbon stocks”

    OpenAIRE

    Eastaugh CS

    2011-01-01

    The mechanistic forest growth model BIOME-BGC utilizes a “spin-up” procedure to estimate site parameters for forests in a steady-state condition, as they may have been expected to be prior to anthropogenic influence. Forests in this condition have no net growth, as living biomass accumulation is balanced by mortality. To simulate current ecosystems it is necessary to reset the model to reflect a forest of the correct development stage. The alternative approach of simply post-adjus...

  19. Analyzing the carbon dynamics in north western Portugal: calibration and application of Forest-BGC

    Science.gov (United States)

    Rodrigues, M. A.; Lopes, D. M.; Leite, S. M.; Tabuada, V. M.

    2010-04-01

    Net primary production (NPP) is an important variable that allows monitoring forestry ecosystems fixation of atmospheric Carbon. The importance of monitoring the sequestred carbon is related to the binding commitments established by the Kyoto Protocol. There are ecophysiologic models, as Forest-BGC that allow for estimating NPP. In a first stage, this study aims to analyze the climate evolution at the Vila Real administrative district during the last decades. The historical information will be observed in order to detect the past tendencies of evolution. Past will help us to predict future. In a next stage these tendencies will be used to infer the impact of these change scenarios on the net primary production of the forest ecosystems from this study area. For a parameterization and validation of the FOREST-BGC, this study was carried on based on 500 m2 sampling plots from the National Forest Inventory 2006 and are located in several County Halls of the district of Vila Real (Montalegre, Chaves, Valpaços, Boticas, Vila Pouca de Aguiar, Murça, Mondim de Basto, Alijó, Sabrosa and Vila Real). In order to quantify Biomass dinamics, we have selected 45 sampling plots: 19 from Pinus pinaster stands, 17 from Quercus pyrenaica and 10 from mixed of Quercus pyrenaica with Pinus pinaster. Adaptation strategies for climate change impacts can be proposed based on these research results.

  20. Simulating carbon and water fluxes at Arctic and boreal ecosystems in Alaska by optimizing the modified BIOME-BGC with eddy covariance data

    Science.gov (United States)

    Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.

    2013-12-01

    To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.

  1. BOREAS RSS-8 BIOME-BGC SSA Simulation of Annual Water and Carbon Fluxes

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    The BOREAS RSS-8 team performed research to evaluate the effect of seasonal weather and landcover heterogeneity on boreal forest regional water and carbon fluxes using a process-level ecosystem model, BIOME-BGC, coupled with remote sensing-derived parameter maps of key state variables. This data set contains derived maps of landcover type and crown and stem biomass as model inputs to determine annual evapotranspiration, gross primary production, autotrophic respiration, and net primary productivity within the BOREAS SSA-MSA, at a 30-m spatial resolution. Model runs were conducted over a 3-year period from 1994-1996; images are provided for each of those years. The data are stored in binary image format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Estimation of the Net Ecosystem Productivity in Huang-Huai Hai Region Combining with Biome-BGC Model and Remote Sensing Data%遥感数据结合Biome-BGC模型估算黄淮海地区生态系统生产力

    Institute of Scientific and Technical Information of China (English)

    胡波; 孙睿; 陈永俊; 冯丽超; 孙亮

    2011-01-01

    植被净生态系统生产力(NEP)和净第一性生产力(NPP)作为表征植被活动的关键变量,在全球变化研究及区域生态环境评价中起着很重要的作用。Biome-BGC是一个模拟生态系统植被和土壤中的能量、水、碳、氮的流动和存储的生物地球化学循环模型。论文利用2004年时间序列MODIS LAI遥感产品和气象数据,对黄淮海地区的NEP和NPP进行了模拟估算,由于Biome-BGC模型没有农作物生理生态参数,农作物模拟通过修改草地生理生态参数,并在增加施肥、灌溉和收割代码基础上实现。结果表明,2004年黄淮海地区NEP、NPP呈现南部大于北部的空间分布特征;不同植被类型平均NEP和NPP大小顺序分别为:混交林〉落叶阔叶林〉常绿针叶林〉农作物〉灌木〉草地、混交林〉农作物〉落叶阔叶林〉常绿针叶林〉灌木〉草地;与观测数据、MODIS NPP产品和统计数据进行对比,表明Biome-BGC模型可较好用于区域植被生产力的模拟,农作物模拟结果与统计数据的决定系数达到0.612 3,且模拟得到的黄淮海地区农作物NPP比MODIS NPP产品更接近统计值。%As two key variables to represent vegetation activities,the Net Ecosystem Production(NEP) and the Net Primary Productivity(NPP)played important roles in the study of global change and regional ecological environment evaluation.Biome-BGC was a biogeochemical cycles model,which could simulate the storage and fluxes of water,carbon and nitrogen within the vegetation and soil components of a terrestrial ecosystem.In this paper,in use of the series of MODIS LAI product and the meteorological data in 2004,we simulated the NEP and NPP in the Huang-Huai-Hai Region.Since there was no crop eco-physiological parameters in the Biome-BGC model,we simulated the crop by modifying the grass eco-physiological parameters,and adding the code of fertilizers,irrigation and harvest.The simulated results showed

  3. Testing the applicability of BIOME-BGC to simulate beech gross primary production in Europe using a new continental weather dataset

    OpenAIRE

    Chiesi , Marta; Chirici , Gherardo; Marchetti , Marco; Hasenauer , Hubert; Moreno , Adam; Knohl , Alexander; Matteucci , Giorgio; Pilegaard , Kim; Granier , André; Longdoz , Bernard; Maselli , Fabio

    2016-01-01

    Key message A daily 1-km Pan-European weather dataset can drive the BIOME-BGC model for the estimation of current and future beech gross primary production (GPP). Annual beech GPP is affected primarily by spring temperature and more irregularly by summer water stress. [br/] Context The spread of beech forests in Europe enhances the importance of modelling and monitoring their growth in view of ongoing climate changes. [br/] Aims The current paper assesses the capability o...

  4. Testing the applicability of BIOME-BGC to simulate beech gross primary production in Europe using a new continental weather dataset

    DEFF Research Database (Denmark)

    Chiesi, Marta; Chirici, Gherardo; Marchetti, Marco

    2016-01-01

    A daily 1-km Pan-European weather dataset can drive the BIOME-BGC model for the estimation of current and future beech gross primary production (GPP). Annual beech GPP is affected primarily by spring temperature and more irregularly by summer water stress.The spread of beech forests in Europe...... forest ecosystems having different climatic conditions where the eddy covariance technique is used to measure water and carbon fluxes. The experiment is in three main steps. First, the accuracy of BIOME-BGC GPP simulations is assessed through comparison with flux observations. Second, the influence...... of two major meteorological drivers (spring minimum temperature and growing season dryness) on observed and simulated inter-annual GPP variations is analysed. Lastly, the impacts of two climate change scenarios on beech GPP are evaluated through statistical analyses of the ground data and model...

  5. Simulation of water and carbon fluxes in a broad-leaved Korean pine forest in Changbai Mountains based on Biome-BGC model and Ensemble Kalman Filter method%基于Biome-BGC模型和集合卡尔曼滤波方法的阔叶红松林生态系统水碳通量模拟

    Institute of Scientific and Technical Information of China (English)

    郑磊; 宋世凯; 袁秀亮; 董嘉琪; 李龙辉

    2017-01-01

    数据同化为模型与遥感观测结合提供了一条有效的途径,通过在模型运行过程中融入遥感观测数据,调整模型运行轨迹从而降低模型误差,提高模拟精度.本文利用集合卡尔曼滤波(EnKF)算法同化生长季中分辨率成像光谱仪(MODIS)叶面积指数(LAI)与Biome-BGC模型模拟的LAI模拟长白山阔叶红松林的水碳通量.同时,通过改进模拟的雪面升华与土壤温度计算方法的参数,旨在降低冬季生态呼吸的模拟误差.结果表明,相对于原始模型,数据同化与模型改进后使得生态系统总初级生产力(GPP)的模拟值与观测值之间的相关系数提高0.06,中心化均方根误差(RMSE)降低0.48 g C·m-2·d-1;生态系统呼吸(RE)的相关系数提高0.02,中心化均方根误差降低0.20 g C·m-2·d-1;净生态系统碳交换量(NEE)相关系数提高0.35,中心化均方根误差降低0.50gC·m-2·d-1.同时,数据同化对蒸散发(ET)的模拟精度没有显著影响,改进的模型提高了其相关系数.基于EnKF算法的数据同化提高了长白山阔叶红松林碳通量模拟精度,对于精确估算区域碳通量有着重要的意义.%Data assimilation provides an effective way to integrate the model simulation and remote sensing observation,through the integration of remote sensing data in the run of the model,adjusting the model trajectory to reduce model error and improve simulation accuracy.This paper uses the ensemble Kalman filter (EnKF) assimilated MODIS LAI into the Biome-BGC model in growing season to simulate the water and carbon fluxes in a broad-leaved Korean pine forest in Changbai Mountains.At the same time,the simulated snow sublimation and the parameters of the calculation method of soil temperature are improved,which can effectively reduce the error of the ecological respiration in winter.The result shows that as compared with the original model simulated without data assimilation,the improved Biome-BGC model with the

  6. Inhibitory effects of CP on the growth of human gastric adenocarcinoma BGC-823 tumours in nude mice.

    Science.gov (United States)

    Wang, Hai-Jun; Liu, Yu; Zhou, Bao-Jun; Zhang, Zhan-Xue; Li, Ai-Ying; An, Ran; Yue, Bin; Fan, Li-Qiao; Li, Yong

    2018-05-01

    Objective To investigate the potential antitumour effects of [2-(6-amino-purine-9-yl)-1-hydroxy-phosphine acyl ethyl] phosphonic acid (CP) against gastric adenocarcinoma. Methods Human BGC-823 xenotransplants were established in nude mice. Animals were randomly divided into control and CP groups, which were administered NaHCO 3 vehicle alone or CP dissolved in NaHCO 3 (200 µg/kg body weight) daily, respectively. Tumour volume was measured weekly for 6 weeks. Resected tumours were assayed for proliferative activity with anti-Ki-67 or anti-proliferating cell nuclear antigen (PCNA) antibodies. Cell apoptosis was examined using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assays and with caspase-3 immunostaining. Proteins were measured by Western blotting. Results There was a significant reduction in tumour volume and a reduced percentage of Ki-67-positive or PCNA-positive cells in the CP group compared with the control group. The percentage of TUNEL-positive or caspase 3-positive cells significantly increased following CP treatment compared with the control group. Tumours from the CP group had higher levels of phosphorylated-extracellular signal-regulated kinase (p-ERK) and phosphorylated-AKT (p-AKT) compared with control tumours. Conclusion CP treatment inhibited tumour growth and induced tumour cell apoptosis in a nude mouse model of BGC-823 gastric adenocarcinoma. Activation of the AKT and ERK signalling pathways may mediate this antitumour activity.

  7. Theory, Modeling and Simulation Annual Report 2000; FINAL

    International Nuclear Information System (INIS)

    Dixon, David A; Garrett, Bruce C; Straatsma, TP; Jones, Donald R; Studham, Scott; Harrison, Robert J; Nichols, Jeffrey A

    2001-01-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM and S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems

  8. Spectroscopic Classification of SN 2018bgc (=ATLAS18nvs) as a Type Ia Supernova

    Science.gov (United States)

    Lin, Han; Wang, Xiaofeng; Xiang, Danfeng; Rui, Liming; Hu, Lei; Hu, Maokai; Zhang, Xinhan; Li, Xue; Zhang, Tianmeng; Zhang, Jujia

    2018-05-01

    We obtained an optical spectrum (range 385-855 nm) of SN 2018bgc(=ATLAS18nvs), discovered by ATLAS, on UT May 08.60 2018 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  9. EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.; Finlayson-Pitts, Barbara J.; Allen, Heather C.; Bertram, Allan K.; Grassian, Vicki H.; Martin, Scot T.; Penner, Joyce E.; Prather, Kimberly; Rasch, Philip J.; Signorell, Ruth; Smith, James N.; Wyslouzil, Barbara; Ziemann, Paul; Dabdub, Donald; Furche, Filipp; Nizkorodov, Sergey; Tobias, Douglas J.; Laskin, Julia; Laskin, Alexander

    2013-07-01

    This report contains the workshop scope and recommendations from the workshop attendees in identifying scientific gaps in new particle formation, growth and properties of particles and reactions in and on particles as well as the laboratory-focused capabilities, field-deployable capabilities and modeling/theory tools along with linking of models to fundamental data.

  10. 基于Biome-BGC模型的天山北坡森林生态系统碳动态模拟%Simulation of Carbon Trend in Forest Ecosystem in Northern Slope of the Tianshan Mountains Based on Biome-BGC Model

    Institute of Scientific and Technical Information of China (English)

    韩其飞; 罗格平; 李超凡; 叶辉; 冯异星

    2014-01-01

    based on the generalized approach to simulate ecosystem development must be parameterized for the target ecosystems.Regarding the estimation of carbon dynamics,the use of process-based ecosystem models is of particular interest because this approach allows not only to estimate the carbon budget under various environmental conditions,but also to interpret and quantify the possible causes of carbon stock change along with the environmental change.The application of ecosystem models,however,encounters some specific difficulties in dryland environment,which is characterized by its climatic and human-induced features.After identifying the proper ecophysiological parameters used in Biome-BGC model,in this study the NPP (net primary productivity) and NEP (net ecological productivity) in the Tianshan Mountains were estimated.Furthermore,the responses of NPP/NEP to interannual climate change during the period of 1959-2009 and climate change scenarios in the future were modeled.Results showed that the average annual total NPP and NEP were 547.97 g · m-2 · a-1 and 61.24 g · m-2 · a-1 respectively,which revealed that the forests in the Tianshan Mountains perform as the carbon sinks.NPP and NEP were sensitive to the change of precipitation and the increase of air temperature.Under a scenario of 4 ℃ temperature increase,NPP was slightly improved,but NEP was decreased as soil respiration was boosted up.Drought stress was not significant in the study area as derived from the results.

  11. NWChem Meeting on Science Driven Petascale Computing and Capability Development at EMSL

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.

    2007-02-19

    On January 25, and 26, 2007, an NWChem meeting was held that was attended by 65 scientists from 29 institutions including 22 universities and 5 national laboratories. The goals of the meeting were to look at major scientific challenges that could be addressed by computational modeling in environmental molecular sciences, and to identify the associated capability development needs. In addition, insights were sought into petascale computing developments in computational chemistry. During the meeting common themes were identified that will drive the need for the development of new or improved capabilities in NWChem. Crucial areas of development that the developer's team will be focusing on are (1) modeling of dynamics and kinetics in chemical transformations, (2) modeling of chemistry at interfaces and in the condensed phase, and (3) spanning longer time scales in biological processes modeled with molecular dynamics. Various computational chemistry methodologies were discussed during the meeting, which will provide the basis for the capability developments in the near or long term future of NWChem.

  12. EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gordon E.; Chaka, Anne; Shuh, David K.; Roden, Eric E.; Werth, Charles J.; Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Baer, Donald R.; Bailey, Vanessa L.; Bowden, Mark E.; Grate, Jay W.; Hoyt, David W.; Kuprat, Laura R.; Lea, Alan S.; Mueller, Karl T.; Oostrom, Martinus; Orr, Galya; Pasa-Tolic, Ljiljana; Plata, Charity; Robinson, E. W.; Teller, Raymond G.; Thevuthasan, Suntharampillai; Wang, Hongfei; Wiley, H. S.; Wilkins, Michael J.

    2011-08-01

    This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussions successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells.

  13. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应——基于BIOME-BGC模型和树木年轮的模拟%Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2 :A simulation based on BIOME-BGC model and tree-ring data

    Institute of Scientific and Technical Information of China (English)

    彭俊杰; 何兴元; 陈振举; 崔明星; 张先亮; 周长虹

    2012-01-01

    应用BIOME-BGC模型和树木年轮数据模拟1952-2008年华北地区典型油松林生态系统净初级生产力(NPP)动态,探究了树木径向生长和NPP对区域气候变暖的响应以及未来气候情景下油松林生态系统NPP动态变化.结果表明:1952-2008年,研究区油松林生态系统NPP波动于244.12 ~645.31 g C·m-2·a-1,平均值为418.6 g C·m-2·a-1.5-6月的平均温度和上年8月至当年7月的降水是限制该地区油松径向生长和油松林生态系统NPP的主要因子.研究期间,随着区域暖干化趋势的加强,树木径向生长和生态系统NPP均呈下降趋势.未来气候情景下,NPP对温度和降水的单独和复合变化的响应为正向.CO2浓度升高有利于油松林生态系统NPP的增加,CO2的施肥效应使NPP增加16.1%.在生态系统和区域水平,树木年轮是一种理想的指示生态系统动态变化的代用资料,可以检验和校正包括BIOME-BGC模型在内的各种生态系统过程模型.%Based on BIOME-BGC model and tree-ring data, a modeling study was conducted to estimate the dynamic changes of the net primary productivity ( NPP) of Pinus tabulaeformis forest ecosystem in North China in 1952-2008, and explore the responses of the radial growth and NPP to regional climate warming as well as the dynamics of the NPP in the future climate change scenarios. The simulation results indicated the annual NPP of the P. tabulaeformis ecosystem in 1952-2008 fluctuated from 244. 12 to 645. 31 g C · m-2 · a-1, with a mean value of 418. 6 g C · m-2 · a-1. The mean air temperature in May-June and the precipitation from previous August to current July were the main factors limiting the radial growth of P. tabulaeformis and the NPP of P. tabulaeformis ecosystem. In the study period, both the radial growth and the NPP presented a decreasing trend due to the regional warming and drying climate condition. In the future climate scenarios, the NPP would have positive responses to the

  14. Curcumin Induced Human Gastric Cancer BGC-823 Cells Apoptosis by ROS-Mediated ASK1-MKK4-JNK Stress Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Tao Liang

    2014-09-01

    Full Text Available The signaling mediated by stress-activated MAP kinases (MAPK, c-Jun N-terminal kinase (JNK has well-established importance in cancer. In the present report, we investigated the effects of curcumin on the signaling pathway in human gastric cancer BGC-823 cells. Curcumin induced reactive oxygen species (ROS production and BGC-823 cells apoptosis. Inhibition of ROS generation by antioxidant (NAC or Trion significantly prevented curcumin-mediated apoptosis. Notably, we observed that curcumin activated ASK1, a MAPKKK that is oxidative stress sensitive and responsible to phosphorylation of JNK via triggering cascades, up-regulated an upstream effector of the JNK, MKK4, and phosphorylated JNK protein expression in BGC-823 cells. However, curcumin induced ASK1-MKK4-JNK signaling was attenuated by NAC. All the findings confirm the possibility that oxidative stress-activated ASK1-MKK4-JNK signaling cascade promotes the apoptotic response in curcumin-treated BGC-823 cells.

  15. Enhancement of Radiation Effects by Ursolic Acid in BGC-823 Human Adenocarcinoma Gastric Cancer Cell Line.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Recent research has suggested that certain plant-derived polyphenols, i.e., ursolic acid (UA, which are reported to have antitumor activities, might be used to sensitize tumor cells to radiation therapy by inhibiting pathways leading to radiation therapy resistance. This experiment was designed to investigate the effects and possible mechanism of radiosensitization by UA in BGC-823 cell line from human adenocarcinoma gastric cancer in vitro. UA caused cytotoxicity in a dose-dependent manner, and we used a sub-cytotoxicity concentration of UA to test radioenhancement efficacy with UA in gastric cancer. Radiosensitivity was determined by clonogenic survival assay. Surviving fraction of the combined group with irradiation and sub-cytotoxicity UA significantly decreased compared with the irradiation group. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, increased reactive oxygen species (ROS, down-regulated Ki-67 level and improved apoptosis. In conclusion, as UA demonstrated potent antiproliferation effect and synergistic effect, it could be used as a potential drug sensitizer for the application of radiotherapy.

  16. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    Science.gov (United States)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the

  17. Simulation of Forest Carbon Fluxes Using Model Incorporation and Data Assimilation

    OpenAIRE

    Min Yan; Xin Tian; Zengyuan Li; Erxue Chen; Xufeng Wang; Zongtao Han; Hong Sun

    2016-01-01

    This study improved simulation of forest carbon fluxes in the Changbai Mountains with a process-based model (Biome-BGC) using incorporation and data assimilation. Firstly, the original remote sensing-based MODIS MOD_17 GPP (MOD_17) model was optimized using refined input data and biome-specific parameters. The key ecophysiological parameters of the Biome-BGC model were determined through the Extended Fourier Amplitude Sensitivity Test (EFAST) sensitivity analysis. Then the optimized MOD_17 mo...

  18. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC.

    Science.gov (United States)

    Eastaugh, Chris S; Pötzelsberger, Elisabeth; Hasenauer, Hubert

    2011-03-01

    The aim of this paper is to determine whether a detectable impact of climate change is apparent in Austrian forests. In regions of complex terrain such as most of Austria, climatic trends over the past 50 years show marked geographic variability. As climate is one of the key drivers of forest growth, a comparison of growth characteristics between regions with different trends in temperature and precipitation can give insights into the impact of climatic change on forests. This study uses data from several hundred climate recording stations, interpolated to measurement sites of the Austrian National Forest Inventory (NFI). Austria as a whole shows a warming trend over the past 50 years and little overall change in precipitation. The warming trends, however, vary considerably across certain regions and regional precipitation trends vary widely in both directions, which cancel out on the national scale These differences allow the delineation of 'climatic change zones' with internally consistent climatic trends that differ from other zones. This study applies the species-specific adaptation of the biogeochemical model BIOME-BGC to Norway spruce (Picea abies (L.) Karst) across a range of Austrian climatic change zones, using input data from a number of national databases. The relative influence of extant climate change on forest growth is quantified, and compared with the far greater impact of non-climatic factors. At the national scale, climate change is found to have negligible effect on Norway spruce productivity, due in part to opposing effects at the regional level. The magnitudes of the modeled non-climatic influences on aboveground woody biomass increment increases are consistent with previously reported values of 20-40 kg of added stem carbon sequestration per kilogram of additional nitrogen deposition, while climate responses are of a magnitude difficult to detect in NFI data.

  19. Plankton Assemblage Estimated with BGC-Argo Floats in the Southern Ocean: Implications for Seasonal Successions and Particle Export

    Science.gov (United States)

    Rembauville, Mathieu; Briggs, Nathan; Ardyna, Mathieu; Uitz, Julia; Catala, Philippe; Penkerc'h, Cristophe; Poteau, Antoine; Claustre, Hervé; Blain, Stéphane

    2017-10-01

    The Southern Ocean (SO) hosts plankton communities that impact the biogeochemical cycles of the global ocean. However, weather conditions in the SO restrict mainly in situ observations of plankton communities to spring and summer, preventing the description of biological successions at an annual scale. Here, we use shipboard observations collected in the Indian sector of the SO to develop a multivariate relationship between physical and bio-optical data, and, the composition and carbon content of the plankton community. Then we apply this multivariate relationship to five biogeochemical Argo (BGC-Argo) floats deployed within the same bio-geographical zone as the ship-board observations to describe spatial and seasonal changes in plankton assemblage. The floats reveal a high contribution of bacteria below the mixed layer, an overall low abundance of picoplankton and a seasonal succession from nano- to microplankton during the spring bloom. Both naturally iron-fertilized waters downstream of the Crozet and Kerguelen Plateaus show elevated phytoplankton biomass in spring and summer but they differ by a nano- or microplankton dominance at Crozet and Kerguelen, respectively. The estimated plankton group successions appear consistent with independent estimations of particle diameter based on the optical signals. Furthermore, the comparison of the plankton community composition in the surface layer with the presence of large mesopelagic particles diagnosed by spikes of optical signals provides insight into the nature and temporal changes of ecological vectors that drive particle export. This study emphasizes the power of BGC-Argo floats for investigating important biogeochemical processes at high temporal and spatial resolution.

  20. Simulation of Forest Carbon Fluxes Using Model Incorporation and Data Assimilation

    Directory of Open Access Journals (Sweden)

    Min Yan

    2016-07-01

    Full Text Available This study improved simulation of forest carbon fluxes in the Changbai Mountains with a process-based model (Biome-BGC using incorporation and data assimilation. Firstly, the original remote sensing-based MODIS MOD_17 GPP (MOD_17 model was optimized using refined input data and biome-specific parameters. The key ecophysiological parameters of the Biome-BGC model were determined through the Extended Fourier Amplitude Sensitivity Test (EFAST sensitivity analysis. Then the optimized MOD_17 model was used to calibrate the Biome-BGC model by adjusting the sensitive ecophysiological parameters. Once the best match was found for the 10 selected forest plots for the 8-day GPP estimates from the optimized MOD_17 and from the Biome-BGC, the values of sensitive ecophysiological parameters were determined. The calibrated Biome-BGC model agreed better with the eddy covariance (EC measurements (R2 = 0.87, RMSE = 1.583 gC·m−2·d−1 than the original model did (R2 = 0.72, RMSE = 2.419 gC·m−2·d−1. To provide a best estimate of the true state of the model, the Ensemble Kalman Filter (EnKF was used to assimilate five years (of eight-day periods between 2003 and 2007 of Global LAnd Surface Satellite (GLASS LAI products into the calibrated Biome-BGC model. The results indicated that LAI simulated through the assimilated Biome-BGC agreed well with GLASS LAI. GPP performances obtained from the assimilated Biome-BGC were further improved and verified by EC measurements at the Changbai Mountains forest flux site (R2 = 0.92, RMSE = 1.261 gC·m−2·d−1.

  1. Classification and multivariate analysis of differences in gross primary production at different elevations using biome-bgc in the páramos, ecuadorian andean region

    Directory of Open Access Journals (Sweden)

    Veronica Minaya

    2015-08-01

    Full Text Available Gross primary production (GPP in climate change studies with multi- species and elevation variables are difficult to measure and simulate. Models tend to provide a representation of dynamic process through long-term analysis by using generalized parameterizations. Even, current approaches of modelling do not contemplate easily the variation of GPP at different elevations for different vegetation types in regions like páramos, mainly due to data unavailability. In these models information from cells is commonly averaged, and therefore average elevation, ecophysiology of vegetation, as well as other parameters is generalized. The vegetation model BIOME- BGC was applied to the Ecuadorian Andean region for elevations greater than 4000 masl with the presence of typical vegetation of páramo for 10 years of simulation (period 2000-2009. An estimation of the difference of GPP obtained using a generalized altitude and predominant type of vegetation could lead to a better estimation of the uncertainty in the magnitude of the errors in global climate models. This research explores GPP from 3 different altitudes and 3 vegetation types against 2 main climate drivers (Short Wave Radiation and Vapor Pressure Deficit. Since it is important to measure the possible errors or difference in the use of averaged meteorological and ecophysiological data, here we present a multivariate analysis of the dynamic difference of GPP in time, relative to an altitude and type of vegetation. A copula multivariable model allows us to identify and classify the changes in GPP per type of vegetation and altitude. The Frank copula model of joint distributions was our best fit between GPP and climate drivers and it allowed us to understand better the dependency of the variables. These results can explore extreme situations where averaged simplified approaches could mislead. The change of GPP over time is essential for future climate scenarios of the ecosystem storage and release

  2. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines.

    Science.gov (United States)

    Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing

    2017-02-15

    In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Anti-Proliferation and Anti-Invasion Effects of Diosgenin on Gastric Cancer BGC-823 Cells with HIF-1α shRNAs

    Directory of Open Access Journals (Sweden)

    Yuan-Neng Chou

    2012-05-01

    Full Text Available Drug resistance is a major factor for the limited efficacy of chemotherapy in gastric cancer treatment. Hypoxia-inducible factor-1α (HIF-1α, a central transcriptional factor in hypoxia, is suggested to participate in the resistance. Here, we identified a hypoxia-mimic (cobalt chloride sensitive gastric cell line BGC-823 to explore whether diosgenin, an aglycone of steroidal saponins, can inhibit cancer cell invasion and survival of solid tumor in a hypoxic mimic microenvironment. We have shown that diosgenin is a potent candidate for decreasing the ability of invasion and survival in cobalt chloride treated BGC-823 cells. In addition, when combined with HIF-1α specific short hairpin RNA (shRNA, diosgenin can inhibit BGC-823 cells more effectively. The anti-invasion role of diosgenin may be related to E-cadherin, integrinα5 and integrinβ6. These results suggest that diosgenin may be a useful compound in controlling gastric cancer cells in hypoxia condition, especially when combined with down-regulated HIF-1α.

  4. CRA(Crosolic Acid) isolated from Actinidia valvata Dunn.Radix induces apoptosis of human gastric cancer cell line BGC823 in vitro via down-regulation of the NF-κB pathway.

