WorldWideScience

Sample records for employing msh2 protein

  1. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.

    Science.gov (United States)

    Owen, Barbara A L; Yang, Zungyoon; Lai, Maoyi; Gajec, Maciej; Gajek, Maciez; Badger, John D; Hayes, Jeffrey J; Edelmann, Winfried; Kucherlapati, Raju; Wilson, Teresa M; McMurray, Cynthia T

    2005-08-01

    Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process.

  2. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents.

    Science.gov (United States)

    Christmann, M; Kaina, B

    2000-11-17

    Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gene activity. Cells expressing the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), thus having the ability to repair O(6)-methylguanine, showed no translocation of MutSalpha, whereas inhibition of MGMT by O(6)-benzylguanine provoked the translocation. The results demonstrate that O(6)-methylguanine lesions are involved in triggering nuclear accumulation of MSH2 and MSH6. The finding that treatment of cells with O(6)-methylguanine-generating mutagens results in an increase of MutSalpha and GT binding activity in the nucleus indicates a novel type of genotoxic stress response.

  3. Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma.

    Science.gov (United States)

    Stark, Andreas M; Doukas, Alexander; Hugo, Heinz-Herrmann; Hedderich, Jürgen; Hattermann, Kirsten; Maximilian Mehdorn, H; Held-Feindt, Janka

    2015-02-01

    Methylated O6-methylguanin-DNA-methytransferase (MGMT) promoter methylation is associated with survival in patients with glioblastoma. Current evidence suggests that further mismatch repair genes play a pivotal role in the tumor response to treatment. Candidate genes are MLH1, MSH2, and MSH6. Formerly, we found evidence of prognostic impact of MLH1 and MSH6 immunohistochemical expression in a small series of patients with initial glioblastoma. Two hundred and eleven patients were included who underwent macroscopically total removal of primary glioblastoma and at least one re-craniotomy for recurrence. Immunohistochemical staining was performed on paraffin-embedded specimens of initial tumors with specific antibodies against MLH1, MSH2, and MSH6. RESULTS were compared to the Ki67 proliferation index and patient survival. Additionally, fresh frozen samples from 16 paired initial and recurrent specimens were examined using real-time reverse transcription polymerase chain reaction (RT-PCR) with specific primers against MLH1, MSH2, and MSH6. RESULTS were compared to MGMT status and survival. (1) Immunohistochemical expression of MSH6 was significantly associated with the Ki67 proliferation index (PMLH1, MLH2, and MSH6 over treatment combined with lacking MGMT methylation. In another two patients, decreased MLH1, MSH2, and MSH6 expression was observed in combination with MGMT promoter methylation. Our data indicate that there may be glioblastoma patient subgroups characterized by MMR-expression changes beyond MGMT promoter methylation. The immunohistochemical expression of MLH1, MSH2, and MSH6 in initial glioblastoma is not associated with patient survival.

  4. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    Science.gov (United States)

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an

  5. Functional analysis of HNPCC-related missense mutations in MSH2

    International Nuclear Information System (INIS)

    Luetzen, Anne; Wind, Niels de; Georgijevic, Dubravka; Nielsen, Finn Cilius; Rasmussen, Lene Juel

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions

  6. Functional analysis of HNPCC-related missense mutations in MSH2

    Energy Technology Data Exchange (ETDEWEB)

    Luetzen, Anne [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Wind, Niels de; Georgijevic, Dubravka [Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Nielsen, Finn Cilius [Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen (Denmark); Rasmussen, Lene Juel [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark)], E-mail: ljr@ruc.dk

    2008-10-14

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.

  7. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair

    International Nuclear Information System (INIS)

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-01-01

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography–mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2 Y238F mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2 Y238F into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2 Y238F abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2 Y238F into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR

  8. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    Energy Technology Data Exchange (ETDEWEB)

    Edelbrock, Michael A., E-mail: Edelbrock@findlay.edu [The University of Findlay, 1000 North Main Street, Findlay, OH 45840 (United States); Kaliyaperumal, Saravanan, E-mail: Saravanan.Kaliyaperumal@hms.harvard.edu [Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772 (United States); Williams, Kandace J., E-mail: Kandace.williams@utoledo.edu [University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614 (United States)

    2013-03-15

    The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O{sup 6}meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.

  9. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    International Nuclear Information System (INIS)

    Edelbrock, Michael A.; Kaliyaperumal, Saravanan; Williams, Kandace J.

    2013-01-01

    The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O 6 meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6

  10. IMMUNOHISTOCHEMICAL STUDY OF MSH2, MSH6, PMS2, MLH1 IN EVALUATION OF DIFFERENTIATION GRADE OF COLON ADENOCARCINOMA

    Directory of Open Access Journals (Sweden)

    G. A. Raskin

    2015-01-01

    Full Text Available Microsatellite instability is associated with dysfunction of the MSH2, MLH1, PMS2 and MSH6 genes, which participate in the repair of unpaired nucleotides of DNA. It is known that microsatellite instability is an independent prognostic factor in determining the differentiation grade of colon cancer. The use of immunohistochemistry to study the repair system of unpaired nucleotides has its own characteristics and limitations. Materials and methods. The study included 39 patients with colon adenocarcinoma. Moderately-differentiated colon adenocarcinoma was the most common histological type (72 %. There were 8 % of well-differentiated and 12 % poorly-differentiated carcinomas. Immunohistochemical analysis of SH2, MSH6, PMS2 and MLH1 proteins was done according to the standard protocol. Results. Out of 39 cases, 6 (15 % had loss of expression of at least one of the studied proteins. Out of these 6 cases with indirect signs of MSI-H, 3 were poorlydifferentiated, 1 was mucinous and 2 were moderately differentiated adenocarcinomas. Conclusion. Thus, immunohistochemical analysis of DNA repair genes can be used to determine the histological differentiation of colon adenocarcinoma.

  11. Mismatch Repair Proteins and Microsatellite Instability in Colorectal Carcinoma (MLH1, MSH2, MSH6 and PMS2): Histopathological and Immunohistochemical Study.

    Science.gov (United States)

    Ismael, Nour El Hoda S; El Sheikh, Samar A; Talaat, Suzan M; Salem, Eman M

    2017-03-15

    Colorectal cancer (CRC) is one of the most common cancers worldwide. Microsatellite instability (MSI) is detected in about 15% of all colorectal cancers. CRC with MSI has particular characteristics such as improved survival rates and better prognosis. They also have a distinct sensitivity to the action of chemotherapy. The aim of the study was to detect microsatellite instability in a cohort of colorectal cancer Egyptian patients using the immunohistochemical expression of mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2). Cases were divided into Microsatellite stable (MSS), Microsatellite unstable low (MSI-L) and Microsatellite unstable high (MSI-H). This Microsatellite stability status was correlated with different clinicopathological parameters. There was a statistically significant correlation between the age of cases, tumor site & grade and the microsatellite stability status. There was no statistically significant correlation between the gender of patients, tumor subtype, stage, mucoid change, necrosis, tumor borders, lymphocytic response, lymphovascular emboli and the microsatellite stability status. Testing for MSI should be done for all colorectal cancer patients, especially those younger than 50 years old, right sided and high-grade CRCs.

  12. Mapping of the methylation pattern of the hMSH2 promoter in colon cancer, using bisulfite genomic sequencing

    Directory of Open Access Journals (Sweden)

    Zhang Hua

    2006-08-01

    Full Text Available Abstract The detailed methylation status of CpG sites in the promoter region of hMSH2 gene has yet not to be reported. We have mapped the complete methylation status of the hMSH2 promoter, a region that contains 75 CpG sites, using bisulfite genomic sequencing in 60 primary colorectal cancers. And the expression of hMSH2 was detected by immunohistochemistry. The hypermethylation of hMSH2 was detected in 18.33% (11/60 of tumor tissues. The protein of hMSH2 was detected in 41.67% (25/60 of tumor tissues. No hypermethylation of hMSH2 was detected in normal tissues. The protein of hMSH2 was detected in all normal tissues. Our study demonstrated that hMSH2 hypermethylation and protein expression were associated with the development of colorectal cancer.

  13. Expression of DNA repair proteins MSH2, MLH1 and MGMT in human benign and malignant thyroid lesions: An immunohistochemical study

    Science.gov (United States)

    Giaginis, Constantinos; Michailidi, Christina; Stolakis, Vasileios; Alexandrou, Paraskevi; Tsourouflis, Gerasimos; Klijanienko, Jerzy; Delladetsima, Ioanna; Theocharis, Stamatios

    2011-01-01

    Summary Background DNA repair is a major defense mechanism, which contributes to the maintenance of genetic sequence, and minimizes cell death, mutation rates, replication errors, DNA damage persistence and genomic instability. Alterations in the expression levels of proteins participating in DNA repair mechanisms have been associated with several aspects of cancer biology. The present study aimed to evaluate the clinical significance of DNA repair proteins MSH2, MLH1 and MGMT in benign and malignant thyroid lesions. Material/Methods MSH2, MLH1 and MGMT protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 90 patients with benign and malignant lesions. Results The expression levels of MLH1 was significantly upregulated in cases with malignant compared to those with benign thyroid lesions (p=0.038). The expression levels of MGMT was significantly downregulated in malignant compared to benign thyroid lesions (p=0.001). Similar associations for both MLH1 and MGMT between cases with papillary carcinoma and hyperplastic nodules were also noted (p=0.014 and p=0.026, respectively). In the subgroup of malignant thyroid lesions, MSH2 downregulation was significantly associated with larger tumor size (p=0.031), while MLH1 upregulation was significantly associated with the presence of lymphatic and vascular invasion (p=0.006 and p=0.002, respectively). Conclusions Alterations in the mismatch repair proteins MSH2 and MLH1 and the direct repair protein MGMT may result from tumor development and/or progression. Further studies are recommended to draw definite conclusions on the clinical significance of DNA repair proteins in thyroid neoplasia. PMID:21358597

  14. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Todd, E-mail: toddhsu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Kuan-Ming; Tsai, Huei-Ting; Sung, Shih-Tsung; Ho, Tsung-Nan [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-01-15

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3-5 {mu}M for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40-50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1-10 {mu}M restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 {mu}M. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  15. Secondary mutation in a coding mononucleotide tract in MSH6 causes loss of immunoexpression of MSH6 in colorectal carcinomas with MLH1/PMS2 deficiency.

    Science.gov (United States)

    Shia, Jinru; Zhang, Liying; Shike, Moshe; Guo, Min; Stadler, Zsofia; Xiong, Xiaoling; Tang, Laura H; Vakiani, Efsevia; Katabi, Nora; Wang, Hangjun; Bacares, Ruben; Ruggeri, Jeanine; Boland, C Richard; Ladanyi, Marc; Klimstra, David S

    2013-01-01

    Immunohistochemical staining for DNA mismatch repair proteins may be affected by various biological and technical factors. Staining variations that could potentially lead to erroneous interpretations have been recognized. A recently recognized staining variation is the significant reduction of staining for MSH6 in some colorectal carcinomas. The frequency and specific characteristics of this aberrant MSH6 staining pattern, however, have not been well analyzed. In this study of 420 colorectal carcinoma samples obtained from patients fulfilling the Revised Bethesda Guidelines, we detected 9 tumors (2%) showing extremely limited staining for MSH6 with positive staining present in PMS2 protein-deficient carcinomas (n=5, including 1 with a pathogenic mutation in PMS2); and (2) MLH1, PMS2 and MSH2 normal but with chemotherapy or chemoradiation therapy before surgery (n=4). To test our hypothesis that somatic mutation in the coding region microsatellite of the MSH6 gene might be a potential underlying mechanism for such limited MSH6 staining, we evaluated frameshift mutation in a (C)(8) tract in exon 5 of the MSH6 gene in seven tumors that had sufficient DNA for analysis, and detected mutation in four; all four tumors belonged to the MLH1/PMS2-deficient group. In conclusion, our data outline the main scenarios where significant reduction of MSH6 staining is more likely to occur in colorectal carcinoma, and suggest that somatic mutations of the coding region microsatellites of the MSH6 gene is an underlying mechanism for this staining phenomenon in MLH1/PMS2-deficient carcinomas.

  16. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas.

    Science.gov (United States)

    Felsberg, Jörg; Thon, Niklas; Eigenbrod, Sabina; Hentschel, Bettina; Sabel, Michael C; Westphal, Manfred; Schackert, Gabriele; Kreth, Friedrich Wilhelm; Pietsch, Torsten; Löffler, Markus; Weller, Michael; Reifenberger, Guido; Tonn, Jörg C

    2011-08-01

    Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care. Copyright © 2011 UICC.

  17. Tissue expression of MLH1, PMS2, MSH2, and MSH6 proteins and prognostic value of microsatellite instability in Wilms tumor: experience of 45 cases.

    Science.gov (United States)

    Diniz, Gulden; Aktas, Safiye; Cubuk, Cankut; Ortac, Ragip; Vergin, Canan; Olgun, Nur

    2013-05-01

    Although the importance of microsatellite instability (MSI) and mismatch repair genes (MMR) is strongly established in colorectal cancer seen in the Lynch syndrome, its significance has not been fully established in Wilms tumor (WT). The aim of this study was to determine the prognostic value of MSI and MMR proteins in WT. This study included 45 pediatric cases with nephroblastoma. Protein expression was analyzed by immunohistochemistry of archival tissue sections. Real-time PCR melting analysis and fluorescence capillary electrophoresis (FCE) were performed to evaluate the MSI markers BAT25, BAT26, NR21, NR24, MONO27, penta D, and penta C in DNA extracted from tumor and normal tissues. Lower levels of MSI were observed in six cases (13.3%). There were no statistically significant correlations between MSI and some clinical prognostic factors such as stage of the tumors, and survival rates. Nineteen tumors (42.2%) showed loss of protein expression of MLH1, PMS2, MSH2, or MSH6. MMR protein defects were correlated with size (P = .021), and stage (P = .019) of the tumor, and survival rates (P < .01).Similarly MSI was also correlated with the size of the tumor (P = .046). This study showed that a small proportion of WT might be associated with the presence of MSI, as is the case with defects of DNA mismatch repair genes in the pathogenesis of WT. However, there was no concordance with the frequency of tissue expression of MMR proteins and MSI. These findings suggest that MMR genes may play an important role in the development of WT via different pathways.

  18. Characterization of a rare variant (c.2635-2A>G) of the MSH2 gene in a family with Lynch syndrome.

    Science.gov (United States)

    Cariola, Filomena; Disciglio, Vittoria; Valentini, Anna M; Lotesoriere, Claudio; Fasano, Candida; Forte, Giovanna; Russo, Luciana; Di Carlo, Antonio; Guglielmi, Floranna; Manghisi, Andrea; Lolli, Ivan; Caruso, Maria L; Simone, Cristiano

    2018-04-01

    Lynch syndrome is caused by germline mutations in one of the mismatch repair genes ( MLH1, MSH2, MSH6, and PMS2) or in the EPCAM gene. Lynch syndrome is defined on the basis of clinical, pathological, and genetic findings. Accordingly, the identification of predisposing genes allows for accurate risk assessment and tailored screening protocols. Here, we report a family case with three family members manifesting the Lynch syndrome phenotype, all of which harbor the rare variant c.2635-2A>G affecting the splice site consensus sequence of intron 15 of the MSH2 gene. This mutation was previously described only in one family with Lynch syndrome, in which mismatch repair protein expression in tumor tissues was not assessed. In this study, we report for the first time the molecular characterization of the MSH2 c.2635-2A>G variant through in silico prediction analysis, microsatellite instability, and mismatch repair protein expression experiments on tumor tissues of Lynch syndrome patients. The potential effect of the splice site variant was revealed by three splicing prediction bioinformatics tools, which suggested the generation of a new cryptic splicing site. The potential pathogenic role of this variant was also revealed by the presence of microsatellite instability and the absence of MSH2/MSH6 heterodimer protein expression in the tumor cells of cancer tissues of the affected family members. We provide compelling evidence in favor of the pathogenic role of the MSH2 variant c.2635-2A>G, which could induce an alteration of the canonical splice site and consequently an aberrant form of the protein product (MSH2).

  19. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients.

    Science.gov (United States)

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J; Gerdes, Anne-Marie; Krogh, Lotte N; Bernstein, Inge; Okkels, Henrik; Wikman, Friedrik; Nielsen, Finn C; Hansen, Thomas V O

    2013-10-03

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance. Intronic MLH1, MSH2, or MSH6 variants were investigated using in silico prediction tools and mini-gene assay to asses the effect on splicing. We describe in silico and in vitro characterization of nine intronic MLH1, MSH2, or MSH6 mutations identified in Danish colorectal cancer patients, of which four mutations are novel. The analysis revealed aberrant splicing of five mutations (MLH1 c.588 + 5G > A, MLH1 c.677 + 3A > T, MLH1 c.1732-2A > T, MSH2 c.1276 + 1G > T, and MSH2 c.1662-2A > C), while four mutations had no effect on splicing compared to wild type (MLH1 c.117-34A > T, MLH1 c.1039-8 T > A, MSH2 c.2459-18delT, and MSH6 c.3439-16C > T). In conclusion, we classify five MLH1/MSH2 mutations as pathogenic, whereas four MLH1/MSH2/MSH6 mutations are classified as neutral. This study supports the notion that in silico prediction tools and mini-gene assays are important for the classification of intronic variants, and thereby crucial for the genetic counseling of patients and their family members.

  20. Involvement of Transglutaminase-2 in α-MSH-Induced Melanogenesis in SK-MEL-2 Human Melanoma Cells.

    Science.gov (United States)

    Kim, Hyun Ji; Lee, Hye Ja; Park, Mi Kyung; Gang, Kyung Jin; Byun, Hyun Jung; Park, Jeong Ho; Kim, Mi Kyung; Kim, Soo Youl; Lee, Chang Hoon

    2014-05-01

    Skin hyperpigmentation is one of the most common skin disorders caused by abnormal melanogenesis. The mechanism and key factors at play are not fully understood. Previous reports have indicated that cystamine (CTM) inhibits melanin synthesis, though its molecular mechanism in melanogenesis remains unclear. In the present study, we investigated the effect of CTM on melanin production using ELISA reader and the expression of proteins involved in melanogenesis by Western blotting, and examined the involvement of transglutaminase-2 (Tgase-2) in SK-MEL-2 human melanoma cells by gene silencing. In the results, CTM dose-dependently suppressed melanin production and dendrite extension in α-MSH-induced melanogenesis of SK-MEL-2 human melanoma cells. CTM also suppressed α-MSH-induced chemotactic migration as well as the expressions of melanogenesis factors TRP-1, TRP-2 and MITF in α-MSH-treated SK-MEL-2 cells. Meanwhile, gene silencing of Tgase-2 suppressed dendrite extension and the expressions of TRP-1 and TRP-2 in α-MSH-treated SK-MEL-2 cells. Overall, these findings suggested that CTM suppresses α-MSH-induced melanogenesis via Tgase-2 inhibition and that therefore, Tgase-2 might be a new target in hyperpigmentation disorder therapy.

  1. Coordination of Rad1-Rad10 interactions with Msh2-Msh3, Saw1 and RPA is essential for functional 3' non-homologous tail removal.

    Science.gov (United States)

    Eichmiller, Robin; Medina-Rivera, Melisa; DeSanto, Rachel; Minca, Eugen; Kim, Christopher; Holland, Cory; Seol, Ja-Hwan; Schmit, Megan; Oramus, Diane; Smith, Jessica; Gallardo, Ignacio F; Finkelstein, Ilya J; Lee, Sang Eun; Surtees, Jennifer A

    2018-04-06

    Double strand DNA break repair (DSBR) comprises multiple pathways. A subset of DSBR pathways, including single strand annealing, involve intermediates with 3' non-homologous tails that must be removed to complete repair. In Saccharomyces cerevisiae, Rad1-Rad10 is the structure-specific endonuclease that cleaves the tails in 3' non-homologous tail removal (3' NHTR). Rad1-Rad10 is also an essential component of the nucleotide excision repair (NER) pathway. In both cases, Rad1-Rad10 requires protein partners for recruitment to the relevant DNA intermediate. Msh2-Msh3 and Saw1 recruit Rad1-Rad10 in 3' NHTR; Rad14 recruits Rad1-Rad10 in NER. We created two rad1 separation-of-function alleles, rad1R203A,K205A and rad1R218A; both are defective in 3' NHTR but functional in NER. In vitro, rad1R203A,K205A was impaired at multiple steps in 3' NHTR. The rad1R218A in vivo phenotype resembles that of msh2- or msh3-deleted cells; recruitment of rad1R218A-Rad10 to recombination intermediates is defective. Interactions among rad1R218A-Rad10 and Msh2-Msh3 and Saw1 are altered and rad1R218A-Rad10 interactions with RPA are compromised. We propose a model in which Rad1-Rad10 is recruited and positioned at the recombination intermediate through interactions, between Saw1 and DNA, Rad1-Rad10 and Msh2-Msh3, Saw1 and Msh2-Msh3 and Rad1-Rad10 and RPA. When any of these interactions is altered, 3' NHTR is impaired.

  2. Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations.

    Science.gov (United States)

    Wang, Tao; Stadler, Zsofia K; Zhang, Liying; Weiser, Martin R; Basturk, Olca; Hechtman, Jaclyn F; Vakiani, Efsevia; Saltz, Lenard B; Klimstra, David S; Shia, Jinru

    2018-04-01

    Microsatellite instability, a well-established driver pathway in colorectal carcinogenesis, can develop in both sporadic and hereditary conditions via different molecular alterations in the DNA mismatch repair (MMR) genes. MMR protein immunohistochemistry (IHC) is currently widely used for the detection of MMR deficiency in solid tumors. The IHC test, however, can show varied staining patterns, posing challenges in the interpretation of the staining results in some cases. Here we report a case of an 80-year-old female with a colonic adenocarcinoma that exhibited an unusual "null" IHC staining pattern with complete loss of all four MMR proteins (MLH1, MSH2, MSH6, and PMS2). This led to subsequent MLH1 methylation testing and next generation sequencing which demonstrated that the loss of all MMR proteins was associated with concurrent promoter hypermethylation of MLH1 and double somatic truncating mutations in MSH2. These molecular findings, in conjunction with the patient's age being 80 years and the fact that the patient had no personal or family cancer history, indicated that the MMR deficiency was highly likely sporadic in nature. Thus, the stringent Lynch syndrome type surveillance programs were not recommended to the patient and her family members. This case illustrates a rare but important scenario where a null IHC phenotype signifies complex underlying molecular alternations that bear clinical management implications, highlighting the need for recognition and awareness of such unusual IHC staining patterns.

  3. Cancer risk in MLH1, MSH2 and MSH6 mutation carriers; different risk profiles may influence clinical management

    Directory of Open Access Journals (Sweden)

    Ramsoekh Dewkoemar

    2009-12-01

    Full Text Available Abstract Background Lynch syndrome (LS is associated with a high risk for colorectal cancer (CRC and extracolonic malignancies, such as endometrial carcinoma (EC. The risk is dependent of the affected mismatch repair gene. The aim of the present study was to calculate the cumulative risk of LS related cancers in proven MLH1, MSH2 and MSH6 mutation carriers. Methods The studypopulation consisted out of 67 proven LS families. Clinical information including mutation status and tumour diagnosis was collected. Cumulative risks were calculated and compared using Kaplan Meier survival analysis. Results MSH6 mutation carriers, both males and females had the lowest risk for developing CRC at age 70 years, 54% and 30% respectively and the age of onset was delayed by 3-5 years in males. With respect to endometrial carcinoma, female MSH6 mutation carriers had the highest risk at age 70 years (61% compared to MLH1 (25% and MSH2 (49%. Also, the age of EC onset was delayed by 5-10 years in comparison with MLH1 and MSH2. Conclusions Although the cumulative lifetime risk of LS related cancer is similar, MLH1, MSH2 and MSH6 mutations seem to cause distinguishable cancer risk profiles. Female MSH6 mutation carriers have a lower CRC risk and a higher risk for developing endometrial carcinoma. As a consequence, surveillance colonoscopy starting at age 30 years instead of 20-25 years is more suitable. Also, prophylactic hysterectomy may be more indicated in female MSH6 mutation carriers compared to MLH1 and MSH2 mutation carriers.

  4. CRM1-dependent nuclear export and dimerization with hMSH5 contribute to the regulation of hMSH4 subcellular localization

    International Nuclear Information System (INIS)

    Neyton, Sophie; Lespinasse, Francoise; Lahaye, Francois; Staccini, Pascal; Paquis-Flucklinger, Veronique; Santucci-Darmanin, Sabine

    2007-01-01

    MSH4 and MSH5 are members of the MutS homolog family, a conserved group of proteins involved in DNA mismatch correction and homologous recombination. Although several studies have provided compelling evidences suggesting that MSH4 and MSH5 could act together in early and late stages of meiotic recombination, their precise roles are poorly understood and recent findings suggest that the human MSH4 protein may also exert a cytoplasmic function. Here we show that MSH4 is present in the cytoplasm and the nucleus of both testicular cells and transfected somatic cells. Confocal studies on transfected cells provide the first evidence that the subcellular localization of MSH4 is regulated, at least in part, by an active nuclear export pathway dependent on the exportin CRM1. We used deletion mapping and mutagenesis to define two functional nuclear export sequences within the C-terminal part of hMSH4 that mediate nuclear export through the CRM1 pathway. Our results suggest that CRM1 is also involved in MSH5 nuclear export. In addition, we demonstrate that dimerization of MSH4 and MSH5 facilitates their nuclear localization suggesting that dimerization may regulate the intracellular trafficking of these proteins. Our findings suggest that nucleocytoplasmic traffic may constitute a regulatory mechanism for MSH4 and MSH5 functions

  5. A rapid and cell-free assay to test the activity of lynch syndrome-associated MSH2 and MSH6 missense variants

    DEFF Research Database (Denmark)

    Drost, Mark; Zonneveld, José B M; van Hees, Sandrine

    2012-01-01

    amino acid alterations. The pathogenicity of these variants of uncertain significance (VUS) is difficult to assess, precluding diagnosis of carriers and their relatives. Here we present a rapid cell-free assay to investigate MMR activity of MSH2 or MSH6 VUS. We used this assay to analyze a series of MSH......2 and MSH6 VUS, selected from the Leiden Open Variation Database. Whereas a significant fraction of the MSH2 VUS has lost MMR activity, suggesting pathogenicity, the large majority of the MSH6 VUS appears MMR proficient. We anticipate that this assay will be an important tool in the development...... of a comprehensive and widely applicable diagnostic procedure for LS-associated VUS....

  6. Repair genes expression profile of MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers.

    Science.gov (United States)

    Alves, Mônica Ghislaine Oliveira; Carta, Celina Faig Lima; de Barros, Patrícia Pimentel; Issa, Jaqueline Scholz; Nunes, Fábio Daumas; Almeida, Janete Dias

    2017-01-01

    The aim of this study was to evaluate the effect of chronic smoking on the expression profile of the repair genes MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers and never smokers. The sample consisted of thirty exfoliative cytology smears per group obtained from Smokers and Never Smokers. Total RNA was extracted and expression of the MLH1, MSH2 and ATM genes were evaluated by quantitative real-time and immunocytochemistry. The gene and protein expression data were correlated to the clinical data. Gene expression was analyzed statistically using the Student t-test and Pearson's correlation coefficient, with pMLH1, MSH2 and ATM genes were downregulated in the smoking group compared to the control with significant values for MLH1 (p=0.006), MSH2 (p=0.0001) and ATM (p=0.0001). Immunocytochemical staining for anti-MLH1, anti-MSH2 and anti-ATM was negative in Never Smokers; in Smokers it was rarely positive. No significant correlation was observed among the expression of MLH1, MSH2, ATM and age, number of cigarettes consumed per day, time of smoking during life, smoking history or levels of CO in expired air. The expression of genes and proteins related to DNA repair mechanism MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers was reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. MSH6 Mutations are Frequent in Hereditary Nonpolyposis Colorectal Cancer Families With Normal pMSH6 Expression as Detected by Immunohistochemistry

    DEFF Research Database (Denmark)

    Okkels, Henrik; Larsen, K.L.; Thorlacius-Ussing, O.

    2012-01-01

    INTRODUCTION:: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant condition accounting for 2% to 4% of all colorectal cancer cases worldwide. Families with germ line mutations in 1 of 6 mismatch repair genes are known as Lynch syndrome families. The largest number...... this approach in Lynch families carrying mutations in MSH6. MATERIALS AND METHODS:: Results of the screening of the MSH6 gene in HNPCC families were compared with those obtained on immunohistochemical protein analysis. RESULTS:: In 56 (7%) of 815 families, at least 1 MSH6 mutation, 23 definitively pathogenic...... be detected, whereas in 34.5% pMSH6 was present and pMLH1/pPMS2 was absent. CONCLUSIONS:: If genetic screening of HNPCC families depended on immunohistochemical results, a substantial number of families harboring a pathogenic mutation in MSH6 and the vast majority of families harboring an MSH6 unclassified...

  8. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  9. First description of mutational analysis of MLH1, MSH2 and MSH6 in Algerian families with suspected Lynch syndrome.

    Science.gov (United States)

    Ziada-Bouchaar, H; Sifi, K; Filali, T; Hammada, T; Satta, D; Abadi, N

    2017-01-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant disorder characterized by the early onset of colorectal cancer (CRC) linked to germline defects in Mismatch Repair (MMR) genes. We present here, the first molecular study of the correlation between CRC and mutations occurring in these genes performed in twenty-one unrelated Algerian families. The presence of germline mutations in MMR genes, MLH1, MSH2 and MSH6 genes was tested by sequencing all exons plus adjacent intronic sequences and Multiplex ligand-dependent probe amplification (MLPA) for testing large genomic rearrangements. Pathogenic mutations were identified in 20 % of families with clinical suspicion on HNPCC. Two novel variants described for the first time in Algerian families were identified in MLH1, c.881_884delTCAGinsCATTCCT and a large deletion in MSH6 gene from a young onset of CRC. Moreover, the variants of MSH2 gene: c.942+3A>T, c.1030C>T, the most described ones, were also detected in Algerian families. Furthermore, the families HNPCC caused by MSH6 germline mutation may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations. In this study, we confirmed that MSH2, MLH1, and MSH6 contribute to CRC susceptibility. This work represents the implementation of a diagnostic algorithm for the identification of Lynch syndrome patients in Algerian families.

  10. Novel germline MSH2 mutation in lynch syndrome patient surviving multiple cancers

    Directory of Open Access Journals (Sweden)

    Janavicius Ramunas

    2012-01-01

    Full Text Available Abstract Lynch syndrome (LS individuals are predisposed to a variety of cancers, most commonly colorectal, uterine, urinary tract, ovarian, small bowel, stomach and biliary tract cancers. The risk of extracolonic manifestations appears to be highest in MSH2 mutations carriers. We present a carrier case with a novel MSH2 gene mutation that clearly demonstrates the broad extent of LS phenotypic expression and highlights several important clinical aspects. Current evidence suggests that colorectal tumors from LS patients tend to have better prognoses than their sporadic counterparts, however survival benefits for other cancers encountered in LS are unclear. In this article we describe a family with a novel protein truncating mutation of c.2388delT in the MSH2 gene, particularly focusing on one individual carrier affected with multiple primary cancers who is surviving 25 years on. Our report of multiple primary tumors occurring in the 12-25 years interval might suggest these patients do not succumb to other extracolonic cancers, provided they are regularly followed-up.

  11. Functional characterization of rare missense mutations in MLH1 and MSH2 identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Kariola, Reetta; Korhonen, Mari K

    2009-01-01

    Recently, we have performed a population based study to analyse the frequency of colorectal cancer related MLH1 and MSH2 missense mutations in the Danish population. Half of the analyzed mutations were rare and most likely only present in the families where they were identified originally. Some...... of the missense mutations were located in conserved regions in the MLH1 and MSH2 proteins indicating a relation to disease development. In the present study, we functionally characterized 10 rare missense mutations in MLH1 and MSH2 identified in 13 Danish CRC families. To elucidate the pathogenicity...

  12. Hsp27, Hsp70 and mismatch repair proteins hMLH1 and hMSH2 expression in peripheral blood lymphocytes from healthy subjects and cancer patients.

    Science.gov (United States)

    Nadin, Silvina Beatriz; Vargas-Roig, Laura M; Drago, Gisela; Ibarra, Jorge; Ciocca, Daniel R

    2007-07-08

    Mismatch repair (MMR) deficiency and higher expression levels of heat shock proteins (Hsps) have been implicated with drug resistance to topoisomerase II poisons (doxorubicin) and to platinum compounds (cisplatin). This study was designed to determine individual influences of doxorubicin and cisplatin treatment on the expression of Hsp27, Hsp70, hMLH1 and hMSH2 proteins and in the DNA damage status in peripheral blood lymphocytes (PBLs). In addition, we studied whether these proteins and the DNA damage correlated with the survival of cancer patients. PBLs from 10 healthy donors and 25 cancer patients (before and after three cycles of chemotherapy) were exposed to in vitro treatments: C (control), HS (heat shock at 42 degrees C), Do or Pt (doxorubicin or cisplatin alone), and HS+Do or HS+Pt (heat shock+doxorubicin or heat shock+cisplatin). PBLs were collected at time 0 (T0: immediately after drug treatment) and after 24h of repair (T24). Hsp27, Hsp70, hMLH1 and hMSH2 were studied by immunocytochemistry and the DNA damage by alkaline comet assay. Immunofluorescence studies and confocal microscopy revealed that hMLH1 and hMSH2 colocalized with Hsp27 and Hsp72 (inducible form of Hsp70). hMLH1 and hMSH2 were significantly induced by Pt and HS+Pt at T24 in cancer patients, but only modestly influenced by Do. Cancer patients presented higher basal expression of total and nuclear Hsp27 and Hsp70 than controls, and these proteins were also increased by HS, Do and HS+Do. The Hsp70 induction by Pt and HS+Pt was noted in cancer patients, especially nuclear Hsp70. In cancer patients, basal DNA damage was slightly higher than in healthy persons; and after Pt and HS+Pt treatments, DNA migration and number of apoptotic cells were higher than controls. Hsps accomplished a cytoprotective function in pre-chemotherapy PBLs (HS before Do or Pt), but not in post-chemotherapy samples. In Pt-treated patients the ratio N/C (nuclear/cytoplasmic) of Hsp27 was related to disease free survival

  13. DNA mismatch repair protein MSH2 dictates cellular survival in response to low dose radiation in endometrial carcinoma cells.

    LENUS (Irish Health Repository)

    Martin, Lynn M

    2013-07-10

    DNA repair and G2-phase cell cycle checkpoint responses are involved in the manifestation of hyper-radiosensitivity (HRS). The low-dose radioresponse of MSH2 isogenic endometrial carcinoma cell lines was examined. Defects in cell cycle checkpoint activation and the DNA damage response in irradiated cells (0.2 Gy) were evaluated. HRS was expressed solely in MSH2+ cells and was associated with efficient activation of the early G2-phase cell cycle checkpoint. Maintenance of the arrest was associated with persistent MRE11, γH2AX, RAD51 foci at 2 h after irradiation. Persistent MRE11 and RAD51 foci were also evident 24 h after 0.2 Gy. MSH2 significantly enhances cell radiosensitivity to low dose IR.

  14. A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance-functional analysis reveals the pathogenic one

    DEFF Research Database (Denmark)

    Kantelinen, Jukka; Hansen, Thomas V O; Kansikas, Minttu

    2011-01-01

    Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS...... and the tumor pathological data suggested that the missense variation in MSH2, the more common susceptibility gene in LS, would be the predisposing alteration. However, MSH2 VUS was surprisingly found to be MMR proficient in an in vitro MMR assay and a tolerant alteration in silico. By supplying evidence...... identified VUS before predictive gene testing and genetic counseling are offered to a family....

  15. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer.

    Science.gov (United States)

    Pritchard, Colin C; Morrissey, Colm; Kumar, Akash; Zhang, Xiaotun; Smith, Christina; Coleman, Ilsa; Salipante, Stephen J; Milbank, Jennifer; Yu, Ming; Grady, William M; Tait, Jonathan F; Corey, Eva; Vessella, Robert L; Walsh, Tom; Shendure, Jay; Nelson, Peter S

    2014-09-25

    A hypermutated subtype of advanced prostate cancer was recently described, but prevalence and mechanisms have not been well-characterized. Here we find that 12% (7 of 60) of advanced prostate cancers are hypermutated, and that all hypermutated cancers have mismatch repair gene mutations and microsatellite instability (MSI). Mutations are frequently complex MSH2 or MSH6 structural rearrangements rather than MLH1 epigenetic silencing. Our findings identify parallels and differences in the mechanisms of hypermutation in prostate cancer compared with other MSI-associated cancers.

  16. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J

    2013-01-01

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomi...

  17. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    Directory of Open Access Journals (Sweden)

    Jose Miguel Moreno-Ortiz

    2016-01-01

    Full Text Available Background. Lynch Syndrome (LS is characterized by germline mutations in the DNA mismatch repair (MMR genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC, and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del and c.1852_1853delinsGC (p.K618A in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel.

  18. A Mononucleotide Markers Panel to Identify hMLH1/hMSH2 Germline Mutations

    Directory of Open Access Journals (Sweden)

    M. Pedroni

    2007-01-01

    Full Text Available Hereditary NonPolyposis Colorectal Cancer (Lynch syndrome is an autosomal dominant disease caused by germline mutations in a class of genes deputed to maintain genomic integrity during cell replication, mutations result in a generalized genomic instability, particularly evident at microsatellite loci (Microsatellite Instability, MSI. MSI is present in 85–90% of colorectal cancers that occur in Lynch Syndrome. To standardize the molecular diagnosis of MSI, a panel of 5 microsatellite markers was proposed (known as the “Bethesda panel”. Aim of our study is to evaluate if MSI testing with two mononucleotide markers, such as BAT25 and BAT26, was sufficient to identify patients with hMLH1/hMSH2 germline mutations. We tested 105 tumours for MSI using both the Bethesda markers and the two mononucleotide markers BAT25 and BAT26. Moreover, immunohistochemical evaluation of MLH1 and MSH2 proteins was executed on the tumours with at least one unstable microsatellite, whereas germline hMLH1/hMSH2 mutations were searched for all cases showing two or more unstable microsatellites.

  19. Combined deficiency of MSH2 and Sμ region abolishes class switch recombination.

    Science.gov (United States)

    Leduc, Claire; Haddad, Dania; Laviolette-Malirat, Nathalie; Nguyen Huu, Ngoc-Sa; Khamlichi, Ahmed Amine

    2010-10-01

    Class switch recombination (CSR) is mediated by G-rich tandem repeated sequences termed switch regions. Transcription of switch regions generates single-stranded R loops that provide substrates for activation-induced cytidine deaminase. Mice deficient in MSH2 have a mild defect in CSR and analysis of their switch junctions has led to a model in which MSH2 is more critical for switch recombination events outside than within the tandem repeats. It is also known that deletion of the whole Sμ region severely impairs but does not abrogate CSR despite the lack of detectable R loops. Here, we demonstrate that deficiency of both MSH2 and the Sμ region completely abolishes CSR and that the abrogation occurs at the genomic level. This finding further supports the crucial role of MSH2 outside the tandem repeats. It also indicates that during CSR, MSH2 has access to activation-induced cytidine deaminase targets in R-loop-deficient Iμ-Cμ sequences rarely used in CSR, suggesting an MSH2-dependent DNA processing activity at the Iμ exon that may decrease with transcription elongation across the Sμ region.

  20. Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch Syndrome.

    Science.gov (United States)

    Schneider, Nayê Balzan; Pastor, Tatiane; Paula, André Escremim de; Achatz, Maria Isabel; Santos, Ândrea Ribeiro Dos; Vianna, Fernanda Sales Luiz; Rosset, Clévia; Pinheiro, Manuela; Ashton-Prolla, Patricia; Moreira, Miguel Ângelo Martins; Palmero, Edenir Inêz

    2018-05-01

    Lynch syndrome (LS) is the most common hereditary colorectal cancer syndrome, caused by germline mutations in one of the major genes involved in mismatch repair (MMR): MLH1, MSH2, MSH6 and more rarely, PMS2. Recently, germline deletions in EPCAM have been also associated to the syndrome. Most of the pathogenic MMR mutations found in LS families occur in MLH1 or MSH2. Gene variants include missense, nonsense, frameshift mutations, large genomic rearrangements and splice-site variants and most of the studies reporting the molecular characterization of LS families have been conducted outside South America. In this study, we analyzed 60 unrelated probands diagnosed with colorectal cancer and LS criteria. Testing for germline mutations and/or rearrangements in the most commonly affected MMR genes (MLH1, MSH2, EPCAM and MSH6) was done by Sanger sequencing and MLPA. Pathogenic or likely pathogenic variants were identified in MLH1 or MSH2 in 21 probands (35.0%). Of these, approximately one-third were gene rearrangements. In addition, nine variants of uncertain significance (VUS) were identified in 10 (16.6%) of the sixty probands analyzed. Other four novel variants were identified, only in MLH1. Our results suggest that MSH6 pathogenic variants are not common among Brazilian LS probands diagnosed with CRC and that MMR gene rearrangements account for a significant proportion of the germline variants in this population underscoring the need to include rearrangement analysis in the molecular testing of Brazilian individuals with suspected Lynch syndrome. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  1. Synchronous lung tumours in a patient with metachronous colorectal carcinoma and a germline MSH2 mutation.

    LENUS (Irish Health Repository)

    Canney, A

    2012-02-01

    Mutations of DNA mismatch repair genes are characterised by microsatellite instability and are implicated in carcinogenesis. This mutation susceptible phenotype has been extensively studied in patients with hereditary non-polyposis colon carcinoma, but little is known of the contribution of such mutations in other tumour types, particularly non-small-cell lung carcinoma. This report describes the occurrence of two synchronous lung tumours, one mimicking a metastatic colon carcinoma, in a male patient with a history of metachronous colonic carcinoma. Immunohistochemistry supported a pulmonary origin for both lesions. Mismatch repair protein immunohistochemistry showed loss of MSH2 and MSH6 expression in both colonic tumours and in one lung tumour showing enteric differentiation. Subsequent mutational analysis demonstrated a deleterious germline mutation of the MSH2 mismatch repair gene. The significance of these findings and the practical diagnostic difficulties encountered in this case are discussed.

  2. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  3. The effects of MSH2 deficiency on spontaneous and radiation-induced mutation rates in the mouse germline

    International Nuclear Information System (INIS)

    Burr, Karen L-A.; Duyn-Goedhart, Annemarie van; Hickenbotham, Peter; Monger, Karen; Buul, Paul P.W. van; Dubrova, Yuri E.

    2007-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of mismatch repair deficient Msh2 knock-out mice. Spontaneous mutation rates in homozygous Msh2 -/- males were significantly higher than those in isogenic wild-type (Msh2 +/+ ) and heterozygous (Msh2 +/- ) mice. In contrast, the irradiated Msh2 -/- mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated Msh2 +/+ and Msh2 +/- animals. Considering these data and the results of other publications, we propose that the Msh2-deficient mice possess a mutator phenotype in their germline and somatic tissues while the loss of a single Msh2 allele does not affect the stability of heterozygotes

  4. A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance-functional analysis reveals the pathogenic one

    DEFF Research Database (Denmark)

    Kantelinen, Jukka; Hansen, Thomas V O; Kansikas, Minttu

    2011-01-01

    Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS...

  5. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma.

    Science.gov (United States)

    Hall, Geoffrey; Clarkson, Adele; Shi, Amanda; Langford, Eileen; Leung, Helen; Eckstein, Robert P; Gill, Anthony J

    2010-01-01

    Currently, testing for mismatch repair deficiency in colorectal cancers is initiated by performing immunohistochemistry with four antibodies (MLH1, PMS2, MSH2 and MSH6). If any one of these stains is negative the tumour is considered microsatellite unstable and, if clinical circumstances warrant it, the patient is offered genetic testing for Lynch's syndrome. Due to the binding properties of the mismatch repair heterodimer complexes, gene mutation and loss of MLH1 and MSH2 invariably result in the degradation of PMS2 and MSH6, respectively, but the converse is not true. We propose that staining for PMS2 and MSH6 alone will be sufficient to detect all cases of mismatch repair deficiency and should replace routine screening with all four antibodies. The electronic database of the department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia, was searched for all colorectal carcinomas on which a four panel immunohistochemical microsatellite instability screen was performed. An audit of the slides for concordant loss of MLH1-PMS2 and MSH2-MSH6 was then undertaken. Unusual or discordant cases were reviewed and, in some cases, re-stained to confirm the staining pattern. Of 344 cases of colorectal cancer which underwent four antibody immunohistochemistry, 104 displayed loss of at least one mismatch repair protein. Of these, 100 showed concordant mismatch repair loss (i.e., loss of MLH1 and PMS2 or loss of MSH2 and MSH6). The four discordant cases comprised two single negative cases (1 MSH6 negative/MSH2 positive case, 1 PMS2 negative/MLH1 positive) and two triple negative (both MLH1/PMS2/MSH6 negative). The microsatellite instability (MSI) group showed a relatively high median age (69.3 years) due to the departmental policy of testing all cases with possible MSI morphology regardless of age. The sensitivity and specificity of a two panel test comprised of PMS2 and MSH6, compared to a four panel test, is 100%. No false negatives or positives were

  6. Expression of MLH1 and MSH2 in urothelial carcinoma of the renal pelvis.

    Science.gov (United States)

    Ehsani, Laleh; Osunkoya, Adeboye O

    2014-09-01

    In this study, we investigated microsatellite instability in urothelial carcinoma of the renal pelvis by lack of immunohistochemical staining for MLH1 and MSH2. The study included 44 cases of urothelial carcinoma of the renal pelvis obtained from radical nephroureterectomy specimens at our institution. We evaluated the loss of nuclear immunohistochemical staining of MLH1 and MSH2. Eight of 44 (18 %) patients had negative MLH1 expression and 25/44 (57 %) patients had negative MSH2 expression. Six of 8 (75 %) patients with negative MLH1 expression were male and 2/8 (25 %) patients were female. Nineteen of 25 (75 %) patients with negative MSH2 expression were male, and 6/25 (24 %) patients were female. Seven of 8 (88 %) cases with negative MLH1 expression were high-grade urothelial carcinoma, and 21/25 (84 %) cases with negative MSH2 expression were high-grade urothelial carcinoma. Twenty-one of 44 (48 %) cases had an inverted growth pattern, of which 3/21 (14 %) cases had negative MLH1 expression and 14/21 (67 %) cases had negative MSH2 expression. Our study showed that microsatellite instability based on negative expression of MLH1 and MSH2 was more common in male patients with high-grade urothelial carcinoma. There is a strong correlation between inverted growth pattern and negative MSH2 expression. Microsatellite instability testing should be performed in patients with upper urinary tract carcinoma and may have prognostic value.

  7. Photoaffinity labelling of MSH receptors on Anolis melanophores: irradiation technique and MSH photolabels for irreversible stimulation

    International Nuclear Information System (INIS)

    Eberle, A.N.

    1984-01-01

    Excised dorsal skin of Anolis carolinensis was exposed to high intensity UV-irradiation in the presence of different photoreactive alpha-MSH derivatives. The resulting covalent binding of the hormone to its receptor induced irreversible pigment dispersion. The duration of the longlasting response depended on the type and length of irradiation; it was maximal after two 5 min irradiation phases with a light intensity of approximately 180 mW/cm 2 and a spectrum from 310 to 550 nm, fresh hormone being added after the first phase. [N alpha-(4-Azidophenylacetyl-serine1]-alpha-MSH (I), [2'-(2-nitro-4-azidophenylsulphenyl)-tryptophan 9 ]-alpha-MSH (II) and [p-azidophenylalanine 13 ]-alpha-MSH (III) all inserted into the receptor to about the same extent, as judged from the persistence of the longlasting signal. In contrast, [D-alanine1, p-azidophenylalanin2 2 , norvaline 4 ]-alpha-MSH (IV) and [N alpha-(4-azidophenylacetyl)-serine1, leucine 9 ]-alpha-MSH (V) gave much less insertion and [leucine 9 , p-azidophenylalanine 13 ]-alpha-MSH (VI) hardly any insertion when applied in the same relative excess (5-fold the concentration inducing a maximal response). Covalent attachment of the cleavable photolabel [N alpha-(4-azidophenyl)-1, 3'-dithio-propionyl-serine1]-alpha-MSH (VII) and subsequent washing of the skin in buffer containing 1% beta-mercaptoethanol released the peptide from the receptor. Insertion of the C-terminal photolabel [p-azidophenylalanine 13 ]-alpha-MSH was reduced by the weak antagonist H-Phe-Ala-Trp-Gly-Gly-Pro-Val-NH 2 . These experiments prove that hormone receptors can be covalently labelled in tissue with very limited light transparency

  8. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.

    Directory of Open Access Journals (Sweden)

    Marina Kovalenko

    Full Text Available The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111 with mice carrying a conditional (floxed Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.

  9. Screening for germline mutations of MLH1, MSH2, MSH6 and PMS2 genes in Slovenian colorectal cancer patients: implications for a population specific detection strategy of Lynch syndrome.

    Science.gov (United States)

    Berginc, Gasper; Bracko, Matej; Ravnik-Glavac, Metka; Glavac, Damjan

    2009-01-01

    Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.

  10. Cancer risks for MLH1 and MSH2 mutation carriers

    OpenAIRE

    Dowty, James G.; Win, Aung K.; Buchanan, Daniel D.; Lindor, Noralane M.; Macrae, Finlay A.; Clendenning, Mark; Antill, Yoland C.; Thibodeau, Stephen N.; Casey, Graham; Gallinger, Steve; Le Marchand, Loic; Newcomb, Polly A.; Haile, Robert W.; Young, Graeme P.; James, Paul A.

    2013-01-01

    We studied 17,576 members of 166 MLH1 and 224 MSH2 mutation-carrying families from the Colon Cancer Family Registry. Average cumulative risks of colorectal cancer (CRC), endometrial cancer (EC) and other cancers for carriers were estimated using modified segregation analysis conditioned on ascertainment criteria. Heterogeneity in risks was investigated using a polygenic risk modifier. Average CRC cumulative risks to age 70 years (95% confidence intervals) for MLH1 and MSH2 mutation carriers, ...

  11. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease*

    Science.gov (United States)

    Rogacheva, Maria V.; Manhart, Carol M.; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-01-01

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair. PMID:24403070

  12. [Immunohistochemical examination of MSH2, PMS2, MLH1, MSH6 compared with the analysis of microsatellite instability in colon adenocarcinoma].

    Science.gov (United States)

    Raskin, G A; Ianus, G A; Kornilov, A V; Orlova, R V; Petrov, S V; Protasova, A É; Pozharisskiĭ, K M; Imianitov, E N

    2014-01-01

    Adenocarcinoma of the colon in 10-20% is associated with microsatellite instability, which can occur both in sporadic cancers and in hereditary nonpolyposis colon cancer. Our analysis of 195 cases of adenocarcinoma of the colon showed that microsatellite instability (MSI-H) was found only in 1.5% of patients. Subsequent choice of patients with suspected hereditary Lynch syndrome led to the identification of additional 17 patients with microsatellite instability. They passed an analysis of genes of repair system of unpaired nucleotides of DNA. The study showed that immunohistochemical staining of MSH2, MSH6, MLH1, PMS2 could effectively conduct a preliminary screening of the Lynch syndrome but was unable to divide cases of sporadic and hereditary MSI-H colon cancer.

  13. Excess of extracolonic non-endometrial multiple primary cancers in MSH2 germline mutation carriers over MLH1.

    Science.gov (United States)

    Lin-Hurtubise, Kevin M; Yheulon, Christopher G; Gagliano, Ronald A; Lynch, Henry T

    2013-12-01

    The lynch syndrome (LS) tumor spectrum involves colorectal cancer (CRC), endometrial cancer (EC), and less frequently various extracolonic non-endometrial cancers (non-EC). The organ-specific survival rates of these patients are well defined, however, the collective survival of all-cancers combined (CRC + EC + non-EC) are unclear. Fifty-two MSH2 patients and 68 MLH1 patients were followed for a median of 6.3 years after diagnosis of first cancer, regardless of type. The proportions of CRC only, EC, non-EC, and multiple primary cancers were compared between the two genotypes. Kaplan-Meier curves were developed for survival comparisons. MSH2 patients present less frequently with only CRC (37% MSH2, 62% MLH1, P = 0.0096), manifest more multiple primary cancers (38% MSH2, 18% MLH1, P = 0.013), develop more extracolonic cancers (62% MSH2, 38% MLH1, P = 0.003), non-EC only cancers (46% MSH2, 24% MLH1, P = 0.028) and carry a greater risk for urinary tract cancer (UTC) (13.4% MSH2, 1.5% MLH1, P = 0.024). There was no difference in 10-year survival between the two groups (P = 0.4). The additional propensity for UTC in MSH2 carriers argues in favor of UTC screening in MSH2 individuals. Other types of cancer screening should be tailored to the expression history of the specific LS mutation. © 2013 Wiley Periodicals, Inc.

  14. α-MSH stimulates glucose uptake in mouse muscle and phosphorylates Rab-GTPase-activating protein TBC1D1 independently of AMPK

    DEFF Research Database (Denmark)

    Møller, Cathrine Laustrup; Kjøbsted, Rasmus; Enriori, Pablo J

    2016-01-01

    The melanocortin system includes five G-protein coupled receptors (family A) defined as MC1R-MC5R, which are stimulated by endogenous agonists derived from proopiomelanocortin (POMC). The melanocortin system has been intensely studied for its central actions in body weight and energy expenditure...... pathway involved in α-MSH-stimulated glucose uptake in differentiated L6 myotubes and mouse muscle explants. In order to examine the involvement of AMPK, we investigate -MSH stimulation in both wild type and AMPK deficient mice. We found that -MSH significantly induces phosphorylation of TBC1 domain (TBC1...

  15. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  16. Urinary Tract Cancer in Lynch Syndrome; Increased Risk in Carriers of MSH2 Mutations

    DEFF Research Database (Denmark)

    Joost, Patrick; Therkildsen, Christina; Dominguez-Valentin, Mev

    2015-01-01

    and microsatellite instability in 23% of the tumors. Mutations in MSH2 were overrepresented (73%), and MSH2 mutation carriers were at a significantly increased risk of developing urinary tract cancer compared with individuals with mutations in MLH1 or MSH6. CONCLUSION: Cancers of the upper urinary tract...

  17. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling

    2011-01-01

    promoter was only detected in 14 samples and only at a low level with no correlation to gene expression. MSH2 gene expression was not a prognostic factor for overall survival in univariate or multivariate analysis. The gene expression of MSH2 is a potential quantitative marker ready for further clinical...

  18. Identification of MSH2 inversion of exons 1-7 in clinical evaluation of families with suspected Lynch syndrome.

    Science.gov (United States)

    Mork, Maureen E; Rodriguez, Andrea; Taggart, Melissa W; Rodriguez-Bigas, Miguel A; Lynch, Patrick M; Bannon, Sarah A; You, Y Nancy; Vilar, Eduardo

    2017-07-01

    Traditional germline sequencing and deletion/duplication analysis does not detect Lynch syndrome-causing mutations in all individuals whose colorectal or endometrial tumors demonstrate mismatch repair (MMR) deficiency. Unique inversions and other rearrangements of the MMR genes have been reported in families with Lynch syndrome. In 2014, a recurrent inversion of MSH2 exons 1-7 was identified in five families suspected to have Lynch syndrome. We aimed to describe our clinical experience in identifying families with this specific inversion. Four probands whose Lynch syndrome-associated tumors demonstrated absence of MSH2/MSH6 staining and who had negative MMR germline testing were evaluated for the MSH2 inversion of exons 1-7, offered during initial genetic workup or upon routine clinical follow-up. All four probands tested positive for the MSH2 inversion. Proband cancer diagnoses included colon and endometrial adenocarcinoma and sebaceous adenoma. A variety of Lynch syndrome-associated cancers were reported in the family histories, although only one family met Amsterdam II criteria. Thirteen at-risk relatives underwent predictive testing. MSH2 inversion of exons 1-7 was found in four probands previously suspected to have Lynch syndrome based on family history and tumor testing. This testing should be offered routinely to patients with tumors demonstrating loss of MSH2/MSH6 staining.

  19. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer.