    Science.gov (United States)

    Cheng, Qi-Lai; Li, Hong-Liang; Li, Ying-Chen; Liu, Zhao-Wen; Guo, Xiao-Hua; Cheng, Yi-Jian

    2017-07-01

    A natural ursolic compound, 2α,3β-dihydroxy-urs-12-en-28-oic acid (corosolic acid, CRA) was isolated from the root of Actinidia valvata Dunn. (A. valvata Radix). Since a large number of triterpenoid compound has marked anticancer effects toward various types of cancer cell lines in vitro, this study was carried out to investigate the anticancer effect of CRA in human gastric cancer cell line BGC823 cells and the underlying apoptotic mechanism of CRA was examined in BGC823 cell lines. The results showed that CRA significantly suppressed the viability of BGC823 cells in a concentration- and time-dependent manner. CRA also significantly increased the sub G1 population by cell cycle analysis in a concentration dependent manner. Exposure to CRA decreased p65, bcl-2, Fas, smac mRNA and protein expression, and increased IκBα, bax, survivin mRNA and protein expression. Results of immunofluorescence staining and EMSA further indicated CRA induced apoptosis by inhibiting nuclear translocation of nuclear factor NF-κB subunit p65. Consistently overall, our findings suggest that CRA induces apoptosis via inhibition of NF-κB (p65) expression level and activation of IκBα in BGC cells as a potent anticancer candidate for gastric cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Molecular mechanisms of celery seed extract induced apoptosis via s phase cell cycle arrest in the BGC-823 human stomach cancer cell line.

    Science.gov (United States)

    Gao, Lin-Lin; Feng, Lei; Yao, Shu-Tong; Jiao, Peng; Qin, Shu-Cun; Zhang, Wei; Zhang, Ya-Bin; Li, Fu-Rong

    2011-01-01

    Mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. Loss of cell cycle control, leading to uncontrolled proliferation, is common in cancer. Therefore, the identification of potent and selective cyclin dependent kinase inhibitors is a priority for anti-cancer drug discovery. There are at least two major apoptotic pathways, initiated by caspase-8 and caspase-9, respectively, which can activate caspase cascades. Apoptosis triggered by activation of the mitochondrial-dependent caspase pathway represents the main programmed cell death mechanism. This is activated by various intracellular stresses that induce permeabilization of the mitochondrial membrane. Anti-tumor effects of celery seed extract (CSE) and related mechanisms regarding apoptosis were here investigated in human gastric cancer BGC-823 cells. CSE was produced by supercritical fluid extraction. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide (MTT) assay and apoptosis by flow cytometry using Annexin/PI staining and DAPI staining and a laser scanning confocal microscope (LSCM). Cell cycling was evaluated using PI staining with flow cytometry and expression of cell cycle and apoptosis-related proteins cyclin A, CDK2, bcl-2 and bax was assessed by immunohistochemical staining. CSE had an anti-proliferation effect on human gastric cancer BGC-823 cells in a dose- and time-dependent manner. After treatment, the apoptotic rate significantly increased, with morphological changes typical of apoptosis observed with LSCM by DAPI staining. Cell cycle and apoptosis related proteins, such as cyclin A, CDK2 and bcl-2 were all down-regulated, whereas bax was up-regulated. The molecular determinants of inhibition of cell proliferation as well as apoptosis of CSE may be associated with cycle arrest in the S phase.

  6. Calibration of a biome-biogeochemical cycles model for modeling the net primary production of teak forests through inverse modeling of remotely sensed data

    Science.gov (United States)

    Imvitthaya, Chomchid; Honda, Kiyoshi; Lertlum, Surat; Tangtham, Nipon

    2011-01-01

    In this paper, we present the results of a net primary production (NPP) modeling of teak (Tectona grandis Lin F.), an important species in tropical deciduous forests. The biome-biogeochemical cycles or Biome-BGC model was calibrated to estimate net NPP through the inverse modeling approach. A genetic algorithm (GA) was linked with Biome-BGC to determine the optimal ecophysiological model parameters. The Biome-BGC was calibrated by adjusting the ecophysiological model parameters to fit the simulated LAI to the satellite LAI (SPOT-Vegetation), and the best fitness confirmed the high accuracy of generated ecophysioligical parameter from GA. The modeled NPP, using optimized parameters from GA as input data, was evaluated using daily NPP derived by the MODIS satellite and the annual field data in northern Thailand. The results showed that NPP obtained using the optimized ecophysiological parameters were more accurate than those obtained using default literature parameterization. This improvement occurred mainly because the model's optimized parameters reduced the bias by reducing systematic underestimation in the model. These Biome-BGC results can be effectively applied in teak forests in tropical areas. The study proposes a more effective method of using GA to determine ecophysiological parameters at the site level and represents a first step toward the analysis of the carbon budget of teak plantations at the regional scale.

  7. Hydrography and biogeochemistry dedicated to the Mediterranean BGC-Argo network during a cruise with RV Tethys 2 in May 2015

    Science.gov (United States)

    Taillandier, Vincent; Wagener, Thibaut; D'Ortenzio, Fabrizio; Mayot, Nicolas; Legoff, Hervé; Ras, Joséphine; Coppola, Laurent; Pasqueron de Fommervault, Orens; Schmechtig, Catherine; Diamond, Emilie; Bittig, Henry; Lefevre, Dominique; Leymarie, Edouard; Poteau, Antoine; Prieur, Louis

    2018-03-01

    We report on data from an oceanographic cruise, covering western, central and eastern parts of the Mediterranean Sea, on the French research vessel Tethys 2 in May 2015. This cruise was fully dedicated to the maintenance and the metrological verification of a biogeochemical observing system based on a fleet of BGC-Argo floats. During the cruise, a comprehensive data set of parameters sensed by the autonomous network was collected. The measurements include ocean currents, seawater salinity and temperature, and concentrations of inorganic nutrients, dissolved oxygen and chlorophyll pigments. The analytical protocols and data processing methods are detailed, together with a first assessment of the calibration state for all the sensors deployed during the cruise. Data collected at stations are available at https://doi.org/10.17882/51678" target="_blank">https://doi.org/10.17882/51678 and data collected along the ship track are available at https://doi.org/10.17882/51691" target="_blank">https://doi.org/10.17882/51691.

  8. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo [Tohoku Univ., Sendai (Japan). Center for Atmospheric and Oceanic Studies; Ishizawa, Misa; Maksyutov, Shamil [Inst. for Global Change Research, Yokohama (Japan). Frontier Research System for Global Change; Thornton, Peter E. [National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.

    2003-04-01

    Seasonal and inter-annual variations of atmospheric CO{sub 2} for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO{sub 2} fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO{sub 2} time series simulated by Biome-BGC were compared to the global CO{sub 2} concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO{sub 2} observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO{sub 2}, making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation.

  9. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    International Nuclear Information System (INIS)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo; Ishizawa, Misa; Maksyutov, Shamil; Thornton, Peter E.

    2003-01-01

    Seasonal and inter-annual variations of atmospheric CO 2 for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO 2 fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO 2 time series simulated by Biome-BGC were compared to the global CO 2 concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO 2 observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO 2 , making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation

  10. Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model.

    Science.gov (United States)

    Migliavacca, Mirco; Meroni, Michele; Busetto, Lorenzo; Colombo, Roberto; Zenone, Terenzio; Matteucci, Giorgio; Manca, Giovanni; Seufert, Guenther

    2009-01-01

    In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale.

  11. Modeling Gross Primary Production of Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in a Process-Based Model

    Directory of Open Access Journals (Sweden)

    Guenther Seufert

    2009-02-01

    Full Text Available In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC with the aims of i improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale.

  12. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model

    NARCIS (Netherlands)

    Churkina, G.; Tenhunen, J.; Thornton, P.; Falge, E.; Elbers, J.A.; Erhard, M.; Grünwald, T.; Kowalski, A.; Rannik, Ü.; Sprinz, D.

    2003-01-01

    This paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental

  13. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC

    International Nuclear Information System (INIS)

    Paudel, Rajendra; Mahowald, Natalie M; Hess, Peter G M; Meng, Lei; Riley, William J

    2016-01-01

    An understanding of potential factors controlling methane emissions from natural wetlands is important to accurately project future atmospheric methane concentrations. Here, we examine the relative contributions of climatic and environmental factors, such as precipitation, temperature, atmospheric CO 2 concentration, nitrogen deposition, wetland inundation extent, and land-use and land-cover change, on changes in wetland methane emissions from preindustrial to present day (i.e., 1850–2005). We apply a mechanistic methane biogeochemical model integrated in the Community Land Model version 4.5 (CLM4.5), the land component of the Community Earth System Model. The methane model explicitly simulates methane production, oxidation, ebullition, transport through aerenchyma of plants, and aqueous and gaseous diffusion. We conduct a suite of model simulations from 1850 to 2005, with all changes in environmental factors included, and sensitivity studies isolating each factor. Globally, we estimate that preindustrial methane emissions were higher by 10% than present-day emissions from natural wetlands, with emissions changes from preindustrial to the present of +15%, −41%, and −11% for the high latitudes, temperate regions, and tropics, respectively. The most important change is due to the estimated change in wetland extent, due to the conversion of wetland areas to drylands by humans. This effect alone leads to higher preindustrial global methane fluxes by 33% relative to the present, with the largest change in temperate regions (+80%). These increases were partially offset by lower preindustrial emissions due to lower CO 2 levels (10%), shifts in precipitation (7%), lower nitrogen deposition (3%), and changes in land-use and land-cover (2%). Cooler temperatures in the preindustrial regions resulted in our simulations in an increase in global methane emissions of 6% relative to present day. Much of the sensitivity to these perturbations is mediated in the model by

  14. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  15. Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe

    NARCIS (Netherlands)

    Jung, M.; Le Maire, Guerric; Zaehle, S.; Luyssaert, S.; Vetter, M.; Churkina, G.; Ciais, P.; Viovy, N.; Reichstein, M.

    2007-01-01

    Three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC) were evaluated with respect to their ability to simulate large-scale climate related trends in gross primary production (GPP) across European forests. Simulated GPP and leaf area index (LAI) were compared with GPP estimates based on flux

  16. Theory, Modeling and Simulation: Research progress report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, B.C.; Dixon, D.A.; Dunning, T.H.

    1997-01-01

    The Pacific Northwest National Laboratory (PNNL) has established the Environmental Molecular Sciences Laboratory (EMSL). In April 1994, construction began on the new EMSL, a collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation (TM and S) program will play a critical role in understanding molecular processes important in restoring DOE`s research, development, and production sites, including understanding the migration and reactions of contaminants in soils and ground water, developing processes for isolation and processing of pollutants, developing improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TM and S program are fivefold: to apply available electronic structure and dynamics techniques to study fundamental molecular processes involved in the chemistry of natural and contaminated systems; to extend current electronic structure and dynamics techniques to treat molecular systems of future importance and to develop new techniques for addressing problems that are computationally intractable at present; to apply available molecular modeling techniques to simulate molecular processes occurring in the multi-species, multi-phase systems characteristic of natural and polluted environments; to extend current molecular modeling techniques to treat ever more complex molecular systems and to improve the reliability and accuracy of such simulations; and to develop technologies for advanced parallel architectural computer systems. Research highlights of 82 projects are given.

  17. A review on vegetation models and applicability to climate simulations at regional scale

    Science.gov (United States)

    Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki

    2011-11-01

    The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.

  18. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities

    Science.gov (United States)

    Hidy, Dóra; Barcza, Zoltán; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Dobor, Laura; Gelybó, Györgyi; Fodor, Nándor; Pintér, Krisztina; Churkina, Galina; Running, Steven; Thornton, Peter; Bellocchi, Gianni; Haszpra, László; Horváth, Ferenc; Suyker, Andrew; Nagy, Zoltán

    2016-12-01

    The process-based biogeochemical model Biome-BGC was enhanced to improve its ability to simulate carbon, nitrogen, and water cycles of various terrestrial ecosystems under contrasting management activities. Biome-BGC version 4.1.1 was used as a base model. Improvements included addition of new modules such as the multilayer soil module, implementation of processes related to soil moisture and nitrogen balance, soil-moisture-related plant senescence, and phenological development. Vegetation management modules with annually varying options were also implemented to simulate management practices of grasslands (mowing, grazing), croplands (ploughing, fertilizer application, planting, harvesting), and forests (thinning). New carbon and nitrogen pools have been defined to simulate yield and soft stem development of herbaceous ecosystems. The model version containing all developments is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module; in this paper, Biome-BGCMuSo v4.0 is documented). Case studies on a managed forest, cropland, and grassland are presented to demonstrate the effect of model developments on the simulation of plant growth as well as on carbon and water balance.

  19. Implementation ambiguity: The fifth element long lost in uncertainty budgets for land biogeochemical modeling

    Science.gov (United States)

    Tang, J.; Riley, W. J.

    2015-12-01

    Previous studies have identified four major sources of predictive uncertainty in modeling land biogeochemical (BGC) processes: (1) imperfect initial conditions (e.g., assumption of preindustrial equilibrium); (2) imperfect boundary conditions (e.g., climate forcing data); (3) parameterization (type I equifinality); and (4) model structure (type II equifinality). As if that were not enough to cause substantial sleep loss in modelers, we propose here a fifth element of uncertainty that results from implementation ambiguity that occurs when the model's mathematical description is translated into computational code. We demonstrate the implementation ambiguity using the example of nitrogen down regulation, a necessary process in modeling carbon-climate feedbacks. We show that, depending on common land BGC model interpretations of the governing equations for mineral nitrogen, there are three different implementations of nitrogen down regulation. We coded these three implementations in the ACME land model (ALM), and explored how they lead to different preindustrial and contemporary land biogeochemical states and fluxes. We also show how this implementation ambiguity can lead to different carbon-climate feedback estimates across the RCP scenarios. We conclude by suggesting how to avoid such implementation ambiguity in ESM BGC models.

  20. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.

    Science.gov (United States)

    Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K

    2014-11-26

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.

  1. Theory, modeling and simulation: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  2. Theory, modeling and simulation: Annual report 1993

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE's research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies

  3. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2016-12-01

    Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.

  4. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation

  5. Comparing Productivity Simulated with Inventory Data Using Different Modelling Technologies

    Science.gov (United States)

    Klopf, M.; Pietsch, S. A.; Hasenauer, H.

    2009-04-01

    The Lime Stone National Park in Austria was established in 1997 to protect sensible lime stone soils from degradation due to heavy forest management. Since 1997 the management activities were successively reduced and standing volume and coarse woody debris (CWD) increased and degraded soils began to recover. One option to study the rehabilitation process towards natural virgin forest state is the use of modelling technology. In this study we will test two different modelling approaches for their applicability to Lime Stone National Park. We will compare standing tree volume simulated resulting from (i) the individual tree growth model MOSES, and (ii) the species and management sensitive adaptation of the biogeochemical-mechanistic model Biome-BGC. The results from the two models are compared with filed observations form repeated permanent forest inventory plots of the Lime Stone National Park in Austria. The simulated CWD predictions of the BGC-model were compared with dead wood measurements (standing and lying dead wood) recorded at the permanent inventory plots. The inventory was established between 1994 and 1996 and remeasured from 2004 to 2005. For this analysis 40 plots of this inventory were selected which comprise the required dead wood components and are dominated by a single tree species. First we used the distance dependant individual tree growth model MOSES to derive the standing timber and the amount of mortality per hectare. MOSES is initialized with the inventory data at plot establishment and each sampling plot is treated as forest stand. The Biome-BGC is a process based biogeochemical model with extensions for Austrian tree species, a self initialization and a forest management tool. The initialization for the actual simulations with the BGC model was done as follows: We first used spin up runs to derive a balanced forest vegetation, similar to an undisturbed forest. Next we considered the management history of the past centuries (heavy clear cuts

  6. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

    Science.gov (United States)

    Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S

    1998-04-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO 2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO 2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO 2 . In this study, we analyze the responses of net primary production (NPP) to doubled CO 2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO 2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO 2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO 2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO 2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO 2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO 2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which

  7. Moderate forest disturbance as a stringent test for gap and big-leaf models

    Science.gov (United States)

    Bond-Lamberty, B.; Fisk, J. P.; Holm, J. A.; Bailey, V.; Bohrer, G.; Gough, C. M.

    2015-01-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.

  8. Biogeochemical Protocols and Diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)

    Science.gov (United States)

    Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather; hide

    2017-01-01

    The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF [subscript] 6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation

  9. Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)

    Science.gov (United States)

    Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather; Griffies, Stephen M.; John, Jasmin G.; Joos, Fortunat; Levin, Ingeborg; Lindsay, Keith; Matear, Richard J.; McKinley, Galen A.; Mouchet, Anne; Oschlies, Andreas; Romanou, Anastasia; Schlitzer, Reiner; Tagliabue, Alessandro; Tanhua, Toste; Yool, Andrew

    2017-06-01

    The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are

  10. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    Science.gov (United States)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  11. Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP

    Directory of Open Access Journals (Sweden)

    J. C. Orr

    2017-06-01

    Full Text Available The Ocean Model Intercomparison Project (OMIP focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6. OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations vs. when integrated within fully coupled Earth system models (CMIP6. Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6 and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen. Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1 will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation

  12. Assessment of Anthropogenic and Climatic Impacts on the Global Carbon Cycle Using a 3-D Model Constrained by Isotopic Carbon Measurements and Remote Sensing of Vegetation

    Science.gov (United States)

    Keeling, Charles D.; Piper, S. C.

    1998-01-01

    Our original proposal called for improved modeling of the terrestrial biospheric carbon cycle, specifically using biome-specific process models to account for both the energy and water budgets of plant growth, to facilitate investigations into recent changes in global atmospheric CO2 abundance and regional distribution. The carbon fluxes predicted by these models were to be incorporated into a global model of CO2 transport to establish large-scale regional fluxes of CO2 to and from the terrestrial biosphere subject to constraints imposed by direct measurements of atmospheric CO2 and its 13C/12C isotopic ratio. Our work was coordinated with a NASA project (NASA NAGW-3151) at the University of Montana under the direction of Steven Running, and was partially funded by the Electric Power Research Institute. The primary objective of this project was to develop and test the Biome-BGC model, a global biological process model with a daily time step which simulates the water, energy and carbon budgets of plant growth. The primary product, the unique global gridded daily land temperature, and the precipitation data set which was used to drive the process model is described. The Biome-BGC model was tested by comparison with a simpler biological model driven by satellite-derived (NDVI) Normalized Difference Vegetation Index and (PAR) Photosynthetically Active Radiation data and by comparison with atmospheric CO2 observations. The simple NDVI model is also described. To facilitate the comparison with atmospheric CO2 observations, a three-dimensional atmospheric transport model was used to produce predictions of atmospheric CO2 variations given CO2 fluxes owing to (NPP) Net Primary Productivity and heterotrophic respiration that were produced by the Biome-BGC model and by the NDVI model. The transport model that we used in this project, and errors associated with transport simulations, were characterized by a comparison of 12 transport models.

  13. Modeling the carbon dynamics of the pastures ecosystem in Xinjiang with Biome-BGC model%基于BIOME-BGC模型的新疆牧区生态系统碳动态模拟

    Institute of Scientific and Technical Information of China (English)

    朱士华; 张弛; 李超凡

    2016-01-01

    干旱区生态系统对气候变化的响应复杂而敏感.牧区由于放牧效应的存在以及人为因素的频繁扰动,生态环境极为脆弱,加之实测数据的稀缺,很难对旱地牧区碳动态时空格局形成完整准确的认识.基于修正的Biome-BGC放牧模型,文中评估了新疆牧区1981-2007年间多种情景模式下的碳动态格局.结果表明:新疆牧区总体上表现为碳汇,27年间共固持59Tg(1Tg=1012g)C,其中VEGC(植被碳)和SOC(土壤碳)占比相当,分别占总固持量的43.04%、43.08%;放牧导致20.58Tg C的流失,而CO2施肥效应则导致了64.29TgC的固定,气候变化导致的碳失汇量为9.52Tg.80年代中期牧区VEGC存在显著下降过程,可能与这段时期的持续干旱有关,但SOC受此影响较小,研究描绘了旱地碳动态时空格局,为后续研究提供数据支持.

  14. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  15. Convergence and Divergence in a Multi-Model Ensemble of Terrestrial Ecosystem Models in North America

    Science.gov (United States)

    Dungan, J. L.; Wang, W.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.

    2009-12-01

    In support of NACP, we are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to evaluate uncertainties among ecosystem models, satellite datasets, and in-situ measurements. The models used in the experiment include public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. The reference datasets include MODIS Gross Primary Production (GPP) and Net Primary Production (NPP) products, Fluxnet measurements, and other observational data. The simulation results and the reference datasets are consistently processed and systematically compared in the climate (temperature-precipitation) space; in particular, an alternative to the Taylor diagram is developed to facilitate model-data intercomparisons in multi-dimensional space. The key findings of this study indicate that: the simulated GPP/NPP fluxes are in general agreement with observations over forests, but are biased low (underestimated) over non-forest types; large uncertainties of biomass and soil carbon stocks are found among the models (and reference datasets), often induced by seemingly “small” differences in model parameters and implementation details; the simulated Net Ecosystem Production (NEP) mainly responds to non-respiratory disturbances (e.g. fire) in the models and therefore is difficult to compare with flux data; and the seasonality and interannual variability of NEP varies significantly among models and reference datasets. These findings highlight the problem inherent in relying on only one modeling approach to map surface carbon fluxes and emphasize the pressing necessity of expanded and enhanced monitoring systems to narrow critical structural and parametrical uncertainties among ecosystem models.

  16. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    Science.gov (United States)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  17. Observation and modeling of NPP for Pinus elliottii plantation in subtropical China

    Institute of Scientific and Technical Information of China (English)

    MA ZeQing; LIU QiJing; WANG HuiMin; LI XuanRan; ZENG HuiQing; XU WenJia

    2008-01-01

    Based on the stem analysis of 59 individuals of Pinus elliottii in combination with tree biomass models,we calculated annual biomass increment of forest plots at Qianyanzhou Ecological Station,Chinese Academy of Sciences in subtropical China. In addition,canopy layer and community NPP were calculated based on 12 years' litter fall data. NPP of the 21-year-old forest was estimated by using the BIOME BGC model; and both measured NPP and estimated NPP were compared with flux data. Community lation between annual litter fall and annual biomass increment; and the litter fall was 1.19 times the biomass increment of living trees. From 1985 to 2005,average NPP and GPP values based on BGC simulated tree layer NPP values. NPP accounted for 30.2% (25.6%-32.9%) of GPP,while NEP accounted for 57.5% (48.1%-66.5%) of tree-layer NPP and 41.74% (37%-52%) of stand NPP. Soil respiration accounted for 77.0% of measured tree NPP and 55.9% of the measured stand NPP. NEE based on eddy covariance method was 12.97% higher than the observed NEP.

  18. Measuring and Modeling the Effects of Alternate Post-Fire Successional Trajectories on Boreal Forest Carbon Dynamics

    Science.gov (United States)

    Loranty, M. M.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Beck, P. S.

    2011-12-01

    High latitude ecosystems are experiencing amplified climate warming, and recent evidence suggests concurrent intensification of fire disturbance regimes. In central Alaskan boreal forests, severe burns consume more of the soil organic layer, resulting in increased establishment of deciduous seedlings and altered post-fire stand composition with increased deciduous dominance. Quantifying differences in ecosystem carbon (C) dynamics between forest successional trajectories in response to burn severity is essential for understanding potential changes in regional or global feedbacks between boreal forests and climate. We used the Biome BioGeochemical Cycling model (Biome-BGC) to quantify differences in C stocks and fluxes associated with alternate post-fire successional trajectories related to fire severity. A version of Biome-BGC that allows alternate competing vegetation types was calibrated against a series of aboveground biomass observations from chronosequences of stands with differing post-fire successional trajectories characterized by the proportion of deciduous biomass. The model was able to reproduce observed patterns of biomass accumulation after fire, with stands dominated by deciduous species sequestering more C at a faster rate than stands dominated by conifers. Modeled C fluxes suggest that stands dominated by deciduous species are a stronger sink of atmospheric C soon after disturbance than coniferous stands. These results agree with the few available C flux observations. We use a historic database in conjunction with a map of deciduous canopy cover to explore the consequences of ongoing and potential future changes in the fire regime on central Alaskan C balance.

  19. Developing a Data Driven Process-Based Model for Remote Sensing of Ecosystem Production

    Science.gov (United States)

    Elmasri, B.; Rahman, A. F.

    2010-12-01

    Estimating ecosystem carbon fluxes at various spatial and temporal scales is essential for quantifying the global carbon cycle. Numerous models have been developed for this purpose using several environmental variables as well as vegetation indices derived from remotely sensed data. Here we present a data driven modeling approach for gross primary production (GPP) that is based on a process based model BIOME-BGC. The proposed model was run using available remote sensing data and it does not depend on look-up tables. Furthermore, this approach combines the merits of both empirical and process models, and empirical models were used to estimate certain input variables such as light use efficiency (LUE). This was achieved by using remotely sensed data to the mathematical equations that represent biophysical photosynthesis processes in the BIOME-BGC model. Moreover, a new spectral index for estimating maximum photosynthetic activity, maximum photosynthetic rate index (MPRI), is also developed and presented here. This new index is based on the ratio between the near infrared and the green bands (ρ858.5/ρ555). The model was tested and validated against MODIS GPP product and flux measurements from two eddy covariance flux towers located at Morgan Monroe State Forest (MMSF) in Indiana and Harvard Forest in Massachusetts. Satellite data acquired by the Advanced Microwave Scanning Radiometer (AMSR-E) and MODIS were used. The data driven model showed a strong correlation between the predicted and measured GPP at the two eddy covariance flux towers sites. This methodology produced better predictions of GPP than did the MODIS GPP product. Moreover, the proportion of error in the predicted GPP for MMSF and Harvard forest was dominated by unsystematic errors suggesting that the results are unbiased. The analysis indicated that maintenance respiration is one of the main factors that dominate the overall model outcome errors and improvement in maintenance respiration estimation

  20. Diagnosing and Assessing Uncertainties of the Carbon Cycle in Terrestrial Ecosystem Models from a Multi-Model Ensemble Experiment

    Science.gov (United States)

    Wang, W.; Dungan, J. L.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.

    2009-12-01

    We are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to characterize structural uncertainty in carbon fluxes and stocks estimates from different ecosystem models. The experiment uses public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. A set of diagnostics is developed to characterize the behavior of the models in the climate (temperature-precipitation) space, and to evaluate the simulated carbon cycle in an integrated way. The key findings of this study include that: (relative) optimal primary production is generally found in climate regions where the relationship between annual temperature (T, oC) and precipitation (P, mm) is defined by P = 50*T+500; the ratios between NPP and GPP are close to 50% on average, yet can vary between models and in different climate regions; the allocation of carbon to leaf growth represents a positive feedback to the primary production, and different approaches to constrain this process have significant impacts on the simulated carbon cycle; substantial differences in biomass stocks may be induced by small differences in the tissue turnover rate and the plant mortality; the mean residence time of soil carbon pools is strongly influenced by schemes of temperature regulations; non-respiratory disturbances (e.g., fires) are the main driver for NEP, yet its magnitudes vary between models. Overall, these findings indicate that although the structures of the models are similar, the uncertainties among them can be large, highlighting the problem inherent in relying on only one modeling approach to map surface carbon fluxes or to assess vegetation-climate interactions.

  1. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Yang Fu

    Full Text Available Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2 product, we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model, 79% (the Biome-BGC phenology model, 73% (the Number of Growing Days model and 68% (the Number of Chilling Days-Growing Degree Day model of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  2. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    Science.gov (United States)

    Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping

    2014-01-01

    Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  3. Deriving forest fire ignition risk with biogeochemical process modelling.

    Science.gov (United States)

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  4. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    Science.gov (United States)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  5. Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop

    Science.gov (United States)

    Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve

    2012-01-01

    Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation

  6. Examination of a climate stabilization pathway via zero-emissions using Earth system models

    International Nuclear Information System (INIS)

    Nohara, Daisuke; Tsutsui, J; Watanabe, S; Tachiiri, K; Hajima, T; Okajima, H; Matsuno, T

    2015-01-01

    Long-term climate experiments up to the year 2300 have been conducted using two full-scale complex Earth system models (ESMs), CESM1(BGC) and MIROC-ESM, for a CO 2 emissions reduction pathway, termed Z650, where annual CO 2 emissions peak at 11 PgC in 2020, decline by 50% every 30 years, and reach zero in 2160. The results have been examined by focusing on the approximate linear relationship between the temperature increase and cumulative CO 2 emissions. Although the temperature increase is nearly proportional to the cumulative CO 2 emissions in both models, this relationship does not necessarily provide a robust basis for the restriction of CO 2 emissions because it is substantially modulated by non-CO 2 forcing. CO 2 -induced warming, estimated from the atmospheric CO 2 concentrations in the models, indicates an approximate compensation of nonlinear changes between fast-mode responses to concentration changes at less than 10 years and slow-mode response at more than 100 years due to the thermal inertia of the ocean. In this estimate, CESM1(BGC) closely approximates a linear trend of 1.7 °C per 1000 PgC, whereas MIROC-ESM shows a deviation toward higher temperatures after the emissions peak, from 1.8 °C to 2.4 °C per 1000 PgC over the range of 400–850 PgC cumulative emissions corresponding to years 2000–2050. The evolution of temperature under zero emissions, 2160–2300, shows a slight decrease of about 0.1 °C per century in CESM1(BGC), but remains almost constant in MIROC-ESM. The fast-mode response toward the equilibrium state decreases with a decrease in the airborne fraction owing to continued CO 2 uptake (carbon cycle inertia), whereas the slow-mode response results in more warming owing to continued heat uptake (thermal inertia). Several specific differences are noted between the two models regarding the degree of this compensation and in some key regional aspects associated with sustained warming and long-term climate risks. Overall, elevated

  7. Characterizing uncertainties in recent trends of global terrestrial net primary production through ensemble modeling

    Science.gov (United States)

    Wang, W.; Hashimoto, H.; Ganguly, S.; Votava, P.; Nemani, R. R.; Myneni, R. B.

    2010-12-01

    Large uncertainties exist in our understanding of the trends and variability in global net primary production (NPP) and its controls. This study attempts to address this question through a multi-model ensemble experiment. In particular, we drive ecosystem models including CASA, LPJ, Biome-BGC, TOPS-BGC, and BEAMS with a long-term climate dataset (i.e., CRU-NCEP) to estimate global NPP from 1901 to 2009 at a spatial resolution of 0.5 x 0.5 degree. We calculate the trends of simulated NPP during different time periods and test their sensitivities to climate variables of solar radiation, air temperature, precipitation, vapor pressure deficit (VPD), and atmospheric CO2 levels. The results indicate a large diversity among the simulated NPP trends over the past 50 years, ranging from nearly no trend to an increasing trend of ~0.1 PgC/yr. Spatial patterns of the NPP generally show positive trends in boreal forests, induced mainly by increasing temperatures in these regions; they also show negative trends in the tropics, although the spatial patterns are more diverse. These diverse trends result from different climatic sensitivities of NPP among the tested models. Depending the ecological processes (e.g., photosynthesis or respiration) a model emphasizes, it can be more or less responsive to changes in solar radiation, temperatures, water, or atmospheric CO2 levels. Overall, these results highlight the limit of current ecosystem models in simulating NPP, which cannot be easily observed. They suggest that the traditional single-model approach is not ideal for characterizing trends and variability in global carbon cycling.

  8. Reproducibility of Carbon and Water Cycle by an Ecosystem Process Based Model Using a Weather Generator and Effect of Temporal Concentration of Precipitation on Model Outputs

    Science.gov (United States)

    Miyauchi, T.; Machimura, T.

    2014-12-01

    GCM is generally used to produce input weather data for the simulation of carbon and water cycle by ecosystem process based models under climate change however its temporal resolution is sometimes incompatible to requirement. A weather generator (WG) is used for temporal downscaling of input weather data for models, where the effect of WG algorithms on reproducibility of ecosystem model outputs must be assessed. In this study simulated carbon and water cycle by Biome-BGC model using weather data measured and generated by CLIMGEN weather generator were compared. The measured weather data (daily precipitation, maximum, minimum air temperature) at a few sites for 30 years was collected from NNDC Online weather data. The generated weather data was produced by CLIMGEN parameterized using the measured weather data. NPP, heterotrophic respiration (HR), NEE and water outflow were simulated by Biome-BGC using measured and generated weather data. In the case of deciduous broad leaf forest in Lushi, Henan Province, China, 30 years average monthly NPP by WG was 10% larger than that by measured weather in the growing season. HR by WG was larger than that by measured weather in all months by 15% in average. NEE by WG was more negative in winter and was close to that by measured weather in summer. These differences in carbon cycle were because the soil water content by WG was larger than that by measured weather. The difference between monthly water outflow by WG and by measured weather was large and variable, and annual outflow by WG was 50% of that by measured weather. The inconsistency in carbon and water cycle by WG and measured weather was suggested be affected by the difference in temporal concentration of precipitation, which was assessed.

  9. Modeling of Carbon Sequestration on Eucalyptus Plantation in Brazililian Cerrado Region for Better Characterization of Net Primary Productivity

    Science.gov (United States)

    Echeverri, J. D.; Siqueira, M. B.

    2013-05-01

    Managed Forests have important roles in climate change due to their contribution to CO2 sequestration stored in their biomass, soils and products therefrom. Terrestrial net primary production (NPP, kgC/m2), equal to gross primary production minus autotrophic respiration, represents the carbon available for plant allocation to leaves, stems, roots, defensive compounds, and reproduction and is the basic measure of biological productivity. Tree growth, food production, fossil fuel production, and atmospheric CO2 levels are all strongly controlled by NPP. Accurate quantification of NPP at local to global scales is therefore central topic for carbon cycle researchers, foresters, land and resource managers, and politicians. For recent or current NPP estimates, satellite remote sensing can be used but for future climate scenarios, simulation models are required. There is an increasing trend to displace natural Brazilian Cerrado to Eucalyptus for paper mills and energy conversion from biomass. The objective of this research exercise is to characterize NPP from managed Eucalyptus plantation in the Brazilian Cerrado. The models selected for this study were the 3-PG and Biome-BGC. The selection of these models aims to cover a range of complexity that allow the evaluation of the processes modeled as to its relevance to a best estimate of productivity in eucalyptus forests. 3-PG model is the simplest of the models chosen for this exercise. Its main purpose is to estimate productivity of forests in timber production. The model uses the relationship of quantum efficiency in the transformation of light energy into biomass for vegetative growth calculations in steps in time of one month. Adverse weather conditions are treated with reduction factors applied in the top efficiency. The second model is the Biome-BGC that uses biology and geochemistry principles to estimate leaf-level photosynthesis based on limiting factors such as availability of light and nutrient constraints. The

  10. Biisofraxidin on Apoptosis of Human Gastric Cancer BGC-823 Cells

    African Journals Online (AJOL)

    Wu et al. Trop J Pharm Res, October 2015; 14(10): 1803. Tropical Journal of Pharmaceutical Research ... Jian-Tao Wu1,2*, She-Min Lv1, Chun-Hui Lu1, Jun Gong1 and Jian-Bo An3 ..... Zhu AK, Zhou H, Xia JZ, Jin HC, Wang K, Yan J, Zuo JB,.

  11. Calibration of two complex ecosystem models with different likelihood functions

    Science.gov (United States)

    Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán

    2014-05-01

    The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model

  12. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S., Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Beverly E. Law

    2011-10-05

    As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

  13. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Warren [USDA Forest Service

    2014-07-03

    As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

  14. Development of an advanced eco-hydrologic and biogeochemical coupling model aimed at clarifying the missing role of inland water in the global biogeochemical cycle

    Science.gov (United States)

    Nakayama, Tadanobu

    2017-04-01

    Recent research showed that inland water including rivers, lakes, and groundwater may play some role in carbon cycling, although its contribution has remained uncertain due to limited amount of reliable data available. In this study, the author developed an advanced model coupling eco-hydrology and biogeochemical cycle (National Integrated Catchment-based Eco-hydrology (NICE)-BGC). This new model incorporates complex coupling of hydrologic-carbon cycle in terrestrial-aquatic linkages and interplay between inorganic and organic carbon during the whole process of carbon cycling. The model could simulate both horizontal transports (export from land to inland water 2.01 ± 1.98 Pg C/yr and transported to ocean 1.13 ± 0.50 Pg C/yr) and vertical fluxes (degassing 0.79 ± 0.38 Pg C/yr, and sediment storage 0.20 ± 0.09 Pg C/yr) in major rivers in good agreement with previous researches, which was an improved estimate of carbon flux from previous studies. The model results also showed global net land flux simulated by NICE-BGC (-1.05 ± 0.62 Pg C/yr) decreased carbon sink a little in comparison with revised Lund-Potsdam-Jena Wetland Hydrology and Methane (-1.79 ± 0.64 Pg C/yr) and previous materials (-2.8 to -1.4 Pg C/yr). This is attributable to CO2 evasion and lateral carbon transport explicitly included in the model, and the result suggests that most previous researches have generally overestimated the accumulation of terrestrial carbon and underestimated the potential for lateral transport. The results further implied difference between inverse techniques and budget estimates suggested can be explained to some extent by a net source from inland water. NICE-BGC would play an important role in reevaluation of greenhouse gas budget of the biosphere, quantification of hot spots, and bridging the gap between top-down and bottom-up approaches to global carbon budget.

  15. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.

    Energy Technology Data Exchange (ETDEWEB)

    B.E. Law; D. Turner; M. Goeckede

    2010-06-01

    GOAL: To develop and apply an approach to quantify and understand the regional carbon balance of the west coast states for the North American Carbon Program. OBJECTIVE: As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance. APPROACH: In performing the regional analysis, the research plan for the bottom-up approach uses a nested hierarchy of observations that include AmeriFlux data (i.e., net ecosystem exchange (NEE) from eddy covariance and associated biometric data), intermediate intensity inventories from an extended plot array partially developed from the PI's previous research, Forest Service FIA and CVS inventory data, time since disturbance, disturbance type, and cover type from Landsat developed in this study, and productivity estimates from MODIS algorithms. The BIOME-BGC model is used to integrate information from these sources and quantify C balance across the region. The inverse modeling approach assimilates flux data from AmeriFlux sites, high precision CO2 concentration data from AmeriFlux towers and four new calibrated CO2 sites

  16. A Spectral Evaluation of Models Performances in Mediterranean Oak Woodlands

    Science.gov (United States)

    Vargas, R.; Baldocchi, D. D.; Abramowitz, G.; Carrara, A.; Correia, A.; Kobayashi, H.; Papale, D.; Pearson, D.; Pereira, J.; Piao, S.; Rambal, S.; Sonnentag, O.

    2009-12-01

    Ecosystem processes are influenced by climatic trends at multiple temporal scales including diel patterns and other mid-term climatic modes, such as interannual and seasonal variability. Because interactions between biophysical components of ecosystem processes are complex, it is important to test how models perform in frequency (e.g. hours, days, weeks, months, years) and time (i.e. day of the year) domains in addition to traditional tests of annual or monthly sums. Here we present a spectral evaluation using wavelet time series analysis of model performance in seven Mediterranean Oak Woodlands that encompass three deciduous and four evergreen sites. We tested the performance of five models (CABLE, ORCHIDEE, BEPS, Biome-BGC, and JULES) on measured variables of gross primary production (GPP) and evapotranspiration (ET). In general, model performance fails at intermediate periods (e.g. weeks to months) likely because these models do not represent the water pulse dynamics that influence GPP and ET at these Mediterranean systems. To improve the performance of a model it is critical to identify first where and when the model fails. Only by identifying where a model fails we can improve the model performance and use them as prognostic tools and to generate further hypotheses that can be tested by new experiments and measurements.

  17. Carbon Impacts of Fire- and Bark Beetle-Caused Tree Mortality across the Western US using the Community Land Model (Invited)

    Science.gov (United States)

    Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.

    2013-12-01

    Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions

  18. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  19. Multi-model analysis of terrestrial carbon cycles in Japan: reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2009-08-01

    Terrestrial biosphere models show large uncertainties when simulating carbon and water cycles, and reducing these uncertainties is a priority for developing more accurate estimates of both terrestrial ecosystem statuses and future climate changes. To reduce uncertainties and improve the understanding of these carbon budgets, we investigated the ability of flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine-based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and an improved model (based on calibration using flux observations). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using flux observations (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs, and model calibration using flux observations significantly improved the model outputs. These results show that to reduce uncertainties among terrestrial biosphere models, we need to conduct careful validation and calibration with available flux observations. Flux observation data significantly improved terrestrial biosphere models, not only on a point scale but also on spatial scales.

  20. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Directory of Open Access Journals (Sweden)

    K. Ichii

    2010-07-01

    Full Text Available Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine – based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID, we conducted two simulations: (1 point simulations at four eddy flux sites in Japan and (2 spatial simulations for Japan with a default model (based on original settings and a modified model (based on model parameter tuning using eddy flux data. Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP, most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  1. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  2. Biogeochemical modelling vs. tree-ring data - comparison of forest ecosystem productivity estimates

    Science.gov (United States)

    Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Hidy, Dóra; Paladinić, Elvis; Kern, Anikó; Marjanović, Hrvoje

    2017-04-01

    Forest ecosystems are sensitive to environmental changes as well as human-induce disturbances, therefore process-based models with integrated management modules represent valuable tool for estimating and forecasting forest ecosystem productivity under changing conditions. Biogeochemical model Biome-BGC simulates carbon, nitrogen and water fluxes, and it is widely used for different terrestrial ecosystems. It was modified and parameterised by many researchers in the past to meet the specific local conditions. In this research, we used recently published improved version of the model Biome-BGCMuSo (BBGCMuSo), with multilayer soil module and integrated management module. The aim of our research is to validate modelling results of forest ecosystem productivity (NPP) from BBGCMuSo model with observed productivity estimated from an extensive dataset of tree-rings. The research was conducted in two distinct forest complexes of managed Pedunculate oak in SE Europe (Croatia), namely Pokupsko basin and Spačva basin. First, we parameterized BBGCMuSo model at a local level using eddy-covariance (EC) data from Jastrebarsko EC site. Parameterized model was used for the assessment of productivity on a larger scale. Results of NPP assessment with BBGCMuSo are compared with NPP estimated from tree ring data taken from trees on over 100 plots in both forest complexes. Keywords: Biome-BGCMuSo, forest productivity, model parameterization, NPP, Pedunculate oak

  3. 长白山阔叶红松林净初级生产力对气候变化的响应:基于BIOME-BGC模型的分析%Response of Broad-Leaved Korean Pine Forest Productivity of Mt.Changbai to Climate Change: An Analysis Based on BIOME-BGC Modeling

    Institute of Scientific and Technical Information of China (English)

    吴玉莲; 王襄平; 李巧燕; 孙阎

    2014-01-01

    为了分析气候变化和大气CO2浓度增加对长白山阔叶红松林净初级生产力(NPP)的影响,运用本地参数化后的BIOME-BGC模型进行模拟,并以实测NPP和增强型植被指数(EVI)进行验证.模拟结果表明,长白山阔叶红松林NPP均值为611.71 gC/(m2·a),1960-2011年年际间的波动范围是473.28~703.44 gC/(m2·a).模拟结果与基于样地实测的NPP(均值为594.66 gC/(m2·a))相似;同时,BIOME-BGC模型模拟的NPP年际间变化趋势与EVI的波动趋势相似,二者间存在显著的相关关系,表明模型能较好地模拟生产力的时间动态.模拟表明,红松的NPP与降水关系更为密切,而阔叶树NPP与温度、降水都呈显著的正相关.模型预测,在未来CO2浓度加倍和温度、降水同时增加的场景下,长白山阔叶红松林NPP将显著增加,其中阔叶树和红松的NPP将分别增加27.87%和23.96%.单独增加温度(2℃)或单独增加降水(12%)都能促进阔叶树和红松NPP的增加,其中降水的作用弱于温度的作用,而单独CO2浓度的倍增对阔叶树和红松的NPP没有明显的影响.

  4. GPP and NPP study of Pinus elliottii forest in red soil hilly region based on BIOME-BGC model%基于BIOME-BGC模型的红壤丘陵区湿地松(Pinus elliottii)人工林GPP和NPP

    Institute of Scientific and Technical Information of China (English)

    曾慧卿; 刘琪璟; 冯宗炜; 王效科; 马泽清

    2008-01-01

    应用生物地球化学模型BIOME-BGC模型估算了1993~2004年红壤丘陵区湿地松林总第一性生产力(GPP)、净第一性生产力(NPP),并分析GPP、NPP年际变化对气候的响应以及未来气候变化情景下GPP、NPP的响应.结果表明,湿地松林1993~2004年GPP、NPP的总量变化波动于1 777~2 160 g C m-2 a-1之间和453~828 g C m-2 a-1之间,平均值分别为1 941 g C m-2 a-1和695 g C m-2 a-1.在研究时段内,GPP、NPP有缓慢增长趋势,GPP、NPP总量平均值从1990年代初期(1993~1996年)的1 826 、687 g C m-2 a-1上升到21世纪初期(2001~2004年)的2 026、693 g C m-2 a-1.这主要是由于研究时段内GPP、NPP对降水缓慢增长的正响应造成的.未来气候变化情景分析表明,CO2浓度倍增不利于湿地松林GPP、NPP的增长,但均不超过1.5%.在CO2浓度不增加条件下,GPP正向响应了降水单独变化和温度升高1.5℃且降水增加情景,正向响应NPP的情景条件是降水的单独变化;当CO2浓度倍增和气候改变时,预测的GPP 正向响应了降水的变化,同时正向响应了温度升高1.5℃且降水变化;正向响应NPP的情景条件是降水的变化.

  5. Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model%基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性

    Institute of Scientific and Technical Information of China (English)

    何丽鸿; 王海燕; 雷相东

    2016-01-01

    基于植被生理生态过程的模型包含较多参数,合理的参数取值能够极大地提高模型的模拟能力.参数敏感性分析可以全面分析模型参数对模拟结果的影响程度,在筛选模型敏感参数过程中起到重要作用.本研究以模拟吉林省汪清林业局长白落叶松林净初级生产力(NPP)为例,分析了BIOME-BGC模型的参数敏感性.首先利用样地实测NPP数据与模拟值进行对比分析,检验模型对长白落叶松林NPP的模拟能力;然后利用Morris法和EFAST法筛选出BIOME-BGC模型中对长白落叶松林NPP影响较大的敏感参数.在此基础上,通过EFAST法对所有筛选出的参数进行定量的敏感性分析,计算了敏感参数的全局敏感性指数、一阶敏感性指数和二阶敏感性指数.结果表明:BIOME-BGC模型能够较好地模拟研究区内长白落叶松林NPP的变化趋势;Morris法可以在样本量较少的情况下实现对BIOME-BGC模型敏感参数的筛选,面EFAST法可以定量分析BIOME-BGC模型中单个参数以及不同参数之间交互作用对模拟结果的影响程度;BIOME-BGC模型中对长白落叶松林NPP影响较大的敏感参数为新生茎与叶片的碳分配比和叶片碳氮比,且二者之间的交互作用明显大于其他参数之间的交互作用.

  6. 植被生产力的空间分布研究--以黄河小花间卢氏以上流域为例%Modeling Net Primary Production Spatial Distribution of Vegetation with Biome-BGC: A Case Study of the Upper Lushi Catchment in the Xiaohuajian Section of the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    董文娟; 齐晔; 李惠民; 周大杰

    2005-01-01

    为验证生态系统模型Biome-BGC在流域尺度的适用性,以小浪底-花园口区间(小花间)洛河上游卢氏水文站以上流域作为研究区进行探讨.应用Biome-BGC计算研究区4种自然植被净初级生产力(NPP)的空间分布,并于2004年7月在卢氏县东安林场用LI-6400便携式光合仪进行日光合作用测量.结果表明:研究区植被的年总净初级生产力为1.90067×1012 gC;落叶阔叶林、常绿针叶林、灌木林和草地的年净初级生产力分别为603.2 gCm-2a-1、416.1 gCm-2a-1、263.8 gCm-2a-1、149.2 gCm-2a-1;研究区东部山区及河谷地区、西部山区的植被净初级生产力较高,中部地区较低;与测量结果相比,常绿针叶林的日光合值接近模型的输出值,落叶阔叶林和灌木林的日光合值小于模型的输出值,草地的年净初级生产力大于模型的输出值.该模型较好地拟合了研究区植被生产力的空间特征,对中小尺度的流域模拟有很好的适用性.

  7. 应用BIOME-BGC模型研究典型生态系统的潜热通量——半干旱地区吉林通榆的模拟%With BIOME-BGC Model on the Latent Heat Fluxes of the Typical Ecosystem: Simulations in Semi-arid Area at Tongyu, Jilin Province

    Institute of Scientific and Technical Information of China (English)

    王超; 延晓冬; 黄耀; 刘辉志

    2006-01-01

    年降雨量和年蒸发量在某种程度上反映了区域内水资源的丰富程度.随着社会和经济的发展,我国东北西部半干旱区的水资源供需矛盾日益突出.作者应用BIOME-BGC模型模拟了国际协调强化观测计划(CEOP)亚洲季风比较研究(CAMP)的一个地面观测基准站半干旱地区吉林通榆2002年10月~2003年9月草地和农田生态系统的潜热通量,并将模拟结果与通榆"干旱化和有序人类活动"长期观测站涡度相关法测定的观测值进行了比较,结果表明两者基本一致.此外,CEOP的观测数据对模型的验证和改进具有重要意义,半干旱区水资源的合理利用须引起当地政府和群众的重视.

  8. 放牧对新疆草地生态系统碳源/汇的影响模拟研究%Modeling the grazing effect of grassland on the carbon source/sink in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    韩其飞; 罗格平; 李超凡; 黄晓东

    2017-01-01

    Identifying the carbon source/sink strength of grassland ecosystems in Xinjiang is of great importance for the regional carbon cycle.Using the modified Biome-BGC grazing model,we modeled carbon dynamics in grasslands in Xinjiang,northwest China with varying grazing intensities.In general,the regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source,with a value of 0.38 Pg during the period 1979-2007,of which 0.37 Pg was caused by grazing.In general,the strength of carbon sequestration improved when grazing intensity was less than 0.24 head/hm2.However,the over-compensation effect may also be the result of the growth of poisonous grass.Therefore,in the future,by adding the "vegetation succession" module,we should improve the Biome-BGC grazing model to study the compensation effect more intensively.Our findings have implications for grassland ecosystem management as they relate to carbon sequestration and climate change mitigation,e.g.,removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales.We anticipate that our study will emphasize the need for large-scale assessments of how grazing affects carbon cycling.%正确评估新疆草地生态系统碳源/汇效应,对区域尺度碳循环研究具有重要意义.放牧是新疆草地生态系统中主要的人类活动,但放牧对草地碳平衡与碳动态的影响还具有很大的不确定性.利用生态系统放牧模型Biome-BGC grazing,通过情景模拟综合评价新疆草地生态系统碳源/汇的动态.结果表明:1)1979-2007年新疆草地生态系统的碳源总量为0.38PgC,其中由放牧导致的碳释放为0.37PgC;2)当平均放牧率小于0.24头标准羊/hm2时,放牧能够促进草地碳固定.研究实现了Biome-BGC grazing模型在区域尺度的应用,研究结果将有助于理解气候变化及放牧对干旱区草地生态系统碳动态变化的驱动机理,对探

  9. Diagnosis and Quantification of Climatic Sensitivity of Carbon Fluxes in Ensemble Global Ecosystem Models

    Science.gov (United States)

    Wang, W.; Hashimoto, H.; Milesi, C.; Nemani, R. R.; Myneni, R.

    2011-12-01

    Terrestrial ecosystem models are primary scientific tools to extrapolate our understanding of ecosystem functioning from point observations to global scales as well as from the past climatic conditions into the future. However, no model is nearly perfect and there are often considerable structural uncertainties existing between different models. Ensemble model experiments thus become a mainstream approach in evaluating the current status of global carbon cycle and predicting its future changes. A key task in such applications is to quantify the sensitivity of the simulated carbon fluxes to climate variations and changes. Here we develop a systematic framework to address this question solely by analyzing the inputs and the outputs from the models. The principle of our approach is to assume the long-term (~30 years) average of the inputs/outputs as a quasi-equlibrium of the climate-vegetation system while treat the anomalies of carbon fluxes as responses to climatic disturbances. In this way, the corresponding relationships can be largely linearized and analyzed using conventional time-series techniques. This method is used to characterize three major aspects of the vegetation models that are mostly important to global carbon cycle, namely the primary production, the biomass dynamics, and the ecosystem respiration. We apply this analytical framework to quantify the climatic sensitivity of an ensemble of models including CASA, Biome-BGC, LPJ as well as several other DGVMs from previous studies, all driven by the CRU-NCEP climate dataset. The detailed analysis results are reported in this study.

  10. Bioenergy crop models: Descriptions, data requirements and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Kang, Shujiang [ORNL; Zhang, Xuesong [Pacific Northwest National Laboratory (PNNL); Miguez, Fernando [Iowa State University; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Post, Wilfred M [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign; Lynd, L. [Dartmouth College; Wullschleger, Stan D [ORNL

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  11. A fusion of top-down and bottom-up modeling techniques to constrain regional scale carbon budgets

    Science.gov (United States)

    Goeckede, M.; Turner, D. P.; Michalak, A. M.; Vickers, D.; Law, B. E.

    2009-12-01

    The effort to constrain regional scale carbon budgets benefits from assimilating as many high quality data sources as possible in order to reduce uncertainties. Two of the most common approaches used in this field, bottom-up and top-down techniques, both have their strengths and weaknesses, and partly build on very different sources of information to train, drive, and validate the models. Within the context of the ORCA2 project, we follow both bottom-up and top-down modeling strategies with the ultimate objective of reconciling their surface flux estimates. The ORCA2 top-down component builds on a coupled WRF-STILT transport module that resolves the footprint function of a CO2 concentration measurement in high temporal and spatial resolution. Datasets involved in the current setup comprise GDAS meteorology, remote sensing products, VULCAN fossil fuel inventories, boundary conditions from CarbonTracker, and high-accuracy time series of atmospheric CO2 concentrations. Surface fluxes of CO2 are normally provided through a simple diagnostic model which is optimized against atmospheric observations. For the present study, we replaced the simple model with fluxes generated by an advanced bottom-up process model, Biome-BGC, which uses state-of-the-art algorithms to resolve plant-physiological processes, and 'grow' a biosphere based on biogeochemical conditions and climate history. This approach provides a more realistic description of biomass and nutrient pools than is the case for the simple model. The process model ingests various remote sensing data sources as well as high-resolution reanalysis meteorology, and can be trained against biometric inventories and eddy-covariance data. Linking the bottom-up flux fields to the atmospheric CO2 concentrations through the transport module allows evaluating the spatial representativeness of the BGC flux fields, and in that way assimilates more of the available information than either of the individual modeling techniques alone

  12. Integration of ground and satellite data to model Mediterranean forest processes

    Science.gov (United States)

    Chiesi, M.; Fibbi, L.; Genesio, L.; Gioli, B.; Magno, R.; Maselli, F.; Moriondo, M.; Vaccari, F. P.

    2011-06-01

    The current work presents the testing of a modeling strategy that has been recently developed to simulate the gross and net carbon fluxes of Mediterranean forest ecosystems. The strategy is based on the use of a NDVI-driven parametric model, C-Fix, and of a biogeochemical model, BIOME-BGC, whose outputs are combined to simulate the behavior of forest ecosystems at different development stages. The performances of the modeling strategy are evaluated in three Italian study sites (San Rossore, Lecceto and Pianosa), where carbon fluxes are being measured through the eddy correlation technique. These sites are characterized by variable Mediterranean climates and are covered by different types of forest vegetation (pine wood, Holm oak forest and Macchia, respectively). The results of the tests indicate that the modeling strategy is generally capable of reproducing monthly GPP and NEE patterns in all three study sites. The highest accuracy is obtained in the most mature, homogenous pine wood of San Rossore, while the worst results are found in the Lecceto forest, where there are the most heterogeneous terrain, soil and vegetation conditions. The main error sources are identified in the inaccurate definition of the model inputs, particularly those regulating the site water budgets, which exert a strong control on forest productivity during the Mediterranean summer dry season. In general, the incorporation of NDVI-derived fAPAR estimates corrects for most of these errors and renders the forest flux simulations more stable and accurate.

  13. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    Science.gov (United States)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    the biogeochemical model, PnET-BGC. The model was calibrated to the study watersheds using observations from the natural and experimental ice storms. Future projections for ice storm events were estimated from an advanced climate model and applied to the calibrated PnET-BGC model to simulate future impacts of ice storms on the northern hardwood forests.

  14. Observation and modeling of NPP for Pinus elliottii plantation in subtropical China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the stem analysis of 59 individuals of Pinus elliottii in combination with tree biomass models, we calculated annual biomass increment of forest plots at Qianyanzhou Ecological Station, Chinese Academy of Sciences in subtropical China. In addition, canopy layer and community NPP were calcu- lated based on 12 years’ litter fall data. NPP of the 21-year-old forest was estimated by using the BIOME BGC model; and both measured NPP and estimated NPP were compared with flux data. Community biomass was 10574 g·m-2; its distribution patterns in tree layer, shrub layer, herbaceous layer, tree root, herbaceous and shrub roots and fine roots were 7542, 480, 239, 1810, 230, 274 and 239 g·m-2, respectively. From 1999 to 2004, the average annual growth rate and litter fall were 741 g·m-2·a-1 (381.31 gC·m-2·a-1) and 849 g·m?2·a?1 (463 gC·m-2·a-1), respectively. There was a significant corre- lation between annual litter fall and annual biomass increment; and the litter fall was 1.19 times the biomass increment of living trees. From 1985 to 2005, average NPP and GPP values based on BGC modeling were 630.88 (343.31 - 906.42 gC·m-2·a-1) and 1 800 gC·m-2·a-1 (1351.62 - 2318.26 gC·m-2·a-1). Regression analysis showed a linear relationship (R2=0.48) between the measured and simulated tree layer NPP values. NPP accounted for 30.2% (25.6%-32.9%) of GPP, while NEP ac- counted for 57.5% (48.1%-66.5%) of tree-layer NPP and 41.74% (37%-52%) of stand NPP. Soil respi- ration accounted for 77.0% of measured tree NPP and 55.9% of the measured stand NPP. NEE based on eddy covariance method was 12.97% higher than the observed NEP.