    Science.gov (United States)

    Talseth-Palmer, Bente A; McPhillips, Mary; Groombridge, Claire; Spigelman, Allan; Scott, Rodney J

    2010-05-21

    Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  20. Synthesis and characterization of a Eu-DTPA-PEGO-MSH(4) derivative for evaluation of binding of multivalent molecules to melanocortin receptors.

    Science.gov (United States)

    Xu, Liping; Vagner, Josef; Alleti, Ramesh; Rao, Venkataramanarao; Jagadish, Bhumasamudram; Morse, David L; Hruby, Victor J; Gillies, Robert J; Mash, Eugene A

    2010-04-15

    A labeled variant of MSH(4), a tetrapeptide that binds to the human melanocortin 4 receptor (hMC4R) with low microM affinity, was prepared by solid-phase synthesis methods, purified, and characterized. The labeled ligand, Eu-DTPA-PEGO-His-dPhe-Arg-Trp-NH(2), exhibited a K(d) for hMC4R of 9.1+/-1.4 microM, approximately 10-fold lower affinity than the parental ligand. The labeled MSH(4) derivative was employed in a competitive binding assay to characterize the interactions of hMC4R with monovalent and divalent MSH(4) constructs derived from squalene. The results were compared with results from a similar assay that employed a more potent labeled ligand, Eu-DTPA-NDP-alpha-MSH. While results from the latter assay reflected only statistical effects, results from the former assay reflected a mixture of statistical, proximity, and/or cooperative binding effects. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Single nucleotide polymorphisms of DNA mismatch repair genes MSH2 and MLH1 confer susceptibility to esophageal cancer.

    Science.gov (United States)

    Sun, Ming-Zhong; Ju, Hui-Xiang; Zhou, Zhong-Wei; Jin, Hao; Zhu, Rong

    2014-01-01

    Defects in DNA mismatch repair genes like MSH2 and MLH1 confer increased risk of cancers. Here, single nucleotide polymorphisms (SNPs) in MSH2 and MLH1 were investigated for their potential contribution to the risk of esophageal cancer. This study recruited 614 participants from Affiliated Yancheng Hospital, School of Medicine, Southeast University, of which 289 were patients with esophageal cancer, and the remainder was healthy individuals who served as a control group. Two SNPs, MSH2 c.2063T>G and MLH1 IVS14-19A>G, were genotyped using PCR-RFLP. Statistical analysis was performed using chi-square test and logistic regression analysis. Carriers of the MSH2 c.2063G allele were at significantly higher risk for esophageal cancer compared to individuals with the TT genotype [OR = 3.36, 95% confidence interval (CI): 1.18-11.03]. The MLH1 IVS14-19A>G allele also conferred significantly increased (1.70-fold) for esophageal cancer compared to the AA genotype (OR = 1.70, 95% CI: 1.13-5.06). Further, the variant alleles interacted such that individuals with the susceptible genotypes at both MSH2 and MLH1 had a significantly exacerbated risk for esophageal cancer (OR = 12.38, 95% CI: 3.09-63.11). In brief, SNPs in the DNA mismatch repair genes MSH2 and MLH1 increase the risk of esophageal cancer. Molecular investigations are needed to uncover the mechanism behind their interaction effect.

  2. Functional analysis of HNPCC-related missense mutations in MSH2

    DEFF Research Database (Denmark)

    Lützen, Anne; de Wind, Niels; Georgijevic, Dubravka

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant...

  3. Genotyping of BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes in a male patient with secondary breast cancer

    International Nuclear Information System (INIS)

    Vodusek, Ana Lina; Novakovic, Srdjan; Stegel, Vida; Jereb, Berta

    2011-01-01

    Some tumour suppressor genes (BRCA2) and mismatch repair genes (MSH2, MLH1) are correlated with an increased risk for male breast cancer. Our patient developed secondary breast cancer after the treatment for Hodgkin’s disease in childhood. DNA was isolated from the patients’ blood and screened for mutations, polymorphisms and variants in BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes. We found no mutations but common polymorphisms, and three variants in mismatch repair genes. Nucleotide variants c.2006-6T>C and p.G322D in MSH2 might be correlated with male breast cancer

  4. Predictive value of MSH2 gene expression in colorectal cancer treated with capecitabine

    DEFF Research Database (Denmark)

    Jensen, Lars H; Danenberg, Kathleen D; Danenberg, Peter V

    2007-01-01

    was associated with a hazard ratio of 0.5 (95% confidence interval, 0.23-1.11; P = 0.083) in survival analysis. CONCLUSION: The higher gene expression of MSH2 in responders and the trend for predicting overall survival indicates a predictive value of this marker in the treatment of advanced CRC with capecitabine.......PURPOSE: The objective of the present study was to evaluate the gene expression of the DNA mismatch repair gene MSH2 as a predictive marker in advanced colorectal cancer (CRC) treated with first-line capecitabine. PATIENTS AND METHODS: Microdissection of paraffin-embedded tumor tissue, RNA...

  5. Screening of the DNA mismatch repair genes MLH1, MSH2 and MSH6 in a Greek cohort of Lynch syndrome suspected families

    International Nuclear Information System (INIS)

    Thodi, Georgia; Fountzilas, George; Yannoukakos, Drakoulis; Fostira, Florentia; Sandaltzopoulos, Raphael; Nasioulas, George; Grivas, Anastasios; Boukovinas, Ioannis; Mylonaki, Maria; Panopoulos, Christos; Magic, Mirjana Brankovic

    2010-01-01

    Germline mutations in the DNA mismatch repair genes predispose to Lynch syndrome, thus conferring a high relative risk of colorectal and endometrial cancer. The MLH1, MSH2 and MSH6 mutational spectrum reported so far involves minor alterations scattered throughout their coding regions as well as large genomic rearrangements. Therefore, a combination of complete sequencing and a specialized technique for the detection of genomic rearrangements should be conducted during a proper DNA-testing procedure. Our main goal was to successfully identify Lynch syndrome families and determine the spectrum of MLH1, MSH2 and MSH6 mutations in Greek Lynch families in order to develop an efficient screening protocol for the Greek colorectal cancer patients' cohort. Forty-two samples from twenty-four families, out of which twenty two of Greek, one of Cypriot and one of Serbian origin, were screened for the presence of germline mutations in the major mismatch repair genes through direct sequencing and MLPA. Families were selected upon Amsterdam criteria or revised Bethesda guidelines. Ten deleterious alterations were detected in twelve out of the twenty-four families subjected to genetic testing, thus our detection rate is 50%. Four of the pathogenic point mutations, namely two nonsense, one missense and one splice site change, are novel, whereas the detected genomic deletion encompassing exon 6 of the MLH1 gene has been described repeatedly in the LOVD database. The average age of onset for the development of both colorectal and endometrial cancer among mutation positive families is 43.2 years. The mutational spectrum of the MMR genes investigated as it has been shaped by our analysis is quite heterogeneous without any strong indication for the presence of a founder effect

  6. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Talseth-Palmer Bente A

    2010-05-01

    Full Text Available Abstract Background Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. Methods A total of 78 participants (from 29 families with a mutation in MSH6 and 7 participants (from 6 families with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. Results MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Conclusion Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  7. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Science.gov (United States)

    Hinrichsen, Inga; Kemp, Matthias; Peveling-Oberhag, Jan; Passmann, Sandra; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-01

    Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  8. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Directory of Open Access Journals (Sweden)

    Inga Hinrichsen

    Full Text Available Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV. However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16 in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  9. Promoter hypermethylation of DNA repair genes MLH1 and MSH2 in adenocarcinomas and squamous cell carcinomas of the lung

    Directory of Open Access Journals (Sweden)

    A. Gomes

    2014-01-01

    Full Text Available Five years survival of lung cancer is 16%, significantly lower than in prostate (99.9%, breast (88.5% and colon (64.1% carcinomas. When diagnosed in the surgical stage it increases to 50% but this group only comprises 14–16% of the cases. DNA methylation has emerged as a potential cancer-specific biomarker. Hypermethylation of CpG islands located in the promoter regions of tumour suppressor genes is now firmly established as an important mechanism for gene inactivation.This retrospective study included 40 squamous cell carcinomas and 40 adenocarcinomas in various surgical TNM stages to define methylation profile and possible silencing of DNA repair genes – MLH1 and MSH2 – using Methylation-Specific PCR and protein expression by immunohistochemistry in tumoural tissue, preneoplastic lesions and respiratory epithelium with normal histological features.The protein expression of MLH1 and MSH2 genes, in the available preneoplastic lesions and in normal cylindrical respiratory epithelium appeared reduced. The frequency of promoter hypermethylation found on these DNA repair genes was elevated, with a higher prevalence of methylation of MLH1 gene in 72% of squamous cell carcinoma. The differences are not so obvious for MSH2 promoter hypermethylation. No correlation was found among the status of methylation, the protein expression and the clinicopathological characteristics.With a larger study, a better characterization of the hypermethylation status of neoplastic and preneoplastic lesions in small biopsies would be achieved, inherent to tumour histology, heterogeneity and preservation, and finally differences in the study population to elucidate other possible mechanisms of altered expression of the hMLH1 and hMSH. Resumo: A sobrevivência aos cinco anos no cancro do pulmão é de 16%, significativamente inferior que nos carcinomas na próstata (99,9%, mama (88,5% e cólon (64,1%. Quando diagnosticado na fase cir

  10. The peptide NDP-MSH induces phenotype changes in the heart that resemble ischemic preconditioning.

    Science.gov (United States)

    Catania, Anna; Lonati, Caterina; Sordi, Andrea; Leonardi, Patrizia; Carlin, Andrea; Gatti, Stefano

    2010-01-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) is a pro-opiomelanocortin (POMC)-derived peptide that exerts multiple protective effects on host cells. Previous investigations showed that treatment with alpha-MSH or synthetic melanocortin agonists reduces heart damage in reperfusion injury and transplantation. The aim of this preclinical research was to determine whether melanocortin treatment induces preconditioning-like cardioprotection. In particular, the plan was to assess whether melanocortin administration causes phenotype changes similar to those induced by repetitive ischemic events. The idea was conceived because both ischemic preconditioning and melanocortin signaling largely depend on cAMP response element binding protein (CREB) phosphorylation. Rats received single i.v. injections of 750microg/kg of the alpha-MSH analogue Nle(4),DPhe(7)-alpha-MSH (NDP-MSH) or saline and were sacrificed at 0.5, 1, 3, or 5h. Western blot analysis showed that rat hearts expressed melanocortin 1 receptor (MC1R) protein. Treatment with NDP-MSH was associated with early and marked increase in interleukin 6 (IL-6) mRNA. This was followed by signal transducer and activator of transcription 3 (STAT3) phosphorylation and induction of suppressor of cytokine signaling 3 (SOCS3). There were no changes in expression of other cytokines of the IL-6 family. Expression of IL-10, IL-1beta, and TNF-alpha was likewise unaltered. In hearts of rats treated with NDP-MSH there was increased expression of the orphan nuclear receptor Nur77. The data indicate that NDP-MSH induces phenotype changes that closely resemble ischemic preconditioning and likely contribute to its established protection against reperfusion injury. In addition, the increased expression of Nur77 and SOCS3 could be part of a broader anti-inflammatory effect.

  11. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    2017-05-01

    Full Text Available Defective mismatch repair (MMR in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6, which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1, which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3 recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.

  12. Thyroid cancer in a patient with a germline MSH2 mutation. Case report and review of the Lynch syndrome expanding tumour spectrum

    Directory of Open Access Journals (Sweden)

    Stulp Rein P

    2008-02-01

    Full Text Available Abstract Lynch syndrome (HNPCC is a dominantly inherited disorder characterized by germline defects in DNA mismatch repair (MMR genes and the development of a variety of cancers, predominantly colorectal and endometrial. We present a 44-year-old woman who was shown to carry the truncating MSH2 gene mutation that had previously been identified in her family. Recently, she had been diagnosed with an undifferentiated carcinoma of the thyroid and an adenoma of her coecum. Although the thyroid carcinoma was not MSI-high (1 out of 5 microsatellites instable, it did show complete loss of immunohistochemical expression for the MSH2 protein, suggesting that this tumour was not coincidental. Although the risks for some tumour types, including breast cancer, soft tissue sarcoma and prostate cancer, are not significantly increased in Lynch syndrome, MMR deficiency in the presence of a corresponding germline defect has been demonstrated in incidental cases of a growing range of tumour types, which is reviewed in this paper. Interestingly, the MSH2-associated tumour spectrum appears to be wider than that of MLH1 and generally the risk for most extra-colonic cancers appears to be higher for MSH2 than for MLH1 mutation carriers. Together with a previously reported case, our findings show that anaplastic thyroid carcinoma can develop in the setting of Lynch syndrome. Uncommon Lynch syndrome-associated tumour types might be useful in the genetic analysis of a Lynch syndrome suspected family if samples from typical Lynch syndrome tumours are unavailable.

  13. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    Science.gov (United States)

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Rab3a is critical for trapping alpha-MSH granules in the high Ca²⁺-affinity pool by preventing constitutive exocytosis.

    Directory of Open Access Journals (Sweden)

    Simon Sedej

    Full Text Available Rab3a is a small GTPase of the Rab3 subfamily that acts during late stages of Ca²⁺-regulated exocytosis. Previous functional analysis in pituitary melanotrophs described Rab3a as a positive regulator of Ca²⁺-dependent exocytosis. However, the precise role of the Rab3a isoform on the kinetics and intracellular [Ca²⁺] sensitivity of regulated exocytosis, which may affect the availability of two major peptide hormones, α-melanocyte stimulating hormone (α-MSH and β-endorphin in plasma, remain elusive. We employed Rab3a knock-out mice (Rab3a KO to explore the secretory phenotype in melanotrophs from fresh pituitary tissue slices. High resolution capacitance measurements showed that Rab3a KO melanotrophs possessed impaired Ca²⁺-triggered secretory activity as compared to wild-type cells. The hampered secretion was associated with the absence of cAMP-guanine exchange factor II/ Epac2-dependent secretory component. This component has been attributed to high Ca²⁺-sensitive release-ready vesicles as determined by slow photo-release of caged Ca²⁺. Radioimmunoassay revealed that α-MSH, but not β-endorphin, was elevated in the plasma of Rab3a KO mice, indicating increased constitutive exocytosis of α-MSH. Increased constitutive secretion of α-MSH from incubated tissue slices was associated with reduced α-MSH cellular content in Rab3a-deficient pituitary cells. Viral re-expression of the Rab3a protein in vitro rescued the secretory phenotype of melanotrophs from Rab3a KO mice. In conclusion, we suggest that Rab3a deficiency promotes constitutive secretion and underlies selective impairment of Ca²⁺-dependent release of α-MSH.

  15. Cu-64-labeled lactam bridge-cyclized α-MSH peptides for PET imaging of melanoma.

    Science.gov (United States)

    Guo, Haixun; Miao, Yubin

    2012-08-06

    The purpose of this study was to examine and compare the melanoma targeting and imaging properties of (64)Cu-NOTA-GGNle-CycMSH(hex) {(64)Cu-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (64)Cu-DOTA-GGNle-CycMSH(hex) {(64)Cu-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-GGNle-CycMSH(hex)}. Two lactam bridge-cyclized peptides, NOTA-GGNle-CycMSH(hex) and DOTA-GGNle-CycMSH(hex), were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSH(hex) was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSH(hex). The melanoma targeting and imaging properties of (64)Cu-NOTA-GGNle-CycMSH(hex) and (64)Cu-DOTA-GGNle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSH(hex) and DOTA-GGNle-CycMSH(hex) displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM). The substitution of DOTA with NOTA dramatically increased the melanoma uptake and decreased the renal and liver uptake of (64)Cu-NOTA-GGNle-CycMSH(hex). The tumor uptake of (64)Cu-NOTA-GGNle-CycMSH(hex) was between 12.39 ± 1.61 and 12.71 ± 2.68% ID/g at 0.5, 2, and 4 h postinjection. The accumulation of (64)Cu-NOTA-GGNle-CycMSH(hex) activity in normal organs was lower than 1.02% ID/g except for the kidneys 2, 4, and 24 h postinjection. The tumor/liver uptake ratios of (64)Cu-NOTA-GGNle-CycMSHhex were 17.96, 16.95, and 8.02, whereas the tumor/kidney uptake ratios of (64)Cu-NOTA-GGNle-CycMSH(hex) were 2.52, 3.60, and 5.74 at 2, 4, and 24 h postinjection, respectively. Greater than 91% of the injected radioactivity cleared through the urinary system by 2 h postinjection. The substitution of DOTA with NOTA resulted in a dramatic increase in melanoma uptake and decrease in renal and liver uptake of (64)Cu-NOTA-GGNle-CycMSH(hex) as compared to (64)Cu-DOTA-GGNle-CycMSH(hex). High melanoma uptake coupled with low accumulation in nontarget

  16. MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer.

    Science.gov (United States)

    Roberts, Maegan E; Jackson, Sarah A; Susswein, Lisa R; Zeinomar, Nur; Ma, Xinran; Marshall, Megan L; Stettner, Amy R; Milewski, Becky; Xu, Zhixiong; Solomon, Benjamin D; Terry, Mary Beth; Hruska, Kathleen S; Klein, Rachel T; Chung, Wendy K

    2018-01-18

    PurposeAn association of Lynch syndrome (LS) with breast cancer has been long suspected; however, there have been insufficient data to address this question for each of the LS genes individually.MethodsWe conducted a retrospective review of personal and family history in 423 women with pathogenic or likely pathogenic germ-line variants in MLH1 (N = 65), MSH2 (N = 94), MSH6 (N = 140), or PMS2 (N = 124) identified via clinical multigene hereditary cancer testing. Standard incidence ratios (SIRs) of breast cancer were calculated by comparing breast cancer frequencies in our study population with those in the general population (Surveillance, Epidemiology, and End Results 18 data).ResultsWhen evaluating by gene, the age-standardized breast cancer risks for MSH6 (SIR = 2.11; 95% confidence interval (CI), 1.56-2.86) and PMS2 (SIR = 2.92; 95% CI, 2.17-3.92) were associated with a statistically significant risk for breast cancer whereas no association was observed for MLH1 (SIR = 0.87; 95% CI, 0.42-1.83) or MSH2 (SIR = 1.22; 95% CI, 0.72-2.06).ConclusionOur data demonstrate that two LS genes, MSH6 and PMS2, are associated with an increased risk for breast cancer and should be considered when ordering genetic testing for individuals who have a personal and/or family history of breast cancer.GENETICS in MEDICINE advance online publication, 18 January 2018; doi:10.1038/gim.2017.254.

  17. Partial loss of heterozygosity events at the mutated gene in tumors from MLH1/MSH2 large genomic rearrangement carriers

    Energy Technology Data Exchange (ETDEWEB)

    Zavodna, Katarina; Krivulcik, Tomas; Bujalkova, Maria Gerykova [Laboratory of Cancer Genetics, Cancer Research Institute of Slovak Academy of Sciences, Vlarska 7, 833 91 Bratislava (Slovakia); Slamka, Tomas; Martinicky, David; Ilencikova, Denisa [National Cancer Institute, Department of Oncologic Genetics, Klenova 1, 833 01 Bratislava (Slovakia); Bartosova, Zdena [Laboratory of Cancer Genetics, Cancer Research Institute of Slovak Academy of Sciences, Vlarska 7, 833 91 Bratislava (Slovakia)

    2009-11-20

    Depending on the population studied, large genomic rearrangements (LGRs) of the mismatch repair (MMR) genes constitute various proportions of the germline mutations that predispose to hereditary non-polyposis colorectal cancer (HNPCC). It has been reported that loss of heterozygosity (LOH) at the LGR region occurs through a gene conversion mechanism in tumors from MLH1/MSH2 deletion carriers; however, the converted tracts were delineated only by extragenic microsatellite markers. We sought to determine the frequency of LGRs in Slovak HNPCC patients and to study LOH in tumors from LGR carriers at the LGR region, as well as at other heterozygous markers within the gene to more precisely define conversion tracts. The main MMR genes responsible for HNPCC, MLH1, MSH2, MSH6, and PMS2, were analyzed by MLPA (multiplex ligation-dependent probe amplification) in a total of 37 unrelated HNPCC-suspected patients whose MLH1/MSH2 genes gave negative results in previous sequencing experiments. An LOH study was performed on six tumors from LGR carriers by combining MLPA to assess LOH at LGR regions and sequencing to examine LOH at 28 SNP markers from the MLH1 and MSH2 genes. We found six rearrangements in the MSH2 gene (five deletions and dup5-6), and one aberration in the MLH1 gene (del5-6). The MSH2 deletions were of three types (del1, del1-3, del1-7). We detected LOH at the LGR region in the single MLH1 case, which was determined in a previous study to be LOH-negative in the intragenic D3S1611 marker. Three tumors displayed LOH of at least one SNP marker, including two cases that were LOH-negative at the LGR region. LGRs accounted for 25% of germline MMR mutations identified in 28 Slovakian HNPCC families. A high frequency of LGRs among the MSH2 mutations provides a rationale for a MLPA screening of the Slovakian HNPCC families prior scanning by DNA sequencing. LOH at part of the informative loci confined to the MLH1 or MSH2 gene (heterozygous LGR region, SNP, or

  18. Partial loss of heterozygosity events at the mutated gene in tumors from MLH1/MSH2 large genomic rearrangement carriers

    Directory of Open Access Journals (Sweden)

    Ilencikova Denisa

    2009-11-01

    Full Text Available Abstract Background Depending on the population studied, large genomic rearrangements (LGRs of the mismatch repair (MMR genes constitute various proportions of the germline mutations that predispose to hereditary non-polyposis colorectal cancer (HNPCC. It has been reported that loss of heterozygosity (LOH at the LGR region occurs through a gene conversion mechanism in tumors from MLH1/MSH2 deletion carriers; however, the converted tracts were delineated only by extragenic microsatellite markers. We sought to determine the frequency of LGRs in Slovak HNPCC patients and to study LOH in tumors from LGR carriers at the LGR region, as well as at other heterozygous markers within the gene to more precisely define conversion tracts. Methods The main MMR genes responsible for HNPCC, MLH1, MSH2, MSH6, and PMS2, were analyzed by MLPA (multiplex ligation-dependent probe amplification in a total of 37 unrelated HNPCC-suspected patients whose MLH1/MSH2 genes gave negative results in previous sequencing experiments. An LOH study was performed on six tumors from LGR carriers by combining MLPA to assess LOH at LGR regions and sequencing to examine LOH at 28 SNP markers from the MLH1 and MSH2 genes. Results We found six rearrangements in the MSH2 gene (five deletions and dup5-6, and one aberration in the MLH1 gene (del5-6. The MSH2 deletions were of three types (del1, del1-3, del1-7. We detected LOH at the LGR region in the single MLH1 case, which was determined in a previous study to be LOH-negative in the intragenic D3S1611 marker. Three tumors displayed LOH of at least one SNP marker, including two cases that were LOH-negative at the LGR region. Conclusion LGRs accounted for 25% of germline MMR mutations identified in 28 Slovakian HNPCC families. A high frequency of LGRs among the MSH2 mutations provides a rationale for a MLPA screening of the Slovakian HNPCC families prior scanning by DNA sequencing. LOH at part of the informative loci confined to the MLH1

  19. Partial loss of heterozygosity events at the mutated gene in tumors from MLH1/MSH2 large genomic rearrangement carriers

    International Nuclear Information System (INIS)

    Zavodna, Katarina; Krivulcik, Tomas; Bujalkova, Maria Gerykova; Slamka, Tomas; Martinicky, David; Ilencikova, Denisa; Bartosova, Zdena

    2009-01-01

    Depending on the population studied, large genomic rearrangements (LGRs) of the mismatch repair (MMR) genes constitute various proportions of the germline mutations that predispose to hereditary non-polyposis colorectal cancer (HNPCC). It has been reported that loss of heterozygosity (LOH) at the LGR region occurs through a gene conversion mechanism in tumors from MLH1/MSH2 deletion carriers; however, the converted tracts were delineated only by extragenic microsatellite markers. We sought to determine the frequency of LGRs in Slovak HNPCC patients and to study LOH in tumors from LGR carriers at the LGR region, as well as at other heterozygous markers within the gene to more precisely define conversion tracts. The main MMR genes responsible for HNPCC, MLH1, MSH2, MSH6, and PMS2, were analyzed by MLPA (multiplex ligation-dependent probe amplification) in a total of 37 unrelated HNPCC-suspected patients whose MLH1/MSH2 genes gave negative results in previous sequencing experiments. An LOH study was performed on six tumors from LGR carriers by combining MLPA to assess LOH at LGR regions and sequencing to examine LOH at 28 SNP markers from the MLH1 and MSH2 genes. We found six rearrangements in the MSH2 gene (five deletions and dup5-6), and one aberration in the MLH1 gene (del5-6). The MSH2 deletions were of three types (del1, del1-3, del1-7). We detected LOH at the LGR region in the single MLH1 case, which was determined in a previous study to be LOH-negative in the intragenic D3S1611 marker. Three tumors displayed LOH of at least one SNP marker, including two cases that were LOH-negative at the LGR region. LGRs accounted for 25% of germline MMR mutations identified in 28 Slovakian HNPCC families. A high frequency of LGRs among the MSH2 mutations provides a rationale for a MLPA screening of the Slovakian HNPCC families prior scanning by DNA sequencing. LOH at part of the informative loci confined to the MLH1 or MSH2 gene (heterozygous LGR region, SNP, or

  20. Cellular Reprogramming Employing Recombinant Sox2 Protein

    Directory of Open Access Journals (Sweden)

    Marc Thier

    2012-01-01

    Full Text Available Induced pluripotent stem (iPS cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT and Sox2 (Sox2-TAT proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.

  1. Association Between Genetic Polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT Genes and Radiosensitivity in Breast Cancer Patients

    International Nuclear Information System (INIS)

    Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca; Sani, Cristina; Biti, Giampaolo; Livi, Lorenzo; Barletta, Emanuela; Costantini, Adele Seniori; Gorini, Giuseppe

    2011-01-01

    Purpose: Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Methods and Materials: Individual genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Results: Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR = 53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR = 38.26; 95% CI, 1.19-1232.52). Conclusions: To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be

  2. An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents.

    Science.gov (United States)

    Worrillow, Lisa J; Travis, Lois B; Smith, Alexandra G; Rollinson, Sara; Smith, Andrew J; Wild, Christopher P; Holowaty, Eric J; Kohler, Betsy A; Wiklund, Tom; Pukkala, Eero; Roman, Eve; Morgan, Gareth J; Allan, James M

    2003-08-01

    We sought to determine whether the -6 exon 13 T>C polymorphism in the DNA mismatch repair gene hMSH2 modulates susceptibility to acute myeloid leukemia after therapy and particularly after O(6)-guanine alkylating chemotherapy. We also determined the extent of microsatellite instability (MSI) in therapy-related acute myeloid leukemia (t-AML) as a marker of dysfunctional DNA mismatch repair. Using a novel restriction fragment length polymorphism, verified by direct sequencing, we have genotyped 91 t-AML cases, 420 de novo acute myeloid leukemia cases, and 837 controls for the hMSH2 -6 exon 13 polymorphism. MSI was evaluated in presentation bone marrow from 34 cases using the mononucleotide microsatellite markers BAT16, BAT25, and BAT26. Distribution of the hMSH2 -6 exon 13 polymorphism was not significantly different between de novo acute myeloid leukemia cases and controls, with heterozygotes and homozygotes for the variant (C) allele representing 12.2 and 1.6%, respectively, of the control population. However, the variant (C) hMSH2 allele was significantly overrepresented in t-AML cases that had previously been treated with O(6)-guanine alkylating agents, including cyclophosphamide and procarbazine, compared with controls (odds ratio, 4.02; 95% confidence interval, 1.40-11.37). Thirteen of 34 (38%) t-AML cases were MSI positive, and 2 of these 13 cases were homozygous for the variant (C) allele, a frequency substantially higher than in the control population. Association of the hMSH2 -6 exon 13 variant (C) allele with leukemia after O(6)-guanine alkylating agents implicates this allele in conferring a nondisabling DNA mismatch repair defect with concomitant moderate alkylation tolerance, which predisposes to the development of t-AML via the induction of DNA mismatch repair-disabling mutations and high-grade MSI. Homozygosity for the hMSH2 variant in 2 of 13 MSI-positive t-AML cases provides some support for this model.

  3. Selective effects of alpha-MSH and MIF-1 on the blood-brain barrier

    International Nuclear Information System (INIS)

    Sankar, R.; Domer, F.R.; Kastin, A.J.

    1981-01-01

    The effects of intravenously-injected alpha-MSH and MIF-1 (Pro-Leu-Gly-NH2) on the permeability of the blood-brain barrier (BBB) to a large protein and a small anion were studied using radioiodinated serum albumin (RISA) and 99mTc-labeled sodium pertechnetate. The permeability of the BBB to RISA was unaltered by either peptide. Permeability to the inorganic pertechnetate anion, however, was significantly increased by alpha-MSH but not by MIF-1 at doses known to evoke EEG and behavioral responses. The peptides did not cause a change in the systemic blood pressure. It is possible, therefore, that at least some CNS effects of peripherally administered peptides are exerted by alteration of the permeability of the BBB to other substances

  4. Study of the immunological relatedness of goldfish MSH in an RIA for synthetic mammalian α MSH

    International Nuclear Information System (INIS)

    Follenius, Ernest; Schmitt, Gabrielle; Meunier, Annie

    1980-01-01

    α MSH from the neuro-intermediate lobe of the pituitary gland of the goldfish displays a competitive behaviour in an RIA for synthetic α MSH. The inhibition curves from neuro-intermediate homogenates parallel the standard curve (P [fr

  5. Peritumoral granulomatous reaction in endometrial carcinoma: association with DNA mismatch repair protein deficiency, particularly loss of PMS2 expression.

    Science.gov (United States)

    Stewart, Colin J R; Pearn, Amy; Pachter, Nicholas; Tan, Adeline

    2018-04-30

    The observation of peritumoral granulomatous reactions (PGRs) in two endometrial carcinomas (ECs) with a PMS2-deficient/MLH1-intact expression pattern led us to investigate whether PGRs in EC were specifically associated with DNA mismatch repair (MMR) protein deficiency, particularly PMS2 loss. Hysterectomy specimens from 22 MMR protein-intact and 54 MMR protein-deficient ECs were reviewed with specific attention to the presence of a PGR and a tumour-associated lymphoid reaction [including tumour-infiltrating lymphocytes (TILs) and stromal lymphoid infiltrates]. The MMR protein-deficient ECs included 22 cases with combined MLH1/PMS2 loss, 11 with combined MSH2/MSH6 loss, 11 with isolated MSH6 loss, and 10 with PMS2 loss but intact MLH1 staining (including the two 'index' cases). Overall, PGRs were identified in seven of 54 (13%) MMR protein-deficient ECs, five of which showed a PMS2-deficient/MLH1-intact immunophenotype; three of these patients had germline PMS2 mutations and one additional patient had a germline MSH6 mutation. None of the MMR protein-intact tumours showed a PGR. Although five of the seven PGR-positive ECs had a high-grade histological component, six were stage I. Most ECs with PGRs also showed TILs and stromal lymphoid reactions, similarly to MMR protein-deficient ECs in general. MMR protein-deficient ECs, particularly those with PMS2 loss, occasionally show PGRs in addition to stromal lymphoid infiltrates and TILs. Therefore, PGRs could be considered to constitute a histological prompt for consideration of Lynch syndrome. The potential prognostic significance of PGRs in EC requires further study. © 2018 John Wiley & Sons Ltd.

  6. Reduced α-MSH Underlies Hypothalamic ER-Stress-Induced Hepatic Gluconeogenesis.

    Science.gov (United States)

    Schneeberger, Marc; Gómez-Valadés, Alicia G; Altirriba, Jordi; Sebastián, David; Ramírez, Sara; Garcia, Ainhoa; Esteban, Yaiza; Drougard, Anne; Ferrés-Coy, Albert; Bortolozzi, Analía; Garcia-Roves, Pablo M; Jones, John G; Manadas, Bruno; Zorzano, Antonio; Gomis, Ramon; Claret, Marc

    2015-07-21

    Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Association between promoter methylation of MLH1 and MSH2 and reactive oxygen species in oligozoospermic men-A pilot study.

    Science.gov (United States)

    Gunes, S; Agarwal, A; Henkel, R; Mahmutoglu, A M; Sharma, R; Esteves, S C; Aljowair, A; Emirzeoglu, D; Alkhani, A; Pelegrini, L; Joumah, A; Sabanegh, E

    2018-04-01

    MLH1 and MSH2 are important genes for DNA mismatch repair and crossing over during meiosis and are implicated in male infertility. Therefore, the methylation patterns of the DNA mismatch repair genes MLH1 and MSH2 in oligozoospermic males were investigated. Ten oligozoospermic patients and 29 normozoospermic donors were analysed. Methylation profiles of the MLH1 and MSH2 promotors were analysed. In addition, sperm motility and seminal reactive oxygen species (ROS) were recorded. Receiver operating characteristic (ROC) analysis was conducted to determine the accuracy of the DNA methylation status of MLH1 and MSH2 to distinguish between oligozoospermic and normozoospermic men. In oligozoospermic men, MLH1 was significantly (p = .0013) more methylated compared to normozoospermic men. Additionally, there was a significant positive association (r = .384; p = .0159) between seminal ROS levels and MLH1 methylation. Contrary, no association between MSH2 methylation and oligozoospermia was found. ROC curve analysis for methylation status of MLH1 was significant (p = .0275) with an area under the curve of 61.1%, a sensitivity of 22.2% and a specificity of 100.0%. This pilot study indicates oligozoospermic patients have more methylation of MLH1 than normozoospermic patients. Whether hypermethylation of the MLH1 promoter plays a role in repairing relevant mismatches of sperm DNA strands in idiopathic oligozoospermia warrants further investigation. © 2017 Blackwell Verlag GmbH.

  8. Ubiquitin in signaling and protein quality control

    DEFF Research Database (Denmark)

    Al-Saoudi, Sofie Vincents

    is related to the cancer-predisposition disease, Lynch syndrome. Of 24 different MSH2 variants, some of which have been linked to Lynch syndrome, we show that there is a strong correlation between the predicted structural stability and the protein half-life. We show that a predicted destabilization of 3 kcal....../mol is sufficient to cause proteasomal degradation of MSH2 variants. Importantly our calculations can, in addition to protein turnover, also predict pathogenicity of MSH2 variants, suggesting that this approach can be applied for Lynch syndrome diagnosis, and perhaps for other hereditary diseases....

  9. Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population

    DEFF Research Database (Denmark)

    Nilbert, Mef; Wikman, Friedrik P; Hansen, Thomas V O

    2009-01-01

    mutations in 164 families are considered pathogenic and an additional 50 variants from 76 families are considered to represent variants of unknown pathogenicity. The different MMR genes contribute to 40% (MSH2), 29% (MLH1), and 22% (MSH6) of the mutations and the Danish population thus shows a considerably...... higher frequency of MSH6 mutations than previously described. Although 69/88 (78%) pathogenic mutations were present in a single family, previously recognized recurrent/founder mutations were causative in 75/137 (55%) MLH1/MSH2 mutant families. In addition, the Danish MLH1 founder mutation c.1667......+2_1667_+8TAAATCAdelinsATTT was identified in 14/58 (24%) MLH1 mutant families. The Danish Lynch syndrome population thus demonstrates that MSH6 mutations and recurrent/founder mutations have a larger contribution than previously recognized, which implies that the MSH6 gene should be included in routine diagnostics...

  10. The melanocortin receptor agonist NDP-MSH impairs the allostimulatory function of dendritic cells.

    Science.gov (United States)

    Rennalls, La'Verne P; Seidl, Thomas; Larkin, James M G; Wellbrock, Claudia; Gore, Martin E; Eisen, Tim; Bruno, Ludovica

    2010-04-01

    As alpha-melanocyte-stimulating hormone (alpha-MSH) is released by immunocompetent cells and has potent immunosuppressive properties, it was determined whether human dendritic cells (DCs) express the receptor for this hormone. Reverse transcription-polymerase chain reaction detected messenger RNA specific for all of the known melanocortin receptors in DCs. Mixed lymphocyte reactions also revealed that treatment with [Nle(4), DPhe(7)]-alpha-MSH (NDP-MSH), a potent alpha-MSH analogue, significantly reduced the ability of DCs to stimulate allogeneic T cells. The expression of various cell surface adhesion, maturation and costimulatory molecules on DCs was also investigated. Although treatment with NDP-MSH did not alter the expression of CD83 and major histocompatibility complex class I and II, the surface expression of CD86 (B7.2), intercellular adhesion molecule (ICAM-1/CD54) and CD1a was reduced. In summary, our data indicate that NDP-MSH inhibits the functional activity of DCs, possibly by down-regulating antigen-presenting and adhesion molecules and that these events may be mediated via the extracellular signal-regulated kinase 1 and 2 pathway.

  11. Genetic changes of MLH1 and MSH2 genes could explain constant findings on microsatellite instability in intracranial meningioma.

    Science.gov (United States)

    Pećina-Šlaus, Nives; Kafka, Anja; Bukovac, Anja; Vladušić, Tomislav; Tomas, Davor; Hrašćan, Reno

    2017-07-01

    Postreplicative mismatch repair safeguards the stability of our genome. The defects in its functioning will give rise to microsatellite instability. In this study, 50 meningiomas were investigated for microsatellite instability. Two major mismatch repair genes, MLH1 and MSH2, were analyzed using microsatellite markers D1S1611 and BAT26 amplified by polymerase chain reaction and visualized by gel electrophoresis on high-resolution gels. Furthermore, genes DVL3 (D3S1262), AXIN1 (D16S3399), and CDH1 (D16S752) were also investigated for microsatellite instability. Our study revealed constant presence of microsatellite instability in meningioma patients when compared to their autologous blood DNA. Altogether 38% of meningiomas showed microsatellite instability at one microsatellite locus, 16% on two, and 13.3% on three loci. The percent of detected microsatellite instability for MSH2 gene was 14%, and for MLH1, it was 26%, for DVL3 22.9%, for AXIN1 17.8%, and for CDH1 8.3%. Since markers also allowed for the detection of loss of heterozygosity, gross deletions of MLH1 gene were found in 24% of meningiomas. Genetic changes between MLH1 and MSH2 were significantly positively correlated (p = 0.032). We also noted a positive correlation between genetic changes of MSH2 and DVL3 genes (p = 0.034). No significant associations were observed when MLH1 or MSH2 was tested against specific histopathological meningioma subtype or World Health Organization grade. However, genetic changes in DVL3 were strongly associated with anaplastic histology of meningioma (χ 2  = 9.14; p = 0.01). Our study contributes to better understanding of the genetic profile of human intracranial meningiomas and suggests that meningiomas harbor defective cellular DNA mismatch repair mechanisms.

  12. A novel heterozygous germline deletion in MSH2 gene in a five generation Chinese family with Lynch syndrome

    OpenAIRE

    Wu, Bin; Ji, Wuyang; Liang, Shengran; Ling, Chao; You, Yan; Xu, Lai; Zhong, Min-Er; Xiao, Yi; Qiu, Hui-Zhong; Lu, Jun-Yang; Banerjee, Santasree

    2017-01-01

    Lynch syndrome (LS) is one of the most common familial forms of colorectal cancer predisposing syndrome with an autosomal dominant mode of inheritance. LS is caused by the germline mutations in DNA mismatch repair (MMR) genes including MSH2, MLH1, MSH6 and PMS2. Clinically, LS is characterized by high incidence of early-onset colorectal cancer as well as endometrial, small intestinal and urinary tract cancers, usually occur in the third to fourth decade of the life. Here we describe a five ge...

  13. Two msh/msx-related genes, Djmsh1 and Djmsh2, contribute to the early blastema growth during planarian head regeneration.

    Science.gov (United States)

    Mannini, Linda; Deri, Paolo; Gremigni, Vittorio; Rossi, Leonardo; Salvetti, Alessandra; Batistoni, Renata

    2008-01-01

    Regeneration in planarians is an intriguing phenomenon, based on the presence of pluripotent stem cells, known as neoblasts. Following amputation, these cells activate mitotic divisions, migrate distally and undergo differentiation, giving rise to the regeneration blastema. We have identified two msh/msx-related genes, Djmsh1 and Djmsh2, which are expressed in distinct cell populations of the planarian Dugesia japonica and activated, with different patterns, during head regeneration. We demonstrate that RNA interference of Djmsh1 or Djmsh2 generates a delay in the growth of cephalic blastema, interfering with the dynamics of mitoses during its initial formation. Our data also reveal that the activity of the two planarian msh genes is required to regulate Djbmp expression during head regeneration. This study identifies, for the first time, a functional association between muscle segment homeobox (MSH) homeoproteins and BMP signaling during stem cell-based regeneration of the planarian head and provides a functional analysis of how msh genes may regulate in vivo the regenerative response of planarian stem cells.

  14. Design and evaluation of new Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptides for melanoma imaging.

    Science.gov (United States)

    Guo, Haixun; Gallazzi, Fabio; Miao, Yubin

    2013-04-01

    The purpose of this study was to examine the melanoma targeting and imaging properties of new (99m)Tc-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (α-MSH) peptides using bifunctional chelating agents. MAG3-GGNle-CycMSH(hex), AcCG3-GGNle-CycMSH(hex), and HYNIC-GGNle-CycMSH(hex) peptides were synthesized, and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution of (99m)Tc-MAG3-GGNle-CycMSH(hex), (99m)Tc-AcCG3-GGNle-CycMSH(hex), (99m)Tc(CO)3-HYNIC-GGNle-CycMSH(hex), and (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice at 2 h postinjection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) were further examined because of its high melanoma uptake and fast urinary clearance. The IC50 values of MAG3-GGNle-CycMSH(hex), AcCG3-GGNle-CycMSH(hex), and HYNIC-GGNle-CycMSH(hex) were 1.0 ± 0.05, 1.2 ± 0.19, and 0.6 ± 0.04 nM in B16/F1 melanoma cells, respectively. Among these four (99m)Tc-peptides, (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) exhibited the highest melanoma uptake (14.14 ± 4.90% ID/g) and fastest urinary clearance (91.26 ± 1.96% ID) at 2 h postinjection. (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) showed high tumor to normal organ uptake ratios except for the kidneys. The tumor/kidney uptake ratios of (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) were 2.50 and 3.55 at 4 and 24 h postinjection. The melanoma lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) as an imaging probe at 2 h postinjection. Overall, high melanoma uptake coupled with fast urinary clearance of (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) highlighted its potential for metastatic melanoma detection in the future.

  15. alpha-MSH in systemic inflammation. Central and peripheral actions.

    Science.gov (United States)

    Catania, A; Delgado, R; Airaghi, L; Cutuli, M; Garofalo, L; Carlin, A; Demitri, M T; Lipton, J M

    1999-10-20

    Until recently, inflammation was believed to arise from events taking place exclusively in the periphery. However, it is now clear that central neurogenic influences can either enhance or modulate peripheral inflammation. Therefore, it should be possible to improve treatment of inflammation by use of antiinflammatory agents that reduce peripheral host responses and inhibit proinflammatory signals in the central nervous system (CNS). One such strategy could be based on alpha-melanocyte stimulating hormone (alpha-MSH). Increases in circulating TNF-alpha and nitric oxide (NO), induced by intraperitoneal administration of endotoxin in mice, were modulated by central injection of a small concentration of alpha-MSH. Inducible nitric oxide synthase (iNOS) activity and iNOS mRNA in lungs and liver were likewise modulated by central alpha-MSH. Increase in lung myeloperoxidase (MPO) activity was significantly less in lungs of mice treated with central alpha-MSH. Proinflammatory agents induced by endotoxin were significantly greater after blockade of central alpha-MSH. The results suggest that antiinflammatory influences of neural origin that are triggered by alpha-MSH could be used to treat systemic inflammation. In addition to its central influences, alpha-MSH has inhibitory effects on peripheral host cells, in which it reduces release of proinflammatory mediators. alpha-MSH reduces chemotaxis of human neutrophils and production of TNF-alpha, neopterin, and NO by monocytes. In research on septic patients, alpha-MSH inhibited release of TNF-alpha, interleukin-1 beta (IL-1 beta), and interleukin-8 (IL-8) in whole blood samples in vitro. Combined central and peripheral influences can be beneficial in treatment of sepsis.

  16. Age-Dependent Cancer Risk Is not Different in between MSH2 and MLH1 Mutation Carriers

    International Nuclear Information System (INIS)

    Olschwang, S.; Olschwang, S.; Yu, K.

    2009-01-01

    Lynch syndrome is mostly characterized by early-onset colorectal and endometrial adenocarcinomas. Over 90% of the causal mutations occur in two mismatch repair genes, MSH2 and MLH1. The aim of this study was to evaluate the age-dependent cancer risk in MSH2 or MLH1 mutation carriers from data of DNA diagnostic laboratories. To avoid overestimation, evaluation was based on the age-dependent proportion of mutation carriers in asymptomatic first-degree relatives of identified mutation carriers. Data from 859 such eligible relatives were collected from 8 centers; 387 were found to have inherited the mutation from their relatives. Age-dependent risks were calculated either using a nonparametric approach for four discrete age groups or assuming a modified Weibull distribution for the dependence of risk on age. Cancer risk was estimated starting at 28 (25-32 0.68 confidence interval) and to reach near 0.70 at 70 years. The risks were very similar for MSH2 and MLH1 mutation carriers. Although not statistically significant, the risk in males appeared to precede that for females by ten years. This difference needs to be investigated on a larger dataset. If confirmed, this would indicate that the onset of the colonoscopic surveillance may be different in male and female mutation carriers.

  17. Sebaceous neoplasms and the immunoprofile of mismatch-repair proteins as a screening target for syndromic cases

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Thomsen, Birthe M; Holck, Susanne

    2015-01-01

    (SAs) and 6 sebaceous carcinomas (SCs) were accrued. The expression of MLH1, MSH2, MSH6, and PMS2 was recorded. MLH1-deficient cases were tested for p16 status. RESULTS: Eighteen (56%) of the 32 specimens with SA or SC displayed MMR-protein deficiency, comprising 17 (65.4%) SAs (MSH2/MSH6 loss in 12......, MLH1/PMS2 loss in 3, MSH6 loss only in 2 cases) and 1 (16.7%) SC (MLH1/PMS2 loss). All 4 MLH1 deficient cases were p16-positive. CONCLUSION: A substantial proportion of sebaceous neoplasms were MMR-protein deficient and thus likely MTS candidates. Given the low prevalence of sebaceous neoplasms...

  18. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    Science.gov (United States)

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  19. Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: A study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes.

    Science.gov (United States)

    Calin, G A; Gafà, R; Tibiletti, M G; Herlea, V; Becheanu, G; Cavazzini, L; Barbanti-Brodano, G; Nenci, I; Negrini, M; Lanza, G

    2000-05-20

    Colon carcinomas with microsatellite mutator phenotype exhibit specific genetic and clinico-pathological features. This report describes the analysis of 63 "microsatellite instability-high" (MSI-H) tumors for the presence of mutations in microsatellites located in the coding regions (CDRs) of 6 genes: TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR, and BLM. The following frequencies of mutations were detected: TGFbetaRII (70%), BAX (54%), hMSH3 (36.5%), IGFIIR (22%), hMSH6 (17.5%), and BLM (16%). The overall picture revealed combinations of mutations suggestive of a progressive order of accumulation, with mutations of TGFbetaRII and BAX first, followed by frameshifts in hMSH3, hMSH6, IGFIIR, and BLM. Correlations with 12 clinico-pathological parameters revealed that tumors with frameshifts in 1 or 2 CDRs were significantly better differentiated than tumors with frameshifts in more than 2 CDRs. We also found that mutations in the hMSH3 gene were significantly associated with decreased wall invasiveness and aneuploidy, and frameshifts in the BLM gene were significantly associated with the mucinous histotype. A trend toward an association between hMSH3 and IGFIIR with the medullary and conventional adenocarcinoma histotypes, respectively, was seen. Our results strengthen the concept that mutations in target genes have a role in the tumorigenic process of MSI-H tumors, and indicate that frameshifts in microsatellites located in CDRs occur in a limited number of combinations that could determine distinct clinico-pathological traits. Copyright 2000 Wiley-Liss, Inc.

  20. Lactobacillus casei secreting alpha-MSH induces the therapeutic effect on DSS-induced acute colitis in Balb/c Mice.

    Science.gov (United States)

    Yoon, Sun-Woo; Lee, Chul-Ho; Kim, Jeong-Yoon; Kim, Jie-Youn; Sung, Moon-Hee; Poo, Haryoung

    2008-12-01

    The neuropeptide alpha-melanocyte-stimulating hormone (alpha- MSH) has anti-inflammatory property by downregulating the expressions of proinflammatory cytokines. Because alpha-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes alpha-MSH (L. casei-alpha-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the alpha-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and alpha-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-alpha-MSH on the colitis, L. casei or L. casei-alpha-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-alpha-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: 14.45+/-0. 2 g; L. casei-alpha- MSH: 18.2+/-0.12 g), colitis score (DSS alone: 3.6+/-0.4; L. casei-alpha-MSH: 1.4+/-0.6), MPO activity (DSS alone: 42.7+/-4.5 U/g; L. casei-alpha-MSH: 10.25+/-0.5 U/g), survival rate, and histological damage compared with the DSS alone mice. L. casei-alpha-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and NF-kappaB activation. The alpha-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases.

  1. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome.

    Science.gov (United States)

    Harper, Holly L; McKenney, Jesse K; Heald, Brandie; Stephenson, Andrew; Campbell, Steven C; Plesec, Thomas; Magi-Galluzzi, Cristina

    2017-01-01

    Increased risk for upper tract urothelial carcinoma is described in patients with Lynch syndrome, caused by germline mutations in mismatch repair genes. We aimed to identify the frequency of mismatch repair protein loss in upper tract urothelial carcinoma and its potential for identifying an association with Lynch syndrome. We queried our database to identify upper tract urothelial carcinomas. Patients were cross-referenced for history of colorectal carcinoma or other common Lynch syndrome-associated neoplasms to enrich for potential Lynch syndrome cases. Tumor histopathologic characteristics were reviewed and each case was analyzed for loss of mismatch repair proteins, MLH1, MSH2, MSH6, and PMS2, by immunohistochemistry. Of 444 patients with upper tract urothelial carcinoma, a subset of 215 (encompassing 30 with upper tract urothelial carcinoma and another common Lynch syndrome-associated neoplasm) was analyzed for loss of mismatch repair protein expression. Of 30 patients with Lynch syndrome-associated neoplasms, six had documented Lynch syndrome, including two with Muir-Torre syndrome. Mismatch repair protein loss was identified in 7% of total upper tract urothelial carcinomas and 30% of patients with Lynch syndrome-associated neoplasms (including all patients with Lynch syndrome/Muir-Torre syndrome). Of patients without history of Lynch syndrome-associated neoplasms, 5 of 184 (2.7%) had loss of mismatch repair protein expression. Twelve cases with mismatch repair protein loss demonstrated loss of MSH2 and MSH6, and 2 had isolated loss of MSH6. MLH1 and PMS2 expression were consistently retained. Although increased intratumoral lymphocytes, inverted growth, pushing tumor-stromal interface, and lack of nuclear pleomorphism were more commonly seen in cases with mismatch repair protein loss, only intratumoral lymphocytes and presence of pushing borders were statistically significant. MLH1 and PMS2 testing appear to have little utility in upper tract urothelial

  2. Radioimmunological determination of. cap alpha. -MSH and ACTH in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Usategui Echeverria, R; Oliver, C; Vaudry, H; Lombardi, G; Rozenberg, I; Vague, J [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)

    1975-09-01

    Specific and sensitive radioimmunoassay methods for ..cap alpha..-MSH and ACTH are reported. They make possible specific measurements of each hormone in rat plasma or pituitary extracts. Endogenous ..cap alpha..-MSH and ACTH extracted from plasma or pituitary show the same immunoreactivity than synthetic ..cap alpha..-MSH and ACTH. ..cap alpha..-MSH and ACTH levels vary independently from each other in the following conditions: circadian rythm, corticoid treatment, adrenalectomy, ether stress, haloperidol injection.

  3. Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination.

    Science.gov (United States)

    Grigera, Fernando; Bellacosa, Alfonso; Kenter, Amy L

    2013-01-01

    Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2-5 despite concomitant reduction of MSH2. We show by comparison in Msh2(+/-) B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6-8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3' end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR.

  4. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  5. RNA-based mutation analysis identifies an unusual MSH6 splicing defect and circumvents PMS2 pseudogene interference.

    Science.gov (United States)

    Etzler, J; Peyrl, A; Zatkova, A; Schildhaus, H-U; Ficek, A; Merkelbach-Bruse, S; Kratz, C P; Attarbaschi, A; Hainfellner, J A; Yao, S; Messiaen, L; Slavc, I; Wimmer, K

    2008-02-01

    Heterozygous germline mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2 cause hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome, a dominantly inherited cancer susceptibility syndrome. Recent reports provide evidence for a novel recessively inherited cancer syndrome with constitutive MMR deficiency due to biallelic germline mutations in one of the MMR genes. MMR-deficiency (MMR-D) syndrome is characterized by childhood brain tumors, hematological and/or gastrointestinal malignancies, and signs of neurofibromatosis type 1 (NF1). We established an RNA-based mutation detection assay for the four MMR genes, since 1) a number of splicing defects may escape detection by the analysis of genomic DNA, and 2) DNA-based mutation detection in the PMS2 gene is severely hampered by the presence of multiple highly similar pseudogenes, including PMS2CL. Using this assay, which is based on direct cDNA sequencing of RT-PCR products, we investigated two families with children suspected to suffer from MMR-D syndrome. We identified a homozygous complex MSH6 splicing alteration in the index patients of the first family and a novel homozygous PMS2 mutation (c.182delA) in the index patient of the second family. Furthermore, we demonstrate, by the analysis of a PMS2/PMS2CL "hybrid" allele carrier, that RNA-based PMS2 testing effectively avoids the caveats of genomic DNA amplification approaches; i.e., pseudogene coamplification as well as allelic dropout, and will, thus, allow more sensitive mutation analysis in MMR deficiency and in HNPCC patients with PMS2 defects. (c) 2007 Wiley-Liss, Inc.

  6. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance

    Science.gov (United States)

    Yip, Stephen; Miao, Jiangyong; Cahill, Daniel P.; Iafrate, A. John; Aldape, Ken; Nutt, Catherine L.; Louis, David N.

    2009-01-01

    Purpose Over the past few years, the alkylating agent temozolomide (TMZ) has become the standard-of-care therapy for patients with glioblastoma, the most common brain tumor. Recently, large-scale cancer genome sequencing efforts have identified a hypermutation phenotype and inactivating MSH6 mismatch repair gene mutations in recurrent, post-TMZ glioblastomas, particularly those growing more rapidly during TMZ treatment. This study aimed to clarify the timing and role of MSH6 mutations in mediating glioblastoma TMZ resistance. Experimental Design MSH6 sequence and microsatellite instability (MSI) status were determined in matched pre- and post-chemotherapy glioblastomas identified by The Cancer Genome Atlas (TCGA) as having post-treatment MSH6 mutations. TMZ-resistant lines were derived in vitro via selective growth under TMZ and the MSH6 gene was sequenced in resistant clones. The role of MSH6 inactivation in mediating resistance was explored using lentiviral shRNA knockdown and MSH6 reconstitution. Results MSH6 mutations were confirmed in post-treatment TCGA glioblastomas but absent in matched pre-treatment tumors. The post-treatment hypermutation phenotype displayed a signature bias toward CpC transitions and was not associated with MSI. In vitro modeling via exposure of an MSH6-wildtype glioblastoma line to TMZ resulted in resistant clones; one clone showed an MSH6 mutation, Thr1219Ile, that had been independently noted in two treated TCGA glioblastomas. Knockdown of MSH6 in the glioblastoma line U251 increased resistance to TMZ cytotoxicity and reconstitution restored cytotoxicity in MSH6-null glioma cells. Conclusions MSH6 mutations are selected for in glioblastomas during TMZ therapy both in vitro and in vivo, and are causally associated with TMZ resistance. PMID:19584161

  7. Metastatic melanoma imaging using a novel Tc-99m-labeled lactam-cyclized alpha-MSH peptide.

    Science.gov (United States)

    Liu, Liqin; Xu, Jingli; Yang, Jianquan; Feng, Changjian; Miao, Yubin

    2017-11-15

    The purpose of this study was to determine the metastatic melanoma imaging property of 99m Tc(EDDA)-HYNIC-Aoc-Nle-CycMSH hex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH 2 }. HYNIC-Aoc-Nle-CycMSH hex was synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The IC 50 value of HYNIC-Aoc-Nle-CycMSH hex was 0.78 ± 0.13 nM for B16/F10 melanoma cells. 99m Tc(EDDA)-HYNIC-Aoc-Nle-CycMSH hex displayed significantly higher uptake (14.26 ± 2.74 and 10.45 ± 2.31% ID/g) in B16/F10 metastatic melanoma-bearing lung than that in normal lung (0.90 ± 0.15 and 0.53 ± 0.14% ID/g) at 2 and 4 h post-injection, respectively. B16/F10 pulmonary metastatic melanoma lesions were clearly visualized by SPECT/CT using 99m Tc(EDDA)-HYNIC-Aoc-Nle-CycMSH hex as an imaging probe at 2 h post-injection, underscoring its potential as an imaging probe for metastatic melanoma detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mlh2 is an accessory factor for DNA mismatch repair in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christopher S Campbell

    2014-05-01

    Full Text Available In Saccharomyces cerevisiae, the essential mismatch repair (MMR endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1.