  15. Understanding the Effect of Land Cover Classification on Model Estimates of Regional Carbon Cycling in the Boreal Forest Biome

    Science.gov (United States)

    Kimball, John; Kang, Sinkyu

    2003-01-01

    The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.

  16. Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond

    Science.gov (United States)

    Pietsch, Stephan

    2017-04-01

    Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.

  17. Environmental and Molecular Science Laboratory Arrow

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-24

    Arrows is a software package that combines NWChem, SQL and NOSQL databases, email, and social networks (e.g. Twitter, Tumblr) that simplifies molecular and materials modeling and makes these modeling capabilities accessible to all scientists and engineers. EMSL Arrows is very simple to use. The user just emails chemical reactions to arrows@emsl.pnnl.gov and then an email is sent back with thermodynamic, reaction pathway (kinetic), spectroscopy, and other results. EMSL Arrows parses the email and then searches the database for the compounds in the reactions. If a compound isn't there, an NWChem calculation is setup and submitted to calculate it. Once the calculation is finished the results are entered into the database and then results are emailed back.

  18. Modeling the effects of anadromous fish nitrogen on the carbon balance of riparian forests in central Idaho

    Science.gov (United States)

    Noble Stuen, A. J.; Kavanagh, K.; Wheeler, T.

    2010-12-01

    Wild anadromous fish such as Pacific Chinook salmon (Oncorynchus tshawytscha) and steelhead (Oncorhyncus mykiss) were once abundant in Idaho, where they deposited their carcasses, rich in marine-derived nutrients (MDN), in the tributaries of the Columbia River. Anadromous fish are believed to have been a historically important nutrient source to the relatively nutrient-poor inland ecosystems of central Idaho, but no longer reach many inland watersheds due to presence of dams. This study investigates the multi-decadal cumulative effect of presence versus absence of anadromous fish nitrogen on net ecosystem exchange (NEE), or net carbon uptake, of riparian forests along historically salmon-bearing streams in the North Fork Boise River watershed, Idaho, in the context of a changing climate. The ecosystem process model BIOME-BGC is used to develop a representative forest ecosystem and predict the impact of decades of addition and continuing absence of MDN on NEE and net primary production (NPP). The study has 2 objectives: 1) to determine whether BIOME-BGC can reasonably simulate the riparian forests of central Idaho. A potentially confounding factor is the complex terrain of the region, particularly regarding soil water: water accumulation in valley bottoms and their riparian zones may lead to discrepancies in soil moisture and productivity of the riparian forest and of the simulations. The model is parameterized using local ecophysiology and site data and validated using field measurements of leaf area and soil moisture. Objective 2): to determine the effects on forest carbon balance and productivity of the presence or ongoing absence of anadromous-fish derived nitrogen. The forest simulation developed in objective 1 is run under two scenarios into the mid-20th century; one continuing without any supplemental nitrogen and one with nitrogen added in levels consistent with estimates of historical deposition by anadromous fish. Both scenarios incorporate warming due to

  19. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  20. Multi model and data analysis of terrestrial carbon cycle in Asia: From 2001 to 2006

    Science.gov (United States)

    Ichii, K.; Takahashi, K.; Suzuki, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.

    2009-12-01

    Accurate monitoring and modeling of the current status and their causes of interannual variations in terrestrial carbon cycle are important. Recently, many studies analyze using multiple methods (e.g. satellite data and ecosystem models) to clarify the underlain mechanisms and recent trend since each single methodology contains its own biases. The multi-model and data ensemble approach is a powerful method to clarify the current status and their underlain mechanisms. So far, many studies using multiple sources of data and models are conducted in North America, Europe, Africa, Amazon, and Japan, however, studies in monsoon Asia are lacking. In this study, we analyzed interannual variations in terrestrial carbon cycles in monsoon Asia, and evaluated current capability of remote sensing and ecosystem model to capture them based on multiple model and data sources; flux observations, remote sensing (e.g. MODIS, AVHRR, and VGT), and ecosystem models (e.g. SVM, BEAMS, CASA, Biome-BGC, LPJ, and TRIFFID). The satellite observation and ecosystem models show clear characteristics in interannual variabilities in satellite-based NDVI and model-based GPP. These are characterized by (1) spring NDVI and modeled GPP anomalies related to temperature anomaly in mid and high latitudinal areas (positive anomalies in 2002 and 2005 and negative one in 2006), (2) NDVI and GPP anomalies in southeastern and central Asia related to precipitation (e.g. India from 2003-2006), and (3) summer NDVI and GPP anomalies in 2003 related to strong anomalies in solar radiations. NDVI anomalies related to radiation ones (2003 summer) were not accurately captured by terrestrial ecosystem models. For example, LPJ model rather shows GPP positive anomalies in Far East Asia regions probably caused by positive precipitation anomalies. Further analysis requires improvement of models to reproduce more consistent spatial patterns in NDVI anomaly, and longer term analysis (e.g. after 1982).

  1. Ecohydrologic process modeling of mountain block groundwater recharge.

    Science.gov (United States)

    Magruder, Ian A; Woessner, William W; Running, Steve W

    2009-01-01

    Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) (Running and Hunt 1993). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) (Running et al. 1987). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m(3) /d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates. Copyright © 2009 The Author(s). Journal compilation © 2009 National Ground Water Association.

  2. Elevated CO2 induces changes in the ecohydrological functions of forests - from mechanisms to models

    Science.gov (United States)

    Pötzelsberger, Elisabeth; Warren, Jeffrey M.; Wullschleger, Stan D.; Thornton, Peter E.; Norby, Richard J.; Hasenauer, Hubert

    2010-05-01

    Forests are known to considerably influence ecosystem water balance as a result of the many dynamic interactions between the plant physiology, morphology, phenology and other biophysical properties and environmental conditions. A changing climate will exert a new environmental setting for the forests and the biological feedbacks will be considerable. With the mechanistic ecosystem model Biome-BGC the dense net of cause-response relationships among carbon, nitrogen, water and energy cycles at a free-air CO2 enrichment (FACE) site in a North American deciduous broadleaved forest can be represented. At the Oak Ridge National Laboratory (ORNL) closed canopy sweetgum plantation elevated CO2 caused a decrease in stomatal conductance, and concurrent changes in daily transpiration were observed. This is in agreement with data from other FACE experiments. At the ORNL FACE site average transpiration reduction in a growing season was 10-16%, with 7-16% during mid summer, depending on the year. After parameterization of the model for this ecosystem the observed transpiration patterns could be well represented. Most importantly, the complete water budget at the site could be described and increased outflow could be observed (~15%). This yields crucial information for broader scale future water budget simulations. Changes in the water balance of deciduous forests will affect a wide range of ecosystem functions, from decomposition, over carbon and nutrient cycling to plant-plant competition and species composition.

  3. Modelling

    CERN Document Server

    Spädtke, P

    2013-01-01

    Modeling of technical machines became a standard technique since computer became powerful enough to handle the amount of data relevant to the specific system. Simulation of an existing physical device requires the knowledge of all relevant quantities. Electric fields given by the surrounding boundary as well as magnetic fields caused by coils or permanent magnets have to be known. Internal sources for both fields are sometimes taken into account, such as space charge forces or the internal magnetic field of a moving bunch of charged particles. Used solver routines are briefly described and some bench-marking is shown to estimate necessary computing times for different problems. Different types of charged particle sources will be shown together with a suitable model to describe the physical model. Electron guns are covered as well as different ion sources (volume ion sources, laser ion sources, Penning ion sources, electron resonance ion sources, and H$^-$-sources) together with some remarks on beam transport.

  4. Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites

    Science.gov (United States)

    Mitchell, Stephen; Beven, Keith; Freer, Jim; Law, Beverly

    2011-06-01

    Semiarid forests are very sensitive to climatic change and among the most difficult ecosystems to accurately model. We tested the performance of the Biome-BGC model against eddy flux data taken from young (years 2004-2008), mature (years 2002-2008), and old-growth (year 2000) ponderosa pine stands at Metolius, Oregon, and subsequently examined several potential causes for model-data mismatch. We used the Generalized Likelihood Uncertainty Estimation methodology, which involved 500,000 model runs for each stand (1,500,000 total). Each simulation was run with randomly generated parameter values from a uniform distribution based on published parameter ranges, resulting in modeled estimates of net ecosystem CO2 exchange (NEE) that were compared to measured eddy flux data. Simulations for the young stand exhibited the highest level of performance, though they overestimated ecosystem C accumulation (-NEE) 99% of the time. Among the simulations for the mature and old-growth stands, 100% and 99% of the simulations underestimated ecosystem C accumulation. One obvious area of model-data mismatch is soil moisture, which was overestimated by the model in the young and old-growth stands yet underestimated in the mature stand. However, modeled estimates of soil water content and associated water deficits did not appear to be the primary cause of model-data mismatch; our analysis indicated that gross primary production can be accurately modeled even if soil moisture content is not. Instead, difficulties in adequately modeling ecosystem respiration, mainly autotrophic respiration, appeared to be the fundamental cause of model-data mismatch.

  5. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    Czech Academy of Sciences Publication Activity Database

    Yu, X.; Lamačová, Anna; Duffy, Ch.; Krám, P.; Hruška, Jakub

    2016-01-01

    Roč. 90, part B (2016), s. 90-101 ISSN 0098-3004 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Uncertainty * Evapotranspiration * Forest management * PIHM * Biome-BGC Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 2.533, year: 2016

  6. Intercomparisons of Prognostic, Diagnostic, and Inversion Modeling Approaches for Estimation of Net Ecosystem Exchange over the Pacific Northwest Region

    Science.gov (United States)

    Turner, D. P.; Jacobson, A. R.; Nemani, R. R.

    2013-12-01

    The recent development of large spatially-explicit datasets for multiple variables relevant to monitoring terrestrial carbon flux offers the opportunity to estimate the terrestrial land flux using several alternative, potentially complimentary, approaches. Here we developed and compared regional estimates of net ecosystem exchange (NEE) over the Pacific Northwest region of the U.S. using three approaches. In the prognostic modeling approach, the process-based Biome-BGC model was driven by distributed meteorological station data and was informed by Landsat-based coverages of forest stand age and disturbance regime. In the diagnostic modeling approach, the quasi-mechanistic CFLUX model estimated net ecosystem production (NEP) by upscaling eddy covariance flux tower observations. The model was driven by distributed climate data and MODIS FPAR (the fraction of incident PAR that is absorbed by the vegetation canopy). It was informed by coarse resolution (1 km) data about forest stand age. In both the prognostic and diagnostic modeling approaches, emissions estimates for biomass burning, harvested products, and river/stream evasion were added to model-based NEP to get NEE. The inversion model (CarbonTracker) relied on observations of atmospheric CO2 concentration to optimize prior surface carbon flux estimates. The Pacific Northwest is heterogeneous with respect to land cover and forest management, and repeated surveys of forest inventory plots support the presence of a strong regional carbon sink. The diagnostic model suggested a stronger carbon sink than the prognostic model, and a much larger sink that the inversion model. The introduction of Landsat data on disturbance history served to reduce uncertainty with respect to regional NEE in the diagnostic and prognostic modeling approaches. The FPAR data was particularly helpful in capturing the seasonality of the carbon flux using the diagnostic modeling approach. The inversion approach took advantage of a global

  7. Data Assimilation Tools for CO2 Reservoir Model Development – A Review of Key Data Types, Analyses, and Selected Software

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Sullivan, E. C.; Murray, Christopher J.; Last, George V.; Black, Gary D.

    2009-09-30

    Pacific Northwest National Laboratory (PNNL) has embarked on an initiative to develop world-class capabilities for performing experimental and computational analyses associated with geologic sequestration of carbon dioxide. The ultimate goal of this initiative is to provide science-based solutions for helping to mitigate the adverse effects of greenhouse gas emissions. This Laboratory-Directed Research and Development (LDRD) initiative currently has two primary focus areas—advanced experimental methods and computational analysis. The experimental methods focus area involves the development of new experimental capabilities, supported in part by the U.S. Department of Energy’s (DOE) Environmental Molecular Science Laboratory (EMSL) housed at PNNL, for quantifying mineral reaction kinetics with CO2 under high temperature and pressure (supercritical) conditions. The computational analysis focus area involves numerical simulation of coupled, multi-scale processes associated with CO2 sequestration in geologic media, and the development of software to facilitate building and parameterizing conceptual and numerical models of subsurface reservoirs that represent geologic repositories for injected CO2. This report describes work in support of the computational analysis focus area. The computational analysis focus area currently consists of several collaborative research projects. These are all geared towards the development and application of conceptual and numerical models for geologic sequestration of CO2. The software being developed for this focus area is referred to as the Geologic Sequestration Software Suite or GS3. A wiki-based software framework is being developed to support GS3. This report summarizes work performed in FY09 on one of the LDRD projects in the computational analysis focus area. The title of this project is Data Assimilation Tools for CO2 Reservoir Model Development. Some key objectives of this project in FY09 were to assess the current state

  8. Modeled ecohydrological responses to climate change at seven small watersheds in the northeastern United States

    Science.gov (United States)

    Pourmokhtarian, Afshin; Driscoll, Charles T.; Campbell, John L.; Hayhoe, Katharine; Stoner, Anne M. K.; Adams, Mary Beth; Burns, Douglas; Fernandez, Ivan; Mitchell, Myron J.; Shanley, James B.

    2017-01-01

    A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere–ocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO2effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a

  9. Variance-based sensitivity analysis of BIOME-BGC for gross and net primary production

    NARCIS (Netherlands)

    Raj, R.; Hamm, N.A.S.; van der Tol, C.; Stein, A.

    2014-01-01

    Parameterization and calibration of a process-based simulator (PBS) is a major challenge when simulating gross and net primary production (GPP and NPP). The large number of parameters makes the calibration computationally expensive and is complicated by the dependence of several parameters on other

  10. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    Science.gov (United States)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  11. Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains.

    Science.gov (United States)

    Pietsch, Stephan A; Hasenauer, Hubert; Kucera, Jiŕi; Cermák, Jan

    2003-08-01

    We extended the applicability of the ecosystem model BIOME-BGC to floodplain ecosystems to study effects of hydrological changes on Quercus robur L. stands. The extended model assesses floodplain peculiarities, i.e., seasonal flooding and water infiltration from the groundwater table. Our interest was the tradeoff between (a). maintaining regional applicability with respect to available model input information, (b). incorporating the necessary mechanistic detail and (c). keeping the computational effort at an acceptable level. An evaluation based on observed transpiration, timber volume, soil carbon and soil nitrogen content showed that the extended model produced unbiased results. We also investigated the impact of hydrological changes on our oak stands as a result of the completion of an artificial canal network in 1971, which has stopped regular springtime flooding. A comparison of the 11 years before versus the 11 years after 1971 demonstrated that the hydrological changes affected mainly the annual variation across years in leaf area index (LAI) and soil carbon and nitrogen sequestration, leading to stagnation of carbon and nitrogen stocks, but to an increase in the variance across years. However, carbon sequestration to timber was unaffected and exhibited no significant change in cross-year variation. Finally, we investigated how drawdown of the water table, a general problem in the region, affects modeled ecosystem behavior. We found a further amplification of cross-year LAI fluctuations, but the variance in soil carbon and nitrogen stocks decreased. Volume increment was unaffected, suggesting a stabilization of the ecosystem two decades after implementation of water management measures.

  12. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    Science.gov (United States)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  13. A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models

    Science.gov (United States)

    Brugnach, M.; Neilson, R.; Bolte, J.

    2001-12-01

    the output are identified, the causes of its variability can be found. Some of the advantages of this approach are that it reduces the dimensionality of the search space, it facilitates the interpretation of the results and it provides information that allows exploration of uncertainty at the process level, and how it might affect model output. We present an example using the vegetation model BIOME-BGC.

  14. Mapping and modeling the biogeochemical cycling of turf grasses in the United States.

    Science.gov (United States)

    Milesi, Cristina; Running, Steven W; Elvidge, Christopher D; Dietz, John B; Tuttle, Benjamin T; Nemani, Ramakrishna R

    2005-09-01

    Turf grasses are ubiquitous in the urban landscape of the United States and are often associated with various types of environmental impacts, especially on water resources, yet there have been limited efforts to quantify their total surface and ecosystem functioning, such as their total impact on the continental water budget and potential net ecosystem exchange (NEE). In this study, relating turf grass area to an estimate of fractional impervious surface area, it was calculated that potentially 163,800 km2 (+/- 35,850 km2) of land are cultivated with turf grasses in the continental United States, an area three times larger than that of any irrigated crop. Using the Biome-BGC ecosystem process model, the growth of warm-season and cool-season turf grasses was modeled at a number of sites across the 48 conterminous states under different management scenarios, simulating potential carbon and water fluxes as if the entire turf surface was to be managed like a well-maintained lawn. The results indicate that well-watered and fertilized turf grasses act as a carbon sink. The potential NEE that could derive from the total surface potentially under turf (up to 17 Tg C/yr with the simulated scenarios) would require up to 695 to 900 liters of water per person per day, depending on the modeled water irrigation practices, suggesting that outdoor water conservation practices such as xeriscaping and irrigation with recycled waste-water may need to be extended as many municipalities continue to face increasing pressures on freshwater.

  15. Accounting for Forest Harvest and Wildfire in a Spatially-distributed Carbon Cycle Process Model

    Science.gov (United States)

    Turner, D. P.; Ritts, W.; Kennedy, R. E.; Yang, Z.; Law, B. E.

    2009-12-01

    Forests are subject to natural disturbances in the form of wildfire, as well as management-related disturbances in the form of timber harvest. These disturbance events have strong impacts on local and regional carbon budgets, but quantifying the associated carbon fluxes remains challenging. The ORCA Project aims to quantify regional net ecosystem production (NEP) and net biome production (NBP) in Oregon, California, and Washington, and we have adopted an integrated approach based on Landsat imagery and ecosystem modeling. To account for stand-level carbon fluxes, the Biome-BGC model has been adapted to simulate multiple severities of fire and harvest. New variables include snags, direct fire emissions, and harvest removals. New parameters include fire-intensity-specific combustion factors for each carbon pool (based on field measurements) and proportional removal rates for harvest events. To quantify regional fluxes, the model is applied in a spatially-distributed mode over the domain of interest, with disturbance history derived from a time series of Landsat images. In stand-level simulations, the post disturbance transition from negative (source) to positive (sink) NEP is delayed approximately a decade in the case of high severity fire compared to harvest. Simulated direct pyrogenic emissions range from 11 to 25 % of total non-soil ecosystem carbon. In spatial mode application over Oregon and California, the sum of annual pyrogenic emissions and harvest removals was generally less that half of total NEP, resulting in significant carbon sequestration on the land base. Spatially and temporally explicit simulation of disturbance-related carbon fluxes will contribute to our ability to evaluate effects of management on regional carbon flux, and in our ability to assess potential biospheric feedbacks to climate change mediated by changing disturbance regimes.

  16. Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe

    Directory of Open Access Journals (Sweden)

    M. Jung

    2007-08-01

    Full Text Available Three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC were evaluated with respect to their ability to simulate large-scale climate related trends in gross primary production (GPP across European forests. Simulated GPP and leaf area index (LAI were compared with GPP estimates based on flux separated eddy covariance measurements of net ecosystem exchange and LAI measurements along a temperature gradient ranging from the boreal to the Mediterranean region. The three models capture qualitatively the pattern suggested by the site data: an increase in GPP from boreal to temperate and a subsequent decline from temperate to Mediterranean climates. The models consistently predict higher GPP for boreal and lower GPP for Mediterranean forests. Based on a decomposition of GPP into absorbed photosynthetic active radiation (APAR and radiation use efficiency (RUE, the overestimation of GPP for the boreal coniferous forests appears to be primarily related to too high simulated LAI - and thus light absorption (APAR – rather than too high radiation use efficiency. We cannot attribute the tendency of the models to underestimate GPP in the water limited region to model structural deficiencies with confidence. A likely dry bias of the input meteorological data in southern Europe may create this pattern.

    On average, the models compare similarly well to the site GPP data (RMSE of ~30% or 420 gC/m2/yr but differences are apparent for different ecosystem types. In terms of absolute values, we find the agreement between site based GPP estimates and simulations acceptable when we consider uncertainties about the accuracy in model drivers, a potential representation bias of the eddy covariance sites, and uncertainties related to the method of deriving GPP from eddy covariance measurements data. Continental to global data-model comparison studies should be fostered in the future since they are necessary to identify consistent model bias along environmental

  17. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    Science.gov (United States)

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the

  18. Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations

    Science.gov (United States)

    Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  19. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    Science.gov (United States)

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  20. Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon & Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Beverly Law; David Turner; Warren Cohen; Mathias Goeckede

    2008-05-22

    The goal is to quantify and explain the carbon (C) budget for Oregon and N. California. The research compares "bottom -up" and "top-down" methods, and develops prototype analytical systems for regional analysis of the carbon balance that are potentially applicable to other continental regions, and that can be used to explore climate, disturbance and land-use effects on the carbon cycle. Objectives are: 1) Improve, test and apply a bottom up approach that synthesizes a spatially nested hierarchy of observations (multispectral remote sensing, inventories, flux and extensive sites), and the Biome-BGC model to quantify the C balance across the region; 2) Improve, test and apply a top down approach for regional and global C flux modeling that uses a model-data fusion scheme (MODIS products, AmeriFlux, atmospheric CO2 concentration network), and a boundary layer model to estimate net ecosystem production (NEP) across the region and partition it among GPP, R(a) and R(h). 3) Provide critical understanding of the controls on regional C balance (how NEP and carbon stocks are influenced by disturbance from fire and management, land use, and interannual climate variation). The key science questions are, "What are the magnitudes and distributions of C sources and sinks on seasonal to decadal time scales, and what processes are controlling their dynamics? What are regional spatial and temporal variations of C sources and sinks? What are the errors and uncertainties in the data products and results (i.e., in situ observations, remote sensing, models)?

  1. Does a General Temperature-Dependent Q10 Model of Soil Respiration Exist at Biome and Global Scale?

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN; Han-Qin TIAN

    2005-01-01

    Temperate biome has important implications for modeling SR, especially in the Boreal biome. More detail model runs are needed to exactly evaluate the impact of using a fixed Q10 vs a temperature-dependent Q10 on SR estimate in ecosystem models (e.g., TEM, Biome-BGC, and PnET).

  2. Transforming Ocean Observations of the Carbon Budget, Acidification, Hypoxia, Nutrients, and Biological Productivity: a Global Array of Biogeochemical Argo Floats

    Science.gov (United States)

    Talley, L. D.; Johnson, K. S.; Claustre, H.; Boss, E.; Emerson, S. R.; Westberry, T. K.; Sarmiento, J. L.; Mazloff, M. R.; Riser, S.; Russell, J. L.

    2017-12-01

    Our ability to detect changes in biogeochemical (BGC) processes in the ocean that may be driven by increasing atmospheric CO2, as well as by natural climate variability, is greatly hindered by undersampling in vast areas of the open ocean. Argo is a major international program that measures ocean heat content and salinity with about 4000 floats distributed throughout the ocean, profiling to 2000 m every 10 days. Extending this approach to a global BGC-Argo float array, using recent, proven sensor technology, and in close synergy with satellite systems, will drive a transformative shift in observing and predicting the effects of climate change on ocean metabolism, carbon uptake, acidification, deoxygenation, and living marine resource management. BGC-Argo will add sensors for pH, oxygen, nitrate, chlorophyll, suspended particles, and downwelling irradiance, with sufficient accuracy for climate studies. Observing System Simulation Experiments (OSSEs) using BGC models indicate that 1000 BGC floats would provide sufficient coverage, hence equipping 1/4 of the Argo array. BGC-Argo (http://biogeochemical-argo.org) will enhance current sustained observational programs such as Argo, GO-SHIP, and long-term ocean time series. BGC-Argo will benefit from deployments on GO-SHIP vessels, which provide sensor verification. Empirically derived algorithms that relate the observed BGC float parameters to the carbon system parameters will provide global information on seasonal ocean-atmosphere carbon exchange. BGC Argo measurements could be paired with other emerging technology, such as pCO2 measurements from ships of opportunity and wave gliders, to extend and validate exchange estimates. BGC-Argo prototype programs already show the potential of a global observing system that can measure seasonal to decadal variability. Various countries have developed regional BGC arrays: Southern Ocean (SOCCOM), North Atlantic Subpolar Gyre (remOcean), Mediterranean (NAOS), the Kuroshio (INBOX

  3. Asia-MIP: Multi Model-data Synthesis of Terrestrial Carbon Cycles in Asia

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ito, A.; Kang, M.; Sasai, T.; SATO, H.; Ueyama, M.; Kobayashi, H.; Saigusa, N.; Kim, J.

    2013-12-01

    Asia, which is characterized by monsoon climate and intense human activities, is one of the prominent understudied regions in terms of terrestrial carbon budgets and mechanisms of carbon exchange. To better understand terrestrial carbon cycle in Asia, we initiated multi-model and data intercomparison project in Asia (Asia-MIP). We analyzed outputs from multiple approaches: satellite-based observations (AVHRR and MODIS) and related products, empirically upscaled estimations (Support Vector Regression) using eddy-covariance observation network in Asia (AsiaFlux, CarboEastAsia, FLUXNET), ~10 terrestrial biosphere models (e.g. BEAMS, Biome-BGC, LPJ, SEIB-DGVM, TRIFFID, VISIT models), and atmospheric inversion analysis (e.g. TransCom models). We focused on the two difference temporal coverage: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2010; data intensive period) scales. The regions of covering Siberia, Far East Asia, East Asia, Southeast Asia and South Asia (60-80E, 10S-80N), was analyzed in this study for assessing the magnitudes, interannual variability, and key driving factors of carbon cycles. We will report the progress of synthesis effort to quantify terrestrial carbon budget in Asia. First, we analyzed the recent trends in Gross Primary Productivities (GPP) using satellite-based observation (AVHRR) and multiple terrestrial biosphere models. We found both model outputs and satellite-based observation consistently show an increasing trend in GPP in most of the regions in Asia. Mechanisms of the GPP increase were analyzed using models, and changes in temperature and precipitation play dominant roles in GPP increase in boreal and temperate regions, whereas changes in atmospheric CO2 and precipitation are important in tropical regions. However, their relative contributions were different. Second, in the decadal analysis (2001-2010), we found that the negative GPP and carbon uptake anomalies in 2003 summer in Far East Asia is one of the largest

  4. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  5. A statistical light use efficiency model explains 85% variations in global GPP

    Science.gov (United States)

    Jiang, C.; Ryu, Y.

    2016-12-01

    Photosynthesis is a complicated process whose modeling requires different levels of assumptions, simplification, and parameterization. Among models, light use efficiency (LUE) model is highly compact but powerful in monitoring gross primary production (GPP) from satellite data. Most of LUE models adopt a multiplicative from of maximum LUE, absorbed photosynthetically active radiation (APAR), and temperature and water stress functions. However, maximum LUE is a fitting parameter with large spatial variations, but most studies only use several biome dependent constants. In addition, stress functions are empirical and arbitrary in literatures. Moreover, meteorological data used are usually coarse-resolution, e.g., 1°, which could cause large errors. Finally, sunlit and shade canopy have completely different light responses but little considered. Targeting these issues, we derived a new statistical LUE model from a process-based and satellite-driven model, the Breathing Earth System Simulator (BESS). We have already derived a set of global radiation (5-km resolution), carbon and water fluxes (1-km resolution) products from 2000 to 2015 from BESS. By exploring these datasets, we found strong correlation between APAR and GPP for sunlit (R2=0.84) and shade (R2=0.96) canopy, respectively. A simple model, only driven by sunlit and shade APAR, was thus built based on linear relationships. The slopes of the linear function act as effective LUE of global ecosystem, with values of 0.0232 and 0.0128 umol C/umol quanta for sunlit and shade canopy, respectively. When compared with MPI-BGC GPP products, a global proxy of FLUXNET data, BESS-LUE achieved an overall accuracy of R2 = 0.85, whereas original BESS was R2 = 0.83 and MODIS GPP product was R2 = 0.76. We investigated spatiotemporal variations of the effective LUE. Spatially, the ratio of sunlit to shade values ranged from 0.1 (wet tropic) to 4.5 (dry inland). By using maps of sunlit and shade effective LUE the accuracy of

  6. Incorporating Ecosystem Processes Controlling Carbon Balance Into Models of Coupled Human-Natural Systems

    Science.gov (United States)

    Currie, W.; Brown, D. G.; Brunner, A.; Fouladbash, L.; Hadzick, Z.; Hutchins, M.; Kiger, S. E.; Makino, Y.; Nassauer, J. I.; Robinson, D. T.; Riolo, R. L.; Sun, S.

    2012-12-01

    A key element in the study of coupled human-natural systems is the interactions of human populations with vegetation and soils. In human-dominated landscapes, vegetation production and change results from a combination of ecological processes and human decision-making and behavior. Vegetation is often dramatically altered, whether to produce food for humans and livestock, to harvest fiber for construction and other materials, to harvest fuel wood or feedstock for biofuels, or simply for cultural preferences as in the case of residential lawns with sparse trees in the exurban landscape. This alteration of vegetation and its management has a substantial impact on the landscape carbon balance. Models can be used to simulate scenarios in human-natural systems and to examine the integration of processes that determine future trajectories of carbon balance. However, most models of human-natural systems include little integration of the human alteration of vegetation with the ecosystem processes that regulate carbon balance. Here we illustrate a few case studies of pilot-study models that strive for this integration from our research across various types of landscapes. We focus greater detail on a fully developed research model linked to a field study of vegetation and soils in the exurban residential landscape of Southeastern Michigan, USA. The field study characterized vegetation and soil carbon storage in 5 types of ecological zones. Field-observed carbon storage in the vegetation in these zones ranged widely, from 150 g C/m2 in turfgrass zones, to 6,000 g C/m2 in zones defined as turfgrass with sparse woody vegetation, to 16,000 g C/m2 in a zone defined as dense trees and shrubs. Use of these zones facilitated the scaling of carbon pools to the landscape, where the areal mixtures of zone types had a significant impact on landscape C storage. Use of these zones also facilitated the use of the ecosystem process model Biome-BGC to simulate C trajectories and also

  7. Assessing the impacts of climate change and nitrogen deposition on Norway spruce growth in Austria with BIOME-BGC

    Energy Technology Data Exchange (ETDEWEB)

    Eastaugh, Chris S.; Potzelsberger, Elisabeth; Hasenaueur, Hubert

    2011-03-15

    The purpose of this study is to determine if the climate change has had an apparent impact in Austrian forests. This research has been conducted on Norway spruce forests as this is the predominant species in Austria. Growth data between regions which have different temperature and precipitation trendsw was then compared, with results showing increased productivity in all regions thus implying that growth of the forest is driven by other factors than climate. This conclusion is consistent with previous studies supporting that forest growth is mainly driven by increasing nitrogen deposition.

  8. Multiscale Computation. Needs and Opportunities for BER Science

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for BER Science.” Twenty invited participants, from various computational disciplines within the BER program research areas, were charged with the following objectives; Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect molecular-scale research to BER research at larger scales and; Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and software) architectures.

  9. Generating daily weather data for ecosystem modelling in the Congo River Basin

    Science.gov (United States)

    Petritsch, Richard; Pietsch, Stephan A.

    2010-05-01

    based on the ratio of values on rainy days and days without rain, respectively. For assessing the impact of our correction, we simulated the ecosystem behaviour using the climate data from Lastourville, Moanda and Mouilla with the mechanistic ecosystem model Biome-BGC. Differences in terms of the carbon, nitrogen and water cycle were subsequently analysed and discussed.

  10. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently

  11. Development of a data driven process-based model for remote sensing of terrestrial ecosystem productivity, evapotranspiration, and above-ground biomass

    Science.gov (United States)

    El Masri, Bassil

    2011-12-01

    Modeling terrestrial ecosystem functions and structure has been a subject of increasing interest because of the importance of the terrestrial carbon cycle in global carbon budget and climate change. In this study, satellite data were used to estimate gross primary production (GPP), evapotranspiration (ET) for two deciduous forests: Morgan Monroe State forest (MMSF) in Indiana and Harvard forest in Massachusetts. Also, above-ground biomass (AGB) was estimated for the MMSF and the Howland forest (mixed forest) in Maine. Surface reflectance and temperature, vegetation indices, soil moisture, tree height and canopy area derived from the Moderate Resolution Imagining Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMRS-E), LIDAR, and aerial imagery respectively, were used for this purpose. These variables along with others derived from remotely sensed data were used as inputs variables to process-based models which estimated GPP and ET and to a regression model which estimated AGB. The process-based models were BIOME-BGC and the Penman-Monteith equation. Measured values for the carbon and water fluxes obtained from the Eddy covariance flux tower were compared to the modeled GPP and ET. The data driven methods produced good estimation of GPP and ET with an average root mean square error (RMSE) of 0.17 molC/m2 and 0.40 mm/day, respectively for the MMSF and the Harvard forest. In addition, allometric data for the MMSF were used to develop the regression model relating AGB with stem volume. The performance of the AGB regression model was compared to site measurements using remotely sensed data for the MMSF and the Howland forest where the model AGB RMSE ranged between 2.92--3.30 Kg C/m2. Sensitivity analysis revealed that improvement in maintenance respiration estimation and remotely sensed maximum photosynthetic activity as well as accurate estimate of canopy resistance will result in improved GPP and ET predictions. Moreover, AGB estimates were

  12. Synthetic Constraint of Ecosystem C Models Using Radiocarbon and Net Primary Production (NPP) in New Zealand Grazing Land

    Science.gov (United States)

    Baisden, W. T.

    2011-12-01

    land, these estimates can be derived primarily from measured aboveground NPP and calculated belowground NPP. Results suggest that only 19-36% of heterotrophic soil respiration is derived from the soil C with rapid turnover times. A final logical step in synthesis is the analysis of temporal variation in NPP, primarily due to climate, as driver of changes in plant inputs and resulting in dynamic changes in rapid and decadal soil C pools. In sites with good time series samples from 1959-1975, we examine the apparent impacts of measured or modelled (Biome-BGC) NPP on soil Δ14C. Ultimately, these approaches have the ability to empirically constrain, and provide limited verification, of the soil C cycle as commonly depicted ecosystem biogeochemistry models.

  13. Modeling Impacts of Climate and Land Use Change on Ecosystem Processes to Quantify Exposure to Climate Change in Two Landscape Conservation Cooperatives

    Science.gov (United States)

    Quackenbush, A.

    2015-12-01

    Urban land cover and associated impervious surface area is expected to increase by as much as 50% over the next few decades across substantial portions of the United States. In combination with urban expansion, increases in temperature and changes in precipitation are expected to impact ecosystems through changes in productivity, disturbance and hydrological properties. In this study, we use the NASA Terrestrial Observation and Prediction System Biogeochemical Cycle (TOPS-BGC) model to explore the combined impacts of urbanization and climate change on hydrologic dynamics (snowmelt, runoff, and evapotranspiration) and vegetation carbon uptake (gross productivity). The model is driven using land cover predictions from the Spatially Explicit Regional Growth Model (SERGoM) to quantify projected changes in impervious surface area, and climate projections from the 30 arc-second NASA Earth Exchange Downscaled Climate Projection (NEX-DCP30) dataset derived from the CMIP5 climate scenarios. We present the modeling approach and an analysis of the ecosystem impacts projected to occur in the US, with an emphasis on protected areas in the Great Northern and Appalachian Landscape Conservation Cooperatives (LCC). Under the ensemble average of the CMIP5 models and land cover change scenarios for both representative concentration pathways (RCPs) 4.5 and 8.5, both LCCs are predicted to experience increases in maximum and minimum temperatures as well as annual average precipitation. In the Great Northern LCC, this is projected to lead to increased annual runoff, especially under RCP 8.5. Earlier melt of the winter snow pack and increased evapotranspiration, however, reduces summer streamflow and soil water content, leading to a net reduction in vegetation productivity across much of the Great Northern LCC, with stronger trends occurring under RCP 8.5. Increased runoff is also projected to occur in the Appalachian LCC under both RCP 4.5 and 8.5. However, under RCP 4.5, the model

  14. Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands

    Science.gov (United States)

    Zewei Miao; Richard G. Lathrop; Ming Xu; Inga P. La Puma; Kenneth L. Clark; John Hom; Nicholas Skowronski; Steve. Van Tuyl

    2011-01-01

    A major challenge in modeling the carbon dynamics of vegetation communities is the proper parameterization and calibration of eco-physiological variables that are critical determinants of the ecosystem process-based model behavior. In this study, we improved and calibrated a biochemical process-based WxBGC model by using in situ AmeriFlux eddy covariance tower...

  15. A Virtual Inertia Control Strategy for DC Microgrids Analogized with Virtual Synchronous Machines

    DEFF Research Database (Denmark)

    Wu, Wenhua; Chen, Yandong; Luo, An

    2017-01-01

    In a DC microgrid (DC-MG), the dc bus voltage is vulnerable to power fluctuation derived from the intermittent distributed energy or local loads variation. In this paper, a virtual inertia control strategy for DC-MG through bidirectional grid-connected converters (BGCs) analogized with virtual...... synchronous machine (VSM) is proposed to enhance the inertia of the DC-MG, and to restrain the dc bus voltage fluctuation. The small-signal model of the BGC system is established, and the small-signal transfer function between the dc bus voltage and the dc output current of the BGC is deduced. The dynamic...... for the BGC is introduced to smooth the dynamic response of the dc bus voltage. By analyzing the control system stability, the appropriate virtual inertia control parameters are selected. Finally, simulations and experiments verified the validity of the proposed control strategy....

  16. Regional carbon cycle responses to 25 years of variation in climate and disturbance in the US Pacific Northwest

    Science.gov (United States)

    David P. Turner; William D. Ritts; Robert E. Kennedy; Andrew N. Gray; Zhiqiang Yang

    2016-01-01

    Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state...

  17. The impact of climate and CO{sub 2} changes on ecosystem dynamics of the continental United States

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D.S. [Colorado State Univ., Ft. Collins, CO (United States)

    1995-06-01

    The VEMAP study used three biogeochemical (BGC) models to investigate the impact of changes in climate and CO{sub 2} concentrations over the continental US. These models were Biome-BGC, CENTURY, and TEM. Differences among the BGC models and the climate scenarios (three different GCM-derived 2xCO{sub 2} climates were used) contributed equally to the variation in estimates of C dynamics under changing climate and CO,. The response of the individual biogeochemical models to increases in temperature and tp water stress are largely responsible for their behavior under climate change. All three models generally predict increases in C uptake when increases in temperature are not vastly greater than increases in precipitation, such as seen in the GFDL scenario. Differences in the biotic response to elevated CO{sub 2} determined the overall response of NPP and total system C storage due to differences on the manner in which plant C/N, transpiration, and photosynthesis are modified by the three different BGC models.

  18. BIOMAP A Daily Time Step, Mechanistic Model for the Study of Ecosystem Dynamics

    Science.gov (United States)

    Wells, J. R.; Neilson, R. P.; Drapek, R. J.; Pitts, B. S.

    2010-12-01

    BIOMAP simulates competition between two Plant Functional Types (PFT) at any given point in the conterminous U.S. using a time series of daily temperature (mean, minimum, maximum), precipitation, humidity, light and nutrients, with PFT-specific rooting within a multi-layer soil. The model employs a 2-layer canopy biophysics, Farquhar photosynthesis, the Beer-Lambert Law for light attenuation and a mechanistic soil hydrology. In essence, BIOMAP is a re-built version of the biogeochemistry model, BIOME-BGC, into the form of the MAPSS biogeography model. Specific enhancements are: 1) the 2-layer canopy biophysics of Dolman (1993); 2) the unique MAPSS-based hydrology, which incorporates canopy evaporation, snow dynamics, infiltration and saturated and unsaturated percolation with ‘fast’ flow and base flow and a ‘tunable aquifer’ capacity, a metaphor of D’Arcy’s Law; and, 3) a unique MAPSS-based stomatal conductance algorithm, which simultaneously incorporates vapor pressure and soil water potential constraints, based on physiological information and many other improvements. Over small domains the PFTs can be parameterized as individual species to investigate fundamental vs. potential niche theory; while, at more coarse scales the PFTs can be rendered as more general functional groups. Since all of the model processes are intrinsically leaf to plot scale (physiology to PFT competition), it essentially has no ‘intrinsic’ scale and can be implemented on a grid of any size, taking on the characteristics defined by the homogeneous climate of each grid cell. Currently, the model is implemented on the VEMAP 1/2 degree, daily grid over the conterminous U.S. Although both the thermal and water-limited ecotones are dynamic, following climate variability, the PFT distributions remain fixed. Thus, the model is currently being fitted with a ‘reproduction niche’ to allow full dynamic operation as a Dynamic General Vegetation Model (DGVM). While global simulations

  19. Modelling Practice

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    This chapter deals with the practicalities of building, testing, deploying and maintaining models. It gives specific advice for each phase of the modelling cycle. To do this, a modelling framework is introduced which covers: problem and model definition; model conceptualization; model data...... requirements; model construction; model solution; model verification; model validation and finally model deployment and maintenance. Within the adopted methodology, each step is discussedthrough the consideration of key issues and questions relevant to the modelling activity. Practical advice, based on many...

  20. Leadership Models.

    Science.gov (United States)

    Freeman, Thomas J.

    This paper discusses six different models of organizational structure and leadership, including the scalar chain or pyramid model, the continuum model, the grid model, the linking pin model, the contingency model, and the circle or democratic model. Each model is examined in a separate section that describes the model and its development, lists…

  1. Models and role models.

    Science.gov (United States)

    ten Cate, Jacob M

    2015-01-01

    Developing experimental models to understand dental caries has been the theme in our research group. Our first, the pH-cycling model, was developed to investigate the chemical reactions in enamel or dentine, which lead to dental caries. It aimed to leverage our understanding of the fluoride mode of action and was also utilized for the formulation of oral care products. In addition, we made use of intra-oral (in situ) models to study other features of the oral environment that drive the de/remineralization balance in individual patients. This model addressed basic questions, such as how enamel and dentine are affected by challenges in the oral cavity, as well as practical issues related to fluoride toothpaste efficacy. The observation that perhaps fluoride is not sufficiently potent to reduce dental caries in the present-day society triggered us to expand our knowledge in the bacterial aetiology of dental caries. For this we developed the Amsterdam Active Attachment biofilm model. Different from studies on planktonic ('single') bacteria, this biofilm model captures bacteria in a habitat similar to dental plaque. With data from the combination of these models, it should be possible to study separate processes which together may lead to dental caries. Also products and novel agents could be evaluated that interfere with either of the processes. Having these separate models in place, a suggestion is made to design computer models to encompass the available information. Models but also role models are of the utmost importance in bringing and guiding research and researchers. 2015 S. Karger AG, Basel

  2. Estimating climate change effects on net primary production of rangelands in the United States

    Science.gov (United States)

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  3. Policy, Protectionism and the Competent Child.

    Science.gov (United States)

    Wyness, Michael G.

    1996-01-01

    Examines the way recent childhood policy initiatives in Britain have generated contradictory models of child competence and adults' role, and attempts to locate policy within broader understandings of social change. Draws from case material on two dominant child care issues: child sex abuse and school deviance. (BGC)

  4. Disturbance and climate effects on carbon stocks and fluxes across western Oregon USA.

    Science.gov (United States)

    B.E. Law; D. Turner; J. Campbell; O.J. Sun; S. Van Tuyl; W.D. Ritts; W.B. Cohen

    2004-01-01

    We used a spatially nested hierarchy of field and remote-sensing observations and a process model, Biome-BGC, to produce a carbon budget for the forested region of Oregon, and to determine the relative influence of differences in climate and disturbance among the ecoregions on carbon stocks and fluxes. The simulations suggest that annual net uptake (net ecosystem...

  5. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula

    Science.gov (United States)

    Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy

    2015-01-01

    Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...

  6. Model(ing) Law

    DEFF Research Database (Denmark)

    Carlson, Kerstin

    The International Criminal Tribunal for the former Yugoslavia (ICTY) was the first and most celebrated of a wave of international criminal tribunals (ICTs) built in the 1990s designed to advance liberalism through international criminal law. Model(ing) Justice examines the case law of the ICTY...

  7. Models and role models

    NARCIS (Netherlands)

    ten Cate, J.M.

    2015-01-01

    Developing experimental models to understand dental caries has been the theme in our research group. Our first, the pH-cycling model, was developed to investigate the chemical reactions in enamel or dentine, which lead to dental caries. It aimed to leverage our understanding of the fluoride mode of

  8. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models.

    Science.gov (United States)

    Liu, Jing; Hu, Rui; Liu, Jianwei; Zhang, Butian; Wang, Yucheng; Liu, Xin; Law, Wing-Cheung; Liu, Liwei; Ye, Ling; Yong, Ken-Tye

    2015-12-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive

  9. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models

    International Nuclear Information System (INIS)

    Liu, Jing; Hu, Rui; Liu, Jianwei; Zhang, Butian; Wang, Yucheng; Liu, Xin; Law, Wing-Cheung; Liu, Liwei; Ye, Ling; Yong, Ken-Tye

    2015-01-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive

  10. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Hu, Rui [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Jianwei [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Zhang, Butian; Wang, Yucheng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Xin [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Law, Wing-Cheung [Department of Industrial and System Engineering, The Hang Kong Polytechnic University, Hung Hom (Hong Kong); Liu, Liwei [School of Science, Changchun University of Science and Technology, Changchun 130022 (China); Ye, Ling, E-mail: lye_301@163.com [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Yong, Ken-Tye, E-mail: ktyong@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2015-12-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive

  11. The responses of net primary production (NPP) and total carbon storage for the continental United States to changes in atmospheric CO{sub 2}, climate, and vegetation

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, D.A. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    We extrapolated 3 biogeochemistry models (BIOME-BGC, CENTURY, and TEM) across the continental US with the vegetation distributions of 3 biogeography models (BIOME2, DOLY, and MAPSS) for contemporary climate at 355 ppmv CO{sub 2} and each of 3 GCM climate scenarios at 710 ppmv. For contemporary conditions, continental NPP ranges from 3132 to 3854 TgC/yr and total carbon storage ranges from 109 to 125 PgC. The responses of NPP range from no response (BIOME-BGC with DOLY or MAPSS vegetations for UKMO climate) to increases of 53% and 56% (TEM with BIOME2 vegetations for GFDL and OSU climates). The responses of total carbon storage vary from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to increases of 52% and 56% (TEM with BIOME2 vegetations for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are caused by both decreased forest area (from 44% to 38%) and photosynthetic water stress. The OSU and GFDL responses of TEM with BIOME2 vegetations are caused by forest expansion (from 46% to 67% for OSU and to 75% for GFDL) and increased nitrogen cycling.

  12. Modelling SDL, Modelling Languages

    Directory of Open Access Journals (Sweden)

    Michael Piefel

    2007-02-01

    Full Text Available Today's software systems are too complex to implement them and model them using only one language. As a result, modern software engineering uses different languages for different levels of abstraction and different system aspects. Thus to handle an increasing number of related or integrated languages is the most challenging task in the development of tools. We use object oriented metamodelling to describe languages. Object orientation allows us to derive abstract reusable concept definitions (concept classes from existing languages. This language definition technique concentrates on semantic abstractions rather than syntactical peculiarities. We present a set of common concept classes that describe structure, behaviour, and data aspects of high-level modelling languages. Our models contain syntax modelling using the OMG MOF as well as static semantic constraints written in OMG OCL. We derive metamodels for subsets of SDL and UML from these common concepts, and we show for parts of these languages that they can be modelled and related to each other through the same abstract concepts.

  13. Modelling the models

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    By analysing the production of mesons in the forward region of LHC proton-proton collisions, the LHCf collaboration has provided key information needed to calibrate extremely high-energy cosmic ray models.   Average transverse momentum (pT) as a function of rapidity loss ∆y. Black dots represent LHCf data and the red diamonds represent SPS experiment UA7 results. The predictions of hadronic interaction models are shown by open boxes (sibyll 2.1), open circles (qgsjet II-03) and open triangles (epos 1.99). Among these models, epos 1.99 shows the best overall agreement with the LHCf data. LHCf is dedicated to the measurement of neutral particles emitted at extremely small angles in the very forward region of LHC collisions. Two imaging calorimeters – Arm1 and Arm2 – take data 140 m either side of the ATLAS interaction point. “The physics goal of this type of analysis is to provide data for calibrating the hadron interaction models – the well-known &...

  14. Understanding the interaction between wild fire and vegetation distribution within the NCAR CESM framework

    Science.gov (United States)

    Seo, H.; Kim, Y.; Kim, H. J.

    2017-12-01

    Every year wild fire brings about 400Mha of land burned therefore 2Pg of carbon emissions from the surface occur. In this way fire not only affects the carbon circulation but also has an effect on the terrestrial ecosystems. This study aims to understand role of fire on the geographic vegetation distribution and the terrestrial carbon balances within the NCAR CESM framework, specifically with the CLM-BGC and CLM-BGC-DV. Global climate data from Climate Research Unit (CRU)-National Centers for Environmental Prediction (NCEP) data ranging from 1901 to 2010 are used to drive the land models. First, by comparing fire-on and fire-off simulations with the CLM-BGC-DV, the fire impacts in dynamic vegetation are quantified by the fractional land areas of the different plant functional types. In addition, we examine how changes in vegetation distribution affect the total sum of the burned areas and the carbon balances. This study would provide the limits of and suggestions for the fire and dynamic vegetation modules of the CLM-BGC. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).

  15. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O' Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  16. Modelling Overview

    DEFF Research Database (Denmark)

    Larsen, Lars Bjørn; Vesterager, Johan

    This report provides an overview of the existing models of global manufacturing, describes the required modelling views and associated methods and identifies tools, which can provide support for this modelling activity.The model adopted for global manufacturing is that of an extended enterprise s...

  17. Document Models

    Directory of Open Access Journals (Sweden)

    A.A. Malykh

    2017-08-01

    Full Text Available In this paper, the concept of locally simple models is considered. Locally simple models are arbitrarily complex models built from relatively simple components. A lot of practically important domains of discourse can be described as locally simple models, for example, business models of enterprises and companies. Up to now, research in human reasoning automation has been mainly concentrated around the most intellectually intensive activities, such as automated theorem proving. On the other hand, the retailer business model is formed from ”jobs”, and each ”job” can be modelled and automated more or less easily. At the same time, the whole retailer model as an integrated system is extremely complex. In this paper, we offer a variant of the mathematical definition of a locally simple model. This definition is intended for modelling a wide range of domains. Therefore, we also must take into account the perceptual and psychological issues. Logic is elitist, and if we want to attract to our models as many people as possible, we need to hide this elitism behind some metaphor, to which ’ordinary’ people are accustomed. As such a metaphor, we use the concept of a document, so our locally simple models are called document models. Document models are built in the paradigm of semantic programming. This allows us to achieve another important goal - to make the documentary models executable. Executable models are models that can act as practical information systems in the described domain of discourse. Thus, if our model is executable, then programming becomes redundant. The direct use of a model, instead of its programming coding, brings important advantages, for example, a drastic cost reduction for development and maintenance. Moreover, since the model is well and sound, and not dissolved within programming modules, we can directly apply AI tools, in particular, machine learning. This significantly expands the possibilities for automation and

  18. Model theory

    CERN Document Server

    Chang, CC

    2012-01-01

    Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko

  19. Modeling Methods

    Science.gov (United States)

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    Simulation models are widely used in all types of hydrologic studies, and many of these models can be used to estimate recharge. Models can provide important insight into the functioning of hydrologic systems by identifying factors that influence recharge. The predictive capability of models can be used to evaluate how changes in climate, water use, land use, and other factors may affect recharge rates. Most hydrological simulation models, including watershed models and groundwater-flow models, are based on some form of water-budget equation, so the material in this chapter is closely linked to that in Chapter 2. Empirical models that are not based on a water-budget equation have also been used for estimating recharge; these models generally take the form of simple estimation equations that define annual recharge as a function of precipitation and possibly other climatic data or watershed characteristics.Model complexity varies greatly. Some models are simple accounting models; others attempt to accurately represent the physics of water movement through each compartment of the hydrologic system. Some models provide estimates of recharge explicitly; for example, a model based on the Richards equation can simulate water movement from the soil surface through the unsaturated zone to the water table. Recharge estimates can be obtained indirectly from other models. For example, recharge is a parameter in groundwater-flow models that solve for hydraulic head (i.e. groundwater level). Recharge estimates can be obtained through a model calibration process in which recharge and other model parameter values are adjusted so that simulated water levels agree with measured water levels. The simulation that provides the closest agreement is called the best fit, and the recharge value used in that simulation is the model-generated estimate of recharge.

  20. Galactic models

    International Nuclear Information System (INIS)

    Buchler, J.R.; Gottesman, S.T.; Hunter, J.H. Jr.

    1990-01-01

    Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings

  1. Model-model Perencanaan Strategik

    OpenAIRE

    Amirin, Tatang M

    2005-01-01

    The process of strategic planning, used to be called as long-term planning, consists of several components, including strategic analysis, setting strategic direction (covering of mission, vision, and values), and action planning. Many writers develop models representing the steps of the strategic planning process, i.e. basic planning model, problem-based planning model, scenario model, and organic or self-organizing model.

  2. Event Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2001-01-01

    The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics.We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...

  3. Modelling survival

    DEFF Research Database (Denmark)

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight

    2016-01-01

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test...

  4. Molecular Science Computing: 2010 Greenbook

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  5. Constitutive Models

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Piccolo, Chiara; Heitzig, Martina

    2011-01-01

    covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses...... the degrees of freedom, dependent and independent variables and solution strategy. Vapour-liquid and solid-liquid equilibrium is covered, and applications to droplet evaporation and kinetic models are given....

  6. Interface models

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Staunstrup, Jørgen

    1994-01-01

    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  7. Hydrological models are mediating models

    Science.gov (United States)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting

  8. ICRF modelling

    International Nuclear Information System (INIS)

    Phillips, C.K.

    1985-12-01

    This lecture provides a survey of the methods used to model fast magnetosonic wave coupling, propagation, and absorption in tokamaks. The validity and limitations of three distinct types of modelling codes, which will be contrasted, include discrete models which utilize ray tracing techniques, approximate continuous field models based on a parabolic approximation of the wave equation, and full field models derived using finite difference techniques. Inclusion of mode conversion effects in these models and modification of the minority distribution function will also be discussed. The lecture will conclude with a presentation of time-dependent global transport simulations of ICRF-heated tokamak discharges obtained in conjunction with the ICRF modelling codes. 52 refs., 15 figs

  9. Modelling in Business Model design

    NARCIS (Netherlands)

    Simonse, W.L.

    2013-01-01

    It appears that business model design might not always produce a design or model as the expected result. However when designers are involved, a visual model or artefact is produced. To assist strategic managers in thinking about how they can act, the designers challenge is to combine strategy and

  10. Eclipse models

    International Nuclear Information System (INIS)

    Michel, F.C.

    1989-01-01

    Three existing eclipse models for the PSR 1957 + 20 pulsar are discussed in terms of their requirements and the information they yield about the pulsar wind: the interacting wind from a companion model, the magnetosphere model, and the occulting disk model. It is shown out that the wind model requires an MHD wind from the pulsar, with enough particles that the Poynting flux of the wind can be thermalized; in this model, a large flux of energetic radiation from the pulsar is required to accompany the wind and drive the wind off the companion. The magnetosphere model requires an EM wind, which is Poynting flux dominated; the advantage of this model over the wind model is that the plasma density inside the magnetosphere can be orders of magnitude larger than in a magnetospheric tail blown back by wind interaction. The occulting disk model also requires an EM wind so that the interaction would be pushed down onto the companion surface, minimizing direct interaction of the wind with the orbiting macroscopic particles

  11. Ventilation Model

    International Nuclear Information System (INIS)

    Yang, H.

    1999-01-01

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future

  12. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  13. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  14. Model : making

    OpenAIRE

    Bottle, Neil

    2013-01-01

    The Model : making exhibition was curated by Brian Kennedy in collaboration with Allies & Morrison in September 2013. For the London Design Festival, the Model : making exhibition looked at the increased use of new technologies by both craft-makers and architectural model makers. In both practices traditional ways of making by hand are increasingly being combined with the latest technologies of digital imaging, laser cutting, CNC machining and 3D printing. This exhibition focussed on ...

  15. Model building

    International Nuclear Information System (INIS)

    Frampton, Paul H.

    1998-01-01

    In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA

  16. Model building

    International Nuclear Information System (INIS)

    Frampton, P.H.

    1998-01-01

    In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA. copyright 1998 American Institute of Physics

  17. Modeling Documents with Event Model

    Directory of Open Access Journals (Sweden)

    Longhui Wang

    2015-08-01

    Full Text Available Currently deep learning has made great breakthroughs in visual and speech processing, mainly because it draws lessons from the hierarchical mode that brain deals with images and speech. In the field of NLP, a topic model is one of the important ways for modeling documents. Topic models are built on a generative model that clearly does not match the way humans write. In this paper, we propose Event Model, which is unsupervised and based on the language processing mechanism of neurolinguistics, to model documents. In Event Model, documents are descriptions of concrete or abstract events seen, heard, or sensed by people and words are objects in the events. Event Model has two stages: word learning and dimensionality reduction. Word learning is to learn semantics of words based on deep learning. Dimensionality reduction is the process that representing a document as a low dimensional vector by a linear mode that is completely different from topic models. Event Model achieves state-of-the-art results on document retrieval tasks.

  18. Animal models

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Krentz, Andrew

    2014-01-01

    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...

  19. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  20. Didactical modelling

    DEFF Research Database (Denmark)

    Højgaard, Tomas; Hansen, Rune

    The purpose of this paper is to introduce Didactical Modelling as a research methodology in mathematics education. We compare the methodology with other approaches and argue that Didactical Modelling has its own specificity. We discuss the methodological “why” and explain why we find it useful...