  9. Purification, crystallization and preliminary X-ray diffraction analysis of the human mismatch repair protein MutSβ

    International Nuclear Information System (INIS)

    Tseng, Quincy; Orans, Jillian; Hast, Michael A.; Iyer, Ravi R.; Changela, Anita; Modrich, Paul L.; Beese, Lorena S.

    2011-01-01

    Human MutSβ is a 232 kDa heterodimer (MSH2MSH3) involved in the lesion-recognition step of mismatch repair. Here, the overexpression, purification, biochemical characterization and cocrystallization of MutSβ with a duplex DNA substrate are reported. MutSβ is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutSα (MSH2MSH6). Although mismatch recognition by MutSα has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutSβ. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutSβ and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported

  10. TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2007-12-01

    Full Text Available Abstract Background Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L. Ph2 (Pairing homoeologous locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family. Results Sequencing of the three MSH7 genes, located on the short arms of wheat chromosomes 3A, 3B and 3D, has revealed no significant sequence divergence at the amino acid level suggesting conservation of function across the homoeogroups. Functional analysis of MSH7 through the use of RNAi loss-of-function transgenics was undertaken in diploid barley (Hordeum vulgare L.. Quantitative real-time PCR revealed several T0 lines with reduced MSH7 expression. Positive segregants from two T1 lines studied in detail showed reduced MSH7 expression when compared to transformed controls and null segregants. Expression of MSH6, another member of the mismatch repair family which is most closely related to the MSH7 gene, was not significantly reduced in these lines. In both T1 lines, reduced seed set in positive segregants was observed. Conclusion Results presented here indicate, for the first time, a distinct functional role for MSH7 in vivo and show that expression of this gene is necessary for wild-type levels of fertility. These observations suggest that MSH7 has an important function during meiosis and as such remains a candidate for Ph2.

  11. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    Science.gov (United States)

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  12. Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1)

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Nielsen, Finn Cilius; Vinther, Lena

    2007-01-01

    interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin beta/alpha1,3,7 whereas hMSH2 specifically recognizes importin beta/alpha3. Taken together, we infer...... that hEXO1, hMLH1 and hMSH2 form complexes and are imported to the nucleus together, and that redundant NLS import signals in the proteins may safeguard nuclear import and thereby MMR activity....

  13. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting [Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024 (China); Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Vandeperre, Luc J. [Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheeseman, Christopher R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-11-15

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.

  14. Challenges in the identification of MSH6-associated colorectal cancer: rectal location, less typical histology, and a subset with retained mismatch repair function

    DEFF Research Database (Denmark)

    Klarskov, Louise; Holck, Susanne; Bernstein, Inge

    2011-01-01

    with MLH1/MSH2-mutant tumors and sporadic mismatch repair-deficient cancers. In the MSH6 subset, we confirmed a higher age (median, 56 y) at diagnosis and found a significantly larger proportion (25%) of rectal cancers. Presence of dirty necrosis was the sole histologic component that significantly...... differed between MSH6 and MLH1/MSH2 tumors. Compared with the sporadic mismatch repair-defective cohort, MSH6 cases had a lower prevalence of tumor-infiltrating lymphocytes and Crohn-like reactions. Mismatch repair defects were identified in 92% of MSH6 tumors, with high concordance between microsatellite...

  15. Challenges in the Identification of MSH6-Associated Colorectal Cancer: Rectal Location, Less Typical Histology, and a Subset With Retained Mismatch Repair Function

    DEFF Research Database (Denmark)

    Klarskov, Louise Laurberg; Holck, Susanne; Bernstein, Inge Thomsen

    2011-01-01

    with MLH1/MSH2-mutant tumors and sporadic mismatch repair-deficient cancers. In the MSH6 subset, we confirmed a higher age (median, 56 y) at diagnosis and found a significantly larger proportion (25%) of rectal cancers. Presence of dirty necrosis was the sole histologic component that significantly...... differed between MSH6 and MLH1/MSH2 tumors. Compared with the sporadic mismatch repair-defective cohort, MSH6 cases had a lower prevalence of tumor-infiltrating lymphocytes and Crohn-like reactions. Mismatch repair defects were identified in 92% of MSH6 tumors, with high concordance between microsatellite...

  16. msh/Msx gene family in neural development.

    Science.gov (United States)

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  17. Functional analysis in mouse embryonic stem cells reveals wild-type activity for three MSH6 variants found in suspected Lynch syndrome patients.

    Directory of Open Access Journals (Sweden)

    Eva A L Wielders

    Full Text Available Lynch syndrome confers an increased risk to various types of cancer, in particular early onset colorectal and endometrial cancer. Mutations in mismatch repair (MMR genes underlie Lynch syndrome, with the majority of mutations found in MLH1 and MSH2. Mutations in MSH6 have also been found but these do not always cause a clear cancer predisposition phenotype and MSH6-defective tumors often do not show the standard characteristics of MMR deficiency, such as microsatellite instability. In particular, the consequences of MSH6 missense mutations are challenging to predict, which further complicates genetic counseling. We have previously developed a method for functional characterization of MSH2 missense mutations of unknown significance. This method is based on endogenous gene modification in mouse embryonic stem cells using oligonucleotide-directed gene targeting, followed by a series of functional assays addressing the MMR functions. Here we have adapted this method for the characterization of MSH6 missense mutations. We recreated three MSH6 variants found in suspected Lynch syndrome families, MSH6-P1087R, MSH6-R1095H and MSH6-L1354Q, and found all three to behave like wild type MSH6. Thus, despite suspicion for pathogenicity from clinical observations, our approach indicates these variants are not disease causing. This has important implications for counseling of mutation carriers.

  18. Impact of 226C>T MSH2 gene mutation on cancer phenotypes in two HNPCC-associated highly-consanguineous families from Kuwait: emphasis on premarital genetic testing.

    Science.gov (United States)

    Marafie, Makia J; Al-Awadi, Sadiqa; Al-Mosawi, Fatemah; Elshafey, Alaa; Al-Ali, Waleed; Al-Mulla, Fahd

    2009-01-01

    Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC) is one of the commonest cancer susceptibility syndromes. It is characterized by early onset colon cancer and a variety of extracolonic tumours. Germline mutations in the DNA mismatch repair genes (MLH1, MSH2, MSH6, PMS1, and PMS2) are responsible for this disorder. Identifying an affected individual depends on the tumour histopathology, family history that fulfils the Amsterdam and/or Bethesda criteria, tumour immunohistochemistry, microsatellite instability, and finally molecular analysis of an affected member. It is a laborious, time consuming and expensive procedure, which needs the effort of a multi-disciplinary team. However, once the diagnosis is established and germline defect is identified, other high risk pre-symptomatic carriers could be offered intensive surveillance and management as a preventive measure against cancer development. Here, we present two large highly consanguineous HNPCC-families from Kuwait in whom a founder MSH2 mutation was identified. The relationship between this mutation and cancer expressivity in two large consanguineous families harbouring other genetic defects is discussed. Moreover, we shed light on the challenges pertaining to diagnosis, screening, premarital counselling of couples and prenatal diagnosis of offspring with biallelic MSH2 gene mutation.

  19. Muir-Torre Syndrome Presenting as Sebaceous Adenocarcinoma and Invasive MSH6-Positive Colorectal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Sunil Tulpule

    2016-02-01

    Full Text Available Muir-Torre syndrome (MTS is a rare genodermatosis, diagnosed by the presence of sebaceous neoplasms along with an internal malignancy, most commonly colorectal carcinomas. MTS is most commonly caused by microsatellite instabilities of the hMLH1 and hMSH2 mismatch repair genes, and is rarely caused by mutations of the hMSH6 gene. We describe the case of a 56-year-old male who presented with an enlarging mass on his back as well as hematochezia. The back mass was excised, and pathology confirmed microsatellite instability in MSH2 and MSH6. Abdominal CT and colonoscopy confirmed the presence of synchronous masses in the cecum, ascending colon, and the transverse colon. He refused any further workup or treatment, only to return 8 months later complaining of hematochezia and discomfort due to an enlarging mass protruding from the rectum. After consenting to surgical intervention, he agreed to outpatient chemotherapy treatment. The presence of sebaceous neoplasms should raise suspicion for the possibility of an associated internal malignancy.

  20. Quality evaluation of LC-MS/MS-based E. coli H antigen typing (MS-H) through label-free quantitative data analysis in a clinical sample setup.

    Science.gov (United States)

    Cheng, Keding; Sloan, Angela; McCorrister, Stuart; Peterson, Lorea; Chui, Huixia; Drebot, Mike; Nadon, Celine; Knox, J David; Wang, Gehua

    2014-12-01

    The need for rapid and accurate H typing is evident during Escherichia coli outbreak situations. This study explores the transition of MS-H, a method originally developed for rapid H antigen typing of E. coli using LC-MS/MS of flagella digest of reference strains and some clinical strains, to E. coli isolates in clinical scenario through quantitative analysis and method validation. Motile and nonmotile strains were examined in batches to simulate clinical sample scenario. Various LC-MS/MS batch run procedures and MS-H typing rules were compared and summarized through quantitative analysis of MS-H data output for a standard method development. Label-free quantitative data analysis of MS-H typing was proven very useful for examining the quality of MS-H result and the effects of some sample carryovers from motile E. coli isolates. Based on this, a refined procedure and protein identification rule specific for clinical MS-H typing was established and validated. With LC-MS/MS batch run procedure and database search parameter unique for E. coli MS-H typing, the standard procedure maintained high accuracy and specificity in clinical situations, and its potential to be used in a clinical setting was clearly established. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2.

    Science.gov (United States)

    Haraldsdottir, Sigurdis; Rafnar, Thorunn; Frankel, Wendy L; Einarsdottir, Sylvia; Sigurdsson, Asgeir; Hampel, Heather; Snaebjornsson, Petur; Masson, Gisli; Weng, Daniel; Arngrimsson, Reynir; Kehr, Birte; Yilmaz, Ahmet; Haraldsson, Stefan; Sulem, Patrick; Stefansson, Tryggvi; Shields, Peter G; Sigurdsson, Fridbjorn; Bekaii-Saab, Tanios; Moller, Pall H; Steinarsdottir, Margret; Alexiusdottir, Kristin; Hitchins, Megan; Pritchard, Colin C; de la Chapelle, Albert; Jonasson, Jon G; Goldberg, Richard M; Stefansson, Kari

    2017-05-03

    Lynch syndrome, caused by germline mutations in the mismatch repair genes, is associated with increased cancer risk. Here using a large whole-genome sequencing data bank, cancer registry and colorectal tumour bank we determine the prevalence of Lynch syndrome, associated cancer risks and pathogenicity of several variants in the Icelandic population. We use colorectal cancer samples from 1,182 patients diagnosed between 2000-2009. One-hundred and thirty-two (11.2%) tumours are mismatch repair deficient per immunohistochemistry. Twenty-one (1.8%) have Lynch syndrome while 106 (9.0%) have somatic hypermethylation or mutations in the mismatch repair genes. The population prevalence of Lynch syndrome is 0.442%. We discover a translocation disrupting MLH1 and three mutations in MSH6 and PMS2 that increase endometrial, colorectal, brain and ovarian cancer risk. We find thirteen mismatch repair variants of uncertain significance that are not associated with cancer risk. We find that founder mutations in MSH6 and PMS2 prevail in Iceland unlike most other populations.

  2. Effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-MSH peptides.

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-04-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of (111)In-labeled lactam bridge-cyclized DOTA-[X]-CycMSH(hex) {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH(2); X = GGNle, GENle, or NleGE; GG = -Gly-Gly- and GE = -Gly-Glu-} peptides. Three novel peptides (DOTA-GGNle-CycMSH(hex), DOTA-GENle-CycMSH(hex), and DOTA-NleGE-CycMSH(hex)) were designed and synthesized. The melanocortin-1 (MC1) receptor-binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma-targeting and pharmacokinetic properties of (111)In-DOTA-GGNle-CycMSH(hex) and (111)In-DOTA-GENle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. DOTA-GGNle-CycMSH(hex) and DOTA-GENle-CycMSH(hex) displayed 2.1 and 11.5 nM MC1 receptor-binding affinities, whereas DOTA-NleGE-CycMSH(hex) showed 873.4 nM MC1 receptor-binding affinity. The introduction of the -GG- linker maintained high melanoma uptake while decreasing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex). The tumor uptake of (111)In-DOTA-GGNle-CycMSH(hex) was 19.05 ± 5.04 and 18.6 ± 3.56 percentage injected dose per gram at 2 and 4 h after injection, respectively. (111)In-DOTA-GGNle-CycMSH(hex) exhibited 28%, 32%, and 42% less kidney uptake than (111)In-DOTA-Nle-CycMSH(hex) we reported previously, and 61%, 65%, and 68% less liver uptake than (111)In-DOTA-Nle-CycMSH(hex) at 2, 4, and 24 h after injection, respectively. The amino acid linkers exhibited profound effects on the melanoma-targeting and pharmacokinetic properties of the (111)In-labeled lactam bridge-cyclized α-melanocyte-stimulating hormone peptides. Introduction of the -GG- linker maintained high melanoma uptake while reducing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex), highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide

  3. beta. -endorphin-like and. alpha. -MSH-like immunoreactivities in human milk

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, T.; Rainero, I.; De Gennaro, T.; Oggero, R.; Mostert, M.; Dattola, P.; Pinessi, L. (Univ. of Turin (Italy))

    1990-01-01

    We measured with radioimmunoassay the {beta}-endorphin-like and {alpha}-MSH-like immunoreactivities in milk and plasma of 8 lactating women. Mean {beta}-endorphin concentrations ({plus minus} SD) were 16.6 {plus minus} 6.7 fmol/ml in milk and 9.9 {plus minus} 4.1 fmol/ml in plasma. {alpha}-MSH concentrations were 39.4 {plus minus} 15.5 pg/ml in milk and 18.2 {plus minus} 8.4 pg/ml in plasma. The concentrations of both peptides in milk were significantly higher than in plasma. No significant correlation between milk and plasma concentrations of these peptides was found.

  4. Fluorine-18-labeled [Nle4,D-Phe7]-α-MSH, an α-melanocyte stimulating hormone analogue

    International Nuclear Information System (INIS)

    Vaidyanathan, Ganesan; Zalutsky, Michael R.

    1997-01-01

    The α-melanocyte stimulating hormone (α-MSH) analogue [N1e 4 ,D-Phe 7 ]-α-MSH was labeled with 18 F using N-succinimidyl 4-[ 18 F]fluorobenzoate ([ 18 F]SFB) in >80% radiochemical yield. The IC 50 values of [N1e 4 ,D-Phe 7 ]-α-MSH and para-fluorobenzoyl-[N1e 4 ,D-Phe 7 ]-α-MSH ([N1e 4 ,D-Phe 7 ,Lys 11 -( 18 F)PFB]-α-MSH) for inhibiting the binding of meta-[ 131 I]iodobenzoyl-[N1e 4 ,D-Phe 7 ]-α-MSH ([N1e 4 ,D-Phe 7 ,Lys 11 -( 131 I)MIB]-α-MSH) to B16-F1 murine melanoma cells were 89 ± 9 pM and 112 ± 22 pM, respectively, suggesting that addition of 4-fluorobenzoate did not compromise α-MSH receptor binding affinity. Binding of [N1e 4 ,D-Phe 7 ,Lys 11 -( 18 F)PFB]-α-MSH was influenced by the specific activity of the preparation (400-1000 Ci/mmol). The normal tissue clearance of [N1e 4 ,D-Phe 7 ,Lys 11 -( 18 F)PFB]-α-MSH in mice was quite rapid, with little evidence for defluorination

  5. Arabidopsis thaliana population analysis reveals high plasticity of the genomic region spanning MSH2, AT3G18530 and AT3G18535 genes and provides evidence for NAHR-driven recurrent CNV events occurring in this location.

    Science.gov (United States)

    Zmienko, Agnieszka; Samelak-Czajka, Anna; Kozlowski, Piotr; Szymanska, Maja; Figlerowicz, Marek

    2016-11-08

    Intraspecies copy number variations (CNVs), defined as unbalanced structural variations of specific genomic loci, ≥1 kb in size, are present in the genomes of animals and plants. A growing number of examples indicate that CNVs may have functional significance and contribute to phenotypic diversity. In the model plant Arabidopsis thaliana at least several hundred protein-coding genes might display CNV; however, locus-specific genotyping studies in this plant have not been conducted. We analyzed the natural CNVs in the region overlapping MSH2 gene that encodes the DNA mismatch repair protein, and AT3G18530 and AT3G18535 genes that encode poorly characterized proteins. By applying multiplex ligation-dependent probe amplification and droplet digital PCR we genotyped those genes in 189 A. thaliana accessions. We found that AT3G18530 and AT3G18535 were duplicated (2-14 times) in 20 and deleted in 101 accessions. MSH2 was duplicated in 12 accessions (up to 12-14 copies) but never deleted. In all but one case, the MSH2 duplications were associated with those of AT3G18530 and AT3G18535. Considering the structure of the CNVs, we distinguished 5 genotypes for this region, determined their frequency and geographical distribution. We defined the CNV breakpoints in 35 accessions with AT3G18530 and AT3G18535 deletions and tandem duplications and showed that they were reciprocal events, resulting from non-allelic homologous recombination between 99 %-identical sequences flanking these genes. The widespread geographical distribution of the deletions supported by the SNP and linkage disequilibrium analyses of the genomic sequence confirmed the recurrent nature of this CNV. We characterized in detail for the first time the complex multiallelic CNV in Arabidopsis genome. The region encoding MSH2, AT3G18530 and AT3G18535 genes shows enormous variation of copy numbers among natural ecotypes, being a remarkable example of high Arabidopsis genome plasticity. We provided the molecular

  6. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2

    Science.gov (United States)

    Haraldsdottir, Sigurdis; Rafnar, Thorunn; Frankel, Wendy L.; Einarsdottir, Sylvia; Sigurdsson, Asgeir; Hampel, Heather; Snaebjornsson, Petur; Masson, Gisli; Weng, Daniel; Arngrimsson, Reynir; Kehr, Birte; Yilmaz, Ahmet; Haraldsson, Stefan; Sulem, Patrick; Stefansson, Tryggvi; Shields, Peter G.; Sigurdsson, Fridbjorn; Bekaii-Saab, Tanios; Moller, Pall H.; Steinarsdottir, Margret; Alexiusdottir, Kristin; Hitchins, Megan; Pritchard, Colin C.; de la Chapelle, Albert; Jonasson, Jon G.; Goldberg, Richard M.; Stefansson, Kari

    2017-01-01

    Lynch syndrome, caused by germline mutations in the mismatch repair genes, is associated with increased cancer risk. Here using a large whole-genome sequencing data bank, cancer registry and colorectal tumour bank we determine the prevalence of Lynch syndrome, associated cancer risks and pathogenicity of several variants in the Icelandic population. We use colorectal cancer samples from 1,182 patients diagnosed between 2000–2009. One-hundred and thirty-two (11.2%) tumours are mismatch repair deficient per immunohistochemistry. Twenty-one (1.8%) have Lynch syndrome while 106 (9.0%) have somatic hypermethylation or mutations in the mismatch repair genes. The population prevalence of Lynch syndrome is 0.442%. We discover a translocation disrupting MLH1 and three mutations in MSH6 and PMS2 that increase endometrial, colorectal, brain and ovarian cancer risk. We find thirteen mismatch repair variants of uncertain significance that are not associated with cancer risk. We find that founder mutations in MSH6 and PMS2 prevail in Iceland unlike most other populations. PMID:28466842

  7. Novel α-MSH peptide analogues with broad spectrum antimicrobial activity.

    Directory of Open Access Journals (Sweden)

    Paolo Grieco

    Full Text Available Previous investigations indicate that α-melanocyte-stimulating hormone (α-MSH and certain synthetic analogues of it exert antimicrobial effects against bacteria and yeasts. However, these molecules have weak activity in standard microbiology conditions and this hampers a realistic clinical use. The aim in the present study was to identify novel peptides with broad-spectrum antimicrobial activity in growth medium. To this purpose, the Gly10 residue in the [DNal(2'-7, Phe-12]-MSH(6-13 sequence was replaced with conventional and unconventional amino acids with different degrees of conformational rigidity. Two derivatives in which Gly10 was replaced by the residues Aic and Cha, respectively, had substantial activity against Candida strains, including C. albicans, C. glabrata, and C. krusei and against gram-positive and gram-negative bacteria. Conformational analysis indicated that the helical structure along residues 8-13 is a key factor in antimicrobial activity. Synthetic analogues of α-MSH can be valuable agents to treat infections in humans. The structural preferences associated with antimicrobial activity identified in this research can help further development of synthetic melanocortins with enhanced biological activity.

  8. Altered expression of HER-2 and the mismatch repair genes MLH1 and MSH2 predicts the outcome of T1 high-grade bladder cancer.

    Science.gov (United States)

    Sanguedolce, Francesca; Cormio, Antonella; Massenio, Paolo; Pedicillo, Maria C; Cagiano, Simona; Fortunato, Francesca; Calò, Beppe; Di Fino, Giuseppe; Carrieri, Giuseppe; Bufo, Pantaleo; Cormio, Luigi

    2018-04-01

    The identification of factors predicting the outcome of stage T1 high-grade bladder cancer (BC) is a major clinical issue. We performed immunohistochemistry to assess the role of human epidermal growth factor receptor-2 (HER-2) and microsatellite instability (MSI) factors MutL homologue 1 (MLH1) and MutS homologue 2 (MSH2) in predicting recurrence and progression of T1 high-grade BCs having undergone transurethral resection of bladder tumor (TURBT) alone or TURBT + intravesical instillations of bacillus Calmette-Guerin (BCG). HER-2 overexpression was a significant predictor of disease-free survival (DFS) in the overall as well as in the two patients' population; as for progression-free survival (PFS), it was significant in the overall but not in the two patients' population. MLH1 was an independent predictor of PFS only in patients treated with BCG and MSH2 failed to predict DFS and PFS in all populations. Most importantly, the higher the number of altered markers the lowers the DFS and PFS. In multivariate Cox proportional-hazards regression analysis, the number of altered molecular markers and BCG treatment were significant predictors (p = 0.0004 and 0.0283, respectively) of DFS, whereas the number of altered molecular markers was the only significant predictor (p = 0.0054) of PFS. Altered expression of the proto-oncogene HER-2 and the two molecular markers of genetic instability MLH1 and MSH2 predicted T1 high-grade BC outcome with the higher the number of altered markers the lower the DFS and PFS. These findings provide grounds for further testing them in predicting the outcome of this challenging disease.

  9. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations

    International Nuclear Information System (INIS)

    Flores-Rozas, H.; Kolodner, R.D.

    1998-01-01

    The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of NLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3-10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3-10 reversion rate, whereas the hom3-10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex

  10. Autoantibodies against α-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients

    Science.gov (United States)

    Fetissov, Sergueï O.; Hallman, Jarmila; Oreland, Lars; af Klinteberg, Britt; Grenbäck, Eva; Hulting, Anna-Lena; Hökfelt, Tomas

    2002-01-01

    The hypothalamic arcuate nucleus is involved in the control of energy intake and expenditure and may participate in the pathogenesis of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Two systems are of particular interest in this respect, synthesizing α-melanocyte-stimulating hormone (α-MSH) and synthesizing neuropeptide Y, respectively. We report here that 42 of 57 (74%) AN and/or BN patients studied had in their plasma Abs that bind to melanotropes and/or corticotropes in the rat pituitary. Among these sera, 8 were found to bind selectively to α-MSH-positive neurons and their hypothalamic and extrahypothalamic projections as revealed with immunostaining on rat brain sections. Adsorption of these sera with α-MSH peptide abolished this immunostaining. In the pituitary, the immunostaining was blocked by adsorption with α-MSH or adrenocorticotropic hormone. Additionally, 3 AN/BN sera bound to luteinizing hormone-releasing hormone (LHRH)-positive terminals in the rat median eminence, but only 2 of them were adsorbed with LHRH. In the control subjects, 2 of 13 sera (16%) displayed similar to AN/BN staining. These data provide evidence that a significant subpopulation of AN/BN patients have autoantibodies that bind to α-MSH or adrenocorticotropic hormone, a finding pointing also to involvement of the stress axis. It remains to be established whether these Abs interfere with normal signal transduction in the brain melanocortin circuitry/LHRH system and/or in other central and peripheral sites relevant to food intake regulation, to what extent such effects are related to and/or could be involved in the pathophysiology or clinical presentation of AN/BN, and to what extent increased stress is an important factor for production of these autoantibodies. PMID:12486250

  11. Assessment of MC1R and α-MSH gene sequences in Iranian vitiligo patients

    Directory of Open Access Journals (Sweden)

    Eskandani M

    2010-01-01

    Full Text Available Background: Vitiligo is an acquired pigmentary disorder of the skin that is caused by unknown factors and is characterized by white and depigmented patches that enlarge and become more numerous with time. Genetic factors, oxidative stress, autoimmunity, and neurochemical agents, such as catecholamines might also contribute to vitiligo. Cutaneous pigmentation is determined by the amounts of eumelanin and pheomelanin synthesized by the epidermal melanocytes and interference of melanocortin-1 receptor (MC1R, a G-protein coupled receptor, its normal agonist, alpha-melanocyte stimulating hormone (α-MSH, and key enzymes, such as tyrosinase, to protect against sun-induced DNA damage. The MC1R, a 7 pass trans-membrane G-protein coupled receptor, is a key control point in melanogenesis. Loss-of-function mutations at the MC1R are associated with a switch from eumelanin to pheomelanin production, resulting in a red or yellow coat color. Aim: In this research, we aim to examine the genetic variety of MC1R and α-MSH gene in 20 Iranian vitiligo patients and 20 healthy controls. Materials and Methods: Analysis of the MC1R coding gene was performed with direct sequencing. Results: We found the following 9 MC1R coding region variants: Arg163Gl (G488A, Arg227Leu (G680A, Val 97Phe (G289T, Asp184Asn (G550A, Arg227Lys (G680A, Arg142His (G425A, Val60Leu (G178T, Val247Met (C739A, and Val174Ile (G520A. We also found 2 frameshift changes: one of them was the Insertion of C (frameshift in Pro136, stop at Trp148 and the other, Insertion of G (frameshift in Pro256, stop at Trp 333. Of all the changes, the most common was Val60Leu at 5% in patients vs 20% in controls, Val247Met at 15% in patients vs 0% in controls and Val174Ile at 15% in controls and 0% in patients. The other variants showed a frequency <5% in both patients and controls. Also in this study, we have examined the frequency of single nucleotide polymorphisms within the α-MSH genes with direct sequencing in

  12. Identification of a new genetic marker in Mycoplasma synoviae vaccine strain MS-H and development of a strategy using polymerase chain reaction and high-resolution melting curve analysis for differentiating MS-H from field strains.

    Science.gov (United States)

    Zhu, Ling; Konsak, Barbara M; Olaogun, Olusola M; Agnew-Crumptona, Rebecca; Kanci, Anna; Marenda, Marc S; Browning, Glenn F; Noormohammadi, Amir H

    2017-10-01

    Mycoplasma synoviae (MS) is an economically important avian pathogen worldwide, causing subclinical respiratory tract infection and infectious synovitis in chickens and turkeys. A temperature-sensitive (ts + ) live attenuated vaccine MS-H, derived from the Australian field strain 86079/7NS, is now widely used in many countries to control the disease induced by MS. Differentiation of MS-H vaccine from field strains is crucial for monitoring vaccination programs in commercial poultry. Comparison of genomic sequences of MS-H and its parent strain revealed an adenine deletion at nucleotide position 468 of the MS-H oppF-1 gene. This mutation was shown to be unique to MS-H in further comparative analyses of oppF-1 genes of MS-H re-isolates and field strains from Australia and other countries. Based on this single nucleotide, a combination of nested PCR and high-resolution melting (HRM) curve analysis was used to evaluate its potential for use in differentiation of MS-H from field strains. The mean genotype confidence percentages of 99.27 and 48.20 for MS-H and field strains, respectively, demonstrated the high discriminative power of the newly developed assay (oppF PCR-HRM). A set of 13 tracheal swab samples collected from MS-H vaccinated specific pathogen free birds and commercial chicken flocks infected with MS were tested using the oppF PCR-HRM test and results were totally consistent with those obtained using vlhA genotyping. The nested-PCR HRM method established in this study proved to be a rapid, simple and cost effective tool for discriminating the MS-H vaccine strain from Australian and international strains in pure cultures and on tracheal swabs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    International Nuclear Information System (INIS)

    Kast, Karin; Schackert, Hans K; Neuhann, Teresa M; Görgens, Heike; Becker, Kerstin; Keller, Katja; Klink, Barbara; Aust, Daniela; Distler, Wolfgang; Schröck, Evelin

    2012-01-01

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes

  14. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kast, Karin [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Schackert, Hans K [Department of Surgical Research, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Neuhann, Teresa M [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Medical Genetic Center, Munich (Germany); Görgens, Heike [Department of Surgical Research, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Becker, Kerstin [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Keller, Katja [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Klink, Barbara [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Aust, Daniela [Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Distler, Wolfgang [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Schröck, Evelin [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany)

    2012-11-20

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  15. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer.

    Science.gov (United States)

    Kast, Karin; Neuhann, Teresa M; Görgens, Heike; Becker, Kerstin; Keller, Katja; Klink, Barbara; Aust, Daniela; Distler, Wolfgang; Schröck, Evelin; Schackert, Hans K

    2012-11-20

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  16. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...

  17. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    Directory of Open Access Journals (Sweden)

    Kast Karin

    2012-11-01

    Full Text Available Abstract Background Hereditary Breast and Ovarian Cancer Syndrome (HBOCS and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR genes MLH1, MSH2, MSH6 or PMS2 are very rare. Case presentation We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Conclusions Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  18. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    Science.gov (United States)

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  19. α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats

    Directory of Open Access Journals (Sweden)

    Hong-Zai Guan

    2017-01-01

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is processed from proopiomelanocortin (POMC and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD sensitive neurons. In the lateral hypothalamus (LHA, α-MSH inhibited 75.0% of the glucose-inhibited (GI neurons. In the ventromedial nucleus (VMN, most glucose-sensitive neurons were glucose-excited (GE neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN, α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC and 19 were inhibited (GD-INH. Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.

  20. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Miklos Szokol

    2017-10-01

    Full Text Available The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH, in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT. Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF, fractional shortening (FS, isovolumetric relaxation time (IVRT, mitral annular plane systolic excursion (MAPSE, and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.

  1. Characterization of melanocortin NDP-MSH agonist peptide fragments at the mouse central and peripheral melanocortin receptors.

    Science.gov (United States)

    Haskell-Luevano, C; Holder, J R; Monck, E K; Bauzo, R M

    2001-06-21

    The central melanocortin receptors, melanocortin-4 (MC4R) and melanocortin-3 (MC3R), are involved in the regulation of satiety and energy homeostasis. The MC4R in particular has become a pharmaceutical industry drug target due to its direct involvement in the regulation of food intake and its potential therapeutic application for the treatment of obesity-related diseases. The melanocortin receptors are stimulated by the native ligand, alpha-melanocyte stimulating hormone (alpha-MSH). The potent and enzymatically stable analogue NDP-MSH (Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2)) is a lead peptide for the identification of melanocortin amino acids important for receptor molecular recognition and stimulation. We have synthesized nine peptide fragments of NDP-MSH, deleting N- and C-terminal amino acids to determine the "minimally active" sequence of NDP-MSH. Additionally, five peptides were synthesized to study stereochemical inversion at the Phe 7 and Trp 9 positions in attempts to increase tetra- and tripeptide potencies. These peptide analogues were pharmacologically characterized at the mouse melanocortin MC1, MC3, MC4, and MC5 receptors. This study has identified the Ac-His-DPhe-Arg-Trp-NH(2) tetrapeptide as possessing 10 nM agonist activity at the brain MC4R. The tripeptide Ac-DPhe-Arg-Trp-NH(2) possessed micromolar agonist activities at the MC1R, MC4R, and MC5R but only slight stimulatory activity was observed at the MC3R (at up to 100 microM concentration). This study has also examined to importance of both N- and C-terminal NDP-MSH amino acids at the different melanocortin receptors, providing information for drug design and identification of putative ligand-receptor interactions.

  2. Sporadic colorectal polyps and mismatch repair proteins

    Directory of Open Access Journals (Sweden)

    Mahsa Molaei

    2011-01-01

    Full Text Available Background: Colorectal cancers often arise from benign polyps. Adenomatous polyps and serrated polyps progress step by step to adenocarcinoma and change into malignant cancers. Genetic and epigenetic changes have correlation with specific stages of polyp-adenocarcinoma progression and colorectal cancer histopathological changes. Aims: In this study we used immunohistochemistry (IHC staining in sporadic colorectal polyps to assay functional status of MLH1, MSH2, MSH6, and PMS2 proteins, to track genetic/epigenetic roles of this issue in our patients. Materials and Methods: In this cross-sectional study we assessed all patients who were admitted with sporadic colorectal polyps and underwent polypectomy in endoscopy department during 2004-2008. Result: IHC results were abnormal in 6.8% cases for MLH1, in 4.5% cases for MSH2, in 3% for MSH6, and in 4.8% for PMS2. In all cases with abnormal PMS2, MLH1 was also reported as abnormal. Same results were reported for abnormal MSH2, which is accompanied with abnormal MSH6 in all cases (P values < 0.001. There is no significant difference between IHC staining results, gender, dysplasia grade, adenomatous type, and invasion. On the other hand, there was significant difference between IHC staining results, polyp location, and mean age of patients. The same significant difference was between adenomatous polyps and serrated adenoma polyps by MLH1 and PMS2 (P values < 0.05. Conclusion: According to our findings, maybe MMR dysfunction is the cause of sporadic colorectal polyps in younger age and its increasing risk of dysplasia progression and malignancy progression is only in serrated adenoma. Sporadic polyps in left colon had a higher risk to progress to malignancies, and abnormal IHC staining for MLH1 and PMS2 in serrated polyps is much more than in other adenomatous polyps.

  3. Evidence for alpha-MSH binding sites on human scalp hair follicles: preliminary results

    NARCIS (Netherlands)

    Nanninga, P. B.; Ghanem, G. E.; Lejeune, F. J.; Bos, J. D.; Westerhof, W.

    1991-01-01

    Alpha-MSH, considered an important pigmentation hormone, binds to melanocytes and is thought to stimulate melanogenesis through a cyclic-AMP-dependent mechanism. The binding of alpha-MSH to follicular melanocytes has been investigated in human hair of different colors, ranging from black to blond

  4. 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions

    Energy Technology Data Exchange (ETDEWEB)

    Sjoholm, Ole R.; Nybroe, Ole [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Aamand, Jens [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, 1350 Copenhagen K (Denmark); Sorensen, Jan, E-mail: jan@life.ku.d [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)

    2010-12-15

    Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before {sup 14}C-labelled BAM (0.1 mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10{sup -16} mol C intact cell{sup -1} day{sup -1}) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation. - The intact cell population of Aminobacter MSH1 mineralises BAM at a constant rate independent of growth or extended starvation in mineral solution and natural groundwater.

  5. 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions

    International Nuclear Information System (INIS)

    Sjoholm, Ole R.; Nybroe, Ole; Aamand, Jens; Sorensen, Jan

    2010-01-01

    Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before 14 C-labelled BAM (0.1 mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10 -16 mol C intact cell -1 day -1 ) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation. - The intact cell population of Aminobacter MSH1 mineralises BAM at a constant rate independent of growth or extended starvation in mineral solution and natural groundwater.

  6. Evaluation of tricine and EDDA as Co-ligands for 99mTc-labeled HYNIC-MSH analogs for melanoma imaging.

    Science.gov (United States)

    Garcia, Maria Fernanda; Zhang, Xiuli; Gallazzi, Fabio; Fernandez, Marcelo; Moreno, Maria; Gambini, Juan Pablo; Porcal, Williams; Cabral, Pablo; Quinn, Thomas P

    2015-01-01

    Several radiolabeled alpha-melanocyte stimulating hormone (α-MSH) analogs have been studied for their abilities to target melanoma tumor cells through specific recognition and binding to the melanocortin receptor 1 (MCR1). In this work, a lactam bridgecyclized α-MSH analog was labeled with (99m) via the hydrazinonicotinamide (HYNIC) chelator and characterized for its melanoma tumor targeting properties. The bifunctional chelating agent HYNIC-Boc was attached to the N-terminus of the MSH peptide followed by the lactam cyclization, resulting in the HYNIC-cyc-MSH analog. The lactam cyclized peptide displayed high affinity and specificity for MC1-receptors present on B16/F1 melanoma tumor cells, exhibiting an IC50 of 6.48 nM. HYNIC-cyc-MSH was radiolabeled with (99m)Tc using two common co-ligands, tricine and EDDA. In vitro, the radiochemical stability, cell binding and efflux properties were similar between the peptides radiolabeled with tricine and EDDA as co-ligands. In vivo, biodistribution studies (n=4) demonstrated that (99m)Tc- HYNIC-cyc-MSH/tricine had superior tumor to muscle and tumor to blood ratios than (99m)Tc-HYNIC-cyc-MSH/EDDA at early time points. Planar gamma imaging of melanoma bearing mice showed that 99mTc-HYNIC-cyc-MSH/tricine was able to clearly visualize tumors, underscoring the potential utility of (99m)Tc labeled lactam cyclized MSH molecules as melanoma imaging agents.

  7. Identification of Factors Interacting with hMSH2 and hMLH1 in the Fetal Liver and Investigations of how Mitochondrial Dysfunction Creates a Mutator Phenotype

    DEFF Research Database (Denmark)

    Rasmussen, Anne Karin

    mutations. Mutations in MMR genes cause hereditary non-polyposis colon cancer. In an effort to identify unidentified genes involved in MMR and tissue-specific MMRassociated factors, we employed the yeast two-hybrid system, using the human hMSH2 as bait and a human fetal liver cDNA library as prey. We...... between mitochondrial activity and genomic instability. Mitochondrial dysfunction and genetic instability are characteristic features of cancer cells. Furthermore, mitochondrial dysfunction is a key feature of aging due to accumulation of mutations in mtDNA. Our studies in a yeast model system suggest......Increased spontaneous mutation frequency is associated with increased cancer risk. However, the relative contribution of spontaneous endogenous mutagenesis to carcinogenesis is not known today. Defects in the postreplication DNA mismatch repair (MMR) pathway are recognized to increase spontaneous...

  8. Molecular and clinical characteristics of MSH6 variants : An analysis of 25 index carriers of a germline variant

    NARCIS (Netherlands)

    Olderode - Berends, Maria; Wu, Ying; Sijmons, RH; Mensink, RGJ; van der Sluis, T; Hordijk-Hos, JM; de Vries, EGE; Hollema, H; Karrenbeld, Arend; Buys, CHCM; van der Zee, AGJ; Hofstra, RMW; Kleibeuker, JH

    The MSH6 gene is one of the mismatch-repair genes involved in hereditary nonpolyposis colorectal cancer (HNPCC). Three hundred sixteen individuals who were known or suspected to have HNPCC were analyzed for MSH6 germline mutations. For 25 index patients and 8 relatives with MSH6 variants, molecular

  9. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers : A study of hereditary nonpolyposis colorectal cancer families

    NARCIS (Netherlands)

    Vasen, HFA; Stormorken, A; Menko, FH; Nagengast, FM; Kleibeuker, JH; Griffioen, G; Taal, BG; Moller, P; Wijnen, JT

    2001-01-01

    Purpose: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease characterized by the clustering of colorectal cancer, endometrial cancer, and various other cancers. The disease is caused by mutations in DNA-mismatch-repair (MMR) genes, most frequently in MLH1, MSH2, and

  10. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families.

    NARCIS (Netherlands)

    Vasen, H.F.; Stormorken, A.; Menko, F.H.; Nagengast, F.M.; Kleibeuker, J.H.; Griffioen, G.; Taal, B.G.; Moller, P.; Wijnen, J.T.

    2001-01-01

    PURPOSE: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease characterized by the clustering of colorectal cancer, endometrial cancer, and various other cancers. The disease is caused by mutations in DNA-mismatch-repair (MMR) genes, most frequently in MLH1, MSH2, and

  11. Risk Factors Associated with Colorectal Cancer in a Subset of Patients with Mutations in MLH1 and MSH2 in Taiwan Fulfilling the Amsterdam II Criteria for Lynch Syndrome.

    Directory of Open Access Journals (Sweden)

    Abram Bunya Kamiza

    Full Text Available Lynch syndrome, caused by germline mutations in mismatch repair genes, is a predisposing factor for colorectal cancer (CRC. This retrospective cohort study investigated the risk factors associated with the development of CRC in patients with MLH1 and MSH2 germline mutations.In total, 301 MLH1 and MSH2 germline mutation carriers were identified from the Amsterdam criteria family registry provided by the Taiwan Hereditary Nonpolyposis Colorectal Cancer Consortium. A Cox proportional hazard model was used to calculate the hazard ratios (HRs and 95% confidence intervals (CIs to determine the association between the risk factors and CRC development. A robust sandwich covariance estimation model was used to evaluate family dependence.Among the total cohort, subjects of the Hakka ethnicity exhibited an increased CRC risk (HR = 1.62, 95% CI = 1.09-2.34; however, those who performed regular physical activity exhibited a decreased CRC risk (HR = 0.62, 95% CI = 0.41-0.88. The CRC risk was enhanced in MLH1 germline mutation carriers, with corresponding HRs of 1.72 (95% CI = 1.16-2.55 and 0.54 (95% CI = 0.34-0.83 among subjects of the Hakka ethnicity and those who performed regular physical activity, respectively. In addition, the total cohort with a manual occupation had a 1.56 times higher CRC risk (95% CI = 1.07-2.27 than did that with a skilled occupation. Moreover, MSH2 germline mutation carriers with blood group type B exhibited an increased risk of CRC development (HR = 2.64, 95% CI = 1.06-6.58 compared with those with blood group type O.The present study revealed that Hakka ethnicity, manual occupation, and blood group type B were associated with an increased CRC risk, whereas regular physical activity was associated with a decreased CRC risk in MLH1 and MSH2 germline mutation carriers.

  12. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  13. Suspected Lynch syndrome associated MSH6 variants: A functional assay to determine their pathogenicity.

    Directory of Open Access Journals (Sweden)

    Hellen Houlleberghs

    2017-05-01

    Full Text Available Lynch syndrome (LS is a hereditary cancer predisposition caused by inactivating mutations in DNA mismatch repair (MMR genes. Mutations in the MSH6 DNA MMR gene account for approximately 18% of LS cases. Many LS-associated sequence variants are nonsense and frameshift mutations that clearly abrogate MMR activity. However, missense mutations whose functional implications are unclear are also frequently seen in suspected-LS patients. To conclusively diagnose LS and enroll patients in appropriate surveillance programs to reduce morbidity as well as mortality, the functional consequences of these variants of uncertain clinical significance (VUS must be defined. We present an oligonucleotide-directed mutagenesis screen for the identification of pathogenic MSH6 VUS. In the screen, the MSH6 variant of interest is introduced into mouse embryonic stem cells by site-directed mutagenesis. Subsequent selection for MMR-deficient cells using the DNA damaging agent 6-thioguanine (6TG allows the identification of MMR abrogating VUS because solely MMR-deficient cells survive 6TG exposure. We demonstrate the efficacy of the genetic screen, investigate the phenotype of 26 MSH6 VUS and compare our screening results to clinical data from suspected-LS patients carrying these variant alleles.

  14. Phenotype comparison of MLH1 and MSH2 mutation carriers in a cohort of 1,914 individuals undergoing clinical genetic testing in the United States

    NARCIS (Netherlands)

    F. Kastrinos (Fay); E.M. Stoffel (Elena); J. Balmana (Judith); E.W. Steyerberg (Ewout); R. Mercado (Rowena); S. Syngal (Sapna)

    2008-01-01

    textabstractBackground and Aims: Lynch syndrome is caused by germ-line mismatch repair gene mutations. We examined the phenotypic differences between MLH1 and MSH2 gene mutation carriers and whether mutation type (point versus large rearrangement) affected phenotypic expression. Methods: This is a

  15. Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution.

    Science.gov (United States)

    Zhu, Ling; Shahid, Muhammad A; Markham, John; Browning, Glenn F; Noormohammadi, Amir H; Marenda, Marc S

    2018-02-02

    The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.

  16. Mismatch repair protein deficient endometrioid adenocarcinomas, metastasizing to adrenal gland and lymph nodes: Unusual cases with diagnostic implications

    Directory of Open Access Journals (Sweden)

    Bharat Rekhi

    2015-01-01

    Full Text Available Recently, certain endometrial carcinomas have been found to be associated with mismatch repair (MMR protein defects/deficiency. A 39-year-old female presented with cough, decreased appetite and significant weight loss since 2 months. Earlier, she had undergone total abdominal hysterectomy with bilateral salpingo-oophorectomy (TAH-BSO for endometrioid adenocarcinoma. Imaging disclosed an 8 cm-sized adrenal mass that was surgically excised. Histopathology of the adrenal tumor, endocervical tumor, and endometrial biopsy revealed Federation of Gynecology and Obstetrics (FIGO Grade II to III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were positive for cytokeratin 7, epithelial membrane antigen, PAX8, MLH1 and PMS2 while negative for estrogen receptor (ER, progesterone receptor (PR, MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. A 34-year-old lady presented with vaginal bleeding since 9 months. She underwent TAH-BSO, reported as FIGO Grade III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were negative for ER, PR, MLH1, and PMS2 while positive for MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. However, she developed multiple nodal and pericardial metastases and succumbed to the disease within a year post-diagnosis. Certain high-grade endometrioid adenocarcinomas occurring in younger women are MMR protein deficient and display an aggressive clinical course. Adrenal metastasis in endometrial carcinomas is rare.

  17. D-TRP(8-γMSH Prevents the Effects of Endotoxin in Rat Skeletal Muscle Cells through TNFα/NF-KB Signalling Pathway.

    Directory of Open Access Journals (Sweden)

    Ana Belén Gómez-SanMiguel

    Full Text Available Sepsis induces anorexia and muscle wasting secondary to an increase in muscle proteolysis. Melanocyte stimulating hormones (MSH is a family of peptides that have potent anti-inflammatory effects. Melanocortin receptor-3 (MC3-R has been reported as the predominant anti-inflammatory receptor for melanocortins. The aim of this work was to analyse whether activation of MC3-R, by administration of its agonist D-Trp(8-γMSH, is able to modify the response of skeletal muscle to inflammation induced by lipopolysaccharide endotoxin (LPS or TNFα. Adult male rats were injected with 250 μg/kg LPS and/or 500 μg/kg D-Trp(8-γMSH 17:00 h and at 8:00 h the following day, and euthanized 4 hours afterwards. D-Trp(8-γMSH decreased LPS-induced anorexia and prevented the stimulatory effect of LPS on hypothalamic IL-1β, COX-2 and CRH as well as on serum ACTH and corticosterone. Serum IGF-I and its expression in liver and gastrocnemius were decreased in rats injected with LPS, but not in those that also received D-Trp(8-γMSH. However, D-Trp(8-γMSH was unable to modify the effect of LPS on IGFBP-3. In the gastrocnemius D-Trp(8-γMSH blocked LPS-induced decrease in pAkt, pmTOR, MHC I and MCH II, as well as the increase in pNF-κB(p65, FoxO1, FoxO3, LC3b, Bnip-3, Gabarap1, atrogin-1, MuRF1 and in LC3a/b lipidation. In L6 myotube cultures, D-Trp(8-γMSH was able to prevent TNFα-induced increase of NF-κB(p65 phosphorylation and decrease of Akt phosphorylation as well as of IGF-I and MHC I expression. These data suggest that MC3-R activation prevents the effect of endotoxin on skeletal wasting by modifying inflammation, corticosterone and IGF-I responses and also by directly acting on muscle cells through the TNFα/NF-κB(p65 pathway.

  18. Depletion of brain alpha-MSH alters prostaglandin and interleukin fever in rats.

    Science.gov (United States)

    Martin, S M; Malkinson, T J; Veale, W L; Pittman, Q J

    1990-09-03

    Alpha-melanocyte stimulating hormone (alpha-MSH), a putative endogenous antipyretic agent, is synthesized largely within neurons in the arcuate nucleus. To test the hypothesis that destruction of this area would increase the febrile response, male Wistar rats, treated as neonates with intraperitoneal injections of monosodium glutamate (MSG) or saline, were given intracerebroventricular (i.c.v.) injections of prostaglandin E1 (20 ng; 200 ng) or purified interleukin-1 (20 U) and body temperature was monitored. The fevers displayed by the MSG-treated animals were significantly greater (P less than 0.05) than those of the controls for the lower dose of PGE1 at 10-30 min and for IL-1 at 3-6 h after the injections. MSG-treated rats showed significant reduction (P less than 0.01) in alpha-MSH content of the medial basal hypothalamus and lateral septum when compared to saline controls. Body temperature response of non-febrile animals to high ambient temperature was not affected by the MSG treatment. These data support the hypothesis that alpha-MSH is an endogenous antipyretic in the rat.

  19. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System*

    Science.gov (United States)

    Smith, Catherine E.; Bowen, Nikki; Graham, William J.; Goellner, Eva M.; Srivatsan, Anjana; Kolodner, Richard D.

    2015-01-01

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. PMID:26170454

  20. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.

    Science.gov (United States)

    Smith, Catherine E; Bowen, Nikki; Graham, William J; Goellner, Eva M; Srivatsan, Anjana; Kolodner, Richard D

    2015-08-28

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. MULTI-WAVELENGTH ANALYSIS OF THE GALACTIC SUPERNOVA REMNANT MSH 11-61A

    Energy Technology Data Exchange (ETDEWEB)

    Auchettl, Katie; Slane, Patrick; Foster, Adam R.; Smith, Randall K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Castro, Daniel [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2015-09-01

    Due to its centrally bright X-ray morphology and limb brightened radio profile, MSH 11–61A (G290.1–0.8) is classified as a mixed morphology supernova remnant (SNR). H i and CO observations determined that the SNR is interacting with molecular clouds found toward the north and southwest regions of the remnant. In this paper we report on the detection of γ-ray emission coincident with MSH 11–61A, using 70 months of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. To investigate the origin of this emission, we perform broadband modeling of its non-thermal emission considering both leptonic and hadronic cases and concluding that the γ-ray emission is most likely hadronic in nature. Additionally we present our analysis of a 111 ks archival Suzaku observation of this remnant. Our investigation shows that the X-ray emission from MSH 11–61A arises from shock-heated ejecta with the bulk of the X-ray emission arising from a recombining plasma, while the emission toward the east arises from an ionizing plasma.

  2. Functional analysis of rare variants in mismatch repair proteins augments results from computation-based predictive methods

    Science.gov (United States)

    Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.

    2017-01-01

    ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185

  3. [Constitutional mismatch repair-deficiency syndrome (CMMR-D) - a case report of a family with biallelic MSH6 mutation].

    Science.gov (United States)

    Ilenčíková, D

    2012-01-01

    This work gives comprehensive information about new recessively inherited syndrome characterized by development of childhood malignancies. Behind this new described syndrome, called Constitutional mismatch repair-deficiency syndrome (CMMR-D), there are biallelic mutations in genes, which cause adult cancer syndrom termed Lynch syndrom (Hereditary non-polyposis cancer syndrom-HNPCC) if they are heterozygous mutations. Biallelic germline mutations of genes MLH1, MSH2, MSH6 and PMS2 in CMMR-D are characterized by increased risk of hematological malignancies, atypical brain tumors and early onset of colorectal cancers. An accompanying manifestation of the disease are skin spots with diffuse margins and irregular pigmentation reminiscent of Café au lait spots of NF1. This paper reports a case of a family with CMMR-D caused by novel homozygous MSH6 mutations leading to gliomatosis cerebri, T-ALL in an 11-year-old female and glioblastoma multiforme in her 10-year-old brother, both with rapid progression of the diseases. A literature review of brain tumors in CMMR-D families shows that they are treatment-resistant and lead to early death. Therefore, this work highlights the importance of early identification of patients with CMMR-D syndrome - in terms of initiation of a screening program for early detection of malignancies as well as early surgical intervention.

  4. Physical interaction between components of DNA mismatch repair and nucleotide excision repair

    International Nuclear Information System (INIS)

    Bertrand, P.; Tishkoff, D.X.; Filosi, N.; Dasgupta, R.; Kolodner, R.D.

    1998-01-01

    Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as 'bait,' and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes

  5. Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer.

    Science.gov (United States)

    Norris, Alixanna M; Woodruff, R D; D'Agostino, Ralph B; Clodfelter, Jill E; Scarpinato, Karin Drotschmann

    2007-02-01

    Defects in mismatch repair (MMR) proteins have been identified in various types of cancer. However, an association with prostate cancer has been controversial. Defective MMR results in genome instability with detrimental consequences that significantly contribute to tumorigenesis. This study determined alterations in key MMR protein levels in prostate cancer with the goal to identify prognostic markers. Prostatectomy samples were immunohistochemically stained and the relative presence or absence of key proteins MSH2, MLH1, and PMS2 determined. Cancer tissue of distinct grades was compared with the normal surrounding tissue. Microsatellite instability (MSI) in altered tissues was determined according to NCI guidelines. In contrast to reports that associate a lack of individual MMR proteins with tumorigenesis, a significant increase in PMS2 levels was identified in PIN lesions and prostate cancer tissue. This elevation in PMS2 was independent of changes in levels in its heterodimeric partner, MLH1. Prostate tumors with elevated levels of PMS2 were genetically unstable, which was corrected by MLH1 co-elevation. This is the first documentation of detrimental consequences associated with the increase in a MMR protein in human cancer. This study recognizes PMS2 elevation as a prognostic marker in pre-neoplastic and prostate cancer lesions. This result has significant implications for future diagnostic and treatment measures. (c) 2006 Wiley-Liss, Inc.

  6. Alpha-Melanocyte-Stimulating Hormone and Agouti-Related Protein: Do They Play a Role in Appetite Regulation in Childhood Obesity?

    Science.gov (United States)

    Vehapoğlu, Aysel; Türkmen, Serdar; Terzioğlu, Şule

    2016-03-05

    The hypothalamus plays a crucial role in the regulation of feeding behavior. The anorexigenic neuropeptide alpha-melanocyte-stimulating hormone (α-MSH) and the orexigenic neuropeptide agouti-related protein (AgRP) are among the major peptides produced in the hypothalamus. This study investigated the plasma concentrations of α-MSH and AgRP in underweight and obese children and their healthy peers. The associations between α-MSH and AgRP levels and anthropometric and nutritional markers of malnutrition and obesity were also assessed. Healthy sex-matched subjects aged 2 to 12 years were divided into 3 groups, as underweight (n=57), obese (n=61), and of normal weight (n=57). Plasma fasting concentrations of α-MSH and AgRP were measured by enzyme-linked immunosorbent assay. The differences between the three groups as to the relationships between plasma concentrations of α-MSH and AgRP and anthropometric data, serum biochemical parameters and homeostatic model assessment of insulin resistance were evaluated. Obese children had significantly lower α-MSH levels than underweight (1194±865 vs. 1904±1312 ng/mL, p=0.006) and normal weight (1194±865 vs. 1762±1463 ng/mL, p=0.036) children; there were no significant differences in the α-MSH levels between the underweight and normal weight children (p=0.811). Also, no significant differences were observed between the underweight and obese children regarding the AgRP levels (742±352 vs. 828±417 ng/mL, p=0.125). We found a significant positive correlation between plasma α-MSH and AgRP levels across the entire sample. This study is the first to demonstrate body weight-related differences in α-MSH and AgRP levels in children. Circulating plasma α-MSH levels in obese children were markedly lower than those of underweight and normal-weight children. This suggests that α-MSH could play a role in appetite regulation.