  1. Design modelling

    NARCIS (Netherlands)

    Kempen, van A.; Kok, H.; Wagter, H.

    1992-01-01

    In Computer Aided Drafting three groups of three-dimensional geometric modelling can be recognized: wire frame, surface and solid modelling. One of the methods to describe a solid is by using a boundary based representation. The topology of the surface of a solid is the adjacency information between

  2. Education models

    NARCIS (Netherlands)

    Poortman, Sybilla; Sloep, Peter

    2006-01-01

    Educational models describes a case study on a complex learning object. Possibilities are investigated for using this learning object, which is based on a particular educational model, outside of its original context. Furthermore, this study provides advice that might lead to an increase in

  3. VENTILATION MODEL

    International Nuclear Information System (INIS)

    V. Chipman

    2002-01-01

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses

  4. Modelling Constructs

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2009-01-01

    , these notations have been extended in order to increase expressiveness and to be more competitive. This resulted in an increasing number of notations and formalisms for modelling business processes and in an increase of the different modelling constructs provided by modelling notations, which makes it difficult......There are many different notations and formalisms for modelling business processes and workflows. These notations and formalisms have been introduced with different purposes and objectives. Later, influenced by other notations, comparisons with other tools, or by standardization efforts...... to compare modelling notations and to make transformations between them. One of the reasons is that, in each notation, the new concepts are introduced in a different way by extending the already existing constructs. In this chapter, we go the opposite direction: We show that it is possible to add most...

  5. Institutional Plan FY 1999-2003

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.

    1999-02-08

    Computational science is becoming an increasingly important component of Pacific Northwest's support to DOE's major missions. The advanced parallel computing systems in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), coupled with new modeling and simulation software, data management tools, and user interfaces, are providing solutions to previously intractable problems. Research focuses on developing software and other tools to address computational challenges in molecular science, environmental management, global climate change, advanced materials and manufacturing processes, molecular biology, and information management. The Graphics and Visualization Laboratory is part of EMSL'S Molecular Science Computing Facility (MSCF). The MSCF contains a 512-processor IBM RISC System/6000 scalable power parallel computer system that provides the advanced computing capability needed to address ''Grand Challenge'' environmental research problems. The MSCF provides an integrated computing environment with links to facilities in the DOE complex, universities, and industry. The image inserts are graphical representations of simulations performed with software developed at the Laboratory.

  6. STEREOMETRIC MODELLING

    Directory of Open Access Journals (Sweden)

    P. Grimaldi

    2012-07-01

    Full Text Available These mandatory guidelines are provided for preparation of papers accepted for publication in the series of Volumes of The The stereometric modelling means modelling achieved with : – the use of a pair of virtual cameras, with parallel axes and positioned at a mutual distance average of 1/10 of the distance camera-object (in practice the realization and use of a stereometric camera in the modeling program; – the shot visualization in two distinct windows – the stereoscopic viewing of the shot while modelling. Since the definition of "3D vision" is inaccurately referred to as the simple perspective of an object, it is required to add the word stereo so that "3D stereo vision " shall stand for "three-dimensional view" and ,therefore, measure the width, height and depth of the surveyed image. Thanks to the development of a stereo metric model , either real or virtual, through the "materialization", either real or virtual, of the optical-stereo metric model made visible with a stereoscope. It is feasible a continuous on line updating of the cultural heritage with the help of photogrammetry and stereometric modelling. The catalogue of the Architectonic Photogrammetry Laboratory of Politecnico di Bari is available on line at: http://rappresentazione.stereofot.it:591/StereoFot/FMPro?-db=StereoFot.fp5&-lay=Scheda&-format=cerca.htm&-view

  7. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Graphical Rasch models

    DEFF Research Database (Denmark)

    Kreiner, Svend; Christensen, Karl Bang

    Rasch models; Partial Credit models; Rating Scale models; Item bias; Differential item functioning; Local independence; Graphical models......Rasch models; Partial Credit models; Rating Scale models; Item bias; Differential item functioning; Local independence; Graphical models...

  9. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.

    1981-01-01

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  10. Model theory

    CERN Document Server

    Hodges, Wilfrid

    1993-01-01

    An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.

  11. Markov model

    Indian Academy of Sciences (India)

    2School of Water Resources, Indian Institute of Technology,. Kharagpur ... the most accepted method for modelling LULCC using current .... We used UTM coordinate system with zone 45 .... need to develop criteria for making decision about.

  12. Paleoclimate Modeling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Computer simulations of past climate. Variables provided as model output are described by parameter keyword. In some cases the parameter keywords are a subset of all...

  13. Energy Models

    Science.gov (United States)

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  14. Linear Models

    CERN Document Server

    Searle, Shayle R

    2012-01-01

    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  15. Ventilation models

    Science.gov (United States)

    Skaaret, Eimund

    Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.

  16. Model uncertainty: Probabilities for models?

    International Nuclear Information System (INIS)

    Winkler, R.L.

    1994-01-01

    Like any other type of uncertainty, model uncertainty should be treated in terms of probabilities. The question is how to do this. The most commonly-used approach has a drawback related to the interpretation of the probabilities assigned to the models. If we step back and look at the big picture, asking what the appropriate focus of the model uncertainty question should be in the context of risk and decision analysis, we see that a different probabilistic approach makes more sense, although it raise some implementation questions. Current work that is underway to address these questions looks very promising

  17. Pre-Launch Tasks Proposed in our Contract of December 1991

    Science.gov (United States)

    1998-01-01

    We propose, during the pre-EOS phase to: (1) develop, with other MODIS Team Members, a means of discriminating different major biome types with NDVI and other AVHRR-based data; (2) develop a simple ecosystem process model for each of these biomes, BIOME-BGC; (3) relate the seasonal trend of weekly composite NDVI to vegetation phenology and temperature limits to develop a satellite defined growing season for vegetation; and (4) define physiologically based energy to mass conversion factors for carbon and water for each biome. Our final core at-launch product will be simplified, completely satellite driven biome specific models for net primary production. We will build these biome specific satellite driven algorithms using a family of simple ecosystem process models as calibration models, collectively called BIOME-BGC, and establish coordination with an existing network of ecological study sites in order to test and validate these products. Field datasets will then be available for both BIOME-BGC development and testing, use for algorithm developments of other MODIS Team Members, and ultimately be our first test point for MODIS land vegetation products upon launch. We will use field sites from the National Science Foundation Long-Term Ecological Research network, and develop Glacier National Park as a major site for intensive validation.

  18. Thermocouple modeling

    International Nuclear Information System (INIS)

    Fryer, M.O.

    1984-01-01

    The temperature measurements provided by thermocouples (TCs) are important for the operation of pressurized water reactors. During severe inadequate core cooling incidents, extreme temperatures may cause type K thermocouples (TCs) used for core exit temperature monitoring to perform poorly. A model of TC electrical behavior has been developed to determine how TCs react under extreme temperatures. The model predicts the voltage output of the TC and its impedance. A series of experiments were conducted on a length of type K thermocouple to validate the model. Impedance was measured at several temperatures between 22 0 C and 1100 0 C and at frequencies between dc and 10 MHz. The model was able to accurately predict impedance over this wide range of conditions. The average percentage difference between experimental data and the model was less than 6.5%. Experimental accuracy was +-2.5%. There is a sriking difference between impedance versus frequency plots at 300 0 C and at higher temperatures. This may be useful in validating TC data during accident conditions

  19. Photoionization Modeling

    Science.gov (United States)

    Kallman, T.

    2010-01-01

    Warm absorber spectra are characterized by the many lines from partially ionized intermediate-Z elements, and iron, detected with the grating instruments on Chandra and XMM-Newton. If these ions are formed in a gas which is in photoionization equilibrium, they correspond to a broad range of ionization parameters, although there is evidence for certain preferred values. A test for any dynamical model for these outflows is to reproduce these properties, at some level of detail. In this paper we present a statistical analysis of the ionization distribution which can be applied both the observed spectra and to theoretical models. As an example, we apply it to our dynamical models for warm absorber outflows, based on evaporation from the molecular torus.

  20. Reflectance Modeling

    Science.gov (United States)

    Smith, J. A.; Cooper, K.; Randolph, M.

    1984-01-01

    A classical description of the one dimensional radiative transfer treatment of vegetation canopies was completed and the results were tested against measured prairie (blue grama) and agricultural canopies (soybean). Phase functions are calculated in terms of directly measurable biophysical characteristics of the canopy medium. While the phase functions tend to exhibit backscattering anisotropy, their exact behavior is somewhat more complex and wavelength dependent. A Monte Carlo model was developed that treats soil surfaces with large periodic variations in three dimensions. A photon-ray tracing technology is used. Currently, the rough soil surface is described by analytic functions and appropriate geometric calculations performed. A bidirectional reflectance distribution function is calculated and, hence, available for other atmospheric or canopy reflectance models as a lower boundary condition. This technique is used together with an adding model to calculate several cases where Lambertian leaves possessing anisotropic leaf angle distributions yield non-Lambertian reflectance; similar behavior is exhibited for simulated soil surfaces.

  1. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  2. Modelling language

    CERN Document Server

    Cardey, Sylviane

    2013-01-01

    In response to the need for reliable results from natural language processing, this book presents an original way of decomposing a language(s) in a microscopic manner by means of intra/inter‑language norms and divergences, going progressively from languages as systems to the linguistic, mathematical and computational models, which being based on a constructive approach are inherently traceable. Languages are described with their elements aggregating or repelling each other to form viable interrelated micro‑systems. The abstract model, which contrary to the current state of the art works in int

  3. Molecular modeling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-01-01

    Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.

  4. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  5. Prostaglandins and prostaglandin receptor antagonism in migraine

    DEFF Research Database (Denmark)

    Antonova, Maria

    2013-01-01

    Human models of headache may contribute to understanding of prostaglandins' role in migraine pathogenesis. The current thesis investigated the migraine triggering effect of prostaglandin E2 (PGE2) in migraine patients without aura, the efficacy of a novel EP4 receptor antagonist, BGC20....... The infusion of PGE2 caused the immediate migraine-like attacks and vasodilatation of the middle cerebral artery in migraine patients without aura. The highly specific and potent EP4 receptor antagonist, BGC20-1531, was not able to attenuate PGE2-induced headache and vasodilatation of both intra- and extra......-cerebral arteries. The intravenous infusion of PGF2α did not induce headache or statistically significant vasoconstriction of cerebral arteries in healthy volunteers. Novel data on PGE2-provoked immediate migraine-like attacks suggest that PGE2 may be one of the important final products in the pathogenesis...

  6. Painting models

    Science.gov (United States)

    Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.

    2015-12-01

    The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .

  7. Entrepreneurship Models.

    Science.gov (United States)

    Finger Lakes Regional Education Center for Economic Development, Mount Morris, NY.

    This guide describes seven model programs that were developed by the Finger Lakes Regional Center for Economic Development (New York) to meet the training needs of female and minority entrepreneurs to help their businesses survive and grow and to assist disabled and dislocated workers and youth in beginning small businesses. The first three models…

  8. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil...

  9. Eclipse models

    International Nuclear Information System (INIS)

    Michel, F.C.

    1989-01-01

    This paper addresses the question of, if one overlooks their idiosyncratic difficulties, what could be learned from the various models about the pulsar wind? The wind model requires an MHD wind from the pulsar, namely, one with enough particles that the Poynting flux of the wind can be thermalized. Otherwise, there is no shock and the pulsar wind simply reflects like a flashlight beam. Additionally, a large flux of energetic radiation from the pulsar is required to accompany the wind and drive the wind off the companion. The magnetosphere model probably requires an EM wind, which is Poynting flux dominated. Reflection in this case would arguably minimize the intimate interaction between the two flows that leads to tail formation and thereby permit a weakly magnetized tail. The occulting disk model also would point to an EM wind so that the interaction would be pushed down onto the companion surface (to form the neutral fountain) and so as to also minimize direct interaction of the wind with the orbiting macroscopic particles

  10. (SSE) model

    African Journals Online (AJOL)

    Simple analytic polynomials have been proposed for estimating solar radiation in the traditional Northern, Central and Southern regions of Malawi. There is a strong agreement between the polynomials and the SSE model with R2 values of 0.988, 0.989 and 0.989 and root mean square errors of 0.061, 0.057 and 0.062 ...

  11. Successful modeling?

    Science.gov (United States)

    Lomnitz, Cinna

    Tichelaar and Ruff [1989] propose to “estimate model variance in complicated geophysical problems,” including the determination of focal depth in earthquakes, by means of unconventional statistical methods such as bootstrapping. They are successful insofar as they are able to duplicate the results from more conventional procedures.

  12. Defect modelling

    International Nuclear Information System (INIS)

    Norgett, M.J.

    1980-01-01

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  13. Cadastral Modeling

    DEFF Research Database (Denmark)

    Stubkjær, Erik

    2005-01-01

    to the modeling of an industrial sector, as it aims at rendering the basic concepts that relate to the domain of real estate and the pertinent human activities. The palpable objects are pieces of land and buildings, documents, data stores and archives, as well as persons in their diverse roles as owners, holders...

  14. The Model

    DEFF Research Database (Denmark)

    About the reconstruction of Palle Nielsen's (f. 1942) work The Model from 1968: a gigantic playground for children in the museum, where they can freely romp about, climb in ropes, crawl on wooden structures, work with tools, jump in foam rubber, paint with finger paints and dress up in costumes....

  15. Biotran model

    International Nuclear Information System (INIS)

    Wenzel, W.J.; Gallegos, A.F.; Rodgers, J.C.

    1985-01-01

    The BIOTRAN model was developed at Los Alamos to help predict short- and long-term consequences to man from releases of radionuclides into the environment. It is a dynamic model that simulates on a daily and yearly basis the flux of biomass, water, and radionuclides through terrestrial and aquatic ecosystems. Biomass, water, and radionuclides are driven within the ecosystems by climate variables stochastically generated by BIOTRAN each simulation day. The climate variables influence soil hydraulics, plant growth, evapotranspiration, and particle suspension and deposition. BIOTRAN has 22 different plant growth strategies for simulating various grasses, shrubs, trees, and crops. Ruminants and humans are also dynamically simulated by using the simulated crops and forage as intake for user-specified diets. BIOTRAN has been used at Los Alamos for long-term prediction of health effects to populations following potential accidental releases of uranium and plutonium. Newly developed subroutines are described: a human dynamic physiological and metabolic model; a soil hydrology and irrigation model; limnetic nutrient and radionuclide cycling in fresh-water lakes. 7 references

  16. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens

    2011-01-01

    term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...

  17. Hydroballistics Modeling

    Science.gov (United States)

    1975-01-01

    thai h’liathe0in antd is finaull’ %IIIrd alt %tramlit And drohlttle. Mike aplpars Ito inua•,e upward in outler a rei and dowoi. ward it %iunr areli, Oil...fiducial marks should be constant and the edges phobic nor hydrophilic is better for routine sharpl ) defined. model testing. Before each launching in

  18. Molecular Modeling

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking. Rama Rao Nadendla. General Article Volume 9 Issue 5 May 2004 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Criticality Model

    International Nuclear Information System (INIS)

    Alsaed, A.

    2004-01-01

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  20. Building Models and Building Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Skauge, Jørn

    2008-01-01

    I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygnings­model­lerings­programmer beskrevet. Vigtige aspekter om comp...

  1. Persistent Modelling

    DEFF Research Database (Denmark)

    2012-01-01

    The relationship between representation and the represented is examined here through the notion of persistent modelling. This notion is not novel to the activity of architectural design if it is considered as describing a continued active and iterative engagement with design concerns – an evident....... It also provides critical insight into the use of contemporary modelling tools and methods, together with an examination of the implications their use has within the territories of architectural design, realisation and experience....... on this subject, this book makes essential reading for anyone considering new ways of thinking about architecture. In drawing upon both historical and contemporary perspectives this book provides evidence of the ways in which relations between representation and the represented continue to be reconsidered...

  2. Persistent Modelling

    DEFF Research Database (Denmark)

    The relationship between representation and the represented is examined here through the notion of persistent modelling. This notion is not novel to the activity of architectural design if it is considered as describing a continued active and iterative engagement with design concerns – an evident....... It also provides critical insight into the use of contemporary modelling tools and methods, together with an examination of the implications their use has within the territories of architectural design, realisation and experience....... on this subject, this book makes essential reading for anyone considering new ways of thinking about architecture. In drawing upon both historical and contemporary perspectives this book provides evidence of the ways in which relations between representation and the represented continue to be reconsidered...

  3. Acyclic models

    CERN Document Server

    Barr, Michael

    2002-01-01

    Acyclic models is a method heavily used to analyze and compare various homology and cohomology theories appearing in topology and algebra. This book is the first attempt to put together in a concise form this important technique and to include all the necessary background. It presents a brief introduction to category theory and homological algebra. The author then gives the background of the theory of differential modules and chain complexes over an abelian category to state the main acyclic models theorem, generalizing and systemizing the earlier material. This is then applied to various cohomology theories in algebra and topology. The volume could be used as a text for a course that combines homological algebra and algebraic topology. Required background includes a standard course in abstract algebra and some knowledge of topology. The volume contains many exercises. It is also suitable as a reference work for researchers.

  4. Molecular Modelling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-12-01

    Full Text Available

    The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important
    tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and
    the exponential growth of the knowledge of protein structures have made it possible for organic compounds to tailored to
    decrease harmful side effects and increase the potency. This article provides a detailed description of the techniques
    employed in molecular modeling. Molecular modelling is a rapidly developing discipline, and has been supported from
    the dramatic improvements in computer hardware and software in recent years.

  5. RNICE Model

    DEFF Research Database (Denmark)

    Pedersen, Mogens Jin; Stritch, Justin Michael

    2018-01-01

    Replication studies relate to the scientific principle of replicability and serve the significant purpose of providing supporting (or contradicting) evidence regarding the existence of a phenomenon. However, replication has never been an integral part of public administration and management...... research. Recently, scholars have issued calls for more replication, but academic reflections on when replication adds substantive value to public administration and management research are needed. This concise article presents a conceptual model, RNICE, for assessing when and how a replication study...... contributes knowledge about a social phenomenon and advances knowledge in the public administration and management literatures. The RNICE model provides a vehicle for researchers who seek to evaluate or demonstrate the value of a replication study systematically. We illustrate the practical application...

  6. Maturity Models

    DEFF Research Database (Denmark)

    Lasrado, Lester Allan; Vatrapu, Ravi

    2016-01-01

    Recent advancements in set theory and readily available software have enabled social science researchers to bridge the variable-centered quantitative and case-based qualitative methodological paradigms in order to analyze multi-dimensional associations beyond the linearity assumptions, aggregate...... effects, unicausal reduction, and case specificity. Based on the developments in set theoretical thinking in social sciences and employing methods like Qualitative Comparative Analysis (QCA), Necessary Condition Analysis (NCA), and set visualization techniques, in this position paper, we propose...... and demonstrate a new approach to maturity models in the domain of Information Systems. This position paper describes the set-theoretical approach to maturity models, presents current results and outlines future research work....

  7. Modelling Defiguration

    DEFF Research Database (Denmark)

    Bork Petersen, Franziska

    2013-01-01

    advantageous manner. Stepping on the catwalk’s sloping, moving surfaces decelerates the models’ walk and makes it cautious, hesitant and shaky: suddenly the models lack exactly the affirmative, staccato, striving quality of motion, and the condescending expression that they perform on most contemporary......For the presentation of his autumn/winter 2012 collection in Paris and subsequently in Copenhagen, Danish designer Henrik Vibskov installed a mobile catwalk. The article investigates the choreographic impact of this scenography on those who move through it. Drawing on Dance Studies, the analytical...... focus centres on how the catwalk scenography evokes a ‘defiguration’ of the walking models and to what effect. Vibskov’s mobile catwalk draws attention to the walk, which is a key element of models’ performance but which usually functions in fashion shows merely to present clothes in the most...

  8. Cheating models

    DEFF Research Database (Denmark)

    Arnoldi, Jakob

    The article discusses the use of algorithmic models for so-called High Frequency Trading (HFT) in finance. HFT is controversial yet widespread in modern financial markets. It is a form of automated trading technology which critics among other things claim can lead to market manipulation. Drawing....... The article analyses these challenges and argues that we witness a new post-social form of human-technology interaction that will lead to a reconfiguration of professional codes for financial trading....

  9. Biomimetic modelling.

    OpenAIRE

    Vincent, Julian F V

    2003-01-01

    Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more compl...

  10. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  11. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  12. Animal models.

    Science.gov (United States)

    Walker, Ellen A

    2010-01-01

    As clinical studies reveal that chemotherapeutic agents may impair several different cognitive domains in humans, the development of preclinical animal models is critical to assess the degree of chemotherapy-induced learning and memory deficits and to understand the underlying neural mechanisms. In this chapter, the effects of various cancer chemotherapeutic agents in rodents on sensory processing, conditioned taste aversion, conditioned emotional response, passive avoidance, spatial learning, cued memory, discrimination learning, delayed-matching-to-sample, novel-object recognition, electrophysiological recordings and autoshaping is reviewed. It appears at first glance that the effects of the cancer chemotherapy agents in these many different models are inconsistent. However, a literature is emerging that reveals subtle or unique changes in sensory processing, acquisition, consolidation and retrieval that are dose- and time-dependent. As more studies examine cancer chemotherapeutic agents alone and in combination during repeated treatment regimens, the animal models will become more predictive tools for the assessment of these impairments and the underlying neural mechanisms. The eventual goal is to collect enough data to enable physicians to make informed choices about therapeutic regimens for their patients and discover new avenues of alternative or complementary therapies that reduce or eliminate chemotherapy-induced cognitive deficits.

  13. Modeling biomembranes.

    Energy Technology Data Exchange (ETDEWEB)

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas

    2005-11-01

    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  14. Model visionary

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, Graham

    2011-03-15

    Ken Dedeluk is the president and CEO of Computer Modeling Group (CMG). Dedeluk started his career with Gulf Oil in 1972, worked in computer assisted design; then joined Imperial Esso and Shell, where he became international operations' VP; and finally joined CMG in 1998. CMG made a decision that turned out to be the company's turning point: they decided to provide intensive support and service to their customer to better use their technology. Thanks to this service, their customers' satisfaction grew as well as their revenues.

  15. Status Report on the Development of Research Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.; Linggi, Bryan E.

    2013-06-30

    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specific scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.

  16. Model integration and a theory of models

    OpenAIRE

    Dolk, Daniel R.; Kottemann, Jeffrey E.

    1993-01-01

    Model integration extends the scope of model management to include the dimension of manipulation as well. This invariably leads to comparisons with database theory. Model integration is viewed from four perspectives: Organizational, definitional, procedural, and implementational. Strategic modeling is discussed as the organizational motivation for model integration. Schema and process integration are examined as the logical and manipulation counterparts of model integr...

  17. Bayesian integration of flux tower data into a process-based simulator for quantifying uncertainty in simulated output

    Science.gov (United States)

    Raj, Rahul; van der Tol, Christiaan; Hamm, Nicholas Alexander Samuel; Stein, Alfred

    2018-01-01

    Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP) data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT), ratio of fine root carbon to leaf carbon (FRC : LC), ratio of carbon to nitrogen in leaf (C : Nleaf), canopy water interception coefficient (Wint), fraction of leaf nitrogen in RuBisCO (FLNR), and effective soil rooting depth (SD) characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash-Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid.

  18. Bayesian integration of flux tower data into a process-based simulator for quantifying uncertainty in simulated output

    Directory of Open Access Journals (Sweden)

    R. Raj

    2018-01-01

    Full Text Available Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT, ratio of fine root carbon to leaf carbon (FRC : LC, ratio of carbon to nitrogen in leaf (C : Nleaf, canopy water interception coefficient (Wint, fraction of leaf nitrogen in RuBisCO (FLNR, and effective soil rooting depth (SD characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash–Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid.

  19. ALEPH model

    CERN Multimedia

    1989-01-01

    A wooden model of the ALEPH experiment and its cavern. ALEPH was one of 4 experiments at CERN's 27km Large Electron Positron collider (LEP) that ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel. The cavern and detector are in separate locations - the cavern is stored at CERN and the detector is temporarily on display in Glasgow physics department. Both are available for loan.

  20. modelling distances

    Directory of Open Access Journals (Sweden)

    Robert F. Love

    2001-01-01

    Full Text Available Distance predicting functions may be used in a variety of applications for estimating travel distances between points. To evaluate the accuracy of a distance predicting function and to determine its parameters, a goodness-of-fit criteria is employed. AD (Absolute Deviations, SD (Squared Deviations and NAD (Normalized Absolute Deviations are the three criteria that are mostly employed in practice. In the literature some assumptions have been made about the properties of each criterion. In this paper, we present statistical analyses performed to compare the three criteria from different perspectives. For this purpose, we employ the ℓkpθ-norm as the distance predicting function, and statistically compare the three criteria by using normalized absolute prediction error distributions in seventeen geographical regions. We find that there exist no significant differences between the criteria. However, since the criterion SD has desirable properties in terms of distance modelling procedures, we suggest its use in practice.

  1. Comparison: Binomial model and Black Scholes model

    Directory of Open Access Journals (Sweden)

    Amir Ahmad Dar

    2018-03-01

    Full Text Available The Binomial Model and the Black Scholes Model are the popular methods that are used to solve the option pricing problems. Binomial Model is a simple statistical method and Black Scholes model requires a solution of a stochastic differential equation. Pricing of European call and a put option is a very difficult method used by actuaries. The main goal of this study is to differentiate the Binominal model and the Black Scholes model by using two statistical model - t-test and Tukey model at one period. Finally, the result showed that there is no significant difference between the means of the European options by using the above two models.

  2. Computational Modeling | Bioenergy | NREL

    Science.gov (United States)

    cell walls and are the source of biofuels and biomaterials. Our modeling investigates their properties . Quantum Mechanical Models NREL studies chemical and electronic properties and processes to reduce barriers Computational Modeling Computational Modeling NREL uses computational modeling to increase the

  3. Essays on model uncertainty in financial models

    NARCIS (Netherlands)

    Li, Jing

    2018-01-01

    This dissertation studies model uncertainty, particularly in financial models. It consists of two empirical chapters and one theoretical chapter. The first empirical chapter (Chapter 2) classifies model uncertainty into parameter uncertainty and misspecification uncertainty. It investigates the

  4. Vector models and generalized SYK models

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Cheng [Department of Physics, Brown University,Providence RI 02912 (United States)

    2017-05-23

    We consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. A chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.

  5. Modeling styles in business process modeling

    NARCIS (Netherlands)

    Pinggera, J.; Soffer, P.; Zugal, S.; Weber, B.; Weidlich, M.; Fahland, D.; Reijers, H.A.; Mendling, J.; Bider, I.; Halpin, T.; Krogstie, J.; Nurcan, S.; Proper, E.; Schmidt, R.; Soffer, P.; Wrycza, S.

    2012-01-01

    Research on quality issues of business process models has recently begun to explore the process of creating process models. As a consequence, the question arises whether different ways of creating process models exist. In this vein, we observed 115 students engaged in the act of modeling, recording

  6. The IMACLIM model; Le modele IMACLIM

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document provides annexes to the IMACLIM model which propose an actualized description of IMACLIM, model allowing the design of an evaluation tool of the greenhouse gases reduction policies. The model is described in a version coupled with the POLES, technical and economical model of the energy industry. Notations, equations, sources, processing and specifications are proposed and detailed. (A.L.B.)

  7. From Product Models to Product State Models

    DEFF Research Database (Denmark)

    Larsen, Michael Holm

    1999-01-01

    A well-known technology designed to handle product data is Product Models. Product Models are in their current form not able to handle all types of product state information. Hence, the concept of a Product State Model (PSM) is proposed. The PSM and in particular how to model a PSM is the Research...

  8. Role and organization of industrial and commercial departments - a region's view

    Energy Technology Data Exchange (ETDEWEB)

    Blankley, W E; Parsons, B D

    1981-01-01

    BGC's West Midlands Region possesses substantial industrial and commercial markets that offer sales opportunities in the tariff and contract areas. Growth in these markets is spurring an increase in BGC's nonresidential gas sales. Specific departments within BGC cater to the commercial and industrial sectors and provide engineering support services, thus bolstering the upward sales trend. Recent market changes have led BGC to combine its industrial and commercial departments to streamline the overall marketing and service activities.

  9. Modelling live forensic acquisition

    CSIR Research Space (South Africa)

    Grobler, MM

    2009-06-01

    Full Text Available This paper discusses the development of a South African model for Live Forensic Acquisition - Liforac. The Liforac model is a comprehensive model that presents a range of aspects related to Live Forensic Acquisition. The model provides forensic...

  10. Models in architectural design

    OpenAIRE

    Pauwels, Pieter

    2017-01-01

    Whereas architects and construction specialists used to rely mainly on sketches and physical models as representations of their own cognitive design models, they rely now more and more on computer models. Parametric models, generative models, as-built models, building information models (BIM), and so forth, they are used daily by any practitioner in architectural design and construction. Although processes of abstraction and the actual architectural model-based reasoning itself of course rema...

  11. Rotating universe models

    International Nuclear Information System (INIS)

    Tozini, A.V.

    1984-01-01

    A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt

  12. Concept Modeling vs. Data modeling in Practice

    DEFF Research Database (Denmark)

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne

    2015-01-01

    This chapter shows the usefulness of terminological concept modeling as a first step in data modeling. First, we introduce terminological concept modeling with terminological ontologies, i.e. concept systems enriched with characteristics modeled as feature specifications. This enables a formal...... account of the inheritance of characteristics and allows us to introduce a number of principles and constraints which render concept modeling more coherent than earlier approaches. Second, we explain how terminological ontologies can be used as the basis for developing conceptual and logical data models....... We also show how to map from the various elements in the terminological ontology to elements in the data models, and explain the differences between the models. Finally the usefulness of terminological ontologies as a prerequisite for IT development and data modeling is illustrated with examples from...

  13. Model-to-model interface for multiscale materials modeling

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, Perry Edward [Iowa State Univ., Ames, IA (United States)

    2017-12-17

    A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface will also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.

  14. Cognitive models embedded in system simulation models

    International Nuclear Information System (INIS)

    Siegel, A.I.; Wolf, J.J.

    1982-01-01

    If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context

  15. Environmental assessment for the resiting, construction, and operation of the Environmental and Molecular Sciences Laboratory at the Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This environmental assessment (EA) presents estimated environmental impacts from the resiting, construction, and operation of the US Department of Energy`s (DOE`s) Environmental and Molecular Sciences Laboratory (EMSL), which is proposed to be constructed and operated on land near the south boundary of the Hanford Site near Richland, Washington. The EMSL, if constructed, would be a modern research facility in which experimental, theoretical, and computational techniques can be focused on environmental restoration problems, such as the chemical and transport behavior of complex mixtures of contaminants in the environment. The EMSL design includes approximately 18,500 square meters (200,000 square feet) of floor space on a 12-hectare (30-acre) site. The proposed new site is located within the city limits of Richland in north Richland, at the south end of DOE`s 300 Area, on land to be deeded to the US by the Battelle Memorial Institute. Approximately 200 persons are expected to be employed in the EMSL and approximately 60 visiting scientists may be working in the EMSL at any given time. State-of-the-art equipment is expected to be installed and used in the EMSL. Small amounts of hazardous substances (chemicals and radionuclides) are expected to be used in experimental work in the EMSL.

  16. Model Manipulation for End-User Modelers

    DEFF Research Database (Denmark)

    Acretoaie, Vlad

    , and transformations using their modeling notation and editor of choice. The VM* languages are implemented via a single execution engine, the VM* Runtime, built on top of the Henshin graph-based transformation engine. This approach combines the benefits of flexibility, maturity, and formality. To simplify model editor......End-user modelers are domain experts who create and use models as part of their work. They are typically not Software Engineers, and have little or no programming and meta-modeling experience. However, using model manipulation languages developed in the context of Model-Driven Engineering often...... requires such experience. These languages are therefore only used by a small subset of the modelers that could, in theory, benefit from them. The goals of this thesis are to substantiate this observation, introduce the concepts and tools required to overcome it, and provide empirical evidence in support...

  17. Air Quality Dispersion Modeling - Alternative Models

    Science.gov (United States)

    Models, not listed in Appendix W, that can be used in regulatory applications with case-by-case justification to the Reviewing Authority as noted in Section 3.2, Use of Alternative Models, in Appendix W.

  18. Topological massive sigma models

    International Nuclear Information System (INIS)

    Lambert, N.D.

    1995-01-01

    In this paper we construct topological sigma models which include a potential and are related to twisted massive supersymmetric sigma models. Contrary to a previous construction these models have no central charge and do not require the manifold to admit a Killing vector. We use the topological massive sigma model constructed here to simplify the calculation of the observables. Lastly it is noted that this model can be viewed as interpolating between topological massless sigma models and topological Landau-Ginzburg models. ((orig.))

  19. Business Model Innovation

    OpenAIRE

    Dodgson, Mark; Gann, David; Phillips, Nelson; Massa, Lorenzo; Tucci, Christopher

    2014-01-01

    The chapter offers a broad review of the literature at the nexus between Business Models and innovation studies, and examines the notion of Business Model Innovation in three different situations: Business Model Design in newly formed organizations, Business Model Reconfiguration in incumbent firms, and Business Model Innovation in the broad context of sustainability. Tools and perspectives to make sense of Business Models and support managers and entrepreneurs in dealing with Business Model ...

  20. [Bone remodeling and modeling/mini-modeling.

    Science.gov (United States)

    Hasegawa, Tomoka; Amizuka, Norio

    Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.

  1. A Model of Trusted Measurement Model

    OpenAIRE

    Ma Zhili; Wang Zhihao; Dai Liang; Zhu Xiaoqin

    2017-01-01

    A model of Trusted Measurement supporting behavior measurement based on trusted connection architecture (TCA) with three entities and three levels is proposed, and a frame to illustrate the model is given. The model synthesizes three trusted measurement dimensions including trusted identity, trusted status and trusted behavior, satisfies the essential requirements of trusted measurement, and unified the TCA with three entities and three levels.

  2. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  3. Modelling freight transport

    NARCIS (Netherlands)

    Tavasszy, L.A.; Jong, G. de

    2014-01-01

    Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling

  4. Semantic Business Process Modeling

    OpenAIRE

    Markovic, Ivan

    2010-01-01

    This book presents a process-oriented business modeling framework based on semantic technologies. The framework consists of modeling languages, methods, and tools that allow for semantic modeling of business motivation, business policies and rules, and business processes. Quality of the proposed modeling framework is evaluated based on the modeling content of SAP Solution Composer and several real-world business scenarios.

  5. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  6. Model-Independent Diffs

    DEFF Research Database (Denmark)

    Könemann, Patrick

    just contain a list of strings, one for each line, whereas the structure of models is defined by their meta models. There are tools available which are able to compute the diff between two models, e.g. RSA or EMF Compare. However, their diff is not model-independent, i.e. it refers to the models...

  7. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  8. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    Science.gov (United States)

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  9. Environmental Satellite Models for a Macroeconomic Model

    International Nuclear Information System (INIS)

    Moeller, F.; Grinderslev, D.; Werner, M.

    2003-01-01

    To support national environmental policy, it is desirable to forecast and analyse environmental indicators consistently with economic variables. However, environmental indicators are physical measures linked to physical activities that are not specified in economic models. One way to deal with this is to develop environmental satellite models linked to economic models. The system of models presented gives a frame of reference where emissions of greenhouse gases, acid gases, and leaching of nutrients to the aquatic environment are analysed in line with - and consistently with - macroeconomic variables. This paper gives an overview of the data and the satellite models. Finally, the results of applying the model system to calculate the impacts on emissions and the economy are reviewed in a few illustrative examples. The models have been developed for Denmark; however, most of the environmental data used are from the CORINAIR system implemented in numerous countries

  10. A long-term simulation of forest carbon fluxes over the Qilian Mountains

    Science.gov (United States)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei; Fan, Wenwu

    2016-10-01

    In this work, we integrated a remote-sensing-based (the MODIS MOD_17 Gross Primary Productivity (GPP) model (MOD_17)) and a process-based (the Biome-BioGeochemical Cycles (Biome-BGC) model) ecological model in order to estimate long-term (from 2000 to 2012) forest carbon fluxes over the Qilian Mountains in northwest China, a cold and arid forest ecosystem. Our goal was to obtain an accurate and quantitative simulation of spatial GPP patterns using the MOD_17 model and a temporal description of forest processes using the Biome-BGC model. The original MOD_17 model was first optimized using a biome-specific parameter, observed meteorological data, and reproduced fPAR at the eddy covariance site. The optimized MOD_17 model performed much better (R2 = 0.91, RMSE = 5.19 gC/m2/8d) than the original model (R2 = 0.47, RMSE = 20.27 gC/m2/8d). The Biome-BGC model was then calibrated using GPP for 30 representative forest plots selected from the optimized MOD_17 model. The calibrated Biome-BGC model was then driven in order to estimate forest GPP, net primary productivity (NPP), and net ecosystem exchange (NEE). GPP and NEE were validated against two-year (2010 and 2011) EC measurements (R2 = 0.79, RMSE = 1.15 gC/m2/d for GPP; and R2 = 0.69, RMSE = 1.087 gC/m2/d for NEE). NPP estimates from 2000 to 2012 were then compared to dendrochronological measurements (R2 = 0.73, RMSE = 24.46 gC/m2/yr). Our results indicated that integration of the two models can be used for estimating carbon fluxes with good accuracy and a high temporal and spatial resolution. Overall, NPP displayed a downward trend, with an average rate of 0.39 gC/m2/yr, from 2000 and 2012 over the Qilian Mountains. Simulated average annual NPP yielded higher values for the southeast as compared to the northwest. The most positive correlative climatic factor to average annual NPP was downward shortwave radiation. The vapor pressure deficit, and mean temperature and precipitation yielded negative correlations to average

  11. Geologic Framework Model Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  12. Geologic Framework Model Analysis Model Report

    International Nuclear Information System (INIS)

    Clayton, R.

    2000-01-01

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and

  13. Lapse rate modeling

    DEFF Research Database (Denmark)

    De Giovanni, Domenico

    2010-01-01

    prepayment models for mortgage backed securities, this paper builds a Rational Expectation (RE) model describing the policyholders' behavior in lapsing the contract. A market model with stochastic interest rates is considered, and the pricing is carried out through numerical approximation...

  14. Lapse Rate Modeling

    DEFF Research Database (Denmark)

    De Giovanni, Domenico

    prepayment models for mortgage backed securities, this paper builds a Rational Expectation (RE) model describing the policyholders' behavior in lapsing the contract. A market model with stochastic interest rates is considered, and the pricing is carried out through numerical approximation...

  15. Multivariate GARCH models

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    This article contains a review of multivariate GARCH models. Most common GARCH models are presented and their properties considered. This also includes nonparametric and semiparametric models. Existing specification and misspecification tests are discussed. Finally, there is an empirical example...

  16. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  17. Models in Action

    DEFF Research Database (Denmark)

    Juhl, Joakim

    This thesis is about mathematical modelling and technology development. While mathematical modelling has become widely deployed within a broad range of scientific practices, it has also gained a central position within technology development. The intersection of mathematical modelling and technol...

  18. Business Model Canvas

    NARCIS (Netherlands)

    D'Souza, Austin

    2013-01-01

    Presentatie gegeven op 13 mei 2013 op de bijeenkomst "Business Model Canvas Challenge Assen".
    Het Business Model Canvas is ontworpen door Alex Osterwalder. Het model werkt zeer overzichtelijk en bestaat uit negen bouwstenen.

  19. Energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...

  20. Wildfire Risk Main Model

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The model combines three modeled fire behavior parameters (rate of spread, flame length, crown fire potential) and one modeled ecological health measure (fire regime...

  1. Mathematical Modeling Using MATLAB

    National Research Council Canada - National Science Library

    Phillips, Donovan

    1998-01-01

    .... Mathematical Modeling Using MA MATLAB acts as a companion resource to A First Course in Mathematical Modeling with the goal of guiding the reader to a fuller understanding of the modeling process...

  2. Analytic Modeling of Insurgencies

    Science.gov (United States)

    2014-08-01

    Counterinsurgency, Situational Awareness, Civilians, Lanchester 1. Introduction Combat modeling is one of the oldest areas of operations research, dating...Army. The ground-breaking work of Lanchester in 1916 [1] marks the beginning of formal models of conflicts, where mathematical formulas and, later...Warfare model [3], which is a Lanchester - based mathematical model (see more details about this model later on), and McCormick’s Magic Diamond model [4

  3. Computational neurogenetic modeling

    CERN Document Server

    Benuskova, Lubica

    2010-01-01

    Computational Neurogenetic Modeling is a student text, introducing the scope and problems of a new scientific discipline - Computational Neurogenetic Modeling (CNGM). CNGM is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This new area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biol

  4. Environmental Modeling Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Modeling Center provides the computational tools to perform geostatistical analysis, to model ground water and atmospheric releases for comparison...

  5. Multilevel modeling using R

    CERN Document Server

    Finch, W Holmes; Kelley, Ken

    2014-01-01

    A powerful tool for analyzing nested designs in a variety of fields, multilevel/hierarchical modeling allows researchers to account for data collected at multiple levels. Multilevel Modeling Using R provides you with a helpful guide to conducting multilevel data modeling using the R software environment.After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models fo

  6. Cosmological models without singularities

    International Nuclear Information System (INIS)

    Petry, W.

    1981-01-01

    A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)

  7. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  8. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    International Nuclear Information System (INIS)

    Clinton Lum

    2002-01-01

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS MandO 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS MandO 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4

  9. Integrated Site Model Process Model Report

    International Nuclear Information System (INIS)

    Booth, T.

    2000-01-01

    The Integrated Site Model (ISM) provides a framework for discussing the geologic features and properties of Yucca Mountain, which is being evaluated as a potential site for a geologic repository for the disposal of nuclear waste. The ISM is important to the evaluation of the site because it provides 3-D portrayals of site geologic, rock property, and mineralogic characteristics and their spatial variabilities. The ISM is not a single discrete model; rather, it is a set of static representations that provide three-dimensional (3-D), computer representations of site geology, selected hydrologic and rock properties, and mineralogic-characteristics data. These representations are manifested in three separate model components of the ISM: the Geologic Framework Model (GFM), the Rock Properties Model (RPM), and the Mineralogic Model (MM). The GFM provides a representation of the 3-D stratigraphy and geologic structure. Based on the framework provided by the GFM, the RPM and MM provide spatial simulations of the rock and hydrologic properties, and mineralogy, respectively. Functional summaries of the component models and their respective output are provided in Section 1.4. Each of the component models of the ISM considers different specific aspects of the site geologic setting. Each model was developed using unique methodologies and inputs, and the determination of the modeled units for each of the components is dependent on the requirements of that component. Therefore, while the ISM represents the integration of the rock properties and mineralogy into a geologic framework, the discussion of ISM construction and results is most appropriately presented in terms of the three separate components. This Process Model Report (PMR) summarizes the individual component models of the ISM (the GFM, RPM, and MM) and describes how the three components are constructed and combined to form the ISM

  10. ECONOMIC MODELING STOCKS CONTROL SYSTEM: SIMULATION MODEL

    OpenAIRE

    Климак, М.С.; Войтко, С.В.

    2016-01-01

    Considered theoretical and applied aspects of the development of simulation models to predictthe optimal development and production systems that create tangible products andservices. It isproved that theprocessof inventory control needs of economicandmathematical modeling in viewof thecomplexity of theoretical studies. A simulation model of stocks control that allows make managementdecisions with production logistics

  11. Modelling bankruptcy prediction models in Slovak companies

    Directory of Open Access Journals (Sweden)

    Kovacova Maria

    2017-01-01

    Full Text Available An intensive research from academics and practitioners has been provided regarding models for bankruptcy prediction and credit risk management. In spite of numerous researches focusing on forecasting bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression and early artificial intelligence models (e.g. artificial neural networks, there is a trend for transition to machine learning models (support vector machines, bagging, boosting, and random forest to predict bankruptcy one year prior to the event. Comparing the performance of this with unconventional approach with results obtained by discriminant analysis, logistic regression, and neural networks application, it has been found that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. On the other side the prediction accuracy of old and well known bankruptcy prediction models is quiet high. Therefore, we aim to analyse these in some way old models on the dataset of Slovak companies to validate their prediction ability in specific conditions. Furthermore, these models will be modelled according to new trends by calculating the influence of elimination of selected variables on the overall prediction ability of these models.

  12. Better models are more effectively connected models

    Science.gov (United States)

    Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John

    2016-04-01

    The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity

  13. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders; Rabe-Hesketh, Sophia

    2004-01-01

    This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.

  14. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Wu

    2003-07-16

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  15. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-10-27

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  16. Biosphere Model Report

    International Nuclear Information System (INIS)

    D. W. Wu

    2003-01-01

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  17. AIDS Epidemiological models

    Science.gov (United States)

    Rahmani, Fouad Lazhar

    2010-11-01

    The aim of this paper is to present mathematical modelling of the spread of infection in the context of the transmission of the human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS). These models are based in part on the models suggested in the field of th AIDS mathematical modelling as reported by ISHAM [6].

  18. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...

  19. HRM: HII Region Models

    Science.gov (United States)

    Wenger, Trey V.; Kepley, Amanda K.; Balser, Dana S.

    2017-07-01

    HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.

  20. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  1. The Moody Mask Model

    DEFF Research Database (Denmark)

    Larsen, Bjarke Alexander; Andkjær, Kasper Ingdahl; Schoenau-Fog, Henrik

    2015-01-01

    This paper proposes a new relation model, called "The Moody Mask model", for Interactive Digital Storytelling (IDS), based on Franceso Osborne's "Mask Model" from 2011. This, mixed with some elements from Chris Crawford's Personality Models, is a system designed for dynamic interaction between ch...

  2. Efficient polarimetric BRDF model.

    Science.gov (United States)

    Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D

    2015-11-30

    The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing.

  3. Validation of HEDR models

    International Nuclear Information System (INIS)

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid

  4. Composite hadron models

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    Composite models of hadrons are considered. The main attention is paid to the Sakata, S model. In the framework of the model it is presupposed that proton, neutron and Λ particle are the fundamental particles. Theoretical studies of unknown fundamental constituents of a substance have led to the creation of the quark model. In the framework of the quark model using the theory of SU(6)-symmetry the classification of mesons and baryons is considered. Using the quark model relations between hadron masses, their spins and electromagnetic properties are explained. The problem of three-colour model with many flavours is briefly presented

  5. Modeller af komplicerede systemer

    DEFF Research Database (Denmark)

    Mortensen, J.

    emphasizes their use in relation to technical systems. All the presented models, with the exception of the types presented in chapter 2, are non-theoretical non-formal conceptual network models. Two new model types are presented: 1) The System-Environment model, which describes the environments interaction...... with conceptual modeling in relation to process control. It´s purpose is to present classify and exemplify the use of a set of qualitative model types. Such model types are useful in the early phase of modeling, where no structured methods are at hand. Although the models are general in character, this thesis......This thesis, "Modeller af komplicerede systemer", represents part of the requirements for the Danish Ph.D.degree. Assisting professor John Nørgaard-Nielsen, M.Sc.E.E.Ph.D. has been principal supervisor and professor Morten Lind, M.Sc.E.E.Ph.D. has been assisting supervisor. The thesis is concerned...

  6. Equivalent Dynamic Models.

    Science.gov (United States)

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  7. The Hospitable Meal Model

    DEFF Research Database (Denmark)

    Justesen, Lise; Overgaard, Svend Skafte

    2017-01-01

    This article presents an analytical model that aims to conceptualize how meal experiences are framed when taking into account a dynamic understanding of hospitality: the meal model is named The Hospitable Meal Model. The idea behind The Hospitable Meal Model is to present a conceptual model...... that can serve as a frame for developing hospitable meal competencies among professionals working within the area of institutional foodservices as well as a conceptual model for analysing meal experiences. The Hospitable Meal Model transcends and transforms existing meal models by presenting a more open......-ended approach towards meal experiences. The underlying purpose of The Hospitable Meal Model is to provide the basis for creating value for the individuals involved in institutional meal services. The Hospitable Meal Model was developed on the basis of an empirical study on hospital meal experiences explored...

  8. Applied stochastic modelling

    CERN Document Server

    Morgan, Byron JT; Tanner, Martin Abba; Carlin, Bradley P

    2008-01-01

    Introduction and Examples Introduction Examples of data sets Basic Model Fitting Introduction Maximum-likelihood estimation for a geometric model Maximum-likelihood for the beta-geometric model Modelling polyspermy Which model? What is a model for? Mechanistic models Function Optimisation Introduction MATLAB: graphs and finite differences Deterministic search methods Stochastic search methods Accuracy and a hybrid approach Basic Likelihood ToolsIntroduction Estimating standard errors and correlations Looking at surfaces: profile log-likelihoods Confidence regions from profiles Hypothesis testing in model selectionScore and Wald tests Classical goodness of fit Model selection biasGeneral Principles Introduction Parameterisation Parameter redundancy Boundary estimates Regression and influence The EM algorithm Alternative methods of model fitting Non-regular problemsSimulation Techniques Introduction Simulating random variables Integral estimation Verification Monte Carlo inference Estimating sampling distributi...

  9. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.F.; Liu, H.H.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M and O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  10. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.; Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  11. Business Models and Business Model Innovation

    DEFF Research Database (Denmark)

    Foss, Nicolai J.; Saebi, Tina

    2018-01-01

    While research on business models and business model innovation continue to exhibit growth, the field is still, even after more than two decades of research, characterized by a striking lack of cumulative theorizing and an opportunistic borrowing of more or less related ideas from neighbouring...

  12. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake paramet...

  13. Introduction to Adjoint Models

    Science.gov (United States)

    Errico, Ronald M.

    2015-01-01

    In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.

  14. Business Model Visualization

    OpenAIRE

    Zagorsek, Branislav

    2013-01-01

    Business model describes the company’s most important activities, proposed value, and the compensation for the value. Business model visualization enables to simply and systematically capture and describe the most important components of the business model while the standardization of the concept allows the comparison between companies. There are several possibilities how to visualize the model. The aim of this paper is to describe the options for business model visualization and business mod...

  15. Latent classification models

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2005-01-01

    parametric family ofdistributions.  In this paper we propose a new set of models forclassification in continuous domains, termed latent classificationmodels. The latent classification model can roughly be seen ascombining the \\NB model with a mixture of factor analyzers,thereby relaxing the assumptions...... classification model, and wedemonstrate empirically that the accuracy of the proposed model issignificantly higher than the accuracy of other probabilisticclassifiers....

  16. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    Zarrabi, K.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  17. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bochev, Pavel B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cameron-Smith, Philip J.. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Easter, Richard C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ghan, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Xiaohong [Univ. of Wyoming, Laramie, WY (United States); Lowrie, Robert B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, Po-lun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sacks, William J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Shrivastava, Manish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Balwinder [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tautges, Timothy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, Mark A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vertenstein, Mariana [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Worley, Patrick H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  18. Pavement Aging Model by Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Manzano-Ramírez A.

    2011-10-01

    Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.

  19. Modelling of an homogeneous equilibrium mixture model

    International Nuclear Information System (INIS)

    Bernard-Champmartin, A.; Poujade, O.; Mathiaud, J.; Mathiaud, J.; Ghidaglia, J.M.

    2014-01-01

    We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented. (authors)

  20. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Nikpour, Parisa; Salimi-Kenari, Hamed; Fahimipour, Farahnaz; Rabiee, Sayed Mahmood; Imani, Mohammad; Dashtimoghadam, Erfan; Tayebi, Lobat

    2018-06-15

    A series of nanocomposite scaffolds comprised of dextran (Dex) and sol-gel derived bioactive glass ceramic nanoparticles (nBGC: 0-16 (wt%)) were fabricated as bioactive scaffolds for bone tissue engineering. Scanning electron microscopy showed Dex/nBGC scaffolds were consisting of a porous 3D microstructure with an average pore size of 240 μm. Energy-dispersive x-ray spectroscopy illustrated nBGC nanoparticles were homogenously distributed within the Dex matrix at low nBGC content (2 wt%), while agglomeration was observed at higher nBGC contents. It was found that the osmotic pressure and nBGC agglomeration at higher nBGC contents leads to increased water uptake, then reduction of the compressive modulus. Bioactivity of Dex/nBGC scaffolds was validated through apatite formation after submersion in the simulated body fluid. Dex/nBGC composite scaffolds were found to show improved human osteoblasts (HOBs) proliferation and alkaline phosphatase (ALP) activity with increasing nBGC content up to 16 (wt%) over two weeks. Owing to favorable physicochemical and bioactivity properties, the Dex/nBGC composite hydrogels can be offered as promising bioactive scaffolds for bone tissue engineering applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Grassland production under global change scenarios for New Zealand pastoral agriculture

    Science.gov (United States)

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-10-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re

  2. Model Validation Status Review

    International Nuclear Information System (INIS)

    E.L. Hardin

    2001-01-01

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M and O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  3. Modeling for Battery Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Goebel, Kai; Khasin, Michael; Hogge, Edward; Quach, Patrick

    2017-01-01

    For any battery-powered vehicles (be it unmanned aerial vehicles, small passenger aircraft, or assets in exoplanetary operations) to operate at maximum efficiency and reliability, it is critical to monitor battery health as well performance and to predict end of discharge (EOD) and end of useful life (EOL). To fulfil these needs, it is important to capture the battery's inherent characteristics as well as operational knowledge in the form of models that can be used by monitoring, diagnostic, and prognostic algorithms. Several battery modeling methodologies have been developed in last few years as the understanding of underlying electrochemical mechanics has been advancing. The models can generally be classified as empirical models, electrochemical engineering models, multi-physics models, and molecular/atomist. Empirical models are based on fitting certain functions to past experimental data, without making use of any physicochemical principles. Electrical circuit equivalent models are an example of such empirical models. Electrochemical engineering models are typically continuum models that include electrochemical kinetics and transport phenomena. Each model has its advantages and disadvantages. The former type of model has the advantage of being computationally efficient, but has limited accuracy and robustness, due to the approximations used in developed model, and as a result of such approximations, cannot represent aging well. The latter type of model has the advantage of being very accurate, but is often computationally inefficient, having to solve complex sets of partial differential equations, and thus not suited well for online prognostic applications. In addition both multi-physics and atomist models are computationally expensive hence are even less suited to online application An electrochemistry-based model of Li-ion batteries has been developed, that captures crucial electrochemical processes, captures effects of aging, is computationally efficient

  4. Product and Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian T.; Gani, Rafiqul

    . These approaches are put into the context of life cycle modelling, where multiscale and multiform modelling is increasingly prevalent in the 21st century. The book commences with a discussion of modern product and process modelling theory and practice followed by a series of case studies drawn from a variety......This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models...... to biotechnology applications, food, polymer and human health application areas. The book highlights to important nature of modern product and process modelling in the decision making processes across the life cycle. As such it provides an important resource for students, researchers and industrial practitioners....

  5. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

  6. Model Validation Status Review

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  7. Modeling volatility using state space models.

    Science.gov (United States)

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).

  8. Empirical Model Building Data, Models, and Reality

    CERN Document Server

    Thompson, James R

    2011-01-01

    Praise for the First Edition "This...novel and highly stimulating book, which emphasizes solving real problems...should be widely read. It will have a positive and lasting effect on the teaching of modeling and statistics in general." - Short Book Reviews This new edition features developments and real-world examples that showcase essential empirical modeling techniques Successful empirical model building is founded on the relationship between data and approximate representations of the real systems that generated that data. As a result, it is essential for researchers who construct these m

  9. Modeling Guru: Knowledge Base for NASA Modelers

    Science.gov (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  10. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina

    2011-01-01

    This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor...... be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....

  11. Holographic twin Higgs model.

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  12. Models of light nuclei

    International Nuclear Information System (INIS)

    Harvey, M.; Khanna, F.C.

    1975-01-01

    The general problem of what constitutes a physical model and what is known about the free nucleon-nucleon interaction are considered. A time independent formulation of the basic equations is chosen. Construction of the average field in which particles move in a general independent particle model is developed, concentrating on problems of defining the average spherical single particle field for any given nucleus, and methods for construction of effective residual interactions and other physical operators. Deformed shell models and both spherical and deformed harmonic oscillator models are discussed in detail, and connections between spherical and deformed shell models are analyzed. A section on cluster models is included. 11 tables, 21 figures

  13. Holographic Twin Higgs Model

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-01

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at mKK , naturally allowing for mKK beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  14. Five models of capitalism

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Bresser-Pereira

    2012-03-01

    Full Text Available Besides analyzing capitalist societies historically and thinking of them in terms of phases or stages, we may compare different models or varieties of capitalism. In this paper I survey the literature on this subject, and distinguish the classification that has a production or business approach from those that use a mainly political criterion. I identify five forms of capitalism: among the rich countries, the liberal democratic or Anglo-Saxon model, the social or European model, and the endogenous social integration or Japanese model; among developing countries, I distinguish the Asian developmental model from the liberal-dependent model that characterizes most other developing countries, including Brazil.

  15. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    description of biological phosphorus removal, physicalchemical processes, hydraulics and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2D/3D dynamic numerical models. Plant-wide modeling is set to advance further the practice......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  16. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2-D/3-D dynamic numerical models. Plant-wide modeling is set to advance further......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  17. Microsoft tabular modeling cookbook

    CERN Document Server

    Braak, Paul te

    2013-01-01

    This book follows a cookbook style with recipes explaining the steps for developing analytic data using Business Intelligence Semantic Models.This book is designed for developers who wish to develop powerful and dynamic models for users as well as those who are responsible for the administration of models in corporate environments. It is also targeted at analysts and users of Excel who wish to advance their knowledge of Excel through the development of tabular models or who wish to analyze data through tabular modeling techniques. We assume no prior knowledge of tabular modeling

  18. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Wu; A.J. Smith

    2004-11-08

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  19. Biosphere Model Report

    International Nuclear Information System (INIS)

    D.W. Wu; A.J. Smith

    2004-01-01

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  20. Modelling of Innovation Diffusion

    Directory of Open Access Journals (Sweden)

    Arkadiusz Kijek

    2010-01-01

    Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract

  1. Nonlinear Modeling by Assembling Piecewise Linear Models

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  2. Integrated Medical Model – Chest Injury Model

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Medical Capability (ExMC) Element of NASA's Human Research Program (HRP) developed the Integrated Medical Model (IMM) to forecast the resources...