  7. Infundibular neurons of the human hypothalamus simultaneously reactive with antisera against endorphins, ACTH, MSH and beta-LPH.

    Science.gov (United States)

    Bugnon, C; Bloch, B; Lenys, D; Fellmann, D

    1979-06-27

    In man, discrete neurons of the infundibular (arcuate) nucleus contain compounds that can be stained with anti-endorphin (alpha and beta), anti-ACTH, anti-MSH (alpha and beta) and anti-beta-LPH immune sera (I.S.). In the fetus, certain neurons stain with anti-beta-endorphin or anti((17--39)ACTH starting from the 11th week of fetal life. At the ultrastructural level, these neurons contain elementary granules that are immunoreactive with anti-beta-endorphin. In the adult, neurons immunoreactive with anti-beta-endorphin are found in the infundibular nucleus. Their axonal fibers terminate around blood vessels in the neurovascular zone and in the pituitary stalk, or establish contacts with non-immunoreactive perikarya of the infundibular nucleus. These neurons can be stained with anti(17--39)ACTH and anti-beta-endorphin I.S. The most reactive are also stained moderately with anti-alpha-MSH, anti-beta-MSH, anti-beta-LPH, anti-alpha-endorphin, or anti(1--24)ACTH I.S. These results indicate that, in man, compound(s) identical with or immunologically related to endorphins, beta-LPH, ACTH and MSH are secreted by certain hypothalamic neurons. These agents probably originate from a common precursor molecula similar to the so-called pro-opiocortin.

  8. Sequence Classification: 894094 [

    Lifescience Database Archive (English)

    Full Text Available n that forms heterodimers, with Msh3p and Msh6p, that bind to DNA mismatches to initiate the mismatch repair process; contains a Walk...er ATP-binding motif required for repair activity; Msh2p-Msh6p binds to and hydrolyzes ATP; Msh2p || http://www.ncbi.nlm.nih.gov/protein/6324482 ...

  9. Clinicopathological characteristics of patients with upper urinary tract urothelial cancer with loss of immunohistochemical expression of the DNA mismatch repair proteins in universal screening.

    Science.gov (United States)

    Urakami, Shinji; Inoshita, Naoko; Oka, Suguru; Miyama, Yu; Nomura, Sachio; Arai, Masami; Sakaguchi, Kazushige; Kurosawa, Kazuhiro; Okaneya, Toshikazu

    2018-02-01

    To assess the detection rate of putative Lynch syndrome-associated upper urinary tract urothelial cancer among all upper urinary tract urothelial cancers and to examine its clinicopathological characteristics. A total of 143 patients with upper urinary tract urothelial cancer who had received total nephroureterectomy were immunohistochemically stained for the expression of mismatch repair proteins MLH1, PMS2, MSH2 and MSH6. For all suspected mismatch repair-deficient cases, MMR genetic testing was recommended and clinicopathological features were examined. Loss of mismatch repair proteins was found in seven patients (5%) who were thus categorized as putative Lynch syndrome-associated upper urinary tract urothelial cancer. Five of these patients showed dual loss of MSH2/MSH6. Two patients were confirmed to be MSH2 germline mutation carriers. Histologically, all seven tumors were low-grade atypical urothelial carcinoma and showed its unique histological features, such as an inverted papilloma-like growth pattern and a villous to papillary structure with mild stratification of tumor cells. Six tumors had no invasion of the muscularis propria. No recurrence or cancer-related deaths were reported in these seven patients. Just three patients met the revised Amsterdam criteria. This is the first report that universally examined mismatch repair immunohistochemical screening for upper urinary tract urothelial cancers. The prevalence (5%) of putative Lynch syndrome-associated upper urinary tract urothelial cancers is much higher than we had expected. We ascertained that putative Lynch syndrome-associated upper urinary tract urothelial cancers were clinically in the early stage and histologically classified into low-grade malignancy with its characteristic pathological features. The clinicopathological characteristics that we found in the present study could become additional possible markers in the diagnosis of Lynch syndrome-associated upper urinary tract urothelial cancers

  10. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression.

    Science.gov (United States)

    Chakraborty, Ujani; Dinh, Timothy A; Alani, Eric

    2018-04-13

    Mismatch repair (MMR) proteins act in spellchecker roles to excise misincorporation errors that occur during DNA replication. Curiously, large-scale analyses of a variety of cancers showed that increased expression of MMR proteins often correlated with tumor aggressiveness, metastasis, and early recurrence. To better understand these observations, we used the TCGA and GENT databases to analyze MMR protein expression in cancers. We found that the MMR genes MSH2 and MSH6 are overexpressed more frequently than MSH3 , and that MSH2 and MSH6 are often co-overexpressed as a result of copy number amplifications of these genes. These observations encouraged us to test the effects of upregulating MMR protein levels in baker's yeast, where we can sensitively monitor genome instability phenotypes associated with cancer initiation and progression. Msh6 overexpression (2 to 4-fold) almost completely disrupted mechanisms that prevent recombination between divergent DNA sequences by interacting with the DNA polymerase processivity clamp PCNA and by sequestering the Sgs1 helicase. Importantly, co-overexpression of Msh2 and Msh6 (∼8-fold) conferred, in a PCNA interaction dependent manner, several genome instability phenotypes including increased mutation rate, increased sensitivity to the DNA replication inhibitor hydroxyurea and the DNA damaging agents methyl methanesulfonate and 4-nitroquinoline N-oxide, and elevated loss of heterozygosity. Msh2 and Msh6 co-overexpression also altered the cell cycle distribution of exponentially growing cells, resulting in an increased fraction of unbudded cells, consistent with a larger percentage of cells in G1. These novel observations suggested that overexpression of MSH factors affected the integrity of the DNA replication fork, causing genome instability phenotypes that could be important for promoting cancer progression. Copyright © 2018, Genetics.

  11. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers.

    Directory of Open Access Journals (Sweden)

    Judit Váradi

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.

  12. Plumbagin Suppresses α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells by Inhibiting Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-02-01

    Full Text Available Recent studies have shown that plumbagin has anti-inflammatory, anti-allergic, antibacterial, and anti-cancer activities; however, it has not yet been shown whether plumbagin suppresses alpha-melanocyte stimulating hormone (α-MSH-induced melanin synthesis to prevent hyperpigmentation. In this study, we demonstrated that plumbagin significantly suppresses α-MSH-stimulated melanin synthesis in B16F10 mouse melanoma cells. To understand the inhibitory mechanism of plumbagin on melanin synthesis, we performed cellular or cell-free tyrosinase activity assays and analyzed melanogenesis-related gene expression. We demonstrated that plumbagin directly suppresses tyrosinase activity independent of the transcriptional machinery associated with melanogenesis, which includes micropthalmia-associated transcription factor (MITF, tyrosinase (TYR, and tyrosinase-related protein 1 (TYRP1. We also investigated whether plumbagin was toxic to normal human keratinocytes (HaCaT and lens epithelial cells (B3 that may be injured by using skin-care cosmetics. Surprisingly, lower plumbagin concentrations (0.5–1 μM effectively inhibited melanin synthesis and tyrosinase activity but do not cause toxicity in keratinocytes, lens epithelial cells, and B16F10 mouse melanoma cells, suggesting that plumbagin is safe for dermal application. Taken together, these results suggest that the inhibitory effect of plumbagin to pigmentation may make it an acceptable and safe component for use in skin-care cosmetic formulations used for skin whitening.

  13. Localization of amylin-like immunoreactivity in melanocyte-stimulating hormone-containing cells of the pars intermedia but not those of the pars distalis in the axolotl (Ambystoma mexicanum) pituitary.

    Science.gov (United States)

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2016-04-01

    Immunohistochemical techniques were employed to investigate the distribution of amylin-like immunoreactivity in the axolotl (Ambystoma mexicanum) pituitary. Amylin-immunoreactive cells were observed in the pars intermedia, and these cells were found to be immunoreactive for α-melanocyte-stimulating hormone (αMSH) as well. In contrast, αMSH-immunoreactive cells in the pars distalis were immuno-negaitive for amylin. These light microscopic findings were confirmed by immunoelectron microscopy. Amylin-immunoreactive signals were located on the haloes of presumable secretory granules in association with αMSH-immunoreactive signals in the amylin-positive cells. However, in the pars distalis, the αMSH-positive cells did not contain amylin-immunoreactive secretory granules. Western blot analysis of axolotl pituitary extracts revealed the labeling of a protein band at approximately 10.5-kDa by the anti-rat amylin serum, which was not labeled by the anti-αMSH antibody. These findings indicate that amylin secreted from MSH-producing cells in the pars intermedia may modulate MSH secretion in an autocrine fashion and may participate in MSH functions such as fatty homeostasis together with MSH. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation.

    Science.gov (United States)

    Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing

    2007-11-01

    Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.

  15. alpha-MSH and Org.2766 in peripheral nerve regeneration: different routes of delivery.

    Science.gov (United States)

    Van der Zee, C E; Brakkee, J H; Gispen, W H

    1988-03-15

    The efficacy of melanocortins (alpha-MSH and an ACTH-(4-9) analog, Org.2766) in accelerating functional recovery from sciatic nerve damage following various types of subcutaneous and oral administration was assessed in the rat. Furthermore, the effectiveness of the local delivery of melanocortins to the site of injury was examined. An accelerated recovery was evident following subcutaneous constant delivery of Org.2766 from an osmotic mini-pump and from biodegradable polymere microspheres, and was as effective as repeated subcutaneous injections of alpha-MSH or Org.2766. Oral administration of Org.2766 was ineffective. Local application of Org.2766, achieved by wrapping a peptide-impregnated biodegradable gelatine foam matrix around the site of injury, facilitated recovery as well. The biodegradable microspheres and gelatine foam matrix may be of importance in eventual clinical use as effective vehicles for administration of melanocortins in the treatment of peripheral nerve damage.

  16. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic hybridizat......Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic...... deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...... from several 100 kb, including large flanking regions, to rearrangements, allowing convenient design...

  17. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells.

    Science.gov (United States)

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae

    2012-05-07

    Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    Science.gov (United States)

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these

  19. The 116G > A MSH6 and IVS1-1121C > T PMS2 Genes Polymorphisms Modulate the Risk of the Sporadic Colorectal Cancer Development in Polish Population.

    Science.gov (United States)

    Zelga, Piotr; Przybyłowska-Sygut, Karolina; Zelga, Marta; Dziki, Adam; Majsterek, Ireneusz

    2018-04-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide. DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects mismatches generated during DNA replication. MMR defects were found to be associated with hereditary non-polyposis colorectal cancer (HNPCC) and a subset of sporadic colon cancers. The inheritance of common variations in MMR genes may influences individual susceptibility to the development of colorectal cancer. The purpose of the study was to evaluate the association between gene polymorphisms Glu39Gly (c.116G > A) of MSH6 gene and IVS1-1121C > T of PMS2 gene and sporadic colorectal cancer risk, in a case-control study comprising 200 patients and 200 controls origination from polish population. DNA was isolated from peripheral blood lymphocytes of enrolled patients, and gene polymorphisms were analysed by restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) for MSH6 and TaqMan for PMS2. G/A variant of Glu39Gly (c.116G > A) genotype was associated with an increased risk of colorectal cancer (OR 1,65 95%CI:1,01-2,69 p = 0.44). Presence of A allele was also significantly higher in patient with CRC (OR 1,57 95% CI: 1,04-2,38 p = 0.032). Prevalence of this genotype was also markedly higher in females and patients above 60 years in CRC group (OR 2.25 95%CI: 1.22-4.14 p = 0.0098 and OR 2.74 95% CI: 1.27-5.93 p = 0.0097 respectively). None of such correlations was observed for genotype variants of IVS1-1121C > T PMS2. In conclusion, our data suggests thatMSH6 Glu39Gly polymorphism is associated with the risk of developing sporadic colorectal cancer in polish population. Linkage to the female gender, onset above 60 years old and further increase of risk when combined with wild-type allele of PMS2 IVS1-1121C > T polymorphism indicates defective mismatch repair system.

  20. Regulation of Melanopsins and Per1 by α-MSH and Melatonin in Photosensitive Xenopus laevis Melanophores

    Directory of Open Access Journals (Sweden)

    Maria Nathália de Carvalho Magalhães Moraes

    2014-01-01

    Full Text Available α-MSH and light exert a dispersing effect on pigment granules of Xenopus laevis melanophores; however, the intracellular signaling pathways are different. Melatonin, a hormone that functions as an internal signal of darkness for the organism, has opposite effects, aggregating the melanin granules. Because light functions as an important synchronizing signal for circadian rhythms, we further investigated the effects of both hormones on genes related to the circadian system, namely, Per1 (one of the clock genes and the melanopsins, Opn4x and Opn4m (photopigments. Per1 showed temporal oscillations, regardless of the presence of melatonin or α-MSH, which slightly inhibited its expression. Melatonin effects on melanopsins depend on the time of application: if applied in the photophase it dramatically decreased Opn4x and Opn4m expressions, and abolished their temporal oscillations, opposite to α-MSH, which increased the melanopsins’ expressions. Our results demonstrate that unlike what has been reported for other peripheral clocks and cultured cells, medium changes or hormones do not play a major role in synchronizing the Xenopus melanophore population. This difference is probably due to the fact that X. laevis melanophores possess functional photopigments (melanopsins that enable these cells to primarily respond to light, which triggers melanin dispersion and modulates gene expression.

  1. Alpha-MSH decreases core and brain temperature during global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Spulber, S.; Moldovan, Mihai; Oprica, M.

    2005-01-01

    -vessel occlusion forebrain ischemia on core temperature (CT) and brain temperature (BT), respectively. After 10 min cerebral ischemia, BT was lower in alpha-MSH- than in saline-injected animals. After 10 min reperfusion, both CT and BT were lower than the corresponding pre-ischemic levels after injection of alpha...

  2. Genetic and bibliographic information: MSH3 [GenLibi

    Lifescience Database Archive (English)

    Full Text Available MSH3 mutS homolog 3 (E. coli) human Endometrial Neoplasms (MeSH) Neoplasms (C04) > ...8) > Uterine Neoplasms (C04.588.945.418.948) > Endometrial Neoplasms (C04.588.945.418.948.585) Female Urogen...s (C13.351.937) > Genital Neoplasms, Female (C13.351.937.418) > Uterine Neoplasms (C13.351.937.418.875) > Endometrial Neoplasms (C13.351.937.418.875.200) 04A0754459 ... ....351) > Genital Diseases, Female (C13.351.500) > Uterine Diseases (C13.351.500.852) > Uterine Neoplasms (C13.351.500.852.762) > Endom...etrial Neoplasms (C13.351.500.852.762.200) Female Urogenital Diseases and Pregnancy

  3. Pms2 suppresses large expansions of the (GAA·TTCn sequence in neuronal tissues.

    Directory of Open Access Journals (Sweden)

    Rebecka L Bourn

    Full Text Available Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR pathway are required for instability of the expanded (CAG·CTG(n sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC(n sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC(n sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC(n sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia but not in non-neuronal tissues (heart and kidney, without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC(n sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.

  4. Synthesis of tritium labeled Ac-[Nle4, D-Phe7]-α-MSH/sub 4-11/-NH2: a superpotent melanotropin with prolonged biological activity

    International Nuclear Information System (INIS)

    Wilkes, B.D.; Hruby, V.J.; Yamamura, H.I.; Akiyama, K.; Castrucci, A.M. de; Hadley, M.E.; Andrews, J.R.; Wan, Y.P.

    1984-01-01

    Ac-[Nle 4 , D-Phe 7 ]-α-MSH/sub 4-11/-NH 2 an octapeptide, is a melanotropin analogue (Ac-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys-NH 2 ), which is a superpotent agonist of frog and lizard skin melanocytes and mouse S 91 (Cloudman) melanoma cells. This melanotropin possesses ultraprolonged activity on melanocytes, both in vitro and in vivo, and the peptide is resistant to inactivation by serum enzymes. The tritium-labeled congener was prepared by direct incorporation of [ 3 H]-labeled norleucine into the peptide. The melanotropic activity of the labeled peptide is identical to the unlabeled analogue. This labeled peptide should be useful for studies on the localization and characterization of melanotropin receptors

  5. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours

    DEFF Research Database (Denmark)

    Rudolph, Christiane; Melau, Cecilie; Nielsen, John E.

    2017-01-01

    in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. MethodsThe expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2...... proteins, in particular MSH2 and MLH1, which are involved in the recognition of cisplatin adducts and in activation of the DNA damage response pathway to initiate apoptosis....

  6. Spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions in Fe(NH4)2(SO4)2·6H2O - Modeling zero-field splitting and Zeeman electronic parameters by microscopic spin Hamiltonian approach

    Science.gov (United States)

    Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro

    2018-03-01

    Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.

  7. The pathological phenotype of colon cancer with microsatellite instability

    DEFF Research Database (Denmark)

    Andersen, Helene Schou; Bertelsen, Claus Anders; Henriksen, Rikke

    2016-01-01

    proteins: pMLH1, pMSH2, pMSH6 and pPMS2 for the determination of microsatellite instability. Microsatellite instability was defined as deficient expression of one or more of these proteins. RESULTS: Of the 833 patients, 177 had microsatellite instable tumours (21%). Using multivariable logistic regression...

  8. Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues.

    Science.gov (United States)

    Bourn, Rebecka L; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A; Bidichandani, Sanjay I

    2012-01-01

    Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)(n) sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)(n) sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)(n) sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)(n) sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)(n) sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.

  9. Comparison of energy efficiency between Wearable Power-Assist Locomotor (WPAL) and two types of knee-ankle-foot orthoses with a medial single hip joint (MSH-KAFO).

    Science.gov (United States)

    Yatsuya, Kanan; Hirano, Satoshi; Saitoh, Eiichi; Tanabe, Shigeo; Tanaka, Hirotaka; Eguchi, Masayuki; Katoh, Masaki; Shimizu, Yasuhiro; Uno, Akito; Kagaya, Hitoshi

    2018-01-01

    To compare the energy efficiency of Wearable Power-Assist Locomotor (WPAL) with conventional knee-ankle-foot orthoses (MSH-KAFO) such as Hip and Ankle Linked Orthosis (HALO) or Primewalk. Cross over case-series. Chubu Rosai Hospital, Aichi, Japan, which is affiliated with the Japan Organization of Occupational Health and Safety. Six patients were trained with MSH-KAFO (either HALO or Primewalk) and WPAL. They underwent 6-minute walk tests with each orthosis. Energy efficiency was estimated using physiological cost index (PCI) as well as heart rate (HR) and modified Borg score. Trial energy efficiency with MSH-KAFO was compared with WPAL to assess if differences in PCI became greater between MSH-KAFO and WPAL as time goes on during the 6-minute walk. Spearman correlation coefficient of time (range: 0.5-6.0 minutes) with the difference was calculated. The same statistical procedures were repeated for HR and modified Borg score. Greater energy efficiency, representing a lower gait demand, was observed in trials with WPAL compared with MSH-KAFO (Spearman correlation coefficients for PCI, HR and modified Borg were 0.93, 0.90 and 0.97, respectively, all P energy efficient type of robotics that may be used by patients with paraplegia.

  10. HNPCC: Six new pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Epplen Joerg T

    2004-06-01

    Full Text Available Abstract Background Hereditary non-polyposis colorectal cancer (HNPCC is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR. HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6. Methods Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out. Results We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6 resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702], three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298] and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]. All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H. Conclusions HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.

  11. AgRP and NPY Expression in the Human Hypothalamic Infundibular Nucleus Correlate with Body Mass Index, Whereas Changes in alpha MSH Are Related to Type 2 Diabetes

    NARCIS (Netherlands)

    Alkemade, Anneke; Yi, Chun-Xia; Pei, Lei; Harakalova, Magdalena; Swaab, Dick F.; la Fleur, Susanne E.; Fliers, Eric; Kalsbeek, Andries

    2012-01-01

    Context: Rodent data show that altered hypothalamic signaling contributes to the development of obesity and insulin resistance. Objective: To determine differences in hypothalamic expression levels of neuropeptide Y (NPY), agouti-related peptide (AgRP), and alpha MSH in the infundibular nucleus, the

  12. Interobserver variability in the evaluation of mismatch repair protein immunostaining

    DEFF Research Database (Denmark)

    Klarskov, Louise; Ladelund, Steen; Holck, Susanne

    2010-01-01

    staining. Full consensus was achieved in 51% of the stainings for MLH1, 61% for PMS2, 83% for MSH2, and 45% for MSH6. Weak stainings were the main cause of reduced consensus, whereas contradictory evaluations with normal as well as loss of staining were reported in 2% to 6% of the tumors. Interobserver...

  13. Recombination Proteins Mediate Meiotic Spatial Chromosome Organization and Pairing

    Science.gov (United States)

    Storlazzi, Aurora; Gargano, Silvana; Ruprich-Robert, Gwenael; Falque, Matthieu; David, Michelle; Kleckner, Nancy; Zickler, Denise

    2010-01-01

    SUMMARY Meiotic chromosome pairing involves not only recognition of homology but also juxtaposition of entire chromosomes in a topologically regular way. Analysis of filamentous fungus Sordaria macrospora reveals that recombination proteins Mer3, Msh4 and Mlh1 play direct roles in all of these aspects, in advance of their known roles in recombination. Absence of Mer3 helicase results in interwoven chromosomes, thereby revealing the existence of features that specifically ensure “entanglement avoidance”. Entanglements that remain at zygotene, i.e. “interlockings”, require Mlh1 for resolution, likely to eliminate constraining recombinational connections. Patterns of Mer3 and Msh4 foci along aligned chromosomes show that the double-strand breaks mediating homologous alignment have spatially separated ends, one localized to each partner axis, and that pairing involves interference among developing interhomolog interactions. We propose that Mer3, Msh4 and Mlh1 execute all of these roles during pairing by modulating the state of nascent double-strand break/partner DNA contacts within axis-associated recombination complexes. PMID:20371348

  14. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David; Michoud, Gregoire; Mosbach, Valentine; Dujon, Bernard; Richard, Guy-Franck

    2016-01-01

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  15. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David

    2016-03-16

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  16. Α-Melanocyte-Stimulating Hormone Protects Early Diabetic Retina from Blood-Retinal Barrier Breakdown and Vascular Leakage via MC4R.

    Science.gov (United States)

    Cai, Siwei; Yang, Qianhui; Hou, Mengzhu; Han, Qian; Zhang, Hanyu; Wang, Jiantao; Qi, Chen; Bo, Qiyu; Ru, Yusha; Yang, Wei; Gu, Zhongxiu; Wei, Ruihua; Cao, Yunshan; Li, Xiaorong; Zhang, Yan

    2018-01-01

    Blood-retinal barrier (BRB) breakdown and vascular leakage is the leading cause of blindness of diabetic retinopathy (DR). Hyperglycemia-induced oxidative stress and inflammation are primary pathogenic factors of this severe DR complication. An effective interventional modality against the pathogenic factors during early DR is needed to curb BRB breakdown and vascular leakage. This study sought to examine the protective effects of α-Melanocyte-stimulating hormone (α-MSH) on early diabetic retina against vascular hyperpermeability, electrophysiological dysfunction, and morphological deterioration in a rat model of diabetes and probe the mechanisms underlying the α-MSH's anti-hyperpermeability in both rodent retinas and simian retinal vascular endothelial cells (RF6A). Sprague Dawley rats were injected through tail vein with streptozotocin to induce diabetes. The rats were intravitreally injected with α-MSH or saline at Week 1 and 3 after hyperglycemia. In another 2 weeks, Evans blue assay, transmission electron microscopy, electroretinogram (ERG), and hematoxylin and eosin (H&E) staining were performed to examine the protective effects of α-MSH in diabetic retinas. The expression of pro-inflammatory factors and tight junction at mRNA and protein levels in retinas was analyzed. Finally, the α-MSH's anti-hyperpermeability was confirmed in a high glucose (HG)-treated RF6A cell monolayer transwell culture by transendothelial electrical resistance (TEER) measurement and a fluorescein isothiocyanate-Dextran assay. Universal or specific melanocortin receptor (MCR) blockers were also employed to elucidate the MCR subtype mediating α-MSH's protection. Evans blue assay showed that BRB breakdown and vascular leakage was detected, and rescued by α-MSH both qualitatively and quantitatively in early diabetic retinas; electron microscopy revealed substantially improved retinal and choroidal vessel ultrastructures in α-MSH-treated diabetic retinas; scotopic ERG suggested

  17. Colorectal cancer among young native Indonesians: A clinicopathological and molecular assessment on microsatellite instability

    Directory of Open Access Journals (Sweden)

    Aru W. Sudoyo

    2010-11-01

    Full Text Available Aim: To obtain clinicopathological characteristics of colorectal cancer among young native Indonesians and to assess MLH1, MSH2, and SMAD4 protein expressions, comparing them with a matched population of colorectal cancer patients aged 60 years old and older.Methods: Medical records of colorectal cancer patients aged 40 years or younger and 60 years or older from several hospitals in three Indonesian cities – Jakarta, Makassar, and Bandung - were reviewed. The “native” ethnic groups were selected from those originating from Java, Makassar (South Celebes,  Minangkabau (West Sumatra. Ethnicity of 121 colorectal  carcinoma patients was confirmed by fulfilling requirements in a questionnaire. Tumor specimens of those patients underwent evaluation for histopathology, tumor grading as well as  immunohistochemical analysis to assess MLH1, MSH2 protein expressions to detect microsatellite instability mutation pathway and SMAD4 protein expression to reconfirm that the specimens were not microsatellite instability origin.Results: There were 121 colorectal carcinoma cases of Sundanese, Javanese, Macassarese and Minangkabau ethnic group. This study indicated that colorectal cancer has statistically different grade (p = 0.001 between the young and the older patients. Immunohistochemical staining for MSH2 protein and MLH1 were done for 92 and 97 specimens respectively. There was no significant difference between the expressions of MLH1 and MSH2 on tumor grading, indicated there was no correlation between microsatellite instability and tumor grading in this study.Conclusion: Colorectal cancer in young native Indonesian patients (40 years old or less was not different in clinicopathological characteristics compared to older patients (60 years old or more in similar ethnic groups. There was also no difference in MSH2 and MLH1 protein expressions, important indicators of microsatellite instability and. (Med J Indones 2010; 19:245-51Keywords: colorectal

  18. The HELLP syndrome : Its association with unexplained elevation of MSAFP and MShCG in the second trimester

    NARCIS (Netherlands)

    Morssink, LP; Heringa, MP; Beekhuis, [No Value; DeWolf, BTHM; Mantingh, A

    In this study, we examined the relationship between concentrations of maternal serum alpha-fetoprotein (MSAFP) and maternal serum human chorionic gonadotropin (MShCG) in the second trimester and the 'haemolysis, elevated liver enzymes, low platelet count' (HELLP) syndrome. The concentrations of both

  19. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    DEFF Research Database (Denmark)

    Jensen, Søren A; Vainer, Ben; Kruhøffer, Mogens

    2009-01-01

    unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. METHODS: MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2), thymidylate synthase (TS....... Absence of repair protein expression was assessed in 52 (17.0%) tumors, which had primarily lost hMLH1 in 39 (12.7%), hMSH2 in 5 (1.6%), and hMSH6 in 8 (2.6%) tumors. In multivariate analysis MSI (instable) compared to MSS (stable) tumors were significantly associated with lower risk of recurrence (hazard...

  20. Functional characterization of MLH1 missense variants identified in Lynch Syndrome patients

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Liberti, Sascha Emilie; Lützen, Anne

    2012-01-01

    Germline mutations in the human DNA mismatch repair (MMR) genes MSH2 and MLH1 are associated with the inherited cancer disorder Lynch Syndrome (LS), also known as Hereditary Nonpolyposis Colorectal Cancer or HNPCC. A proportion of MSH2 and MLH1 mutations found in suspected LS patients give rise...... localization and protein-protein interaction with the dimer partner PMS2 and the MMR-associated exonuclease 1. We show that a significant proportion of examined variant proteins have functional defects in either subcellular localization or protein-protein interactions, which is suspected to lead to the cancer...

  1. Breast Cancer in Three Dimensions: Revealing Telomere Dysfunction in Breast Cancer

    Science.gov (United States)

    2006-09-01

    Wang Q, Puisieux, A, Foulkes WD and Trifiro M. Polymorphisms and HNPCC: PMS2 -MLH1 protein interactions diminished by ‘single nucleotide polymorphisms...characterization of the spectrum of genomic deletions in the mismatch repair genes MSH2, MLH1, MSH6, and PMS2 responsible for hereditary nonpolyposis colorectal

  2. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance

    NARCIS (Netherlands)

    Hendriks, Yvonne M. C.; Wagner, Anja; Morreau, Hans; Menko, Fred; Stormorken, Astrid; Quehenberger, Franz; Sandkuijl, Lodewijk; Møller, Pal; Genuardi, Maurizio; van Houwelingen, Hans; Tops, Carli; van Puijenbroek, Marjo; Verkuijlen, Paul; Kenter, Gemma; van Mil, Anneke; Meijers-Heijboer, Hanne; Tan, Gita B.; Breuning, Martijn H.; Fodde, Riccardo; Wijnen, Juul Th; Bröcker-Vriends, Annette H. J. T.; Vasen, Hans

    2004-01-01

    BACKGROUND & AIMS: Hereditary nonpolyposis colorectal carcinoma (HNPCC) is caused by a mutated mismatch repair (MMR) gene. The aim of our study was to determine the cumulative risk of developing cancer in a large series of MSH6 mutation carriers. METHODS: Mutation analysis was performed in 20

  3. Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+-OI2- defect center in KTaO3 crystal

    International Nuclear Information System (INIS)

    Gnutek, P; Rudowicz, C; Yang, Z Y

    2009-01-01

    The local structure and the spin Hamiltonian (SH) parameters, including the zero-field-splitting (ZFS) parameters D and (a+2F/3), and the Zeeman g factors g || and g perpendicular , are theoretically investigated for the Fe K 3+ -O I 2- center in KTaO 3 crystal. The microscopic SH (MSH) parameters are modeled within the framework of the crystal field (CF) theory employing the CF analysis (CFA) package, which also incorporates the MSH modules. Our approach takes into account the spin-orbit interaction as well as the spin-spin and spin-other-orbit interactions omitted in previous studies. The superposition model (SPM) calculations are carried out to provide input CF parameters for the CFA/MSH package. The combined SPM-CFA/MSH approach is used to consider various structural models for the Fe K 3+ -O I 2- defect center in KTaO 3 . This modeling reveals that the off-center displacement of the Fe 3+ ions, Δ 1 (Fe 3+ ), combined with an inward relaxation of the nearest oxygen ligands, Δ 2 (O 2- ), and the existence of the interstitial oxygen O I 2- give rise to a strong tetragonal crystal field. This finding may explain the large ZFS experimentally observed for the Fe K 3+ -O I 2- center in KTaO 3 . Matching the theoretical MSH predictions with the available structural data as well as electron magnetic resonance (EMR) and optical spectroscopy data enables predicting reasonable ranges of values of Δ 1 (Fe 3+ ) and Δ 2 (O 2- ) as well as the possible location of O I 2- ligands around Fe 3+ ions in KTaO 3 . The defect structure model obtained using the SPM-CFA/MSH approach reproduces very well the ranges of the experimental SH parameters D, g || and g perpendicular and importantly yields not only the correct magnitude of D but also the sign, unlike previous studies. More reliable predictions may be achieved when experimental data on (a+2F/3) and/or crystal field energy levels become available. Comparison of our results with those arising from alternative models existing

  4. Chemistry and Redox Biology of Mycothiol.

    Science.gov (United States)

    Reyes, Aníbal M; Pedre, Brandán; De Armas, María Inés; Tossounian, Maria-Armineh; Radi, Rafael; Messens, Joris; Trujillo, Madia

    2018-02-20

    Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 28, 487-504.

  5. Hereditary Colorectal Cancer (CRC Program in Latvia

    Directory of Open Access Journals (Sweden)

    Irmejs Arvids

    2003-12-01

    Full Text Available Abstract Introduction The aim of the study is to evaluate the incidence and phenotype - genotype characteristics of hereditary colorectal cancer syndromes in Latvia in order to develop the basis of clinical management for patients and their relatives affected by these syndromes. Materials and methods From 02/1999-09/2002 in several hospitals in Latvia cancer family histories were collected from 865 patients with CRC. In families suspected of having a history consistent with a hereditary colorectal cancer syndrome, DNA testing for MLH1, MSH2 and MSH6 genes was performed. In addition immunohistochemical (IH examination of the normal and cancer tissue from large bowel tumors for MSH2 and MSH6 protein expression was performed prior to DNA analysis. Results From the 865 CRC cases only 3 (0.35% pedigrees fulfilled the Amsterdam II criteria of Hereditary Nonpolyposis Colorectal Cancer (HNPCC and 15 cases (1.73% were suspected of HNPCC. In 69 cases (8% with a cancer family aggregation (CFA were identified. Thus far 27 IH analyses have been performed and in 3 cancers homogenous lack of MSH2 or MSH6 protein expression was found. In one of these cases a mutation in MSH6 was identified. In 18 patients suspected of HNPCC or of matching the Amsterdam II criteria, denaturing high performance liquid chromatography (DHPLC followed by DNA sequencing of any heteroduplexes of the 35 exons comprising both MLH1 and MSH2 was performed revealing 3 mutations. For all of kindreds diagnosed definitively or with a high probability of being an HNPCC family appropriate recommendations concerning prophylactic measures, surveillance and treatment were provided in written form. Conclusions Existing pedigree/clinical data suggest that in Latvia the frequency of HNPCC is around 2% of consecutive colorectal cancer patients. It is crucial that genetic counseling is an integral part of cancer family syndrome management.

  6. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2017-10-01

    Full Text Available Abstract Background Multiple primary cancers (MPC have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. Methods We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. Results We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Conclusion Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  7. Synthesis, Characterization, and Initial Biological Evaluation of [99m Tc]Tc-Tricarbonyl-labeled DPA-α-MSH Peptide Derivatives for Potential Melanoma Imaging.

    Science.gov (United States)

    Gao, Feng; Sihver, Wiebke; Bergmann, Ralf; Belter, Birgit; Bolzati, Cristina; Salvarese, Nicola; Steinbach, Jörg; Pietzsch, Jens; Pietzsch, Hans-Jürgen

    2018-06-06

    α-Melanocyte stimulating hormone (α-MSH) derivatives target the melanocortin-1 receptor (MC1R) specifically and selectively. In this study, the α-MSH-derived peptide NAP-NS1 (Nle-Asp-His-d-Phe-Arg-Trp-Gly-NH 2 ) with and without linkers was conjugated with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (DPA-COOH) and labeled with [ 99m Tc]Tc-tricarbonyl by two methods. With the one-pot method the labeling was faster than with the two-pot method, while obtaining similarly high yields. Negligible trans-chelation and high stability in physiological solutions was determined for the [ 99m Tc]Tc-tricarbonyl-peptide conjugates. Coupling an ethylene glycol (EG)-based linker increased the hydrophilicity. The peptide derivatives displayed high binding affinity in murine B16F10 melanoma cells as well as in human MeWo and TXM13 melanoma cell homogenates. Preliminary in vivo studies with one of the [ 99m Tc]Tc-tricarbonyl-peptide conjugates showed good stability in blood and both renal and hepatobiliary excretion. Biodistribution was performed on healthy rats to gain initial insight into the potential relevance of the 99m Tc-labeled peptides for in vivo imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The relationship between serum vascular endothelial growth factor A and microsatellite instability in colorectal cancer

    DEFF Research Database (Denmark)

    Hansen, T F; Jensen, L H; Spindler, K-L G

    2011-01-01

    lacking protein expression of any of the four mismatch repair genes (MLH1, PMS2, MSH2 or MSH6) were labelled as high MSI. The rest were considered to be microsatellite stable (MSS). The serum VEGF-A analyses were performed by ELISA. RESULTS: The tumours of 15 patients in the test cohort and 27...

  9. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    International Nuclear Information System (INIS)

    Ericson, Kajsa M; Isinger, Anna P; Isfoss, Björn L; Nilbert, Mef C

    2005-01-01

    Upper urothelial cancer (UUC), i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Defective mismatch repair (MMR) specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI) analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. A MSI-high phenotype was identified in 9/216 (4%) successfully analyzed patients and a MSI-low phenotype in 5/216 (2%). Loss of MMR protein immunostaining was found in 11/216 (5%) tumors, and affected most commonly MSH2 and MSH6. This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC

  10. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Kajsa M; Isinger, Anna P [Departments of Oncology, University Hospital, Lund (Sweden); Isfoss, Björn L [Departments of Pathology, University Hospital, Lund (Sweden); Nilbert, Mef C [Departments of Oncology, University Hospital, Lund (Sweden)

    2005-01-01

    Upper urothelial cancer (UUC), i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Defective mismatch repair (MMR) specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI) analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. A MSI-high phenotype was identified in 9/216 (4%) successfully analyzed patients and a MSI-low phenotype in 5/216 (2%). Loss of MMR protein immunostaining was found in 11/216 (5%) tumors, and affected most commonly MSH2 and MSH6. This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC.

  11. Point X-ray sources in the SNR G 315.4-2.30 (MSH 14-63, RCW 86)

    Science.gov (United States)

    Gvaramadze, V. V.; Vikhlinin, A. A.

    2003-04-01

    We report the results of a search for a point X-ray source (stellar remnant) in the southwest protrusion of the supernova remnant G 315.4-2.30 (MSH 14-63, RCW 86) using the archival data of the Chandra X-ray Observatory. The search was motivated by a hypothesis that G 315.4-2.30 is the result of an off-centered cavity supernova explosion of a moving massive star, which ended its evolution just near the edge of the main-sequence wind-driven bubble. This hypothesis implies that the southwest protrusion in G 315.4-2.30 is the remainder of a pre-existing bow shock-like structure created by the interaction of the supernova progenitor's wind with the interstellar medium and that the actual location of the supernova blast center is near the center of this hemispherical structure. We have discovered two point X-ray sources in the ``proper" place. One of the sources has an optical counterpart with the photographic magnitude 13.38+/-0.40, while the spectrum of the source can be fitted with an optically thin plasma model. We interpret this source as a foreground active star of late spectral type. The second source has no optical counterpart to a limiting magnitude ~ 21. The spectrum of this source can be fitted almost equally well with several simple models (power law: photon index =1.87; two-temperature blackbody: kT1 =0.11 keV, R1 =2.34 km and kT2 =0.71 keV, R2 =0.06 km; blackbody plus power law: kT =0.07 keV, photon index =2.3). We interpret this source as a candidate stellar remnant (neutron star), while the photon index and non-thermal luminosity of the source (almost the same as those of the Vela pulsar and the recently discovered pulsar PSR J 0205+6449 in the supernova remnant 3C 58) suggest that it can be a young ``ordinary" pulsar.

  12. Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast.

    Directory of Open Access Journals (Sweden)

    Thomas A Ward

    Full Text Available Fanconi anemia (FA is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6. Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5'-3' exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA-related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair.

  13. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations

    DEFF Research Database (Denmark)

    Nielsen, Sofie V,; Stein, Amelie; Dinitzen, Alexander B.

    2017-01-01

    selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than...... and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases....

  14. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours.

    Science.gov (United States)

    Rudolph, Christiane; Melau, Cecilie; Nielsen, John E; Vile Jensen, Kristina; Liu, Dekang; Pena-Diaz, Javier; Rajpert-De Meyts, Ewa; Rasmussen, Lene Juel; Jørgensen, Anne

    2017-08-01

    Testicular germ cell tumours (TGCT) are highly sensitive to cisplatin-based chemotherapy, but patients with tumours containing differentiated teratoma components are less responsive to this treatment. The cisplatin sensitivity in TGCT has previously been linked to the embryonic phenotype in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. The expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2, were investigated during testis development and in the pathogenesis of TGCT, including germ cell neoplasia in situ (GCNIS). The TGCT-derived cell line NTera2 was differentiated using retinoic acid (10 μM, 6 days) after which MMR protein expression and activity, as well as cisplatin sensitivity, were investigated in both undifferentiated and differentiated cells. Finally, the expression of MSH2 was knocked down by siRNA in NTera2 cells after which the effect on cisplatin sensitivity was examined. MMR proteins were expressed in proliferating cells in the testes, while in malignant germ cells MMR protein expression was found to coincide with the expression of the pluripotency factor OCT4, with no or low expression in the more differentiated yolk sac tumours, choriocarcinomas and teratomas. In differentiated NTera2 cells we found a significantly (p cisplatin sensitivity, compared to undifferentiated NTera2 cells. Also, we found that partial knockdown of MSH2 expression in undifferentiated NTera2 cells resulted in a significantly (p cisplatin sensitivity. This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived. Our findings in primary TGCT specimens and TGCT-derived cells suggest that a reduced sensitivity to cisplatin in differentiated TGCT components could result from a reduced expression of MMR proteins, in

  15. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  16. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database

    DEFF Research Database (Denmark)

    Thompson, Bryony A; Spurdle, Amanda B; Plazzer, John-Paul

    2014-01-01

    and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary...... are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation......The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test...

  17. Meiotic and Mitotic Phenotypes Conferred by the blm1-1 Mutation in Saccharomyces cerevisiae and MSH4 Suppression of the Bleomycin Hypersusceptibility

    Directory of Open Access Journals (Sweden)

    Carol Wood Moore

    2003-01-01

    Full Text Available Abstract: Oxidative damage can lead to a number of diseases, and can be fatal. The blm1-1 mutation of Saccharomyces cerevisiae confers hypersusceptibility to lethal effects of the oxidative, anticancer and antifungal agent, bleomycin. For the current report, additional defects conferred by the mutation in meiosis and mitosis were investigated. The viability of spores produced during meiosis by homozygous normal BLM1/BLM1, heterozygous BLM1/blm1-1, and homozygous mutant blm1-1/blm1-1 diploid strains was studied and compared. Approximately 88% of the tetrads derived from homozygous blm1-1/blm1-1 mutant diploid cells only produced one or two viable spores. In contrast, just one tetrad among all BLM1/BLM1 and BLM1/blm1-1 tetrads only produced one or two viable spores. Rather, 94% of BLM1/BLM1 tetrads and 100% of BLM1/blm1-1 tetrads produced asci with four or three viable spores. Thus, at least one copy of the BLM1 gene is essential for the production of four viable spores after meiosis. During mitotic growth, mutant blm1-1 strains grew at reduced rates and produced cells with high frequencies of unusual morphologies compared to wild-type strains. These results indicated BLM1 is also essential for normal mitotic growth. We also investigated the suppression by the MSH4 gene, a meiosis-specific MutS homolog, of the bleomycin hypersusceptibility of blm1-1 mutant cells, and the relationship of MSH4 to BLM1. We screened a genomic library, and isolated the MSH4 gene on the basis of its ability to suppress lethal effects of bleomycin in blm1-1 cells. However, genetic mapping studies indicated that BLM1 and MSH4 are not the same gene. The possibility that chromosomal nondisjunction could be the basis for the inability of blm1-1/blm1-1 mutant cells to produce four viable spores after meiosis is discussed.

  18. Ovarian cancer linked to lynch syndrome typically presents as early-onset, non-serous epithelial tumors

    DEFF Research Database (Denmark)

    Ketabi, Zohreh; Bartuma, Katarina; Bernstein, Inge

    2011-01-01

    . The underlying MMR gene mutations in these families affected MSH2 in 49%, MSH6 in 33% and MLH1 in 17%. Immunohistochemical loss of the corresponding MMR protein was demonstrated in 33/36 (92%) tumors analyzed. CONCLUSION: The combined data from our cohorts demonstrate that ovarian cancer associated with Lynch...

  19. Gallium-67-labeled lactam bridge-cyclized alpha-MSH peptides with enhanced melanoma uptake and reduced renal uptake.

    Science.gov (United States)

    Guo, Haixun; Gallazzi, Fabio; Miao, Yubin

    2012-06-20

    The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of (67)Ga-DOTA-GGNle-CycMSHhex {(67)Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (67)Ga-NOTA-GGNle-CycMSHhex {(67)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and compare with (67)Ga-DOTA-GlyGlu-CycMSH {(67)Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM) in B16/F1 melanoma cells. Both (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than (67)Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, (67)Ga-NOTA-GGNle-CycMSHhex exhibited more favorable radiolabeling conditions (>85% radiolabeling yields started at 37 °C), as well as higher tumor/kidney uptake ratios than (67)Ga-DOTA-GGNle-CycMSHhex at 0.5, 2, and 24 h postinjection. High melanoma uptake coupled with low renal uptake highlighted the potential of (67)Ga-NOTA-GGNle-CycMSHhex for melanoma imaging and therapy.

  20. Analysis of the expression level and methylation of tumor protein p53, phosphatase and tensin homolog and mutS homolog 2 in N-methyl-N-nitrosourea-induced thymic lymphoma in C57BL/6 mice.

    Science.gov (United States)

    Huo, Xueyun; Li, Zhenkun; Zhang, Shuangyue; Li, Changlong; Guo, Meng; Lu, Jing; Lv, Jianyi; Du, Xiaoyan; Chen, Zhenwen

    2017-10-01

    Tumorigenesis is often caused by somatic mutation or epigenetic changes in genes that regulate aspects of cell death, proliferation and survival. Although the functions of multiple tumor suppressor genes have been well studied in isolation, how these genes cooperate during the progression of a single tumor remains unclear in numerous cases. The present study used N-methyl-N-nitrosourea (MNU), one of the most potent mutagenic nitrosourea compounds, to induce thymic lymphoma in C57BL/6J mice. Subsequently, the protein expression levels of phosphatase and tensin homolog (PTEN), transformation protein 53 and mutS homolog 2 (MSH2) were evaluated concomitantly in the thymus, liver, kidney and spleen of MNU-treated mice by western blotting. To determine whether changes in expression level were due to aberrant epigenetic regulation, the present study further examined the methylation status of each gene by MassARRAY analysis. During the tumorigenesis process of an MNU-induced single thymic lymphoma, the expression level of PTEN was revealed to be reduced in thymic lymphoma samples but not in normal or non-tumor thymus tissue samples. Furthermore, a marked reduction of P53 expression levels were demonstrated in thymic lymphomas and spleens with a metastatic tumor. Conversely, MSH2 upregulation was identified only in liver, kidney, and spleen samples that were infiltrated by thymic lymphoma cells. Furthermore, the present study revealed that a number of 5'-C-phosphate-G-3' sites located in the promoter of aberrantly expressed genes had significantly altered methylation statuses. These results improve the understanding of the course of mutagen-induced cancer, and highlight that epigenetic regulation may serve an important function in cancer.

  1. The α-MSH analogue AP214 attenuates rise in pulmonary pressure and fall in ejection fraction in lipopolysaccharide-induced systemic inflammatory response syndrome in pigs.

    Science.gov (United States)

    Kristensen, Jens; Jonassen, Thomas E N; Rehling, Michael; Tønnesen, Else; Sloth, Erik; Nielsen, Søren; Frøkiaer, Jørgen

    2011-01-01

    The effect of an α-melanocyte stimulating hormone (α-MSH) analogue (AP214) on experimentally endotoxin-induced systemic inflammatory response syndrome (SIRS) was studied, because α-MSH in rodent models has shown promise in attenuating inflammatory response markers and associated organ damage in SIRS. SIRS is associated with considerable morbidity and mortality. Consequently, new treatment modalities are still warranted to address the different aspects of the pathophysiological process. SIRS was induced by lipopolysaccharide (LPS) (Escherichia coli endotoxin) infusion in anaesthetized Danish Landrace pigs (20-25 kg). The pigs received an α-MSH analogue (AP214) or saline as a bolus at the initiation of the LPS infusion. The hemodynamic response was registered as well as echocardiographic indices of left ventricular function. The cardiovascular response was recorded together with echocardiographic indices of left ventricular function in control and in intervention animals. AP214 reduced the early peak in pulmonary pressure and pulmonary vascular resistance by approximately 33%. Furthermore, AP214 prevented the decline in left ventricular fractional shortening as observed in the control group. Mean change and standard deviation in fractional shortening (ΔFS) in control group: - 7·3 (4·7), AP214 (low dose): 0·9 (8·2) and AP214 (high dose) 4·1 (6·0), P < 0·05 for both intervention groups versus control. In the porcine model, the peak increase in pulmonary pressure was attenuated, and the LPS-induced decline in left ventricular function was prevented. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  2. Constitutional mismatch repair deficiency and Lynch syndrome among consecutive Arab Bedouins with colorectal cancer in Israel.

    Science.gov (United States)

    Abu Freha, Naim; Leibovici Weissman, Yaara; Fich, Alexander; Barnes Kedar, Inbal; Halpern, Marisa; Sztarkier, Ignacio; Behar, Doron M; Arbib Sneh, Orly; Vilkin, Alex; Baris, Hagit N; Gingold, Rachel; Lejbkowicz, Flavio; Niv, Yaron; Goldberg, Yael; Levi, Zohar

    2018-01-01

    We assessed the molecular characteristics and the frequency of mutations in mismatch-repair genes among Bedouin patients with colorectal cancer (CRC) in Israel. Bedouin patients with a diagnosis of CRC at a major hospital in the southern part of Israel were deemed eligible for this study. The primary screening method was immunohistochemical staining for mismatch-repair proteins (MLH1, MSH2, MSH6, and PMS2). For subjects with abnormal immunohistochemical staining, we performed microsatellite instability (MSI) analyses, and for tumors with a loss of MLH1 expression we also performed BRAF testing. In MSI high cases we searched further for germline mutations. Of the 24 patients enrolled, four subjects (16.7%) had MSI high tumors: one subject was found to harbor a biallelic PMS2 mutation, one subject had Lynch syndrome (LS) with MSH6 mutation and two subjects had a loss of MLH1/PMS2 proteins/BRAF wild type /normal MLH1 sequence. Ten patients (41.7%) were younger than 50 at the time of diagnosis and none had first degree relatives with CRC. In conclusion, in this cohort of 24 consecutive Arab Bedouins with CRC, one patient was found to harbor a constitutional mismatch repair deficiency, one patient had LS with MSH6 mutation, and two patients had unresolved loss of MLH1/PMS2 proteins/BRAF wild type phenotype.

  3. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Sally A. Mackenzie

    2011-04-18

    A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility that had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.

  4. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Isfoss Björn L

    2005-03-01

    Full Text Available Abstract Background Upper urothelial cancer (UUC, i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC. Defective mismatch repair (MMR specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. Methods We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. Results A MSI-high phenotype was identified in 9/216 (4% successfully analyzed patients and a MSI-low phenotype in 5/216 (2%. Loss of MMR protein immunostaining was found in 11/216 (5% tumors, and affected most commonly MSH2 and MSH6. Conclusion This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC.

  5. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    Directory of Open Access Journals (Sweden)

    Huey-Chun Huang

    2014-01-01

    Full Text Available [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1 and microphthalmia-associated transcriptional factor (MITF. In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126 or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor (LY294002. Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH- induced melanogenesis through the acceleration of extracellular responsive kinase (ERK and phosphatidylinositol-3-kinase- (PI3K/Akt- mediated MITF degradation.

  6. Systematic immunohistochemical screening for Lynch syndrome in colorectal cancer: a single centre experience of 486 patients.

    Science.gov (United States)

    Zumstein, Valentin; Vinzens, Fabrizio; Zettl, Andreas; Heinimann, Karl; Koeberle, Dieter; von Flüe, Markus; Bolli, Martin

    2016-01-01

    Germline mutations in DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause autosomal dominantly inherited Lynch syndrome. Lynch syndrome patients and their families benefit from life-saving intensive cancer surveillance. Approximately one in 30 colorectal cancers arises in the setting of Lynch syndrome. The aim of this study was to assess the detection rate of Lynch syndrome at our institution after introduction of systematic immunohistochemical screening for MMR deficiency in colorectal cancers from 2011 to 2015. Following the recommendations by the Evaluation of Genomic Applications in Practice and Prevention working group all colorectal cancers were immunohistochemically stained for the presence of MMR proteins MLH1, PMS2, MSH2 and MSH6, independent of clinical criteria. In the case of loss of MLH1, the somatic BRAF mutation V600E was assessed with molecular testing and/or immunohistochemistry. Clinical follow-up of potential Lynch syndrome carriers (patients with tumours showing loss of MLH1 expression with absence of BRAFV600E, loss of PMS2, MSH2 or MSH6) was evaluated. Of all patients (n = 486), loss of MMR protein expression was found in 73 (15.0%) tumours. Twenty-eight (6.0%) were classified as potential Lynch syndrome carriers. Of the genetically tested potential Lynch syndrome carriers (10 out of 28 patients), 40% were first diagnosed with Lynch syndrome. Implementation of systematic immunohistochemistry screening for Lynch syndrome showed that 6% of colorectal cancers were potentially Lynch-syndrome related. Tumour board protocols should systematically contain information on MMR status of all colorectal cancers and, in MMR deficient cases, include clear recommendations for genetic counselling for all potential Lynch syndrome patients.

  7. Frequent mismatch-repair defects link prostate cancer to Lynch syndrome

    DEFF Research Database (Denmark)

    Dominguez-Valentin, Mev; Joost, Patrick; Therkildsen, Christina

    2016-01-01

    were high-grade tumors with Gleason scores 8-10. Prostate cancer was associated with mutations in MSH2, MLH1 and MSH6 with loss of the respective mismatch repair protein in 69 % of the tumors, though a MSI-high phenotype was restricted to 13 % of the tumors. The cumulative risk of prostate cancer...

  8. Integrated analysis of mismatch repair system in malignant astrocytomas.

    Directory of Open Access Journals (Sweden)

    Irene Rodríguez-Hernández

    Full Text Available Malignant astrocytomas are the most aggressive primary brain tumors with a poor prognosis despite optimal treatment. Dysfunction of mismatch repair (MMR system accelerates the accumulation of mutations throughout the genome causing uncontrolled cell growth. The aim of this study was to characterize the MMR system defects that could be involved in malignant astrocytoma pathogenesis. We analyzed protein expression and promoter methylation of MLH1, MSH2 and MSH6 as well as microsatellite instability (MSI and MMR gene mutations in a set of 96 low- and high-grade astrocytomas. Forty-one astrocytomas failed to express at least one MMR protein. Loss of MSH2 expression was more frequent in low-grade astrocytomas. Loss of MLH1 expression was associated with MLH1 promoter hypermethylation and MLH1-93G>A promoter polymorphism. However, MSI was not related with MMR protein expression and only 5% of tumors were MSI-High. Furthermore, the incidence of tumors carrying germline mutations in MMR genes was low and only one glioblastoma was associated with Lynch syndrome. Interestingly, survival analysis identified that tumors lacking MSH6 expression presented longer overall survival in high-grade astrocytoma patients treated only with radiotherapy while MSH6 expression did not modify the prognosis of those patients treated with both radiotherapy and chemotherapy. Our findings suggest that MMR system alterations are a frequent event in malignant astrocytomas and might help to define a subgroup of patients with different outcome.

  9. Up-regulation of mismatch repair genes MSH6, PMS2 and MLH1 parallels development of genetic instability and is linked to tumor aggressiveness and early PSA recurrence in prostate cancer.