  3. Traffic & safety statewide model and GIS modeling.

    Science.gov (United States)

    2012-07-01

    Several steps have been taken over the past two years to advance the Utah Department of Transportation (UDOT) safety initiative. Previous research projects began the development of a hierarchical Bayesian model to analyze crashes on Utah roadways. De...

  4. OPEC model : adjustment or new model

    International Nuclear Information System (INIS)

    Ayoub, A.

    1994-01-01

    Since the early eighties, the international oil industry went through major changes : new financial markets, reintegration, opening of the upstream, liberalization of investments, privatization. This article provides answers to two major questions : what are the reasons for these changes ? ; do these changes announce the replacement of OPEC model by a new model in which state intervention is weaker and national companies more autonomous. This would imply a profound change of political and institutional systems of oil producing countries. (Author)

  5. Solid Waste Projection Model: Model user's guide

    International Nuclear Information System (INIS)

    Stiles, D.L.; Crow, V.L.

    1990-08-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  6. Emissions Modeling Clearinghouse

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Emissions Modeling Clearinghouse (EMCH) supports and promotes emissions modeling activities both internal and external to the EPA. Through this site, the EPA...

  7. Radiobilogical cell survival models

    International Nuclear Information System (INIS)

    Zackrisson, B.

    1992-01-01

    A central issue in clinical radiobiological research is the prediction of responses to different radiation qualities. The choice of cell survival and dose-response model greatly influences the results. In this context the relationship between theory and model is emphasized. Generally, the interpretations of experimental data depend on the model. Cell survival models are systematized with respect to their relations to radiobiological theories of cell kill. The growing knowlegde of biological, physical, and chemical mechanisms is reflected in the formulation of new models. The present overview shows that recent modelling has been more oriented towards the stochastic fluctuations connected to radiation energy deposition. This implies that the traditional cell surivival models ought to be complemented by models of stochastic energy deposition processes and repair processes at the intracellular level. (orig.)

  8. The Cap Pele Model.

    Science.gov (United States)

    Pruneau, Diane; Chouinard, Omer; Arsenault, Charline

    1998-01-01

    Reports on a model of environmental education that aims to encourage greater attachment to the bioregion of Arcadia. The model results from cooperation within a village community and addresses the environmental education of people of all ages. (DDR)

  9. World Magnetic Model 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)...

  10. World Magnetic Model 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)...

  11. CCF model comparison

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    2004-04-01

    The report describes a simple comparison of two CCF-models, the ECLM, and the Beta-model. The objective of the comparison is to identify differences in the results of the models by applying the models in some simple test data cases. The comparison focuses mainly on theoretical aspects of the above mentioned CCF-models. The properties of the model parameter estimates in the data cases is also discussed. The practical aspects in using and estimating CCFmodels in real PSA context (e.g. the data interpretation, properties of computer tools, the model documentation) are not discussed in the report. Similarly, the qualitative CCF-analyses needed in using the models are not discussed in the report. (au)

  12. Snow model analysis.

    Science.gov (United States)

    2014-01-01

    This study developed a new snow model and a database which warehouses geometric, weather and traffic : data on New Jersey highways. The complexity of the model development lies in considering variable road : width, different spreading/plowing pattern...

  13. A costal dispersion model

    International Nuclear Information System (INIS)

    Rahm, L.; Nyberg, L.; Gidhagen, L.

    1990-01-01

    A dispersion model to be used off costal waters has been developed. The model has been applied to describe the migration of radionuclides in the Baltic sea. A summary of the results is presented here. (K.A.E)

  14. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  15. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  16. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  17. Modeling Complex Time Limits

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2013-01-01

    Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.

  18. Modeling Philosophies and Applications

    Science.gov (United States)

    All models begin with a framework and a set of assumptions and limitations that go along with that framework. In terms of fracing and RA, there are several places where models and parameters must be chosen to complete hazard identification.

  19. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  20. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  1. Modelling of wastewater systems

    DEFF Research Database (Denmark)

    Bechmann, Henrik

    to analyze and quantify the effect of the Aeration Tank Settling (ATS) operating mode, which is used during rain events. Furthermore, the model is used to propose a control algorithm for the phase lengths during ATS operation. The models are mainly formulated as state space model in continuous time......In this thesis, models of pollution fluxes in the inlet to 2 Danish wastewater treatment plants (WWTPs) as well as of suspended solids (SS) concentrations in the aeration tanks of an alternating WWTP and in the effluent from the aeration tanks are developed. The latter model is furthermore used...... at modelling the fluxes in terms of the multiple correlation coefficient R2. The model of the SS concentrations in the aeration tanks of an alternating WWTP as well as in the effluent from the aeration tanks is a mass balance model based on measurements of SS in one aeration tank and in the common outlet...

  2. Graphical Models with R

    DEFF Research Database (Denmark)

    Højsgaard, Søren; Edwards, David; Lauritzen, Steffen

    Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many...... of these software developments have taken place within the R community, either in the form of new packages or by providing an R ingerface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition......, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data...

  3. Modeling EERE deployment programs

    Energy Technology Data Exchange (ETDEWEB)

    Cort, K. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Livingston, O. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  4. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  5. Modelling arithmetic operations

    Energy Technology Data Exchange (ETDEWEB)

    Shabanov-kushnarenk, Yu P

    1981-01-01

    The possibility of modelling finite alphabetic operators using formal intelligence theory, is explored, with the setting up of models of a 3-digit adder and a multidigit subtractor, as examples. 2 references.

  6. Hierarchical Bass model

    International Nuclear Information System (INIS)

    Tashiro, Tohru

    2014-01-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model

  7. TENCompetence Domain Model

    NARCIS (Netherlands)

    2006-01-01

    This is the version 1.1 of the TENCompetence Domain Model (version 1.0 released at 19-6-2006; version 1.1 at 9-11-2008). It contains several files: a) a pdf with the model description, b) three jpg files with class models (also in the pdf), c) a MagicDraw zip file with the model itself, d) a release

  8. Optimization modeling with spreadsheets

    CERN Document Server

    Baker, Kenneth R

    2015-01-01

    An accessible introduction to optimization analysis using spreadsheets Updated and revised, Optimization Modeling with Spreadsheets, Third Edition emphasizes model building skills in optimization analysis. By emphasizing both spreadsheet modeling and optimization tools in the freely available Microsoft® Office Excel® Solver, the book illustrates how to find solutions to real-world optimization problems without needing additional specialized software. The Third Edition includes many practical applications of optimization models as well as a systematic framework that il

  9. Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Pedersen, Thomas

    2015-01-01

    This paper presents an offline approach to analyzing feature interactions in embedded systems. The approach consists of a systematic process to gather the necessary information about system components and their models. The model is first specified in terms of predicates, before being refined to t...... to timed automata. The consistency of the model is verified at different development stages, and the correct linkage between the predicates and their semantic model is checked. The approach is illustrated on a use case from home automation....

  10. Physical modeling of rock

    International Nuclear Information System (INIS)

    Cheney, J.A.

    1981-01-01

    The problems of statisfying similarity between a physical model and the prototype in rock wherein fissures and cracks place a role in physical behavior is explored. The need for models of large physical dimensions is explained but also testing of models of the same prototype over a wide range of scales is needed to ascertain the influence of lack of similitude of particular parameters between prototype and model. A large capacity centrifuge would be useful in that respect

  11. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  12. Hierarchical Bass model

    Science.gov (United States)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  13. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  14. GARCH Modelling of Cryptocurrencies

    OpenAIRE

    Jeffrey Chu; Stephen Chan; Saralees Nadarajah; Joerg Osterrieder

    2017-01-01

    With the exception of Bitcoin, there appears to be little or no literature on GARCH modelling of cryptocurrencies. This paper provides the first GARCH modelling of the seven most popular cryptocurrencies. Twelve GARCH models are fitted to each cryptocurrency, and their fits are assessed in terms of five criteria. Conclusions are drawn on the best fitting models, forecasts and acceptability of value at risk estimates.

  15. GARCH Modelling of Cryptocurrencies

    Directory of Open Access Journals (Sweden)

    Jeffrey Chu

    2017-10-01

    Full Text Available With the exception of Bitcoin, there appears to be little or no literature on GARCH modelling of cryptocurrencies. This paper provides the first GARCH modelling of the seven most popular cryptocurrencies. Twelve GARCH models are fitted to each cryptocurrency, and their fits are assessed in terms of five criteria. Conclusions are drawn on the best fitting models, forecasts and acceptability of value at risk estimates.

  16. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  17. Differential models in ecology

    International Nuclear Information System (INIS)

    Barco Gomez, Carlos; Barco Gomez, German

    2002-01-01

    The models mathematical writings with differential equations are used to describe the populational behavior through the time of the animal species. These models can be lineal or no lineal. The differential models for unique specie include the exponential pattern of Malthus and the logistical pattern of Verlhust. The lineal differential models to describe the interaction between two species include the competition relationships, predation and symbiosis

  18. Competing through business models

    OpenAIRE

    Casadesus-Masanell, Ramon; Ricart, Joan E.

    2007-01-01

    In this article a business model is defined as the firm choices on policies, assets and governance structure of those policies and assets, together with their consequences, be them flexible or rigid. We also provide a way to represent such business models to highlight the dynamic loops and to facilitate understanding interaction with other business models. Furthermore, we develop some tests to evaluate the goodness of a business model both in isolation as well as in interaction with other bus...

  19. Photovoltaic sources modeling

    CERN Document Server

    Petrone, Giovanni; Spagnuolo, Giovanni

    2016-01-01

    This comprehensive guide surveys all available models for simulating a photovoltaic (PV) generator at different levels of granularity, from cell to system level, in uniform as well as in mismatched conditions. Providing a thorough comparison among the models, engineers have all the elements needed to choose the right PV array model for specific applications or environmental conditions matched with the model of the electronic circuit used to maximize the PV power production.

  20. Model description and evaluation of model performance: DOSDIM model

    International Nuclear Information System (INIS)

    Lewyckyj, N.; Zeevaert, T.

    1996-01-01

    DOSDIM was developed to assess the impact to man from routine and accidental atmospheric releases. It is a compartmental, deterministic, radiological model. For an accidental release, dynamic transfer are used in opposition to a routine release for which equilibrium transfer factors are used. Parameters values were chosen to be conservative. Transfer between compartments are described by first-order differential equations. 2 figs

  1. Modelling MIZ dynamics in a global model

    Science.gov (United States)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  2. Understandings of 'Modelling'

    DEFF Research Database (Denmark)

    Andresen, Mette

    2007-01-01

    -authentic modelling is also linked with the potentials of exploration of ready-made models as a forerunner for more authentic modelling processes. The discussion includes analysis of an episode of students? work in the classroom, which serves to illustrate how concept formation may be linked to explorations of a non...

  3. Crushed Salt Constitutive Model

    International Nuclear Information System (INIS)

    Callahan, G.D.

    1999-01-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well

  4. Urban tree growth modeling

    Science.gov (United States)

    E. Gregory McPherson; Paula J. Peper

    2012-01-01

    This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...

  5. The IIR evaluation model

    DEFF Research Database (Denmark)

    Borlund, Pia

    2003-01-01

    An alternative approach to evaluation of interactive information retrieval (IIR) systems, referred to as the IIR evaluation model, is proposed. The model provides a framework for the collection and analysis of IR interaction data. The aim of the model is two-fold: 1) to facilitate the evaluation ...

  6. Modeling Natural Selection

    Science.gov (United States)

    Bogiages, Christopher A.; Lotter, Christine

    2011-01-01

    In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…

  7. Models for tracer flow

    International Nuclear Information System (INIS)

    Zuber, A.

    1983-01-01

    A review and discussion is given of mathematical models used for interpretation of tracer experiments in hydrology. For dispersion model, different initial and boundary conditions are related to different injection and detection modes. Examples of applications of various models are described and commented. (author)

  8. Loglinear Rasch model tests

    NARCIS (Netherlands)

    Kelderman, Hendrikus

    1984-01-01

    Existing statistical tests for the fit of the Rasch model have been criticized, because they are only sensitive to specific violations of its assumptions. Contingency table methods using loglinear models have been used to test various psychometric models. In this paper, the assumptions of the Rasch

  9. The cloudy bag model

    International Nuclear Information System (INIS)

    Thomas, A.W.

    1981-01-01

    Recent developments in the bag model, in which the constraints of chiral symmetry are explicitly included are reviewed. The model leads to a new understanding of the Δ-resonance. The connection of the theory with current algebra is clarified and implications of the model for the structure of the nucleon are discussed

  10. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  11. The nontopological soliton model

    International Nuclear Information System (INIS)

    Wilets, L.

    1988-01-01

    The nontopological soliton model introduced by Friedberg and Lee, and variations of it, provide a method for modeling QCD which can effectively include the dynamics of hadronic collisions as well as spectra. Absolute color confinement is effected by the assumed dielectric properties of the medium. A recently proposed version of the model is chirally invariant. 32 refs., 5 figs., 1 tab

  12. Models selection and fitting

    International Nuclear Information System (INIS)

    Martin Llorente, F.

    1990-01-01

    The models of atmospheric pollutants dispersion are based in mathematic algorithms that describe the transport, diffusion, elimination and chemical reactions of atmospheric contaminants. These models operate with data of contaminants emission and make an estimation of quality air in the area. This model can be applied to several aspects of atmospheric contamination

  13. Bayesian Graphical Models

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...

  14. Intermittency in branching models

    International Nuclear Information System (INIS)

    Chiu, C.B.; Texas Univ., Austin; Hwa, R.C.; Oregon Univ., Eugene

    1990-01-01

    The intermittency properties of three branching models have been investigated. The factorial moments show power-law behavior as function of small rapidity width. The slopes and energy dependences reveal different characteristics of the models. The gluon model has the weakest intermittency. (orig.)

  15. Making business models

    DEFF Research Database (Denmark)

    Gudiksen, Sune Klok; Poulsen, Søren Bolvig; Buur, Jacob

    2014-01-01

    Well-established companies are currently struggling to secure profits due to the pressure from new players' business models as they take advantage of communication technology and new business-model configurations. Because of this, the business model research field flourishes currently; however, t...

  16. ECOMOD: Ecological model

    International Nuclear Information System (INIS)

    Sazykina, T.G.; Kryshev, I.I.

    1996-01-01

    The main purpose of the model is a more detailed description of the radionuclide transfer in food chains, including the dynamics in the early period after accidental release. Detailed modelling of the dynamics of radioactive depositions is beyond the purpose of the model. Standard procedures are used for assessing inhalation and external doses. 3 figs, 2 tabs

  17. Modern Media Education Models

    Science.gov (United States)

    Fedorov, Alexander

    2011-01-01

    The author supposed that media education models can be divided into the following groups: (1) educational-information models (the study of the theory, history, language of media culture, etc.), based on the cultural, aesthetic, semiotic, socio-cultural theories of media education; (2) educational-ethical models (the study of moral, religions,…

  18. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C; Holopainen, E; Kaurola, J; Ruosteenoja, K; Raeisaenen, J [Helsinki Univ. (Finland). Dept. of Meteorology

    1997-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  19. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  20. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  1. Modeling EERE Deployment Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cort, K. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Livingston, O. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  2. Modelling: Nature and Use

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Engineering of products and processes is increasingly “model-centric”. Models in their multitudinous forms are ubiquitous, being heavily used for a range of decision making activities across all life cycle phases. This chapter gives an overview of what is a model, the principal activities in the ...

  3. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...

  4. Parsimonious relevance models

    NARCIS (Netherlands)

    Meij, E.; Weerkamp, W.; Balog, K.; de Rijke, M.; Myang, S.-H.; Oard, D.W.; Sebastiani, F.; Chua, T.-S.; Leong, M.-K.

    2008-01-01

    We describe a method for applying parsimonious language models to re-estimate the term probabilities assigned by relevance models. We apply our method to six topic sets from test collections in five different genres. Our parsimonious relevance models (i) improve retrieval effectiveness in terms of

  5. The 5C Model

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Gelting, Anne Katrine Gøtzsche

    2014-01-01

    the approaches and reach a new level of conscious action when designing? Informed by theories of design thinking, knowledge production, and learning, we have developed a model, the 5C model, accompanied by 62 method cards. Examples of how the model has been applied in an educational setting are provided...

  6. Flipped SO(10) model

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Nobuhiro; Yamashita, Toshifumi

    2003-08-14

    This Letter demonstrates that, as in flipped SU(5) models, doublet-triplet splitting is accomplished by a missing partner mechanism in flipped SO(10) models. The gauge group SO(10){sub F}xU(1){sub V'{sub F}} includes SU(2){sub E} gauge symmetry, which plays an important role in solving the supersymmetric (SUSY) flavor problem by introducing non-abelian horizontal gauge symmetry and anomalous U(1){sub A} gauge symmetry. The gauge group can be broken into the standard model gauge group by VEVs of only spinor fields; such models may be easier to derive than E{sub 6} models from superstring theory.

  7. CRAC2 model description

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions

  8. Modelling oil exploration

    International Nuclear Information System (INIS)

    Padilla, V.R.

    1992-01-01

    The analysis of oil exploration models in this paper is developed in four parts. The way in which exploration has been dealt with in oil supply models is first described. Five recent models are then looked at, paying particular attention to the explanatory variables used when modelling exploration activities. This is followed by a discussion of the factors which have been shown by several empirical studies to determine exploration in less developed countries. Finally, the interdependence between institutional factors, oil prices and exploration effort is analysed with a view to drawing conclusions for modelling in the future. (UK)

  9. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  10. Genomic Feature Models

    DEFF Research Database (Denmark)

    Sørensen, Peter; Edwards, Stefan McKinnon; Rohde, Palle Duun

    -additive genetic mechanisms. These modeling approaches have proven to be highly useful to determine population genetic parameters as well as prediction of genetic risk or value. We present a series of statistical modelling approaches that use prior biological information for evaluating the collective action......Whole-genome sequences and multiple trait phenotypes from large numbers of individuals will soon be available in many populations. Well established statistical modeling approaches enable the genetic analyses of complex trait phenotypes while accounting for a variety of additive and non...... regions and gene ontologies) that provide better model fit and increase predictive ability of the statistical model for this trait....

  11. Accelerator modeling at SPEAR

    International Nuclear Information System (INIS)

    LeBlanc, G.; Corbett, W.J.

    1997-01-01

    The response matrix, consisting of the closed orbit change at each beam position monitor (BPM) due to corrector magnet excitations, was measured and analyzed in order to calibrate a linear optics model of SPEAR. The model calibration was accomplished by varying model parameters to minimize the chi-square difference between the measured and the model response matrices. The singular value decomposition (SVD) matrix inversion method was used to solve the simultaneous equations. The calibrated model was then used to calculate corrections to the operational lattice. The results of the calibration and correction procedures are presented

  12. Models of human operators

    International Nuclear Information System (INIS)

    Knee, H.E.; Schryver, J.C.

    1991-01-01

    Models of human behavior and cognition (HB and C) are necessary for understanding the total response of complex systems. Many such models have come available over the past thirty years for various applications. Unfortunately, many potential model users remain skeptical about their practicality, acceptability, and usefulness. Such hesitancy stems in part to disbelief in the ability to model complex cognitive processes, and a belief that relevant human behavior can be adequately accounted for through the use of commonsense heuristics. This paper will highlight several models of HB and C and identify existing and potential applications in attempt to dispel such notions. (author)

  13. Process modeling style

    CERN Document Server

    Long, John

    2014-01-01

    Process Modeling Style focuses on other aspects of process modeling beyond notation that are very important to practitioners. Many people who model processes focus on the specific notation used to create their drawings. While that is important, there are many other aspects to modeling, such as naming, creating identifiers, descriptions, interfaces, patterns, and creating useful process documentation. Experience author John Long focuses on those non-notational aspects of modeling, which practitioners will find invaluable. Gives solid advice for creating roles, work produ

  14. Patterns of data modeling

    CERN Document Server

    Blaha, Michael

    2010-01-01

    Best-selling author and database expert with more than 25 years of experience modeling application and enterprise data, Dr. Michael Blaha provides tried and tested data model patterns, to help readers avoid common modeling mistakes and unnecessary frustration on their way to building effective data models. Unlike the typical methodology book, "Patterns of Data Modeling" provides advanced techniques for those who have mastered the basics. Recognizing that database representation sets the path for software, determines its flexibility, affects its quality, and influences whether it succ

  15. A Model for Information

    Directory of Open Access Journals (Sweden)

    Paul Walton

    2014-09-01

    Full Text Available This paper uses an approach drawn from the ideas of computer systems modelling to produce a model for information itself. The model integrates evolutionary, static and dynamic views of information and highlights the relationship between symbolic content and the physical world. The model includes what information technology practitioners call “non-functional” attributes, which, for information, include information quality and information friction. The concepts developed in the model enable a richer understanding of Floridi’s questions “what is information?” and “the informational circle: how can information be assessed?” (which he numbers P1 and P12.

  16. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  17. Designing Business Model Change

    DEFF Research Database (Denmark)

    Cavalcante, Sergio Andre

    2014-01-01

    The aim of this paper is to base organisational change on the firm's business model, an approach that research has only recently start to address. This study adopts a process-based perspective on business models and insights from a variety of theories as the basis for the development of ideas...... on the design of business model change. This paper offers a new, process-based strategic analytical artefact for the design of business model change, consisting of three main phases. Designing business model change as suggested in this paper allows ex ante analysis of alternative scenarios of change...

  18. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  19. The interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.; Arima, A.

    1987-01-01

    The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)

  20. Modeling urban fire growth

    International Nuclear Information System (INIS)

    Waterman, T.E.; Takata, A.N.

    1983-01-01

    The IITRI Urban Fire Spread Model as well as others of similar vintage were constrained by computer size and running costs such that many approximations/generalizations were introduced to reduce program complexity and data storage requirements. Simplifications were introduced both in input data and in fire growth and spread calculations. Modern computational capabilities offer the means to introduce greater detail and to examine its practical significance on urban fire predictions. Selected portions of the model are described as presently configured, and potential modifications are discussed. A single tract model is hypothesized which permits the importance of various model details to be assessed, and, other model applications are identified

  1. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  2. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  3. Intersection carbon monoxide modeling

    International Nuclear Information System (INIS)

    Zamurs, J.

    1990-01-01

    In this note the author discusses the need for better air quality mobile source models near roadways and intersections. To develop the improved models, a better understanding of emissions and their relation to ambient concentrations is necessary. The database for the modal model indicates that vehicles do have different emission levels for different engine operating modes. If the modal approach is used information is needed on traffic signal phasing, queue lengths, delay times, acceleration rates, deceleration rates, capacity, etc. Dispersion estimates using current air quality models may be inaccurate because the models do not take into account intersecting traffic streams, multiple buildings of varying setbacks, height, and spacing

  4. Surrogate waveform models

    Science.gov (United States)

    Blackman, Jonathan; Field, Scott; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    With the advanced detector era just around the corner, there is a strong need for fast and accurate models of gravitational waveforms from compact binary coalescence. Fast surrogate models can be built out of an accurate but slow waveform model with minimal to no loss in accuracy, but may require a large number of evaluations of the underlying model. This may be prohibitively expensive if the underlying is extremely slow, for example if we wish to build a surrogate for numerical relativity. We examine alternate choices to building surrogate models which allow for a more sparse set of input waveforms. Research supported in part by NSERC.

  5. Modelling Farm Animal Welfare

    Science.gov (United States)

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  6. Making ecological models adequate

    Science.gov (United States)

    Getz, Wayne M.; Marshall, Charles R.; Carlson, Colin J.; Giuggioli, Luca; Ryan, Sadie J.; Romañach, Stephanie; Boettiger, Carl; Chamberlain, Samuel D.; Larsen, Laurel; D'Odorico, Paolo; O'Sullivan, David

    2018-01-01

    Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems’ responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.

  7. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ghezzehej, T.

    2004-01-01

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency

  8. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... (REFT) and to a convex rectangular elevation focused transducer (CREFT). These models are solvable on an analog time scale and give exact smooth solutions to the Rayleigh integral. The REFT model exhibits a root mean square (RMS) error relative to Field II predictions of 0.41 % at 3400 MHz, and 1.......37 % at 100MHz. The CREFT model exhibits a RMS deviation of 0.01 % relative to the exact numerical solution on a CREFT transducer. A convex non-elevation focused, a REFT, and a linear flat transducer are shown to be covered with the CREFT model as well. Pressure pulses calculated with a one...

  9. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    Directory of Open Access Journals (Sweden)

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  10. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    The present thesis considers numerical modeling of activated sludge tanks on municipal wastewater treatment plants. Focus is aimed at integrated modeling where the detailed microbiological model the Activated Sludge Model 3 (ASM3) is combined with a detailed hydrodynamic model based on a numerical...... solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate stages. The individual sub-processes that are often occurring in activated sludge tanks are initially...... hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  11. Modeling and cellular studies

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage

  12. Programming Models in HPC

    Energy Technology Data Exchange (ETDEWEB)

    Shipman, Galen M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-13

    These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematic approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.

  13. MODERN MEDIA EDUCATION MODELS

    Directory of Open Access Journals (Sweden)

    Alexander Fedorov

    2011-03-01

    Full Text Available The author supposed that media education models can be divided into the following groups:- educational-information models (the study of the theory, history, language of media culture, etc., based on the cultural, aesthetic, semiotic, socio-cultural theories of media education;- educational-ethical models (the study of moral, religions, philosophical problems relying on the ethic, religious, ideological, ecological, protectionist theories of media education;- pragmatic models (practical media technology training, based on the uses and gratifications and ‘practical’ theories of media education;- aesthetical models (aimed above all at the development of the artistic taste and enriching the skills of analysis of the best media culture examples. Relies on the aesthetical (art and cultural studies theory; - socio-cultural models (socio-cultural development of a creative personality as to the perception, imagination, visual memory, interpretation analysis, autonomic critical thinking, relying on the cultural studies, semiotic, ethic models of media education.

  14. Nitrogen deposition, land cover conversion, and contemporary carbon balance of Europe

    Science.gov (United States)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Jung, M.; Chen, Y.; Heimann, M.; Roedenbeck, C.; Jones, C.

    2009-04-01

    In Europe, atmospheric nitrogen deposition has more than doubled, forest cover was steadily increasing, and agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, land cover conversion and climate. We use results from four ecosystem process models such as BIOME-BGC, JULES, ORCHIDEE, and ORCHIDEE-CN to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been most effected by anthropogenic changes.

  15. Constitutive models in LAME.

    Energy Technology Data Exchange (ETDEWEB)

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented

  16. Geochemical modeling: a review

    International Nuclear Information System (INIS)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted

  17. Modeling environmental policy

    International Nuclear Information System (INIS)

    Martin, W.E.; McDonald, L.A.

    1997-01-01

    The eight book chapters demonstrate the link between the physical models of the environment and the policy analysis in support of policy making. Each chapter addresses an environmental policy issue using a quantitative modeling approach. The volume addresses three general areas of environmental policy - non-point source pollution in the agricultural sector, pollution generated in the extractive industries, and transboundary pollutants from burning fossil fuels. The book concludes by discussing the modeling efforts and the use of mathematical models in general. Chapters are entitled: modeling environmental policy: an introduction; modeling nonpoint source pollution in an integrated system (agri-ecological); modeling environmental and trade policy linkages: the case of EU and US agriculture; modeling ecosystem constraints in the Clean Water Act: a case study in Clearwater National Forest (subject to discharge from metal mining waste); costs and benefits of coke oven emission controls; modeling equilibria and risk under global environmental constraints (discussing energy and environmental interrelations); relative contribution of the enhanced greenhouse effect on the coastal changes in Louisiana; and the use of mathematical models in policy evaluations: comments. The paper on coke area emission controls has been abstracted separately for the IEA Coal Research CD-ROM

  18. Modelling Farm Animal Welfare

    Directory of Open Access Journals (Sweden)

    Chérie E. Part

    2013-05-01

    Full Text Available The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested.

  19. Modeling Quantum Well Lasers

    Directory of Open Access Journals (Sweden)

    Dan Alexandru Anghel

    2012-01-01

    Full Text Available In semiconductor laser modeling, a good mathematical model gives near-reality results. Three methods of modeling solutions from the rate equations are presented and analyzed. A method based on the rate equations modeled in Simulink to describe quantum well lasers was presented. For different signal types like step function, saw tooth and sinus used as input, a good response of the used equations is obtained. Circuit model resulting from one of the rate equations models is presented and simulated in SPICE. Results show a good modeling behavior. Numerical simulation in MathCad gives satisfactory results for the study of the transitory and dynamic operation at small level of the injection current. The obtained numerical results show the specific limits of each model, according to theoretical analysis. Based on these results, software can be built that integrates circuit simulation and other modeling methods for quantum well lasers to have a tool that model and analysis these devices from all points of view.

  20. Geochemical modeling: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.