    Science.gov (United States)

    Wilczak, Waldemar; Rashed, Semin; Hube-Magg, Claudia; Kluth, Martina; Simon, Ronald; Büscheck, Franziska; Clauditz, Till Sebastian; Grupp, Katharina; Minner, Sarah; Tsourlakis, Maria Christina; Möller-Koop, Christina; Graefen, Markus; Adam, Meike; Haese, Alexander; Wittmer, Corinna; Sauter, Guido; Izbicki, Jakob Robert; Huland, Hartwig; Schlomm, Thorsten; Steurer, Stefan; Krech, Till; Lebok, Patrick

    2017-01-01

    DNA mismatch repair (MMR) is integral to the maintenance of genetic stability. We aimed to evaluate the clinical impact of MMR gene expression in prostate cancer. The MMR genes MSH6, MLH1 and PMS2 were analyzed by immunohistochemistry on a tissue microarray containing 11152 prostate cancer specimens. Results were compared with ETS-related gene status and deletions of PTEN, 3p13, 5q21 and 6q15. MSH6, MLH1 and PMS2 expression was detectable in 89.5%, 85.4% and 85.0% of cancers and was particularly strong in cancers with advanced pathological tumor stage (P < 0.0001 each), high Gleason grade (P < 0.0001 each), nodal metastasis (P ≤ 0.0083) and early biochemical recurrence (P < 0.0001). High levels of MMR gene expression paralleled features of genetic instability, such as the number of genomic deletions per cancer; strong expression of all three MMR genes was found in 24%, 29%, 30%, 33% and 42% of cancers with no, one, two, three or four to five deletions (P < 0.0001). The prognostic value of the analyzed MMR genes was largely driven by the subset of cancers lacking ERG fusion (P < 0.0001), while the prognostic impact of MMR gene overexpression was only marginal in ERG-positive cancers. Multivariate analyses suggested an independent prognostic relevance of MMR genes in ERG-negative prostate cancers when compared with prognostic parameters available at the time of initial biopsy. In conclusion, MMR overexpression is common in prostate cancer and is linked to poor outcome as well as features indicating genetic instability. ERG fusion should be analyzed along with MMR gene expression in potential clinical tests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Engineering Synthetic Proteins to Generate Ca2+ Signals in Mammalian Cells.

    Science.gov (United States)

    Qudrat, Anam; Truong, Kevin

    2017-03-17

    The versatility of Ca 2+ signals allows it to regulate diverse cellular processes such as migration, apoptosis, motility and exocytosis. In some receptors (e.g., VEGFR2), Ca 2+ signals are generated upon binding their ligand(s) (e.g., VEGF-A). Here, we employed a design strategy to engineer proteins that generate a Ca 2+ signal upon binding various extracellular stimuli by creating fusions of protein domains that oligomerize to the transmembrane domain and the cytoplasmic tail of the VEGFR2. To test the strategy, we created chimeric proteins that generate Ca 2+ signals upon stimulation with various extracellular stimuli (e.g., rapamycin, EDTA or extracellular free Ca 2+ ). By coupling these chimeric proteins that generate Ca 2+ signals with proteins that respond to Ca 2+ signals, we rewired, for example, dynamic cellular blebbing to increases in extracellular free Ca 2+ . Thus, using this design strategy, it is possible to engineer proteins to generate a Ca 2+ signal to rewire a wide range of extracellular stimuli to a wide range of Ca 2+ -activated processes.

  11. Higher frequency of isolated PMS2 loss in colorectal tumors in Colombian population: preliminary results

    Directory of Open Access Journals (Sweden)

    Shamekh R

    2016-08-01

    Full Text Available Rania Shamekh,1 Mauro Cives,2 Jaime Mejia,3 Domenico Coppola,4 1Department of Pathology, University of South Florida, 2Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA; 3Department of Pathology, Institutode Patologia Mejia Jimenez, Cali, Colombia; 4Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, USA Abstract: Colorectal cancer (CRC is the third most common cancer and the fourth most common cause of death worldwide. It accounts for >9% of all cancers. One of the pathogenic factors of CRC is germline mutation, leading to alteration and inactivation in the mismatch repair (MMR genes. The aim of the study is to compare the frequency of alterations in MMR protein expression in Caucasian CRC patients with Colombian CRC patients. A total of 45 Colombians and 48 Caucasians with CRC were studied. The microsatellite instability status of tumors was determined in primary CRC by immunohistochemistry using the automated Ventana Ultra. The combined loss of MLH1 and PMS2 was the most common alteration in both Colombian (11%, five out of 45 and Caucasian (12%, six out of 48 CRC patients. Interestingly, the loss of PMS2 expression in the presence of intact MLH1 was the second most common alteration in Colombians (8%, four out of 45, which was never seen in the Caucasian cohort (P=0.05. The loss of MLH1 alone and the combined loss of MSH6 and PMS2 expression were only observed in one out of 45 (2% Colombians but not in Caucasians. The combined loss of MSH2 and MSH6 was not observed in any of the patients studied. The preliminary findings support a significant difference in alterations of MMR protein expression in Colombian CRC patients compared with Caucasian CRC patients. These findings are novel and warrant further studies in larger cohorts. Keywords: colon cancer, MSI, MMR, immunohistochemistry

  12. PMS2 Involvement in Patients Suspected of Lynch Syndrome

    NARCIS (Netherlands)

    Niessen, Renee C.; Kleibeuker, Jan H.; Westers, Helga; Jager, Paul O. J.; Rozeveld, Dennie; Bos, Krista K.; Boersma-van Ek, Wytske; Hollema, Harry; Sijmons, Rolf H.; Hofstra, Robert M. W.

    It is well-established that germline mutations in the mismatch repair genes MLH1, MSH2, and MSH6 cause Lynch syndrome. However, mutations in these three genes do not account for all Lynch syndrome (suspected) families. Recently, it was shown that germline mutations in another mismatch repair gene,

  13. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors.

    Directory of Open Access Journals (Sweden)

    Kwon Tae You

    2007-05-01

    Full Text Available Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs. Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant, and some PTC-containing mRNAs can escape from the NMD system (NMD-escape. We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.

  14. Heterogenous mismatch-repair status in colorectal cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Veurink, Nynke; Holck, Susanne

    2014-01-01

    BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative......, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms. METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative....... CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification. VIRTUAL SLIDES: The virtual slide(s) for this article...

  15. CDX2 downregulation is associated with poor differentiation and MMR deficiency in colon cancer

    DEFF Research Database (Denmark)

    Olsen, J.; Eiholm, Susanne; Kirkeby, L T

    2016-01-01

    adjacent tissue were fixed in liquid nitrogen for RNA extraction or in formalin and paraffin embedded (FFPE) for immunohistochemical staining. CDX2 mRNA expression was evaluated by RT-qPCR. FFPE sections were stained for MLH1, MSH2, MSH6, PMS2, and CDX2. RESULTS: A total of 191 patient samples were...

  16. Possible involvement of α- and β-receptors in the natural colour change and the MSH-induced dispersion in Xenopus laevis in vivo

    NARCIS (Netherlands)

    Brouwer, E.; Veerdonk, F.C.G. van de

    Participation of adrenergic receptors in the darkening reaction has been demonstrated in Xenopus laevis in vivo. Blockade of the β-receptors inhibited adaptation to a black background as well as the artificially MSH-induced dispersion. α-Receptors could not be proved to be involved in the dispersion

  17. A case of early onset rectal cancer of Lynch syndrome with a novel deleterious PMS2 mutation.

    Science.gov (United States)

    Nomura, Sachio; Fujimoto, Yoshiya; Yamamoto, Noriko; Sato, Yuri; Ashihara, Yuumi; Kita, Mizuho; Yamaguchi, Junya; Ishikawa, Yuichi; Ueno, Masashi; Arai, Masami

    2015-10-01

    Heterozygous deleterious mutation of the PMS2 gene is a cause of Lynch syndrome, an autosomal dominant cancer disease. However, the frequency of PMS2 mutation is rare compared with that of the other causative genes; MSH2, MLH1 and MSH6. PMS2 mutation has so far only been reported once from a Japanese facility. Detection of PMS2 mutation is relatively complicated due to the existence of 15 highly homologous pseudogenes, and its gene conversion event with the pseudogene PMS2CL. Therefore, for PMS2 mutation analysis, it is crucial to clearly distinguish PMS2 from its pseudogenes. We report here a novel deleterious 11 bp deletion mutation of exon 11 of PMS2 distinguished from PMS2CL in a 34-year-old Japanese female with rectal cancer. PMS2 mutated at c.1492del11 results in a truncated 500 amino acid protein rather than the wild-type protein of 862 amino acids. This is supported by the fact that, although there is usually concordance between MLH1 and PMS2 expression, cells were immunohistochemically positive for MLH1, whereas PMS2 could not be immunohistochemically stained using an anti-C-terminal PMS2 antibody, or effective PMS2 mRNA degradation with NMD caused by the frameshift mutation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair

    Science.gov (United States)

    Plys, Aaron J.; Rogacheva, Maria V.; Greene, Eric C.; Alani, Eric

    2012-01-01

    DNA mismatch repair (MMR) models have proposed that MSH proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH proteins (primarily Mlh1-Pms1 in baker’s yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20 – 30 nanometers) unstructured arms that connect two terminal globular domains. These arms can vary between 100 to 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker’s yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR. PMID:22659005

  19. PMS2 involvement in patients suspected of Lynch syndrome.

    Science.gov (United States)

    Niessen, Renée C; Kleibeuker, Jan H; Westers, Helga; Jager, Paul O J; Rozeveld, Dennie; Bos, Krista K; Boersma-van Ek, Wytske; Hollema, Harry; Sijmons, Rolf H; Hofstra, Robert M W

    2009-04-01

    It is well-established that germline mutations in the mismatch repair genes MLH1, MSH2, and MSH6 cause Lynch syndrome. However, mutations in these three genes do not account for all Lynch syndrome (suspected) families. Recently, it was shown that germline mutations in another mismatch repair gene, PMS2, play a far more important role in Lynch syndrome than initially thought. To explore this further, we determined the prevalence of pathogenic germline PMS2 mutations in a series of Lynch syndrome-suspected patients. Ninety-seven patients who had early-onset microsatellite instable colorectal or endometrial cancer, or multiple Lynch syndrome-associated tumors and/or were from an Amsterdam Criteria II-positive family were selected for this study. These patients carried no pathogenic germline mutation in MLH1, MSH2, or MSH6. When available, tumors were investigated for immunohistochemical staining (IHC) for PMS2. PMS2 was screened in all patients by exon-by-exon sequencing. We identified four patients with a pathogenic PMS2 mutation (4%) among the 97 patients we selected. IHC of PMS2 was informative in one of the mutation carriers, and in this case, the tumor showed loss of PMS2 expression. In conclusion, our study confirms the finding of previous studies that PMS2 is more frequently involved in Lynch syndrome than originally expected.

  20. Detección de mutaciones de los genes hMLH1 y hMSH2 del sistema de reparación de malos apareamientos del ADN en familias colombianas sospechosas de cancer colorrectal no polipósico hereditario (síndrome de Lynch.

    Directory of Open Access Journals (Sweden)

    Andrea Gómez

    2005-09-01

    Full Text Available Introducción. El cáncer colorrectal es la segunda causa de morbilidad y mortalidad por cáncer en los países desarrollados. En Colombia es la quinta causa de muerte entre los diferentes cánceres. Cerca del 75% de éstos corresponde a cánceres esporádicos, alrededor del 25% son familiares, y son claramente hereditarios el 5%. De éstos, el más importantes es el cáncer colorrectal no polipósico hereditario o síndrome de Lynch. Objetivo. Analizar los dos genes más importantes involucrados en el síndrome de Lynch, el hMLH1 y el hMSH2. Materiales y métodos. En 17 familias colombianas que cumplían con los criterios de Ámsterdam II o las pautas de Bethesda, se analizaron por SSCP los 35 exones de estos dos genes y las variantes electroforéticas se secuenciaron. Resultados. Se detectaron 8 mutaciones de línea germinal en las familias analizadas, 7 en el gen hMLH1 y 1 en hMSH2, y se encontró una tasa de detección de mutaciones del 47%. Seis de las 8 mutaciones encontradas en este estudio han sido previamente reportadas en la literatura. Un cambio de una base en el sitio donador de empalme en el exón 9 del gen hMLH1 (G>A (dos familias, un cambio A>G en el codón 755 del exón 17, y un cambio G>A en el exón 18. Se detectaron dos nuevas mutaciones, una en el exón 17, un cambio C>T en el codón 640, y una deleción de TG en el codón 184 del exón 3 del gen hMSH2. También se detectó en dos familias un polimorfismo del intrón 13 del hMLH1. Conclusión. Este es el primer estudio realizado en Colombia que detecta mutaciones en el síndrome de Lynch y pretende establecer un programa integral de manejo y prevención.

  1. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    Science.gov (United States)

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  2. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins.

    Directory of Open Access Journals (Sweden)

    Angela Brieger

    Full Text Available The human DNA mismatch repair (MMR process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2. Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.

  3. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    OpenAIRE

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...

  4. Epitope-positive truncating MLH1 mutation and loss of PMS2: implications for IHC-directed genetic testing for Lynch syndrome.

    Science.gov (United States)

    Zighelboim, Israel; Powell, Matthew A; Babb, Sheri A; Whelan, Alison J; Schmidt, Amy P; Clendenning, Mark; Senter, Leigha; Thibodeau, Stephen N; de la Chapelle, Albert; Goodfellow, Paul J

    2009-01-01

    We assessed mismatch repair by immunohistochemistry (IHC) and microsatellite instability (MSI) analysis in an early onset endometrial cancer and a sister's colon cancer. We demonstrated high-level MSI and normal expression for MLH1, MSH2 and MSH6. PMS2 failed to stain in both tumors, strongly implicating a PMS2 defect. This family did not meet clinical criteria for Lynch syndrome. However, early onset endometrial cancers in the proband and her sister, a metachronous colorectal cancer in the sister as well as MSI in endometrial and colonic tumors suggested a heritable mismatch repair defect. PCR-based direct exonic sequencing and multiplex ligation-dependent probe amplification (MLPA) were undertaken to search for PMS2 mutations in the germline DNA from the proband and her sister. No mutation was identified in the PMS2 gene. However, PMS2 exons 3, 4, 13, 14, 15 were not evaluated by MLPA and as such, rearrangements involving those exons cannot be excluded. Clinical testing for MLH1 and MSH2 mutation revealed a germline deletion of MLH1 exons 14 and 15. This MLH1 germline deletion leads to an immunodetectable stable C-terminal truncated MLH1 protein which based on the IHC staining must abrogate PMS2 stabilization. To the best of our knowledge, loss of PMS2 in MLH1 truncating mutation carriers that express MLH1 in their tumors has not been previously reported. This family points to a potential limitation of IHC-directed gene testing for suspected Lynch syndrome and the need to consider comprehensive MLH1 testing for individuals whose tumors lack PMS2 but for whom PMS2 mutations are not identified.

  5. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    Science.gov (United States)

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H 2 O 2 /Cl - system of leukocytes. At low molar ratio of oxidant to target protein N ε -lysine moiety, 2-AAA is formed via an initial N ε -monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N ε -lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N ε -dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  6. Monocyte chemotactic protein-1, RANTES and macrophage migration inhibitory factor levels in gingival crevicular fluid of metabolic syndrome patients with gingivitis.

    Science.gov (United States)

    Gürkan, Ali; Eren, Gülnihal; Çetinkalp, Şevki; Akçay, Yasemin Delen; Emingil, Gülnur; Atilla, Gül

    2016-09-01

    The aim of the present study was to determine gingival crevicular fluid (GCF) levels of monocyte chemotactic protein-1 (MCP-1), regulated on activation, normal T-cell expressed and secreted protein (RANTES) and macrophage migration inhibitory factor (MIF) in metabolic syndrome patients with gingivitis. Twenty metabolic syndrome patients with gingivitis (MSG), 20 MetS patients with clinically healthy periodontium (MSH), 20 systemically healthy subjects with gingivitis and 20 subjects who were both systemically and periodontally healthy were included. Periodontal and systemical parameters were recorded. GCF MCP-1, RANTES and MIF levels were assayed by enzyme-linked immunosorbent assay method. MSG and MSH groups had elevated blood pressure, triglyceride, waist circumference and fasting glucose values in comparison to gingivitis and healthy groups (Pgingivitis groups when compared to those of the MSH and healthy groups (Pgingivitis group had higher MCP-1, RANTES and MIF levels compared to the healthy group (P=0.011, P=0.0001, P=0.011 respectively). The RANTES level of MSG group was significantly higher than those of the gingivitis group (P=0.01), but MCP-1 and MIF levels were similar in the MSG and gingivitis groups (P>0.05). Elevated levels of GCF RANTES in MetS patients with gingivitis might associate with the presence of increased gingival inflammation by MetS. Low-grade systemic inflammation associated with MetS and adipose tissue-derived RANTES might lead to altered GCF RANTES levels in the presence of gingival inflammation. Copyright © 2016. Published by Elsevier Ltd.

  7. 78 FR 69541 - Labor Certification Process for Logging Employment and Non-H-2A Agricultural Employment

    Science.gov (United States)

    2013-11-20

    ... foreign workers in agriculture (H-2A) employers seeking to temporarily employ foreign workers in logging..., employers seeking to temporarily employ foreign workers in logging operations are now governed by the... products, Fraud, Health professions, Immigration, Labor, Longshore and harbor work, Migrant workers...

  8. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    Science.gov (United States)

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  9. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolutio......We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high...... of the PWN softens away from the central pulsar B1509−58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models.We find non-monotonic structure in the variation with distance of spectral hardness within 50...... of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the NH map.We discuss possible origins...

  10. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice.

    Science.gov (United States)

    Taghiyar, Leila; Hesaraki, Mahdi; Sayahpour, Forough Azam; Satarian, Leila; Hosseini, Samaneh; Aghdami, Naser; Baghaban Eslaminejad, Mohamadreza

    2017-06-23

    Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox ( Msx ) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx -regulated genes ( Bmp4 , Fgf8 , and keratin 14 ( K14 )) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx -overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8 , and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx -transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Role of Hypothalamic Melanocortin System in Adaptation of Food Intake to Food Protein Increase in Mice

    Science.gov (United States)

    Pillot, Bruno; Duraffourd, Céline; Bégeot, Martine; Joly, Aurélie; Luquet, Serge; Houberdon, Isabelle; Naville, Danielle; Vigier, Michèle; Gautier-Stein, Amandine; Magnan, Christophe; Mithieux, Gilles

    2011-01-01

    The hypothalamic melanocortin system—the melanocortin receptor of type 4 (MC4R) and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia), and agouti-related protein (AgRP, antagonist, inducing hyperphagia)—is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED) in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment. PMID:21544212

  12. Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice.

    Directory of Open Access Journals (Sweden)

    Bruno Pillot

    Full Text Available The hypothalamic melanocortin system--the melanocortin receptor of type 4 (MC4R and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia, and agouti-related protein (AgRP, antagonist, inducing hyperphagia--is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment.

  13. Comparative Functional Alanine Positional Scanning of the α-Melanocyte Stimulating Hormone and NDP-Melanocyte Stimulating Hormone Demonstrates Differential Structure-Activity Relationships at the Mouse Melanocortin Receptors.

    Science.gov (United States)

    Todorovic, Aleksandar; Ericson, Mark D; Palusak, Ryan D; Sorensen, Nicholas B; Wood, Michael S; Xiang, Zhimin; Haskell-Luevano, Carrie

    2016-07-20

    The melanocortin system has been implicated in the regulation of various physiological functions including melanogenesis, steroidogenesis, energy homeostasis, and feeding behavior. Five melanocortin receptors have been identified to date and belong to the family of G protein-coupled receptors (GPCR). Post-translational modification of the proopiomelanocortin (POMC) prohormone leads to the biosynthesis of the endogenous melanocortin agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, γ-MSH, and adrenocorticotropic hormone (ACTH). All the melanocortin agonists derived from the POMC prohormone contain a His-Phe-Arg-Trp tetrapeptide sequence that has been implicated in eliciting the pharmacological responses at the melanocortin receptors. Herein, an alanine (Ala) positional scan is reported for the endogenous α-MSH ligand and the synthetic, more potent, NDP-MSH peptide (Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH2) at the cloned mouse melanocortin receptors to test the assumption that the structure-activity relationships of one ligand would apply to the other. Several residues outside of the postulated pharmacophore altered potency at the melanocortin receptors, most notably the 1560-, 37-, and 15-fold potency loss when the Glu(5) position of α-MSH was substituted with Ala at the mMC1R, mMC3R, and mMC4R, respectively. Importantly, the altered potencies due to Ala substitutions in α-MSH did not necessarily correlate with equivalent Ala substitutions in NDP-MSH, indicating that structural modifications and corresponding biological activities in one of these melanocortin ligands may not be predictive for the other agonist.

  14. Thermodynamic properties of hydrated cement phases: C-S-H, C-A-S-H and M-S-H

    International Nuclear Information System (INIS)

    Roosz, Cedric

    2016-01-01

    representative phases of the studied chemical system, and (ii) a precise knowledge of the structure and chemical formulas of these phases. Three types of hydrates were therefore synthesized and characterized: C-S-H, C-A-S-H and M-S-H. Analytical methods such as XRD, TGA and solid state NMR ( 29 Si, 27 Al) are used to ascertain similarities between the structure of C-(A-)S-H and that of tobermorite, and between the structure of M-S-H and that of Mg-Si phyllosilicates 2:1. Hydrates, however, have a lower crystallinity, with defects in the polymerization of silica chains, and random stacking faults (turbostratism). A multi-technique approach is also used, combining adsorption isotherm(water and nitrogen) and 1 HNMR with XRD and TGA, and allows characterization of different types of water more or less bound to the structure of C-(A-)S-H. This study allowed to highlight and quantify the different types of water in the C-(A-)S-H structure. The impact of the drying process was also highlighted on the quantification of different types of water, including interlayer water. The acquisition of thermodynamic parameters of the synthesized phases is carried out from the analysis of equilibrium solutions for the calculation of log K and Δ f G 0 , while calorimetric acquisitions permit obtaining heat capacities and the calculation of S 0 . Finally, enthalpy of formation of these phases is calculated from the Gibbs free energy of formation and entropies. The predictive model is developed from the acquired thermodynamic properties. The Gibbs free energy of formation Δ f G 0 is predicted from an electronegativity model, while Cp and S 0 are predicted through polyhedral decomposition model. Finally, a comparison of data obtained with those published in the literature, and the realization of predominance diagrams generalized to the whole CaO-MgO-Al 2 O 3 -SiO 2 -H 2 O system assess the reliability of the proposed model. (author) [fr

  15. Melanocortin systems on pigment dispersion in fish chromatophores.

    Science.gov (United States)

    Kobayashi, Yuki; Mizusawa, Kanta; Saito, Yumiko; Takahashi, Akiyoshi

    2012-01-01

    α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that α-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of α-MSH activity was related to the co-expression of different α-MSH receptor subtypes - termed melanocortin receptors (MCR) - a member of G-protein-coupled receptors (GPCR) - based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes expressed in fish chromatophores.

  16. Pitfalls in molecular analysis for mismatch repair deficiency in a family with biallelic pms2 germline mutations.

    Science.gov (United States)

    Leenen, C H M; Geurts-Giele, W R R; Dubbink, H J; Reddingius, R; van den Ouweland, A M; Tops, C M J; van de Klift, H M; Kuipers, E J; van Leerdam, M E; Dinjens, W N M; Wagner, A

    2011-12-01

    Heterozygous germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome. Biallelic mutations in the MMR genes are associated with a childhood cancer syndrome [constitutional mismatch repair deficiency (CMMR-D)]. This is predominantly characterized by hematological malignancies and tumors of the bowel and brain, often associated with signs of neurofibromatosis type 1 (NF1). Diagnostic strategies for selection of patients for MMR gene analysis include analysis of microsatellite instability (MSI) and immunohistochemical (IHC) analysis of MMR proteins in tumor tissue. We report the clinical characterization and molecular analyses of tumor specimens from a family with biallelic PMS2 germline mutations. This illustrates the pitfalls of present molecular screening strategies. Tumor tissues of five family members were analyzed for MSI and IHC. MSI was observed in only one of the analyzed tissues. However, IHC analysis of brain tumor tissue of the index patient and his sister showed absence of PMS2 expression, and germline mutation analyses showed biallelic mutations in PMS2: p.Ser46IIe and p.Pro246fs. The same heterozygous mutations were confirmed in the father and mother, respectively. These data support the conclusion that in case of a clinical phenotype of CMMR-D, it is advisable to routinely combine MSI analysis with IHC analysis for the expression of MMR proteins. With inconclusive or conflicting results, germline mutation analysis of the MMR genes should be considered after thorough counselling of the patients and/or their relatives. © 2011 John Wiley & Sons A/S.

  17. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins.

    Science.gov (United States)

    Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria

    2017-11-01

    Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS E , was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Contribution of Chromosomes 1HchS and 6HchS to Fertility Restoration in the Wheat msH1 CMS System under Different Environmental Conditions.

    Science.gov (United States)

    Castillo, Almudena; Rodríguez-Suárez, Cristina; Martín, Azahara C; Pistón, Fernando

    2015-01-01

    Exploiting hybrid wheat heterosis has been long pursued to increase crop yield, stability and uniformity. Cytoplasmic male sterility (CMS) systems based in the nuclear-cytoplasmic incompatible interactions are a classic way for hybrid seed production, but to date, no definitive system is available in wheat. The msH1 CMS system results from the incompatibility between the nuclear genome of wheat and the cytoplasmic genome of the wild barley Hordeum chilense. Fertility restoration of the CMS phenotype was first associated with the disomic addition of the short arm of chromosome 6H from H. chilense. In further studies it was observed that chromosome arm 1HchS was also implicated, and the combination of genes in both chromosome arms restored fertility more efficiently. In this work we aim to dissect the effect of each chromosome in fertility restoration when combined in different genomic backgrounds and under different environmental conditions. We propose a model to explain how restoration behaves in the msH1 system and generate valuable information necessary to develop an efficient system for hybrid wheat production.

  19. Melanocortin systems on pigment dispersion in fish chromatophores

    Directory of Open Access Journals (Sweden)

    Yuki eKobayashi

    2012-02-01

    Full Text Available Alpha-Melanocyte-stimulating hormone (alpha-MSH is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that alpha-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of alpha-MSH activity was related to the co-expression of different alpha-MSH receptor subtypes—termed melanocortin receptors (MCR—a member of G-protein-coupled receptors (GPCR—based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of alpha-MSH-related peptides, molecular forms of alpha-MSH-related peptides, and Mcr subtypes expressed in fish chromatophores.

  20. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singh

    2016-01-01

    Full Text Available Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE across a broad range 3.0–10.0 immobilized pH gradient (IPG strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.

  1. Biomarkers in the Detection of Prostate Cancer in African Americans

    Science.gov (United States)

    2012-09-01

    complex of MSH molecules recog- nizes the mismatched nucleotides and MLH1/ PMS2 and MLH1/MLH3 complexes are involved in attach- ment, removal of the...mismatch and repair. Over- all, MSH2, MLH1, MLH3, PMS1, PMS2 , MSH3 and MSH6 are involved in detection-excision and repair of mismatched nucleotides. When...there are mutations in MSH2, MSH6, MLH1 or PMS2 or loss of expression of MSH2 or MLH1 caused by, for example, methylation of the promoters of these

  2. A Macrocyclic Agouti-Related Protein/[Nle4, DPhe7]α-Melanocyte Stimulating Hormone Chimeric Scaffold Produces Sub-nanomolar Melanocortin Receptor Ligands

    OpenAIRE

    Ericson, Mark D.; Freeman, Katie T.; Schnell, Sathya M.; Haskell-Luevano, Carrie

    2017-01-01

    The melanocortin system consists of five receptor subtypes, endogenous agonists, and naturally occurring antagonists. These receptors and ligands have been implicated in numerous biological pathways including processes linked to obesity and food intake. Herein, a truncation structure-activity relationship study of chimeric agouti-related protein (AGRP)/[Nle4, DPhe7]α-Melanocyte Stimulating Hormone (NDP-MSH) ligands is reported. The tetrapeptide His-DPhe-Arg-Trp or tripeptide DPhe-Arg-Trp repl...

  3. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  4. Identification of Variants in Breast Cancer Susceptibility Genes and Determination of Functional and Clinical Significance of Novel Mutations

    Science.gov (United States)

    2014-10-01

    to cause other cancer susceptibility (CDKN2A, MLH1, MSH2, MSH6, PMS2 ); 3) genes known or postulated to be moderate penetrance cancer susceptibility...susceptibility (CDKN2A, MLH1, MSH2, MSH6, PMS2 ); 3) genes known or postulated to be moderate penetrance cancer susceptibility genes (ATM, BARD1, BRIP1...three patients in TP53 and 12 patients in MLH1, MSH2, MSH6, or PMS2 ; no VUSs were found in CDH1, CDKN2A, STK11 or PTEN. Three additional patients each

  5. Hyperplastic Polyps Are Innocuous Lesions in Hereditary Nonpolyposis Colorectal Cancers

    Directory of Open Access Journals (Sweden)

    D. Speake

    2011-01-01

    Full Text Available Aims. To compare methylation profiles, protein expression, and microsatellite instability (MSI of sporadic, HNPCC, and familial hyperplastic polyps (HPs. Methods. Methylation-specific PCR (MSP and pyrosequencing assessed p16, MGMT, hMLH-1, MINT 1, and MINT 31 methylation. IHC (Immunohistochemistry assessed Ki67, CK20, hMLH-1, hMSH-2, and hMSH-6 protein expression. MSI analysis was performed on those polyps with adequate DNA remaining. Results. 124 HPs were identified 78 sporadic, 21 HNPCC, 25 familial, and the HNPCC group demonstrated no significant differences in overall methylation (P=.186 Chi2. The familial group demonstrated significantly less over all methylation levels (P=.004 Chi2. Conclusions. HPs that occur in HNPCC have no more worrying features at a molecular level than those patients with HPs in a sporadic setting.

  6. Limitations of mitochondrial gene barcoding in Octocorallia.

    Science.gov (United States)

    McFadden, Catherine S; Benayahu, Yehuda; Pante, Eric; Thoma, Jana N; Nevarez, P Andrew; France, Scott C

    2011-01-01

    The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy. © 2010 Blackwell Publishing Ltd.

  7. Learning about Colon Cancer

    Science.gov (United States)

    ... MSH2 on chromosome 2 MLH1 on chromosome 3 PMS2 on chromosome 7 MSH6 on chromosome 2 PMS1 ... are associated with HNPCC - MLH1 , MSH2 , MSH6 , and PMS2 . Individuals in families at high risk of genetic ...

  8. Characterizing the Hypermutated Subtype of Advanced Prostate Cancer as a Predictive Biomarker for Precision Medicine

    Science.gov (United States)

    2016-10-01

    instability, MSI, MLH1, MSH2, MSH6, PMS2 , metastasis, precision medicine 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...hypermutation, hyper-mutation, microsatellite instability, MSI, MLH1, MSH2, MSH6, PMS2 , metastasis, precision medicine Colin Pritchard MD, PhD 2015-2016 Year 2...BRCC3 BRIP1 CHEK1 CHEK2 FAM175A MLH1 MRE11A MSH2 MSH6 NBN PALB2 PMS2 PRSS1 PTEN RAD50 RAD51B RAD51C RAD51D RBBP8 TP53 TP53BP1 XRCC2 Additional

  9. Genetics Home Reference: Lynch syndrome

    Science.gov (United States)

    ... Genetic Changes Variations in the MLH1 , MSH2 , MSH6 , PMS2 , or EPCAM gene increase the risk of developing Lynch syndrome . The MLH1 , MSH2 , MSH6 , and PMS2 genes are involved in the repair of errors ...

  10. Regulation of miR-21 expression in human melanoma via UV-ray-induced melanin pigmentation.

    Science.gov (United States)

    Lin, Kuan-Yu; Chen, Chien-Min; Lu, Cheng-You; Cheng, Chun-Yuan; Wu, Yu-Hsin

    2017-08-01

    Excessive environmental ultraviolet (UV) radiation produces genetic mutations that can lead to skin cancer. This study was designed to assess the potential inhibitory activity of microRNA-21 (miR-21) on the UV irradiation-stimulated melanogenesis signal pathway in melanoma cells. The molecular mechanism of miR-21-induced inhibitory activity on UV-ray-stimulated melanogenesis-regulating proteins was examined in A375.S2 human melanoma and B16F10 mouse melanoma cells. UV irradiation for 30 min induced melanogenesis signal pathway by increasing melanin production and the number of A375.S2 cells. Similarly, UV radiation increased the expression of α-melanocyte-stimulating hormone (α-MSH) protein and decreased the melanogenesis-regulating signal, such as EGFR and Akt phosphorylation. Notably, miR-21 overexpression in UV-ray-stimulated A375.S2 cells decreased α-MSH expression and increased EGFR and Akt phosphorylation levels. Furthermore, miR-21 on UV-ray- induced melanogenesis was down-regulated by the Akt inhibitor and the EGFR inhibitor (Gefitinib). Results suggest that the suppressive activity of miR-21 on UV-ray-stimulated melanogenesis may involve the down-regulation of α-MSH and the activation in both of EGFR and Akt. © 2017 Wiley Periodicals, Inc.

  11. Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme.

    Science.gov (United States)

    Huang, Xingchuan; Dong, Wenjuan; Milewska, Aleksandra; Golda, Anna; Qi, Yonghe; Zhu, Quan K; Marasco, Wayne A; Baric, Ralph S; Sims, Amy C; Pyrc, Krzysztof; Li, Wenhui; Sui, Jianhua

    2015-07-01

    acid moieties on glycoproteins are critical receptor determinants for the hCoV-HKU1 infection. Interestingly, the virus seems to employ a type of sialic acid different from those employed by other group 2a CoVs. In addition, we determined that the HKU1-HE protein is an O-acetylesterase and acts as a receptor-destroying enzyme (RDE) for hCoV-HKU1. This is the first study to demonstrate that hCoV-HKU1 uses certain types of O-acetylated sialic acid residues on glycoproteins to initiate the infection of host cells and that the HKU1-HE protein possesses sialate-O-acetylesterase RDE activity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM)

    International Nuclear Information System (INIS)

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop; Rosendahl, Søren; Aamand, Jens

    2013-01-01

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal–bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal–bacterial consortia are promising for successful bioremediation of pesticide contamination. -- Highlights: •Presence of fungi increased the rate of BAM mineralization by Aminobacter sp. MSH1. •Fungal–bacterial consortium enhanced BAM degradation at low moisture contents. •Mortierella hyphae facilitated transport of the BAM degrader Aminobacter sp. MSH1. -- This study brings new knowledge to the benefits of applying bacterial–fungal consortia for bioremediation

  13. DNA mismatch repair related gene expression as potential biomarkers to assess cadmium exposure in Arabidopsis seedlings

    International Nuclear Information System (INIS)

    Liu Wan; Zhou Qixing; Li Peijun; Gao Hairong; Han, Y.P.; Li, X.J.; Yang, Y.S.; Li Yanzhi

    2009-01-01

    In the current study, Arabidopsis seedlings were hydroponically grown on MS media containing cadmium (Cd) of 0-2.0 mg L -1 for 60 h of treatment. Gene expression profiles were used to relate exposure to Cd with some altered biological responses and/or specific growth effects. RT-PCR analysis was used to quantitate mRNA expression for seven genes known to be involved in DNA mismatch repair (MMR) system and cell division. Results indicated that Cd concentrations of 0.25-2.0 mg L -1 cause increased total soluble protein levels in shoots of Arabidopsis seedlings in an inverted U-shaped dose-response manner. Exposure to 0.25 and 0.5 mg L -1 of Cd dramatically induced expression of four genes (i.e. proliferating cell nuclear antigen 2 (atPCNA 2), MutL1 homolog (atMLH1), MutS 2 homolog (atMSH2) and atMSH3) and five genes (i.e. atPCNA1,2, atMLH1 and atMSH2,7), respectively, in shoots of Arabidopsis seedlings; Exposure to 1.0 mg L -1 of Cd significantly elevated expression of only two genes (atMSH6,7), but caused prominent inhibition in expression of three genes (atPCNA2, atMLH1 and atMSH3) in shoots of Arabidopsis seedlings. The expression alterations of the above genes were independent of any biological effects such as survival, fresh weight and chlorophyll level of shoots. However, shoots of Arabidopsis seedlings exposed to 2.0 mg L -1 of Cd exhibited statistically prominent repression in expression of these seven genes, and showed incipient reduction of fresh weight and chlorophyll level. This research provides data concerning sensitivity of expression profiles of atMLH1, atMSH2,3,6,7 and atPCNA1,2 genes in Arabidopsis seedlings to Cd exposure, as well as the potential use of these gene expression patterns as representative molecular biomarkers indicative of Cd exposure and related biological effects.

  14. The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling

    Directory of Open Access Journals (Sweden)

    Johana A. Luna Coronell

    2018-02-01

    Full Text Available Characterization of the colon cancer immunome and its autoantibody signature from differentially-reactive antigens (DIRAGs could provide insights into aberrant cellular mechanisms or enriched networks associated with diseases. The purpose of this study was to characterize the antibody profile of plasma samples from 32 colorectal cancer (CRC patients and 32 controls using proteins isolated from 15,417 human cDNA expression clones on microarrays. 671 unique DIRAGs were identified and 632 were more highly reactive in CRC samples. Bioinformatics analyses reveal that compared to control samples, the immunoproteomic IgG profiling of CRC samples is mainly associated with cell death, survival, and proliferation pathways, especially proteins involved in EIF2 and mTOR signaling. Ribosomal proteins (e.g., RPL7, RPL22, and RPL27A and CRC-related genes such as APC, AXIN1, E2F4, MSH2, PMS2, and TP53 were highly enriched. In addition, differential pathways were observed between the CRC and control samples. Furthermore, 103 DIRAGs were reported in the SEREX antigen database, demonstrating our ability to identify known and new reactive antigens. We also found an overlap of 7 antigens with 48 “CRC genes.” These data indicate that immunomics profiling on protein microarrays is able to reveal the complexity of immune responses in cancerous diseases and faithfully reflects the underlying pathology. Keywords: Autoantibody tumor biomarker, Cancer immunology, Colorectal cancer, Immunomics, Protein microarray

  15. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    Science.gov (United States)

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents.

    Science.gov (United States)

    Francia, Giulio; Green, Shane K; Bocci, Guido; Man, Shan; Emmenegger, Urban; Ebos, John M L; Weinerman, Adina; Shaked, Yuval; Kerbel, Robert S

    2005-10-01

    Similar to other anticancer agents, intrinsic or acquired resistance to DNA-damaging chemotherapeutics is a major obstacle for cancer therapy. Current strategies aimed at overcoming this problem are mostly based on the premise that tumor cells acquire heritable genetic mutations that contribute to drug resistance. Here, we present evidence for an epigenetic, tumor cell adhesion-mediated, and reversible form of drug resistance that is associated with a reduction of DNA mismatch repair proteins PMS2 and/or MLH1 as well as other members of this DNA repair process. Growth of human breast cancer, human melanoma, and murine EMT-6 breast cancer cell lines as multicellular spheroids in vitro, which is associated with increased resistance to many chemotherapeutic drugs, including alkylating agents, is shown to lead to a reproducible down-regulation of PMS2, MLH1, or, in some cases, both as well as MHS6, MSH3, and MSH2. The observed down-regulation is in part reversible by treatment of tumor spheroids with the DNA-demethylating agent, 5-azacytidine. Thus, treatment of EMT-6 mouse mammary carcinoma spheroids with 5-azacytidine resulted in reduced and/or disrupted cell-cell adhesion, which in turn sensitized tumor spheroids to cisplatin-mediated killing in vitro. Our results suggest that antiadhesive agents might sensitize tumor spheroids to alkylating agents in part by reversing or preventing reduced DNA mismatch repair activity and that the chemosensitization properties of 5-azacytidine may conceivably reflect its role as a potential antiadhesive agent as well as reversal agent for MLH1 gene silencing in human tumors.

  17. DNA damage and repair in peripheral blood lymphocytes from healthy individuals and cancer patients: a pilot study on the implications in the clinical response to chemotherapy.

    Science.gov (United States)

    Nadin, Silvina Beatriz; Vargas-Roig, Laura M; Drago, Gisela; Ibarra, Jorge; Ciocca, Daniel R

    2006-07-28

    Drug resistance is considered the main impediment to successful cancer chemotherapy. The quest for a method useful to predict individual responses to chemotherapy prior to treatment is highly desired. This study was designed to determine the individual influences of doxorubicin and cisplatin on the degree of DNA damage, DNA repair and hMSH2 and the hMLH1 protein expression in peripheral blood lymphocytes (PBL) and their correlations with the clinical response. PBL were obtained from 25 cancer patients (pre- and post-chemotherapy) and from 10 healthy persons, cultured and exposed to doxorubicin or cisplatin. Cells were collected at T0 (immediately after drug treatment) and 24h after damage (T24). The alkaline comet assay was employed to assess the DNA damage and repair function, and immunocytochemistry to study hMLH1 and hMSH2 expression. Clinical response was evaluated after three cycles of chemotherapy. Pre-chemotherapy PBL from cancer patients showed significantly higher levels of basal DNA damage than healthy persons, with appreciable interindividual variations between them. The in vivo administration of antineoplasic drugs was accompanied by significant DNA damage, and an increased in the number of apoptotic cells. Cancer patients with complete response showed a high number of apoptotic cells. The DNA migration increased at T0 and at T24 in cisplatin-treated patients, reflecting a decreased rate of cisplatin adducts repair than that observed in healthy individuals. The ability to repair DNA lesions in doxorubicin-damaged cells was very similar between healthy individuals and cancer patients. Cisplatin-treated patients that died by the disease showed lower DNA migration than the mean value. The expression of hMLH1 and hMSH2 was practically identical between healthy individuals and cancer patients. Nevertheless, chemotherapy induced a depletion mostly of hMLH1. In 83% of cisplatin-treated patients with CR the hMLH1 and hMSH2 expression at T24 was higher than the

  18. Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population

    DEFF Research Database (Denmark)

    Lagerstedt-Robinson, Kristina; Rohlin, Anna; Aravidis, Christos

    2016-01-01

    Lynch syndrome caused by constitutional mismatch‑repair defects is one of the most common hereditary cancer syndromes with a high risk for colorectal, endometrial, ovarian and urothelial cancer. Lynch syndrome is caused by mutations in the mismatch repair (MMR) genes i.e., MLH1, MSH2, MSH6 and PMS2...... Lynch syndrome families. These mutations affected MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families. A large variety of mutations were identified with splice site mutations being the most common mutation type in MLH1 and frameshift mutations predominating in MSH2 and MSH6. Large...... deletions of one or several exons accounted for 21% of the mutations in MLH1 and MSH2 and 22% in PMS2, but were rare (4%) in MSH6. In 66% of the Lynch syndrome families the variants identified were private and the effect from founder mutations was limited and predominantly related to a Finnish founder...

  19. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome.

    Science.gov (United States)

    Pai, Rish K; Dudley, Beth; Karloski, Eve; Brand, Randall E; O'Callaghan, Neil; Rosty, Christophe; Buchanan, Daniel D; Jenkins, Mark A; Thibodeau, Stephen N; French, Amy J; Lindor, Noralane M; Pai, Reetesh K

    2018-06-08

    Lynch syndrome is the most common form of hereditary colorectal carcinoma. However, establishing the diagnosis of Lynch syndrome is challenging, and ancillary studies that distinguish between sporadic DNA mismatch repair (MMR) protein deficiency and Lynch syndrome are needed, particularly when germline mutation studies are inconclusive. The aim of this study was to determine if MMR protein-deficient non-neoplastic intestinal crypts can help distinguish between patients with and without Lynch syndrome. We evaluated the expression of MMR proteins in non-neoplastic intestinal mucosa obtained from colorectal surgical resection specimens from patients with Lynch syndrome-associated colorectal carcinoma (n = 52) and patients with colorectal carcinoma without evidence of Lynch syndrome (n = 70), including sporadic MMR protein-deficient colorectal carcinoma (n = 30), MMR protein proficient colorectal carcinoma (n = 30), and "Lynch-like" syndrome (n = 10). MMR protein-deficient non-neoplastic colonic crypts were identified in 19 of 122 (16%) patients. MMR protein-deficient colonic crypts were identified in 18 of 52 (35%) patients with Lynch syndrome compared to only 1 of 70 (1%) patients without Lynch syndrome (p Lynch-like" syndrome and harbored two MSH2-deficient non-neoplastic colonic crypts. MMR protein-deficient non-neoplastic colonic crypts were not identified in patients with sporadic MMR protein-deficient or MMR protein proficient colorectal carcinoma. Our findings suggest that MMR protein-deficient colonic crypts are a novel indicator of Lynch syndrome, and evaluation for MMR protein-deficient crypts may be a helpful addition to Lynch syndrome diagnostics.

  20. Alteration of cellular radiation response as a consequence of defective DNA mismatch repair

    International Nuclear Information System (INIS)

    Weese, Theodore L. de; Bucci, Jennifer M.; Larrier, Nicole A.; Cutler, Richard G.; Riele, Hein te; Nelson, William G.

    1997-01-01

    Purpose/Objective: A number of genes have been implicated in the response of mammalian cells to ionizing radiation. Among these include the genes P53 and P21. Disruption of these genes can alter the predicted cellular behavior following radiation-induced DNA damage. Similarly, cells defective in mismatch repair are known to be tolerant to the lethal effects of alkylating agents. We hypothesized that mammalian cells which are defective in mismatch repair and tolerant to alkylating DNA damage might also be tolerant to the effects of oxidative DNA damage inflicted by ionizing radiation. Materials and Methods: Mouse embryonic stem cells homozygous for disrupted Msh2 alleles (Msh2-/-), heterozygous for a disrupted Msh2 allele (Msh2+/-) or intact cells (Msh2+/+) were exposed to both acute dose (1 Gy/min) and low dose rate (LDR) radiation (0.004 Gy/min) and cell survival was determined by clonogenic assay. Apoptosis induced by LDR was assessed by a terminal transferase assay. Immunoblot analysis was performed in order to evaluate induction of the polypeptides p53 and p21. Another measure of radiation damage tolerance may be accumulation of oxidative DNA species. Therefore, we monitored levels of 8-hydroxyguanine (8-OHG) and 8-hydroxyadenine (8-OHA) by gas chromatography - mass spectrometry with selected ion monitoring (GC-MS/SIM). Results: Cells containing either one or two disrupted Msh2 alleles (Msh2+/-, Msh2-/-) were found to be less sensitive to LDR than cells containing a complete complement of Msh2 alleles (Msh2+/+). Interestingly, all three cell lines had a nearly identical radiosensitivity to acute dose ionizing radiation despite differences in mismatch repair capacity. Apoptosis after LDR also varied between cells, with the Msh2+/+ cells exhibiting higher levels of apoptosis as compared to either the Msh2+/- or Msh2-/- cell lines. In addition, GC-MS/SIM revealed the Msh2+/- and Msh2-/- cell lines to have an approximately ten fold greater accumulation of the

  1. Kinetic Basis of Nucleotide Selection Employed by a Protein Template-Dependent DNA Polymerase†

    Science.gov (United States)

    Brown, Jessica A.; Fowler, Jason D.; Suo, Zucai

    2010-01-01

    Rev1, a Y-family DNA polymerase, contributes to spontaneous and DNA damage-induced mutagenic events. In this paper, we have employed pre-steady state kinetic methodology to establish a kinetic basis for nucleotide selection by human Rev1, a unique nucleotidyl transferase that uses a protein template-directed mechanism to preferentially instruct dCTP incorporation. This work demonstrated that the high incorporation efficiency of dCTP is dependent on both substrates: an incoming dCTP and a templating base dG. The extremely low base substitution fidelity of human Rev1 (100 to 10-5) was due to the preferred misincorporation of dCTP with templating bases dA, dT, and dC over correct dNTPs. Using non-natural nucleotide analogs, we showed that hydrogen bonding interactions between residue R357 of human Rev1 and an incoming dNTP are not essential for DNA synthesis. Lastly, human Rev1 discriminates between ribonucleotides and deoxyribonucleotides mainly by reducing the rate of incorporation, and the sugar selectivity of human Rev1 is sensitive to both the size and orientation of the 2′-substituent of a ribonucleotide. PMID:20518555

  2. Isolated loss of PMS2 immunohistochemical expression is frequently caused by heterogeneous MLH1 promoter hypermethylation in Lynch syndrome screening for endometrial cancer patients

    OpenAIRE

    Kato, Aya; Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromitu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro

    2016-01-01

    Lynch syndrome (LS) is an autosomal dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, PMS2) and is associated with increased risk of various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2–6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation ...

  3. Adrenocortical carcinoma, an unusual extracolonic tumor associated with Lynch II syndrome.

    Science.gov (United States)

    Medina-Arana, V; Delgado, L; González, L; Bravo, A; Díaz, H; Salido, E; Riverol, D; González-Aguilera, J J; Fernández-Peralta, A M

    2011-06-01

    Lynch syndrome (LS) is an autosomal dominant condition that predisposes to colorectal cancer and specific other tumors. Extracolonic tumors occur mainly in the endometrium, stomach, ovary, small intestine and urinary tract. The presence of rare tumors in patients belonging to families who have Lynch syndrome is always interesting, because the question arises whether these tumors should be considered as a coincidence or are related with the syndrome. In this last case, they are also the result of the defect in the mismatch repair system, opening the possibility of extending the tumor spectrum associated with the syndrome. Here we describe a patient from a Lynch syndrome family with a germline mutation c.2063T>G (p.M688R) in the MSH2 gene, who developed an adrenal cortical carcinoma, a tumor not usually associated with LS. We analyzed the adrenocortical tumour for microsatellite instability (MSI), LOH and the presence of the germline c.2063T>G (M688R) mutation. The adrenal cortical carcinoma showed the MSH2 mutation, loss of heterozygosity of the normal allele in the MSH2 gene and loss of immunohistochemical expression for MSH2 protein, but no microsatellite instability. Additionally, the adrenal cortical carcinoma did not harbour a TP53 mutation. The molecular study indicates that this adrenal cortical cancer is probably due to the mismatch repair defect.

  4. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD)

    OpenAIRE

    Ramchander, N. C.; Ryan, N. A. J.; Crosbie, E. J.; Evans, D. G.

    2017-01-01

    BackgroundConstitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of th...

  5. 29 CFR 791.2 - Joint employment.

    Science.gov (United States)

    2010-07-01

    ... the Act. In this event, all joint employers are responsible, both individually and jointly, for... they have. Of course, an employer should not be held responsible for an employee's action in seeking... two or more employers at the same time under the Fair Labor Standards Act of 1938, since there is...

  6. Ovarian cancer at young age: the contribution of mismatch-repair defects in a population-based series of epithelial ovarian

    DEFF Research Database (Denmark)

    Domanska, K; Malander, S; Måsbäck, A

    2007-01-01

    and endometrioid cancers were overrepresented and were diagnosed in 27% and 16% of the tumors, respectively. Immunostaining using antibodies against MLH1, PMS2, MSH2, and MSH6 was used to assess the mismatch-repair status and revealed loss of expression of MLH1/PMS2 in two cases, loss of MSH2/MSH6 in one case...

  7. Effect of Estrogen on Mutagenesis in Human Mammary Epithelial Cells

    Science.gov (United States)

    2005-06-01

    of hMSH3 and PCNA. " PMS2 Since overexpression of hMSH3 MSH2 was shown to reduce single-base MMR activity (11, 12), we originally -=GAPDH hypothesized...shown in Fig. days. The cells were harvested and extracted for Western blotting. Anti- MLH 1, PMS2 and MSH2 antibodies were purchased from Oncogene.10

  8. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases WWP1 WWP1 NEDD4-like E3 ubiquitin-protein ligase WWP1 Atrophin-1-interacting pr...otein 5, WW domain-containing protein 1 9606 Homo sapiens Q9H0M0 11059 2OP7, 1ND7 11059 ...

  9. M-S-H precipitation in low-pH concretes in clayey environment

    International Nuclear Information System (INIS)

    Dauzeres, A.; Achiedo, G.; Nied, D.; L'Hopital, E.; Alahrache, S.; Lothenbach, B.

    2015-01-01

    In the framework of the CI-project (Cement Clay Interaction Experiment), two different low-pH cements were emplaced at Mont Terri rock laboratory to study their interactions with the surrounding Opalinus Clay (OPA): ESDRED (shotcrete mixture: 60% of CEM-I 42.5 N + 40% of silica fume + aluminium sulphate salt as accelerator) and LAC composed of CEM-III/B 42.5 L (60% of blast furnace slag + 10% nano silica). After 5 years of interactions in the Mont Terri rock laboratory, SEM-EDS analyses show a systematic Mg-perturbation associated with a high decalcification near the surface of both cementitious materials. TGA (Thermogravimetric Analysis) and XRD (X-ray diffraction) investigations associate this Mg-enrichment to the possible formation of M-S-H. This result is confirmed by 29 Si NMR analyses, showing a high polymerisation degree of the Si-network in the Mg-enriched zone typical of a sheet-like structure. Tem/EDS investigations of a FIB section carried out in the Mg zone of both LAC and ESDRED concretes indicate that the Mg phase exhibits a gel-like structure similar to C-S-H gel. This experimentally observed Mg-enrichment in the interaction zone is well reproduced by reactive transport modelling of the LAC/Opalinus clay with the HYTEC code. (authors)

  10. Physical and functional interactions between Werner syndrome helicase and mismatch-repair initiation factors

    DEFF Research Database (Denmark)

    Saydam, Nurten; Kanagaraj, Radhakrishnan; Dietschy, Tobias

    2007-01-01

    is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSalpha), MSH2/MSH3 (MutSbeta) and MLH1/PMS2 (MutLalpha) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSalpha and MutSbeta can strongly...

  11. SH2/SH3 signaling proteins.

    Science.gov (United States)

    Schlessinger, J

    1994-02-01

    SH2 and SH3 domains are small protein modules that mediate protein-protein interactions in signal transduction pathways that are activated by protein tyrosine kinases. SH2 domains bind to short phosphotyrosine-containing sequences in growth factor receptors and other phosphoproteins. SH3 domains bind to target proteins through sequences containing proline and hydrophobic amino acids. SH2 and SH3 domain containing proteins, such as Grb2 and phospholipase C gamma, utilize these modules in order to link receptor and cytoplasmic protein tyrosine kinases to the Ras signaling pathway and to phosphatidylinositol hydrolysis, respectively. The three-dimensional structures of several SH2 and SH3 domains have been determined by NMR and X-ray crystallography, and the molecular basis of their specificity is beginning to be unveiled.

  12. Prevalence of Lynch syndrome and Lynch-like syndrome among patients with colorectal cancer in a Japanese hospital-based population.

    Science.gov (United States)

    Chika, Noriyasu; Eguchi, Hidetaka; Kumamoto, Kensuke; Suzuki, Okihide; Ishibashi, Keiichiro; Tachikawa, Tetsuhiko; Akagi, Kiwamu; Tamaru, Jun-Ichi; Okazaki, Yasushi; Ishida, Hideyuki

    2017-02-09

    We investigated the prevalence of Lynch syndrome and Lynch-like syndrome among Japanese colorectal cancer patients, as there have been no credible data from Japan. Immunohistochemical analyses for mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) were carried out in surgically resected, formalin-fixed paraffin-embedded specimens obtained from 1,234 newly diagnosed colorectal cancer patients between March 2005 and April 2014. The presence/absence of the BRAF V600E mutation and hypermethylation of the MLH1 promoter was analyzed where necessary. Genetic testing was finally undertaken in patients suspected as having Lynch syndrome. By the universal screening approach with immunohistochemical analysis for mismatch repair proteins followed by analyses for the BRAF V600E mutation and MLH1 promoter methylation status, 11 (0.9%) of the 1,234 patients were identified as candidates for genetic testing. Out of the 11 patients, 9 (0.7%) were finally diagnosed as having Lynch syndrome; the responsible genes included MLH1 (n = 1), MSH2 (n = 4), EPCAM (n = 1) and MSH6 (n = 3). The remaining two patients (0.2%) were regarded as having Lynch-like syndrome, since biallelic somatic deletion of the relevant mismatch repair genes was detected in the absence of germline mismatch repair alterations. None of the cases was identified as having germline MLH1 epimutation. The prevalence of Lynch syndrome among all newly diagnosed cases of colorectal cancer in Japan is in the same range as that recently reported by studies in Western population. The prevalence of Lynch-like syndrome seems to be extremely low. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. IQGAP1 is a novel CXCR2-interacting protein and essential component of the "chemosynapse".

    Directory of Open Access Journals (Sweden)

    Nicole F Neel

    Full Text Available Chemotaxis is essential for a number of physiological processes including leukocyte recruitment. Chemokines initiate intracellular signaling pathways necessary for chemotaxis through binding seven transmembrane G protein-couple receptors. Little is known about the proteins that interact with the intracellular domains of chemokine receptors to initiate cellular signaling upon ligand binding. CXCR2 is a major chemokine receptor expressed on several cell types, including endothelial cells and neutrophils. We hypothesize that multiple proteins interact with the intracellular domains of CXCR2 upon ligand stimulation and these interactions comprise a "chemosynapse", and play important roles in transducing CXCR2 mediated signaling processes.In an effort to define the complex of proteins that assemble upon CXCR2 activation to relay signals from activated chemokine receptors, a proteomics approach was employed to identify proteins that co-associate with CXCR2 with or without ligand stimulation. The components of the CXCR2 "chemosynapse" are involved in processes ranging from intracellular trafficking to cytoskeletal modification. IQ motif containing GTPase activating protein 1 (IQGAP1 was among the novel proteins identified to interact directly with CXCR2. Herein, we demonstrate that CXCR2 co-localizes with IQGAP1 at the leading edge of polarized human neutrophils and CXCR2 expressing differentiated HL-60 cells. Moreover, amino acids 1-160 of IQGAP1 directly interact with the carboxyl-terminal domain of CXCR2 and stimulation with CXCL8 enhances IQGAP1 association with Cdc42.Our studies indicate that IQGAP1 is a novel essential component of the CXCR2 "chemosynapse".

  14. Tools for magnetostructural correlations for the 3d{sup 8}({sup 3}A{sub 2} state) ions at orthorhombic sites: Comparative study with applications to Ni{sup 2+} ions in Y{sub 2}BaNiO{sub 5} and Nd{sub 2}BaNiO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gnutek, P. [Modeling in Spectroscopy Group, Institute of Physics, West Pomeranian University of Technology Szczecin, Al. Piastów 17, 70-310 Szczecin (Poland); Açıkgöz, M., E-mail: macikgoz@bahcesehir.edu.tr [Faculty of Arts and Sciences, Bahcesehir University, Beşiktaş, 34353 Istanbul (Turkey); Rudowicz, C. [Modeling in Spectroscopy Group, Institute of Physics, West Pomeranian University of Technology Szczecin, Al. Piastów 17, 70-310 Szczecin (Poland)

    2015-01-15

    Three approaches are employed to study magnetostructural correlations for the 3d{sup 8}({sup 3}A{sub 2} state) ions at orthorhombic sites in crystals: (i) the higher-order perturbation theory (PT) of the microscopic spin Hamiltonian (MSH) parameters, (ii) the crystal field (CF) analysis (CFA) within all 3d{sup 8} states combined with the superposition model (SPM) calculations of CF parameters, and (iii) the second-order PT of MSH parameters. A comparative study is carried out to assess the merit of each modeling approach. These approaches enable predictions of the orthorhombic zero-field splitting parameters (ZFSPs) for the 3d{sup 8} ions at orthorhombic sites. Hence, correlation of the magnetic and spectroscopic properties with the structural ones may be considered. The approach (i) and (iii) take into account only the spin–orbit coupling (SOC) and a limited set of low lying states. Analysis of the expressions used in the approach (i) reveals discrepancies concerning: the sign of the SOC parameter, the cubic crystal field parameter Dq, the energy levels sequence, and numerical errors, which diminish its reliability. The distinction between the first- and second-kind orthorhombic symmetry is also elucidated. The approaches (i)–(iii) are applied for Ni{sup 2+} (S=1) ions in the Haldane gap systems Y{sub 2}BaNiO{sub 5} and Nd{sub 2}BaNiO{sub 5}. The contributions to the ZFSPs due to the spin–spin and spin–other–orbit interactions considered using the approach (ii) are found nearly insignificant as compared with the dominant SOC ones. The results indicate that the approach (i)—corrected and (iii) may be employed only as an approximation. The approach (ii) together with the SPM/CFP modeling appear to be preferable and more reliable tools to study magnetostructural correlations and thus spectroscopic and magnetic properties of the 3d{sup 8}({sup 3}A{sub 2} state) ions at orthorhombic sites in crystals. - Highlights: • Magnetostructural correlations for 3d

  15. The Human dsRNA binding protein PACT is unable to functionally substitute for the Drosophila dsRNA binding protein R2D2 [v1; ref status: indexed, http://f1000r.es/201

    Directory of Open Access Journals (Sweden)

    Benjamin K Dickerman

    2013-10-01

    Full Text Available The primary function of the dsRNA binding protein (dsRBP PACT/RAX is to activate the dsRNA dependent protein kinase PKR in response to stress signals.  Additionally, it has been identified as a component of the small RNA processing pathway.  A role for PACT/RAX in this pathway represents an important interplay between two modes of post-transcriptional gene regulation.  The function of PACT/RAX in this context is poorly understood.  Thus, additional models are required to clarify the mechanism by which PACT/RAX functions.  In this study, Drosophila melanogaster was employed to identify functionally orthologous dsRNA-binding proteins.  Transgenic Drosophila expressing human PACT were generated to determine whether PACT is capable of functionally substituting for the Drosophila dsRBP R2D2, which has a well-defined role in small RNA biogenesis.  Results presented here indicate that PACT is unable to substitute for R2D2 at the whole organism level.

  16. Clinical and Molecular Characterization of Brazilian Patients Suspected to Have Lynch Syndrome.

    Directory of Open Access Journals (Sweden)

    Felipe Carneiro da Silva

    Full Text Available Lynch syndrome (LS accounts for 3-5% of all colorectal cancers (CRC and is inherited in an autosomal dominant fashion. This syndrome is characterized by early CRC onset, high incidence of tumors in the ascending colon, excess of synchronous/metachronous tumors and extra-colonic tumors. Nowadays, LS is regarded of patients who carry deleterious germline mutations in one of the five mismatch repair genes (MMR, mostly in MLH1 and MSH2, but also in MSH6, PMS1 and PMS2. To comprehensively characterize 116 Brazilian patients suspected for LS, we assessed the frequency of germline mutations in the three minor genes MSH6, PMS1 and PMS2 in 82 patients negative for point mutations in MLH1 and MSH2. We also assessed large genomic rearrangements by MLPA for detecting copy number variations (CNVs in MLH1, MSH2 and MSH6 generating a broad characterization of MMR genes. The complete analysis of the five MMR genes revealed 45 carriers of pathogenic mutations, including 25 in MSH2, 15 in MLH1, four in MSH6 and one in PMS2. Eleven novel pathogenic mutations (6 in MSH2, 4 in MSH6 and one in PMS2, and 11 variants of unknown significance (VUS were found. Mutations in the MLH1 and MSH2 genes represented 89% of all mutations (40/45, whereas the three MMR genes (MSH6, PMS1 and PMS2 accounted for 11% (5/45. We also investigated the MLH1 p.Leu676Pro VUS located in the PMS2 interaction domain and our results revealed that this variant displayed no defective function in terms of cellular location and heterodimer interaction. Additionally, we assessed the tumor phenotype of a subset of patients and also the frequency of CRC and extra-colonic tumors in 2,365 individuals of the 116 families, generating the first comprehensive portrait of the genetic and clinical aspects of patients suspected of LS in a Brazilian cohort.

  17. Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers.

    Science.gov (United States)

    Goverde, A; Spaander, M C W; Nieboer, D; van den Ouweland, A M W; Dinjens, W N M; Dubbink, H J; Tops, C J; Ten Broeke, S W; Bruno, M J; Hofstra, R M W; Steyerberg, E W; Wagner, A

    2018-07-01

    Until recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for LS according to MMRpredict and PREMM5. The area under the operator receiving characteristic curve (AUC) was compared between MMRpredict and PREMM5 for LS patients in general and for different LS genes specifically. Of 734 index patients, 83 (11%) were diagnosed with LS; 23 MLH1, 17 MSH2, 31 MSH6 and 12 PMS2 mutation carriers. Both prediction models performed well for MLH1 and MSH2 (AUC 0.80 and 0.83 for PREMM5 and 0.79 for MMRpredict) and fair for MSH6 mutation carriers (0.69 for PREMM5 and 0.66 for MMRpredict). MMRpredict performed fair for PMS2 mutation carriers (AUC 0.72), while PREMM5 failed to discriminate PMS2 mutation carriers from non-mutation carriers (AUC 0.51). The only statistically significant difference between PMS2 mutation carriers and non-mutation carriers was proximal location of colorectal cancer (77 vs. 28%, p PMS2 mutation carriers (AUC 0.77) and overall (AUC 0.81 vs. 0.72). We validated these results in an external cohort of 376 colorectal cancer patients, including 158 LS patients. MMRpredict and PREMM5 cannot adequately identify PMS2 mutation carriers. Adding location of colorectal cancer to PREMM5 may improve the performance of this model, which should be validated in larger cohorts.

  18. IRAS 15099-5856: REMARKABLE MID-INFRARED SOURCE WITH PROMINENT CRYSTALLINE SILICATE EMISSION EMBEDDED IN THE SUPERNOVA REMNANT MSH15-52

    International Nuclear Information System (INIS)

    Koo, Bon-Chul; Kim, Hyun-Jeong; Im, Myungshin; McKee, Christopher F.; Suh, Kyung-Won; Moon, Dae-Sik; Lee, Ho-Gyu; Onaka, Takashi; Burton, Michael G.; Hiramatsu, Masaaki; Bessell, Michael S.; Gaensler, B. M.; Lee, Jae-Joon; Jeong, Woong-Seob; Tatematsu, Ken'ichi; Kawabe, Ryohei; Ezawa, Hajime; Kohno, Kotaro; Wilson, Grant; Yun, Min S.

    2011-01-01

    We report new mid-infrared (MIR) observations of the remarkable object IRAS 15099-5856 using the space telescopes AKARI and Spitzer, which demonstrate the presence of prominent crystalline silicate emission in this bright source. IRAS 15099-5856 has a complex morphology with a bright central compact source (IRS1) surrounded by knots, spurs, and several extended (∼4') arc-like filaments. The source is seen only at ≥10 μm. The Spitzer mid-infrared spectrum of IRS1 shows prominent emission features from Mg-rich crystalline silicates, strong [Ne II] 12.81 μm, and several other faint ionic lines. We model the MIR spectrum as thermal emission from dust and compare with the Herbig Be star HD 100546 and the luminous blue variable R71, which show very similar MIR spectra. Molecular line observations reveal two molecular clouds around the source, but no associated dense molecular cores. We suggest that IRS1 is heated by UV radiation from the adjacent O star Muzzio 10 and that its crystalline silicates most likely originated in a mass outflow from the progenitor of the supernova remnant (SNR) MSH 15-52. IRS1, which is embedded in the SNR, could have been shielded from the SN blast wave if the progenitor was in a close binary system with Muzzio 10. If MSH 15-52 is a remnant of Type Ib/c supernova (SN Ib/c), as has been previously proposed, this would confirm the binary model for SN Ib/c. IRS1 and the associated structures may be the relics of massive star death, as shaped by the supernova explosion, the pulsar wind, and the intense ionizing radiation of the embedded O star.

  19. 41 CFR 301-75.2 - May we pay pre-employment interview travel expenses?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May we pay pre-employment interview travel expenses? 301-75.2 Section 301-75.2 Public Contracts and Property Management...-EMPLOYMENT INTERVIEW TRAVEL General Rules § 301-75.2 May we pay pre-employment interview travel expenses? Yes...

  20. Complement factor H-related proteins CFHR2 and CFHR5 represent novel ligands for the infection-associated CRASP proteins of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Corinna Siegel

    2010-10-01

    Full Text Available One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP which interact with complement regulator factor H (CFH and factor H-like protein 1 (FHL1 or factor H-related protein 1 (CFHR1. In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi.To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement.In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi.

  1. Loss of MLH1 sensitizes colon cancer cells to DNA-PKcs inhibitor KU60648.

    Science.gov (United States)

    Hinrichsen, Inga; Ackermann, Anne; Düding, Tonja; Graband, Annika; Filmann, Natalie; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2017-07-01

    Germline mutations of MLH1 are responsible for tumor generation in nearly 50% of patients with Lynch Syndrome, and around 15% of sporadic colorectal cancers show MLH1-deficiency due to promotor hypermethylation. Although these tumors are of lower aggressiveness the benefit for these patients from standard chemotherapy is still under discussion. Recently, it was shown that the sensitivity to the DNA-PKcs inhibitor KU60648 is linked to loss of the MMR protein MSH3. However, loss of MSH3 is rather secondary, as a consequence of MMR-deficiency, and frequently detectable in MLH1-deficient tumors. Therefore, we examined the expression of MLH1, MSH2, MSH6, and MSH3 in different MMR-deficient and proficient cell lines and determined their sensitivity to KU60648 by analyzing cell viability and survival. MLH1-dependent ability of double strand break (DSB) repair was monitored after irradiation via γH2AX detection. A panel of 12 colon cancer cell lines, two pairs of cells, where MLH1 knock down was compared to controls with the same genetic background, and one MLH1-deficient cell line where MLH1 was overexpressed, were included. In summary, we found that MLH1 and/or MSH3-deficient cells exhibited a significantly higher sensitivity to KU60648 than MMR-proficient cells and that overexpression of MLH1 in MLH1-deficient cells resulted in a decrease of cell sensitivity. KU60648 efficiency seems to be associated with reduced DSB repair capacity. Since the molecular testing of colon tumors for MLH1 expression is a clinical standard we believe that MLH1 is a much better marker and a greater number of patients would benefit from KU60648 treatment. © 2017 Wiley Periodicals, Inc.

  2. Melanogenesis-inhibitory activity of aromatic glycosides from the stem bark of Acer buergerianum.

    Science.gov (United States)

    Akihisa, Toshihiro; Orido, Masashi; Akazawa, Hiroyuki; Takahashi, Akitomo; Yamamoto, Ayako; Ogihara, Eri; Fukatsu, Makoto

    2013-02-01

    A new benzyl glucoside, 3-O-demethylnikoenoside (1), along with eleven known compounds, including seven aromatic glycosides, 2-8, three lignans, 9-11, and one cyclitol, 12, were isolated from the BuOH-soluble fraction of a MeOH extract of Acer buergerianum stem bark. The structures of the new compound were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Upon evaluation of compounds 1-12 on melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three compounds, i.e., hovetrichoside B (8), pinoresinol 4-O-β-D-glucopyranoside (9), and pinoresinol 4-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside (10), have been found to exhibit inhibitory effects with 41-49% melanin content compared to the control at 100 μM and low cytotoxicity to the cells (81-92% cell viability at 100 μM). Western blot analysis showed that compound 8 reduced the protein levels of MITF (=microphtalmia-associated transcription factor) and tyrosinase, in a concentration-dependent manner, suggesting that 8 inhibits melanogenesis in α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase. On the other hand, upon Western blotting, compound 9 was found to reduce the protein levels of tyrosinase and TRP-2, while it increased MITF and TRP-1 (=tyrosine-related protein 1), in a concentration-dependent manner, indicating that 9 inhibits melanogenesis in α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of tyrosinase and TRP-2. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    Science.gov (United States)

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  4. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases SMURF1 KIAA1625 SMURF1 E3 ubiquitin-protein ligase SMURF1 SM...AD ubiquitination regulatory factor 1, SMAD-specific E3 ubiquitin-protein ligase 1 9606 Homo sapiens Q9HCE7 57154 2LB1, 2LAZ, 2LB0, 3PYC 57154 Q9HCE7 ...

  5. Characterizing Protein Interactions Employing a Genome-Wide siRNA Cellular Phenotyping Screen

    Science.gov (United States)

    Suratanee, Apichat; Schaefer, Martin H.; Betts, Matthew J.; Soons, Zita; Mannsperger, Heiko; Harder, Nathalie; Oswald, Marcus; Gipp, Markus; Ramminger, Ellen; Marcus, Guillermo; Männer, Reinhard; Rohr, Karl; Wanker, Erich; Russell, Robert B.; Andrade-Navarro, Miguel A.; Eils, Roland; König, Rainer

    2014-01-01

    Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database. We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for studying the detailed function of signaling pathways of the cellular system of interest. PMID:25255318

  6. Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations.

    Directory of Open Access Journals (Sweden)

    Lydia Chang

    Full Text Available Ubiquilin proteins facilitate delivery of ubiquitinated proteins to the proteasome for degradation. Interest in the proteins has been heightened by the discovery that gene mutations in UBQLN2 cause dominant inheritance of amyotrophic lateral sclerosis (ALS. However, the mechanisms by which the mutations cause ALS are not known. Here we report on the underlying defect of ubiquilin-2 proteins containing ALS-linked mutations in affecting proteasome-mediated degradation. We found that overexpression of ubiquilin-2 proteins containing any one of five different ALS mutations slow degradation of Myc, a prototypic proteasome substrate. Examination of coprecipitating proteins indicated that the mutant proteins are generally capable of binding polyubiquitinated proteins, but defective in binding the proteasome. GST-pulldown studies revealed that many of the mutants bind weaker to the S5a subunit of the proteasome, compared with wild type (WT ubiquilin-2 protein. The results suggest the mutant proteins are unable to deliver their captured cargo to the proteasome for degradation, which presumably leads to toxicity. Quantification of cell death is consistent with this idea. Measurement of protein turnover further indicated the mutant proteins have longer half-lives than WT ubiquilin-2. Our studies provide novel insight into the mechanism by which ALS-linked mutations in UBQLN2 interfere with protein degradation.

  7. PKCζ and PKMζ are overexpressed in TCF3-rearranged paediatric acute lymphoblastic leukaemia and are associated with increased thiopurine sensitivity

    Science.gov (United States)

    Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L

    2015-01-01

    Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (Pmercaptopurine (Pstabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ. PMID:24990612

  8. mlh3 mutations in baker's yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide.

    Directory of Open Access Journals (Sweden)

    Najla Al-Sweel

    2017-08-01

    Full Text Available Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR. To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker's yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32 specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover- and Mlh1-mlh3-45 (MMR-, crossover+ displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3's enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated.

  9. Cartilage Acidic Protein 2 a hyperthermostable, high affinity calcium-binding protein.

    Science.gov (United States)

    Anjos, Liliana; Gomes, Ana S; Melo, Eduardo P; Canário, Adelino V; Power, Deborah M

    2013-03-01

    Cartilage Acidic Protein 2 (CRTAC2) is a novel protein present from prokaryotes to vertebrates with abundant expression in the teleost fish pituitary gland and an isoform of CRTAC1, a chondrocyte marker in humans. The two proteins are non-integrins containing N-terminal integrin-like Ca(2+)-binding motifs and their structure and function remain to be assigned. Structural studies of recombinant sea bream (sb)CRTAC2 revealed it is composed of 8.8% α-helix, 33.4% β-sheet and 57.8% unordered protein. sbCRTAC2 bound Ca(2+) with high affinity (K(d)=1.46nM) and favourable Gibbs free energy (∆G=-12.4kcal/mol). The stoichiometry for Ca(2+) bound to sbCRTAC2 at saturation indicated six Ca(2+) ligand-binding sites exist per protein molecule. No conformational change in sbCRTAC2 occurred in the presence of Ca(2+). Fluorescence emission revealed that the tertiary structure of the protein is hyperthermostable between 25°C and 95°C and the fully unfolded state is only induced by chemical denaturing (4M GndCl). sbCRTAC has a widespread tissue distribution and is present as high molecular weight aggregates, although strong reducing conditions promote formation of the monomer. sbCRTAC2 promotes epithelial cell outgrowth in vitro suggesting it may share functional homology with mammalian CRTAC1, recently implicated in cell-cell and cell-matrix interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Identification of putative agouti-related protein(87-132)-melanocortin-4 receptor interactions by homology molecular modeling and validation using chimeric peptide ligands.

    Science.gov (United States)

    Wilczynski, Andrzej; Wang, Xiang S; Joseph, Christine G; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Sorensen, Nicholas B; Shaw, Amanda M; Millard, William J; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-04-22

    Agouti-related protein (AGRP) is one of only two naturally known antagonists of G-protein-coupled receptors (GPCRs) identified to date. Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these melanocortin receptors. Insight into putative interactions between the antagonist AGRP amino acids with the melanocortin-4 receptor (MC4R) may be important for the design of unique ligands for the treatment of obesity related diseases and is currently lacking in the literature. A three-dimensional homology molecular model of the mouse MC4 receptor complex with the hAGRP(87-132) ligand docked into the receptor has been developed to identify putative antagonist ligand-receptor interactions. Key putative AGRP-MC4R interactions include the Arg111 of hAGRP(87-132) interacting in a negatively charged pocket located in a cavity formed by transmembrane spanning (TM) helices 1, 2, 3, and 7, capped by the acidic first extracellular loop (EL1) and specifically with the conserved melanocortin receptor residues mMC4R Glu92 (TM2), mMC4R Asp114 (TM3), and mMC4R Asp118 (TM3). Additionally, Phe112 and Phe113 of hAGRP(87-132) putatively interact with an aromatic hydrophobic pocket formed by the mMC4 receptor residues Phe176 (TM4), Phe193 (TM5), Phe253 (TM6), and Phe254 (TM6). To validate the AGRP-mMC4R model complex presented herein from a ligand perspective, we generated nine chimeric peptide ligands based on a modified antagonist template of the hAGRP(109-118) (Tyr-c[Asp-Arg-Phe-Phe-Asn-Ala-Phe-Dpr]-Tyr-NH(2)). In these chimeric ligands, the antagonist AGRP Arg-Phe-Phe residues were replaced by the melanocortin agonist His/D-Phe-Arg-Trp amino acids. These peptides resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs). The most notable results include the identification of a novel subnanomolar melanocortin peptide

  11. Genetics Home Reference: ovarian cancer

    Science.gov (United States)

    ... is most often associated with mutations in the MLH1 or MSH2 gene and accounts for between 10 ... AKT1 BARD1 BRCA1 BRCA2 BRIP1 CDH1 CHEK2 CTNNB1 MLH1 MRE11 MSH2 MSH6 NBN OPCML PALB2 PIK3CA PMS2 ...

  12. CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis.

    Science.gov (United States)

    Smolikov, Sarit; Schild-Prüfert, Kristina; Colaiácovo, Mónica P

    2008-06-06

    The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans.

  13. UO{sub 2}{sup 2+}/protein complexation sites screening

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, P.; Pible, O

    2004-07-01

    Uranium(VI) is likely to make strong coordination with some proteins in the plasma and in targeted cells. In the frame of a nuclear toxicology program, a biochemical strategy has been developed to identify these targets in complex biological media. The present work focuses on an approach based on the screening of 3D protein structures in order to identify proteins able to bind UO{sub 2}{sup 2+} and the corresponding complexation sites in these proteins. Our preliminary results show that indeed a few proteins display a high affinity to uranyl salt. The site of interaction may be mapped using molecular modeling, providing coherent results with the biochemical data. (authors)

  14. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Markus Böhm

    2016-05-01

    Full Text Available Alpha-melanocyte-stimulating hormone (alpha-MSH increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation.

  15. A expressão de genes reparadores do DNA nos tumores sincrônicos de câncer colorretal esporádico DNA repair gene expression in synchronic tumors of sporadic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Igor Proscurshim

    2007-03-01

    Full Text Available RACIONAL: Um dos mecanismos genéticos presentes em aproximadamente 80% dos pacientes com síndrome hereditária não-polipóide do câncer colorretal (HNPCC são os defeitos nos genes reparadores de DNA, como o MSH2, MSH6 e MLH1, onde os tumores sincrônicos são relativamente freqüentes. Já no câncer colorretal esporádico as lesões sincrônicas são raras. OBJETIVO: Verificar se o mesmo mecanismo genético presente no HNPCC está presente no câncer colorretal esporádico que apresentam com lesões sincrônicas. MÉTODOS: Foram incluídos no estudo todos os pacientes com câncer colorretal sincrônico não HNPCC. Imunoistoquímica com anticorpos para MSH2,MSH6, e MLH1 foi realizada para cada tumor. RESULTADOS: Todos os pacientes apresentaram expressão normal de MSH2 e MLH1. O único gene com imunoexpressão alterada foi o MSH6. CONCLUSÃO: Possivelmente outro mecanismo genético seja responsável pelo surgimento de dois tumores sincrônicos no câncer colorretal esporádico.BACKGROUND: Mismatch repair genes (such as MSH2, MLH1 and MSH6 mutations are present in over 80% of hereditary non-polyposis colorectal cancer (HNPCC tumors, which frequently exhibit synchronous lesions. Sporadic colorectal cancer is rarely associated with synchronous lesions. AIM: To investigate the role of mismatch repair gene mutation in synchronous sporadic colorectal cancer. METHODS: Patients with sporadic synchronous colorectal adenocarcinomas were included in the study. Immunohistochemistry was performed using MSH2, MLH1 and MSH6 antibodies. RESULTS: All patients had two synchoronous lesions. None of them had altered MSH2 or MLH1 expression. One patient had altered MSH6 expression in both tumors. CONCLUSION: Possibly, other molecular mechanisms are involved in carcinogenesis of sporadic synchronous colorectal cancer.

  16. Role of microsatellite instability-low as a diagnostic biomarker of Lynch syndrome in colorectal cancer.

    Science.gov (United States)

    Vilar, Eduardo; Mork, Maureen E; Cuddy, Amanda; Borras, Ester; Bannon, Sarah A; Taggart, Melissa W; Ying, Jun; Broaddus, Russell R; Luthra, Rajyalakshmi; Rodriguez-Bigas, Miguel A; Lynch, Patrick M; You, Yi-Qian Nancy

    2014-01-01

    Lynch syndrome is the most common Mendelian disorder predisposing persons to hereditary colorectal cancer. Carriers of MSH6 mutations constitute less than 10% of the total of cases with Lynch syndrome and present with a weaker clinical phenotype, including low levels of microsatellite instability (MSI-L) in colorectal tumors. The frequency of MSH6 mutation carriers among patients presenting with MSI-L colorectal cancer has yet to be determined, as has the appropriate genetic workup in this context. We have reviewed here the clinicopathologic characteristics, immunohistochemistry, and genetic testing results for 71 patients at a single institution diagnosed with MSI-L colorectal cancers. Of 71 patients with MSI-L tumors, 21 underwent genetic testing for MSH6 mutations, three of whom presented with loss of staining of MSH6 and only one of whom carried a pathogenic germline MSH6 mutation in exon 4 (c.2677_2678delCT; p.Leu893Alafs*6). This latter patient had a significant family history of cancer and had a rectal primary tumor that showed instability only in mononucleotide markers. In this cohort of MSI-L patients, we detected no notable clinicopathologic or molecular characteristic that would help to distinguish a group most likely to harbor germline MSH6 mutations. Therefore, we conclude that the prevalence of MSH6 mutations among patients with MSI-L tumors is very low. Microsatellite instability analysis combined with immunohistochemistry of mismatch repair proteins adequately detects potential MSH6 mutation carriers among MSI-L colorectal cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying

    2018-04-25

    Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.

  18. Molecular Background of Colorectal Tumors From Patients with Lynch Syndrome Associated With Germline Variants in PMS2.

    Science.gov (United States)

    Ten Broeke, S W; van Bavel, T C; Jansen, A M L; Gómez-García, E; Hes, F J; van Hest, L P; Letteboer, T G W; Olderode-Berends, M J W; Ruano, D; Spruijt, L; Suerink, M; Tops, C M; van Eijk, R; Morreau, H; van Wezel, T; Nielsen, M

    2018-05-11

    Germline variants in the mismatch repair genes MLH1, MSH2 (EPCAM), MSH6, or PMS2 cause Lynch syndrome. Patients with these variants have an increased risk of developing colorectal cancers (CRCs) that differ from sporadic CRCs in genetic and histologic features. It has been a challenge to study CRCs associated with PMS2 variants (PMS2-associated CRCs) because these develop less frequently and in patients of older ages than colorectal tumors with variants in the other mismatch repair genes. We analyzed 20 CRCs associated with germline variants in PMS2, 22 sporadic CRCs, 18 CRCs with germline variants in MSH2, and 24 CRCs from patients with germline variants in MLH1. Tumor tissue blocks were collected from Dutch pathology departments in 2017. After extraction of tumor DNA, we used a platform designed to detect approximately 3000 somatic hotspot variants in 55 genes (including KRAS, APC, CTNNB1, and TP53). Somatic variant frequencies were compared using the Fisher's exact test. None of the PMS2-associated CRCs contained any somatic variants in the catenin beta 1 gene (CTNNB1), which encodes β-catenin, whereas 14/24 MLH1-associated CRCs (58%) contained variants in CTNNB1. Half of PMS2-associated CRCs contained KRAS variants, but only 20% of these were in hotspots that encoded G12D or G13D. These hotspot variants occurred more frequently in CRCs associated with variants in MLH1 (37.5%, P=.44) and MSH2 (and 71.4%, P=.035) than with variants in PMS2. In a genetic analysis of 84 colorectal tumors, we found tumors from patients with PMS2-associated Lynch syndrome to be distinct from colorectal tumors associated with defects in other mismatch repair genes. This might account for differences in development and less frequent occurrence. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. The MLH1 c.-27C>A and c.85G>T variants are linked to dominantly inherited MLH1 epimutation and are borne on a European ancestral haplotype

    NARCIS (Netherlands)

    Kwok, C.T.; Vogelaar, I.P.; Zelst-Stams, W.A.G. van; Mensenkamp, A.R.; Ligtenberg, M.J.L.; Rapkins, R.W.; Ward, R.L.; Chun, N.; Ford, J.M.; Ladabaum, U.; McKinnon, W.C.; Greenblatt, M.S.; Hitchins, M.P.

    2014-01-01

    Germline mutations of the DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2, and deletions affecting the EPCAM gene adjacent to MSH2, underlie Lynch syndrome by predisposing to early-onset colorectal, endometrial and other cancers. An alternative but rare cause of Lynch syndrome is constitutional

  20. Functional relevance of three proopiomelanocortin (POMC) genes in darkening camouflage, blind-side hypermelanosis, and appetite of Paralichthys olivaceus.

    Science.gov (United States)

    Kang, Duk-Young; Kim, Hyo-Chan

    2015-01-01

    To determine whether proopiomelanocortin (POMC) genes are involved in darkening color camouflage, blind-side hypermelanosis, and appetite in flatfish, we isolated and cloned three POMC genes from the pituitary of the olive flounder (Paralichthys olivaceus) and compared their amino acid (aa) structures to those of POMC genes from other animals. Next, we examined the relationship of these pituitary POMC genes to camouflage color change, blind-side hypermelanosis, and appetite by quantifying mRNA expression. Olive flounder (of)-POMC1, 2, and 3 cDNAs consisted of 648-bp, 582-bp, and 693-bp open reading frames (ORF) encoding 216 aa, 194 aa, and 231 aa residues, respectively. Structurally, the three of-POMC cDNAs consisted of seven peptides (signal peptide, N-POMC, α-MSH, CLIP, N-β-LPH, β-MSH and β-END [or END-like peptide]) that are similar to those of other fish POMC cDNAs. α-MSH encoded a protein composed of 13 aa and β-MSH encoded a protein composed of 17 aa. The three POMC genes were predominantly expressed in the pituitary gland, but they were also expressed in a variety of tissues, including brain, eye, kidney, heart, testis, and skin. of-POMC2 exhibited the highest expression, while of-POMC3 displayed the lowest expression. The relative levels of of-POMC1 and 3 mRNAs were not influenced by background color and feeding (or fasting), but the relative level of of-POMC2 mRNA significantly increased in response to a dark background and fasting. The relative levels of of-POMC1 and 2 mRNAs were significantly higher in hypermelanic fish; however, we did not determine a direct anorexigenic or orexigenic relationship for the three POMC genes. These results indicate that pituitary POMC genes are related to darkening color change and the differentiation of pigment cells, but they are not directly related to appetite. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  2. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils

    Science.gov (United States)

    Campo, Vanina A.; Patenaude, Anne-Marie; Kaden, Svenja; Horb, Lori; Firka, Daniel; Jiricny, Josef; Di Noia, Javier M.

    2013-01-01

    The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR. PMID:23314153

  3. Climate Change and employment. Impact on employment in the European Union-25 of climate change and CO2 emission reduction measures by 2030

    Energy Technology Data Exchange (ETDEWEB)

    Dupressoir, S.; Belen Sanchez, A.; Bobe, P.; Hoefele, V. (and others)

    2007-05-15

    This study was intended provide an analysis of the potential costs and benefits for employment of the policies and measures against climate change as well as of the manifestations of the consequences of climate change in Europe. This report comprises two divisions. The first, entitled 'Impact of climate change', attempts to determine the potential impact on employment in Europe of the consequences of climate change (Part 1). The second, entitled 'Impact of CO2 emission reduction measures', analyses the potential implications for employment of climate-change prevention policies in the EU with time-horizons of 2012 and 2030 (Parts 2 to 4). The conclusions and recommendations of the study appear in four parts : Part 1 analyses the potential consequences for employment of climatic warming in Europe; Part 2 presents the objectives, the hypotheses and the methodology of the 'impact of CO2 emission reduction measures' division; Part 3 analyses the foreseeable effects of CO2 emission reduction measures on employment in Europe; Part 4 offers general (or sector-wide) recommendations for measures and policies to promote positive effects and prevent negative effects. The concluding part discusses the uncertainties and identifies the questions deserving further investigation.

  4. Bone Morphogenetic Protein-2, but Not Mesenchymal Stromal Cells, Exert Regenerative Effects on Canine and Human Nucleus Pulposus Cells

    NARCIS (Netherlands)

    Bach, Frances C.; Miranda-Bedate, Alberto; Van Heel, Ferdi W M; Riemers, Frank M.; Müller, Margot C M E; Creemers, Laura B.; Ito, Keita; Benz, Karin; Meij, Björn P.; Tryfonidou, Marianna A.

    2017-01-01

    Chronic back pain is related to intervertebral disc (IVD) degeneration and dogs are employed as animal models to develop growth factor- and cell-based regenerative treatments. In this respect, the differential effects of transforming growth factor beta-1 (TGF-β1) and bone morphogenetic protein-2

  5. Bone morphogenetic protein-2, but not mesenchymal stromal cells, exert regenerative effects on canine and human nucleus pulposus cells

    NARCIS (Netherlands)

    Bach, Frances; Miranda-Bedate, Alberto; van Heel, Ferdi; Riemers, Frank; Muller, Margot; Creemers, Laura; Ito, Keita; Benz, Karin; Meij, Björn; Tryfonidou, M

    2017-01-01

    Chronic back pain is related to intervertebral disc (IVD) degeneration and dogs are employed as animal models to develop growth factor- and cell-based regenerative treatments. In this respect, the differential effects of transforming growth factor beta-1 (TGF-β1) and bone morphogenetic protein-2

  6. Bone morphogenetic protein-2, but not mesenchymal stromal cells, exert regenerative effects on Canine and human nucleus pulposus cells

    NARCIS (Netherlands)

    Bach, F.C.; Miranda-Bedate, A.; Van Heel, F.W.M.; Riemers, F.M.; Müller, M.C.M.E.; Creemers, L.B.; Ito, K.; Benz, K.; Meij, B.P.; Tryfonidou, M.A.

    2017-01-01

    Chronic back pain is related to intervertebral disc (IVD) degeneration and dogs are employed as animal models to develop growth factor- and cell-based regenerative treatments. In this respect, the differential effects of transforming growth factor beta-1 (TGF-β1) and bone morphogenetic protein-2

  7. Universal screening for Lynch syndrome in endometrial cancers: frequency of germline mutations and identification of patients with Lynch-like syndrome.

    Science.gov (United States)

    Dillon, Jessica L; Gonzalez, Jorge L; DeMars, Leslie; Bloch, Katarzyna J; Tafe, Laura J

    2017-12-01

    Lynch syndrome (LS) is an inherited clinical syndrome characterized by a high risk of colorectal, endometrial (lifetime risk of up to 60%), ovarian, and urinary tract cancers. The diagnosis is confirmed by identification of germline mutations in the DNA mismatch repair genes MLH1, PMS2, MSH2, MSH6, or EPCAM. In 2015, our institution implemented universal screening of endometrial cancer (EC) hysterectomy specimens by mismatch repair immunohistochemistry (IHC) with reflex MLH1 promoter hypermethylation analysis for tumors with loss of MLH1/PMS2 expression. Patients with tumors negative for MLH1 methylation and those with a loss of the heterodimer pair MSH2 and MSH6, or isolated loss of either PMS2 or MSH6 were referred to the Familial Cancer Program for genetic counseling and consideration of germline testing. Between May 2015 to Dec 2016, 233 EC patients were screened by IHC for LS with a median age of 63 years. Sixty tumors (27%) had abnormal IHC staining results. Fifty-one (22%) harbored heterodimeric loss of MLH1 and PMS2, 49 of which showed MLH1 promoter methylation (1 failure, 1 negative). One showed loss of MLH1/PMS2 and MSH6, 2 showed loss of MSH2/MSH6, and 6 had isolated loss of MSH6 only. Ten patients underwent genetic counseling, and germline testing was performed in 8; LS was confirmed in 5 patients (2.1%). In addition, 3 patients with negative germline testing and presumed Lynch-like syndrome were identified and offered additional somatic testing. Universal screening for LS in EC patients has yielded positive results for identification of patients at risk for this inherited syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Science.gov (United States)

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C

    2013-10-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1

  9. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Directory of Open Access Journals (Sweden)

    Ricardo Mouro Pinto

    2013-10-01

    Full Text Available The Huntington's disease gene (HTT CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111 than on a 129 background (129.Hdh(Q111 . Linkage mapping in (B6x129.Hdh(Q111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3 complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3. The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest

  10. Identification of poly(rC) binding protein 2 (PCBP2) as a target protein of immunosuppressive agent 15-deoxyspergualin

    Energy Technology Data Exchange (ETDEWEB)

    Murahashi, Masataka; Simizu, Siro; Morioka, Masahiko [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Umezawa, Kazuo, E-mail: umezawa@aichi-med-u.ac.jp [Department of Molecular Target Medicine, Aichi Medical University School of Medicine, 1-1 Yazako-Karimata, Nagakute 480-1195 (Japan)

    2016-08-05

    15-Deoxyspergualin (DSG) is an immunosuppressive agent being clinically used. Unlike tacrolimus and cyclosporine A, it does not inhibit the calcineurin pathway, and its mechanism of action and target molecule have not been elucidated. Therefore, we previously prepared biotinylated derivative of DSG (BDSG) to fish up the target protein. In the present research, we identified poly(rC) binding protein 2 (PCBP2) as a DSG-binding protein using this probe. DSG was confirmed to bind to PCBP2 by pull-down assay. Intracellular localization of PCBP2 was changed from the nucleus to the cytoplasm by DSG treatment. DSG inhibited the cell growth, and over-expression of PCBP2 reduced the anti-proliferative activity of DSG. PCBP2 is known to regulate various proteins including STAT1/2. Thus, we found PCBP2 as the first target protein of DSG that can explain the immunosuppressive activity. -- Highlights: •Fifteen-deoxyspergualin (DSG) is an immunosuppressive agent clinically used. •We have identified PCBP2, an RNA-binding protein, as a molecular target of DSG. •Alteration of PCBP2 activity may explain the immunosuppressive activity of DSG.

  11. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    Science.gov (United States)

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  12. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination

    Science.gov (United States)

    Ehrenstein, Michael R.; Rada, Cristina; Jones, Anne-Marie; Milstein, César; Neuberger, Michael S.

    2001-01-01

    Isotype switching involves a region-specific, nonhomologous recombinational deletion that has been suggested to occur by nonhomologous joining of broken DNA ends. Here, we find increased donor/acceptor homology at switch junctions from PMS2-deficient mice and propose that class switching can occur by microhomology-mediated end-joining. Interestingly, although isotype switching and somatic hypermutation show many parallels, we confirm that PMS2 deficiency has no major effect on the pattern of nucleotide substitutions generated during somatic hypermutation. This finding is in contrast to MSH2 deficiency. With MSH2, the altered pattern of switch recombination and hypermutation suggests parallels in the mechanics of the two processes, whereas the fact that PMS2 deficiency affects only switch recombination may reflect differences in the pathways of break resolution. PMID:11717399

  13. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases STUB1 CHIP STUB1 E3 ubiquitin-protein ligase CHIP Antigen NY...-CO-7, CLL-associated antigen KW-8, Carboxy terminus of Hsp70-interacting protein, STIP1 homology and U box-containing pr

  14. 26 CFR 1.1402(a)-2 - Computation of net earnings from self-employment.

    Science.gov (United States)

    2010-04-01

    ... TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Tax on Self-Employment Income § 1.1402(a)-2 Computation of net earnings from self-employment. (a) General rule. In general, the gross income and... ascertaining his net earnings from self-employment, are to be determined by reference to the provisions of law...

  15. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Vikram Saini

    2016-01-01

    Full Text Available The mechanisms by which Mycobacterium tuberculosis (Mtb maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT and mycothiol (MSH are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping but distinct functions of EGT and MSH. Last, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity.

  16. Interaction of a non-histone chromatin protein (high-mobility group protein 2) with DNA

    International Nuclear Information System (INIS)

    Goodwin, G.H.; Shooter, K.V.; Johns, E.W.

    1975-01-01

    The interaction with DNA of the calf thymus chromatin non-histone protein termed the high-mobility group protein 2 has been studied by sedimentation analysis in the ultracentrifuge and by measuring the binding of the 125 I-labelled protein to DNA. The results have been compared with those obtained previously by us [Eur. J. Biochem. (1974) 47, 263-270] for the interaction of high-mobility group protein 1 with DNA. Although the binding parameters are similar for these two proteins, high-mobility group protein 2 differs from high-mobility group protein 1 in that the former appears to change the shape of the DNA to a more compact form. The molecular weight of high-mobility group protein 2 has been determined by equilibrium sedimentation and a mean value of 26,000 was obtained. A low level of nuclease activity detected in one preparation of high-mobility group protein 2 has been investigated. (orig.) [de

  17. Dephosphorylation of chicken cardiac myofibril C-protein by protein phosphatases 1 and 2A

    International Nuclear Information System (INIS)

    Thysseril, T.J.; Hegazy, M.G.; Schlender, K.K.

    1987-01-01

    C-Protein, which is a regulatory component of cardiac muscle myofibrils, is phosphorylated in response to β-adrenergic agonists by a cAMP-dependent mechanism and dephosphorylated in response to cholinergic agonists. It is believed that the cAMP-dependent phosphorylation is due to cAMP-dependent protein kinase. The protein phosphatase(s) involved in the dephosphorylation of C-protein has not been determined. In this study, chicken cardiac C-protein was phosphorylated with the cAMP-dependent protein kinase to about 3 mol phosphate/mol C-protein. Incubation of [ 32 P]C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of 32 [P]. Phosphopeptide maps and phosphoamino acid analysis revealed that the major site(s) dephosphorylated by either phosphatase was a phosphothreonine residue(s) located on the same tryptic peptide and on the same CNBr fragment. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A completely dephosphorylated C-protein. Preliminary studies showed that the major protein phosphatase associated with the myofibril was phosphatase 2A. These results indicate the phosphatase 2A may be important in the regulation of the phosphorylation state of C-protein

  18. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    the critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP......Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...

  19. Protein Corona Prevents TiO2 Phototoxicity.

    Directory of Open Access Journals (Sweden)

    Maja Garvas

    Full Text Available TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations.Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface.These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.

  20. Employment outcome and predictors of competitive employment at 2-year follow-up of a vocational rehabilitation programme for individuals with schizophrenia in a high-income welfare society.

    Science.gov (United States)

    Evensen, Stig; Ueland, Torill; Lystad, June Ullevoldsæter; Bull, Helen; Klungsøyr, Ole; Martinsen, Egil W; Falkum, Erik

    2017-04-01

    Employment is an important part of recovery for individuals with schizophrenia. The employment rate for this group is as low as 10% in Norway, and major system related barriers to employment are evident. This study reports the competitive employment outcome at 2-year follow-up of a vocational rehabilitation study augmented with cognitive remediation (CR) or elements from cognitive behaviour therapy (CBT) for individuals with schizophrenia spectrum disorders. It also investigates if global functioning, self-esteem, and depression at baseline predicts employment outcome, and if change in these variables during the intervention period is associated with employment outcome. One hundred and forty-eight participants with schizophrenia spectrum disorders in six Norwegian counties received 10 months vocational rehabilitation augmented with either CBT (n = 84) or CR (n = 64). Both competitive and sheltered workplaces were used. Participants were assessed at baseline, at the end of the intervention period, and at 2-year follow-up. At 2-year follow-up, 21.2% had obtained competitive employment. A further 25.3% had work placements in competitive workplaces. Significant improvements were found in global functioning, self-esteem, and depression during the intervention period, but no significant differences between the two intervention groups. High baseline global functioning and self-esteem, as well as positive change in these variables during the intervention period, were significantly associated with higher competitive employment outcome at 2-year follow-up. The results add to existing evidence that competitive employment is attainable for individuals with schizophrenia. High global functioning and self-esteem were strongly associated with competitive employment outcome.

  1. Genetic anticipation in Swedish Lynch syndrome families

    DEFF Research Database (Denmark)

    von Salomé, Jenny; Boonstra, Philip S; Karimi, Masoud

    2017-01-01

    Among hereditary colorectal cancer predisposing syndromes, Lynch syndrome (LS) caused by mutations in DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2 is the most common. Patients with LS have an increased risk of early onset colon and endometrial cancer, but also other tumors that generally have......-2013. We analyzed a homogenous group of mutation carriers, utilizing information from both affected and non-affected family members. In total, 239 families with a mismatch repair gene mutation (96 MLH1 families, 90 MSH2 families including one family with an EPCAM-MSH2 deletion, 39 MSH6 families, 12 PMS2...... families, and 2 MLH1+PMS2 families) comprising 1028 at-risk carriers were identified among the Swedish LS families, of which 1003 mutation carriers had available follow-up information and could be included in the study. Using a normal random effects model (NREM) we estimate a 2.1 year decrease in age...

  2. Adaptor proteins intersectin 1 and 2 bind similar proline-rich ligands but are differentially recognized by SH2 domain-containing proteins.

    Directory of Open Access Journals (Sweden)

    Olga Novokhatska

    Full Text Available BACKGROUND: Scaffolding proteins of the intersectin (ITSN family, ITSN1 and ITSN2, are crucial for the initiation stage of clathrin-mediated endocytosis. These proteins are closely related but have implications in distinct pathologies. To determine how these proteins could be separated in certain cell pathways we performed a comparative study of ITSNs. METHODOLOGY/PRINCIPAL FINDINGS: We have shown that endogenous ITSN1 and ITSN2 colocalize and form a complex in cells. A structural comparison of five SH3 domains, which mediated most ITSNs protein-protein interactions, demonstrated a similarity of their ligand-binding sites. We showed that the SH3 domains of ITSN2 bound well-established interactors of ITSN1 as well as newly identified ITSNs protein partners. A search for a novel interacting interface revealed multiple tyrosines that could be phosphorylated in ITSN2. Phosphorylation of ITSN2 isoforms but not ITSN1 short isoform was observed in various cell lines. EGF stimulation of HeLa cells enhanced tyrosine phosphorylation of ITSN2 isoforms and enabled their recognition by the SH2 domains of the Fyn, Fgr and Abl1 kinases, the regulatory subunit of PI3K, the adaptor proteins Grb2 and Crk, and phospholipase C gamma. The SH2 domains mentioned were unable to bind ITSN1 short isoform. CONCLUSIONS/SIGNIFICANCE: Our results indicate that during evolution of vertebrates ITSN2 acquired a novel protein-interaction interface that allows its specific recognition by the SH2 domains of signaling proteins. We propose that these data could be important to understand the functional diversity of paralogous ITSN proteins.

  3. Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide.

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Prossnitz, Eric R; Sklar, Larry A; Miao, Yubin

    2009-11-01

    The purpose of this study was to examine the effect of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) position on melanoma targeting and pharmacokinetics of radiolabeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (alpha-MSH) peptide. A novel lactam bridge-cyclized alpha-MSH peptide, Ac-GluGlu-CycMSH[DOTA] {Ac-Glu-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Lys(DOTA)]}, was synthesized using standard 9-fluorenylmethyloxycarbonyl (Fmoc) chemistry. DOTA was directly attached to the alpha-amino group of Lys in the cyclic ring, while the N-terminus of the peptide was acetylated to generate Ac-GluGlu-CycMSH[DOTA]. The MC1 receptor binding affinity of Ac-GluGlu-CycMSH[DOTA] was determined in B16/F1 melanoma cells. Melanoma targeting and pharmacokinetic properties of Ac-GluGlu-CycMSH[DOTA]-111In were determined in B16/F1 melanoma-bearing C57 mice and compared to that of 111In-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp] (111In-DOTA-GlyGlu-CycMSH; DOTA was coupled to the N-terminus of the peptide). Ac-GluGlu-CycMSH[DOTA] displayed 0.6 nM MC1 receptor binding affinity in B16/F1 cells. Ac-GluGlu-CycMSH[DOTA]-111In was readily prepared with greater than 95% radiolabeling yield. Ac-GluGlu-CycMSH[DOTA]-111In exhibited high tumor uptake (11.42 +/- 2.20% ID/g 2 h postinjection) and prolonged tumor retention (9.42 +/- 2.41% ID/g 4 h postinjection) in B16/F1 melanoma-bearing C57 mice. The uptake values for nontarget organs were generally low (<1.3% ID/g) except for the kidneys 2, 4, and 24 h postinjection. DOTA position exhibited profound effect on melanoma targeting and pharmacokinetic properties of Ac-GluGlu-CycMSH[DOTA]-111In, providing a new insight into the design of lactam bridge-cyclized peptide for melanoma imaging and therapy.

  4. Contribution of Large Genomic Rearrangements in Italian Lynch Syndrome Patients: Characterization of a Novel Alu-Mediated Deletion

    Directory of Open Access Journals (Sweden)

    Francesca Duraturo

    2013-01-01

    Full Text Available Lynch syndrome is associated with germ-line mutations in the DNA mismatch repair (MMR genes, mainly MLH1 and MSH2. Most of the mutations reported in these genes to date are point mutations, small deletions, and insertions. Large genomic rearrangements in the MMR genes predisposing to Lynch syndrome also occur, but the frequency varies depending on the population studied on average from 5 to 20%. The aim of this study was to examine the contribution of large rearrangements in the MLH1 and MSH2 genes in a well-characterised series of 63 unrelated Southern Italian Lynch syndrome patients who were negative for pathogenic point mutations in the MLH1, MSH2, and MSH6 genes. We identified a large novel deletion in the MSH2 gene, including exon 6 in one of the patients analysed (1.6% frequency. This deletion was confirmed and localised by long-range PCR. The breakpoints of this rearrangement were characterised by sequencing. Further analysis of the breakpoints revealed that this rearrangement was a product of Alu-mediated recombination. Our findings identified a novel Alu-mediated rearrangement within MSH2 gene and showed that large deletions or duplications in MLH1 and MSH2 genes are low-frequency mutational events in Southern Italian patients with an inherited predisposition to colon cancer.

  5. 77 FR 28764 - Temporary Non-agricultural Employment of H-2B Aliens in the United States

    Science.gov (United States)

    2012-05-16

    ... DEPARTMENT OF LABOR Employment and Training Administration 20 CFR Part 655 RIN 1205-AB58 Temporary Non-agricultural Employment of H-2B Aliens in the United States AGENCY: Employment and Training... Temporary Non-agricultural Employment of H-2B Aliens in the United States, published February 21, 2012 (the...

  6. T40

    Directory of Open Access Journals (Sweden)

    G. Raskin

    2015-11-01

    For this purpose 776 patients with colon adenocarcinoma with the median age 57.6 years were selected. Receptors for chemokine (CCR10, CXCR4, stem cell marker (ALDH1, ki-67, MSH2, MSH6, MLH1, PMS2 were investigated by immunohistochemistry (IHC. Results of IHC were compared with clinical data. Analysis of 217 colon adenocarcinomas by Ki-67 showed that 86% of cases had high proliferative level (Ki-67>30%, among them 39% of cases had very high level of Ki-67 (>70%. We also analyzed proliferation of stem cells using double IHC stain for ALDH1 and Ki-67. It was shown that ALDH1 positive cells had significantly lower Ki-67 positivity than ALDH1 negative cells (p70% and CXCR470% and Ki-67<30% hadthe 5- year relapse-free survival rates of 32% and in 68%, respectively, with the median survival time of 7 month. IHC study of MSH2, MSH6, PMS2, MLH1 shows that at least lack of one marker always accompanies by microsatellite instability. Mutations of these markers were accompanied by lack of expression in 100% of cases. Thus, according to modern classification of colon cancer grade, we divided 45 cases into low and high grades using only histological criteria and additionally – IHC investigation of MSH2, MSH6, PMS2, MLH1. It was shown that in 9% of cases IHC of these markers prevent incorrect evaluation of cancer grade. Conclusion: immunohistochemical investigation of CXCR4, Ki-67, MSH2, MSH6, PMS2, MLH1 may be additional useful prognostic factors for patients with colon adenocarcinoma.

  7. The Tp0684 (MglB-2 Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology.

    Directory of Open Access Journals (Sweden)

    Chad A Brautigam

    Full Text Available Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.

  8. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology.

    Science.gov (United States)

    Brautigam, Chad A; Deka, Ranjit K; Liu, Wei Z; Norgard, Michael V

    2016-01-01

    Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.

  9. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol...

  10. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2

    NARCIS (Netherlands)

    Mastop, M.; Bindels, D.S.; Shaner, N.C.; Postma, M.; Gadella, T.W.J.; Goedhart, J.

    2017-01-01

    The performance of Förster Resonance Energy Transfer (FRET) biosensors depends on brightness and photostability, which are dependent on the characteristics of the fluorescent proteins that are employed. Yellow fluorescent protein (YFP) is often used as an acceptor but YFP is prone to photobleaching

  11. Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring.

    Science.gov (United States)

    Song, Jun; Du, Lina; Li, Li; Kalt, Wilhelmina; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, Ying; Zhang, ZhaoQi; Li, XiHong

    2015-06-03

    To better understand the regulation of flavonoid and anthocyanin biosynthesis, a targeted quantitative proteomic investigation employing LC-MS with multiple reaction monitoring was conducted on two strawberry cultivars at three ripening stages. This quantitative proteomic workflow was improved through an OFFGEL electrophoresis to fractionate peptides from total protein digests. A total of 154 peptide transitions from 47 peptides covering 21 proteins and isoforms related to anthocyanin biosynthesis were investigated. The normalized protein abundance, which was measured using isotopically-labeled standards, was significantly changed concurrently with increased anthocyanin content and advanced fruit maturity. The protein abundance of phenylalanine ammonia-lyase; anthocyanidin synthase, chalcone isomerase; flavanone 3-hydroxylase; dihydroflavonol 4-reductase, UDP-glucose:flavonoid-3-O-glucosyltransferase, cytochrome c and cytochrome C oxidase subunit 2, was all significantly increased in fruit of more advanced ripeness. An interaction between cultivar and maturity was also shown with respect to chalcone isomerase. The good correlation between protein abundance and anthocyanin content suggested that a metabolic control point may exist for anthocyanin biosynthesis. This research provides insights into the process of anthocyanin formation in strawberry fruit at the level of protein concentration and reveals possible candidates in the regulation of anthocyanin formation during fruit ripening. To gain insight into the molecular mechanisms contributing to flavonoids and anthocyanin biosynthesis and regulation of strawberry fruit during ripening is challenging due to limited molecular biology tools and established hypothesis. Our targeted proteomic approach employing LC-MS/MS analysis and MRM technique to quantify proteins in relation to flavonoids and anthocyanin biosynthesis and regulation in strawberry fruit during fruit ripening is novel. The identification of peptides

  12. Presymptomatic diagnosis using a deletion of a single codon in families with hereditary non-polyposis colorectal cancer

    DEFF Research Database (Denmark)

    Ripa, R S; Katballe, N; Wikman, F P

    2005-01-01

    The diagnosis of hereditary non-polyposis colorectal cancer (HNPCC) is often confirmed by a mutation in one of several mismatch-repair genes, in particular MLH1, MSH2 and MSH6. Presymptomatic diagnosis requires the identification of a mutation causing the disease. Three different deletions......, identified after mutation screening of MSH2 and MLH1. All patients in the families were haplotyped using markers flanking the MSH2 gene. The haplotypes revealed that the five families with high probability descended from only two founders. The N596del segregated with the HNPCC phenotype with lod scores of 3.......2 and 2.0 at the recombination fraction of 0.0 in the two founder families. Sequencing of MSH2 and MLH1 did not reveal other pathogenic mutations, and N596del was not identified in 50 healthy controls. The mutation has previously been found expressed in mRNA, and is located in a conserved domain...

  13. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    International Nuclear Information System (INIS)

    Jensen, Søren A; Vainer, Ben; Kruhøffer, Mogens; Sørensen, Jens B

    2009-01-01

    Microsatellite instability (MSI) refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR). Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2), thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. MSI was found in 43 (13.8%) tumors. Absence of repair protein expression was assessed in 52 (17.0%) tumors, which had primarily lost hMLH1 in 39 (12.7%), hMSH2 in 5 (1.6%), and hMSH6 in 8 (2.6%) tumors. In multivariate analysis MSI (instable) compared to MSS (stable) tumors were significantly associated with lower risk of recurrence (hazard ratio (HR) = 0.3; 95% CI: 0.2–0.7; P = 0.0007) and death (HR = 0.4; 95% CI: 0.2–0.9; P = 0.02) independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001) was found, while there was no significant association with DPD intensity (P = 0.1). The favourable outcome of MSI colorectal carcinomas is ascribed mainly to the tumor biology and to a lesser extent to antitumor response to 5-fluorouracil therapy. There is no evidence that differential TS or DPD expression may account for these outcome characteristics

  14. Unique DNA repair gene variations and potential associations with the primary antibody deficiency syndromes IgAD and CVID.

    Directory of Open Access Journals (Sweden)

    Steven M Offer

    Full Text Available BACKGROUND: Despite considerable effort, the genetic factors responsible for >90% of the antibody deficiency syndromes IgAD and CVID remain elusive. To produce a functionally diverse antibody repertoire B lymphocytes undergo class switch recombination. This process is initiated by AID-catalyzed deamination of cytidine to uridine in switch region DNA. Subsequently, these residues are recognized by the uracil excision enzyme UNG2 or the mismatch repair proteins MutSalpha (MSH2/MSH6 and MutLalpha (PMS2/MLH1. Further processing by ubiquitous DNA repair factors is thought to introduce DNA breaks, ultimately leading to class switch recombination and expression of a different antibody isotype. METHODOLOGY/PRINCIPAL FINDINGS: Defects in AID and UNG2 have been shown to result in the primary immunodeficiency hyper-IgM syndrome, leading us to hypothesize that additional, potentially more subtle, DNA repair gene variations may underlie the clinically related antibody deficiencies syndromes IgAD and CVID. In a survey of twenty-seven candidate DNA metabolism genes, markers in MSH2, RAD50, and RAD52 were associated with IgAD/CVID, prompting further investigation into these pathways. Resequencing identified four rare, non-synonymous alleles associated with IgAD/CVID, two in MLH1, one in RAD50, and one in NBS1. One IgAD patient carried heterozygous non-synonymous mutations in MLH1, MSH2, and NBS1. Functional studies revealed that one of the identified mutations, a premature RAD50 stop codon (Q372X, confers increased sensitivity to ionizing radiation. CONCLUSIONS: Our results are consistent with a class switch recombination model in which AID-catalyzed uridines are processed by multiple DNA repair pathways. Genetic defects in these DNA repair pathways may contribute to IgAD and CVID.

  15. Tranexamic acid suppresses ultraviolet B eye irradiation-induced melanocyte activation by decreasing the levels of prohormone convertase 2 and alpha-melanocyte-stimulating hormone.

    Science.gov (United States)

    Hiramoto, Keiichi; Yamate, Yurika; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2014-12-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medicinal amino acid used in skin whitening care. This study examined the effects of tranexamic acid on the melanocyte activation of the skin induced by an ultraviolet (UV) B eye irradiation. The eye or ear was locally exposed to UVB at a dose of 1.0 kJ/m(2) using a 20SE sunlamp after covering the remaining body surface with aluminum foil. UVB eye irradiation induced melanocyte activation of the skin, similar to that observed following UVB ear irradiation, which was suppressed by the administration of tranexamic acid treatment. The plasma α-melanocyte-stimulating hormone (α-MSH) content was increased by UVB irradiation of the eye; however, the increase in α-MSH was suppressed by tranexamic acid treatment. In addition, UVB eye irradiation induced the up-regulation of prohormone convertase (PC) 2 in the pituitary gland. Meanwhile, the increase in PC2 induced by UVB eye irradiation was suppressed by tranexamic acid treatment. These results clearly indicate that tranexamic acid decreases the expression of PC2, which cleavages from proopiomelanocortin to α-MSH in the pituitary gland, thereby suppressing melanocyte activation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Biallelic PMS2 Mutation and Heterozygous DICER1 Mutation Presenting as Constitutional Mismatch Repair Deficiency With Corpus Callosum Agenesis: Case Report and Review of Literature.

    Science.gov (United States)

    Cheyuo, Cletus; Radwan, Walid; Ahn, Janice; Gyure, Kymberly; Qaiser, Rabia; Tomboc, Patrick

    2017-10-01

    Constitutional mismatch repair deficiency syndrome is a cancer predisposition syndrome caused by autosomal recessive biallelic (homozygous) germline mutations in the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). The clinical spectrum includes neoplastic and non-neoplastic manifestations. We present the case of a 7-year-old boy who presented with T-lymphoblastic lymphoma and glioblastoma, together with non-neoplastic manifestations including corpus callosum agenesis, arachnoid cyst, developmental venous anomaly, and hydrocephalus. Gene mutation analysis revealed pathogenic biallelic mutations of PMS2 and heterozygous DICER1 variant predicted to be pathogenic. This report is the first to allude to a possible interaction of the mismatch repair system with DICER1 to cause corpus callosum agenesis.

  17. Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer

    International Nuclear Information System (INIS)

    Jin, Hei-Ying; Zhao, Ronghua; Liu, Xiufang; Li, Vicky Ka Ming; Ding, Yijiang; Yang, Bolin; Geng, Jianxiang; Lai, Rensheng; Ding, Shuqing; Ni, Min

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome. The National Cancer Institute (NCI) has recommended the Revised Bethesda guidelines for screening HNPCC. There has been a great deal of research on the value of these tests in other countries. However, literature about the Chinese population is scarce. Our objective is to detect and study microsatellite instability (MSI) and mismatch repair (MMR) gene germline mutation carriers among a Chinese population with colorectal cancer. In 146 prospectively recruited consecutive patients with clinically proven colorectal cancer, MSI carriers were identified by analysis of tumor tissue using multiplex fluorescence polymerase chain reaction (PCR) using the NCI recommended panel and classified into microsatellite instability-low (MSI-L), microsatellite instability-high (MSI-H) and microsatellite stable (MSS) groups. Immunohistochemical staining for MSH2, MSH6 and MLH1 on tissue microarrays (TMAs) was performed, and methylation of the MLH1 promoter was analyzed by quantitative methylation specific PCR (MSP). Germline mutation analysis of blood samples was performed for MSH2, MSH6 and MLH1 genes. Thirty-four out of the 146 colorectal cancers (CRCs, 23.2%) were MSI, including 19 MSI-H CRCs and 15 MSI-L CRCS. Negative staining for MSH2 was found in 8 CRCs, negative staining for MSH6 was found in 6 CRCs. One MSI-H CRC was negative for both MSH6 and MSH2. Seventeen CRCs stained negatively for MLH1. MLH1 promoter methylation was determined in 34 MSI CRCs. Hypermethylation of the MLH1 promoter occurred in 14 (73.7%) out of 19 MSI-H CRCs and 5 (33.3%) out of 15 MSI-L CRCs. Among the 34 MSI carriers and one MSS CRC with MLH1 negative staining, 8 had a MMR gene germline mutation, which accounted for 23.5% of all MSI colorectal cancers and 5.5% of all the colorectal cancers. Five patients harbored MSH2 germline mutations, and three patients harbored MSH6 germline mutations. None of the patients had an MLH

  18. MSX2 Induces Trophoblast Invasion in Human Placenta.

    Directory of Open Access Journals (Sweden)

    Hao Liang

    Full Text Available Normal implantation depends on appropriate trophoblast growth and invasion. Inadequate trophoblast invasion results in pregnancy-related disorders, such as early miscarriage and pre-eclampsia, which are dangerous to both the mother and fetus. Msh Homeobox 2 (MSX2, a member of the MSX family of homeobox proteins, plays a significant role in the proliferation and differentiation of various cells and tissues, including ectodermal organs, teeth, and chondrocytes. Recently, MSX2 was found to play important roles in the invasion of cancer cells into adjacent tissues via the epithelial-mesenchymal transition (EMT. However, the role of MSX2 in trophoblastic invasion during placental development has yet to be explored. In the present study, we detected MSX2 expression in cytotrophoblast, syncytiotrophoblast, and extravillous cytotrophoblast cells of first or third trimester human placentas via immunohistochemistry analysis. Furthermore, we found that the in vitro invasive ability of HTR8/SVneo cells was enhanced by exogenous overexpression of MSX2, and that this effect was accompanied by increased protein expression of matrix metalloproteinase-2 (MMP-2, vimentin, and β-catenin. Conversely, treatment of HTR8/SVneo cells with MSX2-specific siRNAs resulted in decreased protein expression of MMP-2, vimentin, and β-catenin, and reduced invasion levels in a Matrigel invasion test. Notably, however, treatment with the MSX2 overexpression plasmid and the MSX2 siRNAs had no effect on the mRNA expression levels of β-catenin. Meanwhile, overexpression of MSX2 and treatment with the MSX2-specific siRNA resulted in decreased and increased E-cadherin expression, respectively, in JEG-3 cells. Lastly, the protein expression levels of MSX2 were significantly lower in human pre-eclamptic placental villi than in the matched control placentas. Collectively, our results suggest that MSX2 may induce human trophoblast cell invasion, and dysregulation of MSX2 expression may

  19. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane.

    Science.gov (United States)

    Boughton, Andrew P; Yang, Pei; Tesmer, Valerie M; Ding, Bei; Tesmer, John J G; Chen, Zhan

    2011-09-13

    Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β(1)γ(2) subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.

  20. Profiles of alpha-melanocyte-stimulating hormone in the Japanese flounder as revealed by a newly developed time-resolved fluoroimmunoassay and immunohistochemistry.

    Science.gov (United States)

    Amiya, Noriko; Amano, Masafumi; Takahashi, Akiyoshi; Yamanome, Takeshi; Yamamori, Kunio

    2007-03-01

    Profiles of alpha-melanocyte-stimulating hormone (alpha-MSH) in the Japanese flounder were examined by a newly developed time-resolved fluoroimmunoassay (TR-FIA) and immunohistochemistry. A TR-FIA for alpha-MSH was newly developed, and its levels in the pituitary gland and plasma of Japanese flounder reared in a white or black tank for 5 months were compared. A competitive assay using two antibodies was performed among secondary antibodies in the solid phase, alpha-MSH antibodies, samples, and europium-labeled Des-Ac-alpha-MSH. The sensitivity of the assay, defined as twice the standard deviation at a zero dose, was 0.98 ng/ml (49 pg/well). The intra- and interassay coefficients of variation of the assay were 8.8% (n=8) and 17.3% (n=5), respectively, at about 50% binding. Cross-reactivities of Des-Ac-alpha-MSH and Di-Ac-alpha-MSH were about 100%. Cross-reactivities of adrenocorticotropic hormone, salmon gonadotropin-releasing hormone (sGnRH), and chicken GnRH-II were less than 0.2%, and that of melanin-concentrating hormone was less than 2.0% at 50% binding. Displacement curves of serially twofold-diluted hypothalamus extract, pituitary gland extract, and plasma extract of Japanese flounder with the assay buffer were parallel to the alpha-MSH standard curve. Moreover, displacement curves of serially twofold-diluted hypothalamus and/or pituitary gland extract of masu salmon, goldfish, red seabream, Japanese eel, tiger puffer, and barfin flounder with the assay buffer were also parallel to the alpha-MSH standard. In Japanese flounder, total immunoreactive (ir)-alpha-MSH levels in the pituitary gland were lower in the black tank, whereas those in the plasma tended to be higher in the black tank, suggesting that the synthesis and release of alpha-MSH are higher in the black tank. alpha-MSH-ir cells were detected in the pars intermedia and a small part of the pars distalis of the pituitary gland. alpha-MSH-ir cell bodies were located in the basal hypothalamus and alpha-MSH

  1. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  2. Inhibitory Effect of Dried Pomegranate Concentration Powder on Melanogenesis in B16F10 Melanoma Cells; Involvement of p38 and PKA Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Su Jin Kang

    2015-10-01

    Full Text Available Plants rich in antioxidant substances may be useful for preventing skin aging. Pomegranates, containing flavonoids and other polyphenolic compounds, are widely consumed due to their beneficial properties. We examined the underlying mechanisms of dried pomegranate concentrate powder (PCP on melanin synthesis in B16F10 melanoma cells. The antioxidant effects of PCP were determined by measuring free radical scavenging capacity and transcript levels of antioxidant enzymes. To explore the inhibitory effects of PCP on melanin synthesis, we measured tyrosinase activity and melanin content in α-melanocyte stimulating hormone (α-MSH-stimulated B16F10 cells. In addition, the levels of tyrosinase-related protein-1 (TRP-1, TRP-2, tyrosinase, and microphthalmia-associated transcription factor (MITF expression were determined by Western blotting. Changes in the phosphorylation status of protein kinase A (PKA, cAMP response element-binding protein (CREB, mitogen-activated protein kinases (MAPKs, phosphatidylinositol 3-kinase (PI3K, serine/threonine kinase Akt, and glycogen kinase 3β (GSK3β were also examined. The free radical scavenging activity of PCP increased in a dose-dependent manner. In PCP-treated B16F10 cells, transcript levels of glutathione peroxidase-1 (GPx-1 were increased compared with α-MSH-stimulated cells. In addition, PCP led to the down-regulation of phospho-p38, phospho-PKA, phospho-CREB, phospho-GSK3β, MITF, and TRP-1 compared with α-MSH-stimulated B16F10 cells. We believe this effect may be associated with PCP activity, which leads to the inhibition of melanin production and tyrosinase activity. These results suggest that PCP decreases tyrosinase activity and melanin production via inactivation of the p38 and PKA signaling pathways, and subsequently decreases phosphorylation of CREB, MITF, and melanogenic enzymes. These observations provided new insights on the molecular mechanisms of the skin-whitening property of PCP.

  3. Inhibitory Effect of Dried Pomegranate Concentration Powder on Melanogenesis in B16F10 Melanoma Cells; Involvement of p38 and PKA Signaling Pathways

    Science.gov (United States)

    Kang, Su Jin; Choi, Beom Rak; Lee, Eun Kyoung; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Song, Chang Hyun; Lee, Young Joon; Ku, Sae Kwang

    2015-01-01

    Plants rich in antioxidant substances may be useful for preventing skin aging. Pomegranates, containing flavonoids and other polyphenolic compounds, are widely consumed due to their beneficial properties. We examined the underlying mechanisms of dried pomegranate concentrate powder (PCP) on melanin synthesis in B16F10 melanoma cells. The antioxidant effects of PCP were determined by measuring free radical scavenging capacity and transcript levels of antioxidant enzymes. To explore the inhibitory effects of PCP on melanin synthesis, we measured tyrosinase activity and melanin content in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. In addition, the levels of tyrosinase-related protein-1 (TRP-1), TRP-2, tyrosinase, and microphthalmia-associated transcription factor (MITF) expression were determined by Western blotting. Changes in the phosphorylation status of protein kinase A (PKA), cAMP response element-binding protein (CREB), mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase Akt, and glycogen kinase 3β (GSK3β) were also examined. The free radical scavenging activity of PCP increased in a dose-dependent manner. In PCP-treated B16F10 cells, transcript levels of glutathione peroxidase-1 (GPx-1) were increased compared with α-MSH-stimulated cells. In addition, PCP led to the down-regulation of phospho-p38, phospho-PKA, phospho-CREB, phospho-GSK3β, MITF, and TRP-1 compared with α-MSH-stimulated B16F10 cells. We believe this effect may be associated with PCP activity, which leads to the inhibition of melanin production and tyrosinase activity. These results suggest that PCP decreases tyrosinase activity and melanin production via inactivation of the p38 and PKA signaling pathways, and subsequently decreases phosphorylation of CREB, MITF, and melanogenic enzymes. These observations provided new insights on the molecular mechanisms of the skin-whitening property of PCP. PMID:26473849

  4. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...... (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders...... amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests...

  5. 77 FR 24225 - Information Collection Approval; Temporary Non-Agricultural Employment of H-2B Aliens in the...

    Science.gov (United States)

    2012-04-23

    ... DEPARTMENT OF LABOR Employment and Training Administration Information Collection Approval; Temporary Non-Agricultural Employment of H-2B Aliens in the United States AGENCY: Employment and Training... the Temporary Non-Agricultural Employment of H-2B Aliens in the United States; Final Rule. See 77 FR...

  6. Microsatellite instability at a tetranucleotide repeat in type I endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Choi Ho

    2008-12-01

    Full Text Available Abstract Background Microsatellite instability (MSI at tri- or tetranucleotide repeat markers (elevated microsatellite alterations at selected tetranucleotide repeat, EMAST has been recently described. But, the underlying genetic mechanism of EMAST is unclear. This study was to investigate the prevalence of EMAST, in type I endometrial carcinoma, and to determine the correlation between the MSI status and mismatch repair genes (MMR or p53. Methods We examined the 3 mono-, 3 di-, and 6 tetranucleotide repeat markers by PCR in 39 cases of type I endometrial carcinoma and performed the immunohistochemistry of hMSH2, hMLH1, and p53 protein. Results More than two MSI at mono- and dinucleotide repeat markers was noted in 8 cases (MSI-H, 20.5%. MSI, at a tetranucleotide repeat, was detected in 15 cases (EMAST, 38.5%. In remaining 16 cases, any MSI was not observed. (MSS, 42.1%, MSI status was not associated with FIGO stage, grade or depth of invasion. The absence of expression of either one of both hMSH2 or hMLH1 was noted in seven (87.5% of eight MSI-H tumors, one (6.3% of 16 MSS tumors, and five (33.3% of 15 EMAST tumors. (p = 0.010 The expression of p53 protein was found in one (12.5% of eight MSI-H tumors, five (31.3% of 16 MSS tumors, and seven of 15 EMAST tumors. (p = 0.247 Conclusion Our results showed that about 38.5% of type I endometrial carcinomas exhibited EMAST, and that EMAST was rarely associated with alteration of hMSH2 or hMLH1.

  7. 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide analogues for melanoma imaging.

    Science.gov (United States)

    Miao, Yubin; Gallazzi, Fabio; Guo, Haixun; Quinn, Thomas P

    2008-02-01

    The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.

  8. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells

    Science.gov (United States)

    Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku

    2016-01-01

    Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981

  9. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  10. 76 FR 15129 - Temporary Non-Agricultural Employment of H-2B Aliens in the United States

    Science.gov (United States)

    2011-03-18

    ...-2B Aliens in the United States; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 53 / Friday... Employment of H-2B Aliens in the United States AGENCY: Employment and Training Administration, and Wage and... petitions the Secretary certify that the employment of the alien in such labor or services will not...

  11. Molecular mechanism of agonism and inverse agonism in the melanocortin receptors: Zn(2+) as a structural and functional probe

    DEFF Research Database (Denmark)

    Holst, Birgitte; Schwartz, Thue W

    2003-01-01

    Among the rhodopsin-like 7TM receptors, the MC receptors are functionally unique because their high constitutive signaling activity is regulated not only by endogenous peptide agonists-MSH peptides-but also by endogenous inverse agonists, namely, the proteins agouti and AGRP. Moreover, the metal......-ion Zn(2+) increases the signaling activity of at least the MC1 and MC4 receptors in three distinct ways: (1). by directly functioning as an agonist; (2). by potentiating the action of the endogenous agonist; and (3). by inhibiting the binding of the endogenous inverse agonist. Structurally the MC...... extracellular loop 2 is ultrashort because TM-IV basically connects directly into TM-V, whereas extracellular loop 3 appears to be held in a particular, constrained conformation by a putative, internal disulfide bridge. The interaction mode for the small and well-defined zinc-ion between a third, free Cys...

  12. A Novel Functional Screen for New Breast Cancer Genes

    Science.gov (United States)

    2005-09-01

    remaining three mammalian MutL homologs [19- 21]. The heterodimer of MLH1 and PMS2 , MutLa, is the major player in mammalian mismatch 4 repair...in MSH2 [39-41], 30% in MLH1 [42], and less than 10% in PMS1 or PMS2 [43]. Mice with homozygous deletions in either MSH2 or MLH1 also have increased...cancer susceptibility. In many nonfamilial colon tumors with MSI, somatic mutations have been identified in MSH2, in MLH1, and occasionally in PMS2

  13. Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics

    Directory of Open Access Journals (Sweden)

    Yuping Ren

    2017-12-01

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF and mitochondrial antiviral-signaling (MAVS proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s. Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s. This provides further insight for evaluating M2-2 mutants as potent vaccine candidates.

  14. InSilico Proteomics System: Integration and Application of Protein and Protein-Protein Interaction Data using Microsoft .NET

    Directory of Open Access Journals (Sweden)

    Straßer Wolfgang

    2006-12-01

    Full Text Available In the last decades, biological databases became the major knowledge resource for researchers in the field of molecular biology. The distribution of information among these databases is one of the major problems. An overview about the subject area of data access and representation of protein and protein-protein interaction data within public biological databases is described. For a comprehensive and consistent way of searching and analysing integrated protein and protein-protein interaction data, the InSilico Proteomics (ISP project has been initiated. Its three main objectives are (1 to provide an integrated knowledge pool for data investigation and global network analysis functions for a better understanding of a cell’s interactome, (2 employment of public data for plausibility analysis and validation of in-house experimental data and (3 testing the applicability of Microsoft’s .NET architecture for bioinformatics applications. Data integrated into the ISP database can be queried through the Web portal PRIMOS (PRotein Interaction and MOlecule Search which is freely available at http://biomis.fh-hagenberg.at/isp/primos.

  15. Comparative assessment of ELISAs using recombinant saposin-like protein 2 and recombinant cathepsin L-1 from Fasciola hepatica for the serodiagnosis of human Fasciolosis.

    Directory of Open Access Journals (Sweden)

    Bruno Gottstein

    2014-06-01

    Full Text Available Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2 and cathepsin L-1 (recCL1, were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES from adult stage liver flukes was assessed by receiver operator characteristic (ROC analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20, patients with other parasitic infections (n=87 and patients with malignancies (n=121. The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy employing the threshold (cut-off to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.

  16. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure...

  17. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    2010-10-01

    Full Text Available Uncoupling protein-2 (UCP2 is known to suppress mitochondrial reactive oxygen species (ROS production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  18. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations.

    Directory of Open Access Journals (Sweden)

    Sofie V Nielsen

    2017-04-01

    Full Text Available Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.

  19. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation.

    Science.gov (United States)

    Fujimori, Tsutomu; Suno, Ryoji; Iemura, Shun-Ichiro; Natsume, Tohru; Wada, Ikuo; Hosokawa, Nobuko

    2017-08-01

    The folding of newly synthesized proteins in the endoplasmic reticulum (ER) is assisted by ER-resident chaperone proteins. BiP (immunoglobulin heavy-chain-binding protein), a member of the HSP70 family, plays a central role in protein quality control. The chaperone function of BiP is regulated by its intrinsic ATPase activity, which is stimulated by ER-resident proteins of the HSP40/DnaJ family, including ERdj3. Here, we report that two closely related proteins, SDF2 and SDF2L1, regulate the BiP chaperone cycle. Both are ER-resident, but SDF2 is constitutively expressed, whereas SDF2L1 expression is induced by ER stress. Both luminal proteins formed a stable complex with ERdj3 and potently inhibited the aggregation of different types of misfolded ER cargo. These proteins associated with non-native proteins, thus promoting the BiP-substrate interaction cycle. A dominant-negative ERdj3 mutant that inhibits the interaction between ERdj3 and BiP prevented the dissociation of misfolded cargo from the ERdj3-SDF2L1 complex. Our findings indicate that SDF2 and SDF2L1 associate with ERdj3 and act as components in the BiP chaperone cycle to prevent the aggregation of misfolded proteins, partly explaining the broad folding capabilities of the ER under various physiological conditions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  20. Gallium-67-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide for primary and metastatic melanoma imaging.

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Shenoy, Nalini; Miao, Yubin

    2009-12-01

    The purpose of this study was to examine the melanoma imaging properties of a novel 67Ga-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (alpha-MSH) peptide. A lactam bridge-cyclized alpha-MSH peptide, DOTA-GlyGlu-CycMSH {DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]}, was synthesized and radiolabeled with 67Ga. The melanoma targeting and pharmacokinetic properties of 67Ga-DOTA-GlyGlu-CycMSH were determined in B16/F1 flank primary melanoma-bearing and B16/F10 pulmonary metastatic melanoma-bearing C57 mice. Flank primary melanoma and pulmonary metastatic melanoma imaging were performed by small animal single photon emission computed tomography (SPECT)/CT using 67Ga-DOTA-GlyGlu-CycMSH as an imaging probe. 67Ga-DOTA-GlyGlu-CycMSH was readily prepared with greater than 95% radiolabeling yield. 67Ga-DOTA-GlyGlu-CycMSH exhibited substantial tumor uptake (12.93 +/- 1.63%ID/g at 2 h postinjection) and prolonged tumor retention (5.02 +/- 1.35%ID/g at 24 h postinjection) in B16/F1 melanoma-bearing C57 mice. The uptake values for nontarget organs were generally low (<0.30%ID/g) except for the kidneys at 2, 4, and 24 h postinjection. 67Ga-DOTA-GlyGlu-CycMSH exhibited significantly (p < 0.05) higher uptakes (1.44 +/- 0.75%ID/g at 2 h postinjection and 1.49 +/- 0.69%ID/g at 4 h postinjection) in metastatic melanoma-bearing lung than those in normal lung (0.15 +/- 0.10%ID/g and 0.17 +/- 0.11%ID/g at 2 and 4 h postinjection, respectively). Both flank primary B16/F1 melanoma and B16/F10 pulmonary melanoma metastases were clearly visualized by SPECT/CT using 67Ga-DOTA-GlyGlu-CycMSH as an imaging probe 2 h postinjection. 67Ga-DOTA-GlyGlu-CycMSH exhibited favorable melanoma targeting and imaging properties, highlighting its potential as an effective imaging probe for early detection of primary and metastatic melanoma.

  1. Molecular cloning and characterization of NcROP2Fam-1, a member of the ROP2 family of rhoptry proteins in Neospora caninum that is targeted by antibodies neutralizing host cell invasion in vitro.

    Science.gov (United States)

    Alaeddine, Ferial; Hemphill, Andrew; Debache, Karim; Guionaud, Christophe

    2013-07-01

    Recent publications demonstrated that a fragment of a Neospora caninum ROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein, N. caninum ROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of 'cysts' produced in vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasion in vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.

  2. Carrageenan type effect on soybean oil/soy protein isolate emulsion employed as fat replacer in panela-type cheese

    Directory of Open Access Journals (Sweden)

    Rojas-Nery, E.

    2015-12-01

    Full Text Available In order to modify the fatty acid profile of panela-type cheese (a Mexican fresh cheese, emulsified soybean oil with soy protein isolate and different carrageenan (iota, kappa or lambda was employed as fat replacer. The replacement of milk fat in panela-type cheese resulted in higher cheese yield values and moisture content, besides a concomitant lower fat phase and higher protein content, due to a soy protein isolate in emulsified soybean oil. Fat replacement resulted in a harder but less cohesive, spring and resilient texture, where differences in texture could be attributed to the specific carrageenan-casein interactions within the rennet coagulated cheese matrix. The FTIR analysis showed that the milk fat replacement changed the fatty acid profile, also in function of the type of carrageenan employed. Lambda carrageenan containing emulsions improved moisture retention and maintained the textural properties of panela-type cheese.Para modificar el perfil de ácidos grasos de los quesos tipo panela (queso fresco popular en México, se utilizó aceite de soja emulsionado con aislado de proteína de soja y diferentes carrageninas (iota, kappa o lambda como sustituto de la grasa. Reemplazar la grasa de la leche en el queso tipo panela resultó en mayor rendimiento quesero y mayor contenido de humedad, además de una concomitante menor fase grasa y mayor contenido de proteína, debido al aislado de proteína de soja en el aceite de soja emulsionado. La sustitución de la grasa dio como resultado una textura más dura, pero menos cohesiva, elástica y resiliente, donde estas diferencias podrían ser atribuidas a la interacción especifica entre carrageninas-caseinas en la matriz coagulada del queso. El análisis de FTIR muestra que reemplazar la grasa de la leche cambia el perfil de ácidos grasos, también en función del tipo de carragenina empleado. Las emulsiones con lambda carrageninas mejoraron la retención de humedad y mantuvieron las

  3. The changing landscape of Lynch syndrome due to PMS2 mutations.

    Science.gov (United States)

    Blount, J; Prakash, A

    2018-07-01

    DNA repair pathways are essential for cellular survival as our DNA is constantly under assault from both exogenous and endogenous DNA damaging agents. Five major mammalian DNA repair pathways exist within a cell to maintain genomic integrity. Of these, the DNA mismatch repair (MMR) pathway is highly conserved among species and is well documented in bacteria. In humans, the importance of MMR is underscored by the discovery that a single mutation in any 1 of 4 genes within the MMR pathway (MLH1, MSH2, MSH6 and PMS2) results in Lynch syndrome (LS). LS is a autosomal dominant condition that predisposes individuals to a higher incidence of many malignancies including colorectal, endometrial, ovarian, and gastric cancers. In this review, we discuss the role of PMS2 in the MMR pathway, the evolving testing criteria used to identify variants in the PMS2 gene, the LS phenotype as well as the autosomal recessive condition called constitutional mismatch repair deficiency syndrome, and current methods used to elucidate the clinical impact of PMS2 mutations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility

    Directory of Open Access Journals (Sweden)

    Ji Guixiang

    2012-05-01

    Full Text Available Abstract Background The mismatch repair (MMR pathway plays an important role in the maintenance of the genome integrity, meiotic recombination and gametogenesis. This study investigated whether genetic variations in MMR genes are associated with an increased risk of sperm DNA damage and male infertility. Methods We selected and genotyped 21 tagging single nucleotide polymorphisms (SNPs in five MMR genes (MLH1, MLH3, PMS2, MSH4 and MSH5 using the SNPstream 12-plex platform in a case-control study of 1,292 idiopathic infertility patients and 480 fertile controls in a Chinese population. Sperm DNA damage levels were detected with the Tdt-mediated dUTP nick end labelling (TUNEL assay in 450 cases. Fluorescence resonance energy transfer (FRET and co-immunoprecipitation techniques were employed to determine the effects of functional variants. Results One intronic SNP in MLH1 (rs4647269 and two non-synonymous SNPs in PMS2 (rs1059060, Ser775Asn and MSH5 (rs2075789, Pro29Ser seem to be risk factors for the development of azoospermia or oligozoospermia. Meanwhile, we also identified a possible contribution of PMS2 rs1059060 to the risk of male infertility with normal sperm count. Among patients with normal sperm count, MLH1 rs4647269 and PMS2 rs1059060 were associated with increased sperm DNA damage. Functional analysis revealed that the PMS2 rs1059060 can affect the interactions between MLH1 and PMS2. Conclusions Our results provide evidence supporting the involvement of genetic polymorphisms in MMR genes in the aetiology of male infertility.

  5. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets.

    Science.gov (United States)

    Mitchell, Miguel O

    2017-09-24

    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  6. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state

  7. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  8. Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liao, Hsien-Ching; Chen, Mei-Yu

    2012-02-24

    The conserved Ser/Thr kinase target of rapamycin (TOR) serves as a central regulator in controlling cell growth-related functions. There exist two distinct TOR complexes, TORC1 and TORC2, each coupling to specific downstream effectors and signaling pathways. In Saccharomyces cerevisiae, TORC2 is involved in regulating actin organization and maintaining cell wall integrity. Ypk2 (yeast protein kinase 2), a member of the cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase family, is a TORC2 substrate known to participate in actin and cell wall regulation. Employing avo3(ts) mutants with defects in TORC2 functions that are suppressible by active Ypk2, we investigated the molecular interactions involved in mediating TORC2 signaling to Ypk2. GST pulldown assays in yeast lysates demonstrated physical interactions between Ypk2 and components of TORC2. In vitro binding assays revealed that Avo1 directly binds to Ypk2. In avo3(ts) mutants, the TORC2-Ypk2 interaction was reduced and could be restored by AVO1 overexpression, highlighting the important role of Avo1 in coupling TORC2 to Ypk2. The interaction was mapped to an internal region (amino acids 600-840) of Avo1 and a C-terminal region of Ypk2. Ypk2(334-677), a truncated form of Ypk2 containing the Avo1-interacting region, was able to interfere with Avo1-Ypk2 interaction in vitro. Overexpressing Ypk2(334-677) in yeast cells resulted in a perturbation of TORC2 functions, causing defective cell wall integrity, aberrant actin organization, and diminished TORC2-dependent Ypk2 phosphorylation evidenced by the loss of an electrophoretic mobility shift. Together, our data support the conclusion that the direct Avo1-Ypk2 interaction is crucial for TORC2 signaling to the downstream Ypk2 pathway.

  9. Community Practice Implementation of a Self-administered Version of PREMM1,2,6 to Assess Risk for Lynch Syndrome.

    Science.gov (United States)

    Luba, Daniel G; DiSario, James A; Rock, Colleen; Saraiya, Devki; Moyes, Kelsey; Brown, Krystal; Rushton, Kristen; Ogara, Maydeen M; Raphael, Mona; Zimmerman, Dayna; Garrido, Kimmie; Silguero, Evelyn; Nelson, Jonathan; Yurgelun, Matthew B; Kastrinos, Fay; Wenstrup, Richard J; Syngal, Sapna

    2018-01-01

    Lynch syndrome is a genetic disorder that greatly increases risk for colorectal and other cancers, although it is underdiagnosed. Prediction of MLH1, MSH2, and MSH6 (PREMM 1,2,6 ) is a web-based tool that analyzes individuals' personal/family histories of cancer to quantify their likelihood of carrying a germline mutation associated with Lynch syndrome. We investigated the feasibility of systematic risk assessment for Lynch syndrome in a community gastroenterology practice using a patient-completed version of PREMM 1,2,6 . PREMM 1,2,6 was adapted into a computer tablet version designed for self-administration by patients. Individuals presenting to a community gastroenterology office and endoscopy facility in California completed the PREMM 1,2,6 assessment before their visit (n = 3134). The total study duration (8 months) comprised a 2-month initiation period (May 1-June 30, 2013) and a 6-month study period (July 1-December 31, 2013). Genetic counseling and germline analysis for mutations in genes associated with Lynch syndrome (MLH1, MSH2, MSH6, PMS2, and EPCAM) were offered to individuals with PREMM 1,2,6 scores of 5% or higher. Patients and providers completed surveys to evaluate the feasibility and satisfaction with the process. Of the 3134 individuals assessed by PREMM 1,2,6 during the 6-month study period, 177 individuals (5.6%) had scores of 5% or higher. Of these, 146 individuals underwent genetic testing, along with 28 additional participants recruited nonconsecutively during the initiation period. Mutations associated with Lynch syndrome were detected in 3 of the 146 individuals (2.1%) with PREMM 1,2,6 scores of 5% or higher who underwent germline testing, and 3 of the 28 patients (10.7%) recruited during study initiation with PREMM 1,2,6 scores of 5% or higher. Of the participants who underwent genetic analysis, 98.6% stated that they understood the information provided to them. All of the surveyed providers stated that they were satisfied with the

  10. Expression and Production of SH2 Domain Proteins.

    Science.gov (United States)

    Liu, Bernard A; Ogiue-Ikeda, Mari; Machida, Kazuya

    2017-01-01

    The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.

  11. Protein: FBA2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA2 19S regulatory particles(RP) Rpn11 yip5 26S proteasome non-ATPase regulatory subunit 14 26S pr...oteasome regulatory complex subunit p37B, 26S proteasome regulatory subunit rpn11, Yippee-interacting protein 5 7227 Drosophila melanogaster Q9V3H2 Q9V3H2 19075009 ...

  12. Programmed cell death 4 protein (Pdcd4) and homeodomain-interacting protein kinase 2 (Hipk2) antagonistically control translation of Hipk2 mRNA.

    Science.gov (United States)

    Ohnheiser, Johanna; Ferlemann, Eva; Haas, Astrid; Müller, Jan P; Werwein, Eugen; Fehler, Olesja; Biyanee, Abhiruchi; Klempnauer, Karl-Heinz

    2015-07-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) is a highly conserved RNA-binding protein that inhibits the translation of specific mRNAs. Here, we have identified the homeobox-interacting protein kinase-2 (Hipk2) mRNA as a novel translational target of Pdcd4. Unlike most other protein kinases Hipk2 is constitutively active after being synthesized by the ribosome and its expression and activity are thought to be mainly controlled by modulation of the half-life of the kinase. Our work provides the first evidence that Hipk2 expression is also controlled on the level of translation. We show that Hipk2 stimulates the translation of its own mRNA and that Pdcd4 suppresses the translation of Hipk2 mRNA by interfering with this auto-regulatory feedback mechanism. We also show that the translation of the related kinase Hipk1 is controlled by a similar feedback loop and that Hipk2 also stimulates the translation of Hipk1 mRNA. Taken together, our work describes a novel mechanism of translational suppression by Pdcd4 and shows for the first time that Hipk2 controls its own synthesis by an auto-regulatory feedback mechanism. Furthermore, the effect of Hipk2 on the translation of Hipk1 RNA suggests that Hipk2 and Pdcd4 can act in similar manner to control the translation of other mRNAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fusion protein based on Grb2-SH2 domain for cancer therapy

    International Nuclear Information System (INIS)

    Saito, Yuriko; Furukawa, Takako; Arano, Yasushi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2010-01-01

    Research highlights: → Grb2 mediates EGFR signaling through binding to phosphorylate EGFR with SH2 domain. → We generated fusion proteins containing 1 or 2 SH2 domains of Grb2 added with TAT. → The one with 2 SH2 domains (TSSF) interfered ERK phosphorylation. → TSSF significantly delayed the growth of EGFR overexpressing tumor in a mouse model. -- Abstract: Epidermal growth factor receptor (EGFR) is one of the very attractive targets for cancer therapy. In this study, we generated fusion proteins containing one or two Src-homology 2 (SH2) domains of growth factor receptor bound protein 2 (Grb2), which bind to phosphorylated EGFR, added with HIV-1 transactivating transcription for cell membrane penetration (termed TSF and TSSF, respectively). We examined if they can interfere Grb2-mediated signaling pathway and suppress tumor growth as expected from the lack of SH3 domain, which is necessary to intermediate EGFR-Grb2 cell signaling, in the fusion proteins. The transduction efficiency of TSSF was similar to that of TSF, but the binding activity of TSSF to EGFR was higher than that of TSF. Treatment of EGFR-overexpressing cells showed that TSSF decreased p42-ERK phosphorylation, while TSF did not. Both the proteins delayed cell growth but did not induce cell death in culture. TSSF also significantly suppressed tumor growth in vivo under consecutive administration. In conclusion, TSSF showed an ability to inhibit EGFR-Grb2 signaling and could have a potential to treat EGFR-activated cancer.

  14. 77 FR 10037 - Temporary Non-Agricultural Employment of H-2B Aliens in the United States

    Science.gov (United States)

    2012-02-21

    ...-2B Aliens in the United States; Final Rule #0;#0;Federal Register / Vol. 77 , No. 34 / Tuesday... Employment of H-2B Aliens in the United States AGENCY: Employment and Training Administration, and Wage and...

  15. EST2Prot: Mapping EST sequences to proteins

    Directory of Open Access Journals (Sweden)

    Lin David M

    2006-03-01

    Full Text Available Abstract Background EST libraries are used in various biological studies, from microarray experiments to proteomic and genetic screens. These libraries usually contain many uncharacterized ESTs that are typically ignored since they cannot be mapped to known genes. Consequently, new discoveries are possibly overlooked. Results We describe a system (EST2Prot that uses multiple elements to map EST sequences to their corresponding protein products. EST2Prot uses UniGene clusters, substring analysis, information about protein coding regions in existing DNA sequences and protein database searches to detect protein products related to a query EST sequence. Gene Ontology terms, Swiss-Prot keywords, and protein similarity data are used to map the ESTs to functional descriptors. Conclusion EST2Prot extends and significantly enriches the popular UniGene mapping by utilizing multiple relations between known biological entities. It produces a mapping between ESTs and proteins in real-time through a simple web-interface. The system is part of the Biozon database and is accessible at http://biozon.org/tools/est/.

  16. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    International Nuclear Information System (INIS)

    Paulin, Sarah; Rosado, Helena; Taylor, Peter W; Jamshad, Mohammed; Dafforn, Timothy R; Garcia-Lara, Jorge; Foster, Simon J; Galley, Nicola F; Roper, David I

    2014-01-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function. (paper)

  17. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    Science.gov (United States)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  18. Induction of autocrine factor inhibiting cell motility from murine B16-BL6 melanoma cells by alpha-melanocyte stimulating hormone.

    Science.gov (United States)

    Murata, J; Ayukawa, K; Ogasawara, M; Watanabe, H; Saiki, I

    1999-03-15

    We have previously reported that neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) successfully inhibited Matrigel invasion and haptotactic migration of B16-BL6 melanoma cells towards both fibronectin and laminin without affecting their growth. In the present study, we investigated the inhibitory mechanism of tumor cell motility by alpha-MSH. Alpha-MSH significantly blocked the autocrine motility factor (AMF)-enhanced cell motility. However, alpha-MSH did neither prevent the secretion of AMF from B16-BL6 cells nor alter the expression level of AMF receptor (gp78). On the other hand, alpha-MSH induced the secretion of the motility inhibitory factor(s) from B16-BL6 cells in a concentration- and time-dependent manner. The induction of the motility inhibitor(s) was proportional to increasing levels of intracellular cAMP induced by alpha-MSH as well as forskolin, and the activity was abolished by an adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA). The motility-inhibiting activity in conditioned medium (CM) from alpha-MSH-treated B16-BL6 cells was found to have a m.w. below 3 kDa after fractionation. This activity was abolished by boiling but insensitive to trypsin. The treatment of tumor cells with cycloheximide reduced the activity in alpha-MSH-stimulated CM. Our results suggest that alpha-MSH inhibited the motility of B16-BL6 cells through induction of autocrine factor(s).

  19. IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes

    DEFF Research Database (Denmark)

    Christiansen, J.; Kolte, A.M.; Hansen, T.O.

    2009-01-01

    Recent genome-wide association (GWA) studies of type 2 diabetes (T2D) have implicated IGF2 mRNA-binding protein 2 (IMP2/IGF2BP2) as one of the several factors in the etiology of late onset diabetes. IMP2 belongs to a family of oncofetal mRNA-binding proteins implicated in RNA localization...... and T2D Udgivelsesdato: 2009/11......, stability, and translation that are essential for normal embryonic growth and development. This review provides a background to the IMP protein family with an emphasis on human IMP2, followed by a closer look at the GWA studies to evaluate the significance, if any, of the proposed correlation between IMP2...

  20. Type 2 diabetes mellitus with early phase acute inflammatory protein on serum protein electrophoresis

    Directory of Open Access Journals (Sweden)

    ET Tuladhar

    2012-03-01

    Full Text Available Background: The onset of Type 2 diabetes has been associated with low grade systemic inflammation. The inflammatory status has been studied by measuring acute phase reactant proteins like hsCRP, α1- antitrypsin, α1-acid glycoprotein, ceruloplasmin, fibrinogen. Most of these acute phase reactants form α1 and α2 bands on electropherogram of serum proteins. The aim of this study was to evaluate inflammatory status in controlled and uncontrolled type 2 diabetes using cellulose acetate electrophoresis and to find the impact of glycemic status as indicated by HbA1c on inflammation process. Materials and Methods: Serum protein electrophoresis was done on serum samples of 60 cases of Diabetes [controlled and uncontrolled] using cellulose acetate paper technique. The electropherogram obtained was stained with Ponseu S and then quantitated using densitometer. Glycemic status was studied by HbA1c analysis. The density of α1and α2 bands in electropherogram were correlated with HbA1c level. Result: A significant increase in the percentage of α1 and α2 band proteins (0.765 and 0.716, p<0.001 were found with the increasing level of HbA1c. With cutoff of HbA1c 7% (American Diabetic Association recommended, the α1 and α2 serum proteins concentration are significantly higher (p<0.001 in uncontrolled diabetes mellitus compared to controlled diabetes mellitus Conclusion: Cellulose acetate electrophoresis of serum proteins show early phase acute inflammatory status in uncontrolled type 2 diabetes mellitus. The process of systemic inflammation worsens with uncontrolled glycemia as indicated by HbA1c. Inflammatory status should be studied adjunct to glycemic status. DOI: http://dx.doi.org/10.3126/jpn.v2i3.6024 JPN 2012; 2(3: 211-214

  1. The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ

    Directory of Open Access Journals (Sweden)

    Brann Jessica H

    2010-05-01

    Full Text Available Abstract Background The signal transduction cascade operational in the vomeronasal organ (VNO of the olfactory system detects odorants important for prey localization, mating, and social recognition. While the protein machinery transducing these external cues has been individually well characterized, little attention has been paid to the role of protein-protein interactions among these molecules. Development of an in vitro expression system for the transient receptor potential 2 channel (TRPC2, which establishes the first electrical signal in the pheromone transduction pathway, led to the discovery of two protein partners that couple with the channel in the native VNO. Results Homer family proteins were expressed in both male and female adult VNO, particularly Homer 1b/c and Homer 3. In addition to this family of scaffolding proteins, the chaperones receptor transporting protein 1 (RTP1 and receptor expression enhancing protein 1 (REEP1 were also expressed. RTP1 was localized broadly across the VNO sensory epithelium, goblet cells, and the soft palate. Both Homer and RTP1 formed protein-protein interactions with TRPC2 in native reciprocal pull-down assays and RTP1 increased surface expression of TRPC2 in in vitro assays. The RTP1-dependent TRPC2 surface expression was paralleled with an increase in ATP-stimulated whole-cell current in an in vitro patch-clamp electrophysiological assay. Conclusions TRPC2 expression and channel activity is regulated by chaperone- and scaffolding-associated proteins, which could modulate the transduction of chemosignals. The developed in vitro expression system, as described here, will be advantageous for detailed investigations into TRPC2 channel activity and cell signalling, for a channel protein that was traditionally difficult to physiologically assess.

  2. 20 CFR 404.1003 - Employment.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Employment. 404.1003 Section 404.1003...- ) Employment, Wages, Self-Employment, and Self-Employment Income Employment § 404.1003 Employment. Employment....1010. Section 404.1004 states the general rule on the kinds of work covered as employment. Exceptions...

  3. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers

    DEFF Research Database (Denmark)

    Sønderstrup, Ida Marie Heeholm; Nygård, Sune Boris; Poulsen, Tim Svenstrup

    2015-01-01

    to MMR status by immunohistochemical analysis using validated antibodies for MLH1, MLH2, MSH6 and PMS2, and information on TOP1, CEN20, TOP2A and CEN17 status was previously published for this cohort. RESULTS: The observed TOP1 gene copy numbers in the 36 CRC test cohort were significantly greater (p

  4. 75 FR 6883 - Temporary Agricultural Employment of H-2A Aliens in the United States

    Science.gov (United States)

    2010-02-12

    ... Division 29 CFR Part 501 Temporary Agricultural Employment of H-2A Aliens in the United States; Final Rule... Division 29 CFR Part 501 RIN 1205-AB55 Temporary Agricultural Employment of H-2A Aliens in the United... of the alien in such labor or services will not adversely affect the wages and working conditions of...

  5. Conservation and diversification of Msx protein in metazoan evolution.

    Science.gov (United States)

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family

  6. SNP association study in PMS2-associated Lynch syndrome.

    Science.gov (United States)

    Ten Broeke, Sanne W; Elsayed, Fadwa A; Pagan, Lisa; Olderode-Berends, Maran J W; Garcia, Encarna Gomez; Gille, Hans J P; van Hest, Liselot P; Letteboer, Tom G W; van der Kolk, Lizet E; Mensenkamp, Arjen R; van Os, Theo A; Spruijt, Liesbeth; Redeker, Bert J W; Suerink, Manon; Vos, Yvonne J; Wagner, Anja; Wijnen, Juul T; Steyerberg, E W; Tops, Carli M J; van Wezel, Tom; Nielsen, Maartje

    2017-11-17

    Lynch syndrome (LS) patients are at high risk of developing colorectal cancer (CRC). Phenotypic variability might in part be explained by common susceptibility loci identified in Genome Wide Association Studies (GWAS). Previous studies focused mostly on MLH1, MSH2 and MSH6 carriers, with conflicting results. We aimed to determine the role of GWAS SNPs in PMS2 mutation carriers. A cohort study was performed in 507 PMS2 carriers (124 CRC cases), genotyped for 24 GWAS SNPs, including SNPs at 11q23.1 and 8q23.3. Hazard ratios (HRs) were calculated using a weighted Cox regression analysis to correct for ascertainment bias. Discrimination was assessed with a concordance statistic in a bootstrap cross-validation procedure. Individual SNPs only had non-significant associations with CRC occurrence with HRs lower than 2, although male carriers of allele A at rs1321311 (6p21.31) may have increased risk of CRC (HR = 2.1, 95% CI 1.2-3.0). A polygenic risk score (PRS) based on 24 HRs had an HR of 2.6 (95% CI 1.5-4.6) for the highest compared to the lowest quartile, but had no discriminative ability (c statistic 0.52). Previously suggested SNPs do not modify CRC risk in PMS2 carriers. Future large studies are needed for improved risk stratification among Lynch syndrome patients.

  7. Employment of colorimetric enzyme assay for monitoring expression and solubility of GST fusion proteins targeted to inclusion bodies.

    Science.gov (United States)

    Mačinković, Igor S; Abughren, Mohamed; Mrkic, Ivan; Grozdanović, Milica M; Prodanović, Radivoje; Gavrović-Jankulović, Marija

    2013-12-01

    High levels of recombinant protein expression can lead to the formation of insoluble inclusion bodies. These complex aggregates are commonly solubilized in strong denaturants, such as 6-8M urea, although, if possible, solubilization under milder conditions could facilitate subsequent refolding and purification of bioactive proteins. Commercially available GST-tag assays are designed for quantitative measurement of GST activity under native conditions. GST fusion proteins accumulated in inclusion bodies are considered to be undetectable by such assays. In this work, solubilization of recombinantly produced proteins was performed in 4M urea. The activity of rGST was assayed in 2M urea and it was shown that rGST preserves 85% of its activity under such denaturing conditions. A colorimetric GST activity assay with 1-chloro-2, 4-dinitrobenzene (CDNB) was examined for use in rapid detection of expression targeted to inclusion bodies and for the identification of inclusion body proteins which can be solubilized in low concentrations of chaotropic agents. Applicability of the assay was evaluated by tracking protein expression of two GST-fused allergens of biopharmaceutical value in E. coli, GST-Der p 2 and GST-Mus a 5, both targeted to inclusion bodies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Krantz, James; Barker, Natalie

    2017-01-01

    . The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and also revealed MARK2 can co-IP SOGA1......, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and also with tubulin, which identifies SOGA1 as a new microtubule-associated protein....... These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology....

  9. EMPLOY: Step-by-step guidelines for calculating employment effects of renewable energy investments [including annex 2

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, Barbara [Fraunhofer Inst. for Systems and Innovation Research (Germany); Nathani, Carsten [Ruetter and Partner Socioeconomic Research and Consulting (Switzerland); Resch, Gustav [Vienna Univ. of Technology, Energy Economics Group (EEG) (Austria

    2012-07-15

    The EMPLOY project aimed to help achieve the IEA-RETD’s objective to 'empower policy makers and energy market actors through the provision of information, tools and resources' by underlining the economic and industrial impacts of renewable energy technology deployment and providing reliable methodological approaches for employment – similar to those available for the incumbent energy technologies. The EMPLOY project resulted in a comprehensive set of methodological guidelines for estimating the employment impacts of renewable energy deployment in a coherent, uniform and systematic way. Guidelines were prepared for four different methodological approaches. In the introduction section of the guidelines policy makers are guided in their choice for the most suited approach, depending on the policy questions to be answered, the data availability and budget. The guidelines were tested for the IEA-RETD member state countries and Tunisia. The results of these calculations are included in the annex to the guidelines.

  10. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  11. DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging

    Directory of Open Access Journals (Sweden)

    Juan Cristóbal Conde-Pérezprina

    2012-01-01

    Full Text Available The mechanisms that concern DNA repair have been studied in the last years due to their consequences in cellular homeostasis. The diverse and damaging stimuli that affect DNA integrity, such as changes in the genetic sequence and modifications in gene expression, can disrupt the steady state of the cell and have serious repercussions to pathways that regulate apoptosis, senescence, and cancer. These altered pathways not only modify cellular and organism longevity, but quality of life (“health-span”. The DNA mismatch repair system (MMR is highly conserved between species; its role is paramount in the preservation of DNA integrity, placing it as a necessary focal point in the study of pathways that prolong lifespan, aging, and disease. Here, we review different insights concerning the malfunction or absence of the DNA-MMR and its impact on cellular homeostasis. In particular, we will focus on DNA-MMR mechanisms regulated by known repair proteins MSH2, MSH6, PMS2, and MHL1, among others.

  12. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  13. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM).

    Science.gov (United States)

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop; Rosendahl, Søren; Aamand, Jens

    2013-10-01

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal-bacterial consortia are promising for successful bioremediation of pesticide contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Adsorption properties of BSA and DsRed proteins deposited on thin SiO2 layers: optically non-absorbing versus absorbing proteins

    Science.gov (United States)

    Scarangella, A.; Soumbo, M.; Villeneuve-Faure, C.; Mlayah, A.; Bonafos, C.; Monje, M.-C.; Roques, C.; Makasheva, K.

    2018-03-01

    Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers’ thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.

  15. Experimental hyperthyroidism and central mediators of stress axis and thyroid axis activity in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Geven, Edwin J W; Verkaar, Folkert; Flik, Gert; Klaren, Peter H M

    2006-12-01

    The effect of experimental hyperthyroidism, realized by T(4) injection, on central mediators of the hypothalamo-pituitary-interrenal axis (HPI-axis) in common carp (Cyprinus carpio L.) was studied. Our results show that hyperthyroidism evokes a marked 3.2-fold reduction in basal plasma cortisol levels. Corticotropin-releasing hormone-binding protein (CRH-BP) mRNA levels in the hypothalamus, measured by real-time quantitative PCR, were significantly elevated by 40%, but CRH, urotensin-I, prepro-TRH, prohormone convertase-1 (PC1), and POMC mRNA levels were unchanged. In the pituitary pars distalis, PC1, CRH receptor-1, and POMC mRNA levels were unaffected, as was ACTH content. Plasma alpha-MSH concentrations were significantly elevated by 30% in hyperthyroid fish, and this was reflected in PC1 and POMC mRNA levels in pituitary pars intermedia that were increased 1.5- and 2.4-fold respectively. The alpha-MSH content of the pars intermedia was unchanged. Hyperthyroidism has profound effects on the basal levels of a central mediator, i.e., CRH-BP, of HPI-axis function in unstressed carp in vivo, and we conclude that HPI- and hypothalamo-pituitary-thyroid-axis functions are strongly interrelated. We suggest that the changes in plasma cortisol, thyroid hormone, and alpha-MSH levels reflect their concerted actions on energy metabolism.

  16. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Directory of Open Access Journals (Sweden)

    Laulumaa Saara

    2015-01-01

    Full Text Available Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  17. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Science.gov (United States)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  18. Dopamine D2L receptor-interacting proteins regulate dopaminergic signaling

    Directory of Open Access Journals (Sweden)

    Norifumi Shioda

    2017-10-01

    Full Text Available Dopamine receptor family proteins include seven transmembrane and trimeric GTP-binding protein-coupled receptors (GPCRs. Among them, the dopamine D2 receptor (D2R is most extensively studied. All clinically used antipsychotic drugs serve as D2R antagonists in the mesolimbic dopamine system, and their ability to block D2R signaling is positively correlated with antipsychotic efficiency. Human genetic studies also show a significant association of DRD2 polymorphisms with disorders including schizophrenia and Parkinson's disease. D2R exists as two alternatively spliced isoforms, the long isoform (D2LR and the short isoform (D2SR, which differ in a 29-amino acid (AA insert in the third cytoplasmic loop. Importantly, previous reports demonstrate functional diversity between the two isoforms in humans. In this review, we focus on binding proteins that specifically interact with the D2LR 29AA insert. We discuss how D2R activities are mediated not only by heterotrimeric G proteins but by D2LR-interacting proteins, which in part regulate diverse D2R activities. Keywords: Dopamine D2L receptor, Antipsychotic drugs, DRD2 polymorphisms, Alternatively spliced isoforms, D2LR-interacting proteins

  19. Building Employer Capacity to Support Meaningful Employment for Persons with Developmental Disabilities: A Grounded Theory Study of Employment Support Perspectives.

    Science.gov (United States)

    Rashid, Marghalara; Hodgetts, Sandra; Nicholas, David

    2017-11-01

    To explore strategies to build employer capacity to support people with DD in meaningful employment from perspective of employment support workers. A grounded theory study was conducted with 34 employment support individuals. A theoretical sampling approach was used to identify and recruit participants from multiple sites in Ontario and Alberta. Three main themes, with seven sub-themes, emerged: (1) experiences of supporting employment finding for people with DD, (2) institutional influences on employee experiences, and (3) attitudes, assumptions and stigma. Several recommendations related to building employer capacity were offered. Our findings provide insight on specific elements and strategies that can support building employer capacity for persons with DD.

  20. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    Science.gov (United States)

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  1. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    Science.gov (United States)

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  2. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  3. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+.

    Directory of Open Access Journals (Sweden)

    Yosef Y Kuttner

    2013-04-01

    Full Text Available Knowledge of the structural basis of protein-protein interactions (PPI is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s orthogonal to the complex interface and altering the protein's propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM, whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca(2+. Calmodulin is a regulatory protein that acts as an intracellular Ca(2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca(2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca(2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.

  4. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors. Part 3: modifications at the Arg position.

    Science.gov (United States)

    Holder, Jerry Ryan; Xiang, Zhimin; Bauzo, Rayna M; Haskell-Luevano, Carrie

    2003-01-01

    The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) located in the brain are implicated as participating in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). All the endogenous (POMC-derived) melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp." Herein, we report 12 tetrapeptides, based upon the template Ac-His(6)-DPhe(7)-Arg(8)-Trp(9)-NH(2) (alpha-MSH numbering) that have been modified at the Arg(8) position by neutral, basic, or acidic amino acid side chains. These peptides have been pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the observation that removal of the guanidinyl side chain moiety results in decreased melanocortin receptor potency, but that this Arg(8) side chain is not critical for melanocortin receptor agonist activity. Additionally, incorporation of the homoArg(8) residue results in 56-fold MC4R versus MC3R selectivity, and the Orn(8) residue results in 123-fold MC4R versus MC5R and 63-fold MC5R versus MC3R selectivity. Copyright 2002 Elsevier Science Inc.

  5. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    Science.gov (United States)

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  6. Protein-protein docking with F(2Dock 2.0 and GB-rerank.

    Directory of Open Access Journals (Sweden)

    Rezaul Chowdhury

    Full Text Available Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F(2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error.The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F(2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F(2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F(2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F(2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other.The docking protocol has been implemented as a server with a graphical client (TexMol which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http

  7. Protein-Protein Docking with F2Dock 2.0 and GB-Rerank

    Science.gov (United States)

    Chowdhury, Rezaul; Rasheed, Muhibur; Keidel, Donald; Moussalem, Maysam; Olson, Arthur; Sanner, Michel; Bajaj, Chandrajit

    2013-01-01

    Motivation Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error. Results The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other. Availability The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http

  8. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.

    Science.gov (United States)

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L

    2014-03-07

    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  9. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    International Nuclear Information System (INIS)

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  10. ORIGINAL ARTICLES Colorectal cancer in South Africa: A heritable ...

    African Journals Online (AJOL)

    in the DNA mismatch repair genes hMLH1 and hMSH2, and less frequently hMSH6 and PMS2, leading to the rapid development of neoplasms ..... nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer.

  11. Stability of globular proteins in H2O and in D2O

    NARCIS (Netherlands)

    Efimova, Y.M.; Haemers, S.; Wierczinsky, B.; Norde, W.; Well, van A.A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  12. Expression of DNA mismatch repair proteins in transformed non-Hodgkin's lymphoma: relationship to smoking

    DEFF Research Database (Denmark)

    Nandi, S; Yu, J; Reinert, Line

    2006-01-01

    leukemia (CLL/SLL), that have transformed to diffuse-large B-cell lymphoma (DLBCL). We correlated the presence or absence of DNA-mismatch repair enzymes by immunostaining as well as the p53 status to smoking history. Of all patients (n = 30), 37% showed negative immunostaining of MLH1, 16% showed negative...... for either MLH1 or MSH2 was 2.2 times higher in smokers than non-smokers (relative risk = 2.2041, 95% confidence interval: 0.89714, 5.41491). No direct correlation was found between smoking and the mutations in the p53 gene. These results suggest that cigarette smoking may play a role in the development...

  13. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  14. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    Science.gov (United States)

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. PMS2 monoallelic mutation carriers: the known unknown.

    Science.gov (United States)

    Goodenberger, McKinsey L; Thomas, Brittany C; Riegert-Johnson, Douglas; Boland, C Richard; Plon, Sharon E; Clendenning, Mark; Win, Aung Ko; Senter, Leigha; Lipkin, Steven M; Stadler, Zsofia K; Macrae, Finlay A; Lynch, Henry T; Weitzel, Jeffrey N; de la Chapelle, Albert; Syngal, Sapna; Lynch, Patrick; Parry, Susan; Jenkins, Mark A; Gallinger, Steven; Holter, Spring; Aronson, Melyssa; Newcomb, Polly A; Burnett, Terrilea; Le Marchand, Loïc; Pichurin, Pavel; Hampel, Heather; Terdiman, Jonathan P; Lu, Karen H; Thibodeau, Stephen; Lindor, Noralane M

    2016-01-01

    Germ-line mutations in MLH1, MSH2, MSH6, and PMS2 have been shown to cause Lynch syndrome. The penetrance of the cancer and tumor spectrum has been repeatedly studied, and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared with the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age at onset and frequency of colonic screening. Published reports of PMS2 germ-line mutations were combined with unpublished cases from the authors' research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with colorectal cancer (CRC) were diagnosed before age 30, and each of these tumors presented on the left side of the colon. As it is currently unknown what causes the early onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the reduced penetrance.Genet Med 18 1, 13-19.

  16. 2BC Non-Structural Protein of Enterovirus A71 Interacts with SNARE Proteins to Trigger Autolysosome Formation.

    Science.gov (United States)

    Lai, Jeffrey K F; Sam, I-Ching; Verlhac, Pauline; Baguet, Joël; Eskelinen, Eeva-Liisa; Faure, Mathias; Chan, Yoke Fun

    2017-07-04

    Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N -ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.

  17. Increased Protein Stability and Decreased Protein Turnover in the Caenorhabditis elegans Ins/IGF-1 daf-2 Mutant.

    Science.gov (United States)

    Depuydt, Geert; Shanmugam, Nilesh; Rasulova, Madina; Dhondt, Ineke; Braeckman, Bart P

    2016-12-01

    In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. However, such a mechanism would exert a substantial energy cost. By using classical 35 S pulse-chase labeling, we observed that protein synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates and instead stabilize their proteome by trehalose. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.

  18. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen

    International Nuclear Information System (INIS)

    Kiene, R.P.; Oremland, R.S.; Catena, A.; Miller, L.G.; Capone, A.G.

    1986-01-01

    Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDs, or MSH added to sediments. However, when DMS was added at ∼2-3=M levels as [ 14 C]DMS, metabolism by sediments resulted in a 14 CH 4 / 14 CO 2 ratio of only 0.06. Addition of molybdate increased the ratio of 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14 CO 2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a noncompetitive substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [ 14 C]-DMS to yield a 14 CH 4 / 14 CO 2 ratio of ∼ 2.8

  19. Radioimmunoassay of Pro-. gamma. -melanotropin, the amino-terminal fragment of proopiolipomelanocortin. [Swine

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, R.; Hakanson, R.; Larsson, I.; Sundler, F.; Thorell, J.I.

    1982-08-01

    A RIA has been developed for natural porcine pro-..gamma..-MSH, the 103-amino acid peptide that represents the amino-terminal part of proopiolipomelanocortin. Rabbits were immunized with the purified peptide polymerized with glutaraldehyde. The antiserum is directed against the amino-terminial end of the antigen and does not cross-react with corticotropin, ..beta..-lipotropin, ..beta..-endorphin, ..gamma../sub 3/MSH, or ..gamma../sub 2/MSH. The minimum detectable concentration is 0.15 ng/ml standard pro-..gamma..MSH (15 pg/tube). Pro-..gamma..MSH-like immunoreactivity was detected in plasma and extracts of the hypothalamus and pituitary of pigs. Gel chromatography of these extracts revealed at least three immunoreactive peaks in the anterior and neurointermediate lobes of the pituitary, wheras two immunoreactive peaks were found in extracts of the hypothalalmus. (Endocrinology 111:578,1982)

  20. Design, synthesis, and testing of multivalent compounds targeted to melanocortin receptors

    Science.gov (United States)

    Dehigaspitiya, Dilani Chathurika

    Our focus is on developing non-invasive molecular imaging reagents, which target human cancers that presently are difficult to detect, such as melanoma. We wish to apply the multivalency concept to differentiate between healthy cells and melanoma cells. Melanoma cells are known to over-express alpha melanocyte stimulating hormone receptors. A successful multivalent construct should show greater avidity towards melanoma cells than healthy cells due to the synergistic effects arising from multivalency. Both oligomeric and shorter linear constructs bearing the minimum active sequence of melanocyte stimulating hormone, His-DPhe-Arg-Trp-NH2(MSH4), which binds with low micromolar affinity to alpha melanocyte stimulating hormone receptors, were synthesized. Binding affinities of these constructs were evaluated in a competitive binding assay by competing with labeled ligands, Eu-DTPA-PEGO-MSH7 and/or Eu-DTPA-PEGO-NDP-alpha-MSH on the engineered cell line HEK293 CCK2R/hMC4R, which is genetically modified to over-express both the cholecystokinin 2 receptor (CCK2R) and human melanocortin 4 receptor (hMC4R). The oligomers were rapidly assembled using microwave-assisted copper catalyzed azide-alkyne cycloaddition between a dialkyne derivative of MSH4 and a diazide derivative of (Pro-Gly)3 as co-monomers. Three oligomer mixtures were further analyzed based on their degree of oligomerization and the route by which the MSH4 monomers were oligomerized, protected vs deprotected. Completive binding assay against Eu-DTPA-PEGO-MSH7 showed only a statistical enhancement of binding when calculated based on the total MSH4 concentration. However, when the calculation of avidity is based on an estimation of the particles numbers, there was a seven times enhancement of binding compared to a monovalent MSH4 control. The shorter linear multivalent MSH4 constructs were synthesized using ethylene glycol, glycerol, and mannitol as core scaffolds with maximum inter-ligand distances ranging from 27

  1. Genetic anticipation in Swedish Lynch syndrome families.

    Science.gov (United States)

    von Salomé, Jenny; Boonstra, Philip S; Karimi, Masoud; Silander, Gustav; Stenmark-Askmalm, Marie; Gebre-Medhin, Samuel; Aravidis, Christos; Nilbert, Mef; Lindblom, Annika; Lagerstedt-Robinson, Kristina

    2017-10-01

    Among hereditary colorectal cancer predisposing syndromes, Lynch syndrome (LS) caused by mutations in DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2 is the most common. Patients with LS have an increased risk of early onset colon and endometrial cancer, but also other tumors that generally have an earlier onset compared to the general population. However, age at first primary cancer varies within families and genetic anticipation, i.e. decreasing age at onset in successive generations, has been suggested in LS. Anticipation is a well-known phenomenon in e.g neurodegenerative diseases and several reports have studied anticipation in heritable cancer. The purpose of this study is to determine whether anticipation can be shown in a nationwide cohort of Swedish LS families referred to the regional departments of clinical genetics in Lund, Stockholm, Linköping, Uppsala and Umeå between the years 1990-2013. We analyzed a homogenous group of mutation carriers, utilizing information from both affected and non-affected family members. In total, 239 families with a mismatch repair gene mutation (96 MLH1 families, 90 MSH2 families including one family with an EPCAM-MSH2 deletion, 39 MSH6 families, 12 PMS2 families, and 2 MLH1+PMS2 families) comprising 1028 at-risk carriers were identified among the Swedish LS families, of which 1003 mutation carriers had available follow-up information and could be included in the study. Using a normal random effects model (NREM) we estimate a 2.1 year decrease in age of diagnosis per generation. An alternative analysis using a mixed-effects Cox proportional hazards model (COX-R) estimates a hazard ratio of exp(0.171), or about 1.19, for age of diagnosis between consecutive generations. LS-associated gene-specific anticipation effects are evident for MSH2 (2.6 years/generation for NREM and hazard ratio of 1.33 for COX-R) and PMS2 (7.3 years/generation and hazard ratio of 1.86). The estimated anticipation effects for MLH1 and MSH6 are

  2. Transient phosphorylation of tumor associated microtubule associated protein (TMAP)/cytoskeleton associated protein 2 (CKAP2) at Thr-596 during early phases of mitosis

    OpenAIRE

    Hong, Kyung Uk; Choi, Yong-Bock; Lee, Jung-Hwa; Kim, Hyun-Jun; Kwon, Hye-Rim; Seong, Yeon-Sun; Kim, Heung Tae; Park, Joobae; Bae, Chang-Dae; Hong, Kyeong-Man

    2008-01-01

    Tumor associated microtubule associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2) is a mitotic spindle-associated protein whose expression is cell cycle-regulated and also frequently deregulated in cancer cells. Two monoclonal antibodies (mAbs) against TMAP/CKAP2 were produced: B-1-13 and D-12-3. Interestingly, the reactivity of mAb D-12-3 to TMAP/CKAP2 was markedly decreased specifically in mitotic cell lysate. The epitope mapping study showed that mAb D-12-3 re...

  3. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  4. [Employment and education in the 2nd economic and social development plan of Togo].

    Science.gov (United States)

    Dovi-sodemekou, F B

    1985-01-01

    Togo is a developing country whose population is increasing at the rapid rate of 2.7%/year. Economic development is therefore a necessity to ensure at least an average standard of living. Plans of development include objectives of structural societal changes, including improvements in education and employment. This study analyzes the evolution of population activities. It identifies obstacles to the improvement of education and employment. The investigation examines the employment and education situation before adoption of the 2nd plan of Togo and predicts the probable evolution of the situation. Despite the priority accorded to agriculture, the 2nd plan appears to give greater importance to industry. The industrial and commercial sector has witnessed a 65.2% investment increase, whereas the rural sector had an investment increase of 11.8%. The 2nd plan, in view of its relation to the evolution of economic activities, took into account the demand for manual labor. In the private sector, industries should occupy an important position. The dualism of a modern and a traditional sector is considered a cause of underdevelopment. The modern sector should be developed in order to suppress the traditional sector and allow progress in society. As a result of this approach, agriculture is given a 2ndary role.

  5. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  6. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  7. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance

    DEFF Research Database (Denmark)

    Møller, Pål; Seppälä, Toni; Bernstein, Inge

    2017-01-01

    study of patients carrying Lynch syndrome-associated mutations affecting MLH1, MSH2, MSH6 or PMS2. Standardised information on surveillance, cancers and outcomes were collated in an Oracle relational database and analysed by age, sex and mutated gene. RESULTS: 1942 mutation carriers without previous...... carriers. Among first cancer detected in each patient the colorectal cancer cumulative incidences at 70 years by gene were 46%, 35%, 20% and 10% for MLH1, MSH2, MSH6 and PMS2 mutation carriers, respectively. The equivalent cumulative incidences for endometrial cancer were 34%, 51%, 49% and 24......%; and for ovarian cancer 11%, 15%, 0% and 0%. Ten-year crude survival was 87% after any cancer, 91% if the first cancer was colorectal, 98% if endometrial and 89% if ovarian. CONCLUSIONS: The four Lynch syndrome-associated genes had different penetrance and expression. Colorectal cancer occurred frequently despite...

  8. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. p53-Dependent suppression of genome instability in germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Otozai, Shinji [Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871 (Japan); Ishikawa-Fujiwara, Tomoko [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Oda, Shoji [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Kamei, Yasuhiro [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ryo, Haruko [Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085 (Japan); Sato, Ayuko [Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501 (Japan); Nomura, Taisei [Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085 (Japan); Mitani, Hiroshi [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Tsujimura, Tohru [Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501 (Japan); Inohara, Hidenori [Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871 (Japan); Todo, Takeshi, E-mail: todo@radbio.med.osaka-u.ac.jp [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    Highlights: • Radiation-induced microsatellite instability (MSI) was investigated in medaka fish. • msh2{sup −/−} fish had a high frequency of spontaneous MSI. • p53{sup −/−} fish had a high frequency of radiation-induced MSI. • p53 and msh2 suppress MSI by different pathways: mismatch removal and apoptosis. - Abstract: Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2{sup −/−} males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2{sup −/−} and wild-type fish. By contrast, irradiated p53{sup −/−} fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2{sup −/−} fish, but negligible levels in p53{sup −/−} fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells.

  10. p53-Dependent suppression of genome instability in germ cells

    International Nuclear Information System (INIS)

    Otozai, Shinji; Ishikawa-Fujiwara, Tomoko; Oda, Shoji; Kamei, Yasuhiro; Ryo, Haruko; Sato, Ayuko; Nomura, Taisei; Mitani, Hiroshi; Tsujimura, Tohru; Inohara, Hidenori; Todo, Takeshi

    2014-01-01

    Highlights: • Radiation-induced microsatellite instability (MSI) was investigated in medaka fish. • msh2 −/− fish had a high frequency of spontaneous MSI. • p53 −/− fish had a high frequency of radiation-induced MSI. • p53 and msh2 suppress MSI by different pathways: mismatch removal and apoptosis. - Abstract: Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2 −/− males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2 −/− and wild-type fish. By contrast, irradiated p53 −/− fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2 −/− fish, but negligible levels in p53 −/− fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells

  11. Immobilization of bioactive fibroblast growth factor-2 into cubic proteinous microcrystals (Bombyx mori cypovirus polyhedra) that are insoluble in a physiological cellular environment.

    Science.gov (United States)

    Mori, Hajime; Shukunami, Chisa; Furuyama, Akiko; Notsu, Hiroyuki; Nishizaki, Yuriko; Hiraki, Yuji

    2007-06-08

    The supramolecular architecture of the extracellular matrix and the disposition of its specific accessory molecules give rise to variable heterotopic signaling cues for single cells. Here we have described the successful occlusion of human fibroblast growth factor-2 (FGF-2) into the cubic inclusion bodies (FGF-2 polyhedra) of the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). The polyhedra are proteinous cubic crystals of several microns in size that are insoluble in the extracellular milieu. Purified FGF-2 polyhedra were found to stimulate proliferation and phosphorylation of p44/p42 mitogen-activated protein kinase in cultured fibroblasts. Moreover, cellular responses were blocked by a synthetic inhibitor of the FGF signaling pathway, SU5402, suggesting that FGF-2 polyhedra indeed act through FGF receptors. Furthermore, FGF-2 polyhedra retained potent growth stimulatory properties even after desiccation. We have demonstrated that BmCPV polyhedra microcrystals that occlude extracellular signaling proteins are a novel and versatile tool that can be employed to analyze cellular behavior at the single cell level.

  12. Molecular biology from bench-to-bedside - which colorectal cancer patients should be referred for genetic counselling and risk assessment

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Dysager, Lars; Lindebjerg, Jan

    2010-01-01

    Lynch syndrome is associated with deficiency of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2. However, most MLH1 deficient tumours are sporadic in origin, and they can be identified if harbouring a BRAF V600E mutation or hypermethylation of the MLH1 gene promoter. The aim of this study...... (PMS2 were negative in 29 cases (10%). DNA quality allowed BRAF analysis in 27 of these with 14 mutations and 13 wild-type. DNA quality allowed methylation analysis in 11 of the 13 BRAF wild-type, and all but one were methylated. Subsequently, Lynch syndrome could...... was to validate our previously suggested clinically applicable strategy based on molecular characteristics for identifying which patients to refer for genetic counselling. The strategy was validated in an unselected cohort of 287 colorectal cancer patients. All tumours were tested for MLH1, PMS2, MSH2 and MSH6...

  13. Ovarian cancer at young age: the contribution of mismatch-repair defects in a population-based series of epithelial ovarian

    DEFF Research Database (Denmark)

    Domanska, K; Malander, S; Måsbäck, A

    2007-01-01

    age is a hallmark of heredity, and ovarian cancers associated with HNPCC have been demonstrated to develop at a particularly early age. We used the Swedish Cancer Registry to identify a population-based series of 98 invasive epithelial ovarian cancers that developed before 40 years. Mucinous......At least one of ten patients with ovarian cancer is estimated to develop their tumor because of heredity with the breast and ovarian cancer syndrome due to mutations in the BRCA1 and BRCA2 genes and hereditary nonpolyposis colorectal cancer (HNPCC) being the major genetic causes. Cancer at young...... and endometrioid cancers were overrepresented and were diagnosed in 27% and 16% of the tumors, respectively. Immunostaining using antibodies against MLH1, PMS2, MSH2, and MSH6 was used to assess the mismatch-repair status and revealed loss of expression of MLH1/PMS2 in two cases, loss of MSH2/MSH6 in one case...

  14. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  15. A Database to Support the Interpretation of Human Mismatch Repair Gene Variants

    NARCIS (Netherlands)

    Ou, Jianghua; Niessen, Renee C.; Vonk, Jan; Westers, Helga; Hofstra, Robert M. W.; Sijmons, Rolf H.

    Germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2 can cause Lynch syndrome. This syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is an autosomal dominantly-inherited disorder predominantly characterized by colorectal and endometrial cancer.

  16. Download this PDF file

    African Journals Online (AJOL)

    dell

    2014-04-01

    Apr 1, 2014 ... HNPCC, also referred to as Lynch Syndrome, is the most common cause of hereditary CRC. ... MLH1, MSH2, MSH6, PMS1 and PMS2 genes7. ... world countries.10.5% of these colorectal cancers are MMR-gene product ...

  17. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Katja Müller

    Full Text Available Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2⁻ sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.

  18. Deletion Mutations in an Australian Series of HNPCC Patients

    Directory of Open Access Journals (Sweden)

    McPhillips Mary

    2005-11-01

    Full Text Available Abstract Hereditary non polyposis colorectal cancer (HNPCC is characterized by the presence of early onset colorectal cancer and other epithelial malignancies. The genetic basis of HNPCC is a deficiency in DNA mismatch repair, which manifests itself as DNA microsatellite instability in tumours. There are four genes involved in DNA mismatch repair that have been linked to HNPCC; these include hMSH2, hMLH1, hMSH6 and hPMS2. Of these four genes hMLH1 and hMSH2 account for the majority of families diagnosed with the disease. Notwithstanding, up to 40 percent of families do not appear to harbour a change in either hMSH2 or hMLH1 that can be detected using standard screening procedures such as direct DNA sequencing or a variety of methods all based on a heteroduplex analysis. In this report we have screened a series of 118 probands that all have the clinical diagnosis of HNPCC for medium to large deletions by the Multiplex Ligation-Dependent Probe Amplification assay (MLPA to determine the frequency of this type of mutation. The results indicate that a significant proportion of Australian HNPCC patients harbour deletion or duplication mutations primarily in hMSH2 but also in hMLH1.

  19. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    Science.gov (United States)

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Recombination homeostasis of meiosis during spermatogenesis under nicotine treatment

    Directory of Open Access Journals (Sweden)

    Zhai Jingli

    2018-01-01

    Full Text Available Cigarette smoking can affect male fertility via the quality of semen. To explore the effects of nicotine, a major component of cigarettes, on meiotic recombination during spermatogenesis, C57BL/6J male mice were injected with nicotine at a dosage of 0.2 mg/100 g body weight daily for 35 days (nicotine-treated group; mice in the control group were injected with isopycnic normal saline. According to previous expression profiles of mouse sperm, a subset of meiosis-related genes was pooled using bioinformatic analysis. Protein expression was compared between the two groups using by Western blotting and immunohistochemistry. Recombination frequency during the meiosis phase of spermatogenesis was estimated by combined use of chromosome spread and immunofluorescence staining in mouse testes. Data mining analysis indicated that 4 genes that express meiotic topoisomerase-like protein SPO11, MutS protein homolog 4 (MSH4, strand exchange protein RAD51 and MutL protein homologue 1 (MLH1, were associated with the meiosis recombination process. The results of Western blotting and immunohistochemistry further showed that the protein expression of SPO11 (0.73-fold and MSH4 (0.73-fold was downregulated in murine testes after nicotine treatment, whereas the protein expression of both RAD51 (2.06-fold and MLH1 (1.40-fold was upregulated. Unexpectedly, we did not detect a significant difference in recombination frequency in meiosis during spermatogenesis in the nicotine-treated group as compared to the control. Taken together, these results indicate that nicotine can affect the expression profile of restructuring-related genes, but it does not significantly change the recombination frequency during male meiosis. These findings suggest there is a self-regulating mechanism during meiotic chromosome restructuring in male mice that responds to environmental stress.

  1. Znaczenie mechanizmu naprawy DNA błędnie sparowanych zasad azotowych (MMR w raku piersi

    Directory of Open Access Journals (Sweden)

    Hanna Romanowicz

    2010-04-01

    Full Text Available Background: Microsatellite instability (MSI is due to defective DNA mismatch repair. Defects in DNA mismatch-repair (MMR genes lead to replication errors revealed as instability in microsatellite markers. Studieshave shown that breast cancer may be associated with mutations in mismatch repair genes, such as MSH2,MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH. Aim: Results from studies that assayed MMR in sporadic breast cancer are reviewed. Conclusion: Several data suggest that microsatellite instability seems to be a risk factor for breast cancerin subjects belonging to HNPCC (hereditary non-polyposis colorectal cancer families with high incidence of thiscancer and sporadic breast cancer.

  2. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    Science.gov (United States)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  3. The Netherlands: self-employed

    NARCIS (Netherlands)

    Houtman, I.L.D.

    2009-01-01

    This is the national contribution to the CAR on self-employed workers in the Netherlands. In this national contribution information is provided on self-employed workers in relation to (1) legal provisions and social security, (2) recent trends in self-employment with no employees, (3) collective

  4. Pro-opiomelanocortin-derived peptides in the pig pituitary: alpha- and gamma 1-melanocyte-stimulating hormones and their glycine-extended forms

    DEFF Research Database (Denmark)

    Fenger, M

    1988-01-01

    Pro-opiomelanocortin (POMC)-related peptides in extracts of anterior and neurointermediate pituitary lobes from pigs were characterized by gel chromatography, reversed-phase chromatography and radioimmunoassays. The peptide content was ca. 3-fold greater in the anterior lobe compared...... to the neurointermediate lobe (19.8 nmol POMC/anterior lobe vs 7.0 nmol/neurointermediate lobe). In the neurointermediate lobe 93% of POMC was processed to alpha-melanocyte-stimulating hormone (alpha-MSH) and analogs exclusively of low molecular weight. Most of the remaining adrenocorticotropic hormone (ACTH...... as alpha-MSH and analogs (94%). However, more than 95% of these peptides were of high molecular weight. In the anterior lobe 2.3% of N-POMC was processed and 94% was amidated gamma-MSH of only high molecular weight. These results show that gamma-MSH and alpha-MSH are amidated to the same extent...

  5. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.

    Science.gov (United States)

    Chen, Shuai; Wang, Han; Huang, Yu-Fan; Li, Ming-Li; Cheng, Jiang-Hong; Hu, Peng; Lu, Chuan-Hui; Zhang, Ya; Liu, Na; Tzeng, Chi-Meng; Zhang, Zhi-Ming

    2017-07-19

    The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.

  6. The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.

    Science.gov (United States)

    Iacovache, Ioan; Biasini, Marco; Kowal, Julia; Kukulski, Wanda; Chami, Mohamed; van der Goot, F Gisou; Engel, Andreas; Rémigy, Hervé-W

    2010-03-01

    Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution. (c) 2009 Elsevier Inc. All rights reserved.

  7. Ezrin expression combined with MSI status in prognostication of stage II colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Khadija Slik

    Full Text Available Currently used factors predicting disease recurrence in stage II colorectal cancer patients are not optimal for risk stratification. Thus, new biomarkers are needed. In this study the applicability of ezrin protein expression together with MSI status and BRAF mutation status were tested in predicting disease outcome in stage II colorectal cancer. The study population consisted of 173 stage II colorectal cancer patients. Paraffin-embedded cancer tissue material from surgical specimens was used to construct tissue microarrays (TMAs with next-generation technique. The TMA-slides were subjected to following immunohistochemical stainings: MLH1, MSH2, MSH6, PMS2, ezrin and anti-BRAF V600E antibody. The staining results were correlated with clinicopathological variables and survival. In categorical analysis, high ezrin protein expression correlated with poor disease-specific survival (p = 0.038. In univariate analysis patients having microsatellite instabile / low ezrin expression tumors had a significantly longer disease-specific survival than patients having microsatellite stable / high ezrin expression tumors (p = 0.007. In multivariate survival analysis, the presence of BRAF mutation was associated to poor overall survival (p = 0.028, HR 3.29, 95% CI1.14-9.54. High ezrin protein expression in patients with microsatellite stable tumors was linked to poor disease-specific survival (p = 0.01, HR 5.68, 95% CI 1.53-21.12. Ezrin protein expression is a promising biomarker in estimating the outcome of stage II colorectal cancer patients. When combined with microsatellite status its ability in predicting disease outcome is further improved.

  8. Uncoupling protein 2 G(-866A polymorphism: a new gene polymorphism associated with C-reactive protein in type 2 diabetic patients C-reactive protein in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Cocozza Sergio

    2010-10-01

    Full Text Available Abstract Background This study evaluated the relationship between the G(-866A polymorphism of the uncoupling protein 2 (UCP2 gene and high-sensitivity C reactive protein (hs-CRP plasma levels in diabetic patients. Methods We studied 383 unrelated people with type 2 diabetes aged 40-70 years. Anthropometry, fasting lipids, glucose, HbA1c, and hs-CRP were measured. Participants were genotyped for the G (-866A polymorphism of the uncoupling protein 2 gene. Results Hs-CRP (mg/L increased progressively across the three genotype groups AA, AG, or GG, being respectively 3.0 ± 3.2, 3.6 ± 5.0, and 4.8 ± 5.3 (p for trend = 0.03. Since hs-CRP values were not significantly different between AA and AG genotype, these two groups were pooled for further analyses. Compared to participants with the AA/AG genotypes, homozygotes for the G allele (GG genotype had significantly higher hs-CRP levels (4.8 ± 5.3 vs 3.5 ± 4.7 mg/L, p = 0.01 and a larger proportion (53.9% vs 46.1%, p = 0.013 of elevated hs-CRP (> 2 mg/L. This was not explained by major confounders such as age, gender, BMI, waist circumference, HbA1c, smoking, or medications use which were comparable in the two genotype groups. Conclusions The study shows for the first time, in type 2 diabetic patients, a significant association of hs-CRP levels with the G(-866A polymorphism of UCP2 beyond the effect of major confounders.

  9. Immunological evaluation in nonhuman primates of formulations based on the chimeric protein P64k-domain III of dengue 2 and two components of Neisseria meningitidis.

    Science.gov (United States)

    Valdés, Iris; Hermida, Lisset; Martín, Jorge; Menéndez, Tamara; Gil, Lázaro; Lazo, Laura; Castro, Jorge; Niebla, Olivia; López, Carlos; Bernardo, Lídice; Sánchez, Jorge; Romero, Yaremis; Martínez, Rafael; Guzmán, María G; Guillén, Gerardo

    2009-02-11

    The main problem in the development of successful vaccines against dengue based on recombinant proteins is the necessity to use potent adjuvants to reach a proper functional immune response. Our group reported the expression, characterization and immunological evaluation of the recombinant protein PD5, which contains the domain III of the Envelope protein from dengue 2 virus fused to the carrier protein P64k. This construct completely protected monkeys against viral challenge when the Freund's adjuvant was employed. Therefore, to define suitable formulations for human use, the present work relies on the evaluation of PD5, produced with a high purity and under GMP conditions, when formulated either with outer membrane vesicles (OMV) or the serogroup A capsular polysaccharide (CPS-A) from Neisseria meningitidis, both adsorbed on aluminium hydroxide. The antibody response to the formulation containing the CPS-A was clearly superior to that of the formulation with OMV. The experiment of in vivo protection supported this evidence, since only the group immunized with PD5 and CPS-A was partially protected upon viral challenge. This is the first study in which the polysaccharide A of N. meningitidis is successfully employed as adjuvant for viral antigens.

  10. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  11. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  12. α-Actinin-2, a cytoskeletal protein, binds to angiogenin

    International Nuclear Information System (INIS)

    Hu Huajun; Gao Xiangwei; Sun Yishan; Zhou Jiliang; Yang Min; Xu Zhengping

    2005-01-01

    Angiogenin is an angiogenic factor which is involved in tumorigenesis. However, no particular intracellular protein is known to interact directly with angiogenin. In the present study, we reported the identification of α-actinin-2, an actin-crosslinking protein, as a potential angiogenin-interacting partner by yeast two-hybrid screening. This interaction was confirmed by different approaches. First, angiogenin was pulled down together with His-tagged α-actinin-2 by Ni 2+ -agarose resins. Second, α-actinin-2 was coimmunoprecipitated with angiogenin by anti-angiogenin monoclonal antibody. Third, the in vivo interaction of these two proteins was revealed by fluorescence resonance energy transfer analysis. Since members of α-actinin family play pivotal roles in cell proliferation, migration, and invasion, the interaction between α-actinin-2 and angiogenin may underline one possible mechanism of angiogenin in angiogenesis. Our finding presents the first evidence of an interaction of a cytosolic protein with angiogenin, which might be a novel interference target for anti-angiogenesis and anti-tumor therapy

  13. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations

    NARCIS (Netherlands)

    Sijmons, Rolf H.; Hofstra, Robert M. W.

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive

  14. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. Qizhuang Lv Kangkang Guo Tao Wang ... Keywords. Cellular protein; FHC; ORF4 protein; porcine circovirus type 2 (PCV2); yeast two-hybrid ... Journal of Biosciences | News ...

  15. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    Science.gov (United States)

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. [A case of IgA2-lambda type M-protein that IgA concentration differs from the values of M-protein by serum protein electrophoresis].

    Science.gov (United States)

    Fukushima, M; Sugano, M; Ichikawa, T; Honda, T; Totsuka, M; Katsuyama, T; Fujita, K

    2001-07-01

    We report an IgA-lambda type M-protein in which the IgA concentration differed from the values of M-protein by serum protein electrophoresis found in a 53-year-old man with multiple myeloma. The M-protein value as determined by serum protein electrophoresis was 6,170 mg/dl. However, the serum IgA concentration was 3,052 mg/dl by turbidimetric immunoassay. Immuno-fixation electrophoresis using IgA subclass antisera revealed that this M-protein was the IgA2-lambda type. Western blotting analysis showed that the IgA2 molecules were composed of two approximately 68 kDa alpha 2 chains and two 28 kDa lambda chains. In addition the free lambda chain band was detected at the position of 28 kDa without 2-mercaptoethanol(2-ME) even though the patient IgA was purified. Since it is known that IgA2m(1) allotype easily release light chains from the IgA molecules in SDS-PAGE without 2-ME, we speculated that in this patient the IgA was the IgA2m(1) allotype. After peripheral blood stem cell transplantation(PBSCT), immunofixation electrophoresis of the patient serum revealed not only the bands of IgA2-lambda type M-protein, but also three bands of IgG1-kappa type M-protein in the gamma region.

  17. Frequency of hereditary colorectal cancer in Uruguayans patients with non polipotic colorectal cancer; Frecuencia de cancer colorrectal hereditario no polipotico en pacientes uruguayos con cancer colorrectal

    Energy Technology Data Exchange (ETDEWEB)

    Sarroca, C.; Della Valle, A.; Fresco, R.; Peltomaki, P.; Lynch, H. [Hospital Central de las Fuerzas Armadas, Montevideo (Uruguay)

    2010-12-15

    Full text: Colonic Cancer Family Polipótic not (CCFNP) is a syndrome transmission autosomal dominant characterized by the aggregation of colorectal cancer (CCR), frequently associated with other solid tumors. Few studies have investigated CCFNP frequency in colorectal cancer patients. these have shown marked geographic variation (0.3% to 13%). The objective of this study is to estimate the frequency of a population CCFNP CCR carriers Uruguayan cancer patients. All patients consecutively operated CRC were included in the Hospital Central Armed Forces (Montevideo, Uruguay) between 1987 and 2003. The cases were classified into 3 groups: 1) those who met the criteria Amsterdam (CCFNP), 2) those who did not meet these criteria but considered as a population of increased risk of cancer based on family history / staff (PRI), and 3) sporadic CRC. Genetic analysis was performed for Detection of mutations in hMLH1, hMSH2 and hMSH6 gene in patients subgroup 1. 461 patients were included, with a median age of 66 years. The subgroup 1 represented 2.5% 2 5.6% and 91.8% sporadic CRC. 75% of cases CCFNP were classified as under 55. Mutations in hMLH1 / hMSH2/hMSH6 were found in 16.6% of cases included in the subgroup 1 (2 in hMLH1, 1 in hMSH2, hMSH6 none). The proportion of patients who met the Amsterdam criteria matches with that observed by other authors. However, the percentage of cases classified CCFNP identified as carriers of mutations is lower than that reported (16.6% vs. ~ 70%). This may reflect a different genetic profile Uruguayan population.

  18. Frequency of hereditary colorectal cancer in Uruguayans patients with non polipotic colorectal cancer

    International Nuclear Information System (INIS)

    Sarroca, C.; Della Valle, A.; Fresco, R.; Peltomaki, P.; Lynch, H.

    2010-01-01

    Full text: Colonic Cancer Family Polipótic not (CCFNP) is a syndrome transmission autosomal dominant characterized by the aggregation of colorectal cancer (CCR), frequently associated with other solid tumors. Few studies have investigated CCFNP frequency in colorectal cancer patients. these have shown marked geographic variation (0.3% to 13%). The objective of this study is to estimate the frequency of a population CCFNP CCR carriers Uruguayan cancer patients. All patients consecutively operated CRC were included in the Hospital Central Armed Forces (Montevideo, Uruguay) between 1987 and 2003. The cases were classified into 3 groups: 1) those who met the criteria Amsterdam (CCFNP), 2) those who did not meet these criteria but considered as a population of increased risk of cancer based on family history / staff (PRI), and 3) sporadic CRC. Genetic analysis was performed for Detection of mutations in hMLH1, hMSH2 and hMSH6 gene in patients subgroup 1. 461 patients were included, with a median age of 66 years. The subgroup 1 represented 2.5% 2 5.6% and 91.8% sporadic CRC. 75% of cases CCFNP were classified as under 55. Mutations in hMLH1 / hMSH2/hMSH6 were found in 16.6% of cases included in the subgroup 1 (2 in hMLH1, 1 in hMSH2, hMSH6 none). The proportion of patients who met the Amsterdam criteria matches with that observed by other authors. However, the percentage of cases classified CCFNP identified as carriers of mutations is lower than that reported (16.6% vs. ~ 70%). This may reflect a different genetic profile Uruguayan population

  19. The missing piece in the puzzle: Prediction of aggregation via the protein-protein interaction parameter A∗2.

    Science.gov (United States)

    Koepf, Ellen; Schroeder, Rudolf; Brezesinski, Gerald; Friess, Wolfgang

    2018-07-01

    The tendency of protein pharmaceuticals to form aggregates is a major challenge during formulation development, as aggregation affects quality and safety of the product. In particular, the formation of large native-like particles in the context of liquid-air interfacial stress is a well-known but not fully understood problem. Focusing on the two most fundamental criteria of protein formulation affecting protein-protein interaction, the impact of pH and ionic strength on the interaction parameter A ∗ 2 and its link to aggregation upon mechanical stress was investigated. A ∗ 2 of two monoclonal antibodies (mABs) and a polyclonal IgG was determined using dynamic light scattering and was correlated to the number of particles formed upon shaking in vials analyzed by visual inspection, turbidity analysis, light obscuration and micro-flow imaging. A good correlation between aggregation induced by interfacial stress and formulation pH was given. It could be shown that A ∗ 2 was highest for mAB 1 and lowest for IgG, what was in good accordance with the number of particles formed. Shaking of IgG resulted in overall higher numbers of particles compared to the two mABs. A ∗ 2 decreased and particle numbers increased with increasing pH. Different to pH, ionic strength only slightly affected A ∗ 2 . Nevertheless, at high ionic (100 mM) strength the samples exhibited more pronounced particle formation, particularly of large particles >25 µm, which was most pronounced at high pH. Protein solutions were identified to form continuous films with an inhomogeneous protein distribution at the liquid-air interface. These areas of agglomerated, native-like protein material can be transferred into the bulk solution by compression-decompression of the interface. Whether or not those clusters lead to the appearance of large protein aggregates or fall apart depends on the attractive or repulsive forces between protein molecules. Thus, protein aggregation due to interfacial

  20. 22 CFR 9b.2 - Press correspondents employed by United States media organizations.

    Science.gov (United States)

    2010-04-01

    ... media organizations. 9b.2 Section 9b.2 Foreign Relations DEPARTMENT OF STATE GENERAL REGULATIONS... employed by United States media organizations must: (a) Present to the Office of Press Relations... news media organizations; (3) Date of birth; (4) Place of birth; (5) Sex; (6) Citizenship; (7) Social...

  1. Long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide

    DEFF Research Database (Denmark)

    Bengtsson, Daniel; Schrøder, Henrik Daa; Andersen, Marianne

    2015-01-01

    , GH 4, GH/PRL 2). Ki-67 was 2-50% in LAPTs, and 5-80% in carcinomas. MAIN OUTCOME: Response to TMZ and the association with tumor expression of O6-methylguanine DNA methyltransferase (MGMT), MLH1, MSH2, and MSH6, examined by immunohistochemistry. RESULTS: Complete tumor regression occurred in two...

  2. 28 CFR 54.500 - Employment.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Employment. 54.500 Section 54.500... in Employment in Education Programs or Activities Prohibited § 54.500 Employment. (a) General. (1) No... subjected to discrimination in employment, or recruitment, consideration, or selection therefor, whether...

  3. Avoidance of pseudogene interference in the detection of 3' deletions in PMS2.

    Science.gov (United States)

    Vaughn, Cecily P; Hart, Kimberly J; Samowitz, Wade S; Swensen, Jeffrey J

    2011-09-01

    Lynch syndrome is characterized by mutations in the mismatch repair genes MLH1, MSH2, MSH6, and PMS2. In PMS2, detection of mutations is confounded by numerous pseudogenes. Detection of 3' deletions is particularly complicated by the pseudogene PMS2CL, which has strong similarity to PMS2 exons 9 and 11-15, due to extensive gene conversion. A newly designed multiplex ligation-dependent probe amplification (MLPA) kit incorporates probes for variants found in both PMS2 and PMS2CL. This provides detection of deletions, but does not allow localization of deletions to the gene or pseudogene. To address this, we have developed a methodology incorporating reference samples with known copy numbers of variants, and paired MLPA results with sequencing of PMS2 and PMS2CL. We tested a subset of clinically indicated samples for which mutations were either unidentified or not fully characterized using existing methods. We identified eight unrelated patients with deletions encompassing exons 9-15, 11-15, 13-15, 14-15, and 15. By incorporating specific, characterized reference samples and sequencing the gene and pseudogene it is possible to identify deletions in this region of PMS2 and provide clinically relevant results. This methodology represents a significant advance in the diagnosis of patients with Lynch syndrome caused by PMS2 mutations. © 2011 Wiley-Liss, Inc.

  4. How a mycoparasite employs g-protein signaling: using the example of trichoderma.

    Science.gov (United States)

    Omann, Markus; Zeilinger, Susanne

    2010-01-01

    Mycoparasitic Trichoderma spp. act as potent biocontrol agents against a number of plant pathogenic fungi, whereupon the mycoparasitic attack includes host recognition followed by infection structure formation and secretion of lytic enzymes and antifungal metabolites leading to the host's death. Host-derived signals are suggested to be recognized by receptors located on the mycoparasite's cell surface eliciting an internal signal transduction cascade which results in the transcription of mycoparasitism-relevant genes. Heterotrimeric G proteins of fungi transmit signals originating from G-protein-coupled receptors mainly to the cAMP and the MAP kinase pathways resulting in regulation of downstream effectors. Components of the G-protein signaling machinery such as Gα subunits and G-protein-coupled receptors were recently shown to play crucial roles in Trichoderma mycoparasitism as they govern processes such as the production of extracellular cell wall lytic enzymes, the secretion of antifungal metabolites, and the formation of infection structures.

  5. Synthesis and characterization of novel 2, 2'-bipyrimidine fluorescent derivative for protein binding

    Directory of Open Access Journals (Sweden)

    Padalkar Vikas S

    2011-11-01

    Full Text Available Abstract Background Fluorescent dyes with biocompatible functional group and good fluorescence behavior are used as biosensor for monitoring different biological processes as well as detection of protein assay. All reported fluorophore used as sensors are having high selectivity and sensitivity but till there is more demand to synthesized new fluorophore which have improved fluorescence properties and good biocompatibility. Results Novel 4, 4'-(1, 1'-(5-(2-methoxyphenoxy-[2, 2'-bipyrimidine]-4, 6-diylbis(1H-pyrazol-3, 1-diyl dianiline fluorescent dye was synthesized by multistep synthesis from 2-phenylacetonitrile, 2-chloropyrimidine and 2-methoxyphenol. This dye has absorption at 379 nm with intense single emission at 497 nm having fairly good quantum yield (0.375 and Stokes shift. The intermediates and dye were characterized by FT-IR, 1H NMR, 13C NMR and Mass spectral analysis. The pyrazole bipyrimidine based fluorescent dye possessing two amino groups suitable for binding with protein is reported. Its utility as a biocompatible conjugate was explained by conjugation with bovine serum albumin. The method is based on direct fluorescence detection of fluorophore-labelled protein before and after conjugation. Purified fluorescent conjugate was subsequently analyzed by fluorimetry. The analysis showed that the tested conjugation reaction yielded fluorescent conjugates of the dye through carbodiimide chemistry. Conclusion In summery synthesized fluorophore pyrazole-bipyrimidine has very good interaction towards protein bovine serum albumin and it acts as good candidate for protein assay.

  6. Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes.

    Science.gov (United States)

    Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W

    2016-01-01

    The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.

  7. Farmers as Employers. Numeracy. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    Science.gov (United States)

    Batman, Kangan; Tully, Chris

    This publication contains the three numeracy units of the three levels of Support Materials for Agricultural Training (SMAT) in the area of farmers as employers: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her numeracy skills needed to deal with employment of agriculture…

  8. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    Science.gov (United States)

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  9. Enhanced CO2 Adsorption by Nitrogen-Doped Graphene Oxide Sheets (N-GOs Prepared by Employing Polymeric Precursors

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ali Alghamdi

    2018-04-01

    Full Text Available Nitrogen-doped graphene oxide sheets (N-GOs are prepared by employing N-containing polymers such as polypyrrole, polyaniline, and copolymer (polypyrrole-polyaniline doped with acids such as HCl, H2SO4, and C6H5-SO3-K, which are activated using different concentrations of KOH and carbonized at 650 °C; characterized using SEM, TEM, BET, TGA-DSC, XRD, and XPS; and employed for the removal of environmental pollutant CO2. The porosity of the N-GOs obtained were found to be in the range 1–3.5 nm when the KOH employed was in the ratio of 1:4, and the XRD confirmed the formation of the layered like structure. However, when the KOH employed was in the ratio of 1:2, the pore diameter was found to be in the range of 50–200 nm. The SEM and TEM analysis reveal the porosity and sheet-like structure of the products obtained. The nitrogen-doped graphene oxide sheets (N-GOs prepared by employing polypyrrole doped with C6H5-SO3-K were found to possess a high surface area of 2870 m2/g. The N-GOs displayed excellent CO2 capture property with the N-GOs; PPy/Ar-1 displayed ~1.36 mmol/g. The precursor employed, the dopant used, and the activation process were found to affect the adsorption property of the N-GOs obtained. The preparation procedure is simple and favourable for the synthesis of N-GOs for their application as adsorbents in greenhouse gas removal and capture.

  10. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death.

    Directory of Open Access Journals (Sweden)

    Melanie Ann Sacco

    2009-08-01

    Full Text Available Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR, through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2, a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive.

  11. Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis.

    Science.gov (United States)

    Martens, G J; Weterings, K A; van Zoest, I D; Jenks, B G

    1987-03-13

    In the pars intermedia of the pituitary gland of the amphibian Xenopus laevis the level of mRNA encoding proopiomelanocortin (POMC), the precursor protein for alpha-melanophore-stimulating hormone (alpha-MSH), is shown to be dependent on physiological parameters. POMC mRNA levels in the pars intermedia of black-background-adapted Xenopus are much higher than those of white-adapted animals. These physiological changes in POMC mRNA levels are tissue-specific because they were not found in the pars distalis of the pituitary gland. Background transfer experiments revealed that modulation of POMC gene activity is much slower than changes in the secretion of alpha-MSH.

  12. Gardenia jasminoides Encodes an Inhibitor-2 Protein for Protein Phosphatase Type 1

    Science.gov (United States)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Protein phosphatase-1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. Inhibitor-2 (I-2) can inhibit the activity of PP1 and has been found in diverse organisms. In this work, a Gardenia jasminoides fruit cDNA library was constructed, and the GjI-2 cDNA was isolated from the cDNA library by sequencing method. The GjI-2 cDNA contains a predicted 543 bp open reading frame that encodes 180 amino acids. The bioinformatics analysis suggested that the GjI-2 has conserved PP1c binding motif, and contains a conserved phosphorylation site, which is important in regulation of its activity. The three-dimensional model structure of GjI-2 was buite, its similar with the structure of I-2 from mouse. The results suggest that GjI-2 has relatively conserved RVxF, FxxR/KxR/K and HYNE motif, and these motifs are involved in interaction with PP1.

  13. Application of a UPLC–MS/MS method to the protein binding study of TM-2 in rat, human and beagle dog plasma

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2016-02-01

    Full Text Available TM-2 known as a potential antitumor drug is a novel semi-synthetic taxane derivative. As drug–protein interactions contribute to insights into pharmacokinetic and pharmacodynamic properties, we elucidated the binding of TM-2 to plasma protein. In this study, a simple, rapid and reliable method was developed and validated employing equilibrium dialysis for the separation of bound and unbound drugs and ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS for the quantitation. Protein binding reached equilibrium within 24 h of incubation at 37 °C. After liquid–liquid extraction with methyl tert-butyl ether, the samples were separated on Thermo Syncronis UPLC® C18 (2.1 mm×50 mm, 1.7 µm, and acquisition of mass spectrometric data was performed in multiple reaction monitoring (MRM mode via positive electrospray ionization. The assay was linear over the concentration rang of 5–2000 ng/mL. The intra- and inter-day precisions were 0.1%–14.8%, and the accuracy was from −6.4% to 7.0%. This assay has been successfully applied to a protein binding study of TM-2 in rat, human and beagle dog plasma. TM-2 showed high protein binding of 81.4%±6.5% (rat, 87.9%±3.6% (human and 79.4%±4.0% (beagle dog. The results revealed that there was an insignificant difference among the three species.

  14. Germline Hypermethylation of MLH1 and EPCAM Deletions Are a Frequent Cause of Lynch Syndrome

    NARCIS (Netherlands)

    Niessen, Renee C.; Hofstra, Robert M. W.; Westers, Helga; Ligtenberg, Marjolijn J. L.; Kooi, Krista; Jager, Paul O. J.; de Groote, Marloes L.; Dijkhuizen, Trijnie; Olderode-Berends, Maran J. W.; Hollema, Harry; Kleibeuker, Jan H.; Sijmons, Rolf H.

    It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation.

  15. Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome.

    NARCIS (Netherlands)

    Niessen, R.C.; Hofstra, R.M.; Westers, H.; Ligtenberg, M.J.L.; Kooi, K.; Jager, P.O.; Groote, M.L. de; Dijkhuizen, T.; Olderode-Berends, M.J.; Hollema, H.; Kleibeuker, J.H.; Sijmons, R.H.

    2009-01-01

    It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation.

  16. Lynch syndrome-associated extracolonic tumors are rare in two extended families with the same EPCAM deletion

    NARCIS (Netherlands)

    Lynch, H.T.; Riegert-Johnson, D.L.; Snyder, C.; Lynch, J.F.; Hagenkord, J.; Boland, C.R.; Rhees, J.; Thibodeau, S.N.; Boardman, L.A.; Davies, J.; Kuiper, R.P.; Hoogerbrugge, N.; Ligtenberg, M.J.L.

    2011-01-01

    OBJECTIVES: The Lynch syndrome (LS) is an inherited cancer syndrome showing a preponderance of colorectal cancer (CRC) in context with endometrial cancer and several other extracolonic cancers, which is due to pathogenic mutations in the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2. Some

  17. 26 CFR 31.3306(c)(10)-2 - Services of student in employ of school, college, or university.

    Science.gov (United States)

    2010-04-01

    ... before 1962. Services performed in the employ of a school, college, or university not exempt from income..., college, or university. 31.3306(c)(10)-2 Section 31.3306(c)(10)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX AT SOURCE...

  18. Direct protein-protein interaction between PLCγ1 and the bradykinin B2 receptor-Importance of growth conditions

    International Nuclear Information System (INIS)

    Duchene, Johan; Chauhan, Sharmila D.; Lopez, Frederic; Pecher, Christiane; Esteve, Jean-Pierre; Girolami, Jean-Pierre; Bascands, Jean-Loup; Schanstra, Joost P.

    2005-01-01

    Recently, we have described a novel protein-protein interaction between the G-protein coupled bradykinin B2 receptor and tyrosine phosphatase SHP-2 via an immunoreceptor tyrosine-based inhibition motif (ITIM) sequence located in the C-terminal part of the B2 receptor and the Src homology (SH2) domains of SHP-2. Here we show that phospholipase C (PLC)γ1, another SH2 domain containing protein, can also interact with this ITIM sequence. Using surface plasmon resonance analysis, we observed that PLCγ1 interacted with a peptide containing the phosphorylated form of the bradykinin B2 receptor ITIM sequence. In CHO cells expressing the wild-type B2 receptor, bradykinin-induced transient recruitment and activation of PLCγ1. Interestingly, this interaction was only observed in quiescent and not in proliferating cells. Mutation of the key ITIM residue abolished this interaction with and activation of PLCγ1. Finally we also identified bradykinin-induced PLCγ1 recruitment and activation in primary culture renal mesangial cells

  19. Bcl-2 Protein Expression in Egyptian Acute Myeloid Leukemia

    International Nuclear Information System (INIS)

    El-Shakankiry, N.; El-Sayed, Gh.M.M.; El-Maghraby, Sh.; Moneer, M.M.

    2009-01-01

    Objective: The primary cause of treatment failure in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. The bcl-2 gene encodes a 26-kDa protein that promotes cell survival by blocking programmed cell death (apoptosis). In the present study, bcl-2 protein expression was evaluated in newly diagnosed AML patients and correlated with the induction of remission and overall survival (OS), in an attempt to define patients who might benefit from modified therapeutic strategies. Patients and methods: Pretreatment cellular bcl-2 protein expression was measured in bone marrow samples obtained from 68 patients of newly diagnosed acute myeloid leukemia and 10 healthy controls by western blotting. Results: The mean bcl-2 protein expression was significantly higher in patients (0.68610.592) compared to controls (0.313±0.016) (p=0.002). The overall survival for patients with mean bcl-2 expression of less, and more than or equal to 0.315, was 67% and 56%, respectively, with no significant difference between the two groups 0»=0.86). Conclusion: Even though we did not observe a significant difference in overall survival between patients with high and low levels of bcl-2, modulation of this protein might still be considered as an option for enhancing the effectiveness of conventional chemotherapy.

  20. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy

    Science.gov (United States)

    Wang, Xiaoxin X.; Levi, Jonathan; Luo, Yuhuan; Myakala, Komuraiah; Herman-Edelstein, Michal; Qiu, Liru; Wang, Dong; Peng, Yingqiong; Grenz, Almut; Lucia, Scott; Dobrinskikh, Evgenia; D'Agati, Vivette D.; Koepsell, Hermann; Kopp, Jeffrey B.; Rosenberg, Avi Z.; Levi, Moshe

    2017-01-01

    There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice. PMID:28196